@ UNIVERSITAT
KOBLENZ - LANDAU

fnnlib: A Flexible C++ Library for Recurrent
Neural Network Simulations

Studienarbeit

vorgelegt von

Dennis Faflbender

Betreuer: Dipl.-Inf. Bjorn Pelzer, Institut fiir Informatik, Fachbereich
4

Erstgutachter: Prof. Dr. Ulrich Furbach, Institut fiir Informatik, Fach-
bereich 4

Koblenz, im November 2010

Erklarung

Ich versichere, dass ich die vorliegende Arbeit selbstandig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einver-
standen. Der Veroffentlichung dieser Arbeit im Internet stimme ich
Zu.

THANKS
I would like to thank the following people/organizations:

Joschka Boedecker (Osaka University), for introducing me to recur-
rent neural networks and providing valuable input and assistance with
problems during the development of fnnlib

Bjoern Pelzer (University of Koblenz), for supervising the creation
of this thesis

Deutscher Akademischer Austausch Dienst (DAAD), for grant-
ing me a scholarship to finance my six-month stay at Osaka University,
where I developed fnnlib

Contents

1 Introduction

1.1
1.2

Motivation
Structure

2 Neural Network Theory

2.1
2.2

2.3
2.4
2.5

Feed-Forward Neural Networks & Backpropagation

Recurrent Neural Networks & Backpropagation Through

Time
Recurrent Neural Networks with Parametric Bias

Continuous-Time Recurrent Neural Networks
Echo State Networks

3 Design of the Library

3.1

3.2

3.3

3.4
3.5

3.6

Classes for Input/Desired-Output Data
3.1.1 DataSource
3.1.2 StaticDataSource
3.1.3 FileDataSource
Classes Representing Activation Functions
3.2.1 ActivationFunction
3.2.2 IdentityActivation
3.2.3 SigmoidActivation
3.2.4 SoftmaxActivation
3.2.5 TanhActivation
3.2.6 UserActivation
Classes for Weight Initialization
3.3.1 Initialization
3.3.2 Randomlnitialization
3.3.3 RandomSparselnitialization
3.3.4 Permutationlnitialization
The Adaptation Class
Classes Representing ESN Training Methods
3.5.1 ESNTrainingAlgorithm
3.5.2 PseudolnverseAlgorithm
3.5.3 WienerHopfAlgorithm
3.5.4 LinearLeastSquaresAlgorithm
The Layer Classes
3.6.1 Layer.

D OO

~

3.6.2 ESNLayer 33

3.7 A First Summary 35
3.8 Classes Representing Neural Networks 36
3.8.1 NeuralNetwork 36

382 RNN 39

383 ESN 40

3.9 RNN Training Algorithms 41
3.9.1 RNNTrainingAlgorithm 41

392 BPTT 43

393 CBPTT 43

3.10 Classes for Performance Analysis 44
3.10.1 LayerErrorData 44

3.10.2 NetworkErrorData 44

4 A Small Practical Example 45
5 Related Work 48
6 Conclusion 51
A Documentation 52

1 Introduction

1.1 Motivation

Following Frank Rosenblatt’s 1958 paper on the Perceptron [5], a sim-
ple feed-forward neural network, artificial neural networks came to be
considered a biologically plausible computer model of human learning.
Over the decades, various types of networks have been developed, some
of which will be introduced in section 2. The goal of this project was to
create a flexible, easily extensible C++ library which allows its user to
quickly create, train and test different network architectures, including
ones which cannot be found in other libraries yet since they were only
invented recently. For lack of creativity, I chose the name fnnlib — short
for Flexible Neural Network Library — for the library.

I developed fnnlib during a stay at Osaka University’s Graduate
School of Engineering, where neural networks are used extensively in
humanoid robotics research. As a result, the functionality included in
the library was influenced by the special requirements of robot learn-
ing. The idea was to help researchers in general - and those at Osaka
University in particular - implement and test neural networks for new
research projects using a common library rather than new, potentially
faulty code or recycled pieces of code.

fnnlib requires working copies of the C++ matrix library Armadillo*
as well as LAPACK? and ATLAS?.

1.2 Structure

Section 2 introduces the theory behind the different kinds of neural net-
works that can be created with fnnlib. Section 3 presents the library’s
design, i.e. the classes, their interrelationships, the motivations behind
various design decisions, as well as suggestions for future additions or
changes to the library. In section 4, a simple neural network will be
created, trained and tested using fnnlib. Section 5 covers related work
before the thesis is concluded in 6. Appendix A explains where to find
fnnlib’s complete documentation.

"http://arma.sourceforge.net/
*http://www.netlib.org/lapack/
Shttp://math-atlas.sourceforge.net/

2 Neural Network Theory

After a brief recapitulation of what a neural network is and how it
is trained using standard backpropagation, this section will explain
the Backpropagation Through Time (BPTT) algorithm, which was de-
veloped by Rumelhart et al. in 1986 [6] to train Recurrent Neural
Networks. Slight variations of traditional BPTT are also used to train
Recurrent Neural Networks with Parametric Bias (see section 2.3) and
Continuous Time Recurrent Neural Networks (see section 2.4). Finally,
section 2.5 will give an introduction to Echo State Networks, which are
not trained by backpropagating errors but by solving linear systems
of equations whose unknown variables are the weights of connections
between neurons.

2.1 Feed-Forward Neural Networks & Backpropagation

A standard feed-forward neural network consists of an input layer, one
or more hidden layers, and an output layer. Each of these layers is
comprised of one or more neurons. Note that, in this thesis, the terms
neuron and unit will be used interchangeably. In the most simple case,
neurons in layer ¢ are only connected to neurons in layer ¢ + 1. While
these connections are often referred to as synapses, we will stick to the
term connection for the most part.

All connections are assigned weights, with the connection from neuron
J to neuron k having the weight wy;. The output, or activation, y of a
neuron is computed by an activation function f. A simple feed-forward
neural network may look like this:

The activations of the neurons in the different layers are computed
successively, starting with the input layer. Its activation at time-step n
is computed by applying f to the respective input written into the neu-
rons at that time-step. The input of the following layers is computed
as follows: for each incoming connection of a neuron j, the weight wj;
of the connection is multiplied by the activation of the neuron i at the
opposite end of the connection; the activation function f is then ap-
plied to the sum v;(n) of those products, which is called the induced
local field. Thus, the activation of neuron j at time-step n is computed
according to the following formulas (the notation was adopted from
Haykin [2]):

Input Hidden Output

f(x)

Figure 1: A simple feed-forward neural network

vj(n) = Z wjiyi(n) (1)
yj(n) = f(v;(n)) (2)

After N time-steps, the errors at the output neurons at the different

time-steps n (n = N, ..., 1), i.e. the differences between their actual
outputs y;(n) and their desired outputs d;(n) are computed:

¢j(n) = d;(n) —y;(n) (3)

The goal is to minimize the mean squared error, which sums the squared
errors of all output neurons (O denotes the set of indices of the output
neurons) over all N time-steps and divides it by 2N:

1)
EZﬁZZ%(n) (4)

n=1 je€O

The goal now is to adjust the connection weights in such a way as

to minimize the mean squared error. To this end, we will use the

first derivative of the activation function and the error to calculate the

gradients 0;, starting at the output layer and iterating backwards over

the layers until we reach the first hidden layer:
f'(v;(n))e;j(n); for output units

(n) =47, . . (5)
f'(v;(n)) >, wkjok(n); otherwise

In the output layer, the error e; is used to compute the gradient. In the
hidden layers, there is no such error since there is no information about
the desired output of these neurons. Instead, the sum of products of
the weights of all outgoing connections and the gradients of the neurons
at the opposite ends of the respective connections is multiplied by the
value of the first derivative of the activation function. The errors at the
output neurons are thus backpropagated through the network. Once
all gradients have been computed for all time-steps n, starting at the
last time-step n = N and going back to the first time-step n = 1, the
connection weights in the network are updated by adding Aw;; to wy;:

Awj; =1 Z d;(n)yi(n) (6)

For each connection from a neuron ¢ to a neuron j, Awj; is computed by
iterating over all time-steps n and summing the products of j's gradient
and i's activation at that time-step. That sum is then multiplied by the
learning rate m, which is typically a small value chosen by the trainer.

2.2 Recurrent Neural Networks & Backpropagation Through
Time

While feed-forward neural networks usually only have connections from
layer n to layer n+1, as stated in section 2.1, neurons in recurrent neu-
ral networks (RNN) may be connected to any other neuron, including
neurons in the same or a previous layer. They can be trained using a
method called Backpropagation Through Time (BPTT), a slight vari-
ation of the standard backpropagation algorithm described in section
2.1. Figure 2 shows an example of a simple RNN.

This essentially means that the activation at time-step n of the
hidden neurons in Figure 2 depends on their activations at time-step
n — 1, which again was affected by the activations at time-step n — 2
and so on. Given the size N of a training epoch (i.e. the weights
will be updated after N time-steps), an RNN can be thought of as a
feed-forward network that was unfolded in time:

Since the epoch size was 3 in this case, there are now three copies
of the old RNN. The recurrent connections have been transformed into
forward connections, but they now connect the copy of neuron j at
time-step n to its copy at n+ 1. As a result, the dependencies between

Input Hidden Output

f(x)

Figure 2: A simple recurrent neural network

n=0 n=1 n=2
:<(; &(0) i ; e(1) i; >>: °(2)

Figure 3: An RNN that was unfolded in time over three time-steps

the activations at different time-steps remain the same: j's activation
at time-step n still depends on its activation at the previous time-step.
In order to train the network, it is first necessary to compute the
direct error at the output neuron at all three time-steps using the known
formula
ej(n) = dj(n) —y;(n) (7)
Now, the gradients of the network copy at time-step n+2 are computed.
This can be done using the standard backpropagation formula for feed-
forward networks since the recurrent connections of the hidden layer
have been removed. There is simply no further copy of the network to
attach them to since n+ 2 is the last time-step. Afterwards, we have to
go back one step in time to compute the gradients at time-step n + 1.

10

The following formula is used to do this:

d;(n) = f'(vj(n)) [ej(”) +) wkﬂk(”')] (8)

Note that e;(n) will be zero for all non-output neurons. Also, the value
of n’ depends on whether connection kj was a recurrent connection or
not. In the former case, n’ will be equal to n + 1 since the formerly
recurrent connections now attach to the (n + 1) copy of the network.
If the connection was not recurrent, n’ will be equal to n. Similar care
has to be taken when updating the weights. A(wj;) is now computed
as follows:

Awyy =0 6uln)y; () (9)

While this formula is almost identical to the one used for feed-forward
networks, n’ once again depends on whether kj used to be a recurrent
connection. If it did, then n’ will be equal to n — 1, as the value
transmitted over kj at time-step n was the product of the connection
weight and the activation of neuron ¢ at time-step n — 1. In the case
of n =1, n — 1 will refer to the non-existent time-step zero, so y;(n’)
will be set to zero. If kj was not recurrent, n’ will be equal to n.

2.3 Recurrent Neural Networks with Parametric Bias

Thanks to the feedback loop created by recurrent connections, recur-
rent neural networks are well-suited for tasks such as time-series pre-
diction. Training a network to predict a time-series works as follows:
at time-step n during training, the input dataset x(n) is written into
the input layer, while dataset x(n + 1) is given as the desired output
for time-step n. If, at the end of the training process, the network has
learned to generate the values xz(n + 1) for all z(n) of a pattern (e.g. a
sine wave) with sufficient accuracy, it should be able to generate that
pattern autonomously by writing its output back into its input layer
after each step.

If a neural network is supposed to be a model of the human brain,
however, it should be able to learn multiple time-series. In the case
of a robot, this would be useful because one network would be able to
generate several series of actuator commands, e.g. one which extends

11

the robot’s arm and one which opens its hand. Since this means that
the same connection weights would have to be used to generate two or
more different time-series when being presented their respective input
values, the network’s performance in generating each individual time-
series would inevitably decrease dramatically as the number of time-
series increases. As a remedy to this problem, Ito and Tani [3] came
up with the idea of using bias neurons with internal values that are
adjusted individually for each pattern learned by the network. (Note
that the terms time-series and pattern will be used interchangeably.)
An example of this type of ” Recurrent Neural Network with Parametric
Bias” (RNNPB) can be seen in Figure 4.

Output S(t+1) X(t+1)

Parametric

Input S(t) Bias Context loop X(t)

Figure 4: A RNN with a Parametric Bias layer (Source: [9])

Apart from an input layer, a hidden layer, and an output layer,
this network has two small layers whose recurrent connections form a
”context loop,” which enables the network to keep information about
past activations of the hidden layer in the network. The difference to
a standard recurrent neural network, though, is the Parametric Bias
(PB) layer, which consists of two neurons.

RNNPB are trained using the Backpropagation Through Time method
described in section 2.2. However, the weights of the outgoing connec-
tions of the PB layer are held fixed. Instead, their internal values are
adjusted. In order to compute their activations, the activation func-
tion is applied to their internal values. While there are various ways to

12

compute the update of the internal values, the method used by fnnlib
is a simple one adopted from Cuijpers et al. [1]:

uf(e+1) = ul(e) + 1Y _ 5(n) (10)

In the above equation, ué“ (e+1) denotes the internal value of PB neuron
j for pattern k during the (e + 1) training epoch. n and 5;“(71) denote
the learning rate and the gradient of the PB neuron, respectively. Note
that the gradients are computed separately for the different time-series
to be learned.

One training epoch consists of N steps, which means that the weights
and the PB values are updated after N datasets of each pattern were
presented to the network. The formula BPTT uses for updating the
weights has to be adjusted slightly in order to account for the fact that
there are now several time-series:

Ay = 3757 o)y) ()

K denotes the number of time-series to be learned. Since the gradients
were computed individually for each time-series using standard BPTT,
the index k is needed to distinguish between the different gradients and
activations of the same neuron in different time-series.

As mentioned above, the output of a PB neuron at step n is com-

puted using
yj(n) = fuf(n)), (12)

where f is the activation function.

According to Ito and Tani [3], an RNNPB is better at learning mul-
tiple patterns because it is capable of "extracting relational structures”
that are shared by the patterns. However, they also concede that the
network may fail to do so if the relational structures are complex. Tests
using fnnlib’s RNNPB algorithm have suggested that the network’s per-
formance after training depends greatly on the kinds of patterns that
were learned simultaneously, as well as on the number of PB neurons
and their learning rate. One of the reasons I included RNNPB in fnnlib
was that students at Osaka University’s Graduate School of Engineer-
ing had successfully used them in basic tasks of speech synthesis.

13

2.4 Continuous-Time Recurrent Neural Networks

Continuous-Time Recurrent Neural Networks (CTRNN) are an exten-
sion of traditional RNN that have one more way of retaining informa-
tion about past network states. While this information is kept in a
standard RNN through the use of recurrent connections only, the neu-
rons in a CTRNN have additional internal states whose values change
gradually.

When a neuron in a CTRNN is supposed to fire at time-step n, its
induced local field is computed. Instead of applying the activation
function to the induced local field, as is done in standard RNN, a new
internal state is computed based on the internal state at time-step n—1
and the current induced local field. The activation function is then ap-
plied to the value of the new internal state. A time constant 7 is used
to control how fast the internal state u changes, as can be seen in the
update formula:

u(n+1) = (1 . l) ujln) + (Z wﬁyxm) (13)

u;(n) denotes the internal state of neuron j at time-step n. It is mul-
tiplied by (1 — %), which means that this part of the sum will be zero
if 7 has a value of 1. For large 7, the product will be virtually equal
to u;(n). In the second part of the sum, the induced local field is
multiplied by % As a result, the value of this product decreases as 7
increases. If 7 is 1, the new internal state u;(n+1) will depend only on
the induced local field at time-step n + 1, i.e. the neuron will behave
like a standard neuron in a traditional RNN. If 7 is large, on the other
hand, the new state will depend almost entirely on the old internal
state.

The neuron’s activation at n + 1 is simply computed by

yi(n+1) = f(u;(n+1)) (14)

Expanding on this concept, Yamashita and Tani [8] developed Multiple-
Timescale Recurrent Neural Networks (MTRNN), which are CTRNN
that use different time constants for different layers. According to [8],
their work was motivated by neurological research suggesting that hu-
man beings learn to perform simple movements ("motor primitives”)
which are then combined to perform more complex movements. For

14

example, the action of grasping a cup could be considered a motor
primitive that is used both in drinking from a cup and in washing a
cup. They tried to replicate this behavior in an MTRNN by using two
fast-changing layers (time constants 1 and 5) to learn motor primitives,
and a slowly changing layer (time constant 70) that was supposed to
learn to combine the motor primitives of the two other layers in order
to perform complex tasks. In the ideal case, it would be possible to
fix the weights of the two fast-changing layers once a certain number
of motor primitives have been acquired. Then, new complex move-
ments would be learned simply by teaching the slow layer new ways of
combining the motor primitives.

Figure 5 shows the network architecture used by Yamashita and
Tani [8]. The input-output layer (100 neurons) and the fast context
layer (60 neurons) are the aforementioned fast-changing layers with
time-constants 1 and 5, respectively, while the slow context layer (20
neurons) has a time constant of 70. The input-output layer is only
connected to the fast context layer. The fast context layer is connected
to all layers, including itself. The slow context layer is connected to
the fast context layer and itself.

it] -

Yit

[= \‘q \

i

i=1...64 |i=65...100||i=101..160] | [i=161.180 Xt

(0

Input-output Fast context Slow context

Figure 5: A Multiple-Timescale RNN (Source: [8])
Since Yamashita and Tani [8] chose the Kullback-Leibler Divergence

as the error function to be minimized, the weight update formulas are
different from the ones used in BPTT. (fnnlib uses the formulas in [§]

15

to train CTRNN.) The overall error is given by

N

di n

B=30 % dinio (21). (15)
n=1 €0 Yi (n)

where N is the number of time-steps in the current training epoch, O

is the set of indices referring to neurons in the output layer, d;(n) is

the desired output of neuron ¢ at step n, and y;(n) is its actual output.
The gradients are computed using

5 yi(n) — di(n) + (1 — £)d;(n+1); fori € O
i\n) = ' .
(n) > 0i(n+1) [Azj(l - r%) + %wﬂf’(uz(n)) ;forig O

(16)
where A;; is Kronecker’s Delta, which is 1 if i=j and 0 otherwise. Note
that A was chosen to denote this function simply because the com-
monly used ¢ already refers to the gradient. After the gradients have
been computed, the weight updates Aw;; are computed by the follow-
ing formula:

N

Ny =~ 3"~ (n)yin — 1) (17)

n=1 "J

While Yamashita’s and Tani’s [8] robot experiments involving the net-
work in Figure 5 yielded promising results, they point out that more
research needs to be conducted in order to determine whether this
method of training also works with larger networks that have to per-
form truly complex tasks. As CTRNN may be used for robot learning
at Osaka University in the future, they were included in fnnlib.

2.5 FEcho State Networks

Developed by H. Jaeger [4], Echo State Networks (ESN) are a special
type of recurrent neural network which, unlike the RNN presented so
far, is not trained using gradient-based methods. In the most simple
case, an ESN consists of an input layer, a large "reservoir” layer, and
an output layer. The input layer is fully connected to the reservoir (i.e.
each input neuron has outgoing connections to all reservoir neurons),
with the reservoir being fully connected to the output layer. Further-
more, there are random recurrent connections between the reservoir

16

neurons. An illustration of an ESN can be seen in Figure 6, which
is followed by further explanatory remarks. While the reservoir typi-
cally contains at least 100 neurons, this example only has four reservoir
neurons to keep the explanations simple.

—» fixed
Output (linear o
— adjustable put ()

Figure 6: A simple Echo State Network

As can be seen in Figure 6, both the input-to-reservoir and the
reservoir-to-reservoir connections will be held fixed during training.
Only the reservoir-to-output weights will be adjusted. Also, the out-
put unit does not have a non-linear activation function; instead, the
output is identical to the unit’s induced local field, i.e. the sum of the
products of connection inputs and connection weights. The input and
reservoir units may have non-linear activation functions, though.

In order to train an ESN, the network is first run for a certain num-
ber of time-steps in order to wash out the initial reservoir state. This
is done since, at time-step 1, the value transmitted by the recurrent
reservoir connections is chosen to be either zero or a small random
value. Note that during the entire training phase, including this initial
washout phase, only the activations of the input and reservoir layers
need to be computed, whereas the potential activations of the output
layer can be ignored.

After n sets of input data were presented to the network, the next
m activations of the reservoir units (1 through 4 in this example) are
collected into a m x 4 state matrix S, where the number of columns is

17

equal to the number of reservoir units:

pn+1) gpn+1) ysn+1) ya(n+1)

n(n+2) ya(n+2) ys(n+2) wln+2)

S = (18)

p(n+m) wn+m) ysn+m) yaln+m)

At the same time, the desired output is collected into a m x 1 matrix D,
whose number of columns corresponds to the number of output units.

(19)
ds(n +m)

Since both the input-to-reservoir and the reservoir-to-reservoir weights
remain fixed, we can be sure that the reservoir’s activations at time-
steps n + 1 through n 4+ m will be the same when the network is reset
and presented with the same input data again. In order to make sure
that the network will produce the correct output, we first set up a
system of linear equations, with the connection weights w;; being the
unknown variables. Note that i denotes a reservoir unit (1 through 4 in
this case), while j (which is always equal to 5, since our example only
has one output unit) denotes an output unit to which i is connected.

yl(n —f- 1)w5,1 —|— + y4(7’L —f- 1)11)574 = d5(n +]_)

U1 (TL —|— 2)21)571 —I— + y4(n —|— 2)’[1)574 = d5(n + 2) (20)
y1(n+m)ws 1 + ... + ya(n + m)ws 4 = ds(n +m)

The 4 x 1 weight matrix (a vector, in this case) containing the values

of ws through ws 4 that represent a solution to this linear system can
then be computed using the Wiener-Hopf method:

Wout = ((S,S)_IS/D),7 (21)
where (-) is the transpose operator and (-)~' is the matrix inverse
operator. Alternatively, we can use the pseudoinverse method, which
is slower but may still find solutions when Wiener-Hopf fails.

Woy = (STDY (22)

18

Here, ST denotes the pseudoinverse of S.

As evidenced by tests conducted with fonlib, training an ESN usu-
ally is much faster than training a standard RNN using BPTT, which
may need many iterations to converge or may not converge at all in
some cases. The performance of the latter algorithm also depends
strongly on the size of the training epoch, the learning rate, and the
number of training epochs chosen by the trainer. Another issue which
does not occur with ESN is the ”vanishing gradients problem” ([2], p.
819): sometimes, the output of an RNN at a certain time-step may
depend on an input in the distant past. In that case, adjusting the
training parameters in such a way as to enable the network to detect
changes in that input can be very hard. With ESN, it tends to be
easier to determine appropriate values for the few parameters that can
be controlled (e.g. duration of the washout phase, number m of rows
in state matrix).

As was the case with RNNPB and CTRNN] the inclusion of ESN in
fnnlib was also partly motivated by the fact that research on this type
of neural network is being done at Osaka University’s Graduate School
of Engineering. While many members of the school - and, possibly,
other researchers around the globe - had never actually used ESN, I
believe that they may be more inclined to give them a try in their
research projects with a library like fnnlib at their disposal.

3 Design of the Library

This section will present fnnlib’s design, i.e. its classes and their inter-
relationships. Moreover, it will give reasons as to why certain design
decisions were made and present ideas for future changes or additions.
Note that detailed information about how to use the classes can be
found in fnnlib’s documentation (see Appendix A); the purpose of this
section is to give an abstract overview of the classes rather than going
through all methods and explaining exactly what each parameter does.

First, we will have a look at the class DataSource and its child
classes, which are responsible for providing a neural network with in-
put and desired-output data (see 3.1). In section 3.2, the activation
function class ActivationFunction and its child classes will be discussed.
Section 3.3 covers Initialization and its children, i.e. classes that initial-
ize connections between layers, or between a neuron and a layer. Sec-

19

tion 3.4 will introduce the Adaptation class, which can be used to adapt
ESN reservoir layers prior to training. Section 3.5 will cover the train-
ing algorithms for ESN, starting with the base class ESNTrainingAlgo-
rithm. Unlike the gradient-based methods, these algotihms need to be
covered before the layer classes Layer and its child class ESNLayer are
introduced in section 3.6. Section 3.7 provides a brief summary and
explains the relationships between the classes covered up to that point.
Next, section 3.8 will introduce the class NeuralNetwork and its child
classes. Only after that section will the base class for gradient-based
training algorithms (RNN TrainingAlgorithm) and its children be cov-
ered in section 3.9. Finally, section 3.10 will explain how the classes
ErrorData and NetworkErrorData fit into the overall design and allow
the trainer to collect error data during the testing phase.

Throughout this section, there will be code listings showing the dec-
larations of various methods. While the actual declarations in fnnlib’s
header files contain no parameter names, the declarations in the code
listings do. The names are the same as those that appear in the def-
initions and were added for clarity. Also, if several methods of one
class have the same visibility but are presented in separate code list-
ings, their visibility modifier (public, in most cases) will be inserted
into all code listings even though it only appears once in the actual
source code.

3.1 Classes for Input/Desired-Output Data

In fonlib, input/desired-output data is represented by the class Data-
Source, an abstract base class from which StaticDataSource is derived.
As can be seen in Figure 7, StaticDataSource also has a child class,
namely FileDataSource. So what are the differences between these
classes?

3.1.1 DataSource

DataSource is an abstract base class for both static and dynamic data
sources. While static data sources can be created using StaticData-
Source or a class derived from it, dynamic data sources can be derived
directly from DataSource. ”Dynamic” data in this case means data
generated on the fly. Even though a data source may generate the
same data every time it used, it is also possible to generate data that

20

© 00~ Tk W+

depends on the system clock, for example. In order to understand this
better, we will first look at an excerpt from the declaration of Data-

Source.

public:

DataSource (int nNumberOfSets, int nSetSize);

inline int GetSetSize ();
inline int GetNumberOfSets ();

virtual void GetSetAt (int nIndex, vecx y) = 0;

protected:
int num_sets;
int set_size;

The constructor only needs to know the
number of sets as well as the size of each
set. These values are stored in num_sets and
set_size, which can be accessed using the two
Get methods. Implementations of GetSetAt
must write the data set at time-step nindex into
the vector y. Now suppose the user has cre-
ated a neural network and, as a first test, he
or she want to see how well it learns to gener-
ate a sine wave represented by 1000 data points.
There would be no need to generate those data
points and store them in files; instead, it would

StaticDataSource
FileDataSource

Figure 7: DataSource
and its child classes

be possible to create two child classes of DataSource (say Sineln and
SineOut). In each of these classes, only GetSetAt would have to be
defined. Since Sineln represents the input, its GetSetAt method would
simply write sin((nindex mod 1000)x27/1000) into y. SineOut repre-
sents the desired output at the same time-step, so its GetSetAt method
would write the value to be generated by the network into y, i.e.

sin(((nIndex + 1) mod 1000) x 27/1000).

Of course, GetSetAt could be arbitrarily complex, performing tasks
such as transforming live image data generated by a camera into a
vector and writing it into y. In order to allow this kind of flexibility,
the base class DataSource was left as general as it is.

21

=W N

3.1.2 StaticDataSource

In addition to the attributes of its parent class DataSource, StaticData-
Source contains an array of vectors that holds the data associated with
the respective object. The array’s elements can be accessed using the
GetSetAt method, which is no longer pure virtual, meaning that it is
possible to create objects of type StaticDataSource.

public:

void GetSetAt (int nlndex, vecx y);
protected:

vecx data;

The memory for data is allocated by the constructor, with the array
having num_sets fields and each vector having dimension set_size. Note
that all vectors will be zero vectors. If a static data source containing
meaningful data is needed, it can be derived from this class, but it will
not be necessary to define a GetSetAt method anymore. One important
thing to be aware of is that GetSetAt as defined in StaticDataSource
does not perform any bounds checking. Instead, nlndex will be modulo
divided by the total number of sets. If its value is negative, the result
of the modulo division will be added to the total number of sets. This
way, any value of nindex will be transformed into a valid index. The
decision to do this was made because it would save a lot of ugly uf
statements later on, thus making the code more readable.

3.1.3 FileDataSource

A child class of StaticDataSource, FileDataSource was designed as the
data source to be used in the majority of cases. The only difference
between this class and its parent class is a new constructor that expects
a path to a file as its third argument.

public:
FileDataSource (int nNumberOfSets, int nSetSize,
const charx strFileName);

The constructor will open the file, store its contents in the data
attribute inherited from StaticDataSource, and close the file afterwards.
Currently, FileDataSource can only process very simple text files that
consist of nNumberOfSets x nSetSize floating point numbers separated
by whitespace characters only. If the file contains fewer numbers, the

22

constructor will read them all and interpret non-existent numbers as
zeros. If the file contains more numbers than indicated by the first two
arguments to the constructor, they will be ignored.

Obviously, this is one place where fnnlib can and should be extended
in the future in order to enable it to process e.g. CSV files or files
whose sets of numbers are interrupted by comments. Support for those
types of files has not been included yet because it is reasonably easy to
convert them into files compatible with FileDataSource.

3.2 Classes Representing Activation Functions

During the planning phase for fnnlib, it was decided that the user
should be able to assign activation functions to neurons on a layer-
by-layer basis. Having to choose one activation function for an entire
network would have been too restrictive, especially in the case of an
ESN, whose output layer cannot have a non-linear activation function.
This would have meant that the entire network would have had to use
this non-linear activation function in all layers. While it would also
have been possible to let the user assign activation functions individu-
ally to each neuron, this would have made the library considerably more
complex while offering little benefit in practical applications. After all,
it is always possible to put neurons that are supposed to have differ-
ent activation functions into separate layers and assign the appropriate
activation function to the respective layer.

3.2.1 ActivationFunction

All activation functions in fnnlib are represented by classes derived from
the abstract base class ActivationFunction, which contains the two pure
virtual methods ComputeActivations and ComputeDerivatives.

public:
virtual void ComputeActivations (const veckx x, veck y) = 0;
virtual void ComputeDerivatives (const vecx x, vecx y) = 0;

In non-abstract child classes, ComputeActivations will be called to
compute the activations of a layer based on the induced local fields in
x and write the results of the computation into y. ComputeDerivatives
will be used to compute the values of the derivative of the activation
function at the points indicated by z. In order to add a new activation

23

T W N~

function to fnnlib, all that needs to be done is to derive a class from Ac-
tivationFunction that implements the two pure virtual methods. fnnlib
already contains several built-in activation functions, though; the UML
diagram in Figure 8 shows the classes representing them.

ActivationFunction

[[\ [|
IdentityActivation | |SigmoidActivation| |SoftmaxActivation| | TanhActivation | | UserActivation

Figure 8: ActivationFunction and its Child Classes

Before introducing the various child classes, it should be pointed
out that the user will usually only have to create objects of type User-
Activation. ActivationFunction already has public static attributes of
type IdentityActivation™, SigmoidActivation™, SoftmazActivation™®, and
TanhActivation™ that can be passed to any function needing an object
of one of those classes.

public:
static SigmoidActivationx SIGMOID;
static TanhActivationx TANH;
static SoftmaxActivationx SOFTMAX;
static IdentityActivationx IDENTITY;

The following subsections will briefly explain the five child classes
of ActivationFunction.
3.2.2 IdentityActivation

This is the most simple activation function contained in fnnlib. It just
copies the layer’s induced local fields into its vector of activations, i.e.
it is the identity function. The value of the derivative will always be 1.

3.2.3 SigmoidActivation

Objects of this class compute activations and values of the derivative
according to the formula of the sigmoid function, whose argument
will be the induced local field of the respective neuron:

v = flu) = —

1+ e
yi = f(wi) = (1 — fw)) x f(ui) (24)

I
—
[\)
w
~

24

[\

What is special about the sigmoid activation function is that it can
be adapted using Intrinsic Plasticity (IP) adaptation [7], in which case
two parameters are added:

1

= TF et (25)

Yi
The a; and b; parameters are set for each neuron individually by the
Adaptation class. Apart from the inherited ComputeActivation method
that expected two vectors as arguments, SigmoidActivation has another
ComputeActivation method that receives a pointer to an Activation
object containing the parameters.

public:
void ComputeActivations (const veckx x, Adaptationx adapt,
veck y);

Note that there is no special formula for the derivative of the adapted
sigmoid function; this is because adaptation can only be performed on
ESN layers, but ESN do not require computation of the derivatives.

More information on the Adaptation class, IP adaptation in general
and why it is useful can be found in section 3.4.

3.2.4 SoftmaxActivation

This activation function was adopted from Yamashita and Tani [§],
who used it for the output layer of their CTRNN. Given the induced
local fields u of a layer, the activations y of the layer’s neurons will be
computed by

Us

. (&
yl - Z] €uj

where) ; iterates over all neurons in the layer. The value of the partial
derivative w.r.t. u; is computed in two steps.

pi = Z e — et (27)
J

/ pi X e

Y = _(e“i + pi)?

(26)

(28)

25

3.2.5 TanhActivation

This class represents the hyperbolic tangent activation function and
uses the C++ standard library’s tanh function to compute a layer’s
activations. The values of the derivative are computed using

Y, = tanh'(u;) = 1 — tanh(u;)* (29)

3.2.6 UserActivation

The UserActivation provides a way of adding a custom activation func-
tion to fnnlib without having to derive a new class from Activation-
Function. Its constructor takes as arguments two pointers to functions
that map a double value to a double value; the functions represent an
activation function and its first derivative, respectively.

public:
UserActivation (double (*UserDefActFunc) (double),
double (*DerUserDefActFunc) (double));

UserDefActFunc is short for ”user-defined activation function,” while
DerUserDefActFunc stands for ”detivative of user-defiend activation
function.” These function pointers are stored inside the object. When
ComputeActivations or ComputeDerivatives are called, they will iterate
over the elements of x (the vector of induced local fields) and pass the
values to UserDefActFunc or DerUserDefActFunc, storing the results
in the vector y.

This alternative way of adding an activation function was included
because it might be faster than creating a new class, especially if the
functions to be passed to the constructor have already been defined. It
also saves the user the trouble of looking up how to use Armadillo’s vec
type. On the other hand, this method only works with activation func-
tions that compute a neuron’s activation independently of the induced
local fields of the other neurons in the same layer. If the activation
of neuron j at time-step n does depend on the induced local fields of
its neighbors, access to the vector containing those values is needed.
In that case, creating a new child class of ActivationFunction and im-
plementing the two Compute® methods is the way to go since all of a
layer’s induced local fields will be accessible inside those methods.

26

W N

3.3 Classes for Weight Initialization

As long as a neural network is very small or only sparsely connected,
the user may want to set each connection weight manually. However,
there are cases where the number of connections calls for a different way
of initializing the weights. This is especially true for ESN with their
large reservoir layers. As a result, a class representing initialization
functions was included in fnnlib, namely Initialization.

3.3.1 Initialization

An abstract base class, Initialization’s most important methods are the
virtual method Initialize and the static method GenerateRandom Weight.

public:
virtual void Initialize (matx w) = 0;
static inline double GenerateRandomWeight (double min,
double max);

Non-abstract child classes of Initialization will have to implement
an Initialize method that fills the weight matrix w. The entry w;; in
the i*" row and the j*" column represents the weight of the connection
from neuron i to neuron j. The dimensions of w depend on what kind
of connections are being initialized. If they connect a neuron to a layer
L, w will be a 1 x size(L) matrix; if they connect a layer L; to a layer
Lo (note that L; and L, may be the same layer), w’s dimensions will
be size(Ly) x size(Ls).

The method Generate Random Weight was included so as to provide
the user with a fast way of generating random numbers x within a
certain range (min < x < max). It might come in handy when new
child classes of Initialization that work with random weights are added.

fnnlib already comes with several built-in initialization methods.
Figure 9 illustrates the relationships between the classes representing
them and the base class Initialization.

The following sections
will briefly explain the
built-in activation meth- Initialization |

ods and give reasons as to ‘ 1 ‘

Why they were included. | Permutationlnitialization || Randomlinitialization |

For information on how

| RandomSparsel nitialization |

Figure 9: Initialization and its child classes

to use them, please con-

sult the documentation in

Appendix A. Note that

this section only intro-

duces the classes that can be used to initialize connection weights,
but it does not explain where the weight matrix they work on even
comes from. This will become clear in sections 3.6 and 3.8, though.

3.3.2 Randomlnitialization

Experience has shown that a good way of initializing the connections
between a neuron and a layer or between two layers in a standard RNN
is to assign small random weights to them. Hence why the class Rando-
mlinitialization, whose constructor expects two double values fMin and
fMaz as arguments, was added. When the class’s Initialize method is
called, it simply writes a random value between fMin and fMax into
each entry of the weight matrix.

3.3.3 RandomSparselnitialization

This class is derived from RandomlInitialization, and it works in a simi-
lar way. In addition to fMin and fMaz, its constructor expects a double
argument fSparseness. It must have a value between 0 and 1, specifying
what percentage of connections should be assigned a weight other than
zero. If fSparseness is set to 0.75, for example, this means that roughly
75% of the entries in the weight matrix will have a random value be-
tween fMin and fMax assigned to them, whereas the rest will be set
to zero. This method is especially useful for initializing the internal
connections of an ESN’s reservoir layer.

3.3.4 PermutationlInitialization

Like RandomSparselnitialization, this class may prove useful when work-
ing with standard RNN, but is primarily intended for use with ESN and
the internal connections of their reservoirs. Its Initialize method first
transforms the weight matrix into an identity matrix. (This is one of
the reasons why it probably only makes sense to use this class to initial-
ize the internal connections of a layer: In that case, the weight matrix
will be square, resulting in a proper identity matrix; if the connections

28

U W N~

between two layers of different sizes were to be initialized, there would
be some zero rows (or colums) left after filling the diagonal with ones.)
The columns of the weight matrix are then shuffled. Finally, the 1s are
replaced by either a constant value or a random value, depending on
which constructor was used (again, please see the documentation for
details). Provided that the weight matrix was square, this will result
in a matrix where each row ¢ has only one non-zero value. This in
turn means that neuron ¢ will only have one outgoing connection with
a non-zero weight. While this method of initialization may seem unin-
tuitive, it tends to yield good results when used for ESN reservoirs, as
evidenced by the practical example in section 4.

3.4 The Adaptation Class

The Adaptation class offers the ability to perform Intrinsic Plasticity
adaptation [7] on ESN reservoirs that use the sigmoid activation func-
tion (class SigmoidActivation). IP adaptation is performed prior to
training, but during the adaptation phase, the network is presented
with the same input as during training. In short, this method adjusts
the a and b parameters of the sigmoid activation function (see section
3.2) until the neurons’ output distributions form exponential distribu-
tions. This has been found to be a way of increasing the information
transmission inside the reservoir [7]. For more information on the the-
ory behind this method, please see Steil’s paper [7] on the topic, as an
in-depth introduction would go beyond the scope of this thesis.

In order to understand how this class works, it is necessary to take
a brief look at some of its methods.

public:
Adaptation (double fMu, double fLearningRate);
inline double GetA (int nUnit);
inline double GetB (int nUnit);
void Adapt (vecx x, veck y);

The constructor expects two arguments that control the adaptation
process. GetA and GetB return the adjusted a and b parameters of the
neuron that has index nUnit inside the layer to which the Adaptation
object is assigned. These two methods will be called by SigmoidActiva-
tion’s extended ComputeActivations method (see section 3.2). Finally,
Adapt performs the actual adaptation of the a and b parameters based

29

DO W N

on a vector z of induced local fields and a vector y containing the layer’s
activations. How and when this method is invoked will become clear
when the classes ESNLayer and ESN are covered in sections 3.6 and
3.8, respectively.

3.5 Classes Representing ESN Training Methods

ESNTrainingAlgorithm and its child classes are the last in a series of
mostly unrelated classes that need to be covered before the classes that
combine them all to form an actual neural network. As the name sug-
gests, ESNTrainingAlgorithm is an abstract base class for ESN training
methods, and ESN training methods only. The decision to separate
them completely from the gradient-based methods with base class RN-
NTrainingAlgorithm was made because ESN training methods can be
assigned on a layer-by-layer basis whereas a single gradient-based al-
gorithm has to be chosen for the entire network when working with
other RNN. This is also why RNNTrainingAlgorithm will be covered
after the introduction of the layer classes in section 3.6. Before the
various classes in this section are presented, Figure 10 shows how they
are related.

| ESNTrainingAlgorithm |

i
[| |

LinearLeastSquaresAIgorithmH Pseudol nverseAlgorithm || WienerHopfAlgorithm

Figure 10: ESNTrainingAlgorithm and its Child Classes

We will first have a look at ESNTrainingAlgorithm.

3.5.1 ESNTrainingAlgorithm

The most important parts of this class’s declaration can be found in
the code listing below.

public:
virtual mat ComputeWeightMatrix (matx matStates,
mat* matDesiredOutput) =

static PseudolnverseAlgorithm* PSEUDOINV;
static WienerHopfAlgorithm WIENERHOPF;

30

0;

7

static LinearLeastSquaresAlgorithms* SOLVE;

All that is required of its subclasses is that they implement the
pure virtual method Compute WeightMatriz. The first argument to this
method is the matrix of activations that were collected over a certain
number of time-steps. To be more specific, it will only contain the ac-
tivations of those neurons that are connected to the layer to which the
ESNTrainingAlgorithm object was assigned. The second argument is
the matrix containing the desired output values for each neuron in the
layer at each time-step. Note that the matrices matStates and mat-
DesiredOutput were denoted by S and D respectively in section 2.5.
Based on these two matrices, implementations of Compute WeightMa-
triz must return a weight matrix containing new values for the weights
of incoming connections to the layer the object is assigned to.

As can be seen in the above code listing, static pointers to existing
objects of the three child classes were included in ESNTrainingAlgo-
rithm. Consequently, there is usually no need for the user to create
objects of those classes manually, since one object can be assigned to
more than one layer if needed. This reuse of objects is possible be-
cause the classes do not have any attributes with object-specific values
on which the result of Compute WeightMatriz might depend. The re-
turned weight matrix will only depend on the method’s two arguments.

3.5.2 PseudolnverseAlgorithm

The child class PseudolInverseAlgorithm uses the pseudoinverse method
to compute the weight matrix (see section 2.5). Apart from actually
implementing the Compute WeightMatriz method, no further function-
ality is added compared to the parent class. The same holds true for
the other two child classes, which is why they will be covered very
briefly.

3.5.3 WienerHopfAlgorithm

WienerHopfAlgorithm uses the Wiener-Hopf method to compute the
weight matrix (see section 2.5).

31

3.5.4 LinearLeastSquaresAlgorithm

LinearLeastSquaresAlgorithm simply invokes Armadillo’s solve method
to compute a solution to the system of equations formed by the matri-
ces. While no statistical analysis of the performance of these methods
in fnnlib has been done, LinearLeastSquaresAlgorithm seems to offer
the best combination of speed and numerical stability.

3.6 The Layer Classes

During the planning phase for fnnlib, one of the questions

that came up was how a neural network should be repre-

sented by classes, and which of its components should be Layer
represented by classes of their own. One solution would

have been to create a neuron class, a layer class, and a
neural network class, with layer objects being comprised

of neuron objects and neural network objects holding an Figure 11:
array of layer objects. This would have provided an easy Layer and
way of adjusting the settings of each neuron individually, ESNLayer
but with large networks, handling hundreds of neuron ob-

jects would have become infeasible.

Another possibility would have been to not have separate classes
for layers and neurons but to just create one class that represents a
neural network and all of its components. However, since the user
should be able to assign things such as activation functions and initial-
ization methods on a layer-by-layer basis, this one neural network class
would have been overloaded with Set methods that would change the
attributes of the various layers. While the user would have had to deal
with one object only, that object would have been very complex.

In the end, a compromise between the above-mentioned approaches
was made. Neurons would not be represented by a separate class, but
there would be a layer class whose objects would be passed to a neural
network class. This section deals with the layer class Layer and its
child class ESNLayer (also shown in Figure 11), whereas the base class
for actual networks (NeuralNetwork) will be covered in section 3.8.

3.6.1 Layer

The base class Layer represents layers of the gradient-based types of
RNN (standard RNN, RNNPB, and CTRNN). The code listing below

32

~N O Uk W N

shows the declaration of those methods that are important for the
purpose of understanding fnnlib’s design. As always, the complete
documentation can be found in Appendix A.

public:
Layer (int nUnits, ActivationFunction* actFunc = NULL,
bool bIsPbLayer = false, bool bIsConstPb = false,
double fTau = 1.0, vec* fDefStates = NULL);

virtual inline void ComputeActivations (vecx x, veck y);
inline void ComputeDerivatives (vecx x, vecx y);

In the case of the constructor, default values are included for all
arguments except one in order to save the user the trouble of assigning
all those values manually each time a Layer object is created. Even
though more information about the Layer class, including its complete
code, can be found in the documentation, we should have a brief look
at the arguments of the constructor in order to understand what kind
of information is stored in the objects. nUnits specifies the number
of neurons in the layer. actFunc is the activation function to be used,
with IdentityActivation being chosen if the default value NULL is used.
If blsPbLayer is true, the layer will be treated as a PB layer, with bls-
ConstPb specifying whether the internal PB values should be constant
or trainable. fTau is the time constant, which should only be set to
a value other than 1.0 if a continuous-time learning algorithm is used
(see section 2.4). fDefStates is a vector containing the default internal
values of the neurons, with NULL being interpreted as the zero vector.

Apart from the constructor, we also see the methods ComputeActi-
vations and ComputeDerivatives in the above code listing. They simply
invoke the identically named methods of the ActivationFunction object
actFunc points to, passing z and y to them. The two methods were
included in this class in order to provide access to a layer’s activation
function without having to retrieve a pointer to the actual Activation-
Function object.

3.6.2 ESNLayer

As can be seen in Figure 11, ESNLayer is derived from Layer, which
means that the layers of an ESN offer all of the functionality of standard
RNN layers plus some additional features. Once again, we will first
examine the class’s most important methods.

33

CO J O UL i W N+

public:

ESNLayer (int nUnits, ActivationFunction* actFunc = NULL,
ESNTrainingAlgorithm+ trainingAlgorithm = NULL,
Initialization* initFunc = NULL,
matx weights = NULL,

Adaptation* adapt = NULL,
bool bIsPbESNLayer = false ,
double fTau = 1.0, vec* fDefStates = NULL);

inline void Adapt (vecx x, vecx y);
inline mat ComputeWeightMatrix (mat*x s, matx d);
inline void ComputeActivations (vecx x, vecx y);

Unlike Layer’s constructor, this constructor accepts pointers to ob-
jects of type ESNTrainingAlgorithm, Initialization, and Adaptation.
They will be used to train the layer’s incoming connections, initialize
its internal connections and adapt its activation function, respectively.
The weights of the internal connections can also be set explicitly by
passing a weight matrix weights to the constructor. However, if init-
Func is a non-NULL pointer, the values in weights will be ignored.
The other parameters serve the same purposes as they did in the Layer
class. Note that the Layer constructor’s Boolean argument blsConstPb
is missing; this is because fnnlib only allows constant PB neurons in
ESN, so blsConstPb will always be set to true when invoking the par-
ent class’s constructor. Remember that in other RNN, PB values are
adjusted based on the gradient, which is not even computed in ESN.
However, instead of disabling support for PB neurons altogether, the
decision to at least include constant PB neurons was made. It is up
to the user to find out whether they can help increase an ESN’s per-
formance by injecting pattern-specific values into the network in tasks
such as predicting multiple time-series. This is in line with fnnlib’s
underlying philosophy of offering the maximum amount of flexibility
even when it is not clear yet whether the features will actually offer
any significant benefit.

The other three methods in the above code listing all act as inter-
faces to objects whose pointers were passed to the constructor. The
Adapt method simply checks if the object actually has an adaptable
activation function assigned to it and, if that is the case, passes the ar-
guments to the Adapt method of the Adaptation object pointed to
by the constructor argument adapt. Similarly, Compute WeightMa-

34

triz and ComputeActivations delegate their tasks to the identically
named methods of ESNTrainingAlgorithm and ActivationFunction, re-
spectively. Note that pointers to objects of these two classes can be
passed to the constructor. If they have NULL values, pointers to de-
fault objects will be used (see documentation). The ComputeActiva-
tions method of the parent class was overwritten because it only pro-
vides access to the unadapted sigmoid activation function. The new
method checks whether a valid pointer to an Adaptation object was
passed to the constructor and whether the ActivationFunction object
is actually of type SigmoidActivation. If that is the case, IP adapta-
tion is possible. The method will then pass a pointer to its Adaptation
object to SigmoidActivation’s extended ComputeActivations method,
which can access the adapted a and b parameters.

3.7 A First Summary

Before the remaining classes are covered, we should first recapitulate
what has been said about the interrelationships between the various
classes. To this end, let us first look at an UML diagram illustrating
those aspects of fnnlib’s design presented so far. The diagram will
be followed by brief comments that summarize what was described in
more detail in the preceding sections. For the sake of clarity, some
child classes are simply subsumed by one symbolic class named ”...”,
which is supposed to point out that there are further child classes that
are not vital to understanding the overall design.

First, there is the Layer class and its child class ESNLayer. Each
Layer has one ActivationFunction assigned to it, but one Activation-
Function can be assigned to multiple Layers. An ESNLayer always
has an ESNTrainingAlgorithm assigned to it. (Note that the presence
of child classes of ESNTrainingAlgorithm is indicated by the aforemen-
tioned ”...” class.) It may have an Initialization and an Adaptation
object assigned to it. If it does have an Adaptation object assigned to
it, and if the ActivationFunction is of type SigmoidActivation, then the
Adaptation object will serve to adapt the sigmoid activation function.
An Adaptation object can only be assigned to one ESNLayer object,
whereas an Initialization object may be assigned to multiple ESNLayer
objects since it holds no layer-specific data.

After this brief recapitulation, we are finally ready to examine the
classes representing actual neural networks, starting with the abstract

35

Layer|* <assigned to 1| ActivationFunction

SigmoidActivation 4 Q
Q-1+ adapts
p|0-1

ESNLayer |1 <assigned to 9-1f Adaptation

* *
<assigned to

B

ESNTrainingAlgorithm

4assigned to

0-1
E—D Initialization

Figure 12: Interrelationships between the classes covered so far

base class NeuralNetwork.

3.8 Classes Representing Neural Networks

NeuralNetwork is an abstract base
class for two types of networks,

namely Recurrent Neural Networks NeuralNetwork
with gradient-based learning algo- Neraiawork

rithms (RNN[PB] & CTRNN) and |
Echo State Networks. The former
are objects of the class RNN, while
the latter are represented by the ESN
class. Figure 13 illustrates the rela-
tionships between the three classes.

We will first look at the NeuralNetwork class before moving on to
RNN and ESN.

ESN | | RNN |

Figure 13: NeuralNetwork and its
child classes

3.8.1 NeuralNetwork

Even though this class is abstract, it already implements a lot of func-
tionality required by its child classes and allocates memory for data
structures that will be used when training or testing a network. In-

36

[N)

© 00 O Ui Wi+

stead of cramming all of its important methods into one code listing,
we will cover them one by one this time. The first method to examine
is the constructor.

public:
NeuralNetwork (int nLayers, Layerxx layerArray,
int nSequences = 1);

Its first argument is the number of layers the network will be com-
prised of, followed by an array of pointers to the actual Layer objects.
The third argument tells the network how many patterns it will have
to learn simultaneously, with the default value being 1. The downside
to this approach is that the user will have to create the Layer* array
manually, adjusting both its size and the nLayers argument accord-
ingly when layers are added or removed. In the future, a new class
(e.g. LayerSet) may be added to facilitate this process. It could, for
example, provide a method called AddLayer, which would create new
Layer objects, storing pointers to them and keeping track of the total
number of objects created. That way, the user could simply pass a
pointer to a LayerSet object to the constructor of a neural network
class, with that class being able to retrieve the number of layers and
the pointers to their objects using appropriate Get methods.

Next, we will see how the class DataSource is related to NeuralNet-
work by looking at two methods that provide a network with input and
desired-output data.

public:
void SetInput (int nSeq, int nLayer,
DataSourcex dataSource,
int nSrcLayer = —1,
int nStartCopyingAfter = 0);

void SetOutput (int nSeq, int nLayer,
DataSourcex dataSource,
bool bUseTeacherForcing);

Both methods assign a DataSource object to the layer with in-
dex nLayer. nSeq is the index of the sequence (= pattern) whose
input/desired-output data is represented by dataSource. Since it was
assumed that users would mostly create networks that are supposed
to learn one sequence, there are identically named methods which lack
the first parameter and simply call the corresponding extended method

37

=W N

with nSeq set to zero. For more information on the other parameters,
please consult the documentation in Appendix A. The purpose of this
short introduction was just to point out the relationship between Data-
Source and NeuralNetwork.

Another aspect of fnnlib’s design that should be explained is the
SetDefStates method of NeuralNetwork.

public:
void SetDefStates (int nSeq, int nLayer, vecx fValues);

It sets the default internal values for a specific layer in a specific
data sequence to be learned. This may seem strange because section
3.6 demonstrated how default internal values can be passed to a layer’s
constructor. However, if the default values always had to be passed di-
rectly to Layer objects, working with those objects would have become
inconvenient. If a network was supposed to learn multiple patterns, an
entire array of vectors of default values would have to be passed to the
Layer constructor. Hence, the constructor would also need to know
the number of patterns to be learned by the network it will be part
of; otherwise, it would not be able to determine the size of the array.
Besides, the user may want to use different input/desired-output data
during the training and testing phases. If SetDefStates did not exist,
he or she would have to retrieve a pointer to the layer object and assign
a new DataSource object to it. With SetDefStates, it is much easier to
assign a new data source to a layer after training, for example. Never-
theless, the current approach is a little ”dirty,” and an alternative way
of setting default internal states may be added in the future.

NeuralNetworks also offers several methods that connect the net-
work’s layers to each other. In this section, however, we will only
examine the one which illustrats how fnnlib’s classes interact. Its dec-
laration looks as follows:

public:
void ConnectLayerToLayer (int nSrcLayer, int nDstLayer,
Initialization* initFunc,
bool bTrainable);

ConnectLayerToLayer connects layer nSrcLayer to nDstLayer (both
are zero-based indices), with bTrainable specifying whether the weights
should be trained or not. The Initialization object pointed to by init-
Func will be used to initialize the matrix representing the weights of

38

=W N

the connections between the two layers. (Actually, the two indices may
even refer to the same layer, which is how internal connections in RNN
layers can be set up. While an ESN layer’s internal connections can
be initialized by an Initialization object passed to its constructor, this
method provides another way of accomplishing the same task.)

There are two more methods that need to be mentioned before the
child classes of NeuralNetwork are covered. The first of them is Run,
which runs the network for a certain number of time-steps, collecting
data that can be used for training or testing. This method is the same
for RNN and ESN; i.e. it is not overwritten by either child class. The
last important method is CollectErrorData, whose declaration can be
found in the code listing below.

protected:
void CollectErrorData (int nSeq, NetworkErrorDatax ed);

This method will later be invoked by other methods of the classes
RNN TrainingAlgorithm (see 3.9.1) and ESN. It stores error data col-
lected during testing in an object of type NetworkErrorData, a class
which will be covered in section 3.10.2. The latter section will also ex-
plain how CollectErrorData is invoked. Error data can be retrieved for
each pattern individually if the network has learned multiple pattterns.
In that case, nSeq will be the index of the pattern for which error data
should be stored in ed.

3.8.2 RNN

RNN is a child class of NeuralNetwork that represents neural networks
which use gradient-based learning algorithms. Compared to its parent
class, RNN’s constructor has one additional parameter:

public:
RNN (int nLayers, Layerxx layerArray ,
RNNTrainingAlgorithms rnnAlg,
int nSequences = 1);

rnnAlg specifies the training algorithm to be used for this network.
This object will be used to adjust the network’s weights and minimize
the error function when RNN’s Train method is invoked. RNNTrain-
ingAlgorithm and its child classes will be covered in section 3.9.

Besides a Train method, RNN also offers a Test method which runs
the network and collects error data using NeuralNetwork’s CollectEr-

39

rorData method. Test returns a pointer to a NetworkFErrorData object
(see section 3.10.2 for more information on this class).

Figure 14 is a UML class diagram illustrating how RNN is related
to fnnlib’s other classes. The symbolic classes called ”...” once again
indicate that there are child classes which are not displayed in the
diagram.

E—D Initialization Consists ofw 1.
Layer

*

assigned to»

initializes qonnections of»

* 0-1 ESNLayer
NeuralNetwork :] RNN

1
ActivationFunction

assigned to layer ofj»

0 - #layers
DataSource

Figure 14: RNN and its relationships with other classes

3.8.3 ESN

NeuralNetwork’s child class ESN represents Echo State Networks. Its
constructor is almost identical to that of its parent class, except that
it only accepts an array of pointers to ESNLayer objects:

public:
ESN (int nLayers, ESNLayerxx layerArray, int nSequences = 1);

Like RNN, this class also offers methods called Train and Test which
serve the same purpose as they do in RNN. It is important to examine

40

the Train method more closely in order understand how fnnlib’s classes
interact when the method is invoked. While the following description
is not comprehensive, it should be sufficient for our purposes.

First, Train will run the ESN for a given number of time-steps using
NeuralNetwork::Run. That method will collect the activations of the
reservoir layer(s) into a matrix. At the same time, the desired-output
matrix will be constructed from data read from the DataSource ob-
ject(s) associated with the output layer(s). Train will then pass those
matrices to the Compute WeightMatriz method(s) of the ESNTrain-
ingAlgorithm object(s) associated with the output layer(s). Finally,
the old values in the weight matrices stored inside ESN will be re-
placed by the values in the newly computed weight matrices.

ESN::Test will be explained in more detail when the NetworkEr-
rorData class is introduced in section 3.10.2. In addition to Train and
Test, ESN also has an Adapt method that should be called even before
Train. It will then adapt the activation functions of all layers that have
an Adaptation object assigned to them and use the sigmoid activation
function.

Figure 15 illustrates the relationships between ESN and fnnlib’s
other classes.

3.9 RNN Training Algorithms

In fonlib, RNN training algorithms are represented by child classes of
the abstract base class RNNTrainingAlgorithm. There are two built-
in algorithms, BPTT and CBPTT, which implement Backpropagation
Through Time and Continuous Backpropagation Through Time, re-
spectively. Figure 16 shows a class diagram of RNN TrainingAlgorithm
and its children.
The following subsections will
introduce the base class and its

two child classes.
[\
| =il | il | 3.9.1 RNNTrainingAlgorithm

Figure 16: RNNTrainingAlgorithm RNNTrainingAlgorithm is a friend
and its child classes class of RNN because it needs ac-

cess to many of RNN’s attributes
to train an RNN. We will first

41

1 < assigned to
PPTI - L r
Q—D Initialization -1 aye
= assigned tow
* ?
*

initiali i ESNLayer " " "
initializes donnections of» y . ActivationFunction
. 1-* 0-1
consists ofp
- 0-1
NeuralNetwork < ESN
0-1 assigned tok «lassigned to
assigned to layer ofj»
0 - #layers 0-1 1|ESNTrainingAlgorithm
DataSource Adaptation

2

Figure 15: ESN and its relationships with other classes

have a look at its constructor, the
method Train, and its three pure
virtual methods that any non-abstract child class must implement.

1 public:

2 RNNTrainingAlgorithm (int nPasses, int nEpochSize,
3 double fLearningRate ,

4 double fPbLearningRate);

5

6 protected:

7 void Train (RNNx net);

8

9 virtual void ComputeGradients (RNNx net

10 int nSequence,

11 int nEpochSize) = 0;
12

13 virtual void UpdatePbs (RNNx net, int nSeq,

14 int nEpochSize,

15 double fPbLearningRate) = 0;
16

42

17

virtual void UpdateWeights (RNNx net) = 0;

The constructor expects four parameters that will control the train-
ing process. The weights will be updated after each epoch of nFEpoch-
Size steps, with nPasses denoting the number of training epochs. The
last two parameters are the learning rate for weights and PB neurons
respectively.

As shown in section 3.8.2, the constructor of RNN receives a pointer
rnnAlg to an RNNTrainingAlgorithm object. In practice, the object
will actually be of type BPTT or CBPTT since RNNTrainingAlgo-
rithm is abstract. Since the operations that follow are the same for
both of these classes, let us assume that rnnAlg points to a BPTT
object. Whenever BPTT is mentioned in the following sentences, the
statement would also be true if BPTT was replaced by CBPTT.

When the user calls RNN’s Train method, RNN in turn calls
BPTT::Train and passes a pointer to itself (this) to the method.
BPTT::Train then computes the gradients and updates the PB values
and the weights of the RNN by invoking BPTT’s implementations of
the methods ComputeGradients, UpdatePbs, and Update Weights. Note
that neither BPTT nor CBPTT overwrite the Train method inherited
from RNNTrainingAlgorithm. In order to add another RNN training
algorithm, all that needs to be done is to derive a class from RN-
NTrainingAlgorithm and implement the three pure virtual methods.
The inherited Train method will then train the network by invoking
those methods.

3.9.2 BPTT

BPTT is a child class of RNNTrainingAlgorithm that implements its
abstract parent’s ComputeGradients, UpdatePbs, and Update Weights
methods. The preceding subsection explained how these methods are
invoked during training. BPTT trains an RNN using the standard
Backpropagation Through Time method introduced in section 2.2.

3.9.3 CBPTT

The only difference between CBPTT and BPTT (see above) is that
it uses a continuous variant of the Backpropagation Through Time
method (see section 2.4) to train an RNN.

43

3.10 Classes for Performance Analysis

This section will introduce two classes - LayerErrorData and Network-
ErrorData - that collect error data based upon which a neural net-
work’s performance can be analyzed. While neither of the two classes
is derived from the other, they are still closely related.

3.10.1 LayerErrorData

This class represents error data collected for one particular output layer
in a neural network. Its objects store the layer’s actual output as well
as its desired output, which allows the user to compute the layer’s
mean squared error and its Kullback-Leibler divergence by invoking the
appropriate methods. Please consult the documentation in Apppendix
A for more information on the methods, as this is irrelevant as far as
fnnlib’s design is concerend. What is important to note is that the user
will never have to create LayerErrorData objects manually. Instead,
they will be generated automatically and then returned on request by
the class NetworkErrorData, which will be explained next.

3.10.2 NetworkErrorData

To put it simply, NetworkErrorData objects store error data for a whole
network, with the error data for the various layers being held in an
array of LayerErrorData objects. The class provides access to those
objects via a method called GetLayerData. Pointers to objects of type
NetworkErrorData are returned to the user by the Test methods of
both RNN and ESN. These processes - the two neural network classes
handle them slightly differently - will be examined more closely in the
following paragraphs.

In order to find out how well an RNN has learned to generate a par-
ticular pattern, the user needs to invoke RNN::Test using appropriate
parameters. RNN::Test will then invoke RNN TrainingAlgorithm.: Test,
i.e. the Test method of the RNNTrainingAlgorithm object assigned to
the RNN. In doing so, it will pass a pointer to its RNN object (this)
to the method. Since RNNTrainingAlgorithm is a friend class of RNN,
RNNTrainingAlgorithm:: Test can use this pointer to run the RNN and
collect error data by calling RNN::CollectErrorData, a method RNN
inherited from its parent class NeuralNetwork. This method will receive

44

0O U Wi

a pointer to a newly created NetworkFErrorData object, which it will
then fill with data. Afterwards, RNNTrainingAlgorithm:: Test returns
the filled object to RNN::Test, which in turn returns it to the user.

With ESN, this process is a lot simpler. When the user calls
ESN::Test, that method will run the network and create a NetworkEr-
rorData object. A pointer to the object will be passed to the inherited
method
ESN::CollectErrorData to have it filled with data. FESN::Test then
returns the object to the user.

Why then does the same task require a much more complicated
interaction of objects in the case of RNN? The simple reason is that
the RNNTrainingAlgorithm class is involved because, with RNN, it is
possible to train PB neurons even during the testing phase. In contrast,
ESN can simply be run without any of their components being adapted
during testing.

4 A Small Practical Example

In this section, we will see how to use fnnlib to create, train, and test an
Echo State Network. The purpose of this section is to give the reader
a feel of what actually using fnnlib is like. More information on this
topic can be found in the documentation.

The training data in this example will consist of 1000 datasets gen-
erated by the Mackey-Glass equation®, with the input data stored
in a textfile "mg-in.txt” and the desired-output data stored in "mg-
out.txt”. The network will be trained to perform a next-step predic-
tion, i.e. given the value at time-step n in a time-series, it should
predict the value at time-step n+1. The following code listing shows
how to create the network, with details below.

PermutationInitialization res_init (—0.1, 0.1);

ESNLayersx layers = new ESNLayer x[3];

layers [0] = new ESNLayer (1);

layers [1] = new ESNLayer (100,
ActivationFunction ::TANH,
NULL,
&res_init);

“http://www.scholarpedia.org/article/ Mackey-Glass_equation

45

9
10

[\)

= W N

layers [2] = new ESNLayer (1);
ESN* net = new ESN (3, layers);

The ESN net has three layers: an input layer of size 1, a reser-
voir of size 100, and an output layer of size 1. The input and output
layers will use the identity activation function, whereas the reservoir
is assigned the hyperbolic tangent activation function. The reservoir’s
internal connections will be initialized by the PermutationiInitializa-
tion object res_init. If the reservoir’s incoming connections needed to
be trained, the NULL argument could be replaced by a pointer to an
ESNTrainingAlgorithm object. By default, fnnlib would use the Lin-
earLeastSquaresAlgorithm class for training. (Note that we would also
have to assign desired-output data to the reservoir in order to train
its incoming connections, so nothing will be done in this example any-
way.) Later on it will actually use that class to train the incoming
connections of the output layer, since we did not assign any training
algorithm to it (see line 9).

Next, the input-to-reservoir and reservoir-to-output connections need
to be initialized.

RandomlInitialization rand_init (—0.1, 0.1);
net—>ConnectLayerToLayer (0, 1, &rand-init, false);
net—>ConnectLayerToLayer (1, 2, &rand_init, true);

The two method calls tell net to let rand_init initialize the con-
nections between layer 0 (input) and 1 (reservoir), and layer 1 and 2
(output). The former connections will be fixed (as indicated by argu-
ment 4, false), while the latter connections will be trainable. The next
step is to provide the network with input and desired-output data.

FileDataSource ds_in (1000, 1, (charx) ”"mg—in.txt”);
FileDataSource ds_out (1000, 1, (charx) ”mg-out.txt”);
net—>SetInput (0, &ds_in);

net—>SetOutput (2, &ds_out, false);

As can be seen in the first two lines, ds_in and ds_out will read 1000
datasets of size 1 (i.e. 1000 double values) from the two files. net’s
first layer (index 0) is finally turned into a true input layer by having
a data source assigned to it in line 3. The source of desired-output
data ds_out is assigned to layer 3 (index 2) in line 4. Argument 3
to SetOutput specifies whether teacher forcing should be used. If it
is set to true, the network will write the desired-output data into the

46

layer during training, thus pretending that the neurons always produce
the correct output. This is only necessary if the layer has outgoing
connections, though, so we set the argument to false.

Finally, we will train the network, test it, and print the mean
squared error that was computed for its output layer. During the initial
washout phase (see section 2.5), the network will be run for 1000 time-
steps without any data being collected. The reservoir activations and
desired-output values of the next 1000 time-steps will be collected and
used to compute new reservoir-to-output weights (remember that only
these weights were chosen to be trainable). This all happens in line
1 of the following code listing, with argument 1 specifying the length
of the washout phase and argument 2 giving the length of the actual
training phase.

47

1
2
3

net—>Train (1000, 1000);
NetworkErrorData*x ned = net—>Test (1000, 1000);
cout << "MSE:.” << ned—>GetLayerData (2)—>GetMse () << endl;

After training, the network is tested. Once again, there is an initial
washout phase of length 1000 before error data is collected during the
following 1000 time-steps (as indicated by the arguments to Test in line
2). The Test method will then return a pointer to a NetworkErrorData
object that could potentially hold error data for several output layers.
Since layer 3 was the only output layer, we retrieve a pointer to its
LayerErrorData object (zero-based index 2) and have it compute the
mean squared error (MSE) in line 3.

Note that this example is very basic, with the same input data
being used during training and testing. The mean squared error in
a test run was 0.000000451050. Figure 17 shows a plot of both the
original data (green) and the ESN-generated data (blue) on a small
interval, but since the error was very small, it is virtually impossible
to tell the curves apart. While this renders the figure rather useless, it
does show that the results achieved by the ESN are very good. Figure
18 shows a magnified part of the curves to prove that the result was
not perfect.

Another example code for creating an ESN can be found in the
documentation. It also shows how to create an RNN that is trained
using the BPTT algorithm.

5 Related Work

This section will briefly introduce several software libraries that provide
functionality similar to what fnnlib offers. Naturally, the selection of
projects pesented here is by no means exhaustive. Some projects that
seemed worth mentioning at first glance were excluded for the simple
reason that development was stopped four or more years ago.

The first of the libraries is FANN®, which is short for Fast Artifi-
cial Neural Network Library. It is an Open Source library written in
ANSI C and claims to be up to 150 faster than other neural network
libraries. Apart from a comprehensive reference manual, it offers bind-
ings for many other languages such as C++, Java, Perl, and PHP. As

®http://leenissen.dk/fann/

48

Figure 17: Original Mackey-Glass data (green) plotted against data pre-
dicted by ESN (blue); see Figure 18 for a magnified picture.

Figure 18: A part of Figure 17 magnified; original Mackey-Glass data (green)
plotted against data predicted by ESN (blue)

49

far as functionality is concerned, FANN offers several backpropagation
methods that can be used to train recurrent neural networks. Unlike
fnnlib, it does not support Continuous-Time RNN, trainable PB layers,
or Echo State Networks. However, one feature that fnnlib may adopt
from libraries such as FANN is the possibility to save entire neural
networks to files and load them again later on.

Next up is Flood®, an Open Source C++ library developed at the In-
ternational Center for Numerical Methods in Engineering”. Its website
contains a comprehensive user’s guide which also explains the theory
behind the algorithms used in the library. Flood offers several features
and, more specifically, training methods that are not currently included
in fnnlib, such as Newton’s method or evolutionary weight adaptation,
but it does not offer support for Continuous-Time RNN or Echo State
Networks. It also imposes more restrictions on the architecture of a
neural network.

One library that does include support for Echo State Networks is
aureservoir®, another Open Source C++ library. Unlike fnnlib, it in-
cludes features such as leaky integrator neurons or the ridge regression
training algorithm. However, this library specializes in Echo State
Networks and does not support general RNN that are trained using
gradient-based methods. Also, it does not allow the kind of architec-
tural flexibility offered by fnnlib, such as creating ESN with multiple
reservoirs. aureservoir’s documentation was generated over 2.5 years
ago, so it is not clear whether development of the library will continue
in the future.

Another piece of software that supports Echo State Networks is the
MATLAB Toolbox for Echo State Networks?, which was written by
Herbert Jaeger and members of his research group. As indicated by its
name, it is not a software library for use in practical applications but
was intended "mainly for didactic purposes and quick experiments.”?
Like aureservoir, the toolbox offers some functionality not included in
fnnlib, such as leaky integrator neurons, but it also supports basic ESN
architectures only. In order to run the toolbox, MathWorks’ commer-

®http://www.cimne.com/flood /default.asp
"http://www.cimne.com/
Shttp://aureservoir.sourceforge.net /
“http://www.reservoir-computing.org/node,/129
Yhttp:/ /www.reservoir-computing.org/node,/129

50

cially available MATLAB software!! is required.

6 Conclusion

While there are many neural network libraries available on the Internet,
fnnlib offers a unique selection of features. Its support of state-of-the-
art network architectures as well as the great amount of flexibility it
allows make it especially suitable for use in research. Even though
fnnlib was influenced by the particular requirements of Osaka Univer-
sity’s Graduate School of Engineering, other researchers - especially in
the field of robotics - should find it useful, too.

As mentioned in sections 3 and 5, there are several ideas for future
modifications to the library that will enhance its functionality, even
though it is currently impossible to tell how soon new features will be
added. Potential users or developers should visit fnnlib’s SourceForge
project page'? to track its development.

References

[1] R. H. Cuijpers, F. Stuijt, and 1. G. Sprinkhuizen-Kuyper. Gener-
alisation of action sequences in rnnpb networks with mirror prop-
erties. Proceedings of the Furopean Symposiumon Neural Networks

(ESANN), 2009.

[2] S.S. Haykin. Neural Networks and Learning Machines, 3rd Edition.
Pearson Education, Inc., 2009.

[3] M. Ito and J. Tani. On-line imitative interaction with a humanoid

robot using a dynamic neural network model of a mirror system.
Adaptive Behavior, 12(2), 2004.

[4] H. Jaeger. Echo state network. Scholarpedia, 2(9), 2007.

ot

F. Rosenblatt. The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Psychological Review,

65(6), 1958.

"http://www.mathworks.com/
2http:/ /sourceforge.net /projects/fanlib/

o1

[6]

[7]

D.E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning inter-
nal representations by backpropagating errors. Nature, 323, 1986.

J. J. Steil. Online reservoir adaptation by intrinsic plasticity for
backpropagationdecorrelation and echo state learning. Neural Net-
works, 20(4), 2007.

Y. Yamashita and J. Tani. Emergence of functional hierarchy in
a multiple timescale neural network model: A humanoid robot ex-
periment. PLoS Comput Biol, 4(11), 2008.

R. Yokoya, T. Ogata, J. Tani, K. Komatani, and H. G. Okuno.
Experience-based imitation using rnnpb. Advanced Robotics,
21(12), 2007.

A Documentation

As can be seen in the source code files, fnnlib uses Doxygen-style!
comments. fnnlib’s SourceForge page! contains the complete docu-
mentation'® generated by Doxygen.

Bhttp://www.stack.nl/~dimitri/doxygen/
Y“http://sourceforge.net /projects/fnnlib/
http://sunet.dl.sourceforge.net /project /fnnlib/doxygen-doc.pdf

52

