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A B S T R A C T

The MapReduce programming model is extended slightly in order to use deltas. Because

many MapReduce jobs are being re-executed over slightly changing input, processing

only those changes promises significant improvements. Reduced execution time allows

for more frequent execution of tasks, yielding more up-to-date results in practical ap-

plications. In the context of compound MapReduce jobs, benefits even add up over the

individual jobs, as each job gains from processing less input data. The individual steps

necessary in working with deltas are being analyzed and examined for efficiency. Sev-

eral use cases have been implemented and tested on top of Hadoop. The correctness of

the extended programming model relies on a simple correctness criterion.
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1 I N T R O D U C T I O N

As the volume of available digital information increases, for example through acces-

sibility via the internet, and storage hardware prices decrease, programs that process

huge amounts of data become increasingly common. In order to speed up those pro-

grams which are driven by huge input volumes, data parallelism is desired that allows

to parallelize these tasks, using distributed systems of machines. MapReduce [1] is a

programming model which is widely used in the context of these tasks, since it provides

the programmer with a high level of abstraction and it scales extremely well.

1.1 motivation

Due to huge input sizes that comprise gigabytes or even terabytes of data, MapReduce

jobs often run for hours or even days, even when utilizing hundreds of machines. As

these jobs are often re-executed in the context of input that is only changing slightly

over time, we felt that users would benefit from processing the newly acquired alter-

ations only. Reduced execution time would allow for more frequent re-execution of

MapReduce computations and thereby yield more up-to-date results in practical com-

putations. Many areas of applications even use compound MapReduce jobs and they

could accumulate benefits by only pushing changes through such a pipeline of jobs.

Since MapReduce provides an isolated view on data items, no dependencies between the

processing of two data items exist. Furthermore, the operations performed by MapRe-

duce computations are associative, typically even commutative, and hence allow the

incorporation of changes to a generation of data into earlier results. As the differences

between two generations of data can be expressed by their delta, i.e. in terms of addi-

tions and deletions, we propose to process only this delta in a MapReduce job, instead

of the entire second generation.
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4 introduction

1.2 research questions

In the context of this thesis we will cover basic questions on the usage of deltas in the

context of MapReduce. More specifically:

• Which preconditions have to be present in order to use deltas in the context of

MapReduce?

• Which classes of MapReduce jobs are suitable to be used in combination with

deltas?

• What are the individual steps required to use deltas in the context of MapReduce?

As we are concerned with efficiency, we try to get a good impression on the overall

potential of deltas in conjunction with MapReduce:

• How can deltas be used efficiently?

• What are the possible speedups in different MapReduce scenarios?

• What limitations exist in using deltas in combination with MapReduce?

1.3 contributions

The contributions of this thesis are of both theoretical and practical nature: we provide

algebraic verification on the usage of deltas in the context of MapReduce jobs. Further-

more, different methods of computing deltas are discussed and compared. We take a

look at the necessary augmentations in order to process deltas in MapReduce jobs, as

well as subsequent steps.

In order to demonstrate the applicability of our approach, several use cases are imple-

mented in Hadoop, the most import one dealing with web crawlers. We test some of

these use cases in separate benchmarks, in order to examine the benefits and limitations

of the various ways of dealing with deltas.
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1.4 structure

Chapter 2 introduces the basic concepts of MapReduce and deltas, as well as the software

frameworks Hadoop and Nutch we use in our approach. Several use cases that support

our motivation are described in chapter 3, before we focus on extending the MapReduce

programming model to incorporate deltas in chapter 4. An implementation of our most

important use case, a web crawler that uses deltas, is discussed in chapter 5. Chapter 6

defines and executes benchmarks for delta-aware MapReduce computations. Chapter 7

discusses related work, before chapter 8 concludes this thesis.





2 B A C KG R O U N D

2.1 mapreduce

MapReduce is a programming model for processing huge datasets in distributed sys-

tems of computers. Introduced by Google in 2004 [1], it has influenced the area of paral-

lel applications that run on clusters of machines significantly since. While Google never

open sourced their framework, a vast quantity of open and close source frameworks

exist. One of the most widely used, Hadoop [2], is introduced in detail in section 2.3.

MapReduce relies on a programming paradigm that originates in functional program-

ming. In functional programming languages like Haskell, the map function takes a list

and a unary function as arguments, and applies that function to every element of the

list separately. The following example demonstrates the application of map with the abs

function which computes the absolute value of a number:

1 Input: map abs [-1,-3,4,-12]

2 Output: [1,3,4,12]

Haskell’s reduce function also takes a list as its second argument. The first argument

however is a binary (instead of a unary) function. reduce then applies this binary func-

tion to every element of the list, taking the previous result as the second argument. This

essentially combines the entire list to a single value, as can be seen if applied to ’+’:

1 Input: reduce (+) [1,2,3,4]

2 Output: 10

MapReduce loosely follows this concept by using mapper functions that process input

items separately, one at a time, and reducer functions that aggregate multiple items to

a single value. A MapReduce framework typically operates with one master-node that

is responsible for assigning tasks to worker-nodes and monitoring progress as well as

possible failures. If a job is submitted to a MapReduce cluster, the master splits the

(typically huge) input data into smaller parts, and it assigns them to the worker-nodes.

7



8 background

Figure 2.1: Workflow of MapReduce.

• k2 −> [v2] −> [v2] (The original type from the MapReduce paper)

• k2 −> [v2] −> v2 (The type for Haskell/Lisp-like reduction)

• k2 −> [v2] −> v3 (With a type distinction as in folding)

• k2 −> [v2] −> Maybe v2 (The typical MapReduce case)

• k2 −> [v2] −> Maybe v3 (The proposed generalization)

We may instantiate v3 as follows:

• v3 �→ v2 We obtain the aforementioned typical case.

• v3 �→ [v2] We obtain the original type — almost.

The generalized type admits two ‘empty’ values: Nothing and Just [] . This slightly
more complicated situation allows for more precision. That is, we do not need to
assume an overloaded interpretation of the empty list to imply the omission of a corre-
sponding key/value pair in the output.

When do we need lists of key/value pairs, or sets, or something else?

Let us reconsider the sloppy use of lists or sets of key/value pairs in some prose we
had quoted. We want to modify mapReduce’s type one more time to gain in precision
of typing. It is clear that saying ‘lists of key/value pairs’ does neither imply mutually
distinct pairs nor mutually distinct keys. Likewise, saying ‘sets of key/value pairs’
only rules out the same key/value pair to be present multiple times. We contend that a
stronger data invariant is needed at times — the one of a dictionary type (say, the type
of an association map or a finite map). We revise the type of mapReduce one more
time, while we leverage an abstract data type, Data.Map.Map, for dictionaries:

import Data.Map −− Library for dictionaries

mapReduce :: (k1 −> v1 −> [(k2,v2)]) −− The MAP function
−> (k2 −> [v2] −> Maybe v3) −− The REDUCE function
−> Map k1 v1 −− A key to input−value mapping
−> Map k2 v3 −− A key to output−value mapping

It is important to note that we keep using the list-type constructor in the result position
for the type of MAP . Prose [10] tells us that MAP “produces a set of intermediate
key/value pairs”, but, this time, it is clear that lists of intermediate key/value pairs are
meant. (Think of the running example where many pairs with the same word may
appear, and they all should count.)

Haskell’s dictionary type: We will be using the following operations on dictionaries:

• toList —- export dictionary as list of pairs.
• fromList —- construct dictionary from list of pairs.
• empty — construct the empty dictionary.
• insert — insert key/value pair into dictionary.

14

Figure 2.2: Signature of MapReduce

These nodes then execute the specified map function on every single data item in their

input split. After all input is mapped, the resulting intermediate data is grouped and

copied to designated reducer nodes. Figure 2.1 shows how invocations of mappers and

reducers are separated into stages. The second stage (the reducers) does not begin before

the first stage (the mappers) has finished.

Data items in MapReduce are essentially pairs of keys and values. Key-value pairs

are presented one at a time to the mappers, who then extract an arbitrary number of

key-value pairs (possibly of different type than their input), and pass them along to

the reducers. The decision which tuples are being passed to which reducer is based

on the tuple’s key, and it is made by a customizable partitioner-function. One reducer

invocation then receives all values that share a specific key, and merges them together to

form a possibly smaller set of values. Typically just zero or one output value is produced

per Reduce invokation [1]. Listing 2.2 illustrates this concept by showing the signature

of MapReduce as proposed by [3].

Parallelism is enabled by the fact that mappers and reducers have no side effects, and

each invocation processes a subset of all data items that is disjoint from other subsets
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processed at that stage. This allows for parallel execution of unlimited map or reduce

instances.

2.2 deltas

The term delta is used in computer science in the context of version management. During

the lifespan of an artefact (a machine readable object like source code files, text files,

diagrams, etc.), the artefact can exist in different manifestations called versions. Simply

adding a line to a text file would generate a new version of that file. A delta is a complete

description of the differences between two versions, which from a logical point of view

is the information required to obtain one value from the other.

Deltas can be used to compare versions of files, like in the context of the Unix program

diff [4]. Deltas are also used to store one version by only enumerating all changes to

another version. This can be utilized to reduce data redundancy in the context of files

that typically undergo very little changes. Version management software like Apache’s

Subversion [5] create repositories of files using that mechanism.

Deltas can generally be distinguished into forward-deltas and backward-deltas. In

the context of backward-deltas, the emergence of a new version requires to remove the

latest version, and to replace it by all changes to the current version. The current version

is then stored in its entirety. This enables very quick retrieval of the latest version,

however storage of a new version requires some computations. Forward-deltas, on the

other hand, work in the exact opposite way. An initial version is stored in its entirety,

and the following versions are simply stored as changes to previous versions. This

enables quick storing but slower retrieval of past versions.

2.3 hadoop

2.3.1 Overview

Inspired by Google’s MapReduce [1], Hadoop was originally created by Doug Cutting

in order to support distribution for his open source web-search software Nutch [6] (see

section 2.4). Hadoop is an open source Java implementation that is distributed under
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Apache License 2.0 and is available in version 0.21.0 at the time of writing. Hadoop is

being used by many widely known companies like Amazon, Facebook, Yahoo, etc. [7].

2.3.2 Architecture

Hadoop generally consists of three building blocks: Common, HDFS, and MapReduce. In

the following, each of these will be discussed in detail.

HDFS

As MapReduce is used to distribute single tasks on clusters of machines, a distributed

file system is needed for the storage of input and output data. Hadoop uses the Hadoop
Distributed File System (HDFS) [8], which is modelled after the Google File System (GFS) [9].

This section describes HDFS, however as it is modelled after GFS all design aspects

mentioned here apply to GFS as well.

HDFS is designed to run on commodity hardware, that is on clusters where quantity

of machines is more important than quality. This leads to the effect that failure of nodes

occurs frequently, hence HDFS has been designed to be highly fault-tolerant. Fault-

tolerance is achieved by making detection of faults, and quick, automatic recovery a

core architectural goal of HDFS. This is achieved by numerous design decisions, maybe

most importantly by having a replication factor that defaults to three, but which is

configurable for every file. In order to protect against failures of entire clusters (e.g.

caused by power outage), HDFS tries to take locality of nodes into account when creating

replicas, in order to distribute files across clusters.

As applications that use HDFS generally operate on huge data sets (file sizes are

generally in the gigabyte or even terabyte area), high throughput is more critical than

low latency. For this reason HDFS relaxes some POSIX semantics in key areas in order

to achieve high throughput. In order to deal with the batch-jobs that read huge amounts

of data, which are typical in the context of HDFS, the size of the blocks a file is split into

is set to 64 MB by default (again configurable by the user). This reduces the amount of

communication between clients and HDFS servers that is needed in order to retrieve file

meta data and block locations.

The file system is organized into one master server, the NameNode, and many slave

servers the DataNodes. The NameNode is responsible for coordination of critical pro-

cesses, like naming, file replication and assignment of file blocks to DataNodes. The

DataNodes on the other hand handle a set of file blocks assigned to them by the master.
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In order to provide quick recovery from failures, the DataNodes frequently send so-

called heartbeat messages to the master, in order to signal that they are alive. This allows

the master server to detect when a node is down, and to assign the blocks that were

managed by this node to other DataNodes, in order to maintain the required replication

factor.

HDFS follows a write-once-read-many access model for files. This means once created,

a file can never be mutated. This limitation however is acceptable because first, it fits

nicely with the programming model of MapReduce where data processing jobs write

their output to a set of new files instead of manipulating existing ones. In addition,

this allows for a simple consistency model as updates never need to be propagated to

existing blocks. In this context, there is a noteworthy difference between GFS and HDFS:

According to the original GFS paper [9], GFS supports an append operation to extend

existing files. HDFS was originally created without support for an append operation.

However, while append was introduced in version 0.19.0, it still is not fully supported

due to existing problems [10].

Having a single master server can quickly become a bottleneck. To avoid this, client

data never flows through the master. For instance in the context of reading, a client

only contacts the master to learn about current locations of file blocks. After the client

received the location information it contacts any of these DataNodes directly, usually

the closest one, in order to read data. In the context of writing, this workflow becomes

slightly more advanced. As most clients perform streaming writes, it becomes imprac-

tical for the client to directly write to a remote file as throughput will be limited signifi-

cantly by network latency. Instead, the client transparently caches the file data in a local

temporary file. Once the file has grown to the size of a HDFS block, the client contacts

the NameNode which inserts the file name into the namespace and answers with a list

of DataNodes the block should be replicated to. Replication to DataNodes is then done

in pipelined fashion, starting with the client copying the block to the first DataNode on

the list. This node then copies the block to the second DataNode on the list, and so on.

For a more detailed description of HDFS’s design and additional features like snapshots

and logs, please refer to [8].

Common

Hadoop Common provides RPCs for inter-node communication, as well as means to

access the underlying file system. Please note that when running in non-distributed
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mode (i.e. on a single machine), Hadoop directly interacts with the local file system,

skipping HDFS. The task to delegate and translate calls to the file system API to the

appropriate file system is the responsibility of Hadoop Common. Hadoop Common

also provides the most basic file type available in Hadoop: SequenceFiles. As we have

seen above, files in Hadoop do not support random writes. Hence, any file format in

Hadoop can only be written to by calling:

1 append(K key, T value);

The types of keys and values are wrapper classes for data types that implement a

Writable interface, to take care of serialization and deserialization. This ensures that

SequenceFiles know how to de-/serialize them.

MapReduce

The MapReduce engine consists of one JobTracker and many TaskTrackers, much like Na-
meNode and DataNodes in HDFS. The JobTracker assigns jobs to available TaskTrackers,

monitors progress and acts in the case of failures. One important concept is awareness

of data locality during task scheduling. The JobTracker always tries to allocate tasks to

nodes that already hold the necessary input data, avoiding expensive network transfer

of data. In order to set up a MapReduce job, the user basically has to specify implemen-

tations of the following concepts:

• InputFormat

• Mapper

• Combiner

• Partitioner

• Reducer

• OutputFormat

The overall coherence of these concepts is visualised in figure 2.3. The InputFormat

basically takes care of splitting the input data into appropriate chunks as input for each

map task, and provides a RecordReader that converts bytes to keys and values. A Mapper

provides a map-function that processes key-value pairs as explained in section 2.1. All

the necessary setup and clean-up is also done here. By default (i.e. if the user does
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Figure 2.3: UML class diagram of the structure of a MapReduce job in Hadoop.

not determine a specific mapper) a mapper implementation is used, that simply copies

each pair. In order to reduce the amount of pairs transferred over the network to the

appropriate reducer nodes, the user can optionally specify a Combiner. Combiners typ-

ically behave exactly like reducers, hence crunching the data prior to sending it to the

reducers. The assignment of keys to reducers is job of the Partitioner. The user can

control this assignment by implementing a custom Partitioner. By default, partitioning

is done by computing a hash-value of the key, and computing the modulo of the number

of reducer nodes in order to obtain a valid reducer-ID. Similar to mappers, Reducers are

also specified by means of an appropriate reduce function along with all the necessary

setup and clean-up work. As the reducer processes all values that share the same key

simultaneously, they are made accessible by some iterable structure. Again, the default

implementation simply copies each pair, essentially not applying any reduction to the

set of pairs. Finally, the OutputFormat is responsible for serialization of key-value pairs

to disk. Typically, each reducer writes to its own file in the output directory. This avoids

race-conditions and facilitates splitting of the input for subsequent MapReduce jobs.
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1 Configuration conf = new Configuration();
2 Job job = new Job(conf, "word count");
3

4 job.setJarByClass(WordCount.class);
5 job.setMapperClass(TokenizerMapper.class);
6 job.setCombinerClass(IntSumReducer.class);
7 job.setReducerClass(IntSumReducer.class);
8

9 job.setOutputKeyClass(Text.class);
10 job.setOutputValueClass(IntWritable.class);
11

12 FileInputFormat.addInputPath(job, new Path(args[0]));
13 job.setInputFormatClass(TextInputFormat.class);
14 FileOutputFormat.setOutputPath(job, new Path(args[1]);
15 job.setOutputFormatClass(SequenceFileOutputFormat.class);
16

17 job.waitForCompletion(true);

Listing 2.1: Setting up a WordCount job in Hadoop

2.3.3 Code Examples

Originally introduced in Google’s MapReduce paper [1], WordCount is possibly the most

commonly known example for MapReduce. The task is to simply count all occurrences

of all words present in a document or a set of documents. This is achieved by processing

each line of text of each input document separately in the map-function. For each

occurring word a tuple is written that contains the word as the key, and the number

’1’ as the value. Reduction is done by simply summing up values (i.e. occurrences)

for identical words. In Hadoop a WordCount job would be created as demonstrated in

listing 2.1.

The first two lines simply create a job and a configuration for that job. Users can

use the configuration of a job to specify certain of it’s properties like the number of

reducers. A job’s configuration can also be used to submit information globally to

every job via context. We will see how this is done in a second, when talking about

the mapper implementation. After setting mapper, combiner and reducer, the types of

output keys and values are specified in order to let the framework create appropriate

output files. This is not necessary for the input as this information is directly encoded

at the beginning of each SequenceFile. IntWritable and Text are wrappers for Integer
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1 public static class TokenizerMapper
2 extends Mapper<Object, Text, Text, IntWritable>{
3

4 private final static IntWritable one = new IntWritable(1);
5 private Text word = new Text();
6

7 public void map(Object key, Text value, Context context
8 ) throws IOException, InterruptedException {
9 StringTokenizer itr = new StringTokenizer(value.toString());

10 while (itr.hasMoreTokens()) {
11 word.set(itr.nextToken());
12 context.write(word, one);
13 }
14 }
15 }

Listing 2.2: The mapper used for WordCount

and String respectively, that implement the required Writable interface. Finally, before

the job is submitted to the framework, input and output paths are specified along with

the corresponding file formats.

The TokenizeMapper that was chosen in listing 2.1 can be seen in listing 2.2. Every

mapper class has to extend Hadoop’s Mapper along with the appropriate types of the

input and output key-value pairs. The aforementioned context is available as a third

parameter to the map-function. It provides access to meta-data, like information about

the currently processed input or data specified by the user at the time of job creation. It

also delegates write calls to the appropriate writer (see line 12).

Listing 2.3 presents the previously chosen IntSumReducer. For each encountered word,

one call to the reducer-function is made, along with all occurrences that were extracted

in the mappers. They are accessible via the Iterable passed as value. Note that in the

final reduction some of these values may have been pre-reduced by the per mapper call

to the combiner.
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1 public static class IntSumReducer
2 extends Reducer<Text,IntWritable,Text,IntWritable> {
3 private IntWritable result = new IntWritable();
4

5 public void reduce(Text key, Iterable<IntWritable> values,
6 Context context
7 ) throws IOException, InterruptedException {
8 int sum = 0;
9 for (IntWritable val : values) {

10 sum += val.get();
11 }
12 result.set(sum);
13 context.write(key, result);
14 }
15 }

Listing 2.3: The reducer used for WordCount

2.3.4 Features

Hadoop offers multiple features that extend the original MapReduce model. Two of

these, which are specifically useful in the context of deltas, are discussed in the follow-

ing.

Map-side join

In traditional MapReduce all tuples are sorted by key per reducer before being presented

to the reduce function. If the input data is already sorted, sorting and transferring

of the data between mappers and reducers might be unnecessary overhead. Map-side
joins provide sequential reading from multiple sorted inputs, and make all values that

share a specific key accessible in a single map call. Although individual tasks may lose

much of the advantage of data-locality mentioned in section 2.1, the overall job benefits

from avoiding the entire reduce phase along with the cost of transferring intermediate

data between mapper and reducer nodes. Similar to databases, several types of joins

are supported (inner, outer, etc.), and users can even implement their own join (for

instructions consolidate appropriate literature about Hadoop, like [11]). In order to

use map-side joins, the different inputs need to be aligned carefully. All inputs need

to be sorted and partitioned in the exact same fashion (again, for detailed constraints
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1 Configuration conf = new Configuration();
2 Job job = new Job(conf, "word count merge");
3

4 job.setJarByClass(WordCountMerge.class);
5 job.setMapperClass(JoinMapper.class);
6 job.setNoReduceTasks(0);
7

8 job.setOutputKeyClass(Text.class);
9 job.setOutputValueClass(IntWritable.class);

10

11 Path[] input = new Path[3];
12 input[0] = new Path(args[0]);
13 input[1] = new Path(args[1]);
14 input[2] = new Path(args[2]);
15

16 job.setInputFormatClass(CompositeInputFormat.class);
17 job.getConfiguration().set(
18 CompositeInputFormat.JOIN_EXPR,
19 CompositeInputFormat.compose("outer",

SequenceFileInputFormat.class,
20 input));
21

22 FileOutputFormat.setOutputPath(job, new Path(args[3]);
23 job.setOutputFormatClass(SequenceFileOutputFormat.class);
24

25 job.waitForCompletion(true);

Listing 2.4: Setting up a map-side join in Hadoop

refer to [11]). For a simple example of map-side joins we refer again to the WordCount

example. Let us assume that we have independent outputs of three previous WordCount

jobs, and now want to merge them into one accumulated result. If the jobs were run

with the same configuration (i.e. same partitioner, same number of reducers, etc.) they

should be aligned appropriately for map-side joins. Listing 2.4 demonstrates how the

job is set up.

Note that all summation will already be done in the mapper, hence no reduction will

be needed and the number of reducers can be set to zero (see line 6). All input paths that

are to be processed need to be combined into one Path array. Further, the InputFormat

needs to be specified as CompositeInputFormat (line 16). However, a custom input
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1 public static class JoinMapper
2 extends Mapper<Text, TupleWritable, Text, IntWritable> {
3 private IntWritable result = new IntWritable();
4

5 public void map(Text key, TupleWritable values, Context context)
6 throws InterruptedException,

IOException {
7 int sum = 0;
8 for (Writable val : values) {
9 IntWritable partResult = (IntWritable) val;

10 sum += partResult.get();
11 }
12 result.set(sum);
13 context.write(key, result);
14 }
15 }

Listing 2.5: An example mapper used in a map-side join

format to extract tuples from the input files can be specified during join-definition (lines

17-20). The type of the join is specified as the first argument to:

1 CompositeInputFormat.compose(String joinType, Class<? extends InputFormat>

inputFormat, Path[] input)}.

In the context of map-side joins, values always have the predefined type TupleWritable

(see listing 2.5). It can be thought of a kind of list, where every entry corresponds to

one of the input files. Since not every input file necessarily contains an entry for a given

key, some list-entries might be empty. This is solved in TupleWritables by offering an

iterator that only returns list-entries whose value was set. In our example, this allows

for implementation of a mapper that is almost identical to the reducer of the original

WordCount implementation in listing 2.3.

MultipleInputs

Hadoop is generally designed to allow multiple input paths per job. As seen in the

context of the WordCount example, each input path is simply added to a job using:
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1 FileInputFormat.addInputPath(Job job, Path p);

Note that only a single type of InputFormat can be specified for all inputs using

job.setInputFormatClass(...). In the context of heterogeneous inputs however, we

might need to be able to extract keys and values differently from each input. This is

not possible using the static way input paths are normally added. For these scenarios,

Hadoop provides the MultipleInputs class. It allows to specify a separate InputFormat

for each input path. Optionally, the user can also specify separate mapper classes for

each job, in order to process heterogeneous inputs differently:

1 MultipleInputFormats.addInputPath(Job job, Path p, Class<? extends

InputFormat> inputFormatClass);

2 MultipleInputFormats.addInputPath(Job job, Path p, Class<? extends

InputFormat> inputFormatClass, Class<? extends Mapper> mapperClass);

2.4 nutch

2.4.1 Overview

Browsing the web without the support of web-search engines is unthinkable today.

Search engines like Google, Yahoo! or Bing provide means to quickly find a specific

piece of information in the web. One important factor for the responsiveness of today’s

search engines is the fact that searching of the web is not done at the time of a query,

but beforehand. Most search engines use so called web crawlers to traverse and store

huge parts of the web. These crawlers move around by downloading a site’s content

and following links to other sites. After the crawlers have finished, the content of a site

is analysed and prepared for searching. Queries are later executed on the previously

accumulated data.

Nutch is an open source web-search software that is distributed under Apache License
2.0. It is available in version 1.2 at the time of writing, however version 1.3 is about to

be released. Apache’s core functionality is to crawl the web, while index creation and

search-functionalities are delegated to Apache Lucene. Nutch is implemented entirely in
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Figure 2.4: Workflow in a simple web crawler

Java and provides a plug-in mechanism that enables users to customize processes like

parsing, data retrieval, querying, clustering, etc. In the following, we will focus on the

description of the architecture of Nutch’s web crawler. As Lucene is a fairly complex

project on its own, we omit details and refer to the project’s website [12] for further

information.

2.4.2 Architecture

Nutch provides two basic ways to crawl the web: first, the user can use a crawl com-

mand that will perform all necessary steps. Alternatively, the steps performed by the

crawl-command can be invoked separately by the user, enabling a more sophisticated

configuration of the crawl. Also recrawling previously crawled sets of websites requires

step-per-step invocation of the necessary commands. In order to describe how Nutch

is designed, figure 2.4 shows the steps performed in a simple web crawler. The figure

demonstrates how crawls are typically performed in cycles (CrawlDb→ fetch→ update

(meta) data). Each cycle a set of URLs is fetched, and newly discovered links are added

to the fetch-frontier.
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Figure 2.5: The crawl-cycle performed by Nutch

In the beginning CrawlDb, a repository that maintains all necessary meta data about

encountered websites is initialized (initialize) with a set of seed-URLs. These URLs

are the starting point of our web crawl. In order to quickly reach many different sites,

the seeds should be chosen carefully.

As mentioned above, fetching is done in cycles in order to discover a large number of

different URLs. Figure 2.5 shows the fetch cycle in detail. The generate step extracts

a fetch-list (unfetched segment) from CrawlDb that contains all URLs that should be

fetched this round. After downloading the content of all chosen websites (fetch), the

CrawlDb is updated (update (meta) data) with relevant information (e.g. whether the

site could be reached, whether it was modified, discovered links, etc.). During fetching,

the content is also used to extract websites the downloaded sites are linked to. Fetched

sites and links are used to create a collection of inverted links (invert links — again

in figure 2.4), that is an entry for each discovered site that contains all sites that point

to it. This link-graph is stored in the LinkDb. Finally, the data that was accumulated in

the CrawlDb can be used along with the LinkDb to create an index (create index). This

index is later being queried by the web-search interface.

2.4.3 Code Examples

The individual tasks performed by Nutch are each implemented as one or multiple

MapReduce jobs, in order to provide parallelization and fault tolerance. We illustrate

this by demonstrating the concept of link-inversion (invert links) using MapReduce.

In order to traverse the web, fetched websites are parsed for outlinks a priori to the

link-inversion step. Websites are then processed by the mapper, along with the set of

URLs they are pointing to. The inversion is done by writing a tuple for each target

URL, together with the source URL as the value. The reducer can then simply collect

all sources that point to a specific target URL. Listing 5.2 shows pseudo code for the
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1 map(URL key, List<URL> values) {
2 for(URL target : values){
3 List<URL> sources = new List<URL>();
4 sources.append(key); //use lists for combiner
5 emit(target, sources);
6 }
7 }
8

9 reduce(URL target, Iterable<List<URL>> values) {
10 List<URL> inlinks = new List();
11 for(List<URL> sources : values){
12 inlinks.append(sources);
13 }
14 emit(target, inlinks);
15 }

Listing 2.6: A pseudo code implementation of Nutch’s link-inversion step.

involved mapper and reducer. Please note that in order to enable local combining at the

mapper node, lists are used as intermediate values.
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This section introduces some simple use cases that demonstrate the benefits of using

deltas in the context of MapReduce computations. Here, we focus on modifications to

existing MapReduce jobs in order to process deltas in a way that enables later merging

with previous results. Algebraic verification and details on how to compute a delta in

the context of MapReduce are delayed until chapter 4.

3.1 wordcount

In the context of Hadoop we have introduced the WordCount example in section 2.3.

Recall that documents are mapped by simply extracting a tuple for every word in the

document that contains the word as the key, and the number 1 as the value. It is easy

to realize that if a document has changed in a way that some text has been added

to a previously existing document, these changes can be applied to the overall result

of WordCount by simply producing a tuple for each added word in the conventional

fashion. As the original WordCount reducer simply sums up values for tuples with the

same key, changes can be introduced into the old result by simply reducing the old result

along with the newly created tuples. However, changes to a document are usually not

only done by append, text can also be deleted from the original document. Fortunately,

deletions are as straightforward as additions: in order to reflect in the final result that

some of the words are not present in the document any more, their occurrence has to

be subtracted from the current count. This can be achieved by producing tuples in the

mapper for every deleted word that contain the word as the key and −1 as the value.

Using regular reduction, this ensures that the previously added occurrence of this word

is now being removed again.

In order to demonstrate this approach in the context of our WordCount implementation,

we need some kind of delta. Since we delayed the discussion on efficient delta creation

in the context of MapReduce until chapter 4, we use the UNIX tool diff for this purpose.

Listing 3.1 shows an example output of diff:

23
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1c1

< MapReduce is a programming model and an associ-

- - -

> Map-Reduce is a programming model and an associ-

21c21

< sand MapReduce jobs are executed on Google’s clusters

- - -

> sand Map-Reduce jobs are executed on Google’s clusters

Figure 3.1: Example output of diff

For our purpose, only lines actually containing content are relevant: Lines starting

with ’<’ mark content that is present in the first version of the document, but not in the

second one (i.e. deleted text). Added text is marked by ’>’. As additions and deletions

could also be marked by ’+’ and ’−’, we will also refer to the sign of the line in this con-

text. In order to ignore unimportant lines and to distinguish in the mapper whether a

line contains added or deleted content, we have two possibilities: First, we could imple-

ment a custom InputFormat that skips lines not starting with ’<’ or ’>’, and that passes

the sign of the line into to the mapper. Including the sign into a key-value pair can be

done by using a Pair-type for the value, that contains both the line content and the sign

(e.g. as a boolean).

The second possibility is to implement this behaviour directly in the mapper. For sim-

plicity, we only show the second approach in listing 3.1, in order to avoid a detailed

introduction of InputFormats. Reduction is simply done using the same reducer as the

original WordCount implementation in listing 2.3.

3.2 matrix multiplication

As seen in the previous section, using deltas in the context of simple mathematical

operations is relatively straightforward. This section tries to illustrate this point using a

slightly more complex example: the multiplication of two matrices. This is an important

use case as matrix multiplication causes non-trivial computational cost, and is applied

in many different areas of computer science.

Recall that the product of two matrices is calculated as demonstrated in listing 3.2.
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1 public static class DeltaTokenizerMapper extends Mapper<Object, Text,
Text, IntWritable>{

2 public static final String POS_STRING = ">";
3 public static final String NEG_STRING = "<";
4

5 private final static IntWritable count = new IntWritable();
6 private Text word = new Text();
7

8 public void map(Object key, Text value, Context context) throws
IOException, InterruptedException {

9 int sign;
10 String line = value.toString();
11 if(line.startsWith(POS_STRING)){
12 sign = 1;
13 }else if(line.startsWith(NEG_STRING)){
14 sign = -1;
15 }else{
16 return;
17 }
18 count.set(sign);
19 StringTokenizer itr = new StringTokenizer(line.substring(2));
20 while (itr.hasMoreTokens()) {
21 word.set(itr.nextToken());
22 context.write(word, count);
23 }
24 }
25 }

Listing 3.1: Mapper used to process diff output in the context of WordCount
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A ∗B =

(
1 2

3 4

)
∗
(
5 6

7 8

)
=

(
1 ∗ 5+ 2 ∗ 7 1 ∗ 6+ 2 ∗ 8
3 ∗ 5+ 4 ∗ 7 3 ∗ 6+ 4 ∗ 8

)
=

(
19 22

43 50

)
= C

Figure 3.2: Example matrix multiplication

Assuming that one or both of the input matrices have changed, we show that it is

sufficient to process a subset of the matrices in order to obtain a result that can be used

to update the original product to obtain the new product. The difference between two

versions of a matrix can be determined by subtracting one from the other (assuming

that both versions still have the same number of dimensions). The following illustrates

the case that element a0,0 of matrix A in our example multiplication changed from 1 to

0 (modifications to B can be handled similarly, by substituting ’row’ by ’column’ in the

following):

A =

(
1 2

3 4

)
,A ′ =

(
0 2

3 4

)
,Adelta = A ′ −A =

(
0 2

3 4

)
−

(
1 2

3 4

)
=

(
−1 0

0 0

)

We will show now (without proof) how this difference (delta) can be used to update

the result C of the multiplication of A and B, to C ′ (the result of A ′ ∗ B). Each element

of row i in matrix A is only used to calculate row i of C. Similarly, each element of

column j in B is only used to calculate column j of C. This shows that there is no need

to recalculate the entire multiplication, but only rows of the result that contain changed

elements from matrix A (or columns that contain changed elements from matrix B).

After multiplying the modified row of matrix A by every column of matrix B, updating

of the resulting matrix can be done by simply adding this product to the original result:

Adelta ∗B =

(
−1 0

0 0

)
∗
(
5 6

7 8

)
=

(
−5 −6

0 0

)
= Cdelta

C ′ = C+Cdelta =

(
19 22

43 50

)
+

(
−5 −6

0 0

)
=

(
14 16

43 50

)
= A ′ ∗B

It may seem that this procedure introduces more overhead than providing benefit.

However, two aspects need to be taken into account: First, in order to calculate Cdelta

no full matrix multiplication is necessary. Instead, it suffices to only multiply the rows
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of Adelta that do not contain solely 0 values (i.e. rows with changes) by matrix B. The

second aspect that needs to be taken into consideration is an application where two

large matrices are being multiplied again and again, and only few values in one of the

two matrices change. For example [13] introduces SA-Clustering, a clustering algorithm

for attributed graphs that iteratively recalculates a random walk distance matrix based

on changing weights, using matrix multiplication. Zhou et. al. [14] already showed,

that only parts of this matrix change in each iteration. They proposed an incremental

algorithm to incrementally update the random walk distance matrix. Their approach to

exploit incrementality to avoid full matrix multiplication is quite similar to the approach

presented here.

It can easily be seen that incremental matrix multiplication reduces complexity from

O(n3) to O(n2). For example, if multiplying two 1000x1000 matrices by each other, the

following overheads occur if one row/column changes in one of the two matrices:

• Regular Multiplication: 10003 single element multiplications (as each element of

the resulting matrix requires 1000 factors being added to each other)

• Delta Multiplication: 10002 single element multiplications (as only one row/col-

umn of the resulting matrix is being recalculated)

A MapReduce implementation is omitted here, as existing MapReduce implementa-

tions of matrix multiplication are quite complex. They split the input matrices into

blocks small enough, so that a pair of blocks can be multiplied in memory on a single

node. Block multiplication is done at at the reducers who receive the right data via a

complex intermediate key structure and partitioning function. A second MapReduce

job is then used to unite the single blocks into the final result. A detailed description of

an implementation can be found under [15].

3.3 web crawler

3.3.1 Motivation

While section 2.4 introduced web crawlers in the context of Nutch, this section will focus

on potential improvements in performance by using them in combination with deltas.

Recall that web crawlers are used to create an index for a search engine. The web is

constantly changing as sites are being added, deleted or modified, hence actions need
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to be taken in order to keep the index up to date. Most search engines (like Nutch) deal

with this problem by periodically recrawling the whole web, and recomputing the index

from scratch. It is impossible to state a specific interval that sites are commonly being

recrawled in, as sophisticated crawlers vary that interval between sites. Crawlers can

learn an optimal recrawl policy over time, by observing importance (determined e.g. by

PageRank [16]) and change frequency of each site. However it can be assumed that a

commercial search engine is constantly crawling websites in order to keep its index up

to date. This claim is supported in [17], by leaking the information that Google crawls

several billion documents each day.

Constant recrawling leads to huge amounts of input data for index creation. For in-

stance [1] mentions that index creation at Google processes about 20TB of input data.

One could assume that index creation has become much more complex since 2004, hence

the input volume for indexing might have increased significantly. This is supported by

the fact that [17] claims that indexes at Google store tens of petabytes of data. The liter-

ature mentioned above further states that index creation was done, prior to their latest

switch of concept, by feeding newly crawled documents along with a repository of ex-

isting documents through a series of 100 MapReduce jobs. They claim that this forced

each document to be indexed for 2-3 days before it could be returned as a search result.

The huge amount of data along with the number of MapReduce jobs used in order to

create an index suggest significant gains using deltas in the context of web crawlers. The

rest of this section will outline possible changes to an existing web crawler in order to

use deltas.

3.3.2 Modifications to crawling

Based on figure 2.4, which we used to illustrate Nutch’s architecture, figure 3.3 hints at

possible modifications of a web crawler in order to use it in combination with deltas.

Workflows that are modified in order to incorporate deltas are marked blue. This sec-

tion introduces possible modifications, while details are delayed until chapter 5, which

describes the implementation of a crawler that uses deltas.

The CrawlDb is initialized as before, and an initial crawl discovers and downloads web-

sites. In subsequent recrawls that aim at updating the possibly deprecated index, we

can now focus on changes. After fetching a chosen set of URLs, the content of these

sites is being compared to their previously encountered versions, in order to determine

which sites have changed. In the following, only these changed sites are used to create
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Figure 3.3: A web crawler optimized for deltas

a delta of the content, and to update the CrawlDb. Further, a delta of the discovered

outlinks of these sites can be computed (i.e. only added/deleted/modified links). This

delta is then processed by the invert changed outlinks job, and used to create a Delta

of the LinkDb. We now have a delta of all added and deleted inlinks, as well as deltas of

the websites’ contents. These deltas can be used in the following to update an existing

index, avoiding costly recomputation of the entire index.

3.4 indexer

Let us assume that our simple index is created by the execution of three individual tasks

that are characteristic for index creation: PageRank computation, creation of an inverted
index, and clustering of websites. In the following we will take an close-up look at each

of these tasks.
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3.4.1 PageRank

PageRank, as introduced by [16], is used to determine the ’importance’ of a website, in

order to contribute to a ranking of the search results that are presented to the user. The

algorithm used for PageRank is based on the idea to assign a score to each web page

that represents the likelihood that a person who randomly clicks on links will arrive at

any particular page. The idea behind this concept is that the more important a site is,

the more sites will point to it. Sites that have other important sites pointing to them

are even more important than sites that are being pointed to by unimportant sites. The

PageRank of crawled sites is calculated based on a weighted web graph, where nodes

represent websites and edges represent outlinks. More specifically: an outlink from

website A to website B results in an edge from node A to node B in the resulting graph.

Initial weights are assigned to each site, which are refined by iteratively passing a score

based on a node’s current weight to all nodes it is pointing to. Incoming scores to a

node are used to update its PageRank, and in the next iteration this updated score is

passed to subsequent nodes.

Iterative algorithms in MapReduce have been a field of intensive research. Related

work (chapter 7) introduces several approaches in this area that try to improve itera-

tive MapReduce jobs. However, one publication that is especially suitable in our con-

text is [18]. The proposed approach to incrementally update existing PageRank calcula-

tions based on a set of changed websites is highly useful in the context of deltas. With

deltas, we already have the desired information at hand about which sites have actually

changed, and hence only these sites need to be considered in an update of the PageRank

graph.

3.4.2 Inverted Index

Inverted indices are often used in the context of search engines, in order to provide quick

access to the information which sites contain a specific word. The inverted index stores

for each word a list of documents which contain that word. This provides direct access

to find the documents associated with a specific word, avoiding the need to search each

individual site. In order to enable a more sophisticated ranking of sites, it is desirable

to not only provide the information which sites contain a specific word, but also the

number of occurrences for each site. This allows the search engine to return sites that

contain many occurrences of a queried term to the user first, assuming that these are

more relevant to the search query than sites having few occurrences.
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At the end of crawling, our CrawlDb basically contains mappings from URLs to words,

since the content of a website is being identified by the corresponding URL. The inverted

index now requires two steps: first, inversion of the URL-word mapping in order to

access URLs from words their content contains. Second, detection of the count of each

word for every single website. Step one is similar to link inversion as seen in section 2.4.3.

In the context of deltas, only words that were added or deleted are being processed in

the inversion step. Step two requires an implementation similar to our WordCount

example. Therefore, additions and deletions can be handled in the same way (i.e. by

emitting 1/−1). Details on the creation of an inverted index via MapReduce are given

in section 5.3.

3.4.3 Clustering

Introduction to clustering

Clustering (or cluster analysis) is the process of grouping elements into subsets, so that

elements in the same set are similar in some sense. Clustering is a common technique

for static data analysis, meaning that no initial training of the system that computes the

clusters is required. In order to determine the similarity of two elements, clustering re-

quires some kind of distance measure. The choice of the distance function will influence

the final clustering, as different distance functions might lead to different clusterings.

Commonly used distance functions are for example the Euclidean distance or the Manhat-
tan distance. In order to apply the chosen distance function to them, elements need to be

represented as points in an n-dimensional space. This is done by extraction of features

from the elements, and assigning numerical values for each feature to the elements that

are to be clustered.

Different algorithms for clustering exist, one of the most commonly used probably being

k-means. The k-means algorithm assigns each point (of an n-dimensional space) to the

cluster whose center (called centroid) is the closest. The center of a cluster is the average

of all points in the cluster. The algorithm to compute k-means performs the following

steps:

• Choose the number of clusters k

• Randomly generate k cluster centres (centroids)

• Assign each element’s point to the nearest cluster (determined by the distance

function)
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• Recompute the new centroids

• Iteratively repeat the last two steps until some convergence criterion is met

Clustering in the context of indexing

In the context of indexing, websites can be clustered by using term-frequency vectors

that are calculated based on their content. For instance, the result of a WordCount

computation can be used in order to create such a vector. After careful clustering of the

resulting vectors, websites with similar content should be assigned to the same clusters.

This enables the search engine to move some sites up in the hierarchy of the search

results, based on their similarity to top-ranking results. It is further possible to return

websites to a query, that do not actually contain one of the queried terms, but are located

in the same cluster as one of the top-ranking results.

A different aspect for the usage of clusters is the grouping of sites by their content in

the context of ambiguous topic names. Imagine a user querying for “jaguar”: he could

either be interested in the car, or in the animal. A sophisticated index should be able to

distinguish websites based on their actual content in order to return content related to

the correct topic.

Mahout

As Nutch relies on Lucene for indexing, any clustering is also handled there. While

Lucene used to implement individual machine learning algorithms, the entire field was

outsourced at some point to a separate Apache project: Mahout [19]. Mahout is dis-

tributed under Apache License 2.0 and is available in version 0.4 at the time of writing.

The initial idea, to use a parallel programming method in the context of computationally

expensive machine learning algorithms, was first introduced in [20] using MapReduce.

This later lead to the foundation of Mahout, a machine learning library implemented on

top of Hadoop.

Clustering and deltas

As recomputation of clusters is costly due to the necessity of multiple iterations, it is

usually being avoided during recrawling. Instead all crawled documents are being reas-

signed to existing clusters, as their content and hence their position in the vector space

might have changed. For high crawl-rates (i.e. a large part of the CrawlDb is being
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recrawled at once) this task becomes very complex, as every site’s vector needs to be

compared to every centroid in order to find the nearest one. While the exact number of

clusters to be used is subject to analysis based on the data set, [17] describes a bench-

mark that results in 3.3 documents per cluster on average. Even though actual numbers

will probably differ, this still gives us a general idea about the number of centroids (i.e.

size of the web divided by some small number) each vector needs to be compared to.

In the presence of deltas, the amount of vectors to compare is being reduced signifi-

cantly, as only documents with changed content need to be re-compared to the existing

centroids. One could imagine an even more sophisticated approach that calculates the

exact delta of the content (as we did in the delta version of our WordCount example).

This delta could then be used as a displacement vector, to implement an algorithm that is

aware of the distances of the clusters to each other, and can hence trigger reassignment

automatically if a documents vector is relocated to a point that is part of a different

cluster. As this approach would require modifications inside the Mahout project, we

delegate an implementation to future work.

An additional advantage of using deltas is that they provide a good indication when

enough changes have been accumulated, so that recomputing of the clusters becomes

necessary. Traditional recrawling techniques do not allow such observations, and will

probably rely on heuristics for this decision.





4 M A P R E D U C E W I T H D E LTA S

4.1 algebraic approach

This section 1 is concerned with algebraic verification of the usage of deltas in the context

of MapReduce computations. We try to give a formal definition of deltas, that is further

used to express correctness conditions for the incremental computations, to yield the

same result as the non-incremental one.

4.1.1 Formal definition

MapReduce processes pairs of keys and values, therefore its input is basically a keyed

collection, in fact an ordered list [1].

Given two generations of input data i and i ′, a delta ∆i,i ′ can be defined as a quadru-

plet of the following sub-collections:

∆i ′+
Part of i ′ with keys not present in i.

∆i− Part of i with keys not present in i ′.

∆i 6= Part of i whose keys map to different values in i ′.

∆i ′6=
Part of i ′ whose keys map to different values in i.

The first part corresponds to added key-value pairs; the second part to removed pairs;

parts three and four represent modified key-value pairs were part three reflects the state

before the second generation was introduced, and part four the state after this. Since

modifications can be expressed by deletion of the first version and addition of the second

version of a tuple, ∆i,i ′ can be simplified to consist of only two collections:

∆+ = ∆i ′+
+∆i ′6=

∆− = ∆i− +∆i 6=

1 This section was taken from [21], with some modifications
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This leaves us with the observation that MapReduce computations can be applied to

these two parts of the delta, and can later be merged with the original result. We assume,

that this yields the same result as processing the entire second version independently.

However, correctness conditions are needed for the non-incremental and incremental

execution to agree on the result. In order to state such a criterion, we first need to

formalize common MapReduce computations.

4.1.2 MapReduce and Monoids

Recall that a monoid is an algebraic structure with a single associative binary operation

and an identity element. For example, the natural numbers N form a monoid under

addition with identity element zero. In classic MapReduce, the mapper is not con-

strained, but the reducer is required to be (the iterated application of) an associative

operation [1]. Recent research argued that reduction is in fact monoidal in known appli-

cations of MapReduce [3], [22]. That is, reduction is indeed the iterated application of

an associative operation “•” with a unit u. In the case of the word-occurrence count ex-

ample, reduction iterates addition “+” with “0” as unit. The parallel execution schedule

may be more flexible if commutativity is required in addition to associativity [3].

We try to illustrate this point using some simple examples. A detailed analysis of com-

mon MapReduce computations on the basis of monoids can be found in [22].

Distributed Grep

Being part of Hadoop’s example library, Distributed Grep is the parallel implementation

of the UNIX tool grep. The mapper processes input documents line by line and emits

a line if it matches a supplied pattern. Reduction is done via an identity function that

simply copies each intermediate tuple to the output. To determine the used monoid, we

notice that the collection of key-value pairs is basically a set of dictionary type (Map),

that is keys map to values. As the reducer simply copies the provided tuples to the

output, essentially appending each to the already collected set, we can express it using

the following monoid: (Map, unionWith(++), empty Map), where starting with the empty

Map, reduction iteratively concatenates (unionWith(++)) an input tuple (represented as a

Map with a single element) to the existing preliminary result.
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Reverse Web-Link Graph

As demonstrated in section 2.4, a reverse web-link graph can be constructed using a map-

per that processes an URL along with all outlinks contained by that website’s content

as the corresponding value (e.g. as a list: <source,[target]>). For each URL present in

the value, a new tuple is emitted that contains the target URL as the key, and a collec-

tion containing the currently processed website’s URL as the value: <target,source>.

The reducer then receives all intermediate tuples sharing the same key and concatenates

their values. As values of intermediate data are lists of URLs, the corresponding monoid

operates on a dictionary that maps URLs to lists of URLs. Reduction then simply con-

catenates multiple lists for a given URL: (Map<List>, unionWith(++), empty Map).

4.1.3 Deltas and Abelian Groups

In the context of deltas, we need to extend this model in order to cope with deleted

tuples. In the context of our WordCount use case, deletion was handled by emitting the

negated count of the previous occurrence (i.e. <word, -1>). This implies an extension of

the monoidal model for reduction to an Abelian group, i.e. a monoid with commutativity

for “•” and an operation “· ” for an inverse element such that x • x = u for all x. Hence,

we assume that MapReduce computations are described by two ingredients:

• A mapper function.

• An Abelian group—as a proxy for the reducer function.

4.1.4 Formal correctness

We are ready to state a law (without proof) for the correctness of MapReduce compu-

tations with deltas. Operationally, the law immediately describes how the MapReduce

result for i needs to be updated by certain MapReduce results for the components of

the delta, so that the MapReduce result for i ′ is obtained; the law refers to “•”—the

commutative operation of the reducer:

MapReduce(f,g, i ′) = MapReduce(f,g, i)

• MapReduce(f,g,∆+)

• MapReduce(f,g,∆−)
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Here, f is the mapper function, g is an Abelian group, and f denotes lifted inversion.

That is, if f returns a stream of key-value pairs, then f returns the corresponding stream

with inverted values. In imperative style, we describe the inversion of extraction as

follows:

Input: a stream s of key-value pairs

Output: a stream s ′ of key-value pairs

Parameter: an inversion operation · on values

Algorithm:

for each 〈k, v〉 in s do
yield 〈k, v〉; // value-by-value inversion

Figure 4.1: Lifted inversion
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Figure 4.2: MapReduce with deltas

4.2 steps in using deltas

4.2.1 Delta Computation

This section is concerned with the the individual steps necessary in order to enhance a

MapReduce computation with deltas. Figure 4.2 demonstrates the associated workflows.

The upper part of the figure corresponds to the regular MapReduce job responsible

for initial processing of the original version of the input data (represented as splits

0−m). Next, the second version of the input (represented as split’[0] — split’[o])

is compared to the original input, and their delta (∆[0] — ∆[p]) is being computed

(Compute delta). This delta can then be processed using a MapReduce computation

MapReduce’, that is augmented as described in the previous section. The resulting output

(∆-output[0] — ∆-output[q]) can then either be merged (Merge) with the result of the

original MapReduce job, yielding the same result as when processing the entire new

input in regular fashion. Alternatively, the processed delta can be used by Subsequent

MapReduce jobs, in fact reducing their workload.

In the rest of this chapter, we will take an close-up look at each of these steps.

Before and after MapReduce

The first choice in the computation of deltas is its position within the job ordering.

Assume that you have multiple pipelined MapReduce jobs, i.e. subsequent jobs take the

output of their predecessor as input (remember: web crawlers work this way). We are

now left with the possibility to create a delta of the input data of that job pipeline, before

actually invoking any MapReduce computation. This idea can be seen in the top section
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Figure 4.3: Computation of the delta before vs. after MapReduce.

of figure 4.3. If however, the first job decreases the volume of the data significantly by

doing aggressive reduction of the input data, it might become feasible to compute the

delta after this initial job (see lower part of the figure). Detailed analysis of read and

write operations indicate that delta computation after MapReduce becomes possible if

reduction reduces the input to one third or less of its initial size (using naive delta

computation as presented in subsection 4.2.1).

Another advantage of creating the delta after an initial MapReduce job is the locality

aspect: since both generations of data were created using the same partitioner, the data

is likely to be aligned on the same nodes, allowing for local comparisons.

Naive approach

Various algorithms exist for computing the differences between two versions. For exam-

ple, UNIX diff is based on solving the longest common subsequence problem. We omit

a comparison of different algorithms, and ask the interested reader to refer to literature

for comparisons of existing algorithms. For example, [23] compares various algorithms

to compute the edit distance between two strings of characters. Instead we want to make

use of the benefits gained by using MapReduce (such as massive parallelism and fault

tolerance), and discuss techniques to compute deltas on the level of keys and values,

using the MapReduce framework.

In order to compute a delta of two generations of a set of data items, both generations
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Figure 4.4: Example for creating a delta of two text documents using MapReduce.

need to be compared to each other. This requires for the data to be aligned in such a

way that tuples sharing the same key can be accessed together. Using classic MapRe-

duce, we can simply set up a job with both versions as input that does all comparisons

at the reducer. A simple example of how a delta of two text documents could be created

is illustrated in figure 4.4.

In order to distinguish the origin of a certain tuple, we use an input format imple-

mentation that wraps key and value in some pair-type, and passes the name of the

corresponding file as the key. Since we want to augment each key-value tuple with a

sign, we are basically producing triples (<key,value,sign>) in the mapper. However,

since we want to avoid any modifications to existing frameworks, we can simply use

said pair-type again (see listing 4.1). The implementation of the input format, as well as

the pair type, can be found in the appendix (listings 3 & 2).

The reducer in listing 4.2 assumes for keys to be unique, as stated in the original

MapReduce paper [1]. It receives 1-2 values per key, depending on whether a key exists

only in one generation of the data, or in both. In the case of a single value, a potential

deletion or addition becomes definite. In the case of 2 values, identical values cancel

each other out, whereas two unequal values imply a modification that is expressed as

an addition of the new value and a deletion of the old one.

However, in practice we have seen cases where multiple occurrences of the same key

exist in given data sets. Therefore. we also need to consider the common case where an

arbitrary number of occurrences of a given key is possible. Listing 4.3 introduces some

changes to the previous reducer implementation in order to handle that case.

Unfortunately, the presented approach to compute deltas has some limitations due to

the amount of necessary read and write operations. Figure 4.5 summarizes the required

I/O operations to copy both versions in the mapper, load them into the reducer and

finally write the delta.

This approximation does not even take into account the necessary intermediate sort-

ing by key, as well as costs for MapReduce over the delta and final merging. Also,
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1 private Collection<String> origFiles;
2

3 protected void setup(Context context) {
4 origFiles = context.getConfiguration().getStringCollection("

ORIG_FILES_SET");
5 }
6

7 public void map(String fileName, Pair<K,V> keyValue) {
8

9 if(origFiles.contains(fileName)){
10 emit(keyValue.first, new Pair(keyValue.second, true));
11 }else{
12 emit(keyValue.first, new Pair(keyValue.second, false));
13 }
14 }

Listing 4.1: A pseudo code implementation of a mapper that assigns signs to tuples
based on their origin.

read(V0) + read(V1) + write(V0) + write(V1) //map

+ read(V0) + read(V1) + write(∆0,1) //reduce

= 4 ∗ read(V) + 2 ∗write(V) +write(∆0,1)

Figure 4.5: I/O cost for naive delta computation (assuming that both versions have the
same volume)

transfer of both generations over the network to the appropriate reducer nodes will add

significant delay. Figure 4.6 indicates that classic MapReduce over the new version only

requires about half the I/O costs of naive computation of the delta (no processing, no

merging). This insight calls for a more efficient approach to compute deltas.

read(V) + write(V) //map

+ read(V) + write(Vreduced) //reduce

= 2 ∗ read(V) +write(V) +write(Vreduced)

Figure 4.6: I/O cost for regular processing of a version
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1 public void reduce(K key, Iterable<Pair<V, Boolean>> values) {
2 Iterator it = values.iterator();
3 Pair<V, Boolean> v0 = it.next();
4 if(it.hasNext()){
5 Pair<V, Boolean> v1 = it.next();
6 if(v0.first == v1.first){
7 return; //same in both generations
8 }else{
9 //modified

10 emit(key, new Pair(v0.first, v0.second ? "-" : "+"));
11 emit(key, new Pair(v1.first, v1.second ? "-" : "+"));
12 }
13 }else{
14 //only in one generation
15 if(v0.second()){
16 emit(key, new Pair(v0.first, "-")); //deleted
17 }else{
18 emit(key, new Pair(v0.first, "+")); //added
19 }
20 }
21 }

Listing 4.2: A pseudo code implementation of a reducer, to create the delta of two
versions.



44 mapreduce with deltas

1 public void reduce(Pair<K,V> keyValue, Iterable<Boolean> values) {
2 int occ = 0;
3 for(Boolean val : values){
4 occ += val ? 1 : -1;
5 }
6 String sign;
7 if(occ < 0){
8 occ *= -1;
9 sign = "+";

10 }else{
11 sign = "-";
12 }
13

14 for(int i = 0; i < occ; i++){
15 emit(keyValue.first, new Pair(keyValue.second, sign));
16 }
17 }

Listing 4.3: A reducer to create the delta of two versions, that deals with arbitrary
occurrences of specific keys.

Using Map-side join

The limitations to the previous approach ask for a different strategy that reduces the

necessary cost of I/O. Section 2.3.4 has introduced a useful abstraction called map-side
join. If applied in the context of deltas, reduction can be omitted reducing the cost of

I/O significantly (see figure 4.7), as network transfer between mappers and reducers

is avoided. Please note that in order to compare these costs to regular processing of a

version (as calculated in figure 4.6), costs for MapReduce of the delta and merging of

the result with the result of the previous version need to be added.

read(V0) + read(V1) + write(∆0,1) //map-side join

= 2 ∗ read(V) +write(∆0,1)

Figure 4.7: I/O cost for delta computation using map-side join

While the general steps necessary in order to set up a map-side join have already been

introduced in section 2.3.4, listing 4.4 shows pseudo code for a Hadoop implementation

of a map-side join to create a delta of two versions.
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1 private Collection<String> origFiles;
2

3 protected void setup(Context context) {
4 ...
5 }
6

7 public void map(PairWritable<K, V> keyValue, TupleWritable fileNames,
Context context) {

8 Text sign;
9 int occ;

10 for(Writable val : values){
11 Text currentFile = (Text)val;
12 occ += origFiles.contains(currentFile.toString()) ? -1 : 1;
13 }
14

15 if(occ > 0){
16 //more occurences in the new file -> add them
17 sign = new Text("+");
18 }else if (total < 0){
19 //more occurences in the old file -> delete them
20 sign = new Text("-");
21 occ *= -1;
22 }else{
23 //same amount in both
24 return;
25 }
26

27 PairWritable<K,V> signedVal =
28 new PairWritable<K, V>(keyValue.second(),sign);
29 for(int i = 0; i < occ; i++){
30 context.write(keyValue.first(),signedVal);
31 }
32 }

Listing 4.4: A pseudo code implementation of a map-side join to create the delta of two
version
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Figure 4.8: Creating the delta in streaming mode.

Streaming

The previous sections made clear that one limitation of using deltas is the overhead in

I/O that is necessary for creation of the delta. In order to minimize that overhead, we

propose an even more aggressive optimization, streaming delta, that avoids materializa-

tion of the second generation of input data (see figure 4.8).

In practice, the data processed by MapReduce jobs is often generated a priori, on the

same cluster the jobs run on. The crawler, for example, creates generations of data in the

fetch-step. In scenarios like this, the delta can be created in place, avoiding additional

MapReduce computations. This requires the old version to be present for comparison

during data creation. Figure 4.9 illustrates the associated costs. Please note that this

approach also avoids the cost for materializing the entire second generation, as we only

have to write the delta to disk.

read(V0) + write(∆0,1) //streaming delta

Figure 4.9: I/O cost for delta computation using streaming delta in a MapReduce job

MapReduce jobs that create a delta in streaming mode are very application specific.

The difficult part is to align the old version of the data in a way that makes sure that

the new version of a data item is generated at the node its old version is hosted on. For

example a web crawler could read old data, and generate the new data by extracting

and fetching the URL associated with the respective input items. The fetcher used in the

crawler presented in chapter 5 implements this concept.
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Delta level
2It is possible to aggressively reduce the volume of delta by exploiting a common idiom

for MapReduce computations. That is, extraction is typically based on uniform, struc-

tural decomposition, say iteration. Consider the for-loop for extracting word-occurrence

counts from documents—as of listing 2.2:

for each w in words(d) do

yield 〈w, 1〉;

That is, the document is essentially decomposed into words from which key-value

pairs are produced. Instead, the document may also be first decomposed into lines, and

then, in turn, into words:

for each l in lines(d) do

for each w in words(l) do

yield 〈w, 1〉;

In general, deltas could be determined at all accessible levels of decomposition. In

the example, deltas could be determined at the levels of documents (i.e., the values of

the actual input), lines, and words. For the problem at hand, line-level delta appears

to be useful according to established means for delta creation such as “text diff” [4].

MapReduce computations with deltas are easily configured to exploit different levels.

When computing the delta, as defined in listing 4.2, the modified-case (lines 9–11) must

be refined to decompose v0 and v1 and to compute the delta at the more detailed level.

In implementations of MapReduce, one can indeed exercise different levels. For instance,

Hadoop [2] assumes that MapReduce jobs are configured with an InputFormat which

essentially decomposes the input files (see section 2.3).

4.2.2 Processing Deltas

Assuming that we have successfully computed a delta, logically we will now process

key-value-sign triples (< K,V , sign >) in the mapper. The mapper needs to pass the

2 This section was taken from [21]
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sign to every tuple it produces in order to preserve it for reduction. We have to distin-

guish two cases: first, scenarios where the sign can be incorporated into the value (like

negative occurrences in the WordCount example), and second, scenarios where this is

not possible. For example in the context of the Reverse Weblink Graph job (section 2.4.3),

tuples that are present in the first generation, but not in the second one, are marked as to
delete. Unfortunately, this sign cannot be included directly into the value, but has to be

attached explicitly. Reduction then has to preserve the sign of the tuples again, by either

adequate reduction of positive and negative tuples, or by creating separate results.

4.2.3 Merging Deltas

After being processed using MapReduce, the delta needs to be combined with the orig-

inal result in order to yield the same result as processing of the second generation of

input data (see section 4.1). Attached negation signs are now used to invert the corre-

sponding values from the original result. Merging can be done naively, using a MapRe-

duce job that copies all data in the mapper and uses the same reducer as the original

MapReduce job. However, in order to avoid unnecessary network transfer as we did

with delta computation, we can again use map-side joins to merge the two results.

4.2.4 Limitation and Potential

Due to the necessary overhead for delta creation and merging, naive use of deltas in the

context of a single MapReduce job does not promise significant improvement, if how-

ever, the map or reduce function perform tasks with worse than linear computational

complexity, increasing volume of the input will eventually let those costs outweigh the

overhead introduced by delta usage.

In practice, MapReduce jobs are often organized in pipelined or even graph-like work-

flows, where the output of one job serves as the input for the next one. In scenarios like

these, the benefits gained from reducing the data volume by using deltas increase for

each performed job. Chapter 6 examines these assertions.
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4.3 importance of locality

An important aspect in the creation of deltas is locality of data. In order to compute a

delta, two or more versions need to be compared to each other. If these generations are

not aligned, so that related data items are hosted on the same machines, costly network

transfer becomes necessary in order to move the data items to each other. Therefore,

it would be desirable to have some kind of influence on the locality of the output of a

MapReduce job. Unfortunately, common MapReduce frameworks like Hadoop do not

permit such a level of control. We do not seem to be the first to require such a level of

control, as other approaches to determine locality of reducer nodes exist. In related work

(chapter 7) we discuss such an approach, and possible improvements in the context of

deltas are mentioned in future work 8.2.





5 A S I M P L E D E LTA C R A W L E R

In order to demonstrate the applicability of deltas in a complex scenario, we have im-

plemented a web crawler that is modelled after Nutch and uses deltas to build and

incrementally update an index.

5.1 architecture

The general architecture of our web crawler is identical with Nutch, as we basically used

the same kinds of MapReduce jobs and data collections. However, their implementation

differs, because we followed the vision presented in section 3.3 as shown in figure 3.3.

In contrast to Nutch, our crawler performs content-aware recrawling, where the fetcher

reads previous generations of websites and creates the delta in streaming fashion di-

rectly in the fetch-job, as proposed in section 4.2.1. The crawler provides two different

levels of delta computations: document level, where modified documents are replaced

in their entirety, and word level deltas.

Besides dealing with content and metadata, the fetcher is also responsible for extraction

of outlinks to other sites. These links are used to discover new sites, as well as for the

creation of a link graph (LinkDb). Depending on the implementation of the index, a

changed outlink may require a modification of the index entry of the target page. Fur-

thermore, common ranking algorithms like PageRank rely on the link structure of pages,

and hence might trigger updates of a site’s score based on modified inlinks. These facts

led to the decision to always create a detailed delta of a page’s outlinks, regardless of

the chosen delta-level.

In order to efficiently create word level deltas of contents or deltas of outlinks directly

in the fetcher without using any further MapReduce jobs, we chose a multiset based

approach. That is, we used an extended HashMap that maps from words (or links) to

occurrences, and allows single access updates by using a mutable Integer container.

Implementation of the OccurrenceMap and the MutableInt classes can be found in the

appendix (listings 4 & 5). If all elements from the last generation are inserted with
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Occurence
Map

<MapReduce, –1>
<is, –1>
<a, –1>

<programming, –1>
<model, –1>

<Map, +1>
<Reduce, +1>

<is, +1>
<a, +1>

<programming, +1>
<model, +1>

<MapReduce, –1>
<Map, +1>

<Reduce, +1>

MapReduce 
is a 
programming 
model 

Map Reduce 

is a 
programming 
model 

Figure 5.1: Example of a delta using an OccurrenceMap.

negated counts into such an OccurrenceMap, and all elements from the current gener-

ation with positive counts, the map will finally contain the exact delta. Please note

that this approach can also be applied if the last generation is represented as an initial

generation together with a set of deltas. Figure 5.1 shows an illustrative example.

The output of a fetch-job is stored in a new segment directory with different sub-

folders for content, metadata and links. As these contain only the deltas of changed

sites, subsequent jobs like update of the CrawlDb and link-inversion need to be delta-
aware. While we introduced regular link-inversion in section 2.4.3, listing 5.1 shows an

implementation of a delta-aware MapReduce job to compute a Reverse Web-Link Graph.

5.1.1 Locality of content

Section 4.3 introduced the problem of comparing different generations of data in the

context of distributed storage. In the context of our delta-aware web crawler this is

avoided by generating data by extraction of the URL from read content. Since Hadoop

tries to assign map tasks to nodes that host the corresponding input data, websites will

be likely fetched by the nodes that host previous versions of their data. However, in

the context of changing recrawl intervals based on change-rate and score of a site as

mentioned in section 3.3, the situation becomes more complicated. We might now be

faced with imbalanced node utilization, as the amount of websites to crawl will differ

per node, depending on the websites’ recrawl policies.

In order to avoid this problem, we propose a crawler that does not realize detailed

recrawl policies per site, but divides all URLs into sets with different recrawl policies.
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1 public static class LinkGraphMapper extends Mapper<Text, ListWritable
, Text, ListWritable>{

2

3 protected void map(Text srcUrl, ListWritable values, Context
context) {

4 for(PairWritable<Text, BooleanWritable> p : values){
5 ListWritable inlinks = new ListWritable();
6 inlinks.add(new PairWritable(src, p.second));
7 context.write(p.first, inlinks);
8 }
9 }

10 }
11

12 public static class LinkGraphReducer extends Reducer<Text,
ListWritable, Text, ListWritable>{

13

14 protected void reduce(Text targetUrl, Iterable<ListWritable> values
, Context context) {

15 OccurenceMap<Text> map = new OccurenceMap();
16 for(ListWritable l : values){
17 for(PairWritable<Text, BooleanWritable> p : l){
18 int occ = p.second ? 1 : -1; //sign == true, if added link
19 map.put(p.first, occ); // incr/decr count by one
20 }
21 }
22 //create list again
23 ListWritable allInlinks = new ListWritable();
24 for(Text srcUrl : map.keySet()){
25 allInlinks.add(new PairWritable(srcUrl, map.get(srcUrl)));
26 }
27 context.write(targetUrl, allLinks);
28 }
29 }

Listing 5.1: Delta aware MapReduce jon to invert links.
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One could imagine the the following distinction: VERY OFTEN — OFTEN — MEDIUM
— RARE — VERY RARE. We assume that clean recrawls will be performed periodically in

order to compress multiple deltas and to recalculate clusters. These clean re-crawls could

then be used to split URLs into sets, based on previous experience. If a delta aware

re-crawl is being performed, the crawler checks for each sub-list whether it is due to

fetch, and deals with each sub-list separately. This ensures that websites that are stored

next to each other are always fetched together.

5.2 page scoring

As of version 1.2, Nutch uses OPIC (online page importance calculatation [24]) to cal-

culate scores for crawled web pages. In contrast to offline approaches (like PageRank)

that calculate the scores of all pages after crawling has finished, OPIC computes the

importance of pages on-line, while crawling the web. Initial scores are assigned to web-

sites, and are passed to all targets of outlinks discovered during crawling. As Nutch

maintains a centralized CrawlDb, scores for pages can be accumulated there, and are

distributed again, as soon as a page is being recrawled.

At first it may seem straightforward to only distribute scores of changed websites. How-

ever, an added or deleted link will influence the score of the target site, which again has

to report its new score to all sites it is pointing to. Eventually, this leads to an avalanche-

like updating of scores, that will expand the size of the delta in an unnecessary way, as

sites that did not actually change still have to report a new score based on their prede-

cessors.

PageRank, the most commonly used method to calculate importances of websites, was

already discussed in the context of deltas in section 3.4.1. The approach introduced

by [18] promises good results in conjunction with deltas. Unfortunately, even though [25]

describes an application of the proposed algorithm in the context of Hadoop, no imple-

mentation is available online. We hence defer an implementation of a PageRank compu-

tation using deltas to future work.



5.3 indexing 55

Figure 5.2: Overview of the necessary steps in indexing.

5.3 indexing

As figure 2.4 alluded, the final step in order to use the crawled data in a search engine

is the creation of an appropriate index. Figure 5.2 illustrates the involved steps. The rest

of this chapter explains how our implementation deals with each of them. Please note

that any crawled content needs to be parsed (normalized) prior to index creation. Text

that is related to formatting and functionality of the web page (like HTML tags, scripts,

etc.), as well as unimportant words, so called stop words (like the, and, a, ...), have to be

removed. This parsing already happens during crawling, either as part of fetching, or

as a separate step.

5.3.1 Inverted Index

Recall from section 3.4.2 that an inverted index typically consists of mappings from

words to lists of URLs along with the number of occurrences of this word on the re-

spective websites. In order to find word occurrences, a WordCount job could be run

for each website separately. However, as websites are typically small enough to be pro-

cessed in memory, the overhead affiliated with a MapReduce job does not justify its use

in this context. Listing 5.2 shows an example implementation that solves this task by

combining the concept of link-inversion with in-memory word counting at the reducer.
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1 public static class InvertedIndexMapper extends Mapper<Text, Text,
Text, Text>{

2 protected void map(Text url, Text value, Context context) throws
IOException, InterruptedException {

3 StringTokenizer itr = new StringTokenizer(value.toString());
4 while (itr.hasMoreTokens()) {
5 Text word = new Text(itr.nextToken());
6 context.write(word,url);
7 }
8 }
9 }

10

11 public static class InvertedIndexReducer extends Reducer<Text, Text,
Text, ListWritable>{

12 protected void reduce(Text key, Iterable<Text> values, Context
context) throws IOException, InterruptedException {

13 OccurenceMap<Text> docMap = new OccurenceMap<Text>();
14 for(Text url : values){
15 //count occurences
16 docMap.put(url);
17 }
18

19 ListWritable list = new ListWritable();
20 for(Text url : docMap.keySet()){
21 //create a list of all <URL,Count> pairs
22 IntWritable count = new IntWritable(docMap.get(url).get());
23 PairWritable<Text,MutableInt> p = new PairWritable<Text,

MutableInt>(url,count);
24 ListWritable l = new ListWritable();
25 l.add(p);
26 }
27 context.write(key, list);
28 }
29 }

Listing 5.2: A MapReduce implementation to create an inverted index
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Each call to the mapper processes the content of a single website, which is passed

as the value. The site is being identified by passing its URL as the key. The mapper

simply emits each occurring word along with the current website’s URL. Each call to

the reducer then receives a list with all URLs containing a specific word, with one entry

for each occurrence per website. In order to count the number of occurrences of each

URL, we use again our OccurrenceMap implementation. After all occurrences have been

collected in the OccurrenceMap, the map is converted into a list of pairs, each holding a

URL along with its counter. The resulting lists can then be used by an index to directly

access occurrence information for specific words.

In order to use deltas for the creation of an inverted index, some modifications need

to be performed. Since the crawler has already determined the differences between two

versions of content and only passes these changes as input to our InvertedIndex job, we

can use negated occurrences for deleted content, like we did in our WordCount example

(section 3.1). The resulting delta of the inverted index can finally be used to update the

existing index.

5.3.2 Clustering

We use the distributed version of k-means that is provided by the Mahout project to cluster

websites based on their content. As described in section 3.4.3, re-computation of clusters

is not done for every recrawl. Instead, changed and new sites are only re-/assigned to

the existing clusters. The delta provided by the crawler allows to decide which sites

need to be considered. We rely on Mahout to create term-frequency vectors for each site,

and to assign websites to the clusters based on those vectors. This cluster membership

information can be used in the following to determine rankings of search results during

evaluation of queries.

5.3.3 Evaluation of Queries

Once all previous steps have been performed, search queries can be evaluated on the

grounds of the computed results. As the user expects URLs with the highest relevance

to be returned first, the order in which results are being returned plays a significant role.

Figure 5.3 illustrates the involved workflow.

After the different search terms have been extracted from the query, a direct lookup in
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Figure 5.3: Activities performed during evaluation of a search query.

the inverted index is done for each term, in order to find possible candidate websites

that contain them. The resulting list is sorted in ascending order by the number of

occurrences, favouring websites that contain multiple queried terms. Once page scoring

has been implemented, the sites’ scores will also be taken into consideration for the

ordering. As cluster membership expresses similarity to some degree, sites located in

the same cluster as the top-ranking results can be moved up in the list, or even become

included although they do not actually contain occurrences of queried terms. Once the

final ordering of the results has been determined, they can be returned to the user. In

order to enable high responsiveness, as much of the index as possible should be present

in memory. Therefore content of sites is not being stored in the index itself. Instead, page

summaries and access to cached pages need to be handled by reading of the individual

segments.



6 B E N C H M A R K S

This chapter1 presents various benchmarks to compare non-incremental (say, classic)

and incremental (say, delta-aware) MapReduce computations. We ran the benchmarks

on a university lab2. The discussion shows that speedups are clearly predictable when

using our method.

6.1 terabyte sort

TeraByte Sort is an established benchmark for testing the throughput on a MapReduce

implementation. TeraByte Sort (or the variation—MinuteSort) is run as an annual bench-

mark contest, which was won in 2008 by Hadoop as the first Java or open source im-

plementation. The task is to sort (in one typical configuration) 100-byte records, out of

which 10 bytes constitute the key [26, 27, 28]. Hadoop’s winning implementation has

since been bundled with every release in order to provide a benchmark for Hadoop

clusters.

6.1.1 Hadoop’s TeraSort

In order to produce the input data, a generator is provided that randomly creates keys

and values. Sorting is already built into the MapReduce framework, as all tuples are

presented in increasing order of keys to the reducers. Therefore, TeraSort uses the default

implementation of mapper and reducer, which simply copy the data. The only necessary

task is to enforce a total ordering of keys among reducers. This is achieved by sampling

keys form the input, to build a trie for fast assigning of keys to reducers.

During our tests we encountered uneven reducer utilization for MapReduce jobs on

1 Parts of this chapter were taken from [21]
2 Cluster characteristics: we used Hadoop version 0.21.0 on a cluster of 40 nodes (50 for later

tests) with an Intel(R) Pentium(R) 4 CPU 3.00GHz and 2 x 512MB SDRAM and 6GB available disk
space. All machines are running openSUSE 11.2 with Java version 1.6.0_24 and are connected via
a 100Mbit Full-Duplex-Ethernet network.
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sorted data that were necessary for our second benchmark (see section 6.2). This forced

us to implement our own version of TeraSort, which only differs by usage of datatype

long (8 bytes) for keys instead of byte sequences of length 10. The missing two bytes

are added to the value to leave the total at 100. Using numbers as keys allowed us to

simplify partitioning. We ran tests (with the same input sizes as our sorting benchmark)

that showed no notable differences in performance between the two implementations.

6.1.2 Results

Figure 6.1 shows the benchmark results for our version of TeraByte Sort. The incre-

mental version computes the delta using a complete MapReduce job, as described in

section 4.2.1. We also tested the optimized incremental versions: (map-side) “join” and

“streaming” as described in sections 4.2.1 and 4.2.1 respectively. The shown costs for

the delta-aware versions include all costs necessary to obtain the same result as the non-

incremental computation, specifically: cost for delta creation, processing of the delta,

and merging. It is important to note that we implemented merge by map-side join.

It is not surprising that the non-incremental version is faster than all incremental ver-

sions except for streaming. That is, computing a delta for data on files means that both

generations are processed whereas non-incremental sorting processes only the new gen-

eration. Also, the merge performs another pass over the old generation and the (small)

delta.

Streaming stays very close to the non-incremental baseline. Its costs consist of the fol-

lowing parts: read original input data on file and compare it with new input data avail-

able through streaming so that delta is written (15.3 %); process delta (20.8 %); merge

processed delta with original output (63.9 %)—the percentages of costs are given for the

rightmost configuration in Fig. 6.1. Essentially, merging original input and delta domi-

nates the costs of streaming, but those costs are below the costs of processing the new

input in non-incremental fashion because the former is a map-side join while the latter

is a regular MapReduce computation.

6.2 pipelined jobs

In practice, MapReduce jobs are often organized in pipelines or even more complicated

networks—remember the use case of crawling in sec. 3.3. In such compounds, the ben-
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Figure 6.1: Runtimes in seconds (y-axis) for non-incremental and incremental Ter-
aByte Sort for different input sizes in GB (x-axis), where the size of the
deltas for the incremental versions is assumed to be 10 % of the input size.

efit of processing deltas as opposed to complete inputs adds up. We consider a simple

benchmark that shows the effect of cumulative speedup. That is, four MapReduce jobs

are organized in a pipeline, where the first job sorts as described above, and the subse-

quent jobs simply copy. Here, we note that a copy job is slightly faster than a sort job

(because of the eliminated costs for partitioning for total order), but both kinds of jobs

essentially entail zero mapper/reducer costs, which is the worst case for delta-aware

computations. Also the reduce step does not decrease the volume of the data, which

results in high cost for merging.

The results are shown in Fig. 6.2. The chosen pipeline is not sufficient for the “naive”

incremental option to outperform the non-incremental option, but the remaining incre-

mental options provide speedup. MapReduce-scenarios in practice often reduce the

volume of data along such pipelines. (For instance, the counts of word occurrences

require much less volume than the original text.) In these cases, costs for merging go

significantly down as well, thereby further improving the speedup.
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Figure 6.2: Sort followed by three copy jobs.

6.3 simple delta crawler

In order to show the possible speedup in compound MapReduce jobs on a more realistic

scenario, we ran several tests with our implementation of a delta-aware web crawler that

has been introduced in chapter 5, along with the mentioned indexing steps. In order to

create a stable testing environment that is not influenced by unstable change frequencies

of websites we modified our crawler slightly to control the size of the delta. For our tests,

a delta that is 10 % of the input size was chose again. In order to highlight the costs for

recrawling, we crawled an initial set of URLs, and built the corresponding structures like

CrawlDb, LinkDb, clusters and inverted index. The tests then comprised a single recrawl

that considers only sites that have already been fetched, and therefore can be compared

to their previous version. Specifically, a single recrawl comprised the following steps

(each implemented as a MapReduce job):

• Generate list of URLs to fetch.

• Download the content.

• Update the CrawlDb.

• Invert links found on websites.

• Create term-frequency vectors from content.
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• Assign websites to existing clusters.

• Create inverted index.

Figure 6.3 shows the resulting execution times of the non-incremental version (“No

delta”) and incremental recrawls, with two different levels of delta creation as described

in section 5.1 (“Word delta” & “Doc delta”). For a more detailed overview, the percent-

ages of the incremental recrawls are expressed relative to the non-incremental crawls in

figure 6.4. The benefits gained by using deltas increase with the size of the URL set,

since the complexity of clustering grows in a non-linear fashion. That is, assigning of

sites to clusters has complexity O(n2), as both the number of centroids and the number

of vectors they are being compared to increase with the input.

Figure 6.3: Runtimes in seconds (y-axis) for non-incremental and incremental re-
crawls of a web crawler, based on an existing crawl base of different sizes
in URLs (x-axis). Results for delta creation on document– and word–level
are given.

While recrawling again and again, one could be concerned that the cost of including

multiple deltas from multiple previous recrawls into the creation of the current delta

would slow things down. However, we argue that the cost of reading and uniting mul-

tiple deltas is negligible in this context. In order to verify this claim, we conducted



64 benchmarks

Cost (Percentage) 66.127 173.616 289.020

No delta 100 100 100

Word delta 96.2 91.7 87.6

Doc delta 96.5 91.7 80.8

Figure 6.4: Percentages of crawl execution times, relative to the non-incremental ver-
sion.

three recrawls, each building on the previous one and producing deltas of the same size

(10 %). It is difficult to compare the absolute duration times, as later recrawls exclude

URLs previous recrawls have experienced transfer issues with. We hence compare the

execution times relative to the number of URLs actually generated for fetching. Fig-

ure 6.5 shows that no difference is notable for the first three recrawls. We assume that

in reality the number of recrawls will not increase significantly, as the index will be

periodically recreated from scratch, in order to compress the data and to recalculate the

clusters.

Cost per 1000 URLs Word delta Doc delta

1 46.3 46.3

2 46.6 46.4

3 46.8 46.3

Figure 6.5: Crawl execution times in seconds per 1000 URLs, for multiple incremental
iterations.

Due to network latency and transfer time of the websites, the fetch step dominated the

execution times with about 90 % of the total duration. Therefore, we conducted a second

test that omits the actual downloading of the content and simulates changes using the

content from the previous fetch step. The results in figure 6.6 show the potential of

deltas in the context of MapReduce computations. Now, the dominant factor is the

assignment of websites to existing clusters. With a delta size of 10 % of the original

crawl set, we only need to compare 10 % of the sites to the existing centroids, cutting

this cost in a linear fashion to 10 %.
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Figure 6.6: Baseline of recrawls that expresses the execution times without the over-
head incurred by downloading web content.





7 R E L AT E D W O R K

1Percolator [17] is Google’s new approach in dealing with the dynamic nature of the web.

Percolator is aimed at updating an existing index that is stored in BigTable [29], Google’s

high performance proprietary database system. Percolator adds trigger-like procedures

to BigTable columns, which are triggered whenever data is written to that column in any

row. The paper states that Percolator requires more resources than MapReduce and only

performs well under low crawl rates (i.e., the new input is a small fraction of the entire

repository). Our approach uses essentially the same resources as classic MapReduce.

We do not understand well enough how to compare our speedups (relative to delta

sizes and other factors in our approach) with Percolator’s scalability (relative to crawl

rates).

In contrast to the acyclic nature of MapReduce, Spark [30] focuses on cyclic compu-

tations such as iterative jobs and interactive analysis (repeatedly ad-hoc querying of

datasets) in the context of a new programming model. It handles these classes of com-

putations by letting the user specify RDDs (resilient distributed datasets), read-only col-

lections of objects, which are cached in memory across machines and reused in multiple

MapReduce-like parallel operations. Twister [31], a distributed in-memory MapReduce

runtime, is optimized for iterative MapReduce by several modifications to the original

MapReduce model. Iterative jobs are run by a single MapReduce task to avoid re-loading

static data that does not change between iterations. Furthermore, intermediate data is

not written to disk, but populated via distributed memory of the worker nodes. CBP,

a system for continuos bulk processing [32], distinguishes two kinds of iterative compu-

tations: several iterations over the same input (e.g., PageRank), and iteration because

of changed input (e.g., URLCount). CPB introduces persistent access to state to re-use

prior work along reduction.

Our approach does not introduce state, which contributes to the simple correctness

criterion for MapReduce computations with deltas. Our approach does not specifically

address iterative computations, but instead it enables a general source for speedup for

MapReduce computations.

1 This chapter was taken in parts from [21]
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Dryad [33, 34] is a data-parallel programming model like MapReduce, which, however,

supports more general DAG structures of dataflow. Dryad supports reuse of identical

computations already performed on data partitions and incrementality with regard to

newly appended input data for which computed results are to be merged with previous

results. While the idea of merging previous and new results is similar to deltas, our

approach is not restricted to append-only scenarios.

Map-reduce-merge [35] enhances MapReduce so it can deal with multiple heterogenous

datasets so that regular MapReduce results are merged in an extra phase. The enhanced

model can express relational algebra operators and implement several join-algorithms

to unite multiple heterogenous datasets. In contrast, the merge phase in our approach

is a problem-independent element of the refined programming model which simply

combines two datasets of the same structure.

For our implementation, we used Hadoop [2], an open source Java implementation

of Google’s MapReduce framework [1]. Hadoop’s MapReduce-component [36] is built

on top of HDFS [8], the Hadoop Distributed File System which has been modeled after

the Google File System (GFS) [9]. Hadoop happens to provide a form of streaming (i.e.,

Hadoop Streaming) for the composition of MapReduce computations [37]. This form of

streaming is not directly related to streaming in our sense of delta computation.

MapReduce Online [38] is a modified MapReduce architecture which introduces pipelin-

ing between MapReduce jobs as well as tasks within a job. The concept is implemented

as a modification of Hadoop. A more general stream-based runtime for cloud comput-

ing is Granules [39]. It is based on the general concept of computational tasks that can

be executed concurrently on multiple machines, and work on abstract datasets. These

datasets can be files, streams or (in the future) databases. Computational tasks can be

specialized to map and reduce tasks, and they can be composed in directed graphs al-

lowing for iterative architectures. Granules uses NaradaBrokering [40], an open-source,

distributed messaging infrastructure based on the publish/subscribe paradigm, to im-

plement streaming between tasks. We believe that such work on streaming may be

helpful in working out streaming deltas in our sense.

Our programming model essentially requires that reduction is based on the algebraic

structure of an Abelian group. This requirement has not been set up lightly. Instead, it

is based on a detailed analysis of the MapReduce programming model overall [3], and

a systematic review of published MapReduce use cases [22].

Common algorithms for page importance calculations (like [16]) rely on explicit cre-

ation of a web graph and iterative score calculations on that graph until scores con-

verge. [41] presents a method to continuously refine page scores while the web is being
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crawled. This is especially useful in evolving graphs, where computations need to be

updated frequently. It can also be used to focus crawling on high scoring pages, as the

ranking is already available during crawling. For instance Nutch 1.2 is implemented

using this algorithm. An approach to update PageRank computations in the context

of changes in the web is introduced by [18]. Similar to our approach, existing results

are updated according to computed additions and deletions. However, the approach

specifically applies to graph-computations, whereas our approach deals with incremen-

tal MapReduce computations in general.

[42] introduces locality- and fairness-aware partitioning in order to deal with significant

variance in both intermediate key frequencies and their distribution among reducer

nodes. As describted in section 4.3, delta-aware computations would benefit highly

from the ability to control key-range assignment to specific reducer nodes. Possible

contributions in this context are described in future work (sec. 8.2).

After crawling and processing multiple web sites, Nutch relies on Apache’s Lucene

project [12] to create and maintain a search index. In the context of indexing, several

machine learning algorithms are applicable. Most of them are computationally expen-

sive, as they are computed iteratively, hence parallelizing this class of algorithms yields

significant improvements. [20] describes the initial approach to use the MapReduce pro-

gramming model for parallelization of machine learning algorithms. While first used

in the Lucene project, this approach was eventually extracted to the standalone Apache

project Mahout [19].





8 C O N C L U S I O N

8.1 results

We have described how to use deltas in the context of MapReduce computations in or-

der to reduce the volume of input data that drives the complexity of MapReduce jobs.

When using deltas, different steps including creation of the delta, processing the delta

in an augmented MapReduce job, and merging of the resulting output with previous

output need to be performed. We have discussed each of these steps, and concluded

that use of deltas in single MapReduce jobs has to meet computationally complex map

or reduce tasks for the benefits to outweigh the additional costs. However, usage of

deltas in compound MapReduce scenarios provides significant speedup, as the benefits

add up over each pipelined job.

In order to verify the correctness of deltas, we deduced a simple correctness criterion. In

contrast to most incremental approaches to MapReduce, deltas are a very general model

and can be used without any modifications to existing frameworks. They further pro-

vide predictable speedup, allowing for abstract analysis of their applicability in concrete

scenarios.

8.2 future work
1 This thesis tried to illustrate the usage of deltas in the context of the complex MapRe-

duce scenario of a web crawler. While we implemented a simple web crawler that

performs all basic steps to create a searchable index, modification of an existing web

crawler like Nutch to be delta-aware would further back our approach. Additionally,

showing applicability of deltas in the context of other complex MapReduce use cases

would be useful.

Further, MapReduce tasks with high computational complexity of the mapper and/or

the reducer should be benchmarked in order to further examine applicability of deltas

1 This section was taken in parts from [21].
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in single MapReduce tasks. For example, assigning websites to clusters has quadratic

complexity if the number of clusters depends on the input. In scenarios with worse than

linear complexity, benefits of deltas increase as seen in section 6.3.

Since we still lack a delta-aware implementation of a ranking algorithm, usage of deltas

to incrementally compute PageRank as described by [18] would further strengthen our

web crawler use case.

Currently, we do not provide any reusable abstractions for streaming delta. In fact,

the described benchmark for streaming TeraByte Sort relies on summation of assumed

components of the computation, but we continue working on an experimental imple-

mentation.

Our approach to streaming delta and map-side join for merge may call for extra control

of task scheduling and file distribution. For instance, results of processing the delta

could be stored for alignment with the original result, so that map-side join is most

efficient.

As the discussion of related work revealed, there is a substantial amount of techniques

for optimizing compound data-parallel computations. While the art of benchmarking

classic MapReduce computations has received considerable attention, it is much harder

to compare the different optimizations that often go hand in hand with changes to the

programming model. On the one hand, it is clear that our approach provides a rela-

tively general speedup option. On the other hand, it is also clear that other approaches

promise more substantial speedup in specific situations. Hence, a much more profound

analysis would be helpful.

Modern MapReduce applications work hand in hand with a high performance database

system such as BigTable. The fact that developers can influence the locality of data

by choosing an appropriate table design could enable very efficient delta computations.

Database systems such as BigTable also offer the possibility of storing multiple versions

of data using timestamps. This could facilitate delta creation substantially.

While our approach enables incrementality without the need to modify any existing

framework, one could imagine a delta-layer on top of a MapReduce framework like

Hadoop that shields the user from basic sign maintenance. The map step in a delta job

needs to maintain the sign of the tuples, i.e. whether they have been added or deleted,

and hence requires augmentation of key-value tuples to include some kind of sign. This

could be facilitated by said delta-layer, by taking such a key-value-sign triple, extracting

the sign prior to the map-call, and attaching it to every tuple produced by the mapper.

Similarly, this delta-layer could automatically take care of signs in the reduction step,

by reducing positive and negative values separately instead of merging them into one
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result. Even automatic merging with previous results might be possible, by requiring

the user to specify a merge-function, similarly to map- and reduce-function.

Acknowledgment The authors are grateful for C. Litauer and D. Haussmann’s support in setting

up a MapReduce cluster at the University of Koblenz-Landau for the purpose of benchmarking.
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1 public class Pair<A, B> {
2 public A first;
3 public B second;
4

5 public Pair(A first, B second) {
6 super();
7 this.first = first;
8 this.second = second;
9 }

10

11 public String toString() {
12 return "(" + first + ", " + second + ")";
13 }
14 }

Listing 1: An implementation of a pair-type.



80 9 Bibliography

1 public class PairWritable<T extends Writable, V extends Writable>
implements WritableComparable {

2 private Pair<T,V> value;
3 private Class fstClass;
4 private Class sndClass;
5 private AtomicReference<Configuration> conf;
6

7 public PairWritable() {
8 value = new Pair();
9 this.conf = new AtomicReference<Configuration>();

10 }
11

12 public PairWritable(T fst, V snd) { ... }
13

14 public T first(){ return value.first(); }
15

16 public V second(){ return value.second(); }
17

18 public void readFields(DataInput in) throws Exception {
19 //first, read in the class-names
20 fstClass = Class.forName(in.readUTF());
21 sndClass = Class.forName(in.readUTF());
22 //second, read in the values
23 Writable fst = (Writable)ReflectionUtils.newInstance(fstClass,

conf);
24 fst.readFields(in);
25 Writable snd = (Writable)ReflectionUtils.newInstance(sndClass,

conf);
26 snd.readFields(in);
27 value.first = (T)fst;
28 value.scond = (V)snd;
29 }
30

31 public void write(DataOutput out) throws IOException {
32 //first, write out the classes of the Pair-element
33 out.writeUTF(fstClass.getName());
34 out.writeUTF(sndClass.getName());
35 //then the values
36 value.first.write(out);
37 value.second.write(out);
38 }
39 }

Listing 2: A wrapper class for the Pair class (listing 1) that implements Hadoop’s
Writable interface.
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1 public class FileNameInputFormat<K,V> extends FileInputFormat<Text,
PairWritable<K,V>> {

2

3 static class FileNameRecordReader<K,V> extends RecordReader<Text,
PairWritable<K,V>> {

4 private RecordReader<K,V> reader;
5 private Text key;
6 private PairWritable value;
7 private Text fileName;
8

9 public void initialize(InputSplit split, TaskAttemptContext
context) {

10 ... //initialize reader
11 this.fileName = new Text(((FileSplit) split).getPath().toString

());
12 }
13

14 public void close() throws IOException { reader.close(); }
15

16 public Text getCurrentKey() { return key; }
17

18 public PairWritable<K,V> getCurrentValue() { return value; }
19

20 public boolean nextKeyValue() throws Exception {
21 if (key == null) {
22 key = new Text(fileName);
23 value = new PairWritable<K,V>();
24 }
25 if (reader.nextKeyValue()) {
26 value.setFirst(reader.getCurrentKey());
27 value.setSecond(reader.getCurrentValue());
28 return true;
29 } else { return false; }
30 }
31 }
32

33 public RecordReader<Text, PairWritable<K,V>> createRecordReader(
34 InputSplit split, TaskAttemptContext context) {
35 return new FileNameRecordReader<K,V>();
36 }
37 }

Listing 3: An InputFormat, that passes the name of the source file as the key.
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1 public class MutableInt implements Writable{
2 private int value;
3

4 public MutableInt() { value = 0; }
5

6 public MutableInt(int value){ this.value = value; }
7

8 public int inc() { return ++value; }
9

10 public int incBy(int amount) {
11 value += amount;
12 return value;
13 }
14

15 public int dec() { return --value; }
16

17 public int decBy(int amount) {
18 value-= amount;
19 return value;
20 }
21

22 public int get() { return value; }
23

24 public void set(int newVal) { value = newVal; }
25

26 @Override
27 public void write(DataOutput out) throws IOException {
28 IntWritable w = new IntWritable(value);
29 w.write(out);
30 }
31

32 @Override
33 public void readFields(DataInput in) throws IOException {
34 IntWritable w = new IntWritable();
35 w.readFields(in);
36 value = w.get();
37 }
38 }

Listing 4: A container class providing a mutable Integer
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1 public class OccurrenceMap<T> extends HashMap<T, MutableInt>{
2

3 public OccurrenceMap(){ super(); }
4

5 public OccurrenceMap(int initialCapacity){ super(initialCapacity
); }

6

7 public int put(T elem){ return put(elem, 1); }
8

9 public int put(T elem, int occurences){
10 MutableInt currentCount = get(elem);
11 if(currentCount == null){
12 currentCount = new MutableInt(0);
13 put(elem, currentCount);
14 }
15 currentCount.incBy(occurences);
16 if(currentCount.get() == 0){
17 remove(elem);
18 }
19 return currentCount.get();
20 }
21

22

23 }

Listing 5: A proxy for a HashMap, counting occurences of elements using single access.
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