
TwoUseTwoUse: Integrating UML Models and : Integrating UML Models and
OWL OWL OntologiesOntologies

Fernando Silva Fernando Silva ParreirasParreiras
Steffen StaabSteffen Staab

Andreas WinterAndreas Winter

Nr. 16/2007Nr. 16/2007

Arbeitsberichte aus demArbeitsberichte aus dem
Fachbereich InformatikFachbereich Informatik

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorläufiger Ergebnisse, die in der Regel noch für spätere Veröffentlichungen
überarbeitet werden. Die Autoren sind deshalb für kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Übersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen – auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik“ comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:
Der Dekan:
Prof. Dr. Paulus

Die Professoren des Fachbereichs:
Prof. Dr. Bátori, Jun.-Prof. Dr. Beckert, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr.
Ebert, Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,
Jun.-Prof. Dr. Hass, Prof. Dr. Krause, Prof. Dr. Lautenbach, Prof. Dr. Müller, Prof. Dr.
Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr. Rosendahl, Prof. Dr.
Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch, Prof. Dr. von
Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zöbel

Kontaktdaten der Verfasser

Fernando Silva Parreiras, Steffen Staab, Andreas Winter
Institut für Informatik
Fachbereich Informatik
Universität Koblenz-Landau
Universitätsstraße 1
D-56070 Koblenz
EMail: parreiras@uni-koblenz.de; staab@uni-koblenz.de; winter@uni-mainz.de;

mailto:parreiras@uni-koblenz.de
mailto:staab@uni-koblenz.de
mailto:winter@uni-mainz.de

TwoUse:

Integrating UML Models and OWL Ontologies

Fernando Silva Parreiras1 ⋆, Steffen Staab1, and Andreas Winter2

1 Institute for Computer Science, University of Koblenz-Landau
Universitaetsstrasse 1, Koblenz 56070, Germany

{parreiras, staab}@uni-koblenz.de
2 Institute for Computer Science, Johannes-Gutenberg-University Mainz

Staudingerweg 9, Mainz 55128, Germany
winter@uni-mainz.de

Abstract. UML models and OWL ontologies constitute modeling ap-
proaches with different strength and weaknesses that make them ap-
propriate for use of specifying different aspects of software systems. In
particular, OWL ontologies are well suited to specify classes using an
expressive logical language with highly flexible, dynamic and polymor-
phic class membership, while UML diagrams are much more suitable for
specifying not only static models including classes and associations, but
also dynamic behavior. Though MOF based metamodels and UML pro-
files for OWL have been proposed in the past, an integrated use of both
modeling approaches in a coherent framework has been lacking so far.
We present such a framework, TwoUse, for developing integrated models,
comprising the benefits of UML models and OWL ontologies.

1 Introduction

The Unified Modeling Language (UML) is a visual design notation [1] for build-
ing software systems accompanied by the Object Constraint Language (OCL) [2].
UML is a general-purpose modeling language, capable of capturing information
about different views of systems, like static structure and dynamic behavior.

Ontologies provide shared domain conceptualizations representing knowledge
by a vocabulary and, typically, logical definitions ([3], [4]). The Web Ontology
Language (OWL) [5] provides a class definition language for ontologies. More
specifically, OWL allows for the definition of classes by required and implied
logical constraints on the properties of their members.

UML and OWL comprise some constituents which are similar in many re-
spects, like: classes, associations, properties, packages, types, generalization and
instances [6]. However, both approaches have their advantages and disadvan-
tages. E. g. UML provides means to express dynamic behavior, whereas OWL
does not. On the other hand, OWL is capable of inferring generalization and
specialization between classes as well as class membership of objects based on

⋆ Financially supported by CAPES Brazil.

3

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

the constraints imposed on the properties of class definitions, whereas UML class
diagrams do not allow for dynamic specialization/generalization of classes and
class memberships or any other kind of inference per se.

Contemporary software development should make use of the benefits of both
approaches to overcome their restrictions. This requires either to bridge software
models from both approaches or to integrate them into a composed model. This
paper presents the TwoUse-approach (Transforming and Weaving Ontologies and
UML in Software Engineering) on integrating UML/OCL-based modeling and
OWL-based modeling.

This paper is organized as follows. Section 2 describes a simple use case for
developing an e-commerce system using separately UML-based modeling and
OWL-based modeling. Comparing the approaches leads to requirements to be
fulfilled by an integrated development approach. Section 3 presents the TwoUse

approach, by showing its composed software model including its MOF based
metamodel, library and a simple UML Profile. A validation of the TwoUse-

approach by evaluating the criteria for integrated UML/OWL modeling and
contrasting it to related approaches is given in Section 4. Finally, Section 5
presents the conclusions and points towards future works.

2 TwoFold-Use Case

Combining OWL and UML requires analysis of what can be done today on each
side and how to find the way to the other side. Here we present some bridges to
be built based on an example of an e-commerce company established inside the
European Union, partially taken from [7].

Let us assume in this scenario that a development team will develop an e-
commerce application with the following characteristics:

– Purchase orders associate a customer with a list of products.
– Customers have a home country.
– Some countries form a free-trade zone, like the European Union.
– Orders from customers who live in a country inside the European Union are

duty free.
– A tax of 60% will be charged to non duty free orders.

UML-based software development

A version of the e-commerce domain modeled using an UML class diagram is
presented in Fig. 1.

UML class diagrams alone are usually not expressive enough to describe
detailed behavior of operations. For example, an operation called getCharges()

could be declared as member of the class PurchaseOrder to calculate the taxes
applied to an order, verifying whether it is duty free. Therefore it is to expect
that e, g. a textual language, such as OCL, will have to be used to fill some gaps.
OCL can be used [2]: as a query language; to specify invariants on classes and

4

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

FreeTradeZone

name : String

Country

name : String

0..1

2..n

+memberOfTradeZone

0..1

+hasMember 2..n

Customer

name : String

1 1..n

+livesIn

1

+hasResident

1..n

Product

name : String

PurchaseOrder

getCharges()

0..n
1

+hasOrder 0..n

+hasCustomer

1

Fig. 1. UML Class Diagram of the e-commerce domain

types in the class model; to describe pre- and post conditions on operations and
methods; and to specify derivation rules for attributes for any expression over
a UML model. For instance, the operation getCharges() could be expressed
using OCL like:

context PurchaseOrder::getCharges() : Real

body:

if self->select(hasCustomer.livesIn.memberOfTradeZone.name=’EU’)

->notEmpty()

then 0.00 else 0.60 endif

Nevertheless, this way of specifying the operation getCharges() has some
shortcomings. The semantics of a duty free order is embedded in the opera-
tion specification and can be difficult to be found in bigger domains. Further-
more, if a class called DutyFreeOrder needs to be defined as a subclass of
PurchaseOrder because of its particular behavior, the concept of a duty free
order will be stated twice: as a class definition and as an expression of the oper-
ation PurchaseOrder.getCharges().

OWL-based software development

To avoid such redundancy, and thus to improve maintainability, it would be
preferable to define duty free order only once. To do so, one requires a logical class
definition language that is more expressive than UML, e.g. the Web Ontology
Language, OWL [5].

Describing logical classes, relations between them and characteristics of prop-
erties is possible using one of the OWL sublanguages: OWL Lite, OWL DL, and
OWL Full. OWL DL supports users who want maximum expressiveness without
losing computational completeness and decidability of reasoning systems. In this
paper we refer to OWL DL as simply OWL.

When modeling part of the e-commerce domain using an UML profile for
OWL, the ontology should look like the one depicted in Fig. 2.

OWL classes provide an abstraction mechanism for grouping resources with
similar characteristics [5]. An OWL class can be described by six different ways:
(1) a class identifier; (2) an exhaustive enumeration of individuals; (3) a prop-
erty restriction; (4) the intersection of class descriptions; (5) the union of class
descriptions; (6) the complement of a class description.

5

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

DutyFreeOrder
<<owlClass>>

FreeTradeZone
<<owlClass>>

Country
<<owlClass>>

0..1

2..n

+memberOfTradeZone

0..1

+hasMember 2..n

PurchaseOrder
<<owlClass>>Customer

<<owlClass>>

1 1..n

+livesIn

1

+hasResident

1..n 0..n1

+hasOrder

0..n

+hasCustomer

1

CountriesFromEU
<<owlRestriction>>

<<owlValue>> {hasValue = eu} memberOfTradeZone : FreeTradeZone

CustomersFromEUCountries
<<owlRestriction>>

+{someValuesFrom = CountriesFromEU } livesIn

<<owlValue>> OrdersFromEUCustomers
<<owlRestriction>>

+{someValuesFrom= CustomersFromACountry } hasCustomer

<<owlValue>>

<<equivalentClass>>

B

A

Fig. 2. Ontology of the e-commerce domain using an UML profile for OWL

A class of duty orders could be declared as the complement of the class of
duty free orders(6). A class of economic resources could be declared as an union
of product and payment method (5). The class CountriesFromEU (Fig. 2) could
be declared as all countries that have in the property memberOfTradeZone the
object value eu (1)(3).

OWL permits a subclass to be asserted or to be inferred from the definition
of a class in terms of other classes. Referring to Fig. 2, the class DutyFreeOrder
defines as equivalent (A) the subclass OrdersFromEUCustomers of the domain of
the property hasCustomer. These individuals are precisely those for which the
range of hasCustomer is in the class CustomersFromEUCountries (B). Given
that we know an individual to be an instance of DutyFreeOrder, we can in-
fer that it has the property hasCustomer which the value is an instance of
CustomersFromEUCountries. Conversely, if we have an individual which has
the property hasCustomer and the value of hasCustomer associated with that
individual is a CustomersFromEUCountries, we can infer that the individual is
an instance of DutyFreeOrder.

OWL ontologies can be operated by a reasoner which usually provide services
like consistency checking (i), concept satisfiability (ii), concept classification (iii)
and instance classification (iv). For instance, we could verify whether it is possible
to have a duty free order at all (ii), or whether, according to the class descriptions,
every order is a duty free one (iii). We can ask a reasoner whether an instance of
the Order class is also an instance of DutyFreeOrder (iv). The shortcoming is
that we cannot specify the reasoner calls using ontologies, i.e., behavior feature.
We have to rely on object class operations that have in their body these calls.

The reader may note that the capability to model UML classes and OWL
classes in a single, integrated diagram is required. However, the OWL classes
designed with UML cannot be referred to in UML methods, e.g. they cannot

6

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

be exploited through OCL expressions. The reason is that the two types of
classes have different metamodels and different semantics. The usage of an OWL
reasoning service in the ’pure’ UML part of such a diagram is not yet feasible. For
example, an instance of the PurchaseOrder class could be classified dynamically
by an OWL reasoner to belong to DutyFreeOrder. This information should then
be used by the application logic in order to compute overall charges for this order.

In Fig. 2 it becomes clear that the software developer should be free to adopt
any UML tool that supports UML2 extension mechanisms. In order to leverage
the skills of the developers in UML and to avoid having to use new and various
tools, one should be able to specify OWL ontologies and UML classes in an
integrated diagram.

The weakness of UML profiles is that they are more complex to be managed
than metamodels in a model driven approach and do not provide strict separa-
tions in a metamodeling framework. The realization of an integrated application
with reasoning logic support requires capabilities for model driven engineering
in order to enforce model constraints, perform model checking and to transform
the given models into platform specific models, such as intermediating models,
the normative OWL exchange syntax RDF/XML, and, specifically, Java code.

Requirements for an integrated UML/OWL software development

After analyzing the scenario above, we have identified requirements that should
be fulfilled in an integrated framework:

1. Ontologies Design. Enough expressiveness to model a complete ontology.

2. UML Tools Compatibility. The liberty of choosing from a range of UML tools
that support UML2 extension mechanisms, in order to use an UML profile
for ontology design.

3. OCL Support. Ability to write constraints on objects and specify query op-
erations.

4. Code Generation Support. The capability to have the code generated. A
range of implementations provides APIs to work with ontologies at the code
level.

5. UML and Ontology Modeling Integrated. Ability to have sufficient semantics
to model an UML diagram and an OWL ontology at the same time.

6. Model Driven Engineering Support. A model driven approach, allowing con-
straint enforcement, model checking and supporting model to model trans-
formations, independent of any profile.

7. Reasoner-query Operations Specification. Possibility to specify operations
that query inference engines over ontologies to infer knowledge about classes
and instances.

These requirements will be revisted in section 4.

7

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

3 The TwoUse Approach

In order to fulfill the requirements specified in the last section, we present the
TwoUse approach. TwoUse is based on four core ideas:

1. It provides an integrated MOF based metamodel as a common backbone for
UML (including OCL) and OWL modeling;

2. It uses an UML profile as its integrated syntactic basis, supporting UML2
extension mechanisms and mappings from the profile onto TwoUse models;

3. It provides a canonical set of transformation rules in order to deal with
integration at the semantic level.

4. It extends the basic library provided by the OCL specification [2], which we
call OCL-DL.

To give an intuition of the target integration, let us consider our running ex-
ample. Instead of defining the operation getCharges() in the class PurchaseOrder
using complex OCL constraints, a more transparent and maintainable solu-
tion will use the expressiveness of the OWL language. Querying an OWL rea-

soning service, an OCL-like query may just ask whether a given instance of
PurchaseOrder fulfills all the logical requirements of the OWL subclass DutyFreeOrder.
The body of the getCharges() operation will then be specified very simply by:

context PurchaseOrder::getCharges() : Real

body: if self.isInstanceOf(DutyFreeOrder)

then 0.00 else 0.60 endif

The advantage of this integrated formulation of getCharges() lies in sepa-
rating two sources of specification complexity. First, the classification of complex
classes remains in an OWL model. The classification is easily re-useable for spec-
ifying other operations and it may be maintained using diagram visualizations
as well as decidable, yet rigorous reasoning models. Second, the specification of
the business logic itself remains in an OCL specification which becomes smaller
and, hence, better understandable and easier to maintain.

3.1 Metamodel

To accomplish the composition of TwoUse, we have adopted the OWL meta-
model specified by OMG ODM Ontology Definition Metamodel [6]. TwoUse
imports two others: UML [1] and OCL [2]. The UML metamodel allow us to
specify a class with its behavioral and structural features. The OCL metamodel
makes it possible to specify expressions and pre-built operations to the classes.

The TwoUse metamodel comprises basically two metaclasses: The meta-
class TUClass and the metaclass TUPackage. The metaclass TUClass specifies a
TwoUse class. A TwoUse class is a class with all features of both UML::Class

and OWL::OWLClass. The metaclass TUPackage defines a TwoUse package, which
contains TwoUse classes. Thus, a TwoUse package contains features of both
UML::Package and OWL::Ontology. Figure 3 depicts the metamodel.

8

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

TUClass

OWLOntology
(from odm.owl)

0..*

+OWLImports

0..*

OWLClass
(from odm.owl)

TUPackage

+classes

+owner

Class
(from uml)

Package
(from uml)

*

0..1

+/nestedPackage *

+nestingPackage 0..1

Fig. 3. TwoUse Metamodel (M2), conforming with OMG MOF(M3)

3.2 OCL-DL: An OCL Library Extension

To enable the modelers to have access to pre-built operations from all TwoUse
classes, which will permit operations to call the OWL reasoner, we propose an
extension to the OCL basic library and call it OCL-DL.

OCL prescribes a predefined type called OclAny, which acts as a supertype for
all the types except for the OCL pre-defined collection types. Hence, features
of OclAny are available on each object in all OCL expressions and all classes in
a UML model inherit all operations defined on OclAny. We highlight two of such
operations:

– oclIsTypeOf(typespec: OclType): Boolean. Evaluates to true if the given
object is of the type identified by typespec.

– oclIsKindOf(typespec: OclType): Boolean. Evaluates to true if the ob-
ject is of the type identified by typespec or a subtype of it.

Any of the operations above evaluates to false if the type identified by
typespec is a subtype of the type of the given object. The reason is that we
cannot determine the semantics of a subtype within object orientation. Thus, in
the context of the PurchaseOrder class, oclIsKindOf(DutyFreeOrder) would
return false, because DutyFreeOrder is a subclass of PurchaseOrder and it is
impossible to determine if the given object meets the additonal constraints for
DutyFreeOrders.

That is the basis for one of the improvements provided by OCL-DL. We
propose new operations which rely on reasoning engine services to extend the
boundaries of OCL towards OWL. By way of illustration, one could use the
OCL-DL operation owlIsInstanceOf(DutyFreeOrder) which makes use of a
reasoner and returns true if, the properties of the object satisfy the sufficient
conditions to be a member of class DutyFreeOrder. We propose the following
OCL-DL pre-built operations:

– owlIsInstanceOf(typespec: OclType): Boolean. Evaluates to true if the
object satisfy all the logical requirements of the OWL class typespec.

– owlAllTypes(): Set(OclType). Returns all types classified by a reasoner,
whose the object satisfies the logical requirements.

– owlAllInstances(): Set(T). Returns all instances that satisfy the logical
requirements of the class of the given object. The type of T is equal to the
type of the object.

9

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

In order to add the operations above, we extend the OCL library adding a
new M1 instance of the metaclass OclType called OwlAny. While all classifiers
except collections conform to OclAny, only the classifier TUClass conforms to
OwlAny. Thus, OwlAny acts as a supertype for all TwoUse classes, which inherit
all operations of OwlAny.

Figure 4 describes the OCL-DL in the context of four metamodels: OCL,
UML, OWL and TwoUse. At level M2, white boxes represent metaclasses im-
ported from UML metamodel and light grey boxes represent metaclasses from
OCL metamodel. The back box represent the TwoUse metaclass imported from
TwoUse metamodel, which specializes the UML class and the OWL class, the
dark grey box. At level M1, we show the class PurchaseOrder which is a M1
instance of the metaclass TUClass and, because of that, is a subtype of the
OCL-DL class OwlAny. PurchaseOrder is indirectly a M1 instance of the UML
metaclass Class too and so is indirectly a subtype of the OCL Class OclAny.
The class Product is only an UML Class and is also a subtype of OclAny. The
class Country is a M1 instance of the metaclass OWLClass and does not have
any operations.

M2

M1

InstanceOf

ClassDataType TypeType AnyType

OwlAny
OclAny

PuchaseOrderProduct

TUClass

OWLClass

Country

Classifier

Fig. 4. OCL-DL Library Extension and sample model classes.

Since OWL classes do not support operations and cannot be referred in OCL
expressions, we use a TwoUse Class to build the bridge. A TwoUse Class inherits
from both OWL and UML Classes. Due to that, a M1 instance of the metaclass
TUClass is an instance of the metaclass OWLClass too. This extension gives an
extra power to OCL implementations adding query capabilities.

3.3 Profile

Based on the definitions of TUClass and TUPackage, we can reuse an existing
UML profile for OWL. Here, we used the profile for OWL proposed by OMG
to design the model. We call this UML class diagram with elements stereotyped
by an UML Profile for OWL a hybrid diagram. The hybrid diagram comprises
three different views, illustrated in Fig. 5: (1) the UML view with its OCL
expressions, (2) the OWL view with its class definitions and (3) the TwoUse

10

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

view, which integrates UML classes and OWL classes and, relying on OCL-DL,
defines query operations that use reasoning services. The OWL View consists of
eight classes, which are needed to realize the duty free order. The UML View has
the same five classes from Fig. 1. Applying the rules, the TwoUse View should
have seven classes and an OCL-DL query operation.

UML

OWL

TwoUse

<<ocldlExpression>>
{context PurchaseOrder::getCharges() : Real
body: if self.isInstanceOf(DutyFreeOrder)
then 0.00
else 0.60
endif}

DutyFreeOrder
<<owlClass>>

FreeTradeZone
<<owlClass>>

Country
<<owlClass>>

name : String

0..1

2..n
+memberOfTradeZone

0..1
+hasMember

2..n
Customer

<<owlClass>>

1 1..n

+livesIn

1

+hasResident

1..n
Product

name : String
PurchaseOrder

<<owlClass>>

getCharges()

0..n

1

+hasOrder

0..n+hasCustomer

1

1..n1..n

+hasProduct

1..n1..n

CountriesFromEU
<<owlRestriction>>

<<owlValue>> {hasValue = eu} memberOfTradeZone : FreeTradeZone

CustomersFromEUCountries
<<owlRestriction>>

+{someValuesFrom = CountriesFromEU } livesIn
<<owlValue>>

OrdersFromEUCustomers
<<owlRestriction>>

+{someValuesFrom= CustomersFromACountry } hasCustomer

<<owlValue>>

<<equivalentClass>>

Fig. 5. UML Class Diagram profiled with UML Profile for OWL and TwoUse Profile

Although we reuse an UML profile for OWL to map onto TwoUse classes,
OWL classes referred by any of the OCL-DL pre-built operations must be
TwoUse too. The TwoUse class is the bridge that links OWL elements with OCL-
DL expressions. And to be compatible with tools that support UML2 extension
mechanisms that don’t support OCL-DL, these expressions must be specified
with the stereotype <<ocldlExpression>> with base class of UML metaclass
UML::Opaque Expression. This stereotype has the property referredOwlClass

[*] and the values are the referred classes.

With these considerations we have the expressiveness needed to design map-
ping from a profiled UML diagram onto TwoUse models, instances of the TwoUse
metamodel.

3.4 Mappings

This section presents guidelines to map from the hybrid diagram onto the TwoUse
model, and illustrates how code can be generated from the models. We do not
intend to expose all mapping rules but only the ones of classes that are more
important for understanding our proposal.

11

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

Model to Model. The elements of the TwoUse view in the hybrid diagram
map basically onto instances of two kinds of elements of the TwoUse metamodel:
TUClass and TUPackage. The OCL-DL expressions map onto instances of the
OCL-DL metamodel. The elements of the OWL view in the hybrid diagram
map onto instances of the OWL metamodel. The elements of the UML view are
copied, because they don’t need to be changed.

The relationships among elements from the TwoUse view and elements from
the others are preserved, as the TwoUse metamodel specializes both UML and
OWL metamodel. No direct relationship is allowed between OWL and UML
without TwoUse.

The rules to map classes in the hybrid diagram onto TwoUse classes are: (1)
any class that has the stereotype <<owlClass>> and has any operation or any
UML property declared; or (2) any class with stereotype <<owlClass>>, of which
the name is a property value of ReferredOwlClass property of the stereotype
<<ocldlExpression>>.

Any classes with the stereotype <<owlClass>> and only properties with
the stereotype <<datatypeProperty>> or <<objectProperty>> that are not
mapped onto TwoUse classes are mapped onto OWL classes. The other elements
are mapped according to their stereotype.

Any class without any stereotype results in a regular UML class. The prop-
erties can be available on ontologies and be accessible from both sides or can
remain only in UML. A TwoUse package is any package that has a TwoUse
class. The rules used to map onto a TwoUse class are reused to verify whether
a package has any TwoUse classes and map it onto a TwoUse package.

The UML Opaque Expresssions stereotyped with <<ocldlExpression>> are
mapped onto OCL-DL. The OCL-DL and OCL expressions share the same struc-
ture and conform basically with the same metamodel. OCL-DL expressions can
have in their body OCL ones.

In a model driven approach, mappings and transformations onto different
levels of abstraction are necessary too. The next section describes mappings
onto a lower level of abstraction.

Model to Code. The model-to-code mappings are highly dependent of the
platform language. We present the java code that implements the multiple in-
heritance of the TUClass multiple inheritance via Java Interfaces.

The class PurchaseOrder extends the class OWLIndividual. Here we show
how the operation getCharges() that calls the OCL-DL operation owlIsInstanceOf

could be implemented:

public class PurchaseOrder extends OWLIndividual {

...

public double getCharges(){

OWLClass OWLDutyFreeOrder = model.getOWLClass("DutyFreeOrder");

if (this.owlIsInstanceOf(OWLDutyFreeOrder)){ return 0; }

else {return 0.60;}

12

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

};

public boolean owlIsInstanceOf(OWLNamedClass owlClass) {

...

OWLReasoner reasoner = reasonerManager.getReasoner(model);

OWLIndividual individual = this;

return reasoner.isInstanceOf (owlClass, individual);

}

...

}

3.5 Model Driven Engineering with TwoUse

With the intention of summarizing and providing a complete view of our pro-
posal, Fig. 6 presents a Model Driven View of the TwoUse idea, using modeling
spaces [8]. The four lanes, UML, TwoUse, RDF/XML and Java are grouped
into three modeling spaces: MOF, RDF(S) and EBNF. For each lane we show
three modeling levels according to the OMG’s Four layered metamodel architec-
ture: the metametamodel level (M3), the metamodel level (M2) and the model
level (M1). The relationships inside each quadrant show dependency, the ones
that cross vertical borderlines are transformations, the ones that cross the hori-
zontal borderline mean instantiation. The boxes inside each quadrant represent
packages.

M2

M1

Transformation Transformation

UML TwoUse Java

InstanceOf

InstanceOf

M3

OWL

Transformation

UML

OCL

TwoUse

OCL

UML

OWL
(ODM)

OCL-DL

UML Profile
4 OWL

UML Profile
4 TwoUse

Java
Grammar

Reasoner.java

ec.profiled
4ocl-dl

ec.ocl
(expressions)

ec.ocl
(expressions)Copy

ec.uml

ec.uml+ocl.javaec.umlCopy

ec.oc-dl

ec.twouse.java

ec.twouse

MOF RDF(S) EBNFMOF

OWL

ec.owl

ec.profiled
4owl

ec.owlm

Fig. 6. layered metamodels and modeling spaces of the TwoUse Approach

The M3 quadrant of the UML lane in the MOF modeling space shows the
MOF metametamodel, whereas M2 illustrates the organization of the UML
metamodel with OCL and the two profiles concerning our approach: an UML

13

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

profile for OWL and another for TwoUse, which contains only a stereotype for
OCL-DL expressions and its properties. The UML profiles conceptually span
both M2 and M1 levels [9]. The M1 quadrant of the same lane shows possible
resulting packages from designing our e-commerce example using an UML tool.
The hybrid diagram is composed of: pure UML elements (ec.uml) with their
OCL expressions (ec.ocl); elements stereotyped by the UML profile for OWL
(ec.profiled4owl); and the opaque expressions stereotyped by the UML profile
for TwoUse, i.e., the OCL-DL expressions (ec.profiled4ocl-dl).

The M2 quadrant of the TwoUse lane, also in the MOF modeling space,
presents the organization of the packages in the TwoUse metamodel. The TwoUse
package imports the UML and OWL metamodels and specializes elements from
both, as shown in Sect. 3.1. The OCL-DL package imports the TwoUse and
the OCL packages and makes viable checking, parsing and code generation from
expressions that manipulates OWL elements, as explained in Sect. 3.2.

The M1 quadrant of the same lane represents the packages of models gener-
ated from the hybrid diagram. The UML and OCL elements are copied, because
they don’t need to be transformed. The package ec.profiled4owl serves as
basis for two transformations: (1) the generation of the OWL model (ec.owlm),
instance of OWL metamodel and (2) the generation of TwoUse classes in the
TwoUse package (ec.twouse), as explained on Sect. 3.4. The expressions stereo-
typed by the UML Profile for TwoUse are transformed into the model (ec.ocl-dl),
instance to the metamodel OCL-DL.

The OWL lane in the RDFS modeling space represents the normative OWL
exchange syntax according to RDFS metamodel. The transformation from the
ontology model (ec.owlm), which is an instance of the MOF based OWL meta-
model, into the OWL exchange syntax RDF/XML is doable using XLST, since
all M1 models are stored using the XMI standard.

The Java lane in the EBNF modeling space aims at representing the platform
specific model of choice and it is not our purpose detail the mappings. The
M2 quadrant represents the Java grammar, as the M1 quadrant of the same
lane represents java packages. Basically we generate two packages: one with
the implementation of the UML elements and expressions (ec.uml+ocl.java),
and one with the implementation of the TwoUse classes (ec.twouse.java), as
described on Sect. 3.4. The later imports packages that implement the reasoner
(reasoner.java) and depends on the prior two.

4 Evaluation and Related Works

After introducing and explaining our solution, we revisit the requirements to
evaluate how our approach fulfills them in comparison to other approaches. Table
1 summarizes the requirements evaluation.

Ontologies design (1) is viable by any of the solutions, but using just UML,
as proposed by ODM specification, lacks for expressiveness. The better solution
should be using a UML Profile for OWL. Using pure UML would not be expres-
sive enough to have, in the same diagram, OWL and UML (5). It would not be

14

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

Table 1. Qualitative evaluation of functional requirements

Requirements UML OWL Profiled UML TwoUse

1 Ontologies Design +/- + +
2 UML Tools Compatibility + + +
3 OCL Support + +/- +
4 Code Generation Support +/- + +
5 UML and Ontology Modeling Integrated - + +
6 Model Driven Engineering Support +/- - +
7 Reasoner-query Operations Specification - - +

possible to differentiate UML classes from OWL ones. Pure UML and stereo-
typed UML classes allied with mappings could be enough to design UML models
and ontologies simultaneously. At this point, TwoUse and an OWL profiled UML
solution share the same strategy. Then they are compatible with UML Tools that
support UML2 extension mechanisms (2). Different MOF based metamodels and
UML Profile for OWL Ontologies are available [10] [11] [6], some of them with
new adornments. Our approach gives the developer the freedom to choose which
profile to use, provided that the profile has the sufficient semantics to support
mappings onto TwoUse models.

OCL is integrated with UML by nature (3). Using an OWL profiled UML
enables OCL expressions to be written only in context of pure UML classes.
Since a TwoUse class is an specialization of an UML class and a OWL class, all
OCL expression can used with TwoUse classes automatically. Thanks to OCL-
DL, only TwoUse supports reasoner-query operations specification (7), which
brings additional power to the development of systems that use ontologies. That
is one of the main points of our approach.

All solutions support code generation (4), relying on model mappings. Gener-
ation of code from UML models is quite common, as there is a range of strategies
to generate code from an ontology [12] [13] [14] [15]. But UML cannot be used
to generate code for object oriented and ontology driven approaches at the same
time (5) due to lack of sufficient expressivenesss.

Finally, a profiled solution is not transparent enough to fully support Model
Driven Engineering (6), to have a metamodel in order to validate models, and
to allow metamodel to metamodel transformations. Neither UML can com-
bine structural and behavioral features description with predicate definitions
of classes. These characteristics are entirely supported by TwoUse.

As an alternative strategy to support MDE, one might think of applying
model weaving techniques to create bridges between models. The Generic Model
Weaver [16] enable the extension of a generic metamodel to define the links.
However, this strategy would need two or more models, as with TwoUse the
developers in fact model just a hybrid one. Furthermore, it would be hard to
fit OCL-DL into this approach. Model weaving techniques could be useful to
integrate and to reuse models already available in order to generate TwoUse
models.

15

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

5 Conclusion

Based on some requirements like specification of operations that query a rea-
soning engine and Model Driven Engineering support, this paper proposes an
approach able to capture some structural and behavioral features and allows
modelers to describe the semantics of the domain at the level of a OWL on-
tology. We propose bridges based on a metamodel, library extensions and map-
pings. TwoUse achieves improvements like reusability and maintainability even
for development of non-logical systems.

References

1. OMG: Unified Modeling Language: Superstructure, version 2.1.1. Object Modeling
Group. (2007)

2. OMG: Object Constraint Language Specification, version 2.0. Object Modeling
Group. (2005)

3. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl-
edge Acquisition 5(2) (1993) 199–220

4. Staab, S., Studer, R., eds.: Handbook on Ontologies. International Handbooks on
Information Systems. Springer (2004)

5. Mcguinness, D.L., van Harmelen, F.: OWL web ontology language overview (2004)
6. OMG: Ontology Definition Metamodel. Object Modeling Group. (2005)
7. Knublauch, H., Oberle, D., Tetlow, P., Wallace, E.: A semantic web primer for

object-oriented software developers. W3C Working Group Note 9 March 2006,
W3C (2006)

8. Djurić, D., Gašević, D., Devedžić, V.: Adventures in modeling spaces: Close en-
counters of the semantic web and MDA kinds. In Kendall, E.F., Oberle, D., Pan,
J.Z., Tetlow, P., eds.: Workshop on Semantic Web Enabled Software Engineering
(SWESE 2005), Galway, Ireland (2005)

9. Atkinson, C., Kühne, T.: Profiles in a strict metamodeling framework. Sci. Comput.
Program. 44(1) (2002) 5–22

10. Brockmans, S., Volz, R., Eberhart, A., Löffler, P.: Visual modeling of OWL DL
ontologies using UML. In: International Semantic Web Conference. (2004) 198–213

11. Djurić, D., Gašević, D., Devedžić, V., Damjanovic, V.: A UML profile for OWL
ontologies. In: MDAFA. (2004) 204–219

12. Eberhart, A.: Automatic generation of java/sql based inference engines from RDF
schema and RuleML. In: ISWC ’02: Proceedings of the First International Semantic
Web Conference on The Semantic Web, London, UK, Springer-Verlag (2002) 102–
116

13. Völkel, M., Sure, Y.: RDFReactor – from ontologies to programmatic data ac-
cess. In: Poster Proceedings of the Fourth International Semantic Web Conference.
(2005)

14. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic mapping of OWL
ontologies into java. In Maurer, F., Ruhe, G., eds.: SEKE. (2004) 98–103

15. Knublauch, H.: Ontology-driven software development in the context of the se-
mantic web: An example scenario with Protege/OWL. In Frankel, D.S., Kendall,
E.F., McGuinness, D.L., eds.: 1st International Workshop on the Model-Driven
Semantic Web (MDSW2004). (2004)

16

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

16. Fabro, M.D.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a generic
model weaver. In: Proceedings of the 1ére Journé sur l’Ingnierie Dirigé par les
Modles (IDM05). (2005)

17

TwoUse: Integrating UML Models and OWL Ontologies, Fachbereich Informatik, Nr. 16/2007

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte)

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007
Rüdiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Björn Pelzer, Christoph Wernhard: System Description:“E-KRHyper“, Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Björn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitäten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jürgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rüdiger Grimm, Robert Krimmer, Nils Meißner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jörg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauß, „grUML – Eine UML-
basierte Modellierungssprache für T-Graphen“, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

Richard Arndt, Steffen Staab, Raphaël Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

„Gelbe Reihe“
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop ''Reengineering Prozesse'' –
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

Reinhold Letz: FTP 2005 – Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 – Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jürgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Eißen: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

Andreas Winter and Jürgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jürgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms –
 Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_inf
	Foliennummer 1

	Impressum
	TR16 2007 TwoUse_OSeitenzahl
	Bisher erschienen
	Bisher erschienen

