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Abstract

One of the main goals of the artificial intelligence community is to create machines able
to reason with dynamically changing knowledge. To achieve this goal, a multitude of
different problems have to be solved, of which many have been addressed in the various
sub-disciplines of artificial intelligence, like automated reasoning and machine learning.
The thesis at hand focuses on the automated reasoning aspects of these problems and
address two of the problems which have to be overcome to reach the afore-mentioned goal,
namely 1. the fact that reasoning in logical knowledge bases is intractable and 2. the fact
that applying changes to formalized knowledge can easily introduce inconsistencies, which
leads to unwanted results in most scenarios.

To ease the intractability of logical reasoning, I suggest to adapt a technique called
knowledge compilation, known from propositional logic, to description logic knowledge
bases. The basic idea of this technique is to compile the given knowledge base into a
normal form which allows to answer queries efficiently. This compilation step is very
expensive but has to be performed only once and as soon as the result of this step is used
to answer many queries, the expensive compilation step gets worthwhile. In the thesis
at hand, I develop a normal form, called linkless normal form, suitable for knowledge
compilation for description logic knowledge bases. From a computational point of view,
the linkless normal form has very nice properties which are introduced in this thesis.

For the second problem, I focus on changes occurring on the instance level of description
logic knowledge bases. I introduce three change operators interesting for these knowledge
bases, namely deletion and insertion of assertions as well as repair of inconsistent instance
bases. These change operators are defined such that in all three cases, the resulting
knowledge base is ensured to be consistent and changes performed to the knowledge base
are minimal. This allows us to preserve as much of the original knowledge base as possible.
Furthermore, I show how these changes can be applied by using a transformation of the
knowledge base.

For both issues I suggest to adapt techniques successfully used in other logics to get
promising methods for description logic knowledge bases.
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Zusammenfassung

Ein Hauptziel des Forschungsbereiches der Kiinstlichen Intelligenz ist das Entwickeln
einer Maschine, die in der Lage ist logische Schlussfolgerungen aus grofsen Wissensbasen
zu ziehen, die sich dynamisch verdndern. Um dieses Ziel erreichen zu koénnen, muss eine
Vielzahl von Probleme gelost werden, die in verschiedenen Teildisziplinen der Kiinst-
lichen Intelligenz, wie zum Beispiel dem automatischen Schlieffen und dem maschinelles
Lernen, liegen. Diese Dissertation konzentriert sich auf die folgenden zwei Hindernisse
aus dem Bereich des automatischen Schliefsens: 1. Die Tatsache, dass Schliefen in lo-
gischen Wissensbasen sehr aufwendig sein kann und 2. die Tatsache, dass Anderungen
an formalisiertem Wissen haufig Inkonsistenzen hervorrufen, die beim Schliefen zu un-
erwiinschten Ergebnissen fiihren kénnen.

Um das Schlieften in Wissensbasen, die in einer Beschreibungslogik gegeben sind, ef-
fizienter zu machen, schlage ich vor, die Technik der Knowledge Compilation zu ver-
wenden, die bereits erfolgreich in der Aussagenlogik verwendet wird und die ich ents-
prechend weiterentwickelt habe. Dabei wird die gegebene Wissensbasis einmalig in eine
Normalform umgewandelt, die es erlaubt Anfragen schneller als in der urspriinglichen
Form zu verarbeiten. Zwar ist dieser Umwandlungsschritt zeitaufwendig, doch sobald
mehrere Anfragen an die umgewandelte Wissensbasis gestellt werden, zahlt sich dieser
Mehraufwand durch die verkiirzten Antwortzeiten aus. Die Normalform, die ich im Rah-
men meiner Forschungsarbeit entwickelt habe, ist die sogenannte Linkless Normalform fiir
Beschreibungslogik, deren zahlreiche interessanten Eigenschaften in dieser Dissertation
vorgestellt werden.

Bei der Entwicklung einer mdéglichen Losung fiir das zweiten Problems konzentriere
ich mich auf Verdnderungen auf der Instanzebene von Wissensbasen, die in einer Bes-
chreibungslogik vorliegen. Dafiir habe ich drei Operatoren entwickelt, die es erlauben
die Instanzebene dieser Wissensbasen zu verdndern: das Loschen und Hinzufiigen von
Informationen sowie das Reparieren von inkonsistenten Instanzebenen. Diese drei Oper-
atoren sind so definiert, dass sichergestellt wird, dass die Wissensbasis nach Anwendung
eines solchen Operators stets konsistent ist. Um moglichst wenig formalisiertes Wissen
aus der Wissensbasis zu verlieren, ist bei allen drei Operatoren sichergestellt, dass die an
der Wissensbasis durchgefiihrten Anderungen minimal sind. Die eigentliche Anwendung
dieser drei Operatoren ldsst sich dabei liber eine Transformation der Wissensbasis er-
reichen, die ich ebenfalls auf Grundlage einer Transformation aus der Aussagenlogik
entwickelt habe.

Bei beiden Problemen konzentriere ich mich auf in einer Beschreibungslogik gegebene
Wissensbasen und verwende Techniken, die bereits in anderen Logiken erfolgreich einge-
setzt werden, um Ldsungen zu bieten.
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1 Introduction

It is a ongoing dream of the artificial intelligence community to create machines able
to reason with dynamically changing knowledge. Even though many steps towards this
vision were made, still many obstacles have to be overcome. In this thesis we tackle two
of these obstacles: 1. the fact that logical reasoning is intractable and 2. the fact that
applying changes to formalized knowledge can easily introduce inconsistencies making it
difficult to reason properly. We suggest to ease the intractability of logical reasoning by
using a technique called knowledge compilation. This technique consists of the compil-
ation of the knowledge base into a special form which can be used to perform certain
reasoning tasks efficiently. To overcome the second obstacle, we develop techniques for
applying changes to the instance level of description logic knowledge bases. These tech-
niques ensure that the knowledge base resulting from a change is consistent thus avoiding
the problems of inconsistencies.

1.1 Used Techniques

Knowledge representation is an area of artificial intelligence dealing with the formal
representation of information. One possibility to formalize knowledge is the use of logical
knowledge bases, in which the represented information can be accessed by deductive
reasoning methods. This makes it possible not only to access knowledge that is explicitly
stated but also implicitly stated knowledge.

There are numerous logical formalisms suitable for knowledge representation purposes,
such as propositional logic, first-order logic, modal logics and description logics. In the
context of knowledge representation, it is not only of interest to adequately formalize
the information: another important aspect is the development of efficient reasoning pro-
cedures working on the representations. Given for example a knowledge base KB and a
formula F', it is of interest if F' is a logical consequence of KB. As soon as the knowledge
base is subject to changes, an additional challenge arises: Changes can easily introduce
inconsistencies into a knowledge base causing every formula F' to be a consequence of the
knowledge base. For each of the above-mentioned logics, a large number of formalisms
and reasoning procedures have been developed throughout the years. The question sug-
gests itself, whether methods developed in one of these logics can be adapted to work in
another logic. This idea allows to partially reuse approaches such that a procedure does
not have to be developed from scratch. The idea of reusing methods developed for one
logic for another logic is not new. Consider for example the Davis—Putnam—Logemann—
Loveland (DPLL) algorithm (Davis and Putnam) 1960) which is an algorithm for deciding
the satisfiability of propositional logic formulae. This algorithm was extended to a gen-



eral procedure DPLL(X) (Ganzinger, Hagen, Nieuwenhuis, Oliveras, and Tinelli, 2004)
allowing DPLL to be extended with a solver for a theory given in first-order logic.

This reuse of approaches is not limited to transferring methods from one logic to
another one but it is also beneficial to reuse research within one logic. An impressive
example is the use of unification, which was introduced for first-order resolution and later
applied in first-order logic tableaux. In this thesis, two formalisms from different logics
are extended to description logic.

e A normal form known from the area of knowledge compilation in propositional
logic is adapted to description logics, allowing to perform certain reasoning tasks
efficiently.

e An approach for view deletion in deductive databases is adapted to change methods
for the instance level of description logic knowledge bases.

Naturally, the thesis at hand used different logic. This is why, in the next section we give
a short overview on the different logics playing an important role in this thesis.

1.2 Logics

Besides propositional logic and first-order logic, description logics are important in the
scope of this thesis. Description logics are a family of knowledge representation languages
used to model knowledge. A description logic knowledge base consists of a terminological
part, called TBox, formalizing knowledge about the world and an assertional part, called
ABox, containing information on individuals, concepts the individuals belong to and
relations between individuals. For some description logics, knowledge bases also contain
an RBox, formalizing knowledge about relations. There is a variety of description logics
offering different degrees of expressivity in which most of the description logics are located
between propositional and first-order logic considering their expressivity while still being
decidable. In this thesis, the description logics ALC, ALE and SHZ come to use.

1.3 Knowledge Compilation

In the first part of this thesis, the idea of a normal form for propositional logic called
linkless normal form is applied to concepts and TBoxes given in the description logic
ALC. In propositional logic, this normal form is used in the area of knowledge com-
pilation (Murray and Rosenthal, [1985)). Knowledge compilation is a technique used to
deal with the computational intractability of deduction in logical formalisms. It is a well
investigated technique for knowledge bases given in propositional logic (Darwiche and
Marquis, [2002; |Cadoli and Donini, |1997)). Consider the following task: For a propos-
itional logic knowledge base KB and a formula F, we want to check if F' is a logical
consequence of KB. It is well-known that this test has an exponential time complexity,
namely exponential to the number of distinct variables in KB and F. The basic idea
of knowledge compilation is to divide the reasoning process into two phases: an off-line



phase and an online phase. During the off-line phase, the knowledge base is compiled
into a certain normal form. This compilation usually is very demanding from a compu-
tational point of view but has to be performed only once. During the online phase, the
precompiled version of the knowledge base is used to answer queries. In our example to
check if F'is a logical consequence. For answering just one query, the effort of performing
this expensive precompilation step by no means justifies the benefit. Let us assume that
the task is not to only check if one single formula F' is entailed by KB but for a large
set {F1,..., F,} of formulae. In such a setting, the expenses of the precompilation step
can be spread over the different queries making this step worthwhile. Linkless normal
form is one normal form which lends itself for the compilation step of propositional logic
formulae. Propositional logic formulae given in linkless normal form possess some nice
properties such that they allow constant time satisfiability test and they can be efficiently
projected on a set of atoms. The thought of having such a normal form for description
logic concepts and TBoxes sounds tempting. This is why this thesis adapts the idea of
the linkless normal form to the description logic ALC such that the resulting normal
form also offers interesting properties.

1.4 Evolution of the Instance Level of Knowledge Bases

In the second part of this thesis, a successful approach for view deletion in deductive
databases (Aravindan and Baumgartner, [2000) is applied for implementing changes into
description logic ABoxes. In practical use, knowledge bases are often not fixed but
subject to changes. In the scenario examined in this thesis, the TBox of the knowledge
base is considered to be fixed in contrast to the ABox which is confronted with changes.
The changes to the ABox that are considered in this thesis are insertion of an assertion,
deletion of an assertion and repair of an ABox which is inconsistent with respect to its
TBox. Performing changes to an ABox can easily render an ABox inconsistent with
respect to its TBox. Consider for example a TBox stating that no one can be both
female and male

T = {Female C —Male}

together with an ABox
A = {Female(sasha)}.

Adding the assertion Male(sasha) to A renders it inconsistent with respect to 7. From a
reasoning point of view, an inconsistent knowledge base is problematic since it is possible
to deduce everything from such a knowledge base with common methods. Therefore, it
is not only desirable to repair an ABox which is inconsistent with respect to its TBox
but it is important that the methods for changing an ABox developed in this thesis
always result in an ABox which is consistent with respect to its TBox. On the other
hand it is desirable that a change affects as little of the knowledge base as possible.
All change operations developed in this thesis are defined such that only a minimal set
of ABox assertions is actually changed. For the computation of the change operations,
a transformation similar to the technique used by |Aravindan and Baumgartner| (2000)



for deductive databases is used. There the idea is to transform the fixed part of the
deductive database before applying the methods for changing the knowledge base. This
transformation is guided by the set of ground facts occurring in the knowledge base. One
can label this transformation as semantically guided since the set of ground facts can be
considered to be a (partial) model of the deductive database. This semantical guidance
reflects the assumption that the ground facts of the deductive database are regarded to be
true and allows to compute only the deviation from the original set of ground facts. When
considering deductive databases with a large number of ground facts, it is reasonable to
assume that changes only affect very few ground facts. This assumption makes the
semantical guidance of the transformation especially advantageous. When considering
changes to description logic ABoxes, we are facing a similar setting: It is likely that the
ABox constitutes at least a partial model of the TBox and furthermore it is reasonable
to assume that changing a consistent ABox as well as repairing an inconsistent ABox
only affects very few assertions. These similarities suggest that it is beneficial to adapt
the ideas introduced by Aravindan and Baumgartner| (2000) to description logic ABoxes
as well.
Next, we present a brief overview on the different chapters of the thesis at hand.

1.5 Overview

Chapter provides the necessary preliminaries for the topics addressed in this thesis.
We introduce syntax and semantics of propositional logic (Section , first-order logic
(Section , multi-modal logic K,, (Section and the description logics ALE, ALC
and SHZ (Section . All these logics are used when we explore the application of
established techniques to description logics.

Chapter addresses the problem of knowledge compilation. As described afore, the
basic idea of knowledge compilation is to compile a knowledge base during an off-line
phase into a special normal form and then use the result of this precompilation to answer
queries during the online phase.

Section concentrates on well-known techniques for knowledge compilation in pro-
positional logic and introduces ideas how to compare different normal forms together
with a collection of normal forms suitable for the precompilation step of knowledge com-
pilation. The normal forms introduced are the decomposable negation normal form, the
linkless normal form, prime implicant normal form and prime implicat normal form.
This presentation of normal forms does not strive for completeness. It contains only
those normal forms interesting in the scope of this thesis.

Section [3:2] applies established techniques from the area of knowledge compilation in
propositional logic to knowledge bases given in description logics. One main contribu-
tion of this thesis is the development of several normal forms for concepts given in the
description logic ALC: the V- and J-normal form are introduced as a basis of the link-
less normal form for ALC concepts which is developed in Section [3.2:2] Properties of
the linkless normal form are presented together with proofs. Furthermore, it is shown



how to use this normal form for the precompilation of ALC TBoxes which makes the
linkless normal form an interesting candidate for the precompilation step of knowledge
compilation for knowledge bases given in ALC.

A prototypical implementation which is able to transform ALC TBoxes into linkless
normal form was developed and Section [3.2.3.1] presents of some experimental results.

Section [3.2.4] arranges the developed linkless normal form into the line of related work
and Section [3.3]introduces topics interesting for future research in the scope of the linkless
normal form.

Chapter [4] addresses the task of changing the instance level of a knowledge base. For
this, in Section the problem of view deletion in deductive databases is introduced.
Aravindan and Baumgartner| (2000) developed an approach to solve this problem us-
ing theorem proving techniques. To conduct a change to the deductive database, their
method only computes the deviation from the original instance base of the knowledge
base. As soon as the knowledge base contains a very large instance base, this approach
becomes beneficial, since a growing size of the instance base does not have too much
influence on the efficiency of such an approach. Since in description logic there are
many knowledge bases with rather large ABoxes, it sounds tempting to have a method
for performing changes to an ABox by only computing the deviation from the original
ABox.

A main contribution of this thesis is presented in Section [£.2] where the approach
for view deletion in deductive databases is adapted to the description logic SHZ: Sec-
tion [£.2.1] introduces three different change operators for SHZ knowledge bases, namely
deletion and insertion of assertions and repair of an ABox which is inconsistent w.r.t.
its TBox.

Section presents the so-called K*-transformation which is used to transform the
TBox of the knowledge base under consideration into a special form. This transformation
is guided by the ABox on the basis of the assumption that the ABox is already very close
to a model of the TBox.

Section [4.2.3] shows that result of the KC*-transformation can be used to efficiently
compute the result of the afore-introduced changing methods and provides proofs that
this actually computes the desired outcome.

The K*-transformation is implemented in a system which can be used to perform the
introduced changing methods on SHZ knowledge bases. Section [£:2.4] presents experi-
mental results for all change operations and shows: The efficiency of the approach is not
much influenced by the size of the ABox but rather by the number of assertions affected
by the change operation.

Section [£.3] arranges the developed approach for the computation of changes to the
instance level of SHZ knowledge bases into the line of related work. The chapter ends
with Section [4.4] pointing out interesting avenues for future research.

Chapter [5| summarizes the methods introduced in Chapter [3| and Chapter [4] and gives
a réumé of the main contributions of this thesis.



1.5.1 Contributions

My overall contributions can be summarized as follows:

1.

For knowledge bases given in propositional logic, knowledge compilation is a well-
known technique and there are numerous normal forms which are commonly used
for the precompilation step. Even though knowledge compilation is a tempting
approach for description logic knowledge bases, to the best of my knowledge, this
area has hardly been investigated. I ease this situation by developing several normal
forms for ALC concepts like the so called V-normal form and the J-normal form
which serve as a basis for the development of the so called linkless normal form.
The linkless normal form is introduced both for ALC concepts and TBoxes and
is suitable for knowledge compilation purposes. Properties of the linkless normal
form are presented along with proofs.

. There are approaches performing changes to the instance level of knowledge bases

given in the description logic DL-Lite. However these techniques cannot be applied
to more expressive description logics like the description logic SHZ and I am not
aware of any other approaches to tackle this task in SHZ. In this thesis, I develop
a method for performing changes to the instance level of knowlege bases given
in the description logic SHZ. For this a transformation of the knowledge base,
the so called K*-transformation is introduced which is guided by the ABox of the
knowledge base. The result of this transformation can be used to efficiently perform
changes to the ABox of the knowledge base:

e insertion of assertions,
e deletion of assertions and
e repair.

For each of the three changes it is ensured that only a minimal set of ABox assertions
is affected by the change. Furthermore, this method only computed the deviation
form the original ABox making this method particularly advantageous for change
scenarios with large ABoxes where only few ABox assertions are affected by the
changes.

The main contributions of this thesis are already published:

Many results from Chapter |3| were published in (Schon| 2011} 2010; Furbach, Giin-
ther, and Obermaier, 2009; [Furbach and Obermaier}, [2007a)) and very preliminary
work in (Furbach and Obermaier, |2007b)).

The results from Chapter {4 were published in (Furbach and Schon| 2013a)) and in
at full length in (Furbach and Schon) 2013b).



2 Preliminaries

This chapter introduces the different logics necessary to understand this thesis. Firstly,
in Section propositional logic and in Section first-order logic are introduced. Next
Section presents modal logic and Section description logic.

The reason to present such a large selection of different logics lies in the topic of this
thesis. In the main parts of the document at hand, ideas from propositional logic are
extended for description logics. Hence both logics are presented in sequel. In addition to
that, the methods for the evolution of the instance level of description logic knowledge
bases presented in Chapter [4] use so-called DL-clauses. Their syntax is similar to first-
order logic clauses. This is why besides DL-clauses, first-order logic is presented as well.
Description logics are closely related to modal logic. Therefore many results of this thesis
could be easily transferred to modal logic. This is why modal logic is introduced as well.

2.1 Propositional Logic

In Section the syntax of propositional logic formulae is introduced, followed by
Section [2:1.2] presenting semantics of these formulae. Furthermore, some equivalences
and normal forms are presented in Section [2.1.3

2.1.1 Syntax

Definition 2.1.1 (Syntax of Propositional Logic Formulae). Let V' be a countable set of
propositional logic variables. The set of propositional logic formulae over V, denoted by
FV s the smallest set satisfying the following conditions:

props
e VCEY,.
e LeF),.
e TEF),,,
o IfGeF, pmp, then =G € FIK’OP
e [fG,H € F pmp, then (GNH) € ngop
e [fG,H € F pmp, then (GV H) € Fy....

A set of propositional logic formulae is called propositional logic knowledge base.



If the set of propositional logic variables is not of interest, V' is omitted and we speak
of Fprop instead. When convenient, notation is slightly abused by treating A and V
as multiarity connectives ranging from zero connected formulae to any arbitrary finite
number of connected formulae. Note that the empty disjunction corresponds to L and
the empty conjunction to T. Furthermore, a — b is used as a shorthand for —a V b.

Definition 2.1.2 (Set of Subformulae). Let F,G and H be propositional logic formulae
n ngop. sub : szop — 2Fpror s g function mapping a formula F to the smallest set of
formulae satisfying the following conditions:

e F € sub(F).

o [f =G € sub(F') then G € sub(F).

o I[fGNH €sub(F) then G € sub(F') and H € sub(F).

o [fGV H € sub(F) then G € sub(F') and H € sub(F).
For a formula F, sub(F) is called the set of subformulae of F'.

A formula of the form F = v for a propositional logic variable v is called atom.
Furthermore, a formula of the form G V H is called disjunction and G and H are called
disjuncts. A formula of the form G A H is called conjunction and G and H are called
conjuncts.

Sometimes, it is convenient to neglect the order of conjuncts in n-ary conjunctions
and n-ary disjunctions of in a formula when determining the set of its subformulae. We
denote these subformulae as subformulae modulo commutativity. When considering for
example the formula FF = a A b A ¢, the set of subformulae modulo commutativity is
{a,b,c,anNbjaNe,bAa,bAe,cNa,e Nbya ANbAc}.

Furthermore, the function var : FY. — 2V is a function mapping a formula F over

prop
the set of propositional logic variables V' to the set of atoms occurring as a subformula

of F.

2.1.2 Semantics

Next semantics of propositional logic formulae is introduced together with the notion of
a model of a formula.

Definition 2.1.3 (Semantics of Propositional Logic Formulae). Let V' be a set of propos-
itional logic variables and {true, false} a set of truth values. Then Iy : V. — {true, false}
s called an interpretation. The extension IF;Ymp : vamp — {true, false} of Ty is called
an interpretation of propositional logic formulae from FY. =~ and is defined by:

prop
o IF,??op(J‘) = false.
o IF,Ymp(T) = true.

) IF;Ymp(a) =Zy(a), ifac V.



true ifIFp‘iop(F) = false

false  otherwise.

(FAG) = true ifIFMOP(F) = true and IF%OP(G) — true
false  otherwise.

{true ifIFIxop(F) = true or IF;X«op(G) = true

false  otherwise.

Note that Zy is contained in [ FYo We slightly abuse notation and use Z instead of
IF;Ymp as an interpretation for both propositional logic variables and formulae. When
convenient, an interpretation Z is regarded as the set of propositional logic variables
assigned to true by 7.

Definition 2.1.4 (Model). Let F be a propositional logic formula and T an interpreta-
tion. T is a model for F, denoted by T = F iff Z(F') = true. Let further N be a set of
propositional logic formulae. T is a model for N iff T = G for every G € N.

Definition 2.1.5 (Satisfiable, Unsatisfiable, Valid). A propositional logic formula F is
called satisfiable iff there is a model for F. Otherwise F' is called unsatisfiable. F' is
called valid or tautologous if every interpretation is a model for F. A set of propositional
logic formulae N is called satisfiable iff all formulae in N are satisfiable. Otherwise N is
unsatisfiable.

Note that satisfiability of a formula can be tested by checking all possible interpret-
ations. For details on satisfiability checking of propositional logic formulae we refer the
reader to Fitting (1996).

In general, there can be more than one model for a propositional logic formula. In this
thesis, it is sometimes necessary to compare different models for a formula. This is why
we introduce the notion of minimal models.

Definition 2.1.6 (Minimal Model). Let F' be a propositional logic formula. An inter-
pretation I is a minimal model for F iff T is a model for F' and there is no model ' for
F withT CT.

Using this notion, it is possible to compare models. A model Z; is called smaller than
a model Zo, if 7y C Zs. Note that it is possible for two models I; and I that neither Iy
is smaller than Is nor I is smaller than I;. Take FF=a Vb and Z; = {a} and Zy = {b}
as an example.

Example 2.1.7. Given the propositional logic formula

F==(aVbV(en—f))



and the interpretation T with:

Z(a) = false
Z(b) = false
Z(e) = true
Z(f) = true

Then Z(F') = true, hence I is a model for F. As mentioned afore, T can be represented
as the set of propositional logic variables assigned to true by Z, leading to T = {e, f}.

Given a second interpretation I' with:

' ={f}

which is a model for F. Comparing T and I’ shows that T' C I and therefore T is not a
minimal model for F.

2.1.3 Equivalences and Normal Forms

In the following, several normal forms for propositional logic formulae will be investigated.
To translate a propositional logic formula into a normal form, it is necessary to perform
transformations on given formulae. These transformations should work without changing
the semantics of the formula, i.e. equivalence is supposed to be preserved during the
transformation.

Definition 2.1.8 (Equivalent Formulae). Let F' and G be propositional logic formulae.
F and G called semantically equivalent, denoted by F' = G iff for every interpretation L:
I(F)=1(G).

When regarding transformations on formulae, we are only interested in transforma-
tions that preserve equivalence of a formula. The basic idea of these transformations is
the following: Given a formula F' containing a subformula G. If this subformula G is
equivalent to a formula G’, then it is possible to substitute G’ for G in F. The resulting
formula is equivalent to the original formula F'.

Theorem 2.1.9. Let F, G’ be propositional logic formulae and G be a subformula of F
with G = G'. Let further F' be the formula obtained from F by substituting G' for an
occurrence of G. Then F = F".

Next some equivalences are presented, which can be used to transform propositional
logic formulae.
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Theorem 2.1.10. Let F', G and H be propositional logic formulae. The following equi-
valences hold:

——F = F (Double negation)

FANF=F
FV F =F (Idempotence)

FANG=GANF
FVvG=GVF (Commutativity)

g
>
B
>
=
I

(FANG)NH
FVv(GVH)=(FVG)VH (Associativity)

(FAG)VH=(FVH)AGVH)
(FVG)NH =(FANH)V (GAH) (Distributivity)

FV (FAG)=F (Absorption)

“(FANG)=-FV-G
—(FVG)=-FAN-G (De Morgan’s laws)

FVG=Fif Fis a tautology
FAG=Gif F is a tautology
FVvG=Gif F is unsatisfiable
FANG=F if F is unsatisfiable

Proof of Theorem [2.1.10] can be done using truth tables.
The equivalences presented in Theorem [2.1.10] can be used to transform any proposi-
tional logic formula into three basic normal forms defined as follows:

Definition 2.1.11 (Negation Normal Form). A propositional logic formula F is in neg-
ation normal form (NNF) iff the negation symbol only occurs in front of propositional
logic variables.

It is possible to transform every propositional logic formula into NNF by removing

double negations and moving the negations as far as possible to the inside of the formula
using De Morgan’s laws.

11



A literal denotes an atom or a negated atom. Two literals like b and —b using the same
atom but having different polarity are called complementary literals. For a literal L, we
use L to denote the respective complementary literal.

Definition 2.1.12 (Clausal Normal Form). A clause is a disjunction of literals. A
propositional logic formula is in conjunctive normal form or clausal normal form (CNF)
iff it is a conjunction of clauses. For a formula F in CNF with

F=(LiaV...VLip)N...AN(Lga V...V Ly,

where L; j are literals. Often set notation is used, where clauses are represented as sets
of literals and the CNF as a set of clauses:

F={{Li, .. ..Lin},--  {Lk1s-- s Lin, }}

Note that if a disjunction of literals has zero arity, this corresponds to the empty clause
written as {}.

Definition 2.1.13 (Horn Formula). A clause is called Horn clause if it contains at most
one positive literal. A formula given in CNF is a Horn formula if all its clauses are Horn
clauses.

Horn formula have very nice computational properties. As shown by [Dowling and
Gallier| (1984), satisfiability of a Horn formula can be decided in time linear to the total
number of occurrences of literals in the formula.

Definition 2.1.14 (Disjunctive Normal Form). A formula F is in disjunctive normal
form (DNF), iff

F=(LiaN...NLip)V...V(LgaA...ALgp,)
where L; j are literals.

Note that a formula given in CNF or in DNF is in NNF as well. Every propositional
logic formula can be transformed into an equivalent formula in CNF/DNF. This can be
done by resolving double negations, using De Morgan’s laws and using the appropriate
distributive rule.

Example 2.1.15. The formula given in Ezample[2.1.7
F==(aVbV(eN—f))

is not in NNF. Using De Morgan’s laws, we can transform F into an equivalent formula
F' which is in NNF:

F'==aN=bA(-eV f).
Note that F' is in CNF as well. Its clause form representation is
F" = {{~a}, {-b}.{~e, f}}.
The DNF for F is
F'=(=aAN—-bA=e)V(maA-bA f).

12



2.2 First-Order Logic

In Section [2.2.1|syntax of first-order logic formulae is introduced, followed by Section [2.2.2
which presents semantics of both first-order logic formulae and sets of first-order logic
formulae.

2.2.1 Syntax

Definition 2.2.1 (Signature). A first-order logic signature is a tuple ¥ = (2, II) where
o Q= {fi", ..., fi} is a set of function symbols with arity a; € N, 1 <i <mn.
o Il ={P",...,Pi"} is a set of predicate symbols with arity a; € N, 1 <i < n.

Definition 2.2.2 (Syntax of First-Order Logic Terms). Let ¥ = (Q,II) be a first-order
logic signature with @ = {ff | k € N,i € Nt} and X a countable set of variables. The
set of first-order logic terms over X, denoted by T, is the smallest set fulfilling the
following:

e X CTX.
o Ifty,... .ty €TX and fF € Q, then fF(t1,... tx) € TX.

Terms of the form fZ-O, meaning with zero arity, are called constants. Furthermore, Tx,
denotes the set of ground terms over X, meaning the set of all terms in Tg not containing
any variables.

Definition 2.2.3 (Syntax of First-Order Logic Formulae). Let ¥ = (,II) be a first-
order logic signature, X a countable set of variables and Tg the set of first-order logic
terms over X. The set of first-order logic formulae Ff% 1s the smallest set, fulfilling the
follwing:

o LeFy,

o« TEFy,

Iftr, ...ty € T5 and PF €11, then PF(ty,...,ty) € Fp,.

Ifre X and F € Ff%, then Vx F € Ff% and dxF € Ffzo.
. IfGEFf%, then ﬂGEFf%.
e IfG,H € FZ, then (GANH) EFfE and (GV H) EFf%.

Predicate symbols with zero arity correspond to propositional logic variables. Formulae
of the form PF(t,...,tx) are called atomic formulae or atoms. An atom not containing
any variables is called ground atom. A literal is an atom or a negated atom. Like
in propositional logic, for first-order logic formulae F' and G, we use F' — G as an
abbreviation for =F'V G and F < G as an abbreviation for (F' — G) A (G — F).

13



2.2.2 Semantics

Semantics of first-order logic formulae is given with the help of a so-called X-interpretation
together with a variable valuation. This Y-interpretation provides a nonempty domain
and an interpretation of predicate and function symbols. The domain can be seen as a
set of individuals w.r.t. which the respective formula should be interpreted.

Definition 2.2.4 (X-interpretation). Let ¥ = (Q,1II) be a first-order logic signature. A
Y-interpretation is a tuple T = (Uz,Qz,1l7), with

e Uz a nonempty set of individuals called domain,
e Or={fr:U3 = Uzr| fre€Q},
o Il ={P CUS | P™eIl}.

The first component of a Y-interpretation Z = (Uz, {2z, I17) is the domain, often called
universe, which can be seen as a set of individuals under consideration. The second
component is a set of functions. For each function f occurring in 2, Q7 contains a
function fz with same arity as f operating on Uz. The function fr corresponds to the
interpretation of the function f on the domain Uz. The third component of 7 is a set
of sets IIz. For each predicate symbol P € II with arity m, IIz contains a subset of
the m-ary cartesian product of Uz. This subset corresponds to the interpretation of the
predicate P on the domain Uz. Since a X-interpretation does not interpret variables,
it is not possible to interpret first-order formulae using a Y-interpretation. A valuation
function is used, to interpret variables. This valuation function will then be combined
with a X-interpretation in oder to interpret first-order logic formulae.

Definition 2.2.5 (Valuation Function). Let Z = (Uz, Qz,117) be a Y-interpretation and
X a set of variables. A valuation is a total function 5 : X — Uz.

With the help of a valuation function, it is possible to interpret terms.

Definition 2.2.6 (Valuation of Terms). Let ¥ = (Q,1II) be a first-order logic signature,
T = (Uz,Q1,117) a X-interpretation, X a countable set of variables, t € Tg a term and
B : X — Uz a valuation. The valuation of term t w.r.t. T and B is inductively defined
by:

o Ig(x) = pB(x) forxz e X,
L4 Iﬁ(f(tl, ce ,tn)) = fz(Ig(tl), cee ,Iﬁ(tn)) fO’)” fn e Q.

Definition 2.2.7 (Semantics of First-Order Logic Formulae). Let ¥ = (Q,1I) be a first-
order logic signature, T = (Uz,Qz,Il7) a X-interpretation, X a countable set of variables
and B : X — Uz a valuation. The valuation of first-order logic formula by T w.r.t. 3 is
inductively defined as follows:

o Tg(L) = false,

14
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For z,y € X and a € Uz, Blx + a] is defined as:

— a ’fo =Y
Blz — al(y) : Bly) else

Given a first-order logic formula together with an interpretation and a variable valu-
ation, Definition [2.2.7] shows how to evaluate the formula in order to find out if it is true
in this specific interpretation w.r.t. the variable valuation. With the help of this, we are
able to define the notion of a model for a first-order logic formula.

Definition 2.2.8 (Model). Let ¥ = (£2,1I) be a first-order logic signature, T = (Uz, Qz,117)
a Y-interpretation, 8 : X — Uz a variable valuation and F € Ff% . g is a model for F,
denoted by Ig = F iff Lg(F) = true. Let further N C Ff% be a set of first-logic formulae.
Zg is a model for N iff g = G for every G € N.

Satisfiability of first-order logic formulae is defined analogous to satisfiability of pro-
positional logic formulae.

Definition 2.2.9 (Satisfiable, Unsatisfiable, Tautology). A first-order logic formula F
is called satisfiable iff there is a model for F. Otherwise F' is called unsatisfiable. F' is
called tautology if every interpretation is a model for F. A set of first-logic formulae N
is called satisfiable iff all formulae in N are satisfiable. Otherwise N is unsatisfiable.

Note that, contrary to propositional logic, it is not possible to test the satisfiability of
a first-order logic formula by checking all possible interpretations. There are infinitely
many possibilities to choose a domain for an interpretation and infinitely many ways to
interpret predicate and function symbols. Therefore there are infinitely many different
interpretations for a first-order logic formula. For details on satisfiability checking of
first-order logic formulae we refer the reader to Fitting (1996).

Definition 2.2.10 (Herbrand Interpretation). Let ¥ = (Q,II) be a first-order logic
signature with Q containing at least one constant. A herbrand interpretation is a -
interpretation T = (Uz,Qz,17), with

e Uz = Tx meaning the universe consists of the set of ground terms over X.

15



o fr(s1,...,8n) = f(s1,...,8n) for f* € Q and s1,...,s, € Uz.
Uz is called herbrand universe.

Note that for herbrand interpretations, functions are interpreted as themselves. When
constructing a herbrand interpretation, one is only free to choose the interpretation of
the predicate symbols.

Definition 2.2.11 (Herbrand Base). Let ¥ = (Q,1I) be a first-order logic signature with
Q containing at least one constant and F' € F]% a first-order logic formula. The herbrand
base of F' is defined as the following set:

B(F,%) ={P(s1,---,8n) | P" €Il and s1,...,8, € Tx}.

Proposition 2.2.12. Let ¥ = (Q,II) be a first-order logic signature with £ contain-
ing at least one constant. Fach set of ground atoms S identifies exactly one herbrand
interpretation T = (Uz,Q7,117), with (s1,...,8,) € Pr iff P(s1,...,8,) € S.

According to Proposition[2.2.12] every set of ground atoms uniquely identifies a herbrand
interpretation. Hence, we regard a set of ground atoms and the corresponding herbrand
interpretation as equal and do not distinguish among them. With the help of Proposi-
tion [2.:2.12] it is possible to compare herbrand models using set inclusion leading to the
definition of least herbrand models.

2.3 Modal Logic K,

In Section syntax of modal logic Ky, is introduced followed by Section [2.3.2] which
presents semantics of modal logic formulae. Some of the definitions presented in this
section were also used by [Furbach and Schon| (2015)).

2.3.1 Syntax

We give the syntax of the modal logic K,, formulae by extending the syntax of pro-
positional logic formuals given in Definition [2.1.1] with a set of unary modal operators
{Dl,...,Dn,Ql,...,On}.

Definition 2.3.1 (Syntax of Modal Logic Formulae). Let V' be a countable set of pro-
positional logic variables. The set of modal logic K, formulae FXH 1s the smallest set
satisfying the following conditions:

e VCE/,

o IfG € F&/n, then -G,

If G € FY , then 0;G € FY  and ;G € Fx,,,

IfG,H € F}Yn, then G N H € Fg,,,

If G,H € FY , then GV H € Fx,,.
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2.3.2 Semantics

As usual, we give the semantics of the modal logic K,, by introducing Kripke structures.

Definition 2.3.2 (Semantics of Modal Logic Formulae). Let V' be a countable set of

propositional logic variables. A Kripke structure or modal logic interpretation is a tuple
= (W, {R1,... R, },v) with

o W a nonempty set of worlds,

e {Ry,...,Rn} a set of reachability relations with R; C W x W fori € {1,...,n},
and

o v: W XV — {true, false} a valuation function.

A modal logic interpretation Z = (W, { Ry, ..., Ry}, v) can be seen as transition system.
The worlds given in W correspond to the nodes and the reachability relations { Ry, ... Ry}
correspond to the edges connecting the nodes. In addition to that, each node is labeled
with a set of propositional logic variables. This labeling is done by the valuation function
v, such that a world w is labeled with the set of propositional logic variables which are
assigned to true in w.

Example 2.3.3. We consider the Kripke structure T = (W,{Ry, Ra},v) with

W = {wy, we, w3, wy},

Ry = {(w1, w2), (w1, w3), (ws, ws3)},

Ry = {(w2, w2), (w2, ws), (ws, w3)},
v(wy,a) = {true},

v(wy,b) = {false},
v(we,a) = {false},
v(wa,b) = {true},

<
g
e

<

(w3, b) = {true},
(ws, @) = {false}
v(wy, b) = {true}

<

Wy, @

)=
)=
)=
(w3, a) = {false},
)
)
)

Figure[2.]) depicts a transition system corresponding to this Kripke structure.

In modal logic, different kinds of satisfiability are considered. The first notion is the
satisfiability of a modal logic formula in a certain world of a given Kripke structure.

Definition 2.3.4 (Satisfiability of a Modal Logic Formula in a World). Let G, H € F&/n
be modal logic formulae and T = (W,{Ry,...Ry},v) a Kripke structure. Satisfiability
of a modal logic formula G in T at world w € W, denoted by Z,w = G, is inductively
defined as follows:
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Figure 2.1: Transition System for the Kripke Structure Z given in Example

Ry

X

Z,bwkET.

T,wlpe L.

Z,w Ez iff v(w,x) = true, z € V.

ZwEFANGIffT,wEF andZ,w = G.
e ZwEFVGiff LLwEF orT,wEG.
o Z,w = O;F iff there is w' € W, with R;(w,w") and Z,w' = F.
e Z,w = OiF iff Z,w' = F for allw' € W with R;(w,w').
The second notion of satisfiability is the satisfiability of a formula in a Kripke structure.

Definition 2.3.5 (Satisfiability of a Modal Logic Formula in a Kripke Structure). Let
F e F&/n be a modal logic formula and T = (W,{Ry,...Ry},v) a Kripke structure.

e F is satisfied in Z if there is a world w € W with Z,w |= F.
e F' is globally satisfied in Z, denoted by Z |= F, if F is satisfied in all worlds w € W.
o [ is satisfiable if there is a Kripke structure where F' is satisfied in some world.

Example 2.3.6. We consider the Kripke structure given in Example and examine
the following modal logic formula in this Kripke structure

F=0bA (<>1b V QQT)

The transition system of the kripke structure consists of 4 different worlds. By considering
the transition system given in Figure we observe that for all w e W,

Z,wEF

Therefore T |= F and we can conclude that F' is satisfiable.
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2.4 Description Logics

Description logics Baader and Nutt (2003)) are a family of knowledge representation
languages which are more expressive than propositional logic but have better compu-
tational properties than first-order logic. Throughout this thesis, different description
logics are considered. This is why in Section both syntax and semantics of the
description logics ALE and ALC and in Section [2.4.2] the description logic SHZ is in-
troduced. Section briefly presents reasoning tasks of interest for knowledge bases
given in description logics and Section [2.4.4] introduces some equivalences and normal
forms. Furthermore, the notion of DL-clauses for description logic knowledge bases given

in SHT is presented in Section [2.4.5]

2.4.1 The Description Logics ALE and ALC

A knowledge base given in the description logic ALE or ALC consists of two parts: a TBox
and an ABox. The TBox contains the terminological part of the knowledge. It describes
the world using concepts and roles. Where concepts denote sets of individuals or unary
predicates and roles denote binary relations between individuals or binary predicates.
The ABox contains the assertional knowledge of the world. It gives information on the
individuals occurring in the domain. It specifies the concepts an individual belongs to
and how individuals are connected by roles.

Definition 2.4.1 (Description Logic Signature). A description logic signature is a tuple
Y = (N¢, Ng, N1) with

e N¢o a countable set of atomic concepts,
e Ng a countable set of atomic roles, and

e N; a countable set of individuals.

Definition 2.4.2 (Syntax of ALE Concepts). Let ¥ = (N¢, Ng, N1) be a description
logic signature. ALE concepts C and D are formed according to the following syntax
rule:

C,D — A (atomic concept)
T (top concept)
1| (bottom concept)
—A | (atomic negation)
CnD | (intersection)
JR.C' |  (existential role restriction)
VR.C (universal role restriction)

where A € N¢ is an atomic concept and R € Ng is an atomic role. We use wag to
denote the set of ALE concepts that can be constructed from 3.
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Definition 2.4.3 (Syntax of ALC Concepts). Let ¥ = (N¢, Ng, N1) be a description
logic signature. ALC concepts C and D are formed according to all syntax rules listed in

Definition [2.4.3 together with the following two additional rules

C,D — -=C | (negation)
CuD (union)

We use CElLC to denote the set of ALC concepts that can be constructed from 3.

Note that ALE concepts are ALC concepts as well. When the description logic under
consideration is clear from the context we write C> instead of CE\ re OT C’El rc respectively.
In the remainder of this section, unless stated otherwise, by concepts we mean ALC
concepts.

Definition 2.4.4 (Role Restriction/Literal Concept/Literal). A role restriction is a
concept of the form dR.C or VR.C with C' a concept. A literal concept is either T,
L or of the form A or —A for atomic concepts A. Furthermore, a literal is either a role
restriction or a literal concept.

Next we define the notion of subconcepts which is a similar to the notion of a subfor-
mula in propositional logic as given in Definition [2.1.2

Definition 2.4.5 (Set of Subconcepts). Let ¥ be a description logic signature C, D, E

concepts and R a role. sub : C* — 20% s a function mapping a concept C' to the smallest
set of concepts satisfying the following conditions:

o C esub(C).
o [f—=D € sub(C) then D € sub(C).

If AR.D € sub(C) then D € sub(C).

IfVR.D € sub(C) then D € sub(C).

If DN E € sub(C) then D € sub(C) and E € sub(C).
o [f DUE €sub(C) then D € sub(C) and E € sub(C).
For a concept C, sub(C) is called the set of subconcepts of C.

Note that we use the same function sub to determine both the set of subformulae of a
propositional logic formula and the set of subconcepts of a description logic concept. Since
the logic under consideration will always be made clear, this will not lead to confusion.

By subconcepts occurring on the topmost level of a concept C' in NNF, we understand
each subconcept occurring in C', occurring outside of the scope of a role restriction.

Definition 2.4.6 (Depth of a Concept). Let ¥ be a description logic signature and
C € C* be a concept. depth : C¥ — N is a function mapping a concept C' to the mazimal
depth of nested role restrictions occurring in C and is defined as follows:
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depth(A) = 0, for atomic concepts A.

depth(—=C') = depth(C).

(4
(
depth(C' M D) = maz(depth(C), depth(D)).
(
(

depth(3R.C') = depth(C) +

(
depth(C' U D) = maz(depth(C),depth(D)).
(C
o depth(VR.C) = depth(C) +

When different normal forms for concepts are considered, it is important to know, if
transforming a concept into a certain normal form increases its size.

Definition 2.4.7 (Size of a Concept). Let ¥ be a description logic signature, C' and D
concepts and R a role. The function size : C* — N maps a concept to its size and is

defined as follows:
e size(A) = 1, for atomic concepts A or A= 1 or A=T.
C) =size(C) + 1

® size

(=
o size(C'T1 D) =size(C) + size(D) + 1.
e size(C'U D) = size(C) + size(D) + 1.
(

size(3R.C) = size(C) + 2.
e size(VR.C) = size(C) + 2.

Next semantics of ALC concepts are presented. Note that, since all ALE concepts are

ALC concepts as well, the following definition presents the semantics of ALE concepts
as well.

Definition 2.4.8 (Semantics of ALC Concepts). An interpretation T is a pair (AT, T),
where AT is a nonempty set which is the domain of the interpretation and T is an
interpretation function assigning to each atomic concept A a set AT C AT and to each
atomic role R a binary relation R C AT x AT. We extend the interpretation function
to complex concepts by the following inductive definitions:

1T =90
(-C)F = AT\ C*
(cnD)*=ctnD*
(CuD)* =ctuDpD*
(AR.C)Y ={a e AT |3 (a,b) € R Abe CT}
(VR.C)Y ={a € AT | Vb (a,b) € RT - b e CT}
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Definition 2.4.9 (Model for a Concept). A concept C' is satisfiable if there is an inter-
pretation T with CT # 0. We call such an interpretation a model for C.

Definition 2.4.10 (TBox). Let C and D be concepts. A terminological axiom or gen-
eral concept inclusion (GCI) has the form C T D. A TBox consists of a finite set of
terminological axioms.

Definition 2.4.11 (ABox). Given a set of individuals N7, an ABox assertion has the
form C(a) or R(a,b), where C is a concept, R a role and a,b € N;. An ABox is a finite
set of ABozx assertions.

Definition 2.4.12 (Description Logic Knowledge Base). A description logic knowledge
base is a tuple K = (T, A) with T a TBoz and A an ABoz.

Sometimes a TBox also contains statements of the form or C' = D for two concepts
C and D. This statement is an abbreviation for stating that both C & D and D C C
holds.

Definition 2.4.13 (Satisifiability of a TBox). A terminological axiom C' T D is satisfied
by an interpretation I, if CT C DY. A TBox T is called satisfiable if there is an

interpretation I satisfying all its axioms. An interpretation satisfying a TBox T is called
a model for T.

Example 2.4.14. Consider the following TBox:

T=A Father T Man M 3hasChild. Human
Mother T Woman M JhasChild. Human
Human C Man L Woman
Man 0 Woman C L}

This TBox gives some information about families. The first axiom states that a father is a
man, who has at least one child. Furthermore it is stated that humans are men or women
and that the concepts of women and men are disjoint. Next, we given an interpretation

Z for T:

AT = {b,c,d, e}
Father® = {b}
Mother? = ()

Man® = {b,d}

Woman® = {c}
Human® = {b,¢,d, e}
hasChild® = {(b,d), (b,e)}

Since the interpretation I satisfies all axioms given in T, I is a model for TBox T.

22



Definition 2.4.15 (Semantics of ABox Assertions, Satisfiability of an ABox). Let Z =
(AT, T) be defined as in Definition . We extend the interpretation function such
that it maps each individual to a domain element. An ABox assertion C(b) is satisfiable
if there is an interpretation T with b* € CT. Furthermore an Abox assertion R(b,c) is
satisfiable if there is an interpretation T with (b%,c*) € RT. We call an interpretation
satisfying an ABox assertion a model for the ABox assertion. An ABox is called satis-

fiable, if there is an interpretation satisfying all its axioms. An interpretation satisfying
an ABox is called a model for the ABoz.

Furthermore, an interpretation Z satisfying both 7 and A of a knowledge base K =
(T,.A) is called a model for the knowledge base. Next we extend the notion of the size
of a concept given in Definition [2:4.7) to description logic knowledge bases.

Definition 2.4.16 (Size of a TBox, ABox and KB). Let K = (T, .A) be a description logic
knowledge base and C', D be concepts. The size function introduced in Definition
can be extended such that it can be used to compute the size of terminological axioms, a
TBox, ABozx assertions, an ABox and a description logic knowledge base by adding the
following:

>_ccpersize(C C D).

)
e size(C(a)) = size(C) + 1, for ABox assertions C(a).
(

=
E
@A ~—

)) = 3, for ABoz assertions R(a,b).

o size(A) = 3 ca)easize(C(a)) + X p(apyeasize(B(a,b)).
For a description logic knowledge base K = (T,.A) the size of K is defined as:
size(K) = size(T) + size(A)

Example 2.4.17. We consider the following ABox together with the TBox given in
Example [2.4. 1]}

A = {Man(norman),
hasChild(norman, liam),

hasChild(norman, julian)}

In addition to that the interpretation T given in Example is extended to interpret
ABoz individuals and assertions:

norman® = a
liam* = ¢
julian® = d

Since interpretation T satisfies A, it is a model for A. We conclude that T is a model for
both T and A and therefore, I is a model for K = (T, A).
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2.4.2 The Description Logic SHZ

The extension of ALC to include transitively closed primitve roles (Sattler, 1996), role
hierarchies and inverse roles is called SHZ. The name of this description logic has rather
historical reasons. The letter S is used as an abbreviation for the extension of ALC
with transitively closed primitive roles. The letter S is used in order to indicate that the
resulting logic is related to the multi modal logic S4,,) Schild (1991) which is modal
logic with a reflexive and transitive reachability. The letter Z denotes inverse roles and
‘H role hierarchies.

In addition to the TBox and the ABox, a knowledge base given in the description logic
SHZ contains an RBox. The RBox contains information about the roles used in the
knowledge base and gives information about the relation between the different roles.

Definition 2.4.18 (RBox). For a set of atomic roles Ng, the set of roles is defined as:
NRU{R_ | R e NR}

where R~ denotes the inverse role corresponding to the atomic role R. A role inclusion
axiom is an expression of the form R T S, where R and S are atomic or inverse roles.
A transitivity axiom is of the form Trans(S) for S an atomic or inverse role. An RBox
R is a finite set of role inclusion axioms and transitivity axioms.

In order to simplify notation, a function Inv on the set of roles is introduced that
computes the inverse of a role, with Inv(R) = R~ and Inv(R™) = R.

Since SHZ is the extension of ALC with transitive roles, role hierarchies and inverse
roles, the definition of SHZ concepts and TBoxes are very similar to ALC concepts and
TBoxes. The only difference is, that in SHZ, we are allowed to use inverse roles to
construct concepts and terminological axioms.

Definition 2.4.19 (Syntax of SHZ Concepts). Let ¥ = (N¢, Ng, N1) be a description
logic signature. Complex SHZ concepts C and D are formed according to the following
syntax Tule:

C,D — A| (atomic concept)
T (top concept)
1| (bottom concept)
-C | (negation)

CnD | (intersection)
CuUD | (union)

dR.C'|  (universal role restriction)
VR.C (existential role restriction)

where A € N¢ is an atomic concept and R € Nr U{R™ | R € Ng}. We use C§HI to
denote the set of SHI concepts that can be constructed from 3.

For a SHZ concept C, the definition of the set of subconcepts of C, denoted by sub(C),
corresponds to Definition [2.4.5
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A SHT TBox consists of a finite set of terminological axioms C C D for C, D concepts.
Given a set of individuals Ny, a SHZ ABox A is a finite set of assertions of the form
C(a) and R(a,b), with C a concept, R a role and a, b individuals from N;. A knowledge
base K is a triple (R, T, .A) with signature ¥ = (N¢, Ng, Np).

The size of a SHZ concept corresponds to the size of an ALC concept as given in
Definition In order to determine the size of a SHZ knowledge base, the definition
of the size of an ALC knowledge base given in Definition [2.4.16] has to be extended to
handle RBoxes.

Definition 2.4.20 (Size of an RBox and a KB). Let R, S be roles. Then the size of a
role inclusion axiom and an RBox is given as follows:

o size(RC S) =3, for role inclusion axioms RT S.
e size(Trans(S)) = 2, for transitivity axioms Trans(S).
o size(R) = 3 prser 31 2trans(s)er 2-
For a SHZ knowledge base K = (R, T,.A) the size of K is defined as:
size(K) = size(R) + size(T) + size(A)
where size(T) and size(A) are defined as in Definition [2.4.16

Example 2.4.21. We consider the following RBox together with the TBox given in
Ezxample and the ABox giwen in Ezample [2.].17;

R = {Trans(hasAncestor), (2.1)
hasParent C hasAncestor, (2.2)
hasChild™ C hasParent, (2.3)
hasParent C hasChild™ } (2.4)

The RBoz states, that hasAncestor is a transitive role , hasParent is a sub-role of
hasAncestor , and the hasParent role is inverse to the hasChild role and .

Next we define the relation C*, which gives information on the role hierarchy.

Definition 2.4.22 (Sub-role, Super-role). For an RBox R, the relation °* denotes the
reflexive, transitive closure of C over

RU{Inv(R)CInv(S)|RC S e R}
A role R is a sub-role (super-role) of a role S, iff RC* S (SC* R).

Definition 2.4.23 (Transitive/Simple Role). Let R be an RBox. A role R is transitive
in R if there is a role S with S C* R, R C* S and Trans(S) € R. R is called simple if

there is no transitive role S with S C* R.
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Definition 2.4.24 (Semantics of SHZ concepts/knowledge bases). Let K = (R, T,.A)
be a SHI knowledge base with signature ¥ = (N¢, Ng, N1). The tuple T = (£, A%) is
an interpretation for K iff AT is a nonempty set and L assigns an element a* € AT
to each individual a € Ny, a set AL C AT to each atomic concept A, and a relation
RT C AT x AT to each atomic role R. T then assigns values to more complex concepts
and roles as described in Table , 7 is a model of K, denoted by T = K, if it satisfies
all azioms and assertions in R, T and A as shown in Table [2.1, A TBox T is called
consistent if there is an interpretation satisfying all axioms in T. A concept C is called

Interpretation of Concepts and Roles

TH = AT (BT = {(y2) | (z,y) € BT}
1T = 9 (VR.C)YY = {z|Yy:(z,y) e Rt - yecC?
(ﬂC')i = A;\CZI BR.C)YY = {z|3y:(z,y) € REryecCT}
(CuD)* = C*ubD
(cnbDY = ctnD?
Satisfaction of Axioms in an Interpretation
IE=ECLCD ifft ¢ c D? IEC(a) iff afeC?
IERCS iff RTC ST T = R(a,b) iff (a®,b') € R

T = Trans(R) iff (RH)* C R?

Table 2.1: Model-Theoretic Semantics of SHZ. RT is the Transitive Closure of R.

satisfiable w.r.t. R and T iff there exists a model T of R and T with CT # ().

2.4.3 Reasoning Tasks of Interest

There are several reasoning tasks, which are interesting for description logic knowledge
bases. First reasoning tasks for concepts are considered.

Definition 2.4.25 (Satisfiability w.r.t. a TBox). A concept C' is called satisfiable w.r.t.
a TBox T if there is a a model T of T with CT = (.

Definition 2.4.26 (Subsumption). A concept C' is subsumed by a concept D w.r.t. a
TBox T, denoted by C Ty D, if CT C D* for all models T of T .

Definition 2.4.27 (Equivalence). A concept C is equivalent to a concept D w.r.t. a
TBoxz T, denoted by C =1 D, if CT = D for all models T of T.

If the TBox is clear from the context or no TBox is used, C = D is written instead of
C =7 D.

Definition 2.4.28 (Disjointness). Concepts C' and D are called disjoint w.r.t. a TBox
T if CT N DT =0 for all models T of T.

As shown in Baader and Nutt| (2003), the latter three reasoning tasks can be reduced
to checking satisfiability of a concept w.r.t a TBox:
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Proposition 2.4.29 (Baader and Nutt| (2003)). Let C, D be concepts and T be a TBox.
Then

e C Ty D iff the concept C 1D is unsatisfiable w.r.t T.
o C =7 D iff the two concepts C 1D and —~C 1 D are unsatisfiable w.r.t. T .
e C and D are disjoint w.r.t T iff the concept C' 11 D is unsatisfiable w.r.t. T .

Example 2.4.30. We want to know, if the concepts Father and Human are disjoint
w.r.t. the TBox T given in Example[2.{.14 According to Proposition[2.4.29, Father and
Human are disjoint w.r.t. T iff the concept

Father 1 Human

is unsatisfiable w.r.t. T. However the model given in Example[2.7.1]] is a model for both
Father M Human and T. Therefore we can conclude that Father and Human are not
disjoint w.r.t. the TBox T .

Definition 2.4.31 (Consistency). An ABox A is called consistent w.r.t. a TBox T if
there is an interpretation T, which is a model for both A and T .

Definition 2.4.32 (Instance). An individual b is an instance of a concept C w.r.t. T,
denoted by A =1 C(b), if b* € CT for all models T of A and T.

Definition 2.4.33 (Set of Instances, Instance Retrieval Problem). For a concept C, a
TBox T and an ABox A, the set of instances of C' is defined as:

Inst(C) = {a | A =7 C(a)}
The instance retrieval problem denotes the task of finding all instances of a given concept.

Definition 2.4.34 (Most Specific Concept). For an instance b and a set of concepts
S, a concept C € S is called the most specific concept, individual b is an instance of if
A =1 C(b) and C is minimal w.r.t. the subsumption ordering.

As described in Baader and Nutt| (2003), instance checking can be reduced to consist-
ency checking:

Proposition 2.4.35 (Baader and Nutt (2003)). Let C, D be concepts, T a TBox and
A an ABoz. Then

A7 Cla) iff AU{=C(a)} is inconsistent w.r.t. T.

The instance retrieval problem can be reduced to instance checking: For each individual
b occurring in the ABox it has to be checked if b is an instance of C'. Since instance
checking can be reduced to consistency checking, the instance retrieval problem can be
reduced to consistency checking as well.
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2.4.4 Equivalences and Normal Forms

In the following, several normal forms for description logic concepts will be investigated.
To translate a description logic concept into a normal form, it is necessary to perform
transformations on concepts. These transformations should work without changing the
semantics of the concept, in other words equivalence is supposed to be preserved during
the transformation.

The equivalences introduced in Theorem can be used for concepts given in the
description logic SHZ as well. For this, we use a bijective function between concepts and
propositional logic formulae.

Definition 2.4.36 (Mapping of Concepts to Propositional Logic Formulae). Let ¥ =
(N¢, Ngr, N1) be a description logic signature. prop : CEHI — FE;OP s a function map-
ping concepts to propositional logic formulae with

> = NocU{VR.C|R€ Ng and C € C%;;7} U{3R.C | R€ Ng and C € C5; 7}
defined as follows:

e prop(L) = false.

e prop(T) = true.

e prop(B) = b, for B an atomic concept, b a propositional logic variable.

e prop(—C) = —prop(C), for concepts C.

e prop(C LI D) = prop(C) V prop(D), for concepts C, D.

(T
(
(
e prop(C M D) = prop(C) A prop(D), for concepts C, D.
(
e prop(3R.C") = JR.C, with IR.C a propositional logic variable.
(

e prop(VR.C') =VR.C, with VR.C a propositional logic variable.

Note that computing prop(3R.(B M D)) results in 3R.(B M D) which is just a propos-
itional logic variable. This means that prop translates role restrictions to propositional
logic variables. However this is not a restriction: if we want to use the propositional logic
equivalences for some concept C' in the scope of a role restriction IR.C’' (VR.C'), we can
easily compute prop(C) instead of prop(3R.C) (prop(VR.C)).

To facilitate readability, we write propositional logic variables which were produce
by the prop function only using lowercase letters and omit the period after the role.
For example the propositional logic variable 3R.(B M D) will be written as 3r(b M d).
This allows to distinguish at a first glance between propositional logic variables and role
restrictions.

From the way the signature ¥’ is constructed, if follows that prop is a bijective function.
Therefore prop can be used not only to map concepts to propositional logic formulae but
also to map propositional logic formulae to concepts. The prop function can be used in
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order to use the propositional logic equivalences introduced in Theorem as follows:
Given a concept C, prop(C) is computed. Then a subformula of prop(C) is substituted
by some equivalent subformula leading to some propositional logic fomula F. Finally
calculating prop™ (F') leads to some concept C’ which is equivalent to C'.

In the following, when considering transformations of concepts, we sometimes omit the
prop mapping and use the equivalences known from propositional logic for concepts.

Theorem 2.4.37. Let C be a concept. The following equivalences hold:

-3JR.C =VR.-C
-VR.C =3dR.-C

Theorem can be proved using the definition of the semantics of SHZ concepts.
For propositional logic formulae the negation normal form was defined. This normal
form can be defined for description logic concepts as well.

Definition 2.4.38 (Negation Normal Form). A concept C is in negation normal form
(NNF) iff the negation symbol only occurs in front of atomic concepts.

Proposition 2.4.39. For every concept C there is an equivalent concept nnf(C') which
is in negation normal form.

Every concept can be transformed into NNF by removing double negations, moving
the negations as far as possible to the inside of the concept using De Morgan’s laws and
by using the equivalences given in Theorem [2.4.37, We denote the NNF of a concept C
by nnf(C).

2.4.5 DL-Clauses

Reasoning in description logics is usually done using tableaux calculi. FaCT++ [Tsarkov
and Horrocks| (2006) and Pellet Sirin, Parsia, Grau, Kalyanpur, and Katz (2007)) are two
examples for highly efficient description logic reasoners which implement tableau-based
decision procedures.

The reasoner used in the document at hand is called Hyper and implements a hyper
tableau calculus. We will not go into details of this calculus and refer to (Baumgartner,
Furbach, and Pelzer, [2007)) and (Bender, Pelzer, and Schon) 2013). The calculus imple-
mented in Hyper is closely related to the calculus used in HermiT (Motik, Shearer, and
Horrocks|, [2007). It is notable that the two reasoners are able to handle quite different
logics. Hyper is able to handle full first-order logic with equality and furthermore the
description logic SHZQ which corresponds to the description logic SHZ extended by
qualified number restrictions. HermiT on the other had is able to handle OWL onto-
logies which are much more expressive than SHZQ. In contrast to Hyper, HermiT is
not able to handle knowledge bases given in first-order logic. The hyper tableau calcu-
lus implemented in HermiT as well as the one implemented in Hyper first transform a
description logic knowledge base into so-called DL-clauses. The document at hand uses
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these DL-clauses in Chapter [4 when introducing an approach for the evolution of ABoxes.
Therefore, we will give a description of DL-clauses together with a presentation of how
to transform a SHZ knowledge base into DL-clauses.

The transformation of a SHZ knowledge base into DL-clauses is done in three steps:
In the first step, transitive roles are removed from the knowledge base. The second step
is the normalization of the knowledge base where all TBox axioms and ABox assertions
are transformed into a normalized form. In the last step, DL-clauses are constructed
from the normalized knowledge base. All three steps will be described in the following.

2.4.5.1 Transformation into DL-Clauses

Elimination of Transitivity Axioms Given a knowledge base in the description logic
SHZI. In the first step, the knowledge base is transformed into an equisatisfiable ALCHZ
knowledge base by eliminating transitive roles. This transformation was introduced by
Motik| (2006). It is similar to the technique used to transform SHZQ concepts into
ALCT Qb concepts presented by [Tobies (2001) and the encoding of formulae given in the
modal logic K4 (K with transitive modality) into formulae of the modal logic K introduced
by |Tobies (2001)). First the notion of the concept closure as introduced by |[Motik| (2006)
for the description logic SHZQ is adapted to SHZ:

Definition 2.4.40 (Concept Closure (Motik, 2006)). Let K = (R,T,A) be a SHT
knowledge base. The concept closure of IC, denoted by clos(K), is defined as the smallest
set of concepts satisfying the following conditions:

e I[fCLC DeK, then nnf(~C U D) € clos(K).

If C(a) € A, then nnf(C) € clos(K).
o [fC €clos(K) and D is a subconcept of C, then nnf(D) € clos(K).
o [fVR.C €clos(K), SC* R and Trans(S) € R, then VS.C € clos(K).

TBox axioms C' T D state that every individual belonging to concept C belongs to
concept D as well. In other words there cannot be an individual belonging to C' and not
belonging to D. Therefore, the axiom can be transformed to T T —C' U D stating that
every individual has to belong to D or to —=C. This is why in Definition for every
TBox axioms C' C D the NNF of the concept -C'U D is added to the concept closure.

The first three parts of Definition [2.4.40] can be seen as an extension of the definition
of the set of subconcepts given in Definition to TBoxes and ABoxes: Interpreting
the TBox as a set of concepts of the form —C'LUI D, the concept closure contains the NNF
of all concepts occurring in the TBox or the ABox together with all subconcepts. In the
last line of Definition [2.4.40] concepts of the form VR.C are considered. For all transitive
subroles S of R, VS.C is added to the concept closure. This is a very important step,
because it enables us later to remove the transitive roles.

Actually the only reason, why we create the concept closure is, that we need the
concepts of the form V.S.C created by the last line of Definition [2.4.40]
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The definition of the concept closure is now used in the definition of the Q-operator
introduced by Motik| (2006). the 2 operator transforms a SHZ knowledge base K into
an equisatisfiable ALCHZ knowledge base Q(K).

Definition 2.4.41 (9 operator (Motik, 2006)). Let K = (R, T,.A) be a SHZ knowledge
base. QUK) is the ACCHT knowledge base constructed as follows:

e The RBox of Q(K) is obtained from R by removing all axioms of the form Trans(R).

e The TBox of Q(K) is obtained from T by adding VR.C T VS.(VS.C), for each
concept YR.C' € clos(K) and role S with S C* R and Trans(S) € R.

e The ABox of Q(K) corresponds to A.
According to Motik (2006), the size of Q(K) is polynomial in the size of .

Proposition 2.4.42. (Motik, 2006) Let IC be a SHZ knowledge base. Then IC and Q(K)
are equisatisfiable.

The proof of Proposition can be found in (Motik, 2006)).
Given a knowledge base I, it is possible to use Q(K) to answer queries. According to
Motik| (2006)),
QKUa)=2K)U{a}

for a of the form A(b), =A(b), S(b,c) or =S(b,c) with A an atomic concept, S a simple
role and b, ¢ individuals.

Example 2.4.43. The following SHZ knowledge base K = (R, T,.A) with
R = {Trans(S),S C R}
T = {E CVR.-D}
A= {VS.C(G()), S(ao,al), S(al,ag)}

should be transformed into an equisatisfiable ALCHZI knowledge base. For this, first the
concept closure of IC is constructed according to Definition [2.4.40

clos(K) = {~EUVYR.~D, —~E, YR~D, E, D, =D, ¥S.C, C, ¥S.~D}

In the neat step, the transitive role S is removed from K using Definition [2.].41] leading
to QIK) = (R, T', A) with R ={S C R} and
T'={E CVR.-D,
VS.C CVS.(VS.CO), (2.5)
VR.-D CVS.(VS.—D),
VS.-D CVS.(VS.—D)}

To illustrate the effect of the Q-operator transformation presented in Definition[2.4.41), we
take a closer look at the original knowledge base K. A kripke structure for the knowledge
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Figure 2.2: Elimination of Transitive Roles.

base is created successively. Figure[2.2d shows the ABox of K. The individuals occurring
in the ABox are represented by black nodes. Furthermore the information given in the
ABox is used to label nodes and to create labeled edges between the nodes. For example
there is S(ag,a1) in the ABox which causes the nodes representing ay and ay to be con-
nected by an edge labeled with role S. The RBox is used to create the kripke structure
as well: the edges connecting node ag and ao is added because of the transitivity axiom
Trans(.S) in the RBox. Below each node the concepts the corresponding individual belongs
to are listed. These concepts are presented in a stepwise manner. The first line shows
all concepts for which an instance assertion is contained in the ABox. The second line
shows instance assertions which can be deduced from the instance assertions in the first
line together with the graph. So since ag belongs to concept VS.C it is obvious that each
S successor of ag has to belong to concept C. Hence C is added in the second line below
a1 and as.

Figure shows the ABox of Q(K). In Q(K), the transitivity aziom is removed.
Hence there is no edge connecting ag and as. Again the concepts an individual belongs
to are written below the node representing the individual. The first line adds VS.C' to
individual ag. For the second line we use to deduce VSNS.C(ap) and therefore add
VSVS.C below ag. Further, since the first line states that ag belongs to concept VS.C
and a1 s reachable via S from ag, C is added below ai. VYSNVS.C given in the second
line below ay and S(ag,a1) itmplies that we add YC' to ay in the third line. Then again
using the TBox axiom , VSVS.C is added to ay in the forth line. Commencing in
the described way results in the graph shown in Figure [2.2}

The stepwise construction of the concepts an individual belongs illustrates the idea of
the transformation: The TBozx axiom VS.C' T VS.VS.C mimics the effect of the transitive
role S, ensuring that concept C is added to the same indwiduals as in Figure [2.2d,

Normalization The second step in the transformation of SHZ knowledge bases into DL-
clauses is the normalization. During this step, the TBox axioms and ABox assertions
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are transformed into the so-called normalized form. The RBox axioms are not changed
during the normalization step.

Definition 2.4.44 (Normalization (Motik, Shearer, and Horrocks, 2009)). Let K =
(R, T,A) be a ALCHT knowledge base. A GCI is in normalized form if it has the form

n
TC |_|Ci
i—1

where C; is of the form B, VR.B, AR.B for B a literal concept and R a role. A TBox T
18 in normalized form if all its axioms are normalized. An ABox assertion is normalized
if it has the form C(b) with C a literal concept or R(b,c) with R an atomic role and b, c
individuals. An ABox A is normalized if all its assertions are normalized and A is not
empty. A knowledge base K = (R, T,.A) is normalized if T and A are normalized.

During the normalization, auxiliary concepts have to be introduced. When doing this,
it is crucial to decide wether to introduce a positive or a negative auxiliary concept.
Choosing wisely ensures the DL-clauses obtained in the next step to be as close to horn
clauses as possible. To determine if a positive of a negative auxiliary concept is supposed
to be introduced, a function called pos is used.

Definition 2.4.45 (pos function (Motik et al., 2007)). Let ¥ = (N¢,Ng,Np) be a
description logic signature. pos : C?HI — {true, false} is a function assigning true or
false to concepts which is defined as followed:

e pos(T) = false.
e pos(L) = false.
e pos(A) = true.
e pos(—A) = false
e pos(Cy MCy) = pos(C1) A pos(Ca).
e pos(Cy LI Cy) = pos(C1) V pos(Ca).
e pos(VR.Cy) = pos(Ch).
e pos(IR.Cy) = true.
Where A is an atomic concept, C1 and Cy are arbitrary concepts.

Definition 2.4.46 (Normalized Knowledge Base (Motik et al., 2009)). Let K be a
ALCHTI knowledge base. The normalized knowledge base A(K) is computed using the
functions shown in Table[2.9
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AK) = {{J AU
a€R
U A(T C nnf(=C; L Cy)) U
C1EC,
a)}u [ Aa)}
acA
A(TECUC’) = A(TECUO[C/)
U U A(aer EC»L),
1<i<n

for C' =1, C; and n > 2

A(TC CUVYR.D
A(TC CU3RD

) = A(TECUVYRap)UA(ap C D)
)

A(D(s))
)
)

A(T ECU3IR.ap)UA(ap E D)
{ap(s)} UA(ap C D)
= {R(ts)}

{B}, for any other axiom

AR (s, 1)
A(B

where Q¢ is a fresh atomic concept unique for C.

B Qc if pos(C) = true
W= -Qc if pos(C) = false

Note: (C; are arbitrary concepts, C is a possibly empty disjunction of arbit-
rary concepts, D is not a literal concept, and a is a fresh individual. Since
Ll is commutative, the C’ in C U C’ is not necessarily the right-most disjunct.

Table 2.2: The Functions used for the Normalization as Introduced by |[Motik et al. (2007)).

Please note that the result of the normalization of a knowledge base is one set con-
taining all normalized axioms from the TBox and the RBox and all normalized ABox
assertions. When convenient we will however treat A(K) as a knowledge base A(K) =
(R, T', A") where R’ contains all axioms R C S with R, S atomic roles, 7’ contains all
axioms of the form T T | | ; C; as given in Deﬁnitionand A’ contains all assertions
of the form B(b) or R(b,c) with B a literal concept, R a role and b, ¢ individuals.

A GCI C; E (5 states that everything that belongs to the concept Cy belongs to the
concept Co as well. So the C sign can be interpreted as an implication. In the first step
of the normalization of GCls, all concepts are moved to the right side of the . In the
next step auxiliary concepts are introduced in order to transform the GCI into the form
T C L7, C;. We illustrate the normalization by an example.

Example 2.4.47. In Ezample(2.4.43 we removed the transitive roles from the given SHZ
knowledge base K = (R, T, A) leading to the ALCHZ knowledge base Q(K) = (R',T', A)
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with

R ={SC R}
T'={E CVR.-D,
VS.C CVS.(VS.0),
VR.~D C ¥5.(YS.~D),
VS.—~D C VS.(VS.-D)}
A" ={¥5.C(ap), S(ap,a1), S(a1,az}

Table is used to normalize Q(K). The normalization does not transform the RBo.
Therefore, the RBox remains unchanged. Normalizing the TBox leads to:

o Normalization of E T VYR.—D: concept E is moved to the right side in the GCI

leading to
TE-FUVR.-D

Since =D s a literal concept, the normalization of this terminological axiom is
finished.

Normalization of ¥S.C T VS.(VS.C): VS.C is moved to the right side in the GCI
and the right side of the GCI is transformed into negation normal form. This leads
to

T C3S-CUVS.(VS.C)

Since VS.C is not a literal concept, an auxiliary concept avys.c has to be introduced,
which is either Qvs.c or =Qvs.c. We use the pos function introduced in Defini-
tion[2.4.40] in order to find out if the introduced auxiliary concept should be positive
or negative. Since

pos(VS.C) = pos(C') = true

an auziliary concept Qvs.c is introduced. The resulting two axioms represent the
normalization of the original axiom.:

T EJIS-CUVS.Qvs.c
T E ~Qys.cUVS.C

Normalization of YVR.—~D C VS.(VS.—D): YR.—D is moved to the right side in the
GCL.
T C 3R.DUVS.(¥5.-D)

Since ¥S.—D is not a literal concept and occurs in the scope of a universal role
restriction, an auxiliary concept has to be introduced. Again, the pos function is
used to determine if we have to introduce a positive or a negative auxiliary concept:

pos(V.S.—D) = pos(—D) = false
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Hence the negative auxiliary concept =Qvs.—p is introduced. This leads to the nor-
malized axioms:

TCIdR.DUVS.~Qvs-p
TCE Qvs—p UVS.—D

e Normalization of ¥S.—D C VS.(VS.—D) is similar to normalization of VR.—D C
VS.(VS.mD). Therefore only the result is presented:

TEIS.DUVYS.—~Qvs—-p
TLC stﬁp UvS.-D

In the next step, the ABox is normalized.

e Normalization of VS.C(ag): Since VS.C is not a literal concept, an auziliary concept,
either Qvs.c or - Qvs.c, has to be introduced. However during the normalization
of the TBox already an auxiliary concept for ¥S.C' was introduced. We reuse this
concept leading to

Qvs.c(ap)
TLC _‘QVS.C uvs.Cc

e Since all other ABox assertions are already normalized, the normalization of the
ABoz is finished.

The resulting normalized knowledge base is: A((K)) = (R",T", A”) with

R"={SC R}
T"={T C-EUYR.-D,
T C 35.-C UVYS.Qusc,
T E =Qvs.c UVS.C,
T C 3R.DUVS.~Qys—p,
T E Qvs.~p UVS.~D,
T C3S.DUVYS~Qus-p}
A" ={Qus.c(ao), S(ao,a1), S(a1,az}

Translation into DL-Clauses In the following, the notion of DL-clauses introduced by
Motik et al. (2007) is adapted to the description logic SHZ. DL-clauses are well-suited
as input format for theorem provers which are based on the hyper tableau calculus to
compute models or to decide satisfiability.

Definition 2.4.48 (Atom). An atom is of the form B(s), R(s,t), 3R.B(s) or 3R.~B(s)
for B an atomic concept, R a role and s and t individuals or variables. An atom not
containing any variables is called a ground atom.
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Definition 2.4.49 (Syntax of DL-clauses (Motik et al., 2007)). A DL-clause is of the
form
UUN...ANUp =WV V...V,

with V; atoms and U; atoms of the form B(s) or R(s,t) and m >0 andn > 0. Ifn =0,
the right hand side (head) of the DL-clause is denoted by L. If m = 0, the left hand
side (body) of the DL-clause is denoted by T. If n < 1 the DL-clause is called a Horn
DL-clause.

Note that the head of a DL-clause is constructed from arbitrary atoms. Since atoms
are allowed to be of the form 3R.B, this means that DL-clauses are allowed to contain
existential role restrictions. One example for such a DL-clause is

C(z) AN D(z) — 3R.C(x)

This fact constitutes the most obvious difference between the syntax of DL-clauses and
first-order logic clauses given as implications. Another difference is the fact that all atoms
occurring in DL-clauses are constructed from unary or binary predicates and do not use
any function symbols.

Definition 2.4.50 (Set of DL-clauses for a KB (Motik et al.,[2007)). Let K = (R, T, .A)
be a normalized ALCCHZL knowledge base. The set of DL-clauses Z(K) for KC is obtained

as given in Table [2.3,

Definition 2.4.51 (Semantics of DL-clauses (Motik et al., 2007)). Let ¥ = (N¢, Ng, Ni)
be a signature, K = (R, T,.A) be a normalized knowledge base over ¥ and Z(K) the set
of DL-clauses for IC. Let further

be a DL-clause in Z(K) and Ny a set of variables, disjoint from Ny. Let T = (A, 1)
be an interpretation and p : Ny — AT be a variable mapping. Let b5* = bT for an
individual b and 25" = p(x) for a variable x. Satisfaction of an atom, a DL-clause, and
set of DL-clauses N in T and p is defined as follows, where C is a concept, R a role and
s, t are variables or individuals:

o Z,ukEC(s) if st € OF.

o T,uE R(s,t) if (st t5H) € RT.

e Zu=ANU—= NV, ifZ,pulEV; for somel <j <n whenever I,p |=U;
i=1 j=1

for each 1 <i<m.
e I AU = VYV I N2y Ui = V=1 Vj for all mappings pu.
i=1 j=1
e TEN if T =r for each DL-clause r € N.

An interpretation satisfying a DL-clause (set of DL-clauses) is called model for the
DL-clause (set of DL-clauses). When convenient, we identify an interpretation with the
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=(K) = {[/n\ Ihs(C’i)] = [\n/ rhs(ci)} | for each T C |i| C;eTh U
i=1 i=1 i=1
{ar(R,z,y) — ar(S,z,y) | for each (RC S) € R}

ar(R,s,t) = R(s,t) if R is an atomic role
o | S(t,s) if Ris an inverse role and R = S~

Note: Whenever lhs(C;) or rhs(C;) is not defined, it is omitted in the DL-clause.

C Ihs(C) rhs(C)
A A(z)
-A A(z)

JR.A JR.A(z)

JR.-A JR.—A(x)

VR.A ar(R, x, y.) A(ye)

VR.—-A ar(R, z,y.) N A(ye)

Table 2.3: Translation of Normalized GCIs into DL-clauses as Introduced by Motik et al.
(2007)).

set of ground atoms assigned to true in the interpretation. This notion allows us to
compare interpretations using set operations.

Example 2.4.52. We transform the result of the normalization performed in Example
into DL-clauses. On the left hand side we show the azioms of the normalized TBox and
on the right hand side the corresponding DL-clauses.

TC-EUVR.-D, E(x) NR(z,y) N D(y) — L,

T C 35.-C UVS.Qus.c, S(z,y) = Qvr.c(y) VvV 3S.~C(x),
T C =Qvs.c UVS.C, - Qvs.c(z) N S(z,y) — C(y),

T C 3R.DUVS.—~Qvs.-p, S(z,y) A Qvs.~p(y) — IR.D(x),

T C Qvs.—p UVS.—D, S(z,y) A D(y) = Qvs.-p(x),

T C3S.DUVS.~Qvs.-p S(x,y) A Qvs.-p(y) — 35.D(z)

According to Lemma 2 from Motik et al.| (2007)), DL-clauses can be used to check
consistency of a knowledge base.

Lemma 2.4.53. Let K = (R, T, A)be a normalized ALCHZ knowledge base and I an
interpretation. Then, T =K iff T = =Z(K) and T |= A.

2.4.5.2 Properties of DL-Clauses

In this Section, we present some properties of DL-clauses and illustrate benefits of hyper
tableau based calculi working with DL-clauses.
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Usually tableaux based calculi for description logics handle a TBox
T={C1 EDy,...,C, CD,}
by adding the set of concepts
{-C1uDy,...,~C,UD,}

to the label of every individual in the tableau (Baader and Nutt} 2003). To process
these concepts, the reasoner is forced to nondeterministically choose between —C; and
D; which in the tableau is represented by the creation of two branches. For the first CGI,
the reasoner creates two branches. Then, for each following CGI, each branch is extended
by two new branches. This clearly leads to exponential behavior. Furthermore, when
showing inconsistency of a TBox, every possible branch has to be considered. As soon
as a large TBox with many CGIs has to be handled, this leads to extensive branching.
The problem arising from that is known as or-branching and constitutes a bottleneck for
implementations of tableau calcului.

Taking a closer look at the problem shows that this nondeterminism is not always
necessary. For example the TBox axiom A C B is handled by adding —A LU B to every
individual. However the corresponding DL-clause A(x) — B(z) is a Horn DL-clause and
shows that the assertion does not necessarily include any nondeterminism. There are
techniques like absorption trying to avoid or-branching (Baader and Nutt|, 2003), which
are able to handle cases like the CGI A T B. When considering more complex CGIs
these techniques however are of limited use.

Another way to avoid or-branching is the usage of DL-clauses in combination with a
hyper tableau based calculus. As mentioned afore, DL-clauses do not introduce unneces-
sary nondeterminism. During normalization it is ensured that the resulting DL-clauses
are Horn whenever it is possible. For this, special care is taken whenever an auxiliary
concept is introduced. pos(C') is evaluated, whenever during normalization an auxiliary
concept has to be introduced as a short-hand for some concept C. If pos(C) = false, C
does not require to put something into the head of the DL-clause. This is why a negative
auxiliary concept is introduced in this case.

Example 2.4.54. Let us consider the TBozx assertion
VR.-D C VS.(VS.—D)
gwen in Example[2.4.47. The first step of the normalization leads to:
TC3R.DUVS.(VS.—D)

Next an auxiliary concept for VS.—D is introduced. The naive way would be to introduce
a positive concept Qvs.—p leading to:

T CEIR.DUVS.Qvs-p
T E —~Qvs.—p UVS.~D
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This would result in the following two DL-clasues:

S(z,y) = IR.D(x) V Qvs.-p(y)
Qvs.-p NS(z,y) ND(y) — L

Note that the first DL-clause is not Horn. However as shown in Ezample [2.].77 and
it is possible to transform this TBox assertion into two Horn DL-clauses. The
pos function introduces an negative auziliary concept -Qvs—p. This ensures that the
resulting DL-clauses are Horn.

In Chapter [, a method to perform revision of ABoxes is presented. This method
requires the knowledge base under consideration to be given as set of DL-clauses. During
the computation of the ABox revision, it is necessary to construct minimal models and
models minimal w.r.t. a set of ground atoms. This is why we present the notion of
minimal models and I'-minimal models for a set of DL-clauses.

Definition 2.4.55 (Minimal Model/T-Minimal Model). Let N be a set of DL-clauses.
An interpretation I is called a minimal model for N iff Z is a model for N and further
there is mo model I' for N such that T' C Z. Let further T be a set of ground atoms. T
is a I'-minimal model for N iff T is a model for N and further there is no model ' for
N withZ’NT CcZNT.

We close this section by expanding the size function to compute the size of DL-clauses.

Definition 2.4.56 (size Function for DL-Clauses). Let C(s), R(s,t), AR.C(s), D and
E be atoms. The function size maps a DL-clause to its size and is defined as follows:

o size(C(s)) =
o size(R(s,t) =

o size(3R.C(s)) = size(C) + 3.

(

(

(
o size(—D) = size(D) + 1.
o size(E A D) = size(E) + size(D) + 1.
o size(E V D) = size(E) + size(D) + 1.

(

o size(E — D) = size(E) + size(D) + 1.

2.4.6 Relation to other Logics
2.4.6.1 Propositional Logic

We introduced the description logics ALE, ALC and SHZ. Compared to propositional
logic, these logics have the advantage that they are more expressive. In addition to that,
these description logics still have the advantage of being decidable.
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2.4.6.2 First-Order Logic

The description logic ALC can be translated into the two variable fragment which is a
decidable fragment of first-order logic (Scott], [1962)). The two variable fragment consists
of first-order formulae with at most two distinct variables. Mappings 7, and m, translate
from ALC to first-order logic and are inductively defined as given in Table (Franz
Baader and Diego Calvanese and Deborah L. McGuinness and Daniele Nardi and Peter
F. Patel-Schneider, |2003):

T (A) = A(x), my(A) = A(y),
o (CID) = m(C) Ama(D),  m(CTID) = my(C) Amy(D),
7x(C'UD) =7,(C)V (D), my(C'U D) = my(C) V my(D),
1(AR.C) = yR(z,y) A my(C), 7y(3R.C) = FzR(y, x) A 1,(C),
1 (VR.C) =VyR(z,y) = 7,(C), my(VR.C)=VyR(y,z) — m,(C).

Table 2.4: Translation of ALC to First-Order Logic.

This translation can be extended to translate transitive roles, inverse roles and role
hierarchies as well: For inverse roles, the variables x and y have to be switched. A role
hierarchy R C S can be translated to

v, y(R(z,y) = 5(z,y))
An transitivity axiom Trans(R) can be translated to:
Va,y, 2((R(z, y) A R(y, 2)) = R(z, 2))

Note that in this case, the resulting first-order formula is not in the two variable fragment
anymore.

In addition to that, we can give a translation m mapping a TBox and an ABox to
first-order logic formulae.

N\ Va(m(C) = (D))

CcCDeT
mA)= N RN N 7up©)
R(b,c)eA C(b)eA

where 7,5 (C) denotes the result of substituting b for each occurrence of x in m,(C).
Furthermore, it is noteworthy that, opposed to first-order logic, the description logics

ALE, ALC and SHT are all decidable.

2.4.6.3 Modal Logic K,

Schild| (1991) shows that there is a strong connection between modal logic and description
logic,namely: the description logic ALC is a notational variant of the modal logic K,,.
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Hence it is possible to translate any formula given in the modal logic K,, into an ALC
concept and vice versa. Table gives the inductive definition of a mapping ¢ from
modal logic K,, formulae to ALC concepts. Note that in the modal logic K,, we do not
have a TBox. Since in K, there is no way to directly address a world, there is no ABox
as well.

Table gives the definition of a mapping 7 that can be used to translate ALC
concepts into modal logic K,, formulae.

o(T) = T
p(L) = 1L
pla) = A
(=) = —¢(C)
plcANd) = ¢(C)M¢(D)
p(cvd) = o(C)Ue(D)
#(0;c) = VR;.¢(C)
p(Cic) = 3IR;.9(0)

Table 2.5: Translation of Modal Logic K,, Formulae into ALC Concepts. Where A is an
Atomic Concept, C, D are Arbitrary Concepts, R; is a Role and a, ¢ and d
are Variables.

7(T) T
(L) = 1
T(A) = a
7(=C) = -7(c)
T(CND) = 7(c)AT(d)
T(CUD) = 7(c)V7(d)
T(VRZ(C)) = DiT(C)
T(AR;.(C)) = <i1(e)

Table 2.6: Translation of ALC Concepts into Modal Logic K,, Formulae. Where A is an
Atomic Concept, C', D are Arbitrary Concepts, R; is a Role and a, ¢ and d
are Variables.

The fact that modal logic K,, and description logics are so closely related offers a way
to check satisfiability of a formula F' given in the modal logic K,, is to first translate F
into the ALC concept C' := ¢(F'). Then we can check the satisfiability of C(a) w.r.t.
the empty TBox for some individual a. C(a) is satisfiable w.r.t. the empty TBox iff the
modal logic formula F' is satisfiable.

The following chapters introduce several techniques to process description logic know-
ledge bases. As a result of the close connection of modal logic K,, and the description
logic ALC, many results presented in the following chapters can be passed on to IC,,.
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2.5 Hyper Tableau Calculus

In Chapter [, the hyper tableau calculus will be used to compute change operations on
description logic ABoxes. This is why we now briefly introduce some background on
this calculus and its implementation Hyper. Since Hyper is only used as a means to
construct I'-minimal models of a set of DL-clauses, details of the hyper tableau calculus
are not necessary to understand the approach presented in Capter 4] and we refrain from
presenting them.

The hyper tableau calculus is a calculus for first-order logic which is based on clausal
normal form tableaux. These hyper tableaux combine many interesting properties of
analytic tableaux (De Rijke, 2001) with properties of hyper resolution (Robinson, 1965).
As analytic tableaux, hyper tableaux depict the derivation history making it possible to
easily retrace the derivation process. In addition to that, hyper tableaux offer a model
construction procedure: branches in the hyper tableaux correspond to partial models.
Furthermore, finished branches correspond to models. Where a branch is called finished
if every clause is redundant in this branch. As in hyper resolution, the hyper tableau
calculus allows to resolve away all negative literals of a clause in a single inference step.
Further, in the hyper tableau calculus it is ensured that no branch contains repetitions
of the same literal. This property is called regularity.

The hyper tableau calculus was first developed for first-order logic reasoning (Baumgart+
ner, Furbach, and Niemeld, |1996|) and was extended to handle equality (Baumgartner
et al., 2007). Recently, it was extended to handle knowledge bases given in the description
logic SHZQ (Bender et al., 2013). The calculus is implemented in the Hyper theorem
prover which is used in various applications. It was used in natural language question
answering and commonsense reasoning (Furbach, Glockner, and Pelzer, 2010; Furbach,
Schon, and Stolzenburg, 2015b; [Furbach, Schon, Stolzenburg, Weis, and Wirth, 2015c])
and in e-learning applications (Baumgartner, Furbach, Grok-Hardt, and Sinner, 2004)).
Since modal logic and description logic are closely related, the extension of Hyper to
handle SHZQ knowledge bases enables Hyper to handle knowledge bases given in de-
ontic logic as well. Technically speaking, deontic logic corresponds to the modal logic K
together with a seriality axiom D : OP — < P. This allows the use of Hyper for know-
ledge bases given in commonsense reasoning applications using deontic logic (Furbach
and Schon| (2015); [Furbach, Gordon, and Schon| (2015a))).
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3 Knowledge Compilation

It is well known that many reasoning tasks are very much demanding from a computa-
tional point of view. For example, for a propositional logic knowledge base KB and a
formula F' checking if KB |= F in the worst case takes time exponential to the num-
ber of distinct variables occurring in KB and F. Checking if a formula is entailed by
a knowledge base is only one example for querying a knowledge base. Queries can be
seen as operations on a formula which do no change the formula itself but provide in-
formation about the formula. In contrast to that, transformations are operations on a
formula which change the formula. Examples for queries and transformations are given
in Section When querying a knowledge base, it is possible to split the formula
representing the reasoning problem into two parts: the knowledge base and the query.
Since the knowledge base is usually not subject to changes, one can assume that the
same knowledge base can be used to answer many different queries.

Knowledge compilation is a technique to deal with the intractability of reasoning. The
basic idea of knowledge compilation is to divide the reasoning process into two parts:
an offline phase and an online phase. During the offline phase, the knowledge base is
compiled into a so-called target language. This target language does not necessarily have
to be human readable but should allow some tractable non-trivial polynomial time queries
and transformations (Darwiche and Marquis, 2002)). The compilation of the knowledge
base itself is often referred to as precompilation or preprocessing. During the online
phase, the knowledge base, now given in the target language, can be queried efficiently
for certain types of queries. For example, there are target languages for the compilation
of KB, allowing to check if F' is entailed in time polynomial in the size of the precompiled
version of KB.

In general, the compilation of a knowledge base into a target language can be very
expensive. However the precompilation step has to be performed only once. In cases
where a large number of queries is posed to the same knowledge base, the compilation
of the knowledge base into a target language can be beneficial, since the expense of the
precompilation step can be spread over many queries.

Knowledge compilation is a well-known technique for propositional logic. |Darwiche
and Marquis| (2002) present a detailed comparison of different target languages for pro-
positional logic and |Cadoli and Donini| (1997)) provide a survey on knowledge compilation.
There are numerous target languages for the precompilation allowing different kinds of
queries and transformations to be performed efficiently. When comparing different target
languages, three aspects have to be considered:

e The size of the precompiled knowledge base.

e Types of queries that can be answered in time polynomial in the size of the pre-
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compiled knowledge base.

e Types of transformations on the precompiled knowledge base which can be per-
formed in time polynomial to the size of the precompiled knowledge base.

The fact that, both queries and transformations, should be polynomial in the size of the
precompiled knowledge base illustrates the significance of the size of the precompiled
knowledge base.

Please note that knowledge compilation constitutes a problem which is extremely de-
manding from a computational point of view. For example knowledge compilation in
propositional logic is a harder problem than the SAT problem. To solve the SAT prob-
lem, only a yes-no answer ist necessary. However to compile a propositional logic formula,
it is often necessary to somehow compute all satisfying interpretations or all consequences
of the formula. Hence much more has to be computed in order to allow that different
queries can be checked efficiently.

The contribution of the thesis at hand is the development of a normal form for con-
cepts and TBoxes given in the descirption logic ALC which allows certain queries and
transformations to be performed efficiently.

We start by introducing knowledge compilation in propositional logic in Section (3.1
In Section 3:1.1] some queries and transformations are introduced for which it is desir-
able to be able to answer respectively compute them efficiently from a knowledge base
given in a target language. Section [3.1.2] introduces several normal forms which can be
used as target languages for the knowledge compilation process. Please note that neither
the listed queries and transformations nor the presentation of target languages claim to
be complete. We selected those target languages which are related to the normal form
for the description logic ALC which is developed in this thesis. Section focuses on
the task of knowledge compilation for description logic concepts and TBoxes. In Sec-
tion first some normal forms for description logic concepts are developed, then, in
Section [3.2.2] the linkless normal form for ALC concepts is introduced as a target lan-
guage for ALC concepts. Furthermore, some interesting properties of the linkless normal
form are investigated and presented together with proofs. At the end of Section [3.2:2] it
is shown how the linkless normal form can be used as a target language for ALC TBoxes.
Transformation of ALC TBoxes is implemented and some details on the implementation
together with some experimental results are presented. Please note that the focus of this
chapter is on the development of the linkless normal form and the investigation of its
properties. The implementation only serves for a feasibility study to give an idea on the
blowup produced by the compilation and therefore no detailed evaluation is presented.
In Section [3:2.4] related work consisting of other target languages for the precompilation
process are presented together with some preprocessing techniques besides knowledge
compilation which are commonly used in description logic reasoning. The chapter ends
with Section [3.3] pointing out avenues interesting for future research.
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3.1 Knowledge Compilation in Propositional Logic

In the area of propositional logic, knowledge compilation is a well investigated technique.
There are numerous different target languages suitable for different applications. See
Darwiche and Marquis (2002)) for a detailed presentation of target languages together
with queries and transformations which can be carried out efficiently. In Section
desirable properties of target languages are introduced. These properties include queries
and transformation which can be performed efficiently for formulae given in a certain
target language. The presentation of these queries and transformations does not strive
for completeness but only introduces properties which are interesting in the scope of
the thesis at hand. Section introduces some normal forms suitable as a target
language namely: linkless formulae, decomposable normal form, prime implicates and
prime implicants. Again this presentation of possible target languages does not claim to
be complete but rather serves as a basis for the target languages for knowledge compil-
ation of description logic concepts presented in Section Furthermore, Section
investigates properties of the introduced target languages.

3.1.1 Methods for Comparision of Target Languages

In propositional logic, there are numerous target languages for the precompilation step.
When picking a target language suitable for a specific application, it is advantageous to
compare different target languages. Several properties of target languages can be used
for comparison. One important aspect is information on a possible blowup caused when
transforming a formula into a specific target language. Another aspect is the set of
queries, such as consistency checking, which can be answered in polynomial time from
formulae given in the target language. Furthermore, it is interesting to know which trans-
formations can be performed in polynomial time on formulae given in the target language.
In the following, unless stated otherwise, polytime queries and polytime transformations
denote queries or transformations, which can be performed in time polynomial in the
size of the precompiled knowledge base. Please note that as soon as the precompilation
of the knowledge base caused an exponential blowup, answering queries and performing
transformations is polynomial to the exponentially blown up knowledge base. In this case
it is neither possible to answer queries efficiently nor possible to perform transformations
efficiently. In the following, when considering queries and transformations, we sometimes
use the term polytime as an abbreviation for polynomial in the size of the formula. So
we write for example that a normal form allows a polytime consistency check if consist-
ency of all formulae in this normal form can be checked in time polynomial to the size
of the formula. Next, different queries and transformations relevant to this thesis are
introduced. See (Darwiche, 2001)) for an extensive presentation.

3.1.1.1 Queries

A query is an operation on a formula which returns information on the formula without
changing it. Types of queries relevant for the thesis at hand are 1. consistency checking,
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2. validity checking, 3. clausal entailment checking, 4. determination of the minimal
cardinality of a formula and 5. model enumeration. For all these types of queries it is
interesting to know the complexity of answering a query for formulae given in a specific
target language. In the following, these queries are briefly introduced.
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1. Consistency checking describes the task to find out if a propositional logic formula

F given in a specific target language is satisfiable. If this can be performed in
polytime, this query constitutes an interesting property of the respective target
language. Even though satisfiability checking might appear a more appropriate
term for this query, we choose to stick with the term used in the literature.

. Validity checking describes the task to check if a formula given in a specific tar-

get language is valid. If the validity check can be performed in polytime, efficient
validity checking forms an interesting property of the target language under con-
sideration.

. Clausal entailment checking describes the following problem: Given a propositional

logic knowledge base KB in a specific language and a clause C, we want to know
if KB = C. Since KB = C holds iff KB A —C is unsatisfiable, target languages
for which consistency checking can be performed efficiently are likely to allow an
efficient clausal entailment check. If KB |= C can be checked in polytime for KB
given in a specific target language, this constitutes a very advantageous property
of this target language.

. Determination of the minimal cardinality of a formula describes the task to de-

termine the minimal number of atoms assigned to false in a model for a formula.
Darwiche| (2001) introduces the term minimum cardinality for this notion. One
example application for this query is model-based diagnosis. Given an observation
of a system, the task of model-based diagnosis is to determine the minimal number
of faults in the system, which explain the observed behaviour.

Definition 3.1.1 (Cardinality of a Model/Minimum Cardinality of a Model (Dar-
wichel |2001)) ). Let F € vamp be a propositional logic formula and Z an interpreta-
tion for F'. Then the cardinality of Z, denoted by card(Z), is the number of atoms
set to false in Z. The minimum cardinality of F', denoted by mincard(F), is defined

as follows:

min({card(Z) | Z = F}) if F is satisfiable,
00 else.

mincard(F') = {

The minimal cardinality of a formula is the minimal cardinality of all models of the
formula.

. Model enumeration describes the task to determine the set of all models of a formula

given in a specific target language. Polytime enumeration of models is a desirable
but also very challenging property of a target language.



Next, we consider different transformations which can be helpful to compare target lan-
guages.

3.1.1.2 Transformations

Opposed to queries on formulae, transformations are operations that use the given input
to construct a new formula. From the many transformations that are useful for comparing
target languages, we only introduce those that are used in the scope of this thesis, namely
1. combination with logical connectives: —, A and V, 2. conditioning, 3. conjoining,
4. projection and 5. minimization of a formula. We refer the reader to (Darwiche and
Marquis, 2002) for a more complete and detailed comparison of target languages for
knowledge compilation purposes.
In the following, we introduce the transformations mentioned above.

1. Combination with the logical connectives -, A and V constitutes the most funda-
mental transformation on formulae. In the context of knowledge compilation, it is
interesting to know the complexity of negating a formula given in a specific target
language such that the resulting formula is still a formula in the respective target
language. If a target language allows to negate formulae in polytime, this target
language is denoted to be closed under negation. Similar, given two formulae F' and
G in a target language, it is interesting, if F AG or F'V G is in the target language.
If FAG or FV G respectively is in the target language or their target language
representation can be computed in time polynomial in the size of F' and G, the
target language is closed under conjunction or under disjunction respectively. Note
that in the context of knowledge compilation, the definition of closure properties
differs from the usual definition. When dealing with knowledge compilation it is
not only important that the resulting formula is contained in the target language
but also that it can be computed in polytime.

2. Conditioning is a transformation introduced by |Darwiche, (1998a, 2001). Intuitively
conditioning a formula F' on a satisfiable conjunction of literals C' is the formula
obtained from F' by assuming that C' is true and simplifying F' according to this
assumption.

Definition 3.1.2 (Conditioning (Darwiche, 2001)). Let F' € szop be a proposi-
tional logic formula and C be a satisfiable conjunction of literals. The conditioning
of F on C denoted by F' | C is the formula obtained by replacing each literal L in F

with true if L is a conjunct in C and with false if L is a conjunct in C respectively.

Note that F' | C' does not contain any atoms occurring in C and FAC | F | C.
See (Darwiche, [2001) for further properties and applications of the conditioning
operator.

3. Conjoin is a transformation which is similar to conjunction: Conjoining a formula
F and a literal L corresponds to the conjunctive combination of the two, leading
to a formula equivalent to F' A L. Since conjoining handles literals, or satisfiable
conjunctions of literals, it is often called literal conjoin
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Definition 3.1.3 (Conjoin Operator (Darwiche, |2001))). Let F' € vamp be a pro-
positional logic formula and C a satisfiable conjunction of literals. Conjoining C

to F', denoted by conjoin(F,C) is the formula defined as follows:

conjoin(F,C) = (F |C)NC

Obviously conjoin(F, C) is equivalent to F' A C.

4. Projection of a formula on a set of atoms is another important transformation
interesting for knowledge compilation. The basic idea of projecting a formula F'
on a set of atoms A is the strongest formula in Fﬁop implied by F. Projection is
dual to the notion of forgetting introduced by |[Lin and Reiter| (1994)) meaning that
projecting a formula F on a set of atoms A yields the same result as forgetting A
from F.

Definition 3.1.4 (Projection (Darwiche, [2001)). Let F' € F%Op be a propositional
logic formula and A C V be a set of variables. The projection of F on A is a
propositional logic formula F' € F2A_ such that for any G € Fﬁop, F' = G iff

prop
FEG.

Since projection is dual to forgetting, it can be used to remove information from
knowledge bases. This is why it comes to use when, depending on the authorization
of a user, certain sensitive data is hidden from the user.

5. Minimization of a formula describes the following task: Given a propositional logic
formula F', the minimization of F is a formula whose models are exactly those
models of F' with minimal cardinality.

Definition 3.1.5 (Minimization of a Formula (Darwiche, 2001)). Let F' € vamp be
a propositional logic formula. A minimization of F' is a formula F' such that for

every wnterpretation I over the atoms occurring in F,

Ik F iff (T F and card(Z) = mincard(F)).

Next, three different target language for knowledge compilation in propositional logic are
presented. Furthermore, their respective properties are introduced.

3.1.2 Normal Forms

In this section, three target languages suitable for knowledge compilation in propositional
logic are introduced together with their properties. We start with linkless formulae,
then introduce the decomposable normal form and end with prime implicants and prime
implicates. The section ends with a short comparison of these target languages.

In Section [3.2] the idea of a target language for knowledge compilation in propositional
logic will be used to develop a target language for knowledge compilation in the descrip-
tion logic ALC. This is why this presentation of target languages for propositional logic
knowledge compilation does not strive for completeness but is restricted to normal forms
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related to that specific target language. For a detailed overview on different target lan-
guages for knowledge compilation in propositional logic consult (Darwiche and Marquis),
2002)) and (Cadoli and Donini, 1997).

3.1.2.1 Linkless Normal Form

The first target language for knowledge compilation in propositional logic we consider are
linkless formulae. Informally speaking, a linkless formula is a formula in NNF which does
not contain conjunctively combined complementary literals. For example the formula
e\ (bV—c) is not linkless since the literals ¢ and —¢ occur conjunctively combined. Linkless
formula were introduced by Murray and Rosenthal (1985, |1986|) have many interesting
properties, which are introduced in the course of this section. Murray and Rosenthal
(1985, [1986) represent propositional logic formulae as so-called semantic graphs in order
to define the linkless normal form. These semantic graphs are not interesting for the topic
of this thesis. Hence we refrain from introducing them and adapt the presentation of the
linkless normal form to fit our purposes. This is why the presentation in the following
deviates from the presentation by Murray and Rosenthal (1985, [1986)).

In order to give a formal definition of this normal form, it is necessary to introduce
the notion of paths in a formula as well as the notion of conjunctively combined literals.

Definition 3.1.6 (Path). Let Fy and F € Fy,,,

F%Op — 2Fpror s g function mapping a propositional logic formula to a set of sets of
literals such that:

be propositional logic formulae. paths :

paths(Fy) = {{F1}}, if F1 is a literal or F1 =T or F} = L.
paths(Fy V Fy) = paths(F1) U paths(Fy).
paths(Fy A Fy) = {X UY | X € paths(F1) and Y € paths(F3)}.

For a formula Fy, paths(F1) is called the set of paths in Fy and each element in paths(F})
18 called a path in F}.

Note that for formulae of the form ' = Fi A F5, each path P can be split into the paths
P, and P, where P is path through F; and P is a path through F» and P = P, U Ps.

In the following, the notion of a path and the formula corresponding to the conjunc-
tion of its elements are used interchangeably. This allows us to speak of satisfiable or
unsatisfiable paths of a formula.

The following example is based on an example in Murray and Rosenthal| (2003)).

Example 3.1.7. Consider the formula
F=((—maAN-c)Vvd)A((cA—d)Vb).
We construct the set of paths for F' using Definition[3.1.6]
paths(F) = paths(((—'a A=c)Vd) A ((ch—d)V b))
={X UY | X € paths((—a A —c)Vd) and Y € paths((c A —d) Vv b)}
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With

paths((—a A —c) V d) = paths(—a A —¢) U paths(d)
={X UY | X € paths(—a) and Y € paths(—c)} U paths(d)
={XUY | X e{{na}} andY € {{—c}}} U paths(d)
= {{na,~e}y U {{d}}
= {{na, =}, {d}}

paths((c A —d) V b) = paths(c A —d) U paths(b)
={X UY | X € paths(c) and Y € paths(—d)} U paths(b)
={XUY | X € {{c}} andY € {{—d}}} U paths(b)
= {{e,~d}} U {{b}}
= {{e,~d}, {0}}
this leads to
paths(F) ={X UY | X € {{-a,—c},{d}} and Y € {{c,—d},{b}}}
= {{—a,—c, c,~d},{—a,—c,b},{d,c,~d},{d,b}}.

Concluding, we list the four different paths of F':

Pl = {_‘CL, ¢, G, _'d}

Py = {_‘CL, -¢, b}
Py ={d,c,—d}
Py ={d,b}

When considering a formula F' with a set of paths paths(F) = {Py,..., P,}, it is easy
to see that the formula .
VoA

=1 leP;

is equivalent to F' and is in disjunctive normal form.
Example 3.1.8. Formula F presented in Example[3.1.7 is equivalent to
(maAN=cANeA=d)V(maN=cAb)V (dANcA-d)V (dAD)
which is in disjunctive normal form.
Obviously, a path is inconsistent iff it contains 1 or complementary literals.

Definition 3.1.9 (Conjunctively Combined Literals). Let F' € ngop be a propositional

logic formula in NNF. Literals Ly and Lo are called conjunctively combined in F' if there
is a path P € paths(F') with Ly € P and Ly € P.
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We use paths and conjunctively combined literals to define the notion of a link in a
formula as a pair of conjunctively combined complementary literals:

Definition 3.1.10 (Link). Let F' € F;fnop be a propositional logic formula and b € V
be an atom. The set {b,—b} is called a link in F if there is a path P € paths(F) and

{b,-b} C P.

Clearly, a link constitutes a contradictory part of a formula. Moreover, it is obvious
that a formula containing a link in every path is unsatisfiable and a formula containing
a path neither containing a link nor L is satisfiable.

Example 3.1.11. Consider formula F given in Example [3.1.7 Path P contains the
link {d,—~d}. Path Pa, for instance, does not contain a link. Therefore F is satisfiable.

Definition 3.1.12 (Linkless Normal Form). Let F € sz:op be a propositional logic for-
mula in NNF. F is in linkless normal form iff there is no path in F' containing a link. If

F is in linkless normal form, F is called linkless.

Note that for a set of propositional logic variables V, {{a,—a} | a € V'} is the set of
all links that can be constructed from variables in V.

Every propositional logic formula can be transformed into an equivalent linkless for-
mula with a method called path dissolution (Murray and Rosenthal |1993| |2003)). The
result of applying path dissolution to a formula is a linkless formula called full dissolvent.
The basic idea of path dissolution is to restructure the formula such that all paths con-
taining a link are eliminated.

Path dissolution uses the notion of path extension and path complement of a formula
and a literal. The path extension of a formula F' and a literal L is a formula F’ such that
the paths of F’ are exactly those paths of F' containing literal L. The path complement
of F and L is a formula F’ such that the paths in F’ are exactly those paths in F not
containing literal L.

Murray and Rosenthal (2003) introduced a slightly different nomenclature. They dif-
ferentiated between conjunctive and disjunctive paths in a formula. The conjunctive
paths correspond to the paths introduced in Definition Since the disjunctive paths
are not interesting for the topic of this thesis, we refrain from presenting them making it
unnecessary to differentiate between two different types of paths. Furthermore, Murray
and Rosenthal (2003)) introduce the path complement as conjunctive path complement
and the path extension as conjunctive path extension. Since we only consider one type
of paths, we omit the word conjunctive.

Definition 3.1.13 (Path Extension/Path Complement). Let F € Fp‘iop be propositional
logic formula and L be a literal. The path extension of L in F', denoted by PE(L, F), is
a formula containing exactly those paths in F which contain L. The path complement
of L in F, denoted by PC(L, F), is a formula containing exactly those paths in F which

do not contain L.

Note that Definition [3.1.13|does not mention how to construct PE(L, F') and PC(L, F')

and we do not present how to construct them. The naive way would be to construct the
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disjunction of all respective paths in F. However there are more elaborate methods,
producing a far more compact result. Murray and Rosenthal (1993) offer a detailed
presentation of ways how to construct both PE(L, F) and PC(L, F') and optimizations
of this construction.

Lemma 3.1.14. Let F € FY.

prop b€ propositional logic formula and L be a literal occurring
wmn F. Then

F = PE(L,F)V PC(L, F).

Example 3.1.15. Consider formulae G1 and Go which are both subformulae of formula
F presented in from Ezample[3.1.7

Glz(ﬁa/\ﬁc)\/d
Ga=(cN=d)VDd

Both G1 and G2 have two paths:

paths(G1) = {{-a, ~c}, {d}}
paths(G2) = {{c, ~d}, {b}}

We construct:

PE(d,Gy) = PE(~d,Gs) = ¢ A —d
PC(d,G1) = —a A —c PC(~d,G3) = b

As mentioned before, path dissolution can be used to remove links from a formula.
Next, a dissolution step for a link {L,L} in a formula is presented as introduced by
Murray and Rosenthal (1993).

Definition 3.1.16 (Dissolvent). Let F' € vamp be a propositional logic formula of the
form F = Fy A\ Fy containing the link {L, L} such that {L,L} is neither a link in Fy
nor in Fo. Let further, w.l.o.q. literal L occur in Fy and L occur in Fy. The dissolvent
of F and {L,L} denoted by diss({L, L}, F), is the result of applying the function diss :
{{a,—a} |a €V} x F).,, — FE)., to {L,L} and F and is defined as follows:

diss({L, L}, F) = (PE(L, Fy) A PC(L, Fy)) v
(PC(L,Fi) N PC(L, Fy)) V
(PC(L,F1) A PE(L, F3))
Note that diss({L, L}, F) removes exactly those paths from F containing the link
{L,L}. Since these paths are inconsistent, diss({L, L}, F) is equivalent to F. This is

stated in the next lemma which was first presented by [Murray and Rosenthal (1993)) and
is adapted to our notation.
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Lemma 3.1.17. Let F' € vamp be a propositional logic formula and {L,L} be a link in

F such that diss({L, L}, F) is defined. Then F =diss({L,L},F).

By equivalence transformations and with the help of Lemma [3.1.14] the following pro-
position follows (Murray and Rosenthal, [1993)).

Proposition 3.1.18. Let {L,L} and F, Fy and Fy be defined as in Definition |3.1.16,
Then

diss({L, L}, F) = (Fy A PC(L, F)) vV (PC(L, Fi) A PE(L, F»))
diss({L,L}, F) = (F» A PC(L,Fy) vV (PC(L, F») N PE(L, F}))

Proposition [3.1.18] can be used to remove links form a formula. The basic idea to
remove a link from a formula F' is to first determine the smallest subformula F; A Fy of
F with F) containing the positive part {L} of the link and F5 containing the negative
part {L} of the link. To remove the link from F', it is only necessary to replace Fi A F5
in F by diss({L, L}, Fi A F»). Please note that the order of conjuncts in a subformula

is of no importance when choosing F; A F5, meaning that if F' contains a subformula
Gi1 NGa A\ ... NGy, it is allowed to choose F1 = G and Iy = Gj for any 1 < 4,5 < n,

i # 7.
Example 3.1.19. Reconsider formulae F given in Example[5.1.7.
F = ((maA=c)Vd)A ((cA~d)Vb)

As mentioned previously, F' contains the link {d,—d}. Example shows that F' has
the form F' = G1 A G2 and presents PE(d,G1), PC(d,G1), PE(—d,G2) and PC(—d, G2)
which can be used to remove the link {d,—d} from F. According to Proposition
the dissolvent of F' and {d,—~d} is:

diss({d, =d}, F) = (G1 A PC(—d, G)) V (PC(d,G1) A PE(—d, G2))
= (((—\a A =e) V d)/\b) V (ma A=cAcA—d)

Constructing the paths of the result of the dissolution step reveals that the path containing
the link {d,—~d} was removed form the formula.

paths(diss({d, ~d}, F')) = {{—a, —c, b},

{d7 b}7
{—a,—c,c,~d}}

Note that the link {c,—c} is still in diss({d,—d}, F) and has to be removed in another
dissolution step to gain a linkless formula.

As described above, the diss function can be used to remove one link from a formula.
The next definition introduces the fulldissolvent function which can be used to remove
all links from a given formula. It is obvious that successively removing all links using
the diss function leads to a linkless formula. Therefore, one possibility to compute the
linkless normal form of a formula is to successively remove all links with the help of the
diss function.
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Definition 3.1.20 (Full Dissolvent). Let F € F,.,,

fulldissolvent : vamp — vamp is a function mapping F to an equivalent linkless formula.

The result of applying this function to a formula F, fulldissolvent(F) is called full dis-
solvent of F'.

be a propositional logic formula.

Note that the full dissolvent of a formula and an equivalent linkless formula denote the
same term. This is why these two terms will be used interchangeably.

Example 3.1.21. Consider the formula F presented in Example [3.1.7
F = ((maA=c)Vd)A ((cA—d)Vb)

The full dissolvent for this formula can be constructed from diss({d,—d}, F') which is
computed in Example by a dissolution step w.r.t the link {c,—c} leading to

Fy = fulldissolvent(F) = ((—a A =¢) V d) A'b.

Please note that transforming a formula into a linkless formula can cause an exponential
blowup of the size of the formula. There is an implementation of path dissolution which
can be used to transform propositional logic formulae into equivalent linkless formulae.
The system is called Dissolver and Murray and Rosenthal (1993) present experimental
results.

Properties of Linkless Formulae Firstly, we consider the different queries introduced

in Section B.I.1T.11

1. Consistency checking: A linkless formula can be tested for satisfiability in time lin-
ear to the size of the formula. When trying to construct a satisfying interpretation
for a linkless formula, it is possible to construct satisfying interpretations for all
subformulae in the linkless formula independently. Since different conjuncts of a
conjunction in a linkless formula are not allowed to contain complementary literals,
these satisfying interpretations cannot conflict. This makes it possible to combine
the satisfying interpretations of all subformulae into a satisfying interpretation of
the whole formula. Note that in case that L and T are not allowed in the formula
and are therefore removed by simplifications, the satisfiability of a linkless formula
can be checked in constant time.

2. Validity checking: Linkless formulae do not allow a polytime validity check. We
show this by first introducing the notion of the so-called simple conjunction prop-
erty. A NNF formula satisfies the simple conjunction property if a) the conjuncts of
each conjunction are literals and b) do not share variables. DNF formulae naturally
satisfies condition a). Condition b) can be easily satisfied by simplifying subfor-
mulae of the form a A =a or a A a. Obviously, every propositional logic formula
can be transformed into a DNF satisfying the simple conjunction property. The
conjunctions in a DNF formulae satisfying the simple conjunction property do not
share variables. Therefore these formulae are linkless. It is well-known that valid-
ity checking for DNF formulae is co-NP hard. The existence of a polynomial time
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validity check for linkless formulae therefore implies the existence of a polynomial
time validity check for DNF formulae satisfying simple conjunction. However this
implies P = co-NP leading to P = NP. We conclude that linkless formulae do not
allow a polytime validity check unless P = NP.

3. Clausal entailment checking: For a linkless knowledge base KB and a clause C' the
clausal entailment KB |= C can be performed in linear time. This follows from
the fact that KB = C holds iff KB A =C' is satisfiable. Furthermore, —=C' can
be transformed into a conjunction of literals with the help of De Morgan’s laws.
Therefore, conjoining can be used to conjunctively combine KB and —C' leading
to a linkless formula for which a satisfiability test can be performed in linear time.
We will see that conjoining can be performed efficiently for linkless formulae.

4. Other queries: There are several queries where the linkless normal form does not
offer an advantage. Linkless normal form does not allow to determining the min-
imum cardinality of a formula in polynomial time or polynomial time enumeration
of models.

Next, the transformations introduced in Section [3.1.1.2] are considered.

1. Combination with the logical connectives =, A and V: Naturally, linkless formulae
are closed under disjunction. However they are not closed under conjunction and
negation unless P = NP. To see that linkless formulae are not closed under negation,
we first recall that as introduced in Section a target language is denoted
to be closed under negation if there exists a polytime algorithm that computes = F
for any arbitrary formula F' in the target language and furthermore —F' is in the
target language.

Let us assume that the literals in each conjunction in a DNF formula do not share
variables. This can be achieved in time linear in the size of the DNF formula. With
this assumption, every DNF formula is in linkless normal form. We now assume
that linkless formulae are closed under negation. Then for every linkless formula
F' it is possible to compute a linkless formula which is equivalent to =F in time
polynomial in the size of F. Assume that F is given in DNF. The negation of
the DNF formula F' is a CNF formula which is obtained from F' by applying De
Morgan’s laws. The assumption that linkless formulae are closed under negation
implies that it is possible to transform such a CNF formula into a linkless formula
in time polynomial to the size of the CNF formula. This together with the fact that
linkless formulae allow to check consistency in linear time implies that P = NP.

Darwiche and Marquis| (2002) present a proof that DNNF formulae are not closed
under conjunction. The proof that linkless formulae are not closed under conjunc-
tion can be done analogously to this proof and we refer the reader to Darwiche and
Marquis| (2002) for details.

2. Conditioning and conjoining: According to |[Rosenthal and Murray| (2003), linkless
formulae allow polytime conditioning and conjoining. For a given formula F' and a
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consistent conjunction of literals C, conjoin(F,C) can be computed in time linear
in the size of F.

Example 3.1.22. Consider the formulae

Fy =((-maAN-c)Vd)Ab and
Fo=0N—d.

F is linkless and Fy is a consistent conjunction of literals. We want to conjunctively
combine those two formulae. This can be accomplished using the conjoin operator.
According to Definition

conjoin(F1, F2) = (F1 | F2) A F3
( ((maA=e)Vd)ADb) | (b/\ﬁd)> AbA—d

(maA=c)VLYAT)AbA—d
a/\—|c/\b/\—|d

which is linkless and equivalent to F1 N Fy.

. Projection: For linkless formulae, projection can be accomplished with the help

of a function called project.

Definition 3.1.23 (project function (Darwiche, [2001))). Let F,C; € Fgf,op, i €N
be a linkless propositional logic formulae and A C 'V a set of propositional logic

variables. project : FV. x A — F2_ is a function defined as follows:

prop prop
o . o \A
oroject(F, A) = T if F is a literal in Fpmp,
F if F is a literal in F, pmp, Torl.

project(/\ Ci,A) = /\ project(C, A).

project(\/ Ci,A) = \/ project(Cy, A).

Basically the project(F, A) is the formula resulting from substituting T for each
occurrence of an literal whose atom is in V but not in A in the linkless formula
F. According to |Murray and Rosenthal| (2003), for a linkless formula F' and a set
of atoms A, the formula project(F, A) corresponds to the projection of F' on the
atoms in A, can be computed in time linear in the size of F' and is linkless. Hence,
linkless formulae are closed under projection.

Example 3.1.24. Consider formula Fy from Example|3.1.21

Fy = ((maA—c)Vd)Ab.



and atom set A = {b,c}. The projection of Fy on the atoms in A is

project(Fy, A) = project(((—a A —c) V d) Ab, A)
= project((—a A —c) V d, A) A project(b, A)
= (project(—a A —¢, A) V project(d, A)) A project(b, A)

((project(—a, A) A project(—c, A)) V project(d, A)) A project(b, A)
((TA=c)VT)AD
b

4. Minimization of a formula: Considering the minimization of a formula described
in Section [3.1.1.2] linkless formulae are not helpful. It is not possible to minimize
a linkless formula in polynomial time.

3.1.2.2 Decomposable Negation Normal Form

The Decomposable Negation Normal Form (DNNF) introduced by Darwiche (2001) is
another target language for knowledge compilation of propositional logic formulae. Like
in the case of the linkless formulae, DNNF requires the formula to be in NNF. Further-
more, for a formula to be in DNNF| it is necessary that the conjuncts of each conjunction
occurring in the formula do not share atoms.

Definition 3.1.25 (Decomposable Negation Normal Form (DNNF) (Darwichel 2001))).
Let F' € Fgfqop be a propositional logic formula in NNF. F is in decomposable negation
normal form (DNNF) if F' satisfies the decomposability property: If G = Gi AGa A ... A
Gy, € sub(F') then atoms(G;) # atoms(G;) for 1 <i,j <n, i # j.

Example 3.1.26. The formula FF = a AbA (e VbV (aAc)) is not in DNNF, since
F is a conjunction with three different conjuncts and the sets of atoms occurring in the
conjuncts are not disjunct as:

atoms(a) = {a}
atoms(b) = {b}
atoms(e VbV (aAc))) = {e,b,a,c}

atoms(a) Natoms(e VbV (aAc))) # 0
atoms(b) Natoms(e VbV (a Ac))) # 0

Note that the DNNF can be seen as a special case of linkless formulae: Every formula
given in DNNF is linkless as well. On the other hand there are formulae which are linkless
but are not in DNNF'. Take the formula given in Example [3.1.26] as an example.

As mentioned before, every propositional logic formula can be transformed into a DNF
satisfying the simple conjunction property. The conjunctions in a DNF formulae satis-
fying the simple conjunction property do not share variables. Therefore these formulae
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are in DNNF. Hence, every propositional logic formula can be transformed into DNNF
by transforming it into a DNF satisfying the simple conjunction property. Since DNNF
formulae are not required to be in DNF, this way of transformation does not lead to a
succinct DNNF. We will present the basic idea of a different transformations which does
not include constructing a DNF. Darwiche| (2001)) presents details on this transfromation.

Theorem 3.1.27. (Darwiche, 2001|) Let Fy and Fy be propositional logic formulae in
DNNF and X = atoms(Fi) N atoms(Fy). Let further C be the set of all consistent
conjunctions of literals constructed from atoms in X. Then

F=\/ ((F|C)A(FR|C)AC)
c’eC

18 in DNNF and F is equivalent to F1 A F5.

We illustrate how to use Theorem [3.1.27] to transform a formula F' into DNNF with
the help of an example.

Example 3.1.28. Consider the propositional logic formula
Gi=(aVv-e)A(eV(bA—-d)A(=bVc).

This formula is not in DNNF. We successively transform G1 into DNNF: First the sub-
formula (aV —e) A (e V (b A —d)) is considered. Since both aV —e and (e V (b A —d)) are
i DNNF, Theorem can be used for the DNNF transformation. We set:

Fi=aV—e
Fg:e\/(b/\—\d)

The set of atoms occurring in both Fy and Fy is X = {e}. According to Theorem
F1 A Fy is equivalent to

F=(Fi|eNFy|eNne)V (F1|—-eAFy|—eA—e)
=(@NTAe)V(TADA-D)A-e)
=(aNe)V (bA-dA —e)

Since F is equivalent to F1 AN Fy, F' can be substituted for Fy A\ Fy in GG1 leading to:
Ga= ((ane)V(bA—=dN—e))A(=bVc)

However Gy 1is still not in DNNF. Applying Theorem a second time by setting
Fi=(ane)V (bA—-dA—e) and F5 = -bV ¢, leads to the DNNF:

Gs=(((ane)V (~dA=e)) AcAb)V (aAeAb)

which is equivalent to the original formula G1. Note that this way of transforming a
formula into DNNF is nondeterministic. In general there is more than one possibility to
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split the formula under consideration into Fy and Fy. For example in the first step of this
example, it would have been possible to set F1 = —bV ¢ and Fo = aV —e. In our example,
the order of splitting G does not make a difference. However for larger formulae, the
size of the resulting DNNF' strongly depends on the order in which the original formula
18 split.

As shown by Bova, Capelli, Mengel, and Slivovsky| (2014), the transformation of a
propositional logic formula into DNNF can cause an exponential blowup. |Pipatsrisawat
and Darwiche| (2010) present several algorithms to transform a propositional logic formula
into DNNF. An implementation called c2d is available at http://reasoning.cs.ucla.
edu/c2d/ [accessed: 2016, December 22].

Properties of DNNF Formulae Next the different queries of interest for target lan-
guages presented in Section [3.1.1.1] are considered and it is investigated, which queries
can be answered efficiently for formulae given in DNNF.

1. Consistency checking: DNNF formulae allow for consistency checking in time linear
in the size of the formula. This is due to the fact that it is possible to construct
satisfying interpretations for all subformulae in a DNNF formula independently.
These satisfying interpretations cannot conflict, since conjuncts of a conjunction
in the DNNF formula are not allowed to share variables. Therefore, the satisfying
interpretations can be combined into a satisfying interpretation for the whole for-
mula. This efficient satisfiability test can be performed by the sat predicate defined
as follows:

Definition 3.1.29 (sat Predicate (Darwiche, [2001)). Let F € F,.,

tional logic formula in DNNF. The sat predicate 1s defined as follows:

be a proposi-

{(F) true if F' is a literal or T,
sa =
false if F=_1.

sat(/\ a;) = true iff sat(a;) = true for all i.

sat(\/ a;) = true iff sat(a;) = true for some i.
i

According to [Darwiche| (2001), for a DNNF formula F, sat(F) = true iff F' is
satisfiable. Furthermore, sat(F’) can be computed in time linear in the size of F.
This nice property is owed to the fact that the conjuncts of each conjunctions are
ensured not to be contradictory. Therefore for each conjunction it is possible to
construct a model for each conjunct separately and to combine these models to a
model for the conjunction. Note that in case that 1 and T are not allowed in the
formula and are therefore removed by simplifications, the only way a formula F
can be unsatisfiable is if I/ = 1. Hence, in this case, the satisfiability of a DNNF
formula can be checked in constant time.
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2. Validity checking: As mentioned above, formulae in DNF satisfying the simple

conjunction property are in DNNF. From this it can be shown that DNNF formulae
do not allow a polytime validity check unless P = NP by bringing forward the same
arguments as in Section [3.1.2.1]in the investigation of validity checking of linkless
formulae.

. Clausal entailment checking: For a knowledge base KB given in DNNF and a clause

C, clausal entailment KB |= C can be checked in linear time. The reason for this
property is the same reason given for linkless formulae in Section [3.1.2.1]

. Determination of the minimal cardinality of a formula: For a DNNF formula F,

the minimal cardinality of F', denoted by mincard(F'), can be computed in time
linear in the size of F' using the mcard function defined as follows:

Definition 3.1.30 (mcard Function (Darwiche, |1998b)). Let F, G; € vamp, 1<

i < n be propositional logic formulae in DNNF. Function mcard : vamp — N s
defined as follows:

0 if F is a positive literal or T,

mcard(F) =< 1 if F is a negative literal,
oo fF=T.
mcard(\/ G;) = min{mcard(G1), ..., mcard(Gp)}.
i=1

3

mcard( /\ G;) = Z mcard(G;).
=1 i=1

)

According to Darwiche| (2001)), for each DNNF formula F', mcard(F) = mincard(F)
meaning that the mcard function actually computes the minimum cardinality as

defined in Definition B.1.1l

. Model enumeration: DNNF formulae do not allow for efficiently enumeration of

models. However, if the DNNF formula is transformed into the more strict normal
form smooth DNNF, efficient model enumeration is possible. The basic idea of
the smooth DNNF is to add the property that for every disjunction occurring as
a subformula, all disjuncts of this disjunction contain the same atoms. In the
following definition, when speaking of the set of subformulae sub(F") of a formula
F', we consider sub(F’) to be the set of subformule of F' modulo commutativity.

Definition 3.1.31 (Smooth DNNF (Darwiche, [2000)). Let F' € szop be a pro-
positional logic formula in DNNF. F s in smooth DNNF iff for every disjunction

G=G1V...VGy, with G € sub(F): atoms(G) = atoms(G;) for 1 <i <n.

Smoothing a DNNF formula, denotes the act of transforming a DNNF formula into
a smooth DNNF formula. Given a DNNF formula F of size s with b different atoms,
it is possible to compute an equivalent smooth DNNF of size O(sb) in O(sb) time.



The basic idea how to transform a DNNF formula F' into an equivalent smooth
DNNF formula is the following: For each disjunction

G=G{V...VGi
occurring in the formula, k sets of atoms are determined by
A; = atoms(G) \ atoms(G;).

Intuitively, set A; corresponds to the set atoms which are missing in the disjunct
G;. Now each G in G is replaced with

G, =G; A /\ (aV —a).

aEz‘Ti
The resulting formula is equivalent to the original DNNF F' and is in smooth DNNF.
Example 3.1.32. Consider the DNNF constructed in Example[3.1.28

G3 = (((a/\ e)V (—d A—=e))Ac A b) V (a AeA—b)
Firstly, we introduce some abbreviations for subformulae
G3 = (((a/\ e) V (—d A —e))Ac A b) V (a AeA —b)
= ((Gl vV Gy) Ac/\b) V(aAeA-b).
Consider the subformula

G =G1V Gy
=(aNe)V (~dA—e).

G is not smooth, since its first disjunct G1 contains atoms a and e whereas the
second disjunct Go contains d and e. In order to smooth this G, we determine

atoms(G ) = {a,d, e}
atoms(G1) = {a, e}
atoms(G2) = {d, e}.

The sets A;, containing the atoms lacking in the i-th disjunct are:
Ay = {d}
A = {a}

As stated above,

Gi=aNeA(dV—d)
Gy =—=dAN—-eA (aV —a)
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and G is equivalent to G;. Substituting G, for G; in G3 leads to:
Gy = ((G’l\/Gg) /\c/\b) V (a AeA—b)
= (((a/\e/\ (dV=d))V (~dA—eA(aV -a))) /\c/\b) V (a AeA —b)

The first disjunction in Gy is now smooth. However the second disjunction is
not smooth. Using the same procedure as before, a smooth version of G4 can be
constructed. Leading to

Gs = (((a/\e/\(d\/—d))\/(ﬂd/\ﬂe/\(av—'a))) /\c/\b) % (a/\e/\—'b/\(c\/ﬂc)/\(d\/—'d)>

For formulae given in smooth DNNF, it is possible to efficiently enumerate mod-
els. The following Definition introduces the models function which can be used
to accomplish this task. Please note that in this definition, an interpretation of a
propositional logic formula is represented as the set of propositional logic variables
assigned to true in the interpretation. It is assumed that all variables not occurring
in the set representing an interpretation are assigned to false.

Definition 3.1.33 (models Function (Darwiche, [2001) ). Let F', G; € vamp, i €N

be a propositional logic formula in smooth DNNF. Function models : vamp — 22¥
is defined as follows:
{{p}} if F is a positive literal p;
models(F) = ¢ {{}}  if F is a negative literal =p or F = T;

{} if F = 1.
models(\/ Gi) = U models(G;).

models(/\ G;) = {U M; | M; € models(G;)}.

The models function returns exactly the set of models of a given smooth DNNF
formula (Darwichel 1998b) and can therefore be used to enumerate models. Fur-
thermore, the time complexity of the models function is O(sm?), with s the size of
the F' and m the number of models for F'.

Example 3.1.34. We consider the smooth DNNF formula G5 given in Example

Gs = <((a/\e/\(d\/ﬁd))\/(—'d/\ﬁe/\(a\/—'a)))/\c/\b)\/

(a/\e/\ﬂb/\(c\/—'c)/\(d\/—'d))
= G51 V Gsa.
With
Gs1 = ((aANeA(dV=d)V (~dA—eA(aV-a))AcAb
Gz = (a/\e/\—'b/\(c\/ﬂc)/\(d\/ﬁd))



To determine the set of all models of G5, the models function presented in Defini-
tion is used.

models(G5) = models(G51 V Gs2)

G is a disjunction. According to Definition[3.1.33, the models function can be used
to construct the models of each disjunct separately. The set of models of G5 is then
obtained as the union of the constructed sets of models for the disjuncts. In order
to determine

models(Gs; ) = models(((a NeA(dV —=d))V (~d A —eA(aV—=a))) AcA b)
we have to compute

models((a Ae A (dV —d))V (=d A =e A (aV —a)))
models(c) = {c}
models(b) = {b}

models((a Ae A (dV =d)) V (~d A =e A (aV —a)))
= models(a A e A (dV —d)) U models(—~d A —e A (a V —a))
= {M; UMy U M5 | M; € models(a) A My € models(e) A M3 € models(d vV —d)} U
{M; UMy U Ms | My € models(—d) A My € models(—e) A Mz € models(a V —a)}
= {M; UM;U Ms | M; € models(a) A My € models(e) A
M3 € (models(d) U models(—d))} U
{M; U M5 U Ms | M; € models(—d) A Mz € models(—e) A
Ms € (models(a) U models(—a))}
={MyUM;UMs | M; € {a} N M3 € {e} N M3 € {{d}} U{{-d}}} U
{M1 UM UMs | My € {-~d} A My € {—e} AMs € {{a}}U{{-a}}}
={M;UMyUMs5 | M; € {a} AN M3 € {e} AN M5 € {{d},{~d}}} U
{M;1 UMy UMs | My € {~d} N My € {—e} AN M3 € {{a},{—a}}}
= {{a,e,d},{a,e,~d}} U{{—d, —e,a}, {-d, —e,-a}}
= {{a,e,d},{a,e,~d},{—d, e, a}, {—d,—e,na}}

This leads to

models(Gs1)

= {M; UM3U Ms | M; € models(Gs1) A My € models(c) A M3 € models(b)}

={M1UMyUM; | M; € {{a,e,d},{a,e,~d}, {—d,—e,a},{~d,—e,—a}} A
M; € {c} N M3 € {b}}

= {{a,e,d,c,b},{a,e,~d, c,b},{~d, —e,a,c, b}, {~d,—e,na,c,b}}
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To obtain the set of models of G5, the union of models(Gs1) and models(Gs2) has
to be constructed. We will not go into the details of the construction of models(G52)
and directly present the result:

models(Gs2) = {{a, e, b, c,d}, {a,e, b, c,~d}, {a, e, —b,—c,d}, {a, e, —b, ¢, ~d}}
Leading to

models(G5) = {{a,e,d,c,b},{a,e,—d, c,b}, {=d, —e,a,c, b}, {~d, —e, —a, c, b},
{a7 €, _'b7 C, d}7 {aa €, _|b, c, _‘d}7 {a7 €, _'ba ¢, d}a {aa €, _‘ba ¢, _‘d}}

After considering the queries presented in Section [3.I] we now see which transforma-

tions can be performed efficiently on DNNF formulae. Details on all results can be found
in \Darwiche| (2001)).
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1. Combination with the logical connectives =, A and V: It is easy to see that the

DNNF language is closed under disjunction. However it is not closed under negation
and conjunction. It is possible to show that the DNNF language is not closed under
negation by bringing forward the same arguments as in Section where it is
shown that linkless formulae are not closed under negation. A proof that the DNNF
language is not closed under conjunction is presented in (Darwiche and Marquis,
2002]).

. Conditioning and conjoining: The DNNF language is closed under conditioning and

furthermore conditioning can be computed in time linear in the size of the respective
formula. From the definition of the conjoin operator and the fact that the DNNF
language is closed under conditioning it follows that the DNNF language is closed
under conjoining as well. Furthermore, conjoining a formula given in DNNF on a
consistent conjunction of literals can be performed in time linear in the size of the
formula.

. Minimization of a formula: It is not possible to minimize a DNNF formula ef-

ficiently. However smooth DNNF allows an efficient minimization of formulae.
Given a formula in smooth DNNF, the following minimize function can be used for
minimization:
Definition 3.1.35 (minimize Function (Darwiche, [2001)). Let F', G; € vamp, ieN
be propositional logic formulae in smooth DNNF. The function minimize : Fgf,op —
F];/nop is defined as follows:

minimize(F) = F if F is a literal, T or L.

minimize(\/ G;) = \/ minimize(G;).
4 {Gi|mcard(G;)=mcard(\/, G;)}

minimize(/\ G;) = /\ minimize(G;).



According to |Darwiche, (2001)), using the the minimize function on a formula F' can
be perfomed in time linear in the size of F' and results in a smooth DNNF formula
which corresponds to the minimization of F' according to Definition [3.1.5

4. Projection: The last transformation listed in Section [3.1.1.2] is projection of a
formula on a set of atoms. The DNNF' language is closed under projection on a set
of atoms. For this, the project function presented in Definition for linkless
formulae can be used.

3.1.2.3 Prime Implicants and Prime Implicates

Now two different target languages for knowleimplicatesdge compilation in propositional
logic are introduced: prime implicants and prime implicates. Prime implicants and
prime implicates are well studied in propositional logic and there are many algorithms
to compute them. See (Slagle, Chang, and Lee, [1970) and (Jackson and Pais| [1990)) for
examples. The next definition introduces the idea of implicants and prime implicants. In
this definition, a set of literals and the conjunction of the literals of such a set are used
interchangeably.

Definition 3.1.36 (Implicant/Prime Implicant /Prime Implicant Normal Form). Let KB
be a propositional logic knowledge base. An implicant of KB is a consistent conjunction
D of distinct literals such that D |= KB. A prime implicant of KB is an implicant of
KB such that for every other implicant D' of KB, D' ¢ D. The disjunction of all prime
implicants of KB is called prime implicant normal form for KB.

As stated by (Cadoli and Donini (1997), implicants of a formula are very similar to
models for the formula. An implicant in which every variable appears exactly once
corresponds to a model with the respective assignment. Furthermore, the prime implicant
normal form for a formula is a DNF of this formula.

Example 3.1.37. Consider the propositional logic formula
F=bAcA(aVdV (-cA-a)).

Implicants of this formula are

Dy ={a,b,c,d}
Dy ={a,b,c}
D3 = {b,c,d}

since for all D; where i € {1,2,3}, D; = F. D is not a prime implicant of F because
Dy C Dy. In fact, both Dy and Ds are the only prime implicants of F' resulting in the
prime implicant normal form F' for F.

F'=(anbAc)V (bAcAd)
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Dual to implicants and prime implicants are the notions of implicates and prime im-
plicates, which are used for knowledge compilation purposes as well.

Definition 3.1.38 (Implicate/Prime implicate/Prime implicate Normal Form). Let KB
be a propositional logic knowledge base and C be a disjunction of distinct literals (a
clause), not containing complementary literals. C' is called an implicat of KB if KB |= C.
C is called a prime implicat of KB if C is an implicate of KB and for every other
implicate C' of KB, C' ¢ C. The conjunction of all prime implicates of KB is called
prime implicate normal form for KB.

Note that the prime implicate normal form for a formula constitutes a CNF for the
formula.

Computing all prime implicates of a knowledge base can be done by simply creating
all possible resolvents. Each resolvent corresponds to an implicate and dismissing the
non-prime ones leads to the desired result. However there are many more appropriate
approaches to determine the set of prime implicates of a knowledge base. |Cadoli and
Donini (1997) present an overview on different approaches.

Example 3.1.39. Consider the following CNF:

F= {{av b, _‘C}7 {—|CL, b}, {07 d}}

In order to determine all implicates of F', all possible resolvents are constructed. For
details on resolution consult (Fitting, 1996)).

(1) {a,b,~c}

(2) {—a,b}

(3) {c. d}

(4) (1+2):4{b,~c}
(5) (1+3):{a,b,d}
(6) (4+3):4{b,d}

The first three clauses correspond to the clauses given in the CNF of F. The last three
clauses are obtained using resolution. All resolvents are implicates of F'. However not all
of them are prime implicates: (5) is not a prime implicate, since clause (6) is a proper
subset of clause (5). (1) is not a prime implicate, since clause (4) is a proper subset of
(1). All other clauses are prime implicates, leading to the prime implicate normal form
F' for F:
F'=(=aVb)A(cVd)A(DbV-=c)A(bAd)
According to |(Chandra and Markowsky (1978)), for a knowledge base containing n

different variables the number of prime implicates and prime implicants is exponential
in n in the worst case.
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Properties of Prime Implicant Normal Form and Prime Implicate Normal Form First
the different queries introduced in Section [3.1.1.1] are considered and it is investigated if
they can be answered in polynomial time from formulae given in prime implicant normal
form or prime implicate normal form respectively.

1. Clausal entailment checking:

a)

Prime implicant normal form: Given a knowledge base KB and a prime im-
plicant normal form for KB. Entailment of CNF queries can be answered from
the prime implicant normal form of KB in time polynomial in the size of the
prime implicant normal form and the size of the query (Cadoli and Donini,
1997). More precisely, for a given knowledge base KB and a query @ in CNF,
KB = @ iff every clause in @ has a nonempty intersection with every prime
implicant. This can be tested efficiently.

Prime implicate normal form: Similar to prime implicants, prime implicates
allow to check entailment of CNF queries in time polynomial in the size of the
prime implicate normal form and the size of the query. According to [Cadoli
and Donini (1997)), this can be done as follows: Let KB be a knowledge base in
prime implicate normal form and @ a CNF query. KB = @ iff for every non-
tautological clause C’ € @ there is a prime implicate C' of KB with C &= C’
(or C' C ") respectively.

2. Consistency checking:

a)

Prime implicant normal form: According to Definition , a prime im-
plicant is a consistent conjunction of distinct literals. This implies that every
formula given in prime implicant normal form is in DNNF as well. Therefore
the sat-predicate given in Definition can be used for formulae in prime
implicant normal form as well, yielding a linear satisfiability test for the prime
implicate normal form language.

Prime implicate normal form: As mentioned before, formulae given in prime
implicate normal form allow to check clausal entailment in time polynomial
to the size of the formula and the query. This implies that prime implicate
normal form also offers an efficient conistency check. Consistency can be
checked simply by testing if | is entailed by the formula in prime implicate
normal form.

3. Validity checking:

a)

Prime implicant normal form: From the definitions of prime implicates and
implicants follows, that G is a prime implicant of formula F' iff =G is a prime
implicate for —F'. Therefore the negation of a formula F' in prime implicants
normal form is the formula =F" in prime implicate normal form. From the fact
that consistency of formulae in prime implicate normal form can be tested in
time polynomial to the size of the formula implies that validity of formulae in
prime implicant normal form can be tested in time polynomial to the size of
the formula as well.
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b) Prime implicate normal form: It is a well-known fact that validity of a CNF
formula can be checked efficiently. For this it is only necessary to check if
each clause contains complementary literals and is therefore valid. This can
be performed in time linear in the size of the CNF formula. Since formulae in
prime implicate normal form are given in CNF, it is obvious that it is possible
to check the validity of formulae in prime implicate normal in time linear in
the size of the formula as well.

4. Model enumeration: For formulae given in prime implicate or prime implicant
normal form conditioning can be performed in time polynomial to the size of the
formula. See (Marquis, [2000) and |Darwiche and Marquis (2002) for proofs. Accord-
ing to [Darwiche and Marquis (2002)), sublanguages of the NNF language have the
following property: If the language allowing polytime conditioning and a polytime
consistency check then it also allows to enumerate models in polytime. Therefore,
both the prime implicate and the prime implicant normal form allow to enumerate
models in time polynomial to the size of the formula.

Next we consider the different transformations given in Section [3.1.1.2

1. Conditioning: As mentioned before, prime implicant and prime implicate normal
form both allow polytime conditioning. See (Marquisl, 2000) and (Darwiche and
Marquis, [2002) for proofs.

2. Combination with the logical connectives =, A and V: As shown by [Darwiche and
Marquis (2002), both prime implicate and prime implicant normal form are not
closed under conjunction, disjunction and negation.

3. Projection: When considering projection, prime implicate and prime implicant
normal form do not have the same properties.

a) Prime implicant normal form: It is not possible to efficiently project a formula
given in prime implicant normal form on a set of variables. |Darwiche and
Marquis (2002)) presents for an example of a formula F' in prime implicant
normal form for which the projection on a set of atoms has an exponentially
greater number of prime implicants than F'.

b) Prime implicate normal form: As shown by [Marquis (2000) for a formula
F in prime implicate normal form and a set of variables A, it is possible to
construct the projection of F' on A in time polynomial to the size of F'. This
property is due to the fact that the set of prime implicates of the projection
of F' on A are exactly those prime implicates of F' not containing any symbols
from A.

3.1.3 Relation between the Introduced Normal Forms

It is obvious that the linkless normal form and DNNF are very closely related. In fact
every DNNF formula is in linkless normal form as well. Hence a formula in DNNF allows

70



Flat NNF Linkless NF

| Pr. Implicate NF | | Pr. Implicant NF |

Figure 3.1: Relation between Different NNF Sublanguages. (Corresponds to Figure 4 by
Darwiche and Marquis| (2002) and is adapted to our purposes). An arrow
from language Lq to language Lo means that Ly is a proper subset of Lo.

at least the same efficient queries and transformations as a formula in linkless normal
form. Since every formula in prime implicant normal form is in DNF and every DNF
is in DNNF, the prime implicate normal form language is a sublanguage of the DNNF
language. In order to compare the different sublanguages considered in this section, the
notion of flat NNF is helpful. The flat NNF restricts the structure of NNF formulae: As
suggested by |Darwiche and Marquis| (2002), a NNF formula can be interpreted as a DAG
with leaf nodes labeled either with literals or with T or L. Internal nodes are labeled
either with the logical connective A or V which are allowed to have an arbitrary number
of children. A formula is in flat NNF iff the maximal number of edges from the root to
a leaf is at most two. For example both CNF and DNF formulae are in flat NNF.

Another relation that is easy to see that DNF with simple-conjunction property is
a sublanguage of the DNNF language. Furthermore, the prime implicant language is
a sublanguage of DNF. Figure [3.1] illustrates the relation between the different NNF
sublanguages considered in this section. The figure corresponds Figure 4 by Darwiche
and Marquis (2002) and is adapted to our purposes.

We end the comparison by presenting a summary of the properties of linkless normal
form, DNNF, prime implicate and prime implicant normal form in Figure For the
properties in the table not explained above, see (Darwiche and Marquis, |2002) for detailed
proofs.
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Language CO VA CE ME CD FO A V -~
NNF o o o o v o Vv Vv V
Linkless NF v o v v v /S o V o
DNNF v o v v v /o o V o
Prime Implicant NF v v v v X X X X
Prime Implicate NFF v v v v NV S P

Content of Cells:
v': satisfies property, Xx: does not satisfy property, o: satisfies property iff P=NP

Queries and Transformations:

CO: polytime consistency check

VA: polytime validity check

CE: polytime check of clausal entailment
ME: polytime model enumeration

CD: polytime conditioning

FO: polytime forgetting

A,V,—: language closed under the resp. operator and
resulting formula can be computed in polytime

Table 3.1: (Darwiche and Marquis, 2002)) Different NNF Sublanguages and their Polyno-
mial Time Queries and Transformations.

3.2 Knowledge Compilation in Description Logics

In this Section, methods for knowledge compilation for the description logic ALC are
developed. In the context of description logic, one has to distinguish between know-
ledge compilation of concepts and knowledge compilation of TBoxes. Firstly, we focus
on knowledge compilation for concepts. Section introduces some normal forms,
namely the so-called V-normal form, 3-normal form, propagated 3-normal form and the
complete propagated I-normal form. These normal forms serve as a basis for a target
language for ALC concepts called linkless normal form introduced in Section [3.2.2] We
prove properties of this linkless normal form, such as polytime uniform interpolation.
Furthermore, it is shown how the linkless normal form can serve as a target language for
compiling TBoxes. The described compilation of ALC TBoxes into linkless normal form
is implemented and Section provides some details on the implementation together
with some experimental results. Since the focus of this section is on the development of
the linkless normal form and the investigation of its properties, the implementation only
serves for a feasibility study and therefore no detailed evaluation is presented.

When choosing a target language for knowledge compilation purposes in description
logic, several aspects have to be considered. First of all a possible blowup caused by the
transformation of a concept into the normal form as well as the computational complexity
of the transformation is of interest. Furthermore, like in the propositional case, tract-
able queries and transformations are important. Given a concept in a target language,
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possible queries are consistency and validity checking as well as subsumption checking.
In addition to that, transformations on concepts given in the target language can be
investigated. These transformations include closure properties, conditioning, conjoining
as well as projection.

Next, different normal forms for ALC concepts are introduced which serve as a basis
for the linkless normal form which is presented in Section

3.2.1 V- and 3-Normal Form for ALC

In this section, two different normal forms for ALC concepts will be introduced: the V-
normal form and the 3-normal form. These normal forms restrict the concepts which are
allowed to occur in the scope of a role restriction. The V-normal form and propagated 3-
normal form are related to the normalization rules used by [Baader, Kiisters, and Molitor
(1999) to compute the least common subsumer of ALE concept descriptions. Another
related approach is the normal form used for the calculation of uniform interpolants by
Wang, Wang, Topor, Pan, and Antoniou/ (2009). However transforming a concept into
the normal form used by Wang et al. (2009)) in general produces a larger blowup then
the precompilation into 3-normal form.

For the remainder of this chapter, unless stated otherwise, by the term concept, we
denote ALC concepts given in NNF. Recall that according to Definition by literal
concept, an atomic concept or a negated atomic concept is denoted or | or T. Further
by literal we denote a literal concept or a role restriction. By literals occurring on the
topmost level of a concept C' in NNF, we understand each literal occurring in C, which
is not in the scope of a role restriction.

Example 3.2.1. Consider the concept
C=(AN-B)U3R.(-CND)
Literals occurring on the topmost level of C' are A, =B, AR.(-C' 11 D).

Most parts of this section have been published in (Schon) [2011]) and (Schon, [2010).

3.2.1.1 V-Normal Form

Now we will introduce the V-normal form. The basic idea of this normal form is to
combine all conjunctively combined universal role restrictions w.r.t. the same role. For
example the concept VR.A M VR.B contains the information that everything reachable
via the R role has to belong to the concept A and the concept B. This information can
be combined into VR.(A M B) meaning that everything reachable via the R role has to
belong to the concept A M B.

In order to be able to introduce the V-normal form, it is necessary to define the notion of
conjunctively combined concepts which is similar to the notion of conjunctively combined
formulae in propositional logic, given in Definition [3.1.9) An important difference is the
fact that description logic concepts can contain role restrictions and it is not desired to
consider for example the concepts D and F to be conjunctively combined in the concept
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JR.(E NVR.(C U D)). The following definition of a path of a concept together with
Definition takes care of this aspect.

Definition 3.2.2 (Paths of a Concept). Let ¥ = (N¢, Nr, Ni) be a description logic
signature Cy, Cy € C* concepts and R € Nr a role. paths : C* — 2C% s q function
mapping a concept to a set of concepts satisfying the following conditions:
paths(C1) = {{C1}} if C1 is a literal concept.

paths(C1 U Cy) = paths(C1) U paths(Cs).

paths(C1 M Cy) = {X UY | X € paths(C1) and Y € paths(C2)}.
For concept Cy, paths(C1) is called the set of paths in C; and each element in paths(C)
1s called a path in Cf.

Note that when constructing the set of paths of a given concept C, only the topmost
level of C' is considered. If C' contains a subconcept of the form VR.D or dR.D, paths in
the subconcept D are irrelevant to the set of paths in C.

Like in the propositional case, the notion of a path and the conjunction of the elements
of a path will be used interchangeably. With this understanding, it makes sense to state
that a path can be satisfiable or unsatisfiable.

In propositional logic, a path is unsatisfiable iff it contains 1 or complementary literals.
In description logic, the situation is not that easy. Of course a path P with 1. € P or
complementary literal concepts occurring as elements of P is unsatisfiable. However, in
description logic it is possible for a path P to be unsatisfiable even if | ¢ P and there
are no complementary literal concepts L and L with both L € P and L € P. Take
the paths {3R.A,VR.—A} or {3R.L} as examples. We sum up these thoughts in the
following lemma.

Lemma 3.2.3. Let C be a concept and P € paths(C). Then path P is unsatisfiable iff
at least one of the following conditions is fulfilled:

1. L eP.

2. thereis L € P and L € P for L a literal concepts.

3. 3R.C" € P with unsatisfiable concept C".

4. {3R.C,YR.Dy, ...,YR.D,} C P with unsatisfiable concept C 1 D1 M...M Dy,
Proof. Lemma follows directly from the way paths are constructed. O
Example 3.2.4. Consider the concept

C=3R.(BUE)NYR-BM(EUDUVR.F)
which has three different paths
P, ={3R.(BUE),YR.-B,E}
P, ={3R.(BUE),YR.-B,D}
P; ={3R.(BUE),YR.-B,VR.F}
All paths are satisfiable.
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Definition 3.2.5 (Conjunctively Combined). Let C' be a concept in NNF. Concepts D
and E are called conjunctively combined in C' if there is a path P € paths(C') with D € P
and E € P or if C contains QR.F, Q € {3,V} and D and E are conjunctively combined
m F.

The V-normal form restricts occurrences of universal role restrictions on the topmost
level of a concept. It exploits the fact that VR.AMVYR.B is equivalent to VR.(AM B) and
demands all conjunctively combined occurrences of universal role restrictions w.r.t. the
same role to be summarized.

Definition 3.2.6 (V-Normal Form). A concept is in V-normal form (V-NF) if it is in NNF
and the topmost level of the concept does not contain conjunctively combined concepts of
the form VR.B1 and VR.Bs.

Example 3.2.7. Consider concept C given in Example[3.2.7):
C=3R.(BUE)NYR-BMN(EUDUVR.F).

C is not in V-NF, since the two universal role restrictions VR.—~B and VR.F occur con-
Junctively combined on the topmost level of C.

Every concept can be transformed into an equivalent concept in V-NF. In order to
proof this property, the notion of a disjunctive normal form for concepts is helpful:

Definition 3.2.8 (Disjunctive Normal Form). Let C' be a concept in NNF. C is in
disjunctive normal form (DNF) iff

= (L

1

Lij))

=
s

1

K2
where L; j is a literal.

Note that this definition of DNF only affects the topmost level of a concept. For
example the concept (EM—-B)UIR.(AM(DUE)) is in DNF, even though the concept in the
scope of the existential role restriction does not have a special structure. Definition [3.2.8
only claims L;; to be literals and according to Definition @ a literal can be a role
restriction as well. Each concept can be transformed into DNF by transforming it into
NNF and then using distributivity as well as De Morgan’s laws.

Theorem 3.2.9. For every concept there is an equivalent concept which is in V-NF.

Proof. A concept C' can be transformed into an equivalent concept C’ in V-NF by first
transforming it into NNF and then using the following algorithm:

1. If C doesn’t contain any role restrictions, then ¢’ = C.

2. If the topmost level of C' contains conjunctively combined universal role restrictions
VR.By and VR.Bs:
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a) transform C' into DNF and

b) summarize all conjunctively combined universal role restrictions referring to
the same role using VR.B MVR.By = VR.(B1 N By).

It is easy to see that the application of this algorithm results in a concept in V-NF. [

Example 3.2.10. Consider concept C from Example [3.2.7):
C=3R.(BUE)NYR-BMN(EUDUVR.F).

C can be transformed into V-NF using the algorithm introduced in the proof of Theorem
[5.2.9 First C is transformed into DNF, leading to

Cy = (3R.(BU E)NYR.~BMNE) LU
(3R.(BU E)NYR.~BND)U
(3R.(BU E) NYR.~BNYR.F)).

Next, all conjunctively combined universal role restrictions referring to the same role are
summoarized. The resulting concept is:

Cy=(3R.(BUE)NYR-BMNE)U
(3R.(BUE)NVR-BMND)U
(3R.(BUE)MVR.(-BNF)).

However going the whole way to DNF results in a concept, which is larger than necessary.
It is possible to create a more succinct version of the Y-NF of a concept by expanding
the concept only as far as necessary into DNF. Where necessary means, that C is gradu-
ally transformed using distributivity as well as De Morgan’s laws only until the V-NF is
reached. For the concept considered above, it is possible to compute a more succinct V-NF
which is:

C3 =3R.(BUE)N ((VR-BN(EUD))UVYR.(-BTMF)). (3.1)

One way to transform a concept into V-NF is using the idea of path dissolution from
propositional logic (Murray and Rosenthal, |1993). Usually path dissolution is used to
remove paths containing a link from a propositional logic formula. Path dissolution
can be also used to remove conjunctively combined universal role restrictions VR.D and
VR.E from a concept C. For this, we use the bijective function prop presented in Defin-

ition [2.4.36] that maps

e cach atomic concept A to a propositional logic variable a,

e [1to A,

U toV,

T to true,
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o | to false,
e - to = and
e QR.C to a propositional logic variable Qre with @ € {3,V}.

In order to remove one occurrence of conjunctively combined universal role restrictions
VR.D and VR.E from a concept C, firstly we determine the smallest subconcept G I H
of C' modulo commutativity, which contains the conjunctive combination of VR.D and
VR.E. Modulo commutativity of M means, that there is a subconcept Dy M...M D, of
C with n > 2 and there are distinct D;, D; in {D1,...,D,} with G = D; and H = D;.
W.lo.g. we assume that VR.D occurs in G and VR.E occurs in H. Next the bijective
function prop is used to construct the propositional logic formula

prop(GMH) =G NH'.

Then PE(Vrd, G'), PC(Vrd, G'), PE(Vre, H") and PC(Vre, H') as given in Definition|3.1.13
is constructed. It follows from Lemma [B.1.14] that

G' =PE(Vrd,G') v PC(Yrd,G")
H' =PE(Vre,H") Vv PC(Vre, H').

Therefore G’ A H' is equivalent to

(PC(¥rd, G") A PC(Vre, H"))
(PC(V¥rd, G") A PE(Nre, H'))
(PE(Vrd, G") A PC(Vre, H'))
(PE(Vrd, G') A PE(Vre, H')).

v (3.2)
V
V

Note that only the last disjunct of formula contains conjunctively combined occur-
rences of Vrd and Vre and further every path in the last disjunct contains both Vrd and
Vre. In the next step, the bijective function prop is used to map formula back to a
concept called N. Since every path in

(PE(Vrd, G') A PE(Vre, H'))

contains both Vrd and Vre, they can be combined to YR.(DTE) in the concept N. Next
we substitute the result of this for G M H in the original concept C. After this step the
number of conjunctively combined concepts of the form VR.Ct and VR.Cs in C' decreased
by one.

In this way, all conjunctively combined concepts of the form VR.C; and VR.C in
C can be removed step by step, leading to a concept in V-NF. Note that the result of
this transformation does not necessarily have to be in DNF. Only in the worst case, the
result is in DNF which means an exponential blowup occurred. |Murray and Rosenthal
(1993) present many optimizations for path dissolution which help to keep the result of
dissolution as succinct as possible.
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3.2.1.2 3-Normal Form

Next we introduce the 3-normal form which imposes restrictions on the occurrences of
existentially quantified role restrictions on the topmost level of a concept.

Definition 3.2.11 (3-Normal Form). A concept C is in IF-normal form (3-NF) if C is
in V-NF and further for each occurrence of a subconcept AR.B on the topmost level of C
the following conditions hold:

e the occurrence of AR.B is conjunctively combined with at most one concept of the

form VR.D,

e if the occurrence of AR.B is conjunctively combined with a concept of the form
VYR.D, then all paths in C' containing this occurrence of AR.B also contain VR.D.

The definition of the 3-NF slightly deviates from the definitions presented in (Schon)
2011) and (Schon, 2010). Definition ensures that if an occurrence of IR.B is
contained in a path which also contains VR.FE, then all paths containing this occurrence
of 3R.B also contain VR.E. Ensuring for example that concept IR.CT1(AUVR.B) is not
in 3-NF| since 3R.C' is conjunctively combined with VR.B but is furthermore contained
in a path which does not contain VR.B.

Note that Definition [3.2.11] restricts occurrences of concepts of the form 3R.B on the
topmost level of C'. This means that for example the concept

C = (3R.BNVR.(EUF))U (3R.BNVYR.~E)

is in 3-NF because the claimed condition holds for both occurrences of AR.B in C, even
though JR.B occurs conjunctively combined with VR.(E U F') and with VR.—E.

Theorem 3.2.12. For every concept there is an equivalent concept which is in 3-NF.
Proof. The proof of Theorem [3.2.12|can be done analog to the proof of Theorem O

The 3-NF of a concept can be computed by an algorithm which is similar to the one
given in the proof of Theorem [3.2.9] As in the case of the V-NF this can lead to an 3-NF
which is larger than necessary. However by partially expanding the concept only as far
as necessary it is possible to produce a more succinct 3-NF. Like described for the V-NF,
it is possible to use path dissolution to compile a concept given in V-NF into 3-NF.

Example 3.2.13. Consider C3 given in m Example as:
C3=3R.(BUE)N ((VR-BM(EUD))UYR.(~BTF)).
The following concept Cy is equivalent to Cs and is in 3-NF:
Cy= (3R(BUE)NYR~BMN(EUD))U (3R.(BUE)NYR.(-BMNF)). (3.3)

With the help of the following lemma, existential and universal role restrictions occur-
ring conjunctively combined in a concept can be summarized.

78



Lemma 3.2.14. Let ¥ = (N¢, Ng, N;) be a description logic signature, C, D € N¢ and
R € Ngr. Then
JR.CNVR.D =3R.(CND)NVYR.D

Proof. Lemma [3.2.14] follows immediatly from the semantics of ALC given in Defini-
tion 2.4.8 O

Definition 3.2.15 (Propagated 3-Normal Form/Complete Propagated 3-Normal Form).
Let C be a concept in 3-NF. C' is in propagated 3-normal form (propagated 3-NF) if for
all concepts of the form AR.Cy and YR.Cy occurring conjunctively combined in C, Cy is
equivalent to C1 M Cq. Further C is in complete propagated I-NF if C is in propagated
3-NF and for all QR.B occurring in C with @ € {3,V}, B is in complete propagated
3-NF as well.

Every concept in 3-NF can be transformed into an equivalent concept in propagated
3-NF with the help of Lemma (3.2.14]

Example 3.2.16. Reconsider concept Cy given in in Example|3.2.15,

Cy= (3R.(BUE)NYR~-BMN(EUD))U
(3R.(BUE)NVYR.(-BTF)).

Cy s equivalent to concept Cs which is in propagated 3-NF:

Cs = (3R.(BUE)N-B)MNYR-BMN(EUD))U
(3R((BUE)N-BMNF)NYR.(-BMF))

From a knowledge compilation point of view, the complete propagated 3-NF does not
have interesting properties. However it can be used as a basis to transfer the idea of some
known target languages for knowledge compilation in propositional logic to description
logic concepts. In the following, the idea of the linkless normal form as introduced by
Murray and Rosenthall (1993) is used to demonstrate this aspect. The basic idea is
to first transform a concept into its complete propagated 3-NF and afterwards use the
bijective function prop and path dissolution to remove all links from the topmost level of
the concept and all subconcepts D occurring in the form of 3R.D or VR.D.

3.2.2 Linkless Normal Form for ALC Concepts

The complete propagated 3-NF introduced in Section [3.2.1.2] will now serve as a basis to
transfer the notion of linkless formulae known from propositional logic to ALC concepts.
In this section, a normal form called linkless normal form is introduced. To obtain this
normal form, first the topmost level of a concept given in complete propagated 3-NF' is
compiled by removing so called links. In the next step, we will recursively perform the
precompilation on subconcepts occurring in the scope of a role restriction.

Most parts of this section have been published in (Schon} 2011, (Schon, 2010)), (Furbach
and Obermaier, 2008) and (Furbach et al., [2009)).
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We start by giving a definition of a link in a concept. Like in propositional logic, a link
is a contradictory part of a concept, which can be removed from the concept preserving
equivalence.

Definition 3.2.17. Let C be a concept. A link in C is a set of two complementary literal
concepts occurring in a path of C. C is called top level linkless if C' is in NNF and there
is mo path in C' which contains a link.

In propositional logic, a linkless formula F' is satisfiable if F' is simplified according to
the last two equivalences in Theorem as far as possible and F' # L. In description
logic, a top level linkless concept is not necessarily satisfiable. Take the top level linkless
concept IR.(—BT B)MVYR.B as an example. We will address this problem later. Firstly,
a method to remove links from a concept will be introduced.

As in propositional logic, path dissolution (Murray and Rosenthal, |1993) can be used to
remove links from a description logic concept C'. For this C has to be mapped to a propos-
itional logic formula using the bijective function prop introduced in Definition To
this propositional logic formula prop(C'), the fulldissolvent function from Definition
is applied leading to the linkless propositional logic formula fulldissolvent(prop(C)). In
the next step, the inverse of prop is used to map the result back to a description logic
concept. Leading to the top level linkless concept prop~!(fulldissolvent(prop(C))). To
ease readability, we define the function fulldissolventDL performing the above mentioned
steps to gain a top level linkless concept.

Definition 3.2.18 (fulldissolventDL). Let C' be a concept in propagated 3-NF. Then
fulldissolventDL(C) is the top level linkless concept obtained by calculating prop~!(fulldissolvent(prop(C)
using the fulldissolvent function given in Definition|3.1.20.

Theorem 3.2.19. Let C be a concept. Then fulldissolventDL(C) = C.

Proof. Theorem [3.2.19] follows from the fact that path dissolution preserves equivalence
in the propositional case together with the fact that the prop function is bijective. O

In both propositional logic and description logic a path P is unsatisfiable if the conjunc-
tion of its elements is unsatisfiable. A link in a path clearly indicates an unsatisfiability.
However, in contrast to propositional logic, a path of a concept not containing any links
and not containing | is not necessarily satisfiable. For a concept given in propagated
3-NF, a path P is unsatisfiable iff P contains a link or L or P contains dR.C where C' is
an unsatisfiable concept. Therefore, in order to get a normal form for description logic
concepts with the nice properties of linkless normal form for propositional logic formulae,
it is necessary to take concepts occurring in the scope of a role restriction into account
as well. Informally speaking, this can be achieved by removing links not only from the
topmost level of the concept but from all levels of the concept.

To develop a linkless normal form for concepts, the concept is assumed to be in propag-
ated 3-NF'. This is an important requirement since it ensures that a path is unsatisfiable
iff it contains a link or L or it contains 3R.C' where C' is unsatisfiable. For a concept
not given in propagated 3-NF, this is not necessarily true. We illustrate this with the
following example:
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TnD=D TuUuD=T dR.1 =1
1lnD=1 luD=D VR T =T

Figure 3.2: Equivalences Used for Simplification, where D is a Concept and R a Role.

Example 3.2.20. Consider the following concept C which is not in propagated 3-NF:
C =3R.(-BMN-E)NVYR.E

C' is unsatisfiable and has the single path
P ={3R.(-BMN~-E),VR.E}

P contains the existential role restriction 3R.(-BM—E). However the concept ~BM—-E
occurring in the scope of the role restriction is not unsatisfiable. Transforming C into
complete propagated 3-NF leads to

C'=3R.(-BN—-ETME)MNVR.E

which has the path
P'={3R.(-BMN-ENE),VR.E}

containing the existential role restriction 3R.(~BM—-ETME). The concept ~BM-EMNE
clearly is unsatisfiable.

With the help of these preliminary considerations, we are now able to present the
definition of linkless normal form for description logic concepts.

Definition 3.2.21 (Linkless Normal Form). Let C' be a concept in complete propagated
3-NF. C is in linkless normal form (linkless NF) if C' is top level linkless and for all
QR.D, where Q € {3,V}, occurring in C, D is in linkless NF and further C' is simplified
according to the equivalences given in Figure[3.2.

For a concept C', we call a linkless concept D which is equivalent to C, a linkless
version of C'. A concept, which is given in linkless NF is also called linkless. Note that
a linkless concept C' can only be unsatisfiable if C' = L.

The way linkless NF is defined ensures that not only the topmost level of a linkless
concept does not contain any links but all concepts occurring in the scope of role restric-
tions are linkless as well. This guarantees that, whenever during reasoning a subconcept
of the form QR.D, where @ € {3V}, has to be considered, D is linkless and therefore has
nice computational properties. As mentioned before, a path of a concept C' in propag-
ated 3-NF is unsatisfiable iff it contains a link or | or a role restriction 3R.D where D
is unsatisfiable. This implies that, when checking satisfiability of C it makes sense that
it is helpful for D to be in linkless normal form.

According to Definition [3:2.2] all subconcepts occurring in the scope of an universal
role restriction have to be linkless as well. This requirement is a little bit less intuitive,
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but its necessity gets more comprehensible as soon as subsumption tests are involved.
Given a linkless concept C' and another concept D, checking if C' T D can introduce
new existential role restrictions, which need to be combined with universal role restric-
tions occurring in C. Therefore, it is advantageous to have linkless versions of concepts
occurring in the scope of universal role restrictions.

Example 3.2.22. To illustrate the linkless normal form, we now present three different
concepts and examine if they are in linkless normal form:

o () = (HR.((A nC)U-B)U E) MVR.~C

Cy is top level linkless. However it is not in propagated 3-NF and therefore C1 is
not linkless.

e Co =YR.DMN3R.((EU(BMN~-D))ND)

Cy is top level linkless and in propagated 3-NF. However the concept (E U (B 1
=D)) M D occurring in the scope of the existential role restriction is not top level
linkless and therefore Cs is not linkless.

e C5=(AU(-BMNC))N3R.((AUC)N=D)NYR.~D

Cs s linkless, since it is top level linkless, in propagated 3-NF and all concepts
occurring in the scope of role restrictions are linkless.

Theorem 3.2.23. FEvery concept can be transformed into an equivalent linkless concept.

Proof. Let C be a concept and D be the concept resulting from applying the following
steps to C.

1. Transform C into complete propagated 3-NF.
2. Replace C by fulldissolventDL(C).

3. For all role restrictions QR.B on the topmost level of C', where @ € {3,V}, replace
B by the linkless version of of B.

4. Simplify C according to the equivalences given in Figure

Obviously concept D is linkless. Furthermore, C' = D follows from Theorem [3.2.19
together with the fact that every concept can be transformed into an equivalent concept
in complete propagated 3-NF. O

The proof of Theorem gives an algorithm to compile a concept into an equival-
ent linkless concept. Performing the simplifications of Figure [3.2] during this algorithm
ensures that a linkless concept can only be unsatisfiable if it is L. Since dissolution only
removes unsatisfiable paths from the concept and does not introduce new paths, it is
guaranteed that all levels of a linkless concept are in propagated 3-NF.
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Example 3.2.24. Consider concept Cs from Example[5.2.16, which is given in propag-
ated 3-NF':
Cs = (3R.(BUE)MN-B)MNYR-BMN(EUD))U
(3R.(BUE)N=BMF)MNYR(-BMNF)).

The linkless normal form for Cs is

Cs = (3R.(EN=B)NVYR~BM(EUD))U
(3R.(EM-BMNF)NVR.(-BMNF)).

When considering possible target languages for knowledge compilation purposes, a
possible blowup caused by the transformation is of special interest. We will now show
that transforming a concept into linkless normal form causes an exponential blowup in
the worst case. To see why this is the case, it is helpful to first consider flattening of a
concept. This is a transformation normally used for TBoxes (Rudolph, Krotzsch, and
Hitzler], 2008)) which removes nested role restrictions. It can be used to get rid of nested
role restrictions in concepts as well. We adapt the definition of flattening for TBoxes
introduced by Rudolph et al.| (2008) to flattening of concepts in the following definition.

Definition 3.2.25 (Flattening of a Concept). Let ¥ be a description logic signature and
C € C* be a concept. Function flat : C* — C¥ is a function removing nested role
restrictions from concepts. flat(C') is the result of repeating the following steps until there
are no more nested role restrictions in C':

1. Select an outermost occurrence of a role restriction QR.D, Q € {3,V} and D not
a literal concept.

2. Replace each occurrence of QR.D in C by QR.F with F a fresh atomic concept.
3. Conjunctively add —F U D to C.
flat(C) is called the flattening of C.

Example 3.2.26. Consider the following concept C containing a nested role restriction:
C =3R.(VR-E)ND
Flattening C' leads to
flat(C) =3R.FN DN (-FUVR.-E)

which does not contain any nested role restrictions.

By a simple induction on the number of role restrictions occurring in C' it can be shown
that flattening a concept C' containing k role restrictions increases the size of C' with 5k
times in the worst case. According to Rudolph et al. (2008]), the result of flattening is
equisatisfiable to the original concept.
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When considering the blowup caused by transforming a concept C into linkless normal
form, w.l.o.g. we assume C to be flattened. Since flattening only causes a linear blowup,
this assumption is not harmful. Linkless normal form requires complete propagated 3-
NF. Therefore a blowup caused by the transformation into propagated 3-NF is of interest
as well. For the transformation into complete propagated 3-NF and for the removal of
links, path dissolution comes to use. Path dissolution created a DNF in the worst case.
In this case, an exponential blowup is caused. Therefore transforming a concept C' into
linkless normal form in the worst case causes an exponential blowup as well.

Next we consider properties of linkless concepts namely some of the transformations
and queries introduced in Section for propositional logic.

3.2.2.1 Properties of Linkless Concepts

In this section, different properties of linkless concepts are investigated in order to clarify
the benefits of the linkless NF for concepts. For this, the different queries and transform-
ation introduced in Section for propositional logic are considered.

Consistency Checking The first tractable query that we consider is consistency check-
ing. Since the simplifications of Figure [3.2] are preformed during the transformation into
linkless normal form, a linkless concept can only be unsatisfiable if it is L.

Theorem 3.2.27. Let C' be a linkless concept. Then C' is unsatisfiable iff C = L.

Proof. Let C be a linkless concept. We have to show that 1. if C' = L, C' is unsatisfiable
and 2. if C' is unsatisfiable, C' = L. 1.) follows immediately. We prove 2.) by induction
on the nesting depth of role restrictions depth(C) in C":

Induction basis: depth(C') = 0, meaning that C' does not contain any role restrictions.
Since C' is linkless, C' can only be unsatisfiable if 1 is an element of every path. Fur-
thermore all linkless concepts are simplified according to the equivalences in Figure [3.2
Therefore C' = L follows.

Induction hypothesis: For linkless concepts C' with depth(C') < n holds: If C is un-
satisfiable, then C'= 1.

Induction step: Let C be unsatisfiable, linkless and depth(C) = n + 1. We have to
show C = L. Therefore C is assumed to be unsatisfiable. A concept is unsatisfiable iff
all its paths are unsatisfiable. Lemma lists four conditions of which at least one
must be fulfilled for a path to be unsatisfiable. We will show that for all paths P in C
only the first reason, namely that P contains | is possible in our case. For this let P
be an arbitrary path in C'. Since C is unsatisfiable, P has to be unsatisfiable as well.
Therefore, P has to fulfill at least one of the conditions of Lemma [3.2.3}

Condition 4.): {3R.C, VR.D1, ..., VR.D,} C P with unsatisfiable concept C' M D N
... M Dy. However since C is in propagated 3-NF, C has to be equivalent to
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CnD;n...N D, meaning that C itself is unsatisfiable. This corresponds to

condition 3.) of Lemma [3.2.3]

Condition 3.): P contains IR.C with unsatisfiable C. Since depth(C7) < n, the induc-
tion hypothesis can be applied to C leading to C1 = L meaning that P contains
JR.1. This is a contradiction to the fact that C is linkless and therefore has to
be simplified according to the equivalences in Figure It follows that P cannot
fulfill condition 3.).

Condition 2.): P contains complementary literals. However this is not possible since C'
is linkless and therefore does not contain complementary literal concepts in a path.
Hence P cannot fulfill this condition.

Condition 1.): Since P is unsatisfiable and does not fulfill condition 2.) - 4.), P has to
fulfill condition 1.) meaning that P contains L. From the fact that C'is in linkless

normal form and therefore is simplified according to the equivalences in Figure [3.2]
follows C' = L.

O]

The next corollary is an immediate consequence of Theorem

Corollary 3.2.28. Let C be a linkless concept. Then consistency of C' can be tested in
constant time.

Closure Properties One transformation interesting for target languages for knowledge
compilation listed in Section [3.2] are closure properties. From the structure of linkless
concepts follows the next theorem:

Theorem 3.2.29. Let Cy and Cy be linkless concepts. Then C;UCy, VR.C7 and AR.CY

are linkless as well.

It is easy to see that linkless concepts are not closed under negation, since the negation
of a linkless concept generally is not in NNF and applying De Morgan’s laws to create
NNF can introduce new links. Further linkless concepts are not closed under conjunction.
Take the linkless concepts A and —A as an example: AT —A is not linkless.

Subsumption Checking Next, we consider subsumption checking. In the context of
knowledge compilation this corresponds to the following task: Given a linkless concept
C and a concept F, check if C'C E. In general, a subsumption C'C E holds iff C' 1 —=F
is unsatisfiable.

To simplify notation only subsumptions C' C =D are considered, which hold iff C 1 D
is unsatisfiable. Given a linkless concept C, a subsumption C' = —D can be answered in
time linear in size(C) - size(D) if D has a certain structure, namely is a satisfiable ALE
concept in complete propagated 3-NF for which all subconcepts occurring in the scope
of role restrictions are satisfiable. The next definition specifies these concepts D as so
called g-concepts.
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Definition 3.2.30 (q-Concept). Let D be an ALE concept. D is called a q-concept if
D is satisfiable, in complete propagated I-NF and for all QR.E occurring in D, E is
satisfiable.

When considering a subsumption check C' C =D, we assume D to be much smaller than
concept C. Therefore, a possible exponential blowup produced by the transformation of
D into propagated 3-NF is not too harmful.

As mentioned above, in order to check a subsumption query C' C —D the consistency of
CMD has to be checked. Concept C is assumed to be a linkless concept. However linkless
concepts are not closed under conjunction. Hence the concept C' T D doesn’t need to be
linkless. This is why an operator is needed, which allows to conjunctively combine the
linkless concept C' with the g-concept D resulting in a linkless concept. The operator used
here is an enhancement of the conditioning operator introduced by Darwiche| (2001)) for
propositional logic formulae. Intuitively, conditioning a linkless concept C' by a g-concept
D means, that we assume D to be true and simplify C' according to this assumption. In
the following we use a g-concept D and the set of its conjuncts interchangeably.

Definition 3.2.31 (Conditioning). Let C' be a linkless concept and D be a g-concept.
Then C conditioned with D, denoted by C | D, is defined as:

1. If C is a literal concept or C € {1, T}:
T fCeD.
C|D=< L ifCeD.
C  otherwise.

2. If C has the form C1 M Co:
1 z'fCllD:J_orCﬂD:J_.
C|D=q C;|D if C; | D =T, wherei,j € {1,2} and i # j.
(Ci1| D)1 (Cy | D) otherwise.

3. If C has the form C1 U Cy:
T ZfCl|D:TOT’CQ|D:T
C|D=<¢ (C;| D) if C; | D=1, wherei,j € {1,2} and i # j).
(C1| D)U(Cy | D) otherwise.

4. If C has the form VR.E:

1 if 3R.B’ € D with E | B' = L.
C|D=<{ VR.(E|B) ifVR.B € D and there is no AR.B' € D with E | B’ = 1.
VR.E otherwise.
5. If C has the form dR.E:
1 ifVR.BED and E | B = 1.
C|D=¢ 3R(E|B) ifVRBeD and E|B # L.
dR.E otherwise.

Note that C' | D is linkless. Conditioning a concept C' by a g-concept D can be
performed in time linear in size(C) - size(D).
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Example 3.2.32. To give an intuition of the conditioning operator, we consider different
linkless concepts which are conditioned by different g-concepts:

(EN(~BUVYR.D))|~E = ~BUVYR.D

VR.(-BUF)|VR.B=VR.F
VR.(-BNF)|3R.C =VR.(~BMF)

3R.(EN-B) |VRB =1
3R.(EM-B) | YR.E = 3R.~B

JR(ENB)NVYR.B|VR-B =1

Conditioning can be used to answer queries of the form C' C —D for linkless concepts
C and g-concepts D. To prove this, we introduce some lemmas, namely Lemma [3.2.33]

Lemma Lemma [3.2.35 and Lemma [3.2.36] Lemma [3.2.33| states a connection

between conditioning and conjunction and Lemma [3:2.34] can be used to simplify sat-
isfiability checking of conjunctions of linkless formulae and g-concepts. Lemma [3.2.35
states that the result of conditioning is in propagated 3-NF. Lemma [3.2.36| establishes
a connection between conditioning and conjunction and is used to prove the fact that
queries of the form C' C =D for linkless concepts C and g-concepts D can be answered
using conditioning which is stated in Theorem [3.2.37]

Lemma 3.2.33. Let C be a linkless concept and D a ¢-concept. Then
(C|D)yNnD=CnDb.

Proof. Let C be a linkless concept and D a g-concept. We have to show that (C |
D)n D = CnD. We prove this by induction on the structure of concept C:

Induction basis: C is a literal concept or C'= 1 or C' = T:

a.) CeD:
Then (C' | D) D " E28 T D = D. Further C N D = D because C € D.

b.) C € D:
Then (C | D)D" E%0 | D = 1. Further C N D = L because C € D.

c.) C¢DandC ¢D:
Then (C | D)yn D > &2 o mp.

Induction hypothesis: For linkless concepts C1, Ca, for all g-concepts D: (C; | D) D =

C;N D (i € {1,2}). In the remainder of this proof = indicates that this equivalence
follows from the induction hypothesis.
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Induction step: We now have to show, that the assertion applies to the linkless con-
cepts C1MCy, C1UCy, VR.C1 and dR.C1. For each of these cases, we examine the cases
for the structure of C' given in Definition [3.2.31

1.) C=0Cin0y
a.) Ci1|D=_1LorCy|D=_1. Wlo.g. let C; | D= L. Then

C,|DND=1nD=1. (3.4)

Further (C1 | D)1 D = ()} N D which together with (3.4) implies

cinD=1. (3.5)

Then
(c|pynp PHEED | Aqp

= 1

= 110y

(CimD)nCy

= (ClﬂCQ)ﬂD

= cnbD

b.) Ci|D=TorCy|D=T. Wlo.g. let C; | D=T. Then

(c|pynp "*EXE o, pnD

ConD

Dn(CynD)
(TND)N(Cyn D)
(Ci|DnD)n(Cyan D)
(CimD)n(Cyn D)
(CinCy)nD

cnbD

T == | =

c.) Otherwise:

(c|pynDp "HEEN (o | DyM(Cy | D)ND
(C1|D)ND)N((C2 | D)N D)
CiyND)nN(CeM D)
C1|_|02)|_|D

CnD

o~~~ o~

(1 e

2.) C=CiuCy
a.) C1|D=TorCy|D=T. Wlo.g. let C; | D=T. Then
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(c|pynp "EE Tnp

D

Du(CynD)
(TND)U(Cyn D)

((Ch | D)ND)u(Can D)
(CinD)u(CynD)
(Cll_ICQ)FID

cnbD

b.) Ci|D=1LorCy|D=_1. Wlo.g. let C; | D= L. Then

(C|D)nD (Co | D) D

ConD

1Lu(CyanD)
(LMD)u(Cyn D)

(Ch | D)ND)u(C2N D)
(Cll_lD)Ll(CgﬂD)
(01|_|02)T|D

cnb

1= T A 1 {1

o
[}
jad

L == | = IIE

c.) Otherwise:
C|DnbD

Def.

(C1| D)U(Cy | D)) D
((leD)'_'D) ((Co | D) D)
(CiD)uU(C2M D)
(01L|CQ)|_|D

cnbD

(1 e IE

3.) C =VR.C,

a.) Let D be 3R.B'MI Dy M ...M D, with C; | B' = 1. Let further D’ be
Dy M ...M D,. According to the induction hypothesis, (C; | B") N B’ =

CinNB =
Then
(c|pynp "EE | np
= 4
= VR.CyM3R.L 1D
= VR.C.M3R.((Ch | B)YynB )N D
= VRC,N3IR(C,NB)ND
= VR.CiM3R.B'ND'
= VR.C1 D
= cnbD
b.) Let D be VR.BM Dy M...M D, and there is no D; with D; = 3R.B’, with
Ci1| B =
Then
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(c|pynp "EEN wRcCy | BYND

(VR.Cy | B)MVYR. BN D1 M...MD,
(VR.(C1 | B)nB)1D
VR.(CyMB)ND
VR.CiMVYR.BMDyM...ND,
VYR.Ci1D

cnb

1T 1= T

c.) Otherwise:
c|pnDp > EypcinD=CcnD.

4) C =3R.Cy:
a.) Let D be VR.BM Dy M...M D, and

C,|B=1. (3.6)

Let further D’ be D1 M...M D,,. Then

(c|pynp "EE | np

JR.1LMD
JR.(LNB)ND
JR.((Cy | B)ynB)N D
3JR.(C; N B)ND
JR.Ci;MMVR.BT1 D'

JR.C;y1 D
cnb

b.) Let D be VR.BMD1M...ND, and C; | B # L. Let further D' be D' = DiMD,,.
Then

(c|pynp "*EXE 3R (cy | BYNVYR.BN D'
JR.((Ch | BymB)M D
JdR.(CyNB)MD

JR.(C; M B)NYR.BM D'
JR.C;MVR.BN D'
cnb

1 T 1 1= IIIE (1

(10 e

c.) Otherwise: (C'| D)n D " E2 3 cynD=CnD.
0

Lemma 3.2.34. Let Cy and Cy be concepts such that C1MCy is linkless. Let furthermore
D be a g-concept. Then C1 M CoM D is unsatisfiable iff C1 D or CoT D is unsatisfiable.

Please note that in the following proof the notion of a path and the conjunction of the
elements of a path will be used interchangeably.
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Proof. Let C7 and Cs be concepts such that C; M Cy is linkless. Let furthermore D be a
g-concept. We show that 1. if C1MD or CoMD is unsatisfiable, C1MCyMD is unsatisfiable
and 2. if C1 M Cy M D is unsatisfiable, then C7 M D or Cy M D is unsatisfiable.

1. Unsatisfiability of Cy D or Cy M D clearly implies unsatisfiability of C; M Cs M D.

2. can be shown by contradiction: Let Cy M Cy M D be unsatisfiable and assume both
C1 M D and Cy M D are satisfiable. This implies:

e There is a path P; in paths(C}) such that P, M D is satisfiable.
e There is a path P» in paths(C3) such that P; M D is satisfiable.
According to Definition [3.2.2],

paths(C1 M Cy) = {X UY | X € paths(C1) and Y € paths(C2)}.

Therefore Py U Py € paths(C1 M Cy). Since Cy My is linkless, P; U P; is satisfiable.
We show that this implies the consistency of (Py U P>)MD. D is a g-concept which
implies that paths(D) only contains one path Pp. According to Lemma there
are four possibilities for P, U P> U Pp to be unsatisfiable:

a) Py U Py U Pp contains L. However since P} U P; is satisfiable and since the
satisfiable of g-concepts implies that Pp does not contain L, this case is not
possible.

b) Pp contains a literal concept L and P; U P, contains L. However since P, UPp
and P, U D are satisfiable, this case is not possible.

¢) dR.C € (P U P, U Pp) contains where C is unsatisfiable. Since P; U P, and
Pp are satisfiable, this case is not possible.

d) dR.C € (Pl uUPUu PD) and {VRDl, .. ,VRDn} - (Pl uUPU PD) with
CnDyM...D, unsatisfiable. Since C7 M Cj is linkless, there can be at most
one concept of the form VR.B in P; U P». We investigate two cases:

i. Pp contains dR.C' and P; U P, contains VR.B with C' M B unsatisfiable.
However since P, UPp and P,UPp are satisfiable, this case is not possible.

ii. Pp contains VR.C and P; U P, contains IR.B with B M C unsatisfiable.
However since Py UPp and P,UPp are satisfiable, this case is not possible.

Since all four cases are not possible, P U P, U Pp has to be satisfiable. This is a
contradiction to the assumption that Cq M Cs M D is unsatisfiable and both C; M D
and C5MD are satisfiable and it follows that C;MD or CoMD has to be unsatisfiable.

O

Lemma 3.2.35. Let C be a linkless concept and D be a q-concept. Then C' | D is in
propagated 3-NF.
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Proof. Let C' be a linkless concept and D be a g-concept. We show that C' | D is in
propagated 3-NF. Conditioning does not introduce new role restrictions. Furthermore,
conditioning does not introduce new paths. It follows that, since C' is in 3-NF, the result
of conditioning is in 3-NF as well. It remains to show that the result of conditioning is
always in propagated 3-NF. We prove this by considering subconcepts of C' of the form
JR.ATIVR.B and show that (3R.AMVYR.B) | D is always in propagated 3-NF.

Since IR.ATTVR.B is linkless,

3R.ANVYR.B =3R.(ANB)NVYR.B.

We show JR.(AM B)MNVYR.B | D is in propagated 3-NF by distinguishing different cases
for D and applying Definition Note that due to the structure of IR.(A M B) I
VR.B, we only have to consider the cases 4. and 5. of Definition Furthermore,
since conditioning does not add new paths to a concept, it is sufficient to only consider
occurrences of AR.Dy and VR.D» in the g-concept D.

1. D contains 3R.Dq:
a) B | D = L: Then (VR.B)|D = L (according to the first case in 4. of
Definition (3.2.31)) and further
(3R.(ATMB)NVR.B) | D=1

which is in propagated 3-NF.
b) B ‘ D1 7& 1
i. D does not contain VR.Dy: Then
(3R.(ANB)MNVR.B) | D=3R.(ANB)NVR.B

which is in propagated 3-NF.
ii. D contains VR.Dy: dR.Dq is irrelevant for the result of the conditioning,
since B | D1 # L. Therefore
(3R.(AMB)NVYR.B) | D= (3R.(AM B)MVYR.B) | VR.Ds.

e (AN B) | Dy = L: This corresponds to the first case in 5. given in
Definition B.2.311 Then

(3R.(ANB)NVYR.B) | VR.Dy = L

which is in propagated 3-NF.

e (AMIB) | Dy # L: This corresponds to the second case in 5. given in
Definition This implies, that both A | Dy # L and B | Dy #
L. This leads to:

(3R.(ANB)NVYR.B) | YR.Ds
= JR.(ANMB) | DoN (VYR.B) | Do
P EZI 3R (A| Do B | Dy) M (VR.B) | Dy

which is in propagated 3-NF.
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2. D does not contain IR.Dx:

a) D does not contain YR.Dy: This corresponds to the third case in 4. and 5.
given in Definition [3.2.31} Then

(3R.(AMB)NVR.B) | D=3R.(AN B)NVYR.B

which is in propagated 3-NF.
b) D contains VR.Ds:

i. (AN B) | Dy = L: This corresponds to the first case in 5. given in
Definition B.2.31l Then

(3R.(ANB)NYR.B) |[VR.Dy = L

which is in propagated 3-NF.

ii. (AN B) | Dy # L: This corresponds to the second case in 5. given in
Definition [3.2.31] This implies, that both A | Dy # L and B | Dy # L.
This leads to:

(3R.(AN B)MVYR.B) | VR.D,
= JdR.(ANB) | D211 (VR.B) | Dy
Def. 2311
= dR.(A| Do B | Dy) M (VR.B) | Do

which is in propagated 3-NF.

We have shown that the result of (3R.(AM B)MVR.B) | D is in propagated 3-NF for all
possible D which immediately implies the assertion. O

Lemma 3.2.36. Let C be a linkless concept and D be a g-concept. Then C | D is
satisfiable, iff C' M D is satisfiable. Furthermore C' | D is linkless.

Proof. Let C' be a linkless concept and D be a g-concept. We show that 1. satisfiability
of C'M D implies satisfiability of C' | D and 2. satisfiability of C' | D implies satisfiability
of CM D and furthermore C' | D is linkless.

1. follows immediately from Lemma |3.2.33

2. is shown by induction on the structure of concept C":

Induction basis: C' is a literal concept.

a) Ce€D:
Then C | D = T, which is satisfiable. Since all g-concepts are satisfiable and
C € D, it follows that C' M D is satisfiable as well. Besides this C' | D =T is
linkless.

b) C € D:
Then C' | D = L =C1D. Furthermore L is linkless.
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¢c) C¢DandC ¢ D:

i

ii.

C # 1: Then C | D = C, which is satisfiable, since all linkless concepts

which are not equal to L are satisfiable. Further C'M D is satisfiable, since

D is satisfiable by definition and C' is a literal concept not occurring in
D. Besides this C is linkless.

C = 1: Then C | D = L which is unsatisfiable. Furthermore C' M D =
1. D = 1 is unsatisfiable as well. In addition to that, C' is linkless.

Induction hypothesis: For linkless concepts Cy, Cy and all g-concepts D: If C; | D
is satisfiable then C; M D is satisfiable as well. Furthermore C; | D is linkless where
ie{1,2}.

Sometimes we use the contraposition of the induction hypothesis, namely: If C;M.D
is unsatisfiable, then C; | D is unsatisfiable.

Induction step: We have to show, that the assertion holds for linkless concepts
CindCy, C1UCy, YVR.Cq and 3R.CY.

a) C' =

.

ii.

iii.

CinCy:

Ci|D=LlorCy|D=1. Wlog. C;|D=1:

Then C' | D = 1 which is unsatisfiable and linkless. Furthermore, ac-
cording to the contraposition of 1., C1 M D has to be unsatisfiable. This
implies the unsatisfiability of CT1 D = Ci M Cy M D.

Ci|D=TorCy|D=T. Wlog C;|D=T.
According to the induction hypothesis Cj M D is satisfiable. We assume
C'| D to be satisfiable and show that C' M D is satisfiable as well.

According to Definition [3.2.31, ¢ | D *"E*¥ ¢, | D.

A. C5 1M D unsatisfiable:
From the contraposition of the induction hypothesis follows that Cs |
D is unsatisfiable as well. Since C' | D Pt BZA ) | D, this is a
contradiction to the assumption that C' | D is satisfiable.

B. C5 1M D satisfiable:
Since C7 M Cy is linkless and both C; M D and Cy M D are satisfiable,
it follows from Lemma that C1 M1 CyM D = CTD is satisfiable.

Furthermore, according to the induction hypothesis, C' | D = Cy | D is
linkless.

Ci|D# Land C; | D#T fori e {1,2}:

Then C' | D = (Cy | D) (Cy | D). If C | D is satisfiable, both C; | D
have to be satisfiable. According to the induction hypothesis, this implies
the satisfiability off C;M D (i € {1,2}) and thus the satisfiability of CT1D.



In addition to that C'| D = Cy | D1 Cy | D is linkless. This is the case,
since C1 M Cy is linkless and the conditioning with D does not introduce
links. According to Lemma [3.2.35] the result of conditioning is always in
propagated 3-NF and therefore C' | D is linkless.
b) C=CiuCy
. Ch|D=TorCy|D=T. Wlog. C;|D=T.
Then C' | D = (C;UCy) | D Pt BZI T 5 satisfiable and linkless. Ac-
cording to the induction hypothesis C1 M D is satisfiable, which implies
CnD=(CiuCy)ND=(CiND)U(CyM D) to be satisfiable as well.
i. Ci|D=LorCy|D=1. Wlog. C,|D=1.
Then C | D ""E20 ¢, | D. If Cy | D is satisfiable, C3 M D has to be
satisfiable as well, according to the induction hypothesis. Further
CHD:(01L|02)|_|D
=(CinD)U(Cyn D).
To sum up: Consistency of C' | D implies consistency of Cy M D which
implies consistency of C' T D.
In addition to that, C' | D = Cy | D is linkless according to the induction
hypothesis.
iii. C; | D# T and C; | D # L for i € {1,2}.
Then C | D "% (¢ | D) U (Cy | D), which is satisfiable, iff Cy | D
or Cy | D is satisfiable. W.lo.g. let Cy | D be satisfiable. By induction
hypothesis, this implies the consistency of C; M D, which leads to the
consistency of
CnD=(CiUCy)ND
=(CiD)U(Cyn D).
Furthermore both C1 | D and Cy | D are linkless according to the induc-
tion hypothesis. Hence C' | D = C; | DU Cy | D is linkless as well.
c) C =VR.Ch
i. Let Dbe 3R.B'MDyM...MD, and D' = DyM...MD, with C; | B = L.
Then C' | D Pt EZA | Since we have to show that satisfiability of C' | D
implies satisfiability of C'M D we are done with this case.
ii. Let Dbe VR.BNDiM...MD, and D' = D;M...M D, and there is no
dR.B’ in D with C4 | B’ = L.
Then C' | D Pet B2IT VR.(C1 | B) which is satisfiable and according to the
induction hypothesis is linkless. Further
CnD=YR.CinD
=VR.CiNVYR.BN1 D'
=VR.(C;B)ND.
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This is satisfiable, since we claimed that there is no IR.B’ in D with
Cy | B = 1.
iii. VR.B ¢ D and there is no 3R.B’ in D with C; | B’ = L.
Then C | D Pet E230 VR.Cy, which is satisfiable. Furthermore, according
to the induction hypothesis, C' | D pet. BZ3T VR.Cq is linkless. Further
CnND =VR.C; 1D has to be satisfiable, since D is a g-concept and for
all existential role restriction 3R.B; in D holds C | B; # L which implies
the consistency of C1 M B;.
d) C =3R.C4

i. Let Dbe VR.BMNDyM...MD,,D'=DyMN...MNDyand C; | B= 1. It

follows that C' | D Pet B2 L, which is unsatisfiable and linkless. Since

we have to show that satisfiability of C' | D implies satisfiability of C'M D
we are done with this case.

ii. Let VR.B€ D and C; | B # L.
Then C' | D Pet B2 JR.(Cy | B) is satisfiable. Further it follows from the
induction hypothesis, that Cy M B is satisfiable.
Let D be VR.BNDyM...NMD, and D' = D;M1...MD,. Since D is a
g-concept, it is ensured that no D; in D’ has the form VR.B’.Then

CnD=3R.CiND
=3JR.CiNVYR.BND'
=3JR.(C;nB)ND.
Since both Cy M B and D are satisfiable and further VR.B" ¢ D for all
B’ # B, it follows that C' 11 D is satisfiable.

From the induction hypothesis follows, that C; | B is linkless. Hence
C'| D =3R.(C1 | B) is linkless as well.

iii. Let VR.B ¢ D.
Then C' | D Pt BEZT 3R ¢, which is satisfiable, iff C is satisfiable.
Further CMD = 3dR.C{ M D is satisfiable, iff C; is satisfiable. This follows
from the fact that the g-concept D is satisfiable and further VR.B ¢ D.
In addition to that, C' | D = 3R.Cy is linkless, because C] is linkless
according to the induction hypothesis.

O

The next theorem shows how conditioning can be used to perform subsumption checks.

Theorem 3.2.37. Let C' be a linkless concept and D be a g-concept. Then C T —D
holds, iff C'| D is unsatisfiable.

Proof. Let C be a linkless concept and D be a query concept. C' = =D holds iff CM D is
unsatisfiable. According to Lemma |3.2.36| this is the case iff C' | D is unsatisfiable. [
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Since conditioning a linkless concept C with a g-concept D can be performed in time
linear in size(C) - size(D), checking the above mentioned subsumption C' C =D has the
same time complexity.

Example 3.2.38. Consider the following linkless concept:

C = (3R(EN-B)NYR~BM(EUD))U
(3R(EM—=BNF)NYR.(-BMNF))

We now want to check the subsumption
C C EUdR.F.

Negating the right side of the subsumption, leads to the q-concept —E MYR.—F. With
the help of Definition [3.2.31], it is possible compute the result of conditioning C' by the
q-concept:

C|-ENVR~-F =3R.(EN-B)NYR-BMND
Since this concept is satisfiable, the subsumption = C C E'U3IR.F does not hold.

Uniform Interpolation Section [3.1] introduces projection as an interesting transforma-
tion for knowledge compilation target languages for propositional logic. As mentioned
before, projection is dual to the notion of forgetting. In the context of description logic,
usually the term wuniform interpolation is used to denote forgetting. Uniform interpola-
tion has many applications with regard to ontologies (Konev, Walther, and Wolter}, 2009).
One examples is re-use of ontologies, where only a small subset of the vocabulary of an
ontology under consideration is of interest. Another interesting application is predicate
hiding, where certain parts of an ontology are not supposed to be seen by the public and
are therefore hidden. Intuitively, the uniform interpolant of a concept C' w.r.t. a set of
atomic concept symbols ® is the concept D, which does not contain any atomic symbols
from ® and is indistinguishable from C' w.r.t the consequences that do not use symbols
from .

Definition 3.2.39 (Uniform Interpolant). Let C' be a concept and ® a set of atomic
concepts. Concept D is called uniform interpolant of C' w.r.t. ® or short ®-interpolant
of C iff the following conditions are fulfilled:

1. D only contains atomic concepts which occur in C but not in .
2. ECLCD.
3. For all concepts E not containing symbols from ® holds: =C C E iff E DC E.

It can be shown that ®-interpolants are unique up to equivalence. An algorithm to
compute the uniform interpolant of a concept w.r.t. a set of concept symbols ® was
presented by ten Cate, Conradie, Marx, and Venema| (2006). The following definition
presents an operator to compute the uniform interpolant of a linkless concept w.r.t. a set
of atomic concepts.
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Definition 3.2.40 (Ul-operator). Let ¥ = (N¢, Ng, N) be a description logic signature,
C € C* be a linkless concept and ® C N¢ be a set of atomic concepts. Then UI(C, ®) is
the concept obtained by substituting each occurrence of the literal concepts A and —A in
CbyTiff Ac ®.

From the way UI(C, ®) is constructed, the following lemma is obvious:

Lemma 3.2.41. Let ¥ = (N¢, Ng, N1) be a description logic signature, C,Cy,Co € C*
be linkless concepts and ®, 1, Py C N¢ be sets of atomic concepts. Then

1. If C does not contain any symbols from ®, then C = UI(C, ®).
2. UI(Cq M Oy, ) = Ul(Cl,(I)) M Ul(CQ,CI))

(
UI(Cy U Cy, @) = UI(CYy, @) L UI(Cy, B).

4. U(QR.C,®) = QR.UI(C, ®), for Q € {3,V}.

5. UI(C, @1 U ®5) = UI(UI(C, 1), ®2) = UI(UI(C, Bs), D1).

Lemma 3.2.42. Let ¥ = (N¢g, Ng,N;) be a description logic signature, C € C* be
a linkless concept and ® C Ng be a set of atomic concepts. Then C' is satisfiable, iff
UI(C, @) is satisfiable.

Proof. Let ¥ = (N¢g, Ng,N;) be a description logic signature, C € C* be a linkless
concept and ® C N¢ be a set of atomic concepts. We show that 1. satisfiability of C
implies satisfiability of UI(C, ®) and 2. satisfiability of UI(C, ®) implies satisfiability of
C.

1. we assume that C' is satisfiable. Then there has to be a satisfiable path in C.
During the construction of UI(C, ®), the only thing that is done are substitutions
by T. This can never make a satisfiable path unsatisfiable. Therefore there has to
be a satisfiable path in UI(C, ®) as well, which makes UI(C, ®) satisfiable.

2. can be shown by contraposition: We assume that C' is unsatisfiable. Since C is
linkless, the only way that C' is unsatisfiable is that C' = L. Therefore UI(C, ®) =
UI(L,®) = L for all ®, which is unsatisfiable.

The following proposition states that the Ul-function preserves models.

Proposition 3.2.43. Let ¥ = (N¢, Ng, N1) be a description logic signature, C € C* be
a linkless concept and ® C N¢ be a set of atomic concepts. If T is a model for C' then T
is a model for UI(C, ®) as well.

Proof. Let ¥ = (N¢, Ng,N;) be a description logic signature, C € C* be a linkless
concept and ® C Ng be a set of atomic concepts. If & is a set with more than one
element, the Ul-function can be performed step-by-step according to 5. of Lemma(3.2.41
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This is why it is sufficient to show the proposition by assuming that ® contains a single
atomic concept. From this the assertion immediately follows. We show the following
assertion by induction on the structure of C:

For all b € AT if b € CT then b € (UI(C, ®))~.

This assertion implies that Z is a model for UI(C, ®).

Induction basis: C is a literal concept, T or L:

1. C=Aor C=-Aand A€ ®: Then UI(C,®) = T. Since b € CZ, b € T7 as well,
which implies b € (UI(C, ®))Z.

2.C=Aor C =-Aand A ¢ &: Then UI(C,®) = C and therefore the assertion
immediately follows.

3. C' = L: Since C is unsatisfiable, there is no b € A” with b € C* and therefore the
assertion follows.

4. C = T: Then UI(C,®) = T. Since a € C*, b € TZ as well, which implies
b e (UI(C,®))T.

Induction hypothesis: For linkless concepts Cp,Co, ® a set consisting of one atomic
concept, a model Z for C; and a € AT: If a € CT then a € (UI(C;, @))%, where i € {1,2}.

Induction step:

1. C =C; M Cy and T is a model for C. Therefore there is b € AT with b € CT. We
have to show for every b € AT that b € (UI(C, ®)) as well.
b€ CT and C = C1 M Cq means that b € (CZ N CF). Therefore we have both

be Cf and
be CT.

From the induction hypothesis it follows

b e Ul(Cy, @)t and
b e UI(Cy, ®)7.

Leading to b € (UI(Cy, )2 NUI(Co, ®)T). Furthermore

UI(Cy, @) NUI(Cy, ®)F
= (UI(Cy, ) M UI(Cy, ®))*
= (UI(Cy N Cy, @)
= (UI(C, ®))~.

It follows that b € (UI(C, ®))%.
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2. C'=C1UC5 and T is a model for C. Therefore there is b € AL with b € CZ. For
every b € C7 we have to show b € (UI(C, ®))? as well.
b€ CT and C = Oy U Cy means that b € (C UC%). W.lo.g. be CL.

From the induction hypothesis it follows
b e UI(Cy, @)
It follows that b € (UI(Cy, ®) LU UI(Ca, ®))T. With Lemma follows
b e UI(Cy U Cy, @)

Leading to
b Ul(C, ®) .

3. C' = 3R.C; and T is a model for C. Therefore there is b € AL with b € CZ. For
every b € C7 we have to show b € (UI(C, ®))T as well.
b € CT and C = JR.C; means that there is ¢ € AT with (b,c) € R and ¢ € CL.

From the induction hypothesis it follows
c e UI(Cy, ®)~.
This, together with (b, c) € R? implies
b e (3R.UI(Cy, ®))L.
It immediately follows from Lemma that
b e (UI(3R.Cy, ®))L.
Therefore b € (UI(C, ®))T.

4. C = VYR.Cy and 7 is a model for C. Therefore there is b € AT with b € CZ. We
have to show b € (UI(C, ®))? as well.
b e CT and C = VR.C| means that two cases have to be distinguished:

a) There is no ¢ € AT with (b,¢c) € RZ.
Then trivially b € (VR.UI(Cy, ®))%. According to Lemma [3.2.41| this implies

b € UI(VR.Cy, ®)L.

Leading to
b e (UI(C,®))L.

b) There is a ¢ € AT with (b,c) € RZ.

Since Z is a model for YR.C1, for all these individuals ¢, it follows that ¢ € C7.
According to the induction hypothesis for all these individuals ¢,

(XS (UI(Cl, CD))I
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Therefore,
be (YR.UI(Cy, @)L,

From Lemma [3.2.47] it follows that
b e (U(YR.Cy, ®))L.

Leading to
b e (UI(C,®))L.

O

The next theorem states that the uniform interpolant of a linkless concept w.r.t. a set
of concept symbols can be computed efficiently using the Ul operator.

Theorem 3.2.44. Let ¥ = (Ng, Ng, N;) be a description logic signature, C € C* be a
linkless concept and ® C N¢ be a set of atomic concepts. Then

1.
2.
3.

UI(C, ®) is the ®-interpolant of C,
UI(C, ®) can be computed in time linear in the size of C' and

if UN(C, @) is simplified according to the equivalences in Figure (3.9, then UI(C,®)
is linkless.

Proof. Let ¥ = (N¢, Ng,N;) be a description logic signature, C € C* be a linkless
concept and ® C Ng be a set of atomic concepts. The second and the third assertion
follow directly from the way, UI(C,®) is constructed. To proof the first assertion of
Theorem namely that UI(C, ®) is the ®-interpolant of C', we have to show that
UI(C, @) has the three properties given in Definition .

1.

The property that UI(C, ®) contains only atomic concept symbols which occur in
C but not in ® follows directly from the way UI(C, ®) is constructed.

The property, that = C T UI(C,®) means, that C 11 =UI(C, ®) is unsatisfiable,
which follows directly from Proposition [3.2.43]

The third property is that, for all concepts E not containing symbols from ® holds:
= CC Eiff = UI(C,®) C E. We prove this by showing that for all concepts E not
containing symbols from ®, CM—E is unsatisfiable iff UI(C, ®)M—FE is unsatisfiable.

First note that, if C' or —~F is unsatisfiable, then C' 1 —F and UI(C,®) N —FE are
unsatisfiable as well and the assertion holds. Therefore we assume C and —F to be
satisfiable.

a) If C' M —F is satisfiable, then there is a satisfiable path P in C M nnf(—E).
We show that this path P corresponds to a satisfiable path P’ in UI(C,®) N
nnf(—=E). Let P denote the subpath of P, passing through C' and P-g be the
subpath of P passing through nnf(—F). If we consider UI(C, ®)—FE, we know
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that the construction of UI(C, ®) only changes the subpath P of P such that
each occurrence of A and - A with A € ® is substituted by T. This can not

cause path P to become unsatisfiable, so the resulting path P’ is satisfiable
as well. Therefore UI(C, ®) M nnf(—FE) and UI(C, ®) M —F is satisfiable.

b) If C M —F is unsatisfiable, then all paths in C' M nnf(—=E) are unsatisfiable.
However due to the assumption that both C' and —F are satisfiable, we know
that the subpaths P and P-g are satisfiable. Therefore the contradiction in
a path has to be constructed from both elements from Po and P-g and has to
use symbols not occurring in ®. However these symbols are not affected by the
construction of Ul. Thus the contradictions are still contained in the paths of
UI(C, ®) M nnf(—=E), which implies that UI(C, ®) M —FE has to be unsatisfiable.

O
Example 3.2.45. Consider the following linkless concept
C = (3R.(EN-B)NYR~-BM(EUD))U(IR(EN-BMNF)NVYR(-BMNF))

together with set ® = {E,D}. The ®-interpolant of C' can be computed using the Ul-
operator leading to:

UIC,®) = 3R(TN-B)NYR-BN(TUT))U(FR(TN-BNF)NVR.(-BMNF)).
UI(C, ®) can be simplified according to the equivalences in Fz'gure to the concept
(3R-BNVYR.-B)U (IR.(-BNF)NVR.(-BMF)).

To sum up, Theorem [3.2.44] shows that the Ul-function can be used to determine
uniform interpolants for a linkless concept and a set of atomic concepts. Furthermore,
this computation can be performed in time linear in the size of the linkless concept.

Corollary 3.2.46. Let C be a linkless concept and ® be a set of atomic concepts. Then
the ®-interpolant of C can be computed in time linear to size(C').

Proof. Corollary immediately follows from Theorem O

Since the result of the Ul-function is linkless, it is possible to perform efficient queries
and transformation with the uniform interpolant.
Next, linkless normal form is extended for TBoxes.

3.2.3 Linkless Normal Form for ALC TBoxes

Until now the linkless normal form is only defined for concepts. However in description
logics, the TBox plays an important role as well. For example it is of interest to test if a
certain subsumption holds w.r.t. a given TBox. Therefore it is desirable to have a normal
form for the TBox as well which allows us to perform certain queries and transformations
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efficiently. In order to extend the linkless NF for TBoxes, we first have to consider TBox
approximations. According to Horrocks (2003)) it is possible to transform a TBox

T={A1CBy,...,A, C By}

into a metaconstraint by first transforming each axiom

A; C B;
into an equivalent axiom
T C —A4; U B;.
These axioms
TLC-A;UDB;
TLC —Ay9 U By
TCE-A,UB,

can be conjunctively combined into one axiom
TC(-AUuUB)M...N(—4,UB,)

which is abbreviated as
TCECr
with
Cr= (1 (—A; U B;).
A,CB;eT

This axiom states that every element in the domain has to belong to the concept C7r.
C7 is often called metaconstraint. Now subsumptions w.r.t. the TBox 7 can be checked
using C't. For example testing satisfiability of a concept D w.r.t. 7 can be done by
checking the satisfiability of D M Cy M YU.C. Where U is the transitive closure of the
union of all roles occurring in 7. C3+MYU.Cr is not an ALC concept, which is the reason
why we use an approximation of this concept.

Definition 3.2.47 (n-th Approximation of a TBox (Wang et al. 2009)). Let ¥ =
(Ney Ngr, Np) be a description logic signature, T be a TBox over ¥ and n € N, n > 0.
The n-th approximation of T is defined as:

=1 T[] VYR...VR.Cr
k=0 R17---,RkENR

where N the set of all roles occurring in T and Cr =[] (-AUB).
ACBeT
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From the way Cgfl ) is constructed, it follows that

o =cVn [] VRi...VR.Cr
Ri,..Rn€R

(n)

which can be used to construct 07? in an iterative way.

Example 3.2.48. Consider the TBox
T ={AC (BU3R.D), BC VR .D}.
Constructing the n-th approximation for n € {0,1,2} leads to

c® = ¢y = (~AUBU3IR.D)N (~BUVR'.D)
ot = ¥ nvR.cr NvR.CF
c® = ¢ NYRYR.Cyr NYRYR .Cr NYR YR.Cr NYR YR .Cr.

Next we describe how to use the n-the approximation of a TBox to check if a concept
is entailed by the TBox. For this, we present a Lemma, which was first presented by [ten
Cate et al. (2006). We slightly adapt the lemma to fit our notation.

Lemma 3.2.49. (ten Cate et all 2006) Let C1,C5 be concepts, T be a TBox and Ng
the set of roles occuring in C1,Co and T. Then

C1C7 Cy iff (Cin [] VR1...VR,Cr) C Co.

Ry,...,RnENR,
n<2size(T)+size(Cq)+size(Cg)

From Lemma |3.2.49| it follows that we can use the approximation C’f(rn ) of a TBox T
to check the satisfiability of a concpet w.r.t. T.

Theorem 3.2.50. Let T be a TBoz, D a concept and n € N. If n > 2size(D)+size(T)+1
then D is satisfiable w.r.t T iff D Cgﬁl) 1s satisfiable.

Proof. The theorem follows directly from Lemma with C1 =T and Co=D. [

The notion of the nth-approximation of a TBox can be used to extend the linkless
(n)

normal form to TBoxes. The idea is to transform CT into linkless normal form for some

number 7. This linkless C\™ can be used to check satisfiability of g-concepts D w.r.t T.
For this, we choose n > 25ze(D)+size(T)+1  The higher we choose n the higher the size of
the g-concept D can be. It is reasonable to assume that g-concepts are small compared
to the size of the TBox. Hence the size of D influences the number 25ze(D)+size(T)+1 oy
to a lesser extent.
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Uniform Interpolation The previous section showed how to efficiently compute uniform
interpolants for linkless concepts and a set of atomic concepts. For TBoxes, uniform
interpolation is even more interesting. In many applications, only a small subset of the
signature of a given TBox is used. One application is information hiding, where a part of
the signature of the TBox is supposed to be hidden from the user. This leads to the idea
of uniform interpolation where all atomic concepts that are not of interest are removed
preserving the meaning of the original TBox within the atomic concepts of interest.

Definition 3.2.51 (®-Interpolant of a TBox). Let T be a TBox and ® a set of atomic
concepts. Then the TBox T’ is called a uniform interpolant of 7 w.r.t. ® or short ®-
interpolant of T iff the following conditions hold:

e T’ contains only atomic concepts occurring in T but not in .

e TET.

e [or all concept inclusions C T D not containing symbols from ®: T = C C D
implies T' = C C D.

As shown in [Wang et al. (2009), there are ALC TBoxes T for which the uniform
interpolant of 7 w.r.t. a set of atomic concepts ® does not exist. Example 3.2.52] taken
from |Lutz and Wolter| (2011) and slightly modified to our purpose, illustrates uniform
interpolation of TBoxes.

Example 3.2.52. In the following, we present two different TBozxes to illustrate uniform
interpolation.

1. Let T1 be a TBox and ® a set of atomic concepts given as

T1={AC3R.BN3R.-B},
& = {B}.

The ®-interpolant of T1 is
T, ={AC3RT}.

2. Let To be a TBox and ® a set of atomic concepts given as

T:={ALC B,
B C 3R.B},
¢ = {B}.
T2 states that starting from every individual belonging to A there has to be an in-

finite sequence of R-successors, all belonging to the concept B. Without the concept
B, this cannot be stated. Therefore there is no ®-interpolant of To.

The afore introduced approximation of TBoxes can be used to reason with respect to
the uniform interpolant of TBoxes as well. For this, we partially present a proposition
introduced by |Wang et al.| (2009), adapted to our notaion.
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Proposition 3.2.53. (Wang et all |2009) Let T be a TBox, ® a set of atomic con-
cepts and C1,Co concepts not containing any atomic concepts from ®. Let further
n > 2size(T)+size(Cr)+size(C2) oy T be the ®-interpolant of C’éﬁ). Then C1 C Cy w.r.t. T
Zﬁ Cl E Cg w.r.t. T/.

From Theorem Theorem and Proposition follows:

Corollary 3.2.54. Let T be a TBox, ® a set of atomic concepts, n € N and D a q-concept
containing only atomic concepts occurring in T but not in ® and n > 252e(D)+size(T)

Then D is satisfiable w.r.t. T iff D is satisfiable w.r.t. Ul(link:less(cgfl)), D).

Ul(lmkless(Cgfl)), ®) is called the n-th approzimation of a ®-interpolant of T and as
stated in the previous section on the Ul-function, it can be computed in time linear in the
size of the linkless normal form of Cgfb ). When checking the satisfiability of q-concepts D
w.r.t. a ®-interpolant of 7T, it is important to know the maximal size of the g-concepts
we want to test the satisfiability w.r.t. the ®-interpolant. This size is then used to
determine n as suggested in [Wang et al.| (2009) and then the n-th approximation of the
®-interpolant can be used instead of the ®-interpolant itself to check if the g-concept is

satisfiable w.r.t. the ®-interpolant of the TBox.

3.2.3.1 Implementation

Based on the precompilation of TBoxes into linkless normal form presented in Sec-
tion [3.2.3] a prototypical knowledge compilation system was developed as a minor thesis
by (Giinther (2009)E| (see also (Furbach et al., 2009)). In order to increase performance by
allowing the reuse of precompiled subconcepts, the implementation uses a graph struc-
ture to represent the result of the precompilation. The graph representation of a concept
corresponds to the linkless normal form of the concept but allows to reuse subconcepts
and is therefore convenient for implementation purposes. Please note that parts of this
Section were already published in (Furbach et al., 2009)).
In the following, we present the basic idea of this graph structure.

Definition 3.2.55 (R-Reachability Relations on Concepts). Let ¥ be a description logic
signature and C, C' € C* be top level linkless concepts.

° <E>p C C* x C* is a relation defined as follows:

R
C <, C" iff there is a path P in C with the nonempty set of all universal
role restrictions occurring in P,{VR.B1,...,YR.B,} C P, and
C'=B;nN...NB,.

Implementation available at http://userp.uni-koblenz.de/~obermaie/LinklessNormalform.zip
[2015, December 17]
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° ig C* x C* is a relation defined as follows:

C 2) C' iff there is a path P in C with AR.A € P and the possibly empty
set of all universal role restrictions {VR.By,...,VR.B,} C P and
C'=ANBMN...NB,.

If C iy C', C'" is called R-reachable from C. If Cgp C', C'" is called potentially R-

reachable from C. If P € paths(C) is the path mentioned in the definition of E)p or 3)
respectively then P is called path used to R-reach C” from C or path used to potentially
R-reach C' from C' respectively. A concept C' is called reachable from concept C, denoted
by C — C', if it is R-reachable from C for some role R. A concept C' is called potentially
reachable from concept C, denoted by C —, C', if it is potentially R-reachable from C
for some role R. Furthermore, —* s the transitive reflexive closure of the union of all

R . . .. . . R .
— relations and ‘—>*p is the transitive reflexive closure of the union of all =y, relations.

Example 3.2.56. Consider the concept
C =3R.AN(VR.(-AUB)U-A)U3R".D.
C' has three different paths:

Py = {3R.AYR.(~AL B)}
P, = {3R.A,-A)}
Py ={3R.D,-A)}

We list the different reachabilities:
C <5>p(m4 L B),
c & (An (=AU B)),
c&oa,
cp,
C— D,(AN(-AUB)) and A.

Note that it is possible that a concept is reachable or potentially reachable from another
concept via several paths.

Since the removal of links preserves equivalence, for a concept C’ which is R-reachable
from C, both C’ and fulldissolventDL(C") are called R-reachable from C'.

Example 3.2.57. Reconsider concept C given in Example|3.2.56):
C=3R. AT (VR.(mAUB)U-A)U3R' D.
Concept AN (=AU B) is R-reachable from C. fulldissolventDL(A M (mAU B) = B is

R-reachable from C as well.
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As mentioned afore, a path P is unsatisfiable iff the conjunction of its elements is
unsatisfiable. Recall that, according to Lemma [3.2.3] there are four different possibilities
for a path to be unsatisfiable:

1. LeP.

2. there is L € P with L € P for L a literal concepts.

3. dR.C € P with unsatisfiable concept C.

4. {3R.C,YR.D,...,VR.D,} C P with unsatisfiable concept C M Dy M...M D,,.

3. and 4. can be restated as: There is an unsatisfiable concept which is reachable from
C using P.

The basic idea of the graph representation of the linkless version of some concept
C is to first compute the full dissolvent of C. In the second step, the full dissolvent
of all concepts C' with C' <* O’ or C' <", C" is computed. This precompilation of
concepts C’ with C <—>*p ('’ is necessary when we want to check subsumptions after the
precompilation. This aspect is illustrated in the next example.

Example 3.2.58. Consider the concept
C =VR.-DNVR.-E.

There is no concept which is reachable from C since C does not contain any existential
role restrictions. Checking a subsumption like

VR.-DMNVR.—-E CVR.(-DMN=-E)
corresponds to checking the satisfiability of

C'=VYR~DNVR~-EN3R.(DUE).

There is a concept, which is reachable form C': C' K (DUE)M—-DM-E).

Since the concepts which are reachable or potentially reachable from a concept via a
path P only depend on the role restrictions occurring in P, we regard all paths containing
the same set of role restrictions as equivalent.

Next we describe how to represent a concept C' as a rooted directed graph i.e. a directed
graph with exactly one source. The graph consists of two different types of nodes: A set
of concept nodes CN containing top level linkless concepts and a set of path nodes PN
containing paths of these concepts. The source node is a concept node consisting of the
top level linkless version of C'. The set of edges is E C (CN x PN)U(PN x CN ), meaning
that concept nodes and path nodes occur alternating in all paths in the graph. A concept
node C' has a successor node for each set of equivalent paths in C'. Furthermore, there
is an edge from a path node to the concept nodes of reachable and potentially reachable
concepts. Each edge connecting a path node with a concept node is labeled with the set
of role restrictions used to reach or potentially reach the respective concept. Each path
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node has exactly one preceding concept node, whereas a concept node can have more
than one preceding path node.
In the following definition, for a path P,

role(P) ={QR.C € P | Q € {3,V}, for some concept C' and some role R}

denotes the set of role restrictions occurring in P. Furthermore, we use ~» to denote the
union of the reaches and potentially reaches relations:

= Uy
Intuitively C' ~» C” holds if C' — C’ or C —, C".

Definition 3.2.59 (Linkless Graph). Let C' be concept. The precompilation of a concept
C' is a rooted directed graph (N, E), called linkless graph, where

1. The root node is fulldissolventDL(C).

2. N=CNUPN.
a) CN is the set of concept nodes defined as:

CN ={fulldissolventDL(C)} U
{C"| C ~*C" and C" a top level linkless concept.}

b) PN is the set of path nodes defined as:
PN ={P | 3C" € CN such that P C paths(C") and
VP',P" € P role(P") = role(P") holds.}
3. The set of edges E is defined as:

E={(C'",P)|C" € CN and P € PN and P C paths(C)} U
{(P,C")| C" € CN and P € PN and 3C" € CN with C" ~ C' and
P’ is a path used to reach or potentially reach C' from C”,
for some path P'.}

Each edge of the form (P,C") with C" € CN and P € PN is labeled with role(P’)
for some P' € P.

Furthermore, for all P € PN holds: |{C" | (C', P) € E}| = 1.

Example 3.2.60. Consider for the linkless concept:

C=(BN=E)U((BU=AU(3R.AMNA) N3R.ENVR.~A)
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(BN=-E)U((BU-AU(FR.ATTA))N3IR.EMNVR.-A)

({B, -E}} oA SRE VRoa),  (BRA A SRE VR-A})

{3R.E, VR.-A}
{3R.A, VR.-A}

R.E, VR.-A}
En-A -A 1
Y

Y
{{e, ~A}t} {{-A}}
Figure 3.3: Linkless Graph for (B —FE) U <(B U-AU(BR.AMA)N3IREN VR.ﬂA).

Its linkless graph with root C is depicted in Figure[3.3. C has the four paths

Pl - {B7 ﬁE}a

P, ={B,3R.E,YR.-A},

Py ={-A,3R.E,YR.-A},

P, ={3R.A,A,3R.E,VR.-A}.
As mentioned afore, we regard paths containing the same set of role restrictions as equi-
valent. There are three sets of equivalent paths: {P1}, {Pa, P3} and {P,}. For each set of
equivalent paths, there is a successor path node. In the next step, reachable concepts are
considered: For instance the concept ET1—A is reachable via the paths {Pa, P3} using the
role restrictions {3R.E,YR.—~A}. Therefore there is an edge from the second path node

to the concept node EM—A labeled {3R.E,VYR.—~A}. In the same way, the precompilation
of all (potentially) reachable concepts are combined with the path nodes.

When answering queries with respect to a TBox it is necessary to restrict reasoning
such that only models of the TBox are considered. As described by [Franz Baader and
Diego Calvanese and Deborah L. McGuinness and Daniele Nardi and Peter F. Patel-
Schneider| (2003) and introduced in Section a TBox

T = {Cl ED17"'aCTL EDn}
can be represented as a metaconstraint
Cr=(=CiyUD;)N...N(=CyUDy,).

The idea of the linkless graph can be directly extended to represent precompiled TBoxes.
This can be done by constructing the linkless graph for C-, but instead of just considering
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—AU(BMN3R.A)

{~4}} {{B, 3R.A}}

(3R.A)}

Y
ANBMN3R.A

{3R.A}

{{A4, B‘,'HR.A}}

Figure 3.4: Linkless Graph for the TBox 7 = {A C BN 3R.A}.

the concept nodes, each concept node C' must also fulfill C'v meaning that we replace
each concept node C by fulldissolventDL(C 1 C'r).
Note that the linkless graph for a TBox typically contains cycles.

Example 3.2.61. Consider the TBox
T={AC BN3R.A}
with the corresponding metaconstraint
Cr=-AU(BMN3R.A).

Figure depicts the linkless graph for T . There are two different paths in Cr, which
constitute the two subsequent path nodes. The path node {{B,3R.A}} can be used to reach
the concept A1 Cr which is equivalent to the top level linkless concept AT1 BT 3R.A,
which therefore labels this concept node. Since ANMMBM3R.A has the path {{A, B,3R.A}},
the graph contains a cycle.

In the worst case, transforming a concept into linkless normal form causes an expo-
nential blowup. Since the linkless graph for a concept is just a syntactical variant to the
linkless normal form for this concept, it is not surprising that transforming a concept
into a linkless graph can cause the same blowup. Namely transforming the concept nodes
into top level linkless concepts can generate an exponential blowup. Furthermore, for a
concept C' there can be exponentially many concepts C’ with C' ~* C’ in the worst case.
If a concept C' contains 7 different roles each with n existential role restrictions and m
universal role restrictions, the number of concepts C’ with C' —* C’ is r - n - 2™ in the
worst case. We call these concepts C’ concepts which are reachable* from C. Further-
more, the number of concepts C’ with C' <—>*p C’ is r-2™ in the worst case. We call these
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concepts C’ concepts which are potentially reachable* from C. The 2™ in both cases
arises from the fact that a set of m universal role restrictions has 2™ different subsets.
And each of these subsets corresponds to one potentially reachable concept. However in
real world ontologies the number of reachable concepts is smaller. Furthermore precom-
piling a TBox never increases the number of reachable concepts, contrariwise it usually
decreases it, because some of the reachable concepts turn out to be unsatisfiable, are
simplified to L and are therefore summarized. For example for the amino—acidﬂ ontology
r =25 m =3 and n = 5. So in the worst case, there are 200 reachable* concepts.
But in reality, before the precompilation there are 170 and after the precompilation 154
reachable concepts.

Our implementation first flattens the TBox (Rudolph et al., [2008) i.e. all nested role
restrictions are removed. This is similar to the flattening of a concept presented in
Definition Flattening is done by replacing each occurrence of IR.C' (VR.C) in
an axiom by IR.C’ (VR.C") with C’ a fresh atomic concept. Furthermore the axioms
C' C C and C C (' are added. This transformation is repeated recursively until no
nested role restrictions are left and for all role restriction dR.B or VR.B, B is a fresh
atomic concept. Removing nested role restrictions ensures that only concepts of the form
DfulldissolventDL(C'1) are reachable or potentially reachable, where D is a conjunction
of fresh atomic concepts and further that every concept which is reachable in more than
one step is also reachable in exactly one step.

Different ontologies from the literature (Foodswapﬂ RibosomeEL Nautilus—exceptionsﬂ
Koalaﬁ and Amino-acid were used to test the implementation. We ignored features not
belonging to ALC occurring in these ontologies. Since the removal of links from a TBox
in the worst case produces an exponential blowup, it is crucial to find out if this blowup
occurs when precompiling real ontologies. Figure[3.2]gives information on that and shows
that 11 links were removed from the Foodswap ontology, which caused the ontology only
to grow from size 130 to 159. Furthermore, 19 links were removed from the Ribosome
ontology which caused the TBox size only to reduplicate. Figure [3.2] shows that for none
of the precompiled ontologies an exponential blowup occurred. Another point which
is interesting is the number of different reachable and potentially reachable concepts
depending on the number of different roles occurring in an ontology. Figure [3.3| shows
that for the ontologies we considered, the number of reachable and potentially reachable
worlds is manageable. Since the performance of query answering depends on the size of
the linkless graph, the experiments confirm the fact that the precompilation of a TBox
into a linkless graph is worthwhile.

As mentioned before, the linkless graph for a concept or a TBox is just a syntactical
variant of the linkless normal form for the concept or TBoxe introduced in the previous
sections. Therefore these experimental results can be seen as experimental results for

Zhttps://bioportal.bioontology.org/ontologies/AMINO-ACID, [2015, December 17]

3http://www.mindswap.org/dav/ontologies/commonsense/food/foodswap.owl, [2015, December 17]

“http://130.88.198.11/co-ode-files/ontologies/Ribosome.owl, [2015, December 17|

®http://130.88.198.11/co-ode-files/ontologies/Nautilus-exceptions.owl, [2015, December 17]

6 Available at http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library, [2015, December
17]
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no. of Size of Size of removed

Ontology roles flat TBox linkless TBox links
Foodswap 1 130 159 11
Ribosome 1 133 354 19
Nautilus-ex. 2 208 717 40
Koala 5 272 362 19
Amino-acid 5 1215 11024 130

Table 3.2: Result of Precompiling Different Ontologies.

Ontology reachable concepts pot. reachable concepts

Foodswap 0 17
Ribosome 32 7
Nautilus-ex. 9 3
Koala 18 9
Amino-acid 154 88

Table 3.3: Result of Precompiling Different Ontologies: Reachable and Potentially Reach-
able Concepts.

the linkless normal form as well. Furthermore, it is possible to use the linkless graph
to answer queries. Currently the implementation allows satisfiability and subsumption
checking. See (Furbach et al., [2009)) for details.

3.2.4 Related Work

In this section work related to knowledge compilation in description logics is considered.
In Section we start with an introduction of prime implicate normal form for
ALC concepts, which Bienveny| (2008a) suggests as a target language for knowledge
compilation purposes. Section contains a brief introduction of some other normal
forms for description logics. Other related preprocessing techniques used for reasoning
in description logics are presented in Section

3.2.4.1 Prime Implicate Normal Form for ALC Concepts

Bienvenu| (2008a)) introduces a normal form called prime implicate normal form for ALC
concepts. As the name suggests, this normal form is closely related to the prime implicate
normal form known for propositional logic which we recalled in Section [3.1.2.3] Unless
stated otherwise, all definitions given in this section are taken from Bienvenu (2008a)
and Bienvenu (2008b) and are adapted to fit to our notation. In the remainder of this
section, we are only considering concepts given in the description logic ALC and therefore
the term concept actually means ALC concepts. In order to present the definition of
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prime implicants of concepts, it is necessary to introduce the notion of clausal and cubal
concepts.

Definition 3.2.62 (Extended Literal/Clausal/Cubal Concepts (Bienvenu, [2008a))). Let
Y = (N¢, Ng, Np) be a description logic signature. Extended literal concepts L, clausal
concepts Cl and cubal concepts Cb are formed according the following syntazx rule:

L—>T|L|A|-A|VRD|3R.D

Cl— L|Clucl

Cb— L|CbhrCh
D—T|L|A|-A|DND|DUD|VR.D|3R.D

where A € N¢ and R € Ng.

Please note that Bienvenu| (2008b)) introduces the afore defined extended literal concept
as literal concept. However we already use the term literal concept with a different
meaning. This is why we deviate form the nomenclature in |Bienvenu, (2008b)).

Using the above introduced notion of a clausal concept, prime implicates of a concept
can be defined like in propositional logic.

Definition 3.2.63 (Prime Implicate (Bienvenu, 2008a)). Let C' be a concept and Cl be
a clausal concept. Cl is an implicat of C iff = C C Cl. A clausal concept Cl is a prime
implicate of C iff:

1. Cl is an implicate of C', and
2. if Cl' is an implicate of C such that = Cl' C Cl then = CIC Cl'.

A prime implicate is an implicate which does not subsume any other implicates. This
corresponds to the notion of prime implicates in propositional logic given in Defini-
tion B.1.38

For a clausal concept Cl, IR(CI) is the set of concepts C such that IR.C' is a disjunct
of Cl. VR(CI) is used respectively.

Example 3.2.64. Consider the clausal concept
Cl=AU-BU3IR.(ENVYR.C)UVR.ELU3R.A
Then 3R(C1) and YR(CI) are given as follows:

JR(Cl) ={ENVR.C, A}
VR(Cl) ={FE}
According to Definition [3.1.38] the prime implicate normal form of a propositional logic
formula is defined as the conjunction of its prime implicates. The naive way to define a

prime implicate normal form for ALC concepts would be to do the same by defining it
as the conjunction of its prime implicates as follows.
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Definition 3.2.65 (Naive Prime Implicate Normal Form). A concept C is in naive prime
implicate normal form if it is the conjunction of its prime implicates.

However the resulting normal form does not have the same nice properties like the
corresponding normal form for propositional logic. In propositional logic prime implicate
normal form allows to efficiently perform subsumption testing, since subsumption test-
ing can be reduced to consistency checking. [Bienvenu (2008b) introduces an example
illustrating that the naive definition of prime implicate normal form does not allow an
efficient subsumption test: Consider the concepts 3R.C7 and IR.Cy with C7 and C5 in
NNF. Both dR.Cy and dR.Cy are their own prime implicates and therefore would be in
prime implicate normal form according to the naive definition. For arbitrary NNF con-
cepts C1 and Cy, C7 subsumes Cs only if AR.C subsumes 3R.C5. As argued above, both
JR.C7 and JdR.C5 are in prime implicate normal form according to the naive definition.
This means that subsumption checking between arbitrary NNF concepts can be reduced
to subsumption checking between concepts in prime implicate normal form. Since sub-
sumption checking for arbitrary NNF concepts is known to be PSPACE-complete (Schild,
1991)), this implies that subsumption checking has to be PSPACE-complete.

In order to allow an efficient subsumption check for concepts in prime implicate normal
form, it is necessary to define the notion of prime implicate normal form for ALC concepts
differently.

Definition 3.2.66 (Prime Implicate Normal Form (Bienvenu| 2008a)). A concept C' is
in prime implicate normal form iff it satisfies one of the following conditions:

1. C=1.
2.C=T.

3. C#Land C# T and C =Cli1...MCl, where
3.a) = Cl; C©Clj fori#j,
3.b) each prime implicate of C' is equivalent to some conjunct Cl;,
3.c) every Cl; is a prime implicate of C' such that
i. if D is a disjunct of Cl; then [= Cl; C (Cl; \ D) or |~ (Cl; \ D) C Cl;,
ii. |3R(Cl;)| < for every role R,

iti. if E € 3R(Cl;)UVR(CL;) for some R, then E is in prime implicate normal
form,

. if E € 3R(Cl;) and F € YR(Cl;) then = EC F.

Since the purpose of the different parts of this definition are not immediately obvious,
we will explain the different parts like it is done in [Bienvenu| (2008b)).

1. and 2. make sure that unsatisfiable concepts are represented as 1 and tautological
concepts as T. Due to this, unsatisfiability and validity of a concept in prime
implicate normal form can be tested in constant time.

115



2. considers satisfiable concepts which are not valid. These concepts have to be presen-
ted as a conjunction of prime implicates.

a) specifies the fact that the conjuncts are prime implicates.
b) specifies that every prime implicate is part of the conjunction.
c) 1. specifies that the prime implicates do not contain unnecessary concepts.

ii. states that each conjunct is allowed to contain at most one existential role
restriction per role.

iii. specifies that concepts occurring in the scope of a role restriction are
required to be in prime implicate normal form. Let us reconsider the con-
cepts IR.Cy and JR.Cy (with C7 and Cy being arbitrary NNF concepts)
mentioned directly before Definition According to the naive defin-
ition of prime implicate normal form given in Definition these two
concepts are in naive prime implicate normal form. However when using
Definition [3:2.66], these concepts are not in prime implicate normal form
since the concepts C1 and Cy are not in prime implicate normal form. The
fact that concepts in the scope of role restrictions have to be transformed
into the normal form as well is not really astonishing. Intuitively it is
necessary to have those concepts in prime implicate normal form as well
in order to ensure efficient reasoning.

iv. demands that if a prime implicate contains disjuncts IR.F and VR.F then
= E C F. According to Bienvenu| (2008b)), this is a very important prop-
erty because it allows to treat universal role restrictions separately form
existential role restrictions during subsumption checking. This property
ensures that whenever a universal role restriction is subsumed by a clausal
concept, it is subsumed by some universal role restriction in the clausal
concept as well.

We will not go into the details how to compute the set of prime implicates for a
concept and refer the reader to (Bienvenu, 2008b). However it is interesting to note that,
according to Bienvenul (2008b) the number of non-equivalent prime implicates of a given
concept C with n different literal concepts occurring in C' is bounded from above by n?".
Furthermore, transforming a concept C into prime implicate normal form can lead to an
doubly-exponential blowup. See (Bienvenu,, 2008b) for a proof.

Properties of Prime Implicate Normal Form for ALC Concepts Next, we introduce
different queries which can be performed in polynomial time on concepts in prime im-
plicate normal form. As already mentioned above, it follows from Definition [3.:2.66] that
concepts given in prime implicate normal form can be tested for consistency and validity
in constant time. Furthermore, given two concepts C; and C5 in prime implicate normal
form, it can be efficiently tested if C is subsumed by C5. This subsumption test can be
performed in time linear in size(C}) + size(C2) (meaning in at most time quadratic to
size(C’1 + CQ))
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In addition to queries which can be performed efficiently for concepts in prime implic-
ate normal form it is interesting to investigate which transformations on concepts in this
normal form can be performed in polynomial time. One of the transformations interest-
ing in the matters of knowledge compilation in propositional logic listed in |Darwiche and
Marquis (2002) is projection. As stated by Definition , projecting a propositional
logic formula F' € F}}j"op on a set of variables A leads to a formula F’ with signature A
which has the same consequences as F' w.r.t. formulae constructed from A variables.
Projection is dual to the notion of forgetting. Projecting a formula F' € Fp‘iop on a
set of variables A leads to the same result as forgetting the variables in V' \ A from F.
In description logic, forgetting corresponds to uniform interpolation as given in Defini-
tion [3.2.39| and is undoubtedly a very interesting transformation. For concepts C' given
in prime implicate normal form and a set of concept symbols ®, it is possible to construct
the ®-interpolant in time linear in the size of C'. See (Bienvenu, [2008b)) for a proof of this
property and an algorithm performing the computation of ®-interpolants from concepts

in prime implicate normal form.

Comparison of Prime Implicate Normal form and Linkless Normal Form Comparing
the prime implicate normal form to the linkless normal form for concepts reveals that
both normal forms allow constant time consistency check. In contrast to the linkless
normal form, the prime implicate normal form allows a constant time validity check as
well. Both normal forms allow efficient subsumption checking. However in the case of
the linkless normal form, these subsumption checks are restricted: For a linkless concept
C, a subsumption C' C D can only be checked efficiently if D is a g-concept. Both
normal forms allow linear projection. It is noteworthy that compilation of a concept into
prime implicate normal form can cause a doubly-exponential blowup as opposed to the
single-exponential blowup which can be caused when compiling a concept into linkless
normal form. Furthermore, until now there is no extension of the prime implicate normal
form for TBoxes.

3.2.4.2 Other Normal Forms

One of the early approaches to knowledge compilation with regards to description logics,
is presented by [Selman and Kautz (1996), where FL concepts are approximated by
F L concepts. FL concepts C, D can be constructed according to the following syntax
rule

C,D — A|CnND|VRC|3R

where A is an atomic concept and R a so called role restriction. Please note that the
notion of role restrictions in FL differs from the notion of role restrictions used in the
thesis at hand. In FL, a role restriction can be used to construct a subrole B¢ of a role
R. These role restrictions have the following semantics:

(Rio)” ={(z,y) € AT x AT | (z,y) € RT Ay € C7}
Semantics of FL concepts is given as defined in Definition [2.4.§] together with
(3R)* = {z € AT | 3y(z,y) € R"}.
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The description logic FL™ is obtained from FL be omitting role restrictions. Subsump-
tion checking in FL is coNP-hard (Franz Baader and Diego Calvanese and Deborah
L. McGuinness and Daniele Nardi and Peter F. Patel-Schneider} [2003). In contrast to
this, subsumption checking in F£L~ is in P and can be done by structural comparison
between concepts. The idea introduced by [Selman and Kautz (1996)) is to approximate
an FL concept C by two FL™ concepts, namely the concept C’ which is the most general
more specific FL~ concept and concept C” which is the most specific more general FL~
concept.

For the multi modal logic K, Kracht| (1999) introduces a normal form called standard
formulae of degree d which is related to the linkless normal form introduced in Sec-
tion [3.2.2] Recall that a concept given in linkless normal form is supposed to be in
propagated 3-NF and that the propagated 3-NF includes the V-NF. The d in standard
formulae of degree d describes the depth of modal logic formula and is defined analogous
to the depth function given in Definition Meaning that a standard formula of de-
gree 0 does not contain any modal operators and of degree 1 contains modal operators
but no nested modal operators. Standard formulae of degree d impose restrictions on the
occurrence of O; operators claiming that there are no conjunctively combined 0;C and
0;D. Since K, and the description logic ALC are closely related, this corresponds to
the claim that a concept in V-NF does not allow occurrences of conjunctively combined
VR.C and VR.D. Furthermore, standard formulae of degree d are not allowed to contain
<&;C which is conjunctively combined with both 0;B1 and 00;Bs. This corresponds to the
property of 3-NF concepts which are not allowed to contain IR.C' which is conjunctively
combined with both VR.B; and VR.Bs. A concept given in linkless normal form is in
propagated 3-NF as well, meaning that for all subconcepts IR.C' occurring conjunctively
combined with VR.D, C = C' 11 D. This property is crucial for the properties of linkless
concepts. Standard formulae of degree d do not claim a corresponding property: For con-
junctively combined <;C" and 0O;D no relation between C' and D is demanded. Another
difference between linkless concepts and standard formulae of degree d is the structure
of the overall formula. Linkless normal form only claims the concept to be in NNF, thus
allowing rather succinct concepts like

(CUANB))N(EUFUG)
whereas the corresponding X, formula
(cV(anb)N(eV fVyg)

is not a standard formula of degree 0. The corresponding standard formula of degree 0
is much longer, since it is supposed to be a disjunction of conjunctions of variables or
negated variables:

(aNbAe)V(aANDANFIV(aAbAg)V(eAe)V(eAf)V(cAg).

Furthermore, since standard formulae of degree d are allowed to contain conjunctively
combined a and —a for variables a, standard formulae of degree d do not share the nice
properties of linkless concepts.
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Another normal form for description logics which is supposed to be suitable for know-
ledge compilation purposes is introduced in [Zou, Liu, and Lv (2012); Liu, Gu, Zou,
Huang, and Li (2013). This approach does not clearly state what kind of description
logic they are able to handle, thus we cannot compare our approach to their method.

3.2.4.3 Structural Subsumption Checking, Normalization and Absorption

There are several techniques for description logics which are related to knowledge com-
pilation techniques. Structural subsumption algorithms (Franz Baader and Diego Cal-
vanese and Deborah L. McGuinness and Daniele Nardi and Peter F. Patel-Schneider,
2003) are used to perform subsumption checks on two concepts. For this, both concepts
are transformed into a normal form and afterwards the structure of these normal forms
is compared. However these algorithms typically have problems with more expressive
description logics. Especially general negation, which is an important feature in the
application of description logics, is a problem for those algorithms. In contrast to struc-
tural subsumption algorithms, the linkless normal form is able to handle general negation
without problems.

Normalization (Balsiger and Heuerding, [1998) is a preprocessing technique for descrip-
tion logics, which eliminates redundant operators in order to determine contradictory as
well as tautological parts of a concept. In many cases this technique is able to simplify
subsumption and satisfiability problems.

Another preprocessing technique frequently used is absorption (Franz Baader and
Diego Calvanese and Deborah L. McGuinness and Daniele Nardi and Peter F. Patel-
Schneider, 2003). General inclusion axioms C' C D constitute a major source of com-
plexity during reasoning as they add a disjunction —=C LI D to each node in a tableau.
This is why absorption tries to eliminate general inclusion axioms from a knowledge base.
Given a general inclusion axiom C' C D with C' and D arbitrary concepts, absorption
aims at creating A C D’ with A an atomic concept which is called a primitive definition.
This can be accomplished by using the following equivalences:

CinCyC D <« (C1CDU-Cy
OEDlﬂDQ < CQDlandCEDQ

This primitive definition A £ D’ can be merged into another primitive definition A C C’
to A C C' M D’ reducing the number of general inclusion axioms. Both absorption and
normalization aim at increasing the performance of tableau based reasoning procedures.
In both cases the preprocessing does not lead to a normal form and therefore these
techniques cannot be directly compared to the linkless normal form.

3.2.4.4 View Materialization

The basic idea of knowledge compilation is related to the idea of view materialization in
data bases (Blakeley, Larson, and Tompal, [1986). A materialized view corresponds to a
database object which contains the result of a query. View materialization aims at speed-
ing up query processing by keeping views which are frequently accessed materialized. The
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main difference to knowledge compilation is the fact that knowledge compilation is query
independent, meaning that the precompiled version of the knowledge base can be used
to answer arbitrary queries efficiently. In contrast to that, in view materialization only
frequently accessed views are materialized. As soon as a unexpected view is demanded,
the materialization does not provide an efficiency benefit.

3.2.4.5 Reduction of SHZQ Knowledge Bases into Datalog Programs

Motik| (2006) introduces an approach to reduce SHZQ knowledge bases into datalog
programs such that the original knowledge base and the datalog program entail the
same set of ground facts. Like in the case of knowledge compilation, the reduction into
a datalog program can cause an exponential blowup: According to Motik (2006)), the
number of rules in the datalog program can be exponential in the size of the original
knowledge base. Opposed to knowledge compilation, the main advantage of reducing
knowledge bases to datalog programs is that it is possible to apply different optimization
techniques like the magic sets transformation to the resulting datalog programs without
any changes. Furthermore, if the datalog program resulting from the reduction is not
disjunctive, queries can be answered efficiently.

3.3 Future Work

Now we introduce three different directions interesting for future work in the area of this
chapter.

The basic idea of the first direction for future work is to adapt other target languages
known from propositional logic to description logic by using the complete propagated
3-NF as a basis. When checking the satisfiability of an arbitrary ALC concept C, it
is possible that C' contains conjunctively combined subconcepts of the form dR.C; and
VR.C5 such that C7 and Cy both are satisfiable, but C'; MCy are unsatisfiable. Depending
on the structure of C, this can cause concept C' to be unsatisfiable. For concepts in
complete propagated 3-NF as introduced in Section [3.2.1] this cannot happen. The main
idea of the complete propagated 3-NF is to summarize all concepts occurring in the scope
of a role restriction as far as possible. This ensures that whenever there is a subconcept
of the form 4R.C or VR.C5 in a concept in complete propagated 3-NF, there is no other
VR.C3 which has an influence on C7 or Cs. In other words, whenever a subconcept of the
form dR.C7 or VR.C occurs, it is ensured that C7 or Cy already contains all information
relevant for the R-successor. This is why the complete propagated 3-NF provides a
suitable basis for adapting target languages used for knowledge compilation purposes
for propositional logic to ALC. In this chapter, the linkless normal form well-known for
propositional logic is adapted to both ALC concepts. To accomplish this, the concept
first has to be transformed into complete propagated 3-NF. Then links are removed from
the topmost level of the concept as well as from all concepts C' occurring in the scope of a
role restriction. One interesting line of research would be to use the complete propagated
3-NF to adapt other traget languages known from propositional logic like the DNNF to
ALC concepts. This could be done by using the same procedure as for the transformation
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into linkless normal form. It would be interesting to investigate the properties of the so
created normal forms.

The second direction interesting for future work is be the use of a SAT solver for sat-
isfiability checking of concepts. This idea is not completely new. [Sebastiani and Vescovi
(2009) suggest to encode description logic concepts into propositional logic formulae and
then call a SAT solver for satisfiability checking. In contrast to this, we suggest to use
the complete propagated 3-NF as a basis for the satisfiability test. The rough idea of
this is as follows: Due to the restrictions on the concepts occurring in the scope of a
role restrictions, it is possible to test the satisfiability of a concept C by testing the
satisfiability of prop(C') with the help of a SAT solver. If prop(C') is unsatisfiable, C' is
unsatisfiable as well. If prop(C') is satisfiable, there are two possibilities: 1. C' is satis-
fiable or 2. C' is unsatisfiable and contains a contradiction in the scope of an existential
role restriction. Due to the structure of concepts in complete propagated 3-NF it is not
possible that C' contains dR.Cq and VR.Cy such that C7 and Cy both are satisfiable, but
C1 M Cy are unsatisfiable. Hence, if the SAT solver finds a model for prop(C), this model
has to be examined. If this model does not assign true to any atom of the form dre, this
corresponds to case 1. and C' is satisfiable. If the model assigns true to atoms of the
form drd and D is the corresponding concept occurring in the corresponding existential
role restriction, the SAT solver has to be called for prop(D) for each of these atoms.
An unsatisfiable result for one of these calls implies that the constructed model is not
possible and has to be revised.

Another interesting direction for future research is the question if the normal forms
developed in this chapter can be extended to more expressive description logics. The
basic idea of the linkless normal form is to remove inconsistencies from the concept.
When extending this normal form to more expressive description logics, it is important
to know how contradictory concepts can be constructed in the description logic under
consideration. For example, extending ALC with qualified number restrictions leads to
the description logic ALCQ and allows to formalize concepts like a man with at least
two sons and at most one daughter as

Maler > 2hasChild. Malemn < 1hasChild. Female.

With these qualified number restrictions one can easily construct contradictory concepts
like for example the following one

Malem > 2hasChild. Malelr < 1hasChild.Male.

which is a man with at least two sons and at most one son. These contradictions con-
structed using qualified number restrictions have to be taken into account when adapting
the linkless normal form to ALCQ.
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4 Evolution of the Instance Level of
Knowledge Bases

It is a well known fact that knowledge bases usually are not static. In practice, they
are subject to frequent changes and even the construction of a knowledge base can be
seen as an iterative process. It is not astonishing that this process is error prone and
often results in inconsistent ontologies. Even for smaller ontologies it is not possible for
humans to determine how to remove those inconsistencies manually. In this chapter, we
focus on changes affecting the instance level of a knowledge base. By instance level the
subset of a knowledge base consisting of ground unit clauses in case of first-order logic
or the set of unit clauses in case of propositional logic is understood. When considering
description logic knowledge bases, the instance level denotes the ABox. When speaking
about changing a knowledge base, it is traditionally distinguished between update and
revision. For updates, the knowledge base is assumed to describe a certain state of the
world and changes mean that newer information concerning the present is introduced
into the knowledge base. In contrast to this, in the context of revision, the world is
considered to be static and by revision new information on the world is incorporated
assuming that older knowledge is less reliable than the introduced new information. The
methods introduced in this chapter all implement revision. Throughout this chapter,
evolution is used as a collective term for several operations revising the instance level
of a knowledge base, namely insertion and deletion of instance assertions along with
repairing an instance level which is inconsistent w.r.t. the rest of the knowledge base.

A well known work in this field is without doubt the so-called AGM theory (Alchourron,
Gardenfors, and Makinson, [1985)), named after the names of its proponents, Alchourron,
Gardenfors, and Makinson. This theory establishes the so-called AGM postulates stat-
ing properties a change operation has to fulfill in order to be considered rational. As
mentioned before, in this chapter we will introduce operations for the evolution of the
instance level of description logic knowledge bases. However it is not straightforward
how to apply the AGM theory to description logics. One issue is the fact that the change
operations considered in the AGM theory are applied to so-called belief sets which are
deductively closed sets of formulae. These belief sets do not distinguish between know-
ledge explicitly stated and knowledge only implicitly contained in the knowledge base.
One could argue that in the context of evolution of description logic knowledge bases
it is natural to have this distinction. Nevertheless there is a huge body of research try-
ing to apply the AGM theory to description logic knowledge bases with many different,
partially discordant approaches how to reformulate the AGM postulates, some of them
even coming to the conclusion that the AGM theory is not suitable for description logics
(Flouris, Plexousakis, and Antoniou, 2005). See (Flouris, Huang, Pan, Plexousakis, and
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Wache, 2006), (Flouris, Plexousakis, and Antoniou, 2004), (Qi, Liu, and Bell, 2006), and
(Qi and Yang, |2008) for a survey on different revision approaches. In this chapter we
neither introduce a new set of postulates nor try to develop revision operators comply-
ing an already announced set of postulates. Instead we define three operations for the
evolution of the instance level of an ontology, namely insertion of assertions, deletion of
assertions and repair of inconsistent. These operations are defined such that it is ensured
that the changes applied to the instance level of the knowledge base are minimal. The
focus of this chapter on the method how to compute these operations.

In Section an approach to compute view deletion in deductive databases is in-
troduced and it is shown how the problem of deleting atoms from a deductive database
can be turned into a proof task which can be tackled by a theorem prover. Section
addresses the problem of evolution of the instance level of knowledge bases given in the
description logic SHZ. For this, Section[4.2.1]introduces the different operations to revise
ABoxes. Section[4.2.2]describes a transformation of the description logic knowledge base,
the so-called K*-transformation which forms the basis for the computation of the evolu-
tion of ABoxes presented in Section [4.2.3] The approach presented is implemented and
Section provides experimental results. The chapter closes with a survey of selected
related work in Section together with an outlook on future work in Section [4.4]

4.1 View Deletion in Deductive Database

Baumgartner, Frohlich, Furbach, and Nejdl (1997) present an approach for model based
diagnosis using theorem proving techniques. |[Baumgartner et al.| (1997) use a similar
technique for the computation of view deletion in deductive databases. We will present
the basic ideas of this approach in this section. For this, we first present the notion of
deductive databases and view deletion. Then, in Section an algorithm to efficiently
compute view deletion in deductive databases is presented.

A definite deductive database (DDB) consists of two parts: the intensional database
(IDB) and the extensional database (EDB). The IDB is the immutable part of the DDB
and consists of definite clauses, meaning horn clauses with exactly one positive literal.
In contrast to this, the EDB constitutes the updatable part and consists of ground facts.
The meaning of the DDB is given by least herbrand model semantics. According to|Lloyd
(1993), the least Herbrand model for an IDB is the set of all ground atoms which are
a logical consequence of the IDB. Baumgartner et al. (1997) considers first-order logic
without function symbols meaning that the Herbrand Base is finite. In this case the
clauses given in the IDB can be seen as an abbreviation to the ground clauses obtained
by replacing all variables in the clauses by terms of the Herbrand universe in all possible
ways. Therefore the IDB can be seen as a set of ground clauses which corresponds to a
set of propositional logic clauses. This is why in the following, the IDB is assumed to
be ground and all examples provided in this section contain propositional logic clauses.
A wview predicate is a predicate defined in the IDB by occurring in the head of a clause.
A view atom is an atom with a view predicate. Similar to the notion of view predicates
and view atoms, the terms base predicate and base atoms are defined. A base predicate

124



is a predicate defined in the EDB and a base atom is an atom with a base predicate.
Baumgartner et al.| (1997) assumes that the IDB does not contain any unit clauses and
there is no predicate which is both view and atom.

In the literature it is common to write clauses of a DDB as a < by A ... A b, with
the implication arrow pointing to the left. For the sake of standardization of notation
throughout the thesis at hand, we deviate from this notation and write the implication
arrow pointing to the right.

Example 4.1.1. Consider the DDB consisting of the following IDB and EDB:

IDB: aANb—c EDB: —b
d—c —d
d—e
f—a

The set of view atoms in DDB is {a,e,c} and the set of base atoms is {b,d}.

The view deletion problem describes the task to delete an atom which follows from a
DDB by removing as little facts as possible from the EDB such that afterwards the atom
is not contained in the deductive closure anymore. A subset of the FDB which together
with the IDB implies an atom b is called explanation for b.

A straightforward idea to perform a deletion is to first compute all explanations for
the atom supposed to be deleted and then to remove at least one element from each of
these explanations. This corresponds to constructing a hitting set of the explanations for
the atom which has to be deleted. Intuitively, a hitting set of a set of sets {S1,...,S,}
is a set containing at least one element from each of the sets S;, 1 <1 < n.

Definition 4.1.2 (Hitting Set). Let S = {S1,...,Sn} be a set of sets. The set HS is a
hitting set of S iff HS C \J!"1 S; and for every i € {1,...n} with S; # 0, HS N S; # 0.

Aravindan and Dungl (1995)) performs deletion with an algorithm using the idea of
constructing a hitting set as described above. To delete an atom b, the algorithm first
computes the set of all subsets which are explanations for b and then constructs a hitting
set of these explanations. This hitting set is then deleted from the EDB and the algorithm
returns the resulting DDB. This approach seems to be natural but has the disadvantage
that all explanations of b have to be computed and kept in memory. This leads to an
exponential space complexity.

In contrast to this the algorithm presented by Baumgartner et al. (1997)), which we
will present in Section does not compute all explanations but directly computes a
hitting set. The construction of this hitting set is done by the hyper tableau calculus in
a goal oriented way.

Before we consider details of this algorithm, it is interesting to point out a similarity
to description logic knowledge bases: The division of a DDB into an immutable and an
updatable part lends itself to description logic knowledge bases as well. In description
logic the knowledge base consists of a TBox, an RBox and an ABox. For many ap-
plications the TBox and the RBox are constructed once and rarely changed afterwards.
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In contrast to that, the ABox, containing assertions about the individuals, represents a
certain state of the world and is subject to frequent changes. Because of this similarity of
description logic knowledge bases to deductive databases, techniques developed for the
view deletion in deductive databases are potentially helpful for the deletion in ABoxes as
well. The technique used for the evolution of SHZ ABoxes introduced by [Furbach and
Schon| (2013a) and presented in the next section can be seen as a lifting of the technique
introduced by Baumgartner et al. (1997) to description logics. Before this technique is
presented in detail, a short overview on the techniques used by [Baumgartner et al.| (1997)
follows.

4.1.1 Using Theorem Proving Techniques for Deletion in Deductive
Databases

Aravindan and Baumgartner| (2000)) presents an approach for view deletion in deductive
databases. Compared to the algorithm introduced by |Aravindan and Dung (1995) which
presented in the previous section, this algorithm has the advantage that it is not necessary
to compute all possible explanations for the atom which is to be deleted. The approach
is based on the assumption that when deleting an atom from a DDB most likely only
a very small fraction of the EDB has to be deleted whereas the majority of the facts
in the FDB are preserved. This is why the EDB is considered to be close to a model
for the IDB and only the deviation of the EDB is computed. The technique used by
Aravindan and Baumgartner| (2000) consists of a syntactical transformation of the DDB
called renaming. This technique was first used by |Baumgartner et al.| (1997)) for model
based diagnosis. The result of this transformation is combined with information on the
atom supposed to be deleted. Then a hyper tableau is constructed and minimal models
in this hyper tableau provide minimal deletions.

In the algorithm introduced by |Aravindan and Baumgartner (2000), atoms are re-
named. For this we introduce a function called Neg.

Definition 4.1.3 (Neg function). Let p be a predicate symbol and t; terms, 1 < i < n.
The Neg function maps atoms to renamed atoms:

Neg(p(ty,...tn)) = Negp(ts, ... tn)

We give a slightly modified version of the definition of renaming presented by [Ara-
vindan and Baumgartner (2000). Please note that in the following definition a conjunc-
tion is interpreted as the set of its conjuncts and a disjunction is interpreted as the set
of its disjuncts.

Definition 4.1.4 (Renaming). Let B be a conjunction of atoms, H a disjunction of
atoms and C = B — H a clause with signature 3, and let S C X be a set of ground
atoms. Then Rs(C'), the renaming of C w.r.t. S is

Rs(C)=( /\ BIAC N\ Neg(A) = (\/ AHv( '\ NegB)

BeB\S AceHNS AeH\S BeBNS
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For a set clauses N, the renaming Rs(N) w.r.t. S is defined as the union of the renaming
of all its clauses.

The renaming of a clause w.r.t. a subset of its signature S is the result of first changing
the names of all atoms B occurring in S to NegB and then making them switch to the
other side of the implication. For a special set Sy constructed from all ground atoms
occurring in the FDB together with the atoms occurring in the head of a clause in the
IDB, renaming w.r.t. Sp is called IDB* transformation.

Definition 4.1.5 (IDB* Transformation (Aravindan and Baumgartner, 2000) ). Let
DDB = IDB U EDB be a deductive data base and Sy a set of ground atoms given as

So = EDB U{A | A occurs in the head of a clause of the IDB}.
Then IDB* is the renaming of IDB w.r.t. Sy.

Example 4.1.6. Consider the DDB given in Example The set of atoms Sy from
Deﬁm’tion is So = {a,b,c,d,e}. Renaming IDB w.r.t. Sy leads to

IDB *: Negc — Nega V Negb
Negc — Negd
Nege — Negd
f A Nega —

Given an interpretation Z for a clause C, it is possible to construct a model Z° from
7T such that Z° = R5(C) iff Z = C. This can be done by setting Z°(NegB) = true iff
I(B) = false for B € S and Z°(B) = true iff Z(B) = true for B ¢ S.

The IDB* transformation can be used to efficiently delete atoms from the deductive
closure of a DDB. Intuitively, an atom NegB occurring in a model is interpreted as the
deletion of atom B. Performing a request to delete atom B can be done by adding Neg B
to IDB*. Using a bottom-up reasoning procedure like the hyper tableau calculus after
adding the fact NegB leads to a goal directed behavior which makes this calculus a good
choice for the construction of models for IDB* U {— NegB}. Models can be read from
open and finished branches of a hyper tableau. The intuition is that those Neg-atoms
occurring in a model represent a hitting set. Therefore removing those atoms from the
EDB puts the deletion into effect. This hitting set is constructed not only in a goal
oriented way but further without constructing all possible explanations.

Definition 4.1.7 (Update Tableaux (Aravindan and Baumgartner, 2000) ). Let DDB =
IDB U EDB be a deductive database from which B € EDB should be deleted. An update
tableau T for DDB and the delete request B is a hyper tableau for IDB* U {— NegB}
such that every open branch is finished. The hitting set of an open branch b in T is
defined as

HS(b) = {A € EDB | Neg(A) € b}.
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Update tableaux can be used for the computation of deletions. [Aravindan and Baumgarit-
ner, (2000) proves completeness of update tableaux. Completeness means that for a
DDB = EDB U IDB and a delete request B and a minimal set a € EDB such that
IDB U (EDB \ «) [~ B, there is an open finished branch b in every update tableau for
DDB and B such that HS(b) = «.

Correctness of update tableaux means that for every open finished branch b in an
update tableau, there is a minimal set &« C EDB such that IDB U (EDB \ «) = B
and HS(b) = a. To get this property, it is necessary to consider only those branches of
the update tableau, representing a model which is minimal w.r.t. the set of Neg-atoms
produced by renaming.

Definition 4.1.8 (Branch Satisfying Minimality (Aravindan and Baumgartuner} 2000))).
Let DDB = IDB U EDB be a deductive database from which ground atom B € EDB
should be deleted. Let further T be an update tableau for DDB and the delete request B
and b an open finished branch in T. Branch b satisfies minimality, iff

Vs € HS(b): (IDBU EDB \ HS(b) U {s}) I B.
The following algorithm can be used for view deletion in deductive databases:

Algorithm 4.1.9 (View Deletion Algorithm Based on the Minimality Test (Aravindan
and Baumgartner, [2000)).
Input: A database DDB = IDB U EDB and a ground atom B to be deleted.
Output: A new database DDB' = IDB U EDB’

begin
1. Construct an update tableau T for DDB and delete request B.
2. Find a branch b in T satisfying minimality.
3. Return IDB U (EDB \ HS(b)).

end

Proofs of both correctness and completeness of Algorithm [£.1.9) are provided by [Ara-
vindan and Baumgartner| (2000). The algorithm only considers one branch at a time.
And even the minimality test can be done without considering other branches. Due to
regularity of the update tableau, the size of a branch is bounded by the size of the signa-
ture of DDB. Therefore, the space complexity of this algorithm is polynomial w.r.t. the
size of the signature of DDB. The time complexity of the algorithm is I}, since minimal
model computation is known to be in this complexity class (Eiter and Gottlob,|1993]). In
the second step of the algorithm it is necessary to determine a branch satisfying minimal-
ity. The minimality test used for this corresponds to the groundednesstest as introduced
by Niemeld| (1996b) and Niemeld (1996a)). The basic idea of the groundedness test is
to check if the elements occurring in the model are implied by the IDB together with
the negation of the atoms which are not present in the model. The following definition
adapts the groundedness test to the task of view deletion in deductive databases.
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Nega  Negb
b1 ba
Figure 4.1: Update Tableau for IDB* U {— Negc} Containing Two Branches by and bs.

Definition 4.1.10 (Groundedness Test (Aravindan and Baumgartner}, 2000)). Let DDB =
EDB U IDB be a deductive database from which ground atom B is supposed to be a de-
leted and T be an update tableau for DDB and B. An open finished branch b satisfies the
groundedness test, iff

Vs € HS(b) : IDB* U{NegD | D € (EDB\ HS(b))} U{— NegB} F— Neg(s)

According to Proposition 5.1 by |Aravindan and Baumgartner| (2000) both the min-
imality test and the groundedness test can be used to find out if a model is a minimal
model: a model is a minimal model iff it satisfies minimality and the groundedness test.
Both the minimality test and the groundedness test involve testing if an implication
holds for all elements of the computed hitting set. This can be turned into a satisfiability
test which can be carried out by any refutational prover. Given a deductive database
DDB = EDB U IDB from which ground atom B is supposed to be a deleted and T an
update tableau for DDB and B with b an open finished branch in T". A branch b satisfies
minimality, iff

(IDBU(EDB\ HS(b)) U{B->H A \/ s
s€HS(b)

is unsatisfiable, and is grounded iff

(IDB*U{Neg(D) | D € (EDB \ HS(b))} U{— NegB}) A \/ —Neg(s)
seHS(b)

is unsatisfiable.

Example 4.1.11. Reconsider the DDB presented in Ezample [{.1.1. Now atom c is
supposed to be deleted. For this we add {— Negc} to IDB* given in Example .

The update tableau for IDB* U {— Negc} is shown in Figure . The hitting set
for the left branch by is HS(b1) = {c,d} and the hitting set for the right branch by is
HS(by) = {c,d,b}. Since HS(b1) C HS(b2), we can conclude that deleting {c,d,b} from
the EDB is no minimal deletion. However, Algorithm[].1.9 only considers one branch at
a time and therefore does not compare the hitting sets of different branches. In contrast
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(a) Hyper Tableau for the Minimality Test (b) Hyper Tableau for the Minimality Test
for Branch bs. for Branch b;.

to that, it uses the minimality test to determine if a hitting set is minimal. For branch
ba, the minimality test leads to a satisfiability test of

(IDBU (EDB\ HS(b2)) U{c =} A \/ s
s€HS (b2)

which corresponds to checking the satisfiability of the following set of clauses

{anb— e,
d—c,
d— e,
f—a,
c—,
— ¢V dVb}.

The hyper tableau calculus can be used to perform this satisfiability test. The result is
shown in Figure[].2d. Since the tableau is not closed, it can be concluded that branch bs
does not satisfy the minimality and therefore does not provide a minimal deletion.

In order to test the model provided by branch by for minimality, the satisfiability of the
following set of clauses has to be checked

{anb— e,
d—c,
d— e,
f—a,
c—,

— ¢V d}.

The hyper tableau for this clause set shown in Figure [[.20 is closed. Therefore, we can
conclude that by satisfies minimality and yields to a minimal deletion.
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The renaming technique used for view deletion in databases presented in this section
was first introduced by Baumgartner et al.| (1997)) where it was used for diagnosis applic-
ations. There a digital circuit is given and the task is to find a minimal set of components
whose faultiness explains the circuit’s behavior. In this application, it is natural to strive
for minimality since it is less likely that a failure is caused by the faultiness of a large
number of components. In this setting, the approach was implemented and proved to be
very successful.

4.2 Semantically Guided Evolution of SHZ ABoxes

Description logics are broadly used to model knowledge. Since description logics form
the basis of some ontology languages such as OIL, DAML+OIL and OWL (Horrocks,
Patel-Schneider, and Harmelen, 2003), they play an important role for the Semantic
Web as well (Berners-Lee, Hendler, and Lassilaj, [2001). Furthermore, description logics
are used in many applications like bio-informatics and medical terminologies (Stevens,
Goble, Horrocks, and Bechhofer, 2002; Rector and Horrocks, 1997). Ontologies used
in practice usually are subject to frequent changes. Therefore, algorithms for model-
ing changes in description logics knowledge bases are of great interest to the Semantic
Web community. See (Halaschek-Wiener, Parsia, and Sirin, 2006 |Liu, Lutz, Milicic,
and Wolter, |2011) for details. On the other hand, changes performed to an ontology
can easily introduce inconsistencies, which constitute a problem, since it is possible to
deduce everything from an inconsistent ontology. To avoid this undesired behavior, the
removal of inconsistencies, often called ontology repair, is a focus of research in the area
of description logic (Horridge, Parsia, and Sattler, 2009; Bienvenu and Rosati, 2013a;
Rosatil, 2011).

This section focuses on the evolution of the instance level, namely the ABox, of a
description logic knowledge base. For this, the TBox is considered to be both fixed
and consistent and only the ABox is subject to changes. Three different operations on
the instance level are considered: deletion, insertion and repair. Instance level deletion
addresses the deletion of an ABox assertion from the deductive closure of the knowledge
base by removing as few ABox assertions as possible. Instance level insertion means
adding an ABox assertion to the knowledge base. In both cases it is important that the
resulting ABox is consistent w.r.t. the rest of the knowledge base. For the task of ABox
repair, an ABox inconsistent w.r.t. its TBox and RBox is given. The aim of the repair
operation is to remove a minimal set of assertions from the ABox such that the resulting
ABox together with the TBox and the RBox is consistent.

Exemplarily, we illustrate the task of repairing an ABox which is inconsistent w.r.t. its
TBox by an example which is taken from Lenzerini and Savo| (2011) and adapted to SHZ.
Consider the knowledge base K = (R, T,.A) with empty RBox. The terminological part
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of the knowledge base is given by

T = {Mechanic T TeamMember,
Driver & TeamMember,
Driver € —=Mechanic,
ddrives. T T Driver}.

According to this TBox, both drivers and mechanics are team members, but drivers are
not mechanics. Furthermore, T specifies that someone driving something is a driver.
The assertional knowledge is given by the following ABox.

A = {Driver(felipe),
Mechanic(felipe),
TeamMember(felipe),
drives(felipe, ferrari)}.

It is easy to see that A is inconsistent w.r.t. T, because felipe belongs to the concepts
Driver and Mechanic which is forbidden by the third axiom of 7. The task is now to
minimally repair A meaning to delete a minimal set of ABox assertions such that the
resulting ABox is consistent w.r.t. 7. There are two possibilities to minimally repair .A.
The first one is to remove Mechanic(felipe) from the ABox. The resulting ABox is

A’ = {Driver(felipe),
TeamMember (felipe),
drives(felipe, ferrari)}.

For the second possibility both Driver(felipe) and drives(felipe, ferrari) have to be de-
leted. The removal of drives(felipe, ferrari) is necessary, because the third axiom of the
TBox would cause Driver(felipe) to be still contained in the deductive closure. In this
case, the resulting ABox is

A" = { Mechanic(felipe),
TeamMember (felipe)}.

Please note that in both cases only those assertions were removed which necessarily had
to be removed in order to resolve the inconsistency.

One possibility to compute minimal repairs is to first determine every minimal subset
A’ of the ABox A such that A’ is inconsistent w.r.t. the TBox and RBox and then remove
a minimal set of assertions from A such that exactly one assertion is removed from each
subset A’. This corresponds to computing a minimal hitting set for the set of all minimal
subsets A" of A with A" inconsistent w.r.t. the TBox and RBox. However, the drawback
of this approach is that it requires all minimal subsets A’ to be constructed.

In contrast to this, we present an approach where the minimal hitting set is computed
directly without computing all minimal subsets A’. To accomplish this we suggest a
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transformation, called X*-transformation, on the set of DL-clauses corresponding to the
knowledge base under consideration. This transformation adapts the idea of the IDB*
transformation introduced in Definition in Section to description logic know-
ledge bases. In Section the transformation is guided by a set of ground atoms
likely to be a model for the deductive database under consideration. Similar to this, the
KC*-transformation we are about to introduce, is guided by the assertions contained in
the ABox, assuming that an ABox can be seen as a (partial) model of the TBox and
RBox. One can say that the K*-transformation is semantically guided by the ABox. The
advantage of assuming the assertions in the ABox to be true is that the computation of
instance level evolution thereby only requires to determine the deviation from the ABox.
When considering large ABoxes, it is reasonable to assume that deleting an assertion
or repairing such an ABox only results in deleting a very small part of the ABox. In
cases where this assumption applies, the approach to only compute the deviation from
the ABox is beneficial.

Section introduces the three different operations for ABox evolution, namely
deletion, insertion and repair. Section presents the K*-transformation together
with some properties of the *-transformation with regard to models. Section 4.2.3
shows how to use the K*-transformation to compute the introduced operations for ABox
evolution. The approach is implemented and Section [£.2.4] presents experimental results.

Most parts of this chapter have been published in (Furbach and Schonl 2013a) and
(Furbach and Schonl 2013b).

4.2.1 ABox Evolution

The three different operations addressed in our approach are deletion, repair and inser-
tion. In all cases, only the instance level of the knowledge base, namely the ABox, is
changed and both the TBox and the RBox are assumed to be fixed and consistent. In
addition to that, it is assumed that the ABox only consists of assertions of the form A(a)
or R(a,b) with A an atomic concept, R a role and a, b individuals. This assumption
is not a restriction since it is possible to transform every SHZ ABox into this form by
introducing new concepts. For example an assertion (A L B)(a) can be translated into
D(a) together with the TBox axioms D C Al B and AL B C D for a new concept D.

In the following, DL-clauses will be used to compute the result of these operations.
This is why all examples in this section present knowledge bases in form of DL-clauses.
Furthermore, by the term deductive closure of a knowledge base K we denote the set of
ABox assertions, which can be deduced from K.

4.2.1.1 Deletion

The first instance level operation we address is deletion of an assertion from an ABox.
More specifically the task is as follows: Given a knowledge base K = (R, T,.A) with
consistent 7 UR and an ABox assertion D, remove as few assertions as possible such that
D is not contained in the deductive closure of the knowledge base anymore. In general it
is not sufficient to only remove D from the ABox because D can still be contained in the
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deductive closure. Hence the task is to determine a set of ABox assertions, which have
to be deleted from the ABox in order to prevent D from being a logical consequence of
the knowledge base. Since minimal deletion is desired, the set of ABox assertions to be
deleted is supposed to be minimal. These considerations are reflected in the following
definition.

Definition 4.2.1. (Minimal Instance Deletion) Let K = (R,T,.A) be a knowledge base
with R U T satisfiable. Let D € A be a ground atom called delete request. Then A’ C A
is called minimal instance deletion of D from A if RUT UA' £ D and there is no A”
with A" C A" C A and RUT UA" |~ D.

Note that, due to our assumptions on the structure of the ABox, each delete request
D is of the form A(a) or R(a,b). If it is clear from the context that we are talking about
instance level deletion, we omit instance level and talk about deletion instead.

Example 4.2.2. We consider the knowledge base K = (R, T,.A) with an empty RBox
and with the TBox and the corresponding set of DL-clauses Z(T).

T={3RCLCD, =(T) ={R(z,y) AC(y) = D(z),
B C 3R.C, B(z) — 3dR.C(x),
DC C} D(z) = C(z)}

The ABox is given as
A= {B(a), D(a), R(a,a), C(b), R(b,b)}.
The delete request D(a) has a minimal instance deletion

A = [R(a,a), C(b), R(b,b)}

4.2.1.2 Repair

There are many possibilities how an ABox can become inconsistent w.r.t. its TBox and
RBox. One example is the insertion of new assertions into an ABox. In all cases the
goal is to minimally repair the ABox by deleting assertions from the ABox such that the
resulting ABox is consistent w.r.t. the TBox and RBox. The term minimally means that
only those assertions are removed from the ABox which necessarily have to be removed
in order to resolve the inconsistency.

Definition 4.2.3. (Minimal ABoz Repair) Let K = (R, T,.A) be a knowledge base where
TUR is satisfiable. A" C A is called minimal ABox repair of A if RUT UA’ is consistent
and there is no A" with A" C A” C A and RUTUA" consistent. Further Rep(KC) denotes
the set of all possible repairs of K.

Note that we define the notion of a minimal ABox repair in a way, that it is also
applicable to an ABox which is consistent to its TBox and its RBox. In this case, the
minimal ABox repair corresponds to the original ABox.
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Example 4.2.4. Consider the knowledge base K = (R, T,.A) with an empty RBoz and
the TBozx
T={CC-D}

which corresponds to the following set of DL-clauses
E(T)={L+ C(zx) AND(x)}

together with the ABox
A={C(a), D(a)}.

Clearly A is inconsistent w.r.t T. There are two different minimal ABox repairs:

A" ={C(a)}
A" ={D(a)}.

4.2.1.3 Insertion

The third instance level operation we address is insertion of an assertion into an existing
ABox. The problem that arises when considering insertion is, that the resulting ABox
might be inconsistent w.r.t. the TBox and the RBox.

Example 4.2.5. Given the following knowledge base K = (R, T,.A) with an empty RBox
and the TBozx
T ={CC-D}

which corresponds to the following set of DL-clauses
E(T)={L + C(z)AND(x)}

together with the ABox
A={C(a)}.

Adding the assertion D(a) into A leads to
A" ={C(a), D(a)}
which is inconsistent w.r.t. T .

The following definition of minimal instance insertion is chosen such that inconsistent
results are avoided.

Definition 4.2.6. (Minimal Instance Insertion) Let K = (R, T,.A) be a knowledge base
with RUT consistent and D a ground atom of the form A(a) or R(a,b). An ABox A’
is called minimal instance insertion of D into A iff

e Dc A,
o (A\D)CA,
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o RUTUA is consistent and there is no A” with D € A" and (A'\D) C (A"\D) C A
and RUT UA" is consistent.

If it is clear from the context that we are talking about instance level insertion, we
omit instance level and talk about minimal insertion instead.

Example 4.2.7. A minimal instance insertion of D(a) into the DL-clauses given in

Ezample is A7 = {D(a)}.

In the following section, a transformation called K*-transformation is introduced which
turns out to be very helpful in order to compute minimal deletion, insertion and repair.

4.2.2 K*-Transformation

The tasks introduced in Section can be solved with the help of the so-called K*-
transformation which will be introduced in this section. As discussed in the introduction,
the transformation will be guided by the ABox of the knowledge base which is regarded
as a partial model.

First, minimal instance deletion will be addressed. When deleting a given instance, the
task is to determine a minimal set of ABox assertions which have to be removed in order
to prevent the instance from being contained in the deductive closure of the knowledge
base. The idea of the K*-transformation is similar to the techniques summarized in
Section [4.1] Each occurrence of an atom A(a) in a clause is replaced by —NegA(a). This
transformation can be seen as atoms switching the sides in the clause representation of
DL-clauses. For example in the clause

{= A(a)}
atom A(a) is replaced by = NegA(a) leading to the clause
{— —NegA(a)}

corresponding to the clause
{NegA(a) —}.

This makes sense when a bottom-up proof procedure like the hyper tableau calculus
is used: a fact — A(a) changes the side and the clause becomes NegA(a) —. As a
consequence A(a) is not derived explicitly. It is assumed to be in the model unless the
opposite, namely — NegA(a), is derived.

Deducing an atom NegA(a) means that the ABox has to be revised such that atom
A(a) is removed from the ABox. The big advantage of this transformation is that only
those atoms which have to be deleted are computed. All remaining atoms will be kept in
the ABox. Since it is reasonable to expect the ABox to be very large, it is advantageous
to compute only the deviation from the original ABox.

To rename atoms, we extend the Neg function introduced in Definition
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Definition 4.2.8 (Neg function). The Neg function maps atoms to renamed atoms:

e For atomic concepts A and an individual or variable a:

Neg(A(a)) = NegA(a).

e For atomic roles R and individuals or variables a, b:

Neg(R(a,b)) = NegR(a,b).

Further, for a set of atoms P, Neg(P) is defined as: Neg(P) = {Neg(A) | A € P}.

We slightly abuse notation by using the Neg function to rename atomic concepts and
atomic roles: for B an atomic concept or an atomic role: Neg(B) = NegB. So we can
use the Neg function to rename atoms, sets of atoms and atomic concepts and roles.

Note that Neg(C(a)) = NegC(a) and we will use both interchangeably.

In the following it is convenient to have a function extracting the atomic concept /
atomic role from an atom:

Definition 4.2.9. (Symbol Extraction Function) Let A be an atom. Then o(A) is defined
as follows:
B if A= B(s) for some atomic concept B,
R if A= R(s,t) for some atomic role R,
JR.B if A= 3R.B(s) for some role name R,
and B = E or —FE for some atomic concept E.

By o(N) for a set of atoms N we denote the union of o(A) for all atoms A € N.

As mentioned before, we want to use the idea of the approach for view deletion in
deductive databases introduced in Section for the computation of ABox evolution
in the description logic SHZ. The next definition extends the idea of renaming introduced
in Definition to DL-clauses. Note that in the following definition, the body B of a
DL-clause is treated as the set of its conjuncts and the head H is treated as the set of
its disjuncts.

Definition 4.2.10 (Renaming). Let DL be a set of DL-clauses and S a set of atomic
concepts and atomic roles. Let C' € DL be C = B — H. Then Rg(C), the renaming of
C wrt Sis
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Rs(C) =
{C} (4.1)

@)

{C AN BAC AN NegA)=( \/ Av( \/ NegB)} (4.2)
BEB, AcH, AcH, BEB,
o(B)¢S o(A)eS o(A)¢S o(B)eS

@)

{R(z,y) A NegR(xz,y) - L | A e (HUB) withc(A) =R and R€ S or (4.3)
JA € H of the form A =3R.C(z) and R € S}
U
{D(z) AN NegD(z) —» L |JA € (HUB) with c(A) =D and D € S or
JA € H of the form A=3R.D(z) and R € S} (4.4)

For a set of DL-clauses DL, the renaming Rs(DL) w.r.t. S is defined as the union of
the renaming of all its clauses.

Note that renaming is a bijective function on a set of DL-clauses. Further, renam-
ing can be performed in time linear to the size of the set of DL-clauses times the size
of S. Comparing Definition [4.2.10] with the definition of renaming as introduced by
Baumgartner et al|(1997) and given in Definition shows that the basic idea is very
similar. In Definition all atoms occurring in the set S are affected by renaming
meaning that they are renamed and change to the other side of the implication sign.
Whereas in Definition all atoms containing a concept or role name occurring in
S except existential role restrictions are affected by renaming. Since the construction
of DL-clauses is more complicated then the clauses considered in Definition the
extension of renaming to the description logic SHZ produces some more clauses: firstly,
the original DL-clause is kept. Secondly for all concept and role symbols affected by re-
naming additional clauses are added, stating that nothing can belong to a concept C and
its renamed version NegC'. Please note that existential role restrictions are not directly
affected by the renaming process. They remain unchanged in the head of a clause even
if the respective role restriction or concept is contained in S.

The next proposition states the fact that renaming preserves satisfiability. Furthermore
given a model for a set of DL-clauses DL, it is possible to compute a model for the renamed
set of DL-clauses Rg(DL) and vice versa.

Proposition 4.2.11. (Renaming Models) Let DL be a set of DL-clauses, S a set of
atomic concepts and atomic roles and I an interpretation. Let further TS be an inter-
pretation such that T° and T have the same domain and the same interpretation of indi-
viduals. In addition to that the interpretation of all roles and concepts occurring in DL
coincide. Further (Neg(B))X" = BT for all concepts names B € S and (Neg(R))X" = RT
for all atomic roles R € S. Then T = DL iff T° = Rs(DL).
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Proof. The assumptions of the propositions hold.

1. We first show the direction that Z |= DL implies Z° |= Rg(DL). Let Z = DL. Then
T = D for all clauses D in DL. Let us now assume that Z° £ Rg(DL). Note that

for concepts and roles in B € S, BY° = BT and (Neg(B))Z" are complementary.
Hence it is obvious that Z |= DL implies Z° |= C* for clauses C*° € Rg(DL) created

by (4.3) and (4.4) of Definition |4.2.10, Further clause C added to Rg(DL) by ({4.1])
of Definition [4.2.10|is in DL and therefore Z = C. Since the interpretation of all

concept and role symbols in DL coincide for Z and Z°, it follows that Z° = C.
Therefore we can restrict ourselves to clauses C* in Rg(DL) created by of
Definition Since per assumption Z° & Rg(DL), there has to be such a
clause C° with Z% = C'®. This clause C* is the renaming of some clause C' € DL
w.r.t. §. This clause C' has the form

C:Hl\/...\/Hn\/Ahl\/...\/Ahk(*Bl/\.../\Bm/\Abl/\.../\Abl.

such that

{o(H1),...,0(Hy),0(B1),...,0(Bpn)}NS =10 (4.5)
{U(Ahl)a R 7J(Ahk)7 J(Ab1)7 R U(Abl)} cs
Renaming clause C' leads to

C% =By A... A By ANeg(Ap,) A ... ANeg(Ay,) —
Hv..VH,V Neg(Abl) V...V Neg(Abl).

From I° = C¥ and the definition of the semantics of DL-clauses follows, that there
is a variable mapping p with

% wEBL A ... A By ANeg(Ap,) A ... ANeg(Ap,)

and
T, wl Hy V...V H, VNeg(Ap,) V...V Neg(Ay,).

It follows that
T% p k= B; fori e {1,...,m},
7%, 1 b= Neg(Ay,) fori € {1,...,k},
T, b H; fori e {1,...,n},
75, 1 b~ Neg(Ay,) for i € {1,...,1}.
From (4.5)), (4.6) and the way I is constructed, it follows that
Z,ul B forie{l,...,m},
I, e Ay, forie{1,...,k},
Z,ul~H;forie{l,...,n},
L= Ay, forie{l,... 1}
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Therefore
I, pE=EBIN. . ABy NAy, Ao N Ay,

and
T, pEHIV...VH, VA, V...V A,

This implies Z, o = C and therefore Z [= C' which is a contradiction to the assump-
tion that Z = DL and therefore Z° |= C*° follows. Since clause C' was arbitrarily
chosen, this implies Z° = Rg(DL).

2. For the other direction we have to show that Z° |= Rg(DL) implies Z }= DL. Let
us now assume that Z° |= Rg(DL) and Z [~ DL. This means that there is a clause
C € DL with Z |~ C. So there is a variable mapping p with Z, u = C. However
since DL C Rg(DL) it follows that C' € Rg(DL). Since the interpretation of all
concept and role symbols in Z and Z° coincide, this implies Z°, 4 j= C which is a
contradiction to Z° |= Rg(DL).

O

In the following, it is convenient to have a function extracting the set of individuals
from a set of ground atoms.

Definition 4.2.12 (Ind Function). Let A(a) and R(a,b) be atoms and A, B be sets of
ground atoms. The Ind function maps sets of ground atoms to sets of individuals and is
defined as follows

o Ind(A(a)) = {a},
e Ind(R(a,b)) = {a,b} and
e Ind(AU B) = Ind(A4) UInd(B).

Definition 4.2.13 (K*-Transformation). Let K = (R,T,.A) be a knowledge base with
satisfiable R UT. Let S be the set of atomic concepts and atomic roles occurring in A
and T. Then K* is the clause set obtained by renaming Z(R U T) w.r.t. S and adding
the DL-clause T — dom(ay, ..., a,) with {ai,...,a,} = Ind(A).

Strictly speaking, T — dom(ai,...,a,) is not a DL-clause because atoms in DL-
clauses are only constructed from unary or binary predicates. We slightly abuse notation
here and regard T — dom(ay,...,a,) as a DL-clause. We could easily avoid this issue
by introducing n DL-clauses T — dom(a;), 1 < i < n since the main reason for adding
T — dom(ay,...,a,) with {ai,...,a,} = Ind(A) to the result of renaming is to introduce
the individuals occurring in the ABox to the result of the *-transformation.

Example 4.2.14. Reconsider the following knowledge base K = (R, T, A) with an empty
RBoz from Example . The TBox and the corresponding set of DL-clauses Z(T ) was

given as:
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T={3R.CC D, =(7) ={R(z,y) AN C(y) — D(z),
BLC 3dR.C, B(x)
DCC} D(z) = C(x)}
Further the following ABox is given:
A ={B(a), D(a), C(b), R(b,b), R(a,a)}.

According to Definition S ={B,D,C,R}. Renaming the DL-clauses Z(T) w.r.t.
S leads to the following set of DL-clauses K*

R(xz,y) A C(y) = {D(x),
NegD(x) — NegR(z,y) V NegC(y),
B(z) — 3R.C(x),
T — 3R.C(x) V NegB(x),
D(z) = C(x),
NegC(z) — NegD( ),
R(z,y) A\ NegR(z,y) —
C(z) A NegC(z) —
B(z) A NegB(x) —
D(z) A NegD(x) —
T— dom(a, b)}.

Proposition 4.2.15. Let K = (R, T,.A) be a knowledge base with satisfiable RUT and
S be the set of atomic concepts and atomic roles occurring in A and T. Then Z(RUT),
Rs(E(RUT)) and K* are equisatisfiable.

Proof. Since ZE(RUT) C Rg(E(RUT)) C K* holds, unsatisfiability of Z(R U T) implies
unsatisfiability of both Rg(Z2(R U T)) and K*.

Let M be a model for (7T UR) and Ind(A) = {ai,...,a,}. According to Proposition
it is possible to construct a model M* from M with M® = Rg(E(T UR)). We

construct a model My for K* by enhancing M* such that T — dom(a1,...,ay) is true.
Since the dom predicate does not occur in any other DL-clause, it is obvious that My«
is a model for K*. O

Definition 4.2.16 (ground Function). Let N¢ be a set of atomic concepts, Nr a set of
atomic roles and Ny be a set of individuals. The ground function mapping a set of atomic

concepts and atomic roles together with a set of individuals to a set of ground atoms is
defined as

ground(N¢ U N, N;) ={C(a) | C € N¢ and a € Ni} U
{R(a,b) | R € N and a,b € N}
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Lemma 4.2.17 (Model Construction). Let K = (R, T,A) be a knowledge base with
consistent RUT and S be the set of all concepts and roles occurring in A. Furthermore,
let Z be an interpretation. If T = Rs(E(T UR)), then

' E Rs(E(TUR)) withZT = ZU{A € ground(S,Ind(.A)) | Neg(A) ¢ Z}.

Proof. Let K = (R,T,.A) be a knowledge base with consistent R U T, S be the set of
all concepts and roles occurring in A and Z be an interpretation. Furthermore, let DL
denote the set of DL-clauses for 7 U R meaning that DL = Z(T UR).

We proof the lemma by showing that Z = Rg(DL) together with Z' |~ Rg(DL) leads
to a contradiction. Therefore we assume Z = Rg(DL) and Z' £ Rg(DL). Then there is
a clause C = (B — H) € Rg(DL) with Z |= C but I' }~£ C.

This means, that there is a variable mapping p with Z, u = C and 77, u j= C'. For this
variable mapping, one of the following two cases has to apply:

1. Z,p =B and Z, u = H:
From Z C 7’ follows, that Z/, u = B and 77, u = H, meaning that Z’, u = C. This
is a contradiction to the assumption, that 7’ u £~ C.

2. Z,u t~ B:

Clause C has one of these forms:

(i) C € DL, (4.1) of Definition |4.2.10
(ii) C was created by (4.2)) of Definition {4.2.10
(iii) C was created by (4.3) or (4.4) of Definition 4.2.10}

We will show that Z’, u |= C for each of these three subcases, leading to a contra-
diction to the assumption of 7', u - C.

(i) C is an original clause (C' € DL, (4.1)) of Definition {4.2.10):
w.l.o.g. C has the form

C=BiN...N\BIAByty\N...ANB, - HV..VH,VH1V...VH,
with
{U(Hl),...,U(Hk),O'(Bl),...,O'(Bl)} - S and
{J(Hk+l)7"'>U(Hm)7J(Bl+l)>'"7U(Bn)}m5: @

According to (4.2)) of Definition [4.2.10| the following clause C’ is added by
renaming C w.r.t. S:

C' = Neg(Hy) A... A\Neg(Hy) ABiyz1 A...A By —
Neg(B1) V...V Neg(B;)V Hxy1 V...V Hy, (4.7)

Since {o(By+1),-..,0(Bp)}NS = 0, it follows that applying u to the atoms in

{Bi+1,...,Bp} does not lead to ground atoms in ground(.S, Ind(A)). However
the only difference between Z' and Z is in the interpretation of some ground
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atoms occurring in ground(S, Ind(.A)). Therefore Z and Z’ interpret the result
of applying p to the atoms in {Bji1,..., By} in the same way.

We assume Z', u j= C. Tt follows, that Z', u |= B and Z', u = H. This means

I, uE By,....,T , u = By, (4.8)

As mentioned above, Z and Z’ interpret the result of applying u to the atoms
in {Bj11,...,By,} in the same way. This leads to

T,1 k= Bist,..., T, i |= Ba. (4.9)

According to , 7', k= Bj for j € {1,...,1}. From the way Z’ is construc-
ted from Z follows that for each j there are two possible cases:

1. Z,u = B

2. I, = Bj and Z, pu = Neg(B;j).
In both cases we have Z, i1 [= Neg(B;), meaning that

T, i B~ Neg(B;j) for each j € {1,...,1}. (4.10)

As mentioned above, from Z’, u = C follows, both 7/, u = B and 7', u = H.
This means

T ulWHy, ..., T b= Hy. (4.11)
{o(Hk+1),...,0(Hp)} NS = 0 implies, that appying p to the atoms in
{o(Hg+1),--.,0(Hp)} does not lead to ground atoms which are contained
in ground(S,Ind(A)). However the only difference between Z’' and Z is in the
interpretation of ground atoms occurring in ground(S, Ind(\A)). Therefore the
interpretation of the ground atoms resulting from the application of u to the
atoms in {o(Hyy1),...,0(Hy)} coincides for Z and Z’. Therefore

I?/’l’ l?é Hk+17"‘7zvu |7é Hm
(4.10) together with (4.11)) leads to
Z,u b~ Neg(B1) V...V Neg(By)V Hiypq V...V Hp,. (4.12)

Meaning, that Z, i is not a model for the head of clause C’ from (4.7)).

According to (4.9), Z,u = Biy1, .-, Z, u |E Bhy.
From the way Z’ is constructed and the fact that {o(Hi),...,0(Hg)} C S
together with (4.11)) follows, that

(4.9) together with (4.13)) leads to
Z,u = Neg(Hi) A...ANNeg(Hp) AN Biy1 A... N\ By. (4.14)
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Meaning, that Z, i is a model for the body of clause C’ from (4.7)).
Combining (4.12) and (4.14]) implies:
I,p e C.
Since C" € Rg(DL), this is a contradiction to the model property of Z.
(ii) C was created by (4.2)) of Definition {4.2.10

C = Neg(H1) A... A Neg(Hg) ABjy1 A ...\ By —
Neg(Bi) V...V Neg(B;)V Hiy1 V...V Hy,

with
{e(Hi1),...,0(Hk),0(B1),...,0(B;)} €S and
{o(Hg+1),---,0(Hp),0(Bis1),...,0(Bp)} NS = 0.
Furthermore, Z, u = C and according to assumption (b)

Z, i b= Neg(Hi) A... ANNeg(Hi) ANBiyi A ... N\ By.

The interpretation of all Neg-atoms coincides for Z and Z’. Furthermore
{o0(Bi4+1),.--,0(Br)} NS = 0 implies, that Z and Z’ interpret Byy1,..., B, in
the same way. Therefore, we have

', u b~ Neg(Hy) A ... ANeg(Hy) A Byy1 A ... A By.

This implies Z’, = C' which is a contradiction to the assumption Z’, u b= C.
(iii) C was created by (4.3]) or (4.4) of Definition |4.2.10| and therefore C' has the

form

1 < Neg(A) A A.

Furthermore, we assume Z, u = C and Z', p |~ C. Therefore 7', i = Neg(A)
and 7', u = A. According to the construction of Z’'; Z and Z’ interpret all
Neg-atoms in the same way. Leading to

Z,u = Neg(A). (4.15)

From Z,u = C follows together with (4.15), Z, u = A. However according
to the way Z’ is constructed from Z, this means Z',u = A. Which is a
contradiction to Z', u = A.

O]

In the worst case the K*-transformation results in a clause set which is 9 times larger
than the original set of DL-clauses: Consider a knowledge base K = (R, T,.A) and with
the ABox containing b assertions and k different individuals. W.l.o.g. we assume that
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the ABox only contains assertions of the form D(a) and the RBox is empty. Hence the
size of the ABox is |A| = 2b. Furthermore, we assume that the TBox consists of the
single clause

CZBl/\.../\Bj—}Hl\/...\/Hi

and the symbols of all atoms occurring in C' are concepts. Hence, the size of the TBox is
|T| =i+ j. The set of DL-clauses for the ABox and the TBox has the size [T| + |A| =
i+ j + 2b. Renaming results in the following set of DL-clauses K*:

{Bl/\.../\Bj — H{ V...V H;,
Neg(Hi) A ... A Neg(H;) — Neg(B1) V...V Neg(B)),
o(Hy)(x) A Neg(o(Hp))(z) — L,

o(H;)(x) ANeg(o(H;))(z) — L,
o(B1)(z) A Neg(o(B1))(z) — L,

o(Bj)(z) A Neg(o(B;))(x) — L,
T — dom(ai,...,a;)}

The first clause corresponds to the original clause from the TBox. Its size is |7|. The
second clause is created by renaming and has size |7T|. Then |7 clauses of size 7 follow.
At the end of the clause set a clause of size i 4+ 3 follows. All in all the resulting set of
clauses has the size

T +IT1+7- T +i+3<9-T|+i+3<9-|T|+b+3

which is eight times larger than the size of the original set of DL-clauses.

4.2.3 Using the K*-Transformation for ABox Evolution

The K*-transformation can be used to compute the different operations of ABox Evol-
ution which were introduced in Section £.2.1] In Section we show how to use
the K*-transformation to compute minimal ABox deletions. Section illustrates
that using the K*-transformation, minimal ABox repair can be seen as a special case of
minimal ABox deletion and shows how to compute minimal ABox repair. Section
addresses the task of minimal insertion of ABox assertions and shows how to use the
K*-transformation to compute minimal insertions.

4.2.3.1 Deletion

The operation for ABox evolution that is addressed in this section is the deletion of
assertions. Given a knowledge base K = (R, T, .A) with consistent R U7 and an ABox
assertion C'(b) (or R(a,b)) which is supposed to be deleted from the ABox, the task

145



is to determine a minimal set of ABox assertions whose deletion prevents that C(b) is
contained in the deductive closure of the knowledge base. Recall that according to the
Definition [4.2.8] Neg(A) is defined as {Neg(A) | A € A}. Furthermore, according to
Definition [2.4.55, a model M is a Neg(.A)-minimal model for a set of DL-clauses IV iff
M is a model for N and further there is no model M’ for N with

M’ N Neg(A) C M N Neg(A).

Next it is shown how to use Neg(.A)-minimal models to compute minimal instance dele-
tions. For this, it is convenient to use a function Del which removes the Neg-prefix from
all Neg-ground atoms contained in a model.

Definition 4.2.18 (Del Function). Let M be a model for a set of DL-clauses. Del(M)
1s defined as follows:
Del(M) = {A € A| Neg(A) € M}.

Intuitively, in the next definition, Del(M) constitutes the set of ABox assertions sup-
posed to be deleted from the ABox to obtain a minimal instance deletion.

Theorem 4.2.19. Let K = (R, T,.A) be a knowledge base with consistent RUT, S the
set of atomic concepts and atomic roles occurring in A, and D a delete request. Let M*
be a Neg(A)-minimal model for K* U {T — Neg(D)}. Then A\ Del(M?) is a minimal
instance deletion of D from A.

Proof. Let K = (R, T,.A) be a knowledge base with consistent RUT, S the set of atomic
concepts and atomic roles occurring in A, and D a delete request. Let M be a Neg(A)-
minimal model for K*U{T — Neg(D)}. We have to show that A\ Del(M*) is a minimal
instance deletion of D from A. This proof can be done by showing the following two
assertions:

1. After the deletion of Del(M®) from the ABox, the delete request is not contained
in the deductive closure anymore:

E(RUT)U (A\ Del(M®)) £ D

2. Deleting Del(M?®) from the ABox results in a minimal deletion: There is no Del’ C
Del(M?®) with Z2(RUT) U (A\ Del’) = D.

From these assertions, Theorem [4.2.19] follows immediately.
As a start, it is necessary to introduce some terms: For a set of atoms P the set =P
is defined as
-P={-A| Ae P}

Further, for an interpretation Z and a set of atomic concepts and atomic roles I', Zjp
denotes the restriction of Z on ground I'-atoms. Now we can start proving the above
mentioned two statements.
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1. We have to proof that Z(R U T) U (A \ Del(M?®)) |~ D.
Per assumption, M is a Neg(.A)-minimal model for X* U {T — Neg(D)}. So

M?% = K*U{T — Neg(D)}.

Firstly, we construct a model M 5" from MS according to Lemma This
model is constructed such that M5 C M9, Further, all atoms C(a) with C' € S
and Neg(C(a)) ¢ MS are added to M5 and all atoms R(a,b) with R € S and
Neg(R(a,b)) ¢ M5 are added to MS":

M5 = M® U{A € ground(S, Ind(A)) | Neg(A) ¢ M}

Note that this construction ensures that there is no atom C(a) with C' € S where
neither C'(a) nor Neg(C(a)) is in M5 and furthermore there is no atom R(a,b)
with R € S where neither R(a,b) nor Neg(R(a,b)) is in MS'. The fact that
M® = K*U{T — Neg(D)} and model M 5" is constructed according to Lemma
implies that M5 is not only a model for Rg(Z(RUT)) but also for K*U{T —

Neg(D)}:

MS" = K*U{T — Neg(D)} (4.16)

Next we construct a model M from M3 according to Proposition [4.2.11) and show
that
MEZERUT)U(A\Del(M%)U{D — L}.

The satisfiability of
E(RUT)U(A\Del(M*))U{D — 1}
implies 1. Since
S(RUT) CRs(E(RUT)) C K7,
and according to (#.16) M3 = K*, it follows MS }= Z(R U T). According to
Proposition the interpretation of all concepts and roles occurring in Z(7UR)
coincides for M*" and M. This implies M = Z(R U T). Further, according to
@.16), M5 = {T — Neg(D)}. Using Proposition [4.2.11} this implies M p~ D and
therefore M = {D — L}. It remains to show, that M = A\ Del(M~).
A\ Del(M®) ={Aec A| A ¢ Del(M®)}
={Ac A|A¢{Ac A|Neg(A) € M®}}
={AcA|A¢{AcA|A¢ MT}}
={AcA|A¢g{Ac A|A¢ M}}
={AcA|A¢{Ac A| M £ A}}
={AcA|Ac{Ac A| M A}}
={AcA|MEA}
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Therefore M |= A\ Del(M?) leads to
M E=Z(RUT)U(A\Del(M®)U{D — 1}

which implies 1.

. We have to show that deleting Del(M*®) from the ABox results in a minimal dele-

tion: There is no Del’ C Del(M?) with Z(RUT) U (A\ Del’) = D.

Per assumption M is a Neg(.A)-minimal model for
K*U{T — Neg(D)}.
We assume that there is a set Del’ with Del’ C Del(M*®). This means that
(A\ Del(M®)) C (A\ Del').

So there is A € A with
A € Del(M®) (4.17)

and A ¢ Del’. Therefore A ¢ (A\ Del(M?®)) and A € (A\ Del’). We show that
adding this one arbitrarily chosen assertion A which is contained in (A \ Del’) but
not in (A\Del(M%)) causes D to be contained in the deductive closure. This means
that we have to show

E(RUT)U(A\Del(M%)U{A«} = D. (4.18)

which implies Z(R U T) U (A \ Del') | D, since (A \ Del(M®))U{T — A} C
(A\ Del").

We show by contradiction: let us assume
E(RUT)U(A\ Del(M%))U{A +} I~ D.
Then there is M’ with
M' =ERUT)U(A\ Del(M) U{T — A},
and M’ £ D and therefore M’ = {D — 1}. This means
M E=ERUT)U(A\Del(M%))U{T = Ay Uu{D — 1}. (4.19)

It follows from (4.19) that M’ = Z(R UT). According to Proposition [4.2.11] it is
possible to construct M’ such that

M5 =Rg(E(RUT)).
From the way M"® is constructed and from M’ |= {D — 1} it follows

M'S = {T — Neg(D)}.



It is easy to see, that M'¥ can be extended such that M5 |= K*. Therefore
M'"S = K*U{T — Neg(D)}.

Further, from the way M’ is constructed from M’ using Proposition [4.2.11] and
M' = {T — A} follows M"S = {T — A} and M"® [~ {T — Neg(A)}.

M’ = (A\Del(M?)) together with Proposition [4.2.11|implies M"S = (A\Del(M*)).
Intuitively this can be read as: the resulting ABox after the deletion of D obtained
from model M’S is a superset of the deletion obtained from model M*°. Therefore

M'S b~ Neg(A \ Del(M®)).
This means, there is no A € A with A € Del(M’®) and A ¢ Del(M®) which means
Del(M') C Del(M?).

Further, M’ = {T — A} together with Proposition [4.2.11| used to construct M’
implies M"® |= {T — A} and M’ [~ {Neg(A) <} and therefore A ¢ Del(M"?).
However according to (4.17) we have A € Del(M*?), which leads to

Del(M'S) C Del(M¥)

which is a contradiction to the Neg(.A) minimality of M*® and therefore M’ cannot
exist. So

E(RUT)U(A\Del(M%))U{T = A} U{D — 1}

is unsatisfiable which implies

S(RUT)U(A\ Del(M5))U{T — A} = D.

O]

Example 4.2.20. The task is to delete D(a) from the DL-clauses given in Example|4.2.14)
For this, the clause
{T — NegD(a)}

is added to the result of the K* transformation given in Example [{.2.14 We only give
the relevant part of a Neg(A) minimal model for this set of clauses:

M = {NegD(a), NegB(a), NegB(b), NegC(a),...... }
Del(M) is given as:
Del(M) = {D(a), B(a)}
This model gives us the minimal deletion:

A" ={C(b), R(b,b), R(a,a)}
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Note that Theorem [£.2.19| can further be used for minimal deletion of a delete request
D which belongs to the deductive closure of the knowledge base but is not explicitly
stated in the ABox A. Meaning that D ¢ A but TUR UA |= D. In this case it only
has to be ensured that (D) is in the set S mentioned in Theorem This can be
accomplished by manually adding o (D) to the set S.

Next we consider a special case of deletion. For a knowledge base K = (R, T,.A),
Theorem [4.2.19 can only be used to construct a minimal instance deletion of D from A
if K*U{T — Neg(D)} is satisfiable. However if £* U {T — Neg(D)} is not satisfiable,
there is no Neg(.A)-minimal model for £* U {T — Neg(D)} and therefore we cannot use
Theorem for the construction of a minimal instance deletion.

Example 4.2.21. Let T be a TBox containing the assertion
TCC
stating that everything belongs to the concept C. This corresponds to the DL-clause
T — C(x).
Let us further consider the ABox
A={C(a),B(a),C(b), B(b)}.
The IC*-transformation results in the following set of clauses K*

{T = C(x)
NegC(z) — L,
C(z) N NegC(z) — L,
T — dom(a,b)}.

If C(a) is supposed to be deleted from A, according to Theorem it is necessary
to construct Neg(.A)-minimal models for K* U{T — NegC(a)}. However K* U{T —
NegC(a)} is unsatisfiable. Hence it is not possible to construct a minimal instance dele-
tion of C(a) from A using Theorem . Taking a closer look at the TBox reveals the
problem: the TBoz claims, that everything has to belong to the concept C. So the only
way to remove C(a) from A is to remove individual a entirely from the ABox.

The next Theorem uses this idea and states how to construct minimal ABox deletions
in the case that £* U{T — Neg(D)} is unsatisfiable. Please note that the requirement
of RUT U A being consistent in the next theorem is not a limitation since it is always
possible to repair an ABox which is inconsistent with respect to its RBox and TBox using

Corollary

Theorem 4.2.22. Let K = (R, T,A) be a knowledge base with R UT U A consistent.
Let further S be the set of atomic concepts and roles occurring in A and let D be a delete
request of the form D = C(a). If K* U{T — Neg(D)} is unsatisfiable, then A" C A is
a minimal instance deletion of D from A, where A’ is obtained from A by removing all
ABox assertions containing individual a.
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Proof. Let K = (R, T,.A) be a knowledge base with R U T U A consistent, S be the
set of atomic concepts and roles occurring in A and D = C(a) be a delete request.
We have to show that in case of unsatisfiability of £* U {T — Neg(D)}, A’ C Ais a
minimal instance deletion of D from A, where A’ is obtained from A by removing all
ABox assertions containing individual a. Therefore we assume K£* U {T — Neg(D)} to
be unsatisfiable.

We prove that

1. A is a deletion of D, meaning that Z(RUT)U A’ £ D.

2. A’ is a minimal deletion of D, meaning that there is no A” with A’ ¢ A” C A and
E(RUT)UA” £ D.

From this the Theorem immediately follows.

1. Firstly, we prove that Z(R UT) U A" £ D. Since no assertion in A’ contains
individual a, Z(R U T) U A" has to be unsatisfiable for 2(R UT) U A" = D to be
true. However we claimed Z(7) U A to be consistent and since A’ C A, it follows
that Z(RUT) U A’ is consistent as well. Therefore statement 1. is true.

2. Next, we prove A’ is a minimal deletion of D: Let us assume that A’ is not a minimal
deletion, meaning that there is A” with A’ € A” C Aand E(RUT)UA” |~ D.
Since A’ is obtained from A by removing all ABox assertions containing individual
a, A” has to contain at least one assertion A from A which contains individual a.
We show that

ERUT)UAU{T - A} E D. (4.20)

From this, together with A € A” and A" C A”, it follows immediately that
ERUT)UA" E D.

And this implies 2.).

We show (4.20)) by contradiction: Let us assume Z(7)U A U{T — A} £ D. This
means, that there is a model M with

MEZRUT)UAU{T - A} Uu{D — 1}.

Transforming

K'=RUT,AU{T — A})

according to Definition with S the set of concept/role symbols occurring in
A leads to K™. Because of A'U{T — A} C A, the only difference between K™ and
K* is that the clause of the form dom(aj, ..., a,) may contain additional individuals
in K*. According to the model construction used in the proof of Proposition 4.2.15
we can construct M?® from M with M*® = K'*. It is easy to see, that we can extend
M?® to a model M’ such that it is a model for K* as well. Since M |= {D — L},
according to Proposition M* = Neg(D) and M’ = Neg(D). Hence

M'E K*U{T — Neg(D)}.

151



This is a contradiction to the unsatisfiability of £* U {T — Neg(D)} leading to
[@20).

O]

With the help of Theorem [4.2.19|and |4.2.22] for delete requests of the form D = C(a),
we are now able to construct minimal instance level deletions independent from the
satisfiability of

K*U{T — Neg(D)}.

Next, repair of an ABox which is inconsistent w.r.t. its TBox and RBox is considered.
In order to compute minimal repair, the introduced minimal deletion turns out to be

helpful.

4.2.3.2 Repair

This section addresses the repair operation for ABoxes as introduced in Section [:2.1.2]
Given a knowledge base K = (R, T, .A) with consistent RUT and inconsistent TURU.A,
the task is to find a minimal set of ABox assertions whose deletion causes A to be
consistent w.r.t. 7 UR. The K*-transformation introduced in Definition £.2.13] can be
used to repair an ABox, which is inconsistent w.r.t. its TBox and RBox. The basic idea
is to replace each occurrence of | in T by a new atom false and further add false to
the set S from Theorem [£.2.19] After that, we use the K*-transformation and construct
the minimal instance deletion of false from the ABox. The resulting ABox is a minimal
ABox repair.

Lemma 4.2.23. Let K = (R, T, A) be a knowledge base with consistent RUT, Tgyse the
TBoz obtained from T by replacing every occurrence of L by false, Afqse be AU {false}
and Krase = (R, Traises Afaise). Let S be the set of atomic concepts and roles occurring in
A and T plus false. Then there is a Neg(A)-minimal model for K3, U{T — Negfalse}.

Proof. Let Kpase = (R, Tiaises Afaise) be defined as in Lemma [4.2.23| and S be the set of

atomic concepts and roles occurring in A and 7T plus false. We show the satisfiability of
Kiase U{T — Negfalse}.

Since T is consistent, false does not follow from Z(7j4se). Therefore Z(Tpyse) U { false —
1} is satisfiable. From Proposition 4.2.15|it follows, that K'* is satisfiable, with

K' = (RU Tjase U {false = L}, Agaise)-
Transforming K’ according to Definition |4.2.13|leads to:
K™ = K}ase U{false — L, T — Negfalse, false N Negfalse — 1}.

It is easy to see, that
Kfuse U{T — Negfalse} C K.

Therefore K7, U{T — Negfalse} has to be satisfiable. This implies, that there has to
be a Neg(A)-minimal model for K7, U{T — Negfalse}. O
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Corollary 4.2.24. Let K = (R, T, A) be a knowledge base with consistent RUT, Tase
the TBox obtained from T by replacing every occurrence of L by false, Agqse be AU{ false}
and Kase = (R, Traise, Afaise)- Let S be the set of atomic concepts and roles occurring in
A and T plus false. Then A\ Del(M) is a minimal ABox repair for A for all Neg(.A)-
minimal models M for K, ., U{T — Negfalse}.

Corollary follows immediately from Theorem with D = false. Lemma
[4:2223| together with Corollary [£:2:24] implies that such a minimal ABox repair can always
be constructed.

4.2.3.3 Insertion

Next we address insertion of an assertion into an existing ABox. Given a knowledge base
K =(R,T,A), the task is to insert an assertion like C'(a) into the ABox such that the
resulting ABox is consistent w.r.t. the TBox and the RBox. This can be obtained, by
first adding the assertion to the ABox and afterwards constructing all possible minimal
repairs for the resulting ABox. If the added assertion is not contained in any of these
minimal ABox repairs, then it is not possible to insert the assertion into the ABox
without rendering the ABox inconsistent w.r.t. its TBox. If there is a minimal repair
containing the added assertion, then the insertion is possible and the respective minimal
ABox repair gives us the result of the insertion.

Example 4.2.25. Reconsider the knowledge base K = (R,T,.A) with an empty RBox
gwen in Example[.2.5. The TBox is represented by the following DL-clause

E(T) ={L + C(z) AN D(x)}.
Furthermore, the ABoz is given as
A={C(a)}.
Adding the assertion D(a) into A leads to
A= {C(a), D(a)}

which is inconsistent w.r.t. T. In order to be able to insert D(a) into the ABox anyway,
we can repair A'.  There are two minimal ABoz repairs for A': A" = {C(a)} and
A" = {D(a)}. The first minimal repair corresponds to deleting the previously inserted
D(a) and therefore is not desirable. The second minimal repair however allows us to keep
the inserted assertion.

At a first glance, insertion requires the construction of all possible repairs. However it
is possible to find out if an insertion is possible by a single satisfiability test: If we want
to add C(a) to the ABox, we first add it to A and then add the following DL-clause

NegC(a) — L
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to the knowledge base as well. If the resulting knowledge base is unsatisfiable, we can
conclude that it is not possible to add C'(a) to A such that the resulting knowledge base
is satisfiable. If the resulting knowledge base is satisfiable, we get a minimal repair as
minimal model and know that the insertion can be successfully performed.

As illustrated in the previous sections, the K*-transformation can be used to compute
minimal deletion, minimal insertion and minimal repair. In all three cases, only the devi-
ation from the original ABox has to be computed. In practice it is reasonable to assume
that usually only a very small part of an ontology has to be revised when computing
deletion, insertion and repair. This is why it seems likely that the K*-transformation
provides an efficient method for the computation of ABox evolution. In order to check
this assertion, a prototypical implementation of the described methods for ABox evolu-
tion based on the K*-transformation was developed. In Section [4.2.4]experimental results
are presented.

4.2.4 Evaluation

In order to test the practicality of using the K*-transformation for ABox deletion, in-
sertion and repair, a prototypical implementation of a systeIrE as well as some of the
experimental results were developed as a Master’s thesis (Polster, |2015). for ABox evol-
ution was developed (Polster}, |2015). The implementation uses the Hyper theorem prover
(Baumgartner et al., [2007)) to construct the Neg(.4)-minimal models which lead to the
minimal deletions. Another theorem prover able to handle DL-clauses is HermiT (Motik
et al) 2007). However, in contrast to Hyper, HermiT is not able to compute Neg(.A)-
minimal models. This is why the Hyper theorem prover is better suited for our purposes.

The main goal of the experiments described in this section is to test the scalability
of using the K*-transformation for ABox deletion, insertion and repair. This is why the
experiments are designed to see how the performance of the K*-transformation for ABox
deletion, insertion and repair depends on the number of assertions in the ABox.

To the best of our knowledge, there is no system performing deletion and insertion of
ABox assertions as well as repair of inconsistent ABoxes for the description logic SHZ.
This is why we cannot compare our system to another system.

Section introduces some optimizations that can be carried out before the com-
putation of the K*-transformation. Section [4.2.4.2| gives details on how to compute
Neg(A)-minimal models using the Hyper theorem prover. Section introduces
the setup of our experiments and in Section [4.2.4.4] experimental results for using the
K*-transformation for ABox deletion, insertion and repair are presented.

4.2.4.1 Optimizations Included in the Implementation

The approach for minimal deletion, insertion and repair introduced in Section [4.2.3.1
is based on the assumption that most parts of the ABox do not have to be changed
in order to perform the change operation. For example when performing a deletion,

Implementation as well as ontologies used are available at http://userp.uni-koblenz.de/~obermaie/
ABoxEvolution.zip [2015, December 17]
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only a very small fraction of the ABox has to be removed for the deletion to come into
effect. Therefore, the number of assertions contained in the ABox should not have a wide
influence on the performance of our implementation. Nevertheless, for implementation
purposes, it is advantageous not to consider more ABox assertions then necessary. This is
why the ABox is partitioned in advance. This partitioning can be seen as a recompilation
technique since it has to be performed only once. The partitioning of ABox assertions
will be defined in terms of an equivalence relation which is induced by an equivalence
relation on the set of individuals occurring in the ABox. Recall that Ind(A) is the set of
individuals occurring in A.

Definition 4.2.26 (~jnq4) Relation on ABox Individuals). Let A be an ABox. The
relation ~hq(4)C Ind(A) x Ind(A) is given as follows:

a ~ind(A) b iff there is a concept C' with {C(a),C(b)} € A or R(a,b) € A.

It is easy to see that the ~nq(4)-relation is an equivalence relation. The ~ g 4)-relation
on ABox individuals induces an equivalence relation on ABox assertions as follows:

Definition 4.2.27 (~4 Relation on ABox Assertions). Let A = {A1,..., Ay} be an
ABox. The relation ~4C A x A is defined as follows:

A; ~ 4 Aj iff there is an aq € Ind(A4;) and an as € Ind(A;) with a; ~lind(A) 02

Like in the case of the ~|,q(4)-relation for individuals, it is easy to see that the exten-
sion of ~4 on ABox assertions is an equivalence relation. The ~ 4 equivalence relation
can be used to partition the ABox before computing the K*-transformation. Without
partitioning, the *-transformation adds the DL-clause {T — dom(a1,...,a,)} for all
individuals occurring in A. The basic idea of partitioning is to add only those individuals
into this DL-clause which are necessary to answer a delete request. Given a delete re-
quest D only those individuals equivalent to the ones occurring in D have to be added to
the DL-clause {T — dom(ay,...,a,)}. If large ABoxes with many individuals are con-
sidered, this can be helpful in order to relieve the theorem prover. Since the computation
of insertion and repair relies on deletion, this technique is helpful for the computation of
insertion and repair as well.

4.2.4.2 Using Hyper to Compute I'-minimal Models

In Section we briefly discussed the complexity of the K*-transformation. There is
a linear blow up of the knowledge base and there is also polynomial time complexity
for performing the transformation. The real costs for performing the deletion, insertion
and repair are caused by the theorem prover which has to compute the Neg(.A)-minimal
models. Dix, Furbach, and Niemeld| (2001)) provides an overview on this topic. In our
implementation we use the Hyper theorem prover for the construction of Neg(.A)-minimal
models. Hyper is able to construct I'-minimal models in a bottom-up way. For this a set of
DL-clauses together with a set of predicate symbols P and an integer ¢ is handed to Hyper.
Then Hyper only constructs models containing at most ¢ ground instances constructed
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from predicate symbols from P. During reasoning, Hyper discards all branches with
more than 7 ground instances constructed form predicate symbols from P. If Hyper is
not able to find a model with 4 or less such ground instances, it terminates by stating
that the maximal number of instances is reached.

However this Hyper feature cannot be used directly to compute Neg(.4)-minimal mod-
els. We illustrate this fact with an example.

Example 4.2.28. Consider the following ABox
A ={A(a), A(b), B(c)}

Neg(.A) corresponds to the set {NegA(a),NegA(b),NegB(c)}. Telling Hyper to construct
models containing at most one ground instance constructed from predicate symbols in
{NegA, NegB} causes Hyper to abandon branches containing NegA(c) and NegB(a) even
though this branch could still lead to a Neg(A)-minimal model. The reason for this is
the fact that Hyper is not able to distinguish between those ground instances occurring
in Neg(A) and those not occurring in Neg(A). We solve this problem by introducing two
auxiliary functions renaming concepts and roles.

Definition 4.2.29 (delete Function, ABox Function). Let A(a) and R(a,b) atoms. The
delete and the ABox function map atoms to renamed atoms as follows:

e For atomic concepts A and an individual or variable a:
— delete(A(a)) = deleteA(a)
— ABox(A(a)) = ABozA(a)

e For atomic roles R and individuals or variables a, b:
— delete(R(a,b)) = deleteR(a,b)
— ABox(R(a,b)) = ABozR(a,b)

We slightly abuse notation by using the delete function to rename atomic concepts and
atomic roles: for B an atomic concept or a role: delete(B) = delete B. Hence the delete
function to rename atoms, sets of atoms and atomic concepts and roles.

Now we present present how Hyper can be used to compute Neg(.A)-minimal models:
As mentioned before, the DL-clause

T — dom(ay,...,an)
with {ai1,...,a,} = Ind(A) is added by K*-transformation. The main reason for this

is to introduce the individuals occurring in the ABox to the Hyper theorem prover.
For implementation purposes, we add a different set of DL-clauses to introduce those
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No. Hardware (ON]

1 AMD Phenom X6 1090T @ 3.2GHz, Debian Wheezy
8 GB RAM

2 Intel Core 15-2410M @ 2.3GHz, Ubuntu 14.04
8 GB RAM

3 Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz, Ubuntu 14.04
4 GB RAM

Table 4.1: Different Setups Used for the Experiments.

individuals. Instead of adding the aforementioned DL-clause,

{T — ABox(A) | for all assertions A € A}
U
{ABox(A)(z) A Neg(A)(x) — delete(A)(z) | A(a) € A for an individual a}
U
{ABox(R)(x,y) A Neg(R)(x,y) — delete(R)(x,y) | R(a,b) € A for individuals a, b}

is added to the result of the K*-transformation. By telling Hyper to only construct
models containing at most ¢ ground instances of delete predicates, it is ensured that Hyper
only considers those Neg predicates for minimization, for which there is a corresponding
ground instance in the ABox. This avoids the problem illustrated in Example

The construction of Neg(.A)-minimal models is done by iteratively calling Hyper.
Firstly, Hyper is called with the resulting set of DL-clauses and the instruction to con-
struct models containing at most one ground instance of delete predicates. The maximal
number of ground instances of delete predicates allowed is successively increased until
Hyper is either able to construct a model or a proof for the unsatisfiability of the set
of DL-clauses. This ensures that the first model given by Hyper is a Neg(.A)-minimal
model.

4.2.4.3 Setup of Experiments

We used three different setups for our experiments. Table provides an overview on
these setups. The main goal of our experiments is to observe the influence of the number
of ABox assertions on the runtime of our implementation. Therefore it is not harmful
that we used different setups for the experiments since we did not change the setup during
one test series. For all experiments the Hyper version 1.@ was used.

We use the ALHZ ontology VICOD]E] for testing our approach. This is a manually
created ontology for the domain of European history. The VICODI ontology comes in

2 Available at: http://userpages.uni-koblenz.de/ bpelzer/hyper/ [2015, December 17].
Shttp:/ /www.vicodi.org [2015, December 17].
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five different sizes. All versions of this ontology consists of 223 axioms in the TBox and
RBox. The smallest version contains 53653 ABox assertions. The larger versions of this
ontology are generated by duplicating the assertions of the original ABox several times
and changing the names of the individuals in the assertions. The smallest version of the
VICODI ontology is denoted by VICODI 0, VICODI n denotes the ontology obtained
by copying the ABox n times and then changing the names of the individuals. With its
223 axioms, the TBox of the VICODI ontologies is small and the structure is simple. In
contrast to that, the ABox is large and contains many different individuals which are
connected via roles.

Since our implementation uses the partitioning described in Section using the
larger versions of the VICODI ontology for the experiments does not provide a benefit
because of their repetitive structure. This is why, to evaluate the scalability of the K*-
transformation for ABox deletion, insertion and repair, we focus on the smallest version of
the VICODI ontology by constructing different versions of it with increasing numbers of
ABox assertions. These fragments are used as test sets throughout the experiments.
Six versions of the smallest VICODI ontology were considered. The largest version
corresponds to VICODI 0, the smaller versions are created by successively removing
10,000 assertions from the ABox. In the remainder of this section, we refer to this set
of ontologies as fragments of VICODI (. The implementationlﬂ as well as some of the
experimental results were developed as a Master’s thesis (Polster} 2015).

4.2.4.4 Experimental Results

For each of the three change operations, namely deletion, insertion and repair, ex-
periments were performed. All experiments are performed using the fragments of the
VICODI 0 ontology. Whenever we present runtimes in this Section, these times con-
tain everything from loading the ontology, partitioning the ontology, performing the
K*-transformation and the respective change operation including using Hyper to com-
pute the Neg(.A)-minimal models. For deletion, different assertion occurring in the ABox
of the ontology under consideration were treated as delete request. For repair, firstly
random inconsistencies were introduced into the ABox which then were removed using
the IC*-transformation. For insertion, random assertions were created and inserted into
the ABox such that the resulting ABox is consistent w.r.t. its TBox.

Deletion Before we describe the experiments performed for deletion, we introduce dif-
ferent kinds of deletions: If it is sufficient to only remove the delete request itself from
the ABox in order to minimally delete the delete request, we speak of atomic deletions.
In contrast to this non-atomic deletion denote cases were it is necessary to remove more
than one ABox assertion. Furthermore, note that in all experiments on deleting asser-
tions, only one minimal instance deletion is computed since this is sufficient to perform
the deletion.

“Implementation as well as ontologies used are available at http://userp.uni-koblenz.de/ obermaie/
ABoxEvolution.zip [2015, December 17]
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1. The first experiments on deletion compare the runtime of our implementation of
the K*-transformation to the runtime of Hyper without the K*-transformation to
perform the same deletion. Hyper alone can be used to compute minimal deletions
as well. The basic idea to use Hyper alone to handle a delete request D is to
delete a set N of assertions from the ABox A and then test if D is contained in
the deductive closure of 7 U A\ N. For non-atomic deletions this approach is not
feasible since all possible subsets IV of the ABox have to be considered and it has
to be ensured that the deleted set of assertions is minimal. This is why we use this
approach only for atomic deletions. This can be done as follows: If the task is to
test if D can be removed from the ABox by removing only D from the ontology
K B, we can test

KB\{D}u{-D}

for satisfiability using Hyper. Satisfiability of KB\ {D} U {—=D} implies
KB\ {D} |~ D,

meaning that D can be deleted atomically.

For each of the fragments of VICODI 0 described above, our system used 1,000
different ABox assertions as delete request D and performed the deletion. Fur-
thermore, we used Hyper to compute the same deletions. Note that only our im-
plementation uses the K*-transformation. This experiment was carried out using
setup one given in Table [4.1]

The solid line in Figure [£.3] presents the average time our system used for a delete
request leading to an atomic deletion on the different fragments of VICODI 0.
The dashed line in Figure [{.3] presents the time used for those atomic deletions
computed by Hyper without the K*-Transformation.

Comparing the lines for Hyper and our system using the K*-transformation shows
that the K*-Transformation is faster in calculating atomic deletions. It is notable,
that our system first implements the K*-transformation and then uses Hyper to
compute a Neg(A)-minimal model. Nevertheless Figure shows that our system
outperforms Hyper alone. This can be explained by the fact that our implement-
ation only computes the deviation from the ABox and especially in the case of
atomic deletions, this deviation is very small. In contrast to this, Hyper is forced
to compute the deductive closure of the ABox which contains much more inform-
ation than necessary.

We did not perform experiments comparing our system to Hyper without IC*-
transformation for non-atomic deletions. As described afore, it is not feasible to
perform non-atomic deletions with Hyper alone. Since it is reasonable to expect our
system to outperform Hyper without K*-transformation for non-atomic deletions,
we refrain form such experiments.

2. The next experiments analyze the scalability of atomic and non-atomic deletions
dependend on the number of assertions in the ABox. They were carried using setup
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Figure 4.3: Average Time Used for Deleting one Assertion from the Different Fragments
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of the VICODI 0 Ontology. Average Time Computed from 1,000 Different
Deletions. Only Atomic Deletions are Considered.

two given in Table [£.1] During these experiments, for each fragment ontology of
VICODI 0, each assertion in the ABox was treated as a delete request in turn.
Figure depicts runtimes of our implementation of the K*-transformation for
atomic as well as non-atomic deletions. The solid line presents the runtimes for
atomic deletions and the dashed line the runtimes for the non-atomic deletions. For
both atomic and non-atomic deletions, Figure [4.4]reveals a nice property of the C*-
transformation: increasing the size of the ABox only leads to a harmless increase
of the time necessary to compute the minimal deletion. We owe this property to
the fact that only the deviation from the original ABox is computed. As described
in Section [£:2.4.2] for the calculation of non-atomic deletions it is necessary to
restart Hyper’s model generation process. This implies that the runtime of non-
atomic deletions depends greatly on the number of ABox assertions that have to
be deleted in order to accomplish the delete request. This is also the reason, why
the non-atomic deletions in Fiure [{.4] take longer than atomic deletions. These
experiments revealed another interesting aspect, which is not visible in Figure [.4}
In most cases of non-atomic deletions, it was only necessary to delete two or three
assertions. This observation confirms that our assumption that deletion of an
assertion usually only affects a small part of the ABox applies for these experiments.
Furthermore, it explains that the computation time of a non-atomic deletion only
increases moderately when the size of the ABox under consideration is increased.

The next experiments analyze repair of an ABox which is inconsistent w.r.t. its
TBox and RBox.
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Figure 4.4: Average Time Used for Deleting one Assertion from the Different Fragments
of the VICODI 0 Ontology. Average Time Computed from Using each ABox
Assertion as a Delete Request in Turn.

Repair All fragments of the VICODI 0 ontology contain an ABox which is consistent
w.r.t. the rest of the knowledge base. Therefore, in order to perform experiments for
ABox repair, it is necessary to first introduce inconsistencies into the ontology. Our
approach only addresses the aspect of an ABox which is inconsistent w.r.t. its TBox and
RBox. Therefore, both the TBox and the RBox remain fixed during the generation of
inconsistencies and only the ABox A is changed. For the generation of inconsistencies,
an approach similar to the one introduced by Bienvenu, Bourgaux, and Goasdoué| (2014)
was used. All changes are performed depending on a given probability p:

e For all assertions C'(a) occurring in A, C(a) is replaced by ~C'(a) with probability
p. Since the ABox is assumed to contain only assertions of the form C(a) or R(a, b)
with C' an atomic concept, adding —=C'(a) to the ABox is done by adding C’(a) to
the ABox for a fresh atomic concept C’ and furthermore adding the DL-clause
C(z) ANC'(xz) = L to the TBox.

e For all role assertions R(a,b) occurring in A, R(a,b) is replaced by —R(a,b) with
probability p/10. Again the introduction of = R(a,b) is done by introducing R'(a.b)
for a fresh role R’ into the ABox and furthermore adding the DL-clause R(x,y) A
R'(z,y) — L to the TBox.

e For all role assertions R(a,b) occurring in A, R(a,b) is replaced by R(b,a) with
probability p/10.
The approach for ABox evolution presented in the thesis at hand is based on the assump-

tion that usually only a very small part of the ABox has to be removed in order to repair
an ABox which is inconsistent w.r.t. its TBox and RBox. This is why the probability p

161



was set to the rather small value of 0.01%. This probability results in changing up to 15
assertions to the ABoxes considered for our experiments. To avoid that in each case the
changes are returned as a minimal repair, it is claimed that the introduced changes are
preserved in the repair.

1. In the first experiments, the procedure described afore was used to create 1,000
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inconsistent ABoxes for each fragment of vidodi_0. Figure [£.5 shows the average
number of changed assertions using the method described above with p = 0.01% for
the different VICODI 0 fragments. For the changes introduced into the ABoxes
of the different fragments of VICODI 0, minimal repairs were computed with the
help of the K*-transformation. For technical reasons, only one minimal repair
was computed but all smallest minimal repairs. The smallest minimal repairs are
exactly those minimal repairs, with a minimal size. These experiments were carried
out using setup three given in Table [£.I} The results of this computation depicted
in Figure [£.6 show that there is a moderate increase of runtime for growing number
of ABox assertions. We assume that this increase is not mainly inflicted by the
growing number of assertions in the ABox under consideration. Contrariwise, we
assume that the main reason for the increasing runtime is the higher number of
assertions which have to be deleted in order to resolve the introduced inconsistency.
To support this theory, another set of experiments was conducted investigating the
runtime depending on the number of assertions which have to be deleted to repair
the knowledge base.

. The next experiments were performed as a follow up of the first experiments on

ABox repair. They are designed to investigate the relationship between runtime
and the number of assertions which have to be deleted to repair the knowledge
base under consideration. This relationship is more insightful that the relationship
between runtime and number of changes caused by the introduction of inconsist-
encies since even very small changes to an ABox can result in a very high number
of ABox assertions which have to be deleted in order to regain consistency. For
example our experiments on the smallest fragment of the VICODI 0 ontology re-
vealed that changing only one assertion of the ABox can lead to up to 564 assertions
which have to be removed in order to reestablish consistency. Figure [£.7a] depicts
runtime dependent on the number of assertions which have to be deleted to regain
consistency for the smallest fragment of the VICODI 0 ontology.

These experiments were carried out for all fragments of the VICODI 0 ontology.
See Figure and Figure for the results. The experiments reveals two things:
Firstly, the larger the part of the ABox which has to be removed, the higher the
runtime of our implementation. Secondly, the runtime is not much influenced by
the size of the ABox itself. These tests were carried using setup 3 given in Table[4.1]

Figure summarizes the results depicted in Figure and Figure [£.8 and
shows the runtime dependent on the number of assertions which have to be deleted
for all fragments of the VICODI 0 ontologies. Comparing the graphs for the
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Figure 4.5: Average Number of Assertions Changed to Make the Fragments of the
VICODI 0 Ontology Inconsistent with p = 0.01%.

different number of assertions shows that the runtime increases only moderately
for increasing number of ABox assertions undermining our thesis that runtime
primarily depends on the number of assertions which have to be deleted in order
to regain consistency.

Insertion The third operation for ABox evolution introduced in Section [4.2.1.3]is the
insertion of an assertion into an ABox. The resulting ABox should to be consistent
w.r.t. its TBox and RBox and furthermore it has to be ensured that inserted assertion
is contained in the resulting ABox. As described in Section [4.2.1.3] the changes to the
ABox performed to achieve this have to be minimal. The next experiments are designed
to investigate how the runtime of the computation of an insertion is influenced by the
number of assertions in an ABox. Our implementation uses the K*-transformation to
insert an assertion into an ABox as described in Section For this, an assertion
of the form C(a) or R(a,b) is created randomly. The probability of the assertion to be a
role assertion is equal to the probability of the assertion to be a concept assertion. The
assertion is created by randomly picking a concept or a role together with one or two
individuals occurring in the knowledge base. The created assertion is added to the ABox
and then repair is used while ensuring that the inserted assertion stays in the ABox. For
each ontology under consideration, 1,000 different assertions were randomly created and
inserted. These experiments were carried out using setup three given in Table
Figure[4.10|depicts the runtimes for the different fragments of the VICODI _0 ontology.
It is noteworthy that the runtime only increases moderately for growing ABox sizes. In
most cases, the ABox obtained by adding the randomly created insertion was consistent.
Hence no repair was necessary. Insertion heavily relies on repair. Therefore, runtimes
for cases where the ABox resulting from adding the assertion is inconsistent, depends on
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Figure 4.6: Runtime of Repair for the Different Fragments of the VICODI 0 Ontology
with Introduced Inconsistencies Using p = 0.01%.

the number of assertions which have to be deleted in order to regain consistency.

To sum up, all experiments carried out, confirm our assertion that the runtime depends
mainly on the dimension of change which is inflicted on the ABox and is only moderately
influenced by the size of the ABox itself. This makes our approach beneficial for the
computation of minimal deletion, insertion and repair for ABoxes where only a rather
small part of the ABox is affected by the change operation. Next we consider approaches,
which are related to the method for ABox evolution we presented.

4.3 Related Work

Naturally, ontologies used in practice are subject to frequent changes. These changes
concern different parts of an ontology. Coarsely, these changes can be divided into changes
affecting the terminological part i.e. the TBox and changes concerning the assertional
part i.e. the ABox of an ontology. There is a plethora of approaches to deal with this
changes. This thesis only examines ABox updates. Hence we will not present details on
TBox updates and refer the reader to (Zheleznyakov, Calvanese, Kharlamov, and Nutt,
2010).

For the task of updating an ABox, the TBox of the given knowledge base is considered
to stay fixed. In contrast to this, the ABox is subject to changes. In general, two kind of
ABox updates can be distinguished. The formula based and the model based approach.
In both approaches changes carried out are supposed to fulfill some minimality criterion.

For the two approaches, this minimality criterion has a different meaning. In case of
the formula based approach, this view of minimal change concerns the assertions of the
ABox itself meaning that the number of assertions changed by the update are supposed
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Figure 4.7: Runtimes of Repair Dependent on the Number of Assertions which were De-

leted (represented by the dots in the graph) for the Three Smallest Fragments
of the VICODI _0 Ontology with Introduced Inconsistencies Using p = 0.01%.
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Figure 4.8: Runtimes of Repair Dependent on the Number of Causes which were Deleted
for the Three Largest Fragments of the VICODI 0 Ontology with Introduced
Inconsistencies Using p = 0.01%.
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were Deleted for the Different Fragments of the VICODI 0 Ontology with
Introduced Inconsistencies Using p = 0.01%.

to be minimal. The semantically guided evolution of SHZ ABoxes introduced in this
dissertation belongs to this category of ABox updates.

In case of the model based approach, the minimality criterion refers to the models
of the knowledge base. The model based approach claims that the set of models of the
knowledge base resulting from a change operation should be as close as possible to the set
of models of the original knowledge base (Liu, Lutz, Milicic, and Wolter, [2006)). In Sec-
tion we briefly introduce the idea of model-based ABox updates together with some
results on which description logics allow model-based ABox updates. In Section [4.3.2
some approaches for formula based ABox updates are introduced. Section [£.3.2.2] intro-
duces the notions of axiom pinpointing and justifications, together with methods how to
compute them.

Section [4.3.3] introduces some ideas from querying large ABoxes. Due to the size of
the considered ABoxes, it is likely that the ABoxes under consideration are inconsistent
w.r.t. their TBox and RBox. Therefore, the field of querying large ABoxes has to deal
with inconsistent ABoxes as well.

4.3.1 Model Based ABox Updates

In order to introduce the idea of model based ABox updates, we first have to introduce
some terms. In Section the description logic ALC was presented. Extending this
logic with inverse roles leads to the description logic ALCZ. Furthermore, it is possible to
add so-called qualified number restrictions to ALC allowing to construct concepts of the
form> nR.C or < nR.C respectively. This can be formalize for example a father with
at least three sons as Fatherl > 3hasChild. Male. Semantics of these qualified number
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restrictions is given by extending Definition [2.4.8] with the following two lines

(=nRC)F ={z|{y|(x,y) € R Ay e CT} = n}
(<nRCO)F ={z|{y | (z,y) € RT Ay e CT}| < n}.

Adding qualified number restrictions to ALC results in the description logic ALCQO. So
called nominals allow the use of individual names in the description of a concept. For
an individual name a, {a} is a concept. This concept is interpreted as the set consisting
only of the individual a. For example it is possible to formalize the concept of actors
who have worked with Quentin Tarantino as ActorM3worked _with.{tarantino}. Adding
nominals to ALC results in the description logic ALCO. By description logics between
ALC and ALCQT all logics obtained by adding qualified number restrictions or invers
roles to ALC.

With the help of the ‘@’ constructor, it is possible to state that an individual be-
longs to a certain concept. Given an individual @ and a concept C, it is possible to
write @,C' which is interpreted as AZ, if a2 € CT and as () otherwise. For example
it is possible to formalize that Quentin Tarantino is a screenwriter and film director as
Q¢ arantino (Screenwriter M Director).

With the help of the above introduced notions we are now able to introduce the task of
model-based ABox updates. When performing model-based ABox updates, the models
of the knowledge base resulting from the update should be as close as possible to the
models of the original knowledge base. [Liu et al.|(2011) introduces this kind of updates
as semantic updates. An ABox A’ is a semantic update of an ABox A with a set of
assertions U if the models of A’ are the interpretations obtained from the models of
A by making all assertions in U true. However, according to |Liu et al. (2011)) for the
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description logics between ALC and ALCQOT it is not always possible to express these
semantic updates. If nominals and the ‘@’ constructor from hybrid logic are added to
these logics, semantic updates can be expressed. To give an intuition, why it is necessary
to have nominals in order to be able to express semantic updates, we present an example
presented by |Liu et al.| (2011)).

Example 4.3.1. (Liu et al., |2011)

A ={ (Person M 3hasChild.Person MYhasChild.(Person M Happy))(john),
hasChild(john, peter),

Person(mary)}

Description logic ABoxes represent incomplete knowledge about the world, which means
that the semantics of ABoxes can be characterized as open world semantics. In the ABox
A it is not clear if the individual Mary belongs to the concept Happy or not. Further it is
not stated if Mary is John’s child. Now the ABox is updated such that Mary is unhappy.
So the set U is added to the ABox with:

U = {(—Happy)(mary)}

Performing a semantic update, leads to the following ABox:

A" ={ (Person M 3hasChild.Person I
VhasChild.(Person M (Happy U {mary})))(john),
hasChild(john, peter),
(Person M —Happy)(mary)}

Since it cannot be excluded that Mary is John’s child in the ABox A, it is necessary to
change the description of John by adding the nominal {mary}.

Since the thesis at hand introduces an approach for formula based ABox updates, we
refrain from presenting more details on model based approaches. See (Liu et al., 2011)
and more detailed (Liul 2010)) for different notions of model based ABox and information
on how to compute some of these notions and (De Giacomo, Lenzerini, Poggi, and Rosati,
2009) for an approach for the description logic DL-Lite.

4.3.2 Formula Based ABox Updates

The basic idea of formula based ABox updates is to minimally change the ABox to
perform the update. In this setting, the minimality of change means that as little as
possible assertions of the ABox are changed. As opposed to the model based approach,
there are no restrictions on the models of the knowledge base.

Besides the approach for formula based ABox updates for SHZ knowledge bases presen-
ted in this thesis and [Furbach and Schon (2013al), there are numerous other formula based
approaches to deal with the evolution of the instance level of knowledge bases given in
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different description logics. Many of the other approaches focus on description logics
belonging to the so-called DL-Lite family (Calvanese, Giacomo, Lembo, Lenzerini, and
Rosati, 2007). To understand the idea of the approaches that are introduced throughout
this section, it is not important to know details about DL-Lite. This is why we refrain
from presenting DL-Lite and refer the reader to the respective paper cited along with
each approach for details on the logic under consideration.

One interesting approach to compute formula based ABox updates is presented by
Halaschek-Wiener et al. (2006]), where so-called syntactic ABox updates are introduced.
Similar to our approach, assertions are added to or removed from the ABox. In the case
of deleting ABox assertions, however it is neither guaranteed that the removed assertion
is not contained in the deductive closure nor that the result of adding the assertion is
consistent.

Calvanese, Kharlamov, Nutt, and Zheleznyakov| (2010)) introduce a formula based ap-
proach for ABox deletion, insertion and repair for DL-Lite knowledge bases. This ap-
proach exploits the following nice property of DL-Lite: as shown by [Calvanese et al.
(2010), in DL-Lite the unsatisfiability of an ABox w.r.t. a TBox is either caused by a
single assertion or a pair of assertions. However in SHZ an arbitrary number of asser-
tions can cause unsatisfiability w.r.t. a TBox. Therefore, the algorithms suggested by
Calvanese et al.| (2010) are not feasible for SHZ knowledge bases.

In Section inconsistency-tolerant semantics are introduced which are based on
the notion of minimal repair as introduced in Section [£.2.1.2] Furthermore, it is shown
how to answer queries form an ABox which is inconsistent w.r.t. its TBox using these
inconsistency-tolerant semantics. Section [£.3.2.2] presents how to use justifications to
compute formula based ABox updates together with an idea how to compute justific-
ations. We end the presentation of formula based approaches for ABox updates with
the introduction of a method to compute maximal consistent subsets of an ontology in

Section {.3.2.3

4.3.2.1 Inconsistency-Tolerant Semantics

Querying an inconsistent ABox in the classical way is useless since it is possible to
deduce anything from an inconsistent ABox. This thesis pursues the idea to repair an
ABox which is inconsistent w.r.t the TBox. In general there can be more than one way
to repair an inconsistent ABox and it is unclear which of these possible ways leads to
the desired ABox. Furthermore, it is not necessarily the case that there is consensus on
what the desired ABox is. The thesis at hand provides a method to efficiently compute
minimal ABox repairs. However deciding which of these repairs should be used is beyond
the scope of this thesis.

Another possibility to deal with these inconsistencies is to introduce inconsistency tol-
erant semantics (Lembo, Lenzerini, Rosati, Ruzzi, and Savo, 2010). These semantics
provide a way to answer queries in a meaningful way even though the ABox is inconsist-
ent. There are many different ways to define inconsistency tolerant semantics. Usually
those semantics use the notion of a repair as given in Definition . Lembo et al.| (2010)
establishes inconsistency-tolerant semantics in order to be able to use those inconsistent
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ABoxes for query answering. Rosati (2011) studies the complexity of reasoning under
these inconsistent-tolerant semantics. To use these inconsistent-tolerant semantics, it is
necessary to determine minimal repairs of the ABox. Algorithms for the computation of
minimal repair of DL-Lite ABoxes suggested in [Lembo et al.| (2010) test the satisfiab-
ility of every single ABox assertion and every pair of ABox assertions w.r.t. the TBox.
Since for DL-Lite the satisfiability test is tractable, this approach is reasonable. However
the ExpTime completeness of consistency testing of SHZ ABoxes renders such an ap-
proach infeasible. Furthermore, the algorithms suggested in |Lembo et al.| (2010) cannot
be used for SHZ ABoxes because these algorithms exploit the property of DL-Lite that
unsatisfiability of an ABox w.r.t. a TBox is either caused by a single assertion or a pair
of assertions. In contrast to this, in SHZ an arbitrary number of assertions can cause
unsatisfiability w.r.t. a TBox.

Bienvenu and Rosati (2013b)) present a summary of the most common inconsistency
tolerant semantics. Since query answering under inconsistency tolerant semantics is com-
putationally expensive, methods to approximate some of these semantics are presented
as well. Recall that there can be more than one minimal repair for a knowledge base
K= (R,T,A). As given in Definition [4.2.3] Rep(K) denotes the set of all possible min-
imal repairs. Since |[Bienvenu and Rosati| (2013b]) only consider knowledge bases given in
DL-Lite there is no RBox in the following. Furthermore, the term query denotes a first-
order logic formula without free variables and as usual, a query is entailed by a knowledge
base iff it is true in all models of the knowledge base. We give the formal definition of
three different types of inconsistency tolerant semantics and provide explanations to each
of the semantics afterwards.

Definition 4.3.2 (Inconsistency Tolerant Semantics (Lembo et all 2010; |Bienvenu and
Rosati, 2013b)). Let K = (T,.A) be a knowledge base. A query q is entailed by K under

e consistent query answering (CQA) semantics, written as (T, A) =cqa q iff (T, B) =
q for every repair B € Rep(K),

e intersection ABox repair (IAR) semantics, written as (T, A) Erar ¢ iff (T, D) E q
where D = (Nge pep(ic) B

e brave semantics, written as (T,A) Evrave ¢ iff (T,B) = q for some repair B €
Rep(K).

Consistent Query Answering Semantics Each repair in Rep(K) keeps as much as pos-
sible from the original ABox. Hence assuming that one of these repairs corresponds to a
correct representation of the assertional knowledge seems to be reasonable. However, it
is unclear, which of the minimal repairs in Rep(K) is the most accurate. A careful way
of reasoning suggests that a query ¢ can only be considered to be a consequence of IC
if it is a consequence of (7, A") for all repairs A’ € Rep(K). This is the basic idea of
the most prominent example for semantics dealing with querying inconsistent knowledge
bases which was introduced by |Lembo et al.| (2010) and is called consistent query an-
swering semantics (CQA-semantics). The CQA-semantics allow to deduce queries which
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intuitively seem to be reasonable consequences of the knowledge base. However the draw-
back of these semantics is that even for description logics with very limited expressivity
these semantics are intractable w.r.t. data complexity (Bienvenu, 2012; Lembo et al.,
2010). The reason for this is the fact that in the worst case the number of repairs can
be exponential in the size of the ABox of the knowledge base.

Intersection ABox Repair Semantics To remedy the computationally intractability of
CQA semantics, the more conservative intersection ABox repair (IAR) semantics are
suggested. In the case of TAR semantics, a query only follows, if it follows from the
intersection of all possible minimal repairs. In some settings, query answering under AR
semantics has the same computational complexity of standard query answering. See
(Lembo, Lenzerini, Rosati, Ruzzi, and Savo, 2011) for details. In IAR semantics, only
those assertions not involved in any contradictions are used. This is rather restrictive
and can cause some inferences to be missed. Depending on the application, these missed
inferences could be of interest. This is why, Bienvenu and Rosati (2013b]) introduces
brave semantics.

Brave Semantics In brave semantics a query follows if there is a minimal repair from
which it follows. Obviously, under these semantics much more queries follow than under
CQA or TAR semantics. Brave semantics however have the drawback that it is possible
to deduce contradictory queries. Hence, it should rather be used to show that a certain
query does not hold. When considering these CQA, IAR and brave semantics, it is
obvious that it would be desirable to have a combination of CQa and IAR semantics.
This is addressed by approximations of CQA semantics which will be introduced next.

Approximations of Consistent Query Semantics [Bienvenu and Rosati| (2013b)) intro-
duce two additional families of inconsistency-tolerant semantics which try to combine
the advantages of the CQA and the TAR semantics. One of these families, the k-
support semantics, form an under-approximation and the other, k-defeater semantics,
an over-approximation of the CQA-semantics. Both approximations use the notion of
a T-support of a query. Given a knowledge base K = (T,.A), a subset S of Ais a T-
support of a query ¢ if S is consistent w.r.t 7 and (7,.5) = ¢. A T-support is a minimal
T-support if no proper subset of it is a 7 -support.

As mentioned before, a query ¢ is entailed under CQA semantics if ¢ is entailed by
every repair. This means that every repair contains at least one 7 -support for q. Another
way to put this is that there is a set {Si,...,S,} of T-supports for ¢, such that every
repair contains some S;. The idea of the k-support semantics is to restrict the number
of T-supports which are allowed to be used to the number k.

Definition 4.3.3 (k-Support Semantics (Bienvenu and Rosati, 2013b)). Let K = (T,.A)
be a knowledge base and k € N. A query q is entailed by K under k-support semantics,
written as (T, A) FEk—supp ¢ if there are subsets Si,..., Sy of A with:

e cach S; is a T -support for q in A and
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e for every R € Rep(K), there is some S; with S; C R.

Intuitively it is clear that: if ¢ is entailed under k-support semantics, ¢ is entailed
under k + 1-support semantics as well. By successively increasing k, it is possible to
approximate CQA semantics more and more closely. However the k-support semantics
can not be used to show, that a query is not entailed. This is why another approximation
is introduced in Bienvenu and Rosati (2013b)).

The idea of this second approximation is the following: If a query ¢ is not entailed
under CQA semantics, there is a repair B € Rep(K) with (T, B) [~ ¢q. This means, that
B contradicts all T-supports of q. The k-defeater semantics now work with the idea of
restricting the number of facts in B. A query is entailed under k-defeater semantics if
there is no way to construct a repair B containing at most k facts, which contradicts all
T-supports of q.

Definition 4.3.4 (k-defeater Semantics (Bienvenu and Rosati, 2013b))). Let K = (T,.A)
be a knowledge base and k € N. A query q is entailed by K under k-defeater semantics,
written as (T, A) FEk—der q iff there is no subset B of A which is consistent w.r.t. T with
|B| < k such that (T,BUC) = L for every minimal T -support C C A of q.

It is immediately clear that for every k > 1 if K = y1-def ¢ then K =g_ges g. So the
k-defeater semantics can be used to over-approximate CQA-semantics closer and closer.

We conclude the section on inconsistent tolerant semantics by introducing preferred
repair semantics.

Preferred Repair Semantics As mentioned before, there can be more than one repair
for an inconsistent knowledge base. In general it is not clear which one of these repairs is
the most desirable one or there even is no consensus what constitutes a desired repair. In
some cases however, additional information about the ABox assertions is available, which
can be used to determine if a repair is adequate or not. Bienvenu et al.|(2014) assumes
that such information is available in form of additional information on the reliability of
the different ABox assertions. This information is used to find so-called preferred repairs
which are used to define variants of consistent query semantics and IAR semantics.
The reliability of the ABox assertions can be seen as a preorder over subsets of ABox
assertions. With the help of this preorder, repairs which are minimal w.r.t. the reliability
are defined. These reliability information minimal repairs are then used as a basis for
variants of consistent query semantics and AR semantics.

The next formula based approach for ABox updates is based on so-called justifica-
tions. Those justifications are very similar to 7-supports used in Definition and
Definition 3.4

4.3.2.2 Approaches Based on Justifications

The basic idea of the approach for instance level deletion presented in this thesis can be
summarized as follows: Given a knowledge base K = (7, R, A) and an ABox assertion
A supposed to be deleted, the method determines a minimal subset of the ABox which
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has to be removed from the ABox in order to prevent A to be contained in the deductive
closure of the knowledge base. Another way to perform minimal instance level deletion
would be to first compute all subsets of the ABox which, together with the TBox and
the RBox, entail A. In the second step, a hitting set of all these subsets is constructed.
Each minimal hitting set corresponds to a minimal instance deletion of A. Our approach
does not perform the first step of this method. We construct the minimal hitting set
directly, avoiding to construct all subsets of the ABox entailing the delete request. The
task to find minimal subsets of the ABox which, together with the TBox and the RBox,
entail an assertion is closely related to the calculation of so-called justifications.

For a given consequence, identifying justifications is the task to find the minimal sub-
sets of the knowledge base under consideration, having this consequence. See (Baader
and Penalozay, [2010), (Kalyanpur, Parsia, Horridge, and Sirin, [2007)) and (Horridge, 2011])
for details. Given an ontology K and an entailment D in K, a justification is a minimal
subset of that ontology such that the entailment still holds in the subset. Note that a
justification does not only contain ABox assertions but TBox assertions as well. Fur-
thermore, D is an entailment, meaning that it has the form C' C E, with C', E concepts.
So finding a minimal deletion of an ABox assertion A(b) can be seen as the special case
to find justification for T T A(b). According to Baader, Penaloza, and Suntisrivaraporn
(2007), even for very inexpressive description logics, the number of justifications for an
entailment is exponential in the size of the ontology.

Halaschek-Wiener, Katz, and Parsia (2006) addresses revision of ABoxes in the de-
scription logic SHOZN by exploiting the notion of justifications. The description logic
SHOIN is obtained from the description logic SHZ by adding nominals and so-called
number restrictions. With the help of number restrictions it is possible to construct con-
cepts of the form > nR and < nR making it possible to formalize concepts like a father
with at least three children as Father™ > 3hasChild. Semantics is given by extending
the semantics of SHOZ with

(>nR)" ={ae AT ||{b] (a,b) € RT} > n},
(< nR)Z: {a € AT | {0 ] (a,b) € RI}] < n}.

Given a SHOZN ontology K and an ABox assertion D, a justification of D in K is a
subset of I, implying D. If no proper subset of a given justification for D is a justification
for D as well, the justification is called minimal justification. The basic idea of the
revision operator introduced by Halaschek-Wiener et al.| (2006]) is to first insert the new
information D into the knowledge base. In the next step, all justifications for L in
the resulting knowledge base are computed and then assertions are removed from each
justification. This approach ensures that the resulting knowledge base is consistent.
However D is not guaranteed to be contained in the resulting knowledge base. This is
why the operator corresponding to this approach is called a semi-revision.

Example 4.3.5. Consider the following TBox and ABox:

T={CnDC 1}
A= {D(a)}.
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Adding the assertion C(a) to the ABox leads to an inconsistent knowledge base. There are
two justifications for L in the resulting knowledge base. One justification is {C(a)} and
the other is {D(a)}. One possibility would be to remove the previously inserted C(a) form
the ABox. The resulting knowledge base is consistent but does not contain the inserted
information. Another possibility would be to remove D(a) from the ABogx resulting in the

new ABox A" = {C(a)}.

The approach of using justifications for revision is closely related to the idea of inser-
tions introduced in Section To insert some ABox assertion, first the assertion is
added to the ABox and afterwards all possible repairs of the resulting knowledge base
are constructed. However in the approach introduced in the thesis at hand, it is ensured
that the inserted assertion is contained in the resulting knowledge base. Next we consider
how to compute justifications.

Computing Justifications When considering approaches to construct justifications, it is
first distinguished between approaches constructing a single justification and approaches
constructing all justifications. In addition to that, according to Horridge (2011), ap-
proaches can be divided into black-box and glass-box algorithms.

Black-box algorithms systematically construct different subsets S of the ontology and
check if S = D. For the test of S |= D an arbitrary reasoner can be used. This is why
algorithms belonging to this category can be seen as black-box approaches. Algorithms
in this category usually work in two phases. An expansion phase which constructs a
subset of the ontology entailing D followed by a contraction phase in which this set
is minimized. In the expansion phase, starting from a small set of assertions S C K,
S |= D is checked. If S [~ D, the set S is expanded and checked again. This procedure
is repeated until a subset S is constructed, which entails D. This means that either S
or a subset of S is a justification for D in K. It is easy to see that it is crucial how S is
expanded. This is why there are numerous optimizations for this phase. Given a subset
S of the ontology, a selection function is be used to choose which axioms to add to S in
one step of the expansion phase. A very simple example could be a selection function
adding all axioms to S sharing symbols with S. Details on more sophisticated selection
functions are presented byHorridge| (2011]). Another way to optimize the expansion phase
is to use modularization of the ontology. The basic idea of this optimization is that the
justification does not have to be searched in the whole ontology but in a module of the
ontology. If the module is guaranteed to preserve the entailment of D, this optimization
can be very helpful since the module is much smaller than the whole ontology. See
for example (Baader and Suntisrivaraporn, 2008) and (Grau, Horrocks, Kazakov, and
Sattler, 2007). As mentioned before, at the end of the expansion phase, a subset S with
S = D is reached and either S or a subset of S is a justification for D in K. Therefore, in
the next phase, the so-called contraction phase, S is gradually contracted until a minimal
set is obtained, which is a justification of D in K. In a naive approach, one assertion is
removed from S in each step of the contraction phase. There are numerous optimizations
for this phase. See (Kalyanpur et al., [2007) for details.

Glass-box approaches for the construction of justifications are usually closely connected
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to reasoners. Therefore, it is not possible to use an arbitrary reasoner. In contrast to that,
it is necessary to adjust the reasoner for the creation of justifications. These algorithms
use a technique called tracing to generate justifications. The basic idea of tracing is to tag
reasoning structures during the reasoning process. For example in the completion-ABox
of a tableau, the different assertions are tagged by the input axioms used to generate
them. Therefore, these tags can be used to construct justifications. See (Schlobach and
Cornet,, [2003; Lee, Meyer, Pan, and Booth} 2006; Kalyanpur, 2006|) for some examples.

There are approaches for the construction of concise justifications. Horridge, Parsia,
and Sattler| (2008) introduces laconic and precise justifications. Roughly speaking, laconic
justifications are not allowed to contain superfluous parts. However these approaches
focus on the TBox of a knowledge base and therefore we do not present details here and
refer to (Horridge et al.l 2008)).

4.3.2.3 Maximal Consistent Subontologies

Haase and Stojanovic| (2005)) introduce an approach to formalize the semantics of change
of OWL ontologies. Three different notions of consistency are presented: structural con-
sistency, user-defined consistency and logical consistency. In the context of the thesis at
hand, only logical consistency is of interest and we refer the reader to (Haase and Sto-
janovic, 2005) for the other notions of consistency. The whole ontology is seen as a set
of axioms and it is not distinguished between TBox, RBox and ABox. This means, that
the approach presented can be used for both the evolution of an ABox and a TBox. In
order to re-establish logical consistency after changing the ontology, a maximal consistent
subontology is created. An algorithm for finding such a maximal consistent subontology
is presented. The basic idea of this algorithm is to iteratively remove axioms from the
inconsistent ontology and to test the resulting ontology for consistency. This proced-
ure is repeated until a consistent ontology is reached. A selection function provides the
axioms which have to be removed. Since, in the worst case all possible subsets of the
ontology have to be tested, it is crucial to use an adequate selection function. One selec-
tion function suggested by Haase and Stojanovic (2005)) works by selecting axioms based
on structural connectedness, where two axioms are called structurally connected if they
share a symbol. In each step, the algorithm constructs a set of candidate ontologies. At
the beginning, this set only contains the inconsistent ontology. Assuming that axiom D
was added, for each axiom FE sharing symbols with D, a new candidate ontology Op is
created by removing E. Afterwards all candidate ontologies are tested on consistency.
If one of the candidate ontologies is consistent, this candidate is a maximal consistent
subset of the original ontology. If the all candidate ontologies are inconsistent, new can-
didate ontologies are created. For each candidate ontology and each axiom structurally
connected with D or a previously removed axiom, a new candidate ontology is created
by removing the axiom from the candidate ontology. After each step, all candidate on-
tologies are tested on consistency. This procedure is repeated until a consistent ontology
is reached.
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4.3.3 Approaches for Dealing with Large ABoxes

The approach for ABox evolution, introduced in the Section is able to handle
large ABoxes. Very large ABoxes are challenging when answering queries as well. When
querying knowledge bases with large ABoxes, techniques like ABox summary and ABox
partitioning are suggested. |[Dolby, Fan, Fokoue, Kalyanpur, Kershenbaum, Ma, Mur-
dock, Srinivas, and Welty| (2007) introduce an approach to find inconsistencies in large
ABoxes. The authors focus on ABoxes with several thousand inconsistencies. As op-
posed to our approach, where we assume that large parts of the ABox are consistent and
the inconsistency is only caused by a very small fragment of the ABox. The technique
introduced by |Dolby et al.| (2007) can be used to determine a consistent subset of the
ABox. The basic idea is to determine minimal sets of assertions implying an inconsist-
ency. Those minimal sets are justifications for the inconsistency. As mentioned before,
there is a strong connection between justifications and minimal ABox repairs introduced
in Section [£.2.1] A minimal ABox repair is a maximal consistent subset of an ABox.
Since justifications of inconsistencies are minimal inconsistent sets, removing one asser-
tion from a justification removes the inconsistency caused by this justification from the
ABox. In general there can be more than one justification for an inconsistency in an
inconsistent ABox. Therefore, to regain consistency, one assertion has to be deleted from
each justification. The resulting ABox is called justification-based consistent subset of
the original ABox. Note that a justification-based consistent subset does not have to be
a maximal consistent subset of the ABox. If all justifications are disjoint, justification-
based consistent subsets are maximal consistent subsets. However if not all justifications
are disjoint, it is possible that more than one assertion is deleted from one of the jus-
tifications leading to non-maximal justification-based consistent subsets. If exactly one
assertion is deleted from each justification, the resulting ABox corresponds to a minimal
ABox repair. In order to ensure scalability, [Dolby et al.| (2007) first summarizes the
ABox. Intuitively an ABox A’ is a summarization of an ABox A if individuals belonging
to the same concepts in A are integrated into one individual. In general, summarization
leads to a much smaller ABox. If such a summarization A’ is consistent w.r.t a TBox
T and an RBox R, the original ABox A is consistent w.r.t. 7 and R as well (Fokoue,
Kershenbaum, Ma, Schonberg, and Srinivas, 2006|). However the converse does not hold.
In case of a summarized ABox A" which is inconsistent w.r.t 7 and R it is unclear, if the
original ABox is inconsistent w.r.t. 7 and R or if the inconsistency was created during the
summary. Therefore, after finding an inconsistency, a justification for this inconsistency
is computed. This justification is then scrutinized in order to find out if the inconsist-
ency was caused by the summary. If the inconsistency is a real inconsistency which was
already present in the ABox, one assertion is deleted from the justification. In case of
an inconsistency caused by the summary process, the respective justification is refined.
Refining a justification involves splitting an individual contained in the justification into
the respective individuals from the original ABox. After the refinement, consistency is
checked again. This refinement step of the summarized ABox followed by consistency
checking of the summarized ABox and removal of assertions from a justification of a real
inconsistency is repeated until it leads to a consistent ABox. Then the resulting ABox
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can be expanded which means to split all individuals which were aggregated during the
summary. After this calculation, the resulting ABox is a consistent subset of the original
ABox. However it is not guaranteed, that it is a maximal consistent subset. In contrast
to this approach, our ABox repair mechanism always creates a maximal consistent subset
of the original ABox.

When removing inconsistencies from an ABox, the technique of ABox summary is
very helpful. However for ABox deletion, as discussed in this thesis, it is important to
keep the names of all individuals. When asking to minimally delete an ABox assertion
from a summarized ABox, the minimal deletion would contain information on aggregated
individuals.

Example 4.3.6. Consider the following TBox which is given in form of a DL-clause:
T ={D(z) = C(x)}
together with the following ABox:
A={C(b),C(c), Cle), D(b), D(c), D(e)}

Since the individuals b, ¢ and e belong to the same concept, they can be summarized into
one new individual ai. Leading to the following summarized ABox:

A" ={C(a1),D(a1)}.

If C(e) is supposed to be deleted from the ABox, the aggregated individual a; has to be
considered. Deleting D(aq) leads to deleting {C(a1), D(a1)}. However aj is an aggregated
individual. Therefore it is unclear which assertions have to be deleted. It would be too
much to expand all individuals in {C(a1),D(a1)} since that would lead to deleting

{C(e), C(b), C(c), D(e), D(b), D(c)}

which corresponds to deleting the whole ABox. However it would be sufficient to only
delete {C(e),D(e)}. Further tests would be necessary to determine which instances of
the aggregated individuals are concerned by the deletion.

Even if summarization is very helpful when querying knowledge bases with large
ABoxes, as Example illustrates, summarization complicates the computation of
ABox updates. Therefore, summarization is not applied in the approch for ABox evolu-
tion presented in the thesis at hand.

4.4 Future Work

One area interesting for future work deals the optimization of the computation of ABox
evolution. As mentioned before, we are using a hyper tableau based theorem prover for
the computation of Neg(.A)-minimal models. A hyper tableau based prover naturally are
especially efficient when confronted with horn clauses. However, it is an undeniably fact,
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that such a prover is less efficient when confronted with non-horn clauses, since every
non-horn clause may cause the prover to branch. Hence, it is desirable to use horn clauses
whenever it is possible. Regarding the approach for the computation of ABox evolution
introduced in Section this could be accomplished by influencing the result of the
K*-transformation such that the result is as close to Horn as possible. This can be done
by changing the set S given in Definition according to which the renaming is done.
S has to contain at least all concept and role symbols occurring in the ABox. However it
is possible to add more concept and role symbols to the set S. Since the set S strongly
influences the result of clauses created by of Definition it can be helpful to
consider different alternatives for the set S and choose the alternative creating a clause
set which is close to Horn clauses.

Another area interesting for future work is the extension of the introduced approach to
more expressive description logics. One example would be the extension with qualified
number restrictions, leading to the description logic SHZQ. When transforming axioms
containing qualified number restrictions into DL-clauses, it is possible that equations are
created (Motik et al.l 2009)). For example the assertion

CC<1R.D
leads to the DL-clause
C(z)NR(z,y) NR(z,2) ND(y) ND(2) =y ==

stating that whenever something belonging to the concept C' has two R successor be-
longing to the concept D, then these two R successors are equal. Furthermore, equations
are allowed to occur in the ABox as well stating that two individuals are equal. When
extending the K*-transformation to deal with DL-clauses created from qualified number
restrictions, it is necessary to handle these equations properly. We believe that this can be
done without much changes, but detailed investigations have not been done yet. Further-
more, we do not expect symmetric roles to cause much changes in the K*-transformation.
The fact that a role is symmetric is stated as the following DL-clauses as

R(z,y) — R(y, x).

We expect that this DL-clause can be treated as any other DL-clause during the K*-
transformation. However detailed investigations are still pending.

The extension of the introduced approach to compute changes of the instance level of
first-order logic knowledge bases constitutes another interesting direction for future work.
Even though the DL-clauses considered in this chapter are very similar to first-order
logic clauses, there are some important differences between DL-clauses and first-order
logic clauses. One of these differences is the fact that first-order logic clauses are allowed
to contain function symbols. Further research is necessary to find out how to handle
occurrences of functions within the K*-transformation.
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5 Conclusion

In Section [1] we introduced the vision of the artificial intelligence community, to create
machines able to reason on dynamically changing knowledge. To achieve this vision,
many obstacles have to be overcome. Of course it is not possible to address all of these
problems in this thesis. This is why we focused on two of these obstacles namely

1. the fact that reasoning in logical knowledge bases is intractable and

2. the fact that applying changes to a knowledge base can easily introduce inconsist-
encies, which cause problems during reasoning.

In this thesis, we focused on knowledge bases given in description logic. For the first
challenge we suggested in Chapter [3] the use of knowledge compilation. This technique
is well-known in propositional logic and there exist numerous target languages for the
precompilation step. In this thesis, one of these target languages, the linkless normal
form, is adapted to concepts and TBoxes in the description logic ALC. To accomplish
this, several additional normal forms like the V-normal form, the 3-normal form as well
as some variants of the 3-normal form are developed and serve as a basis for the linkless
normal form for ALC. Propositional logic formulae in linkless normal form feature some
nice properties such as a constant time satisfiability check, a polynomial time test of
clausal entailment and a polynomial time projection on a set of propositional logic vari-
ables. The linkless normal form for ALC concepts, was developed such that it exhibits
similar properties as its propositional logic counterpart. A linkless concepts C allows

e a constant time satisfiability check,

e a polynomial time check of subsumptions C' C D if D is a g-concept as given in
Definition [3.2.30] and

e a polynomial time computation of the uniform interpolant of C' with respect to a
set of concept symbols.

All these properties are presented in Chapter [3| together with proofs. Furthermore, we
showed how to use well-known techniques to construct an approximation of a TBox and
how this approximation can be transformed into linkless normal form. The accuracy of
the TBox approximation, determines the set of gq-concepts for which subsumption checks
can be computed efficiently using the linkless version of the TBox approximation. In
addition to that, we illustrated how to compute the uniform interpolant of a linkless
version of a TBox approximation w.r.t. a set of concept symbols.

The second challenge researched in this thesis is the task of applying changes to the
instance level of knowledge bases given in the description logic SHZ. In Chapter [4] three
different kinds of changes were considered:
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e deletion of assertions,
e insertion of assertions and
e repair.

When deleting an assertion from an ABox it is important to ensure that the assertion is
not contained in the deductive closure of the resulting knowledge base. When performing
an insertion, special care has to be taken that the resulting knowledge base is consistent.
In all three cases, the changes performed to the ABox are supposed to be minimal. In
order to meet these requirements, three different operations on the instance level of SHZ
knowledge bases were introduced. Then the K*-transformation was developed by adapt-
ing an approach called renaming for view deletion in deductive databases (Aravindan
and Baumgartner, |2000) to description logic knowledge bases. Based on the result of
the KC*-transformation, the different afore-mentioned operations can be computed. To
delete an assertion it is necessary to determine Neg(.4)-minimal models of the result of
the K*-transformation together with the renamed version of the assertion which has to
be deleted. We presented proofs that this Neg(A)-minimal model actually constitutes
a minimal deletion as defined afore. Furthermore, we provide proofs that the result of
the K*-transformation can also be used for insertion of assertions and repairing an ABox
which is inconsistent w.r.t. its TBox. The K*-transformation is developed such that it
is guided by the ABox of the knowledge base. Since the ABox is likely to be close to
a model of the TBox, this can be seen as a semantical guidance. This property of the
KC*-transformation ensures that for the computation of a change method only the devi-
ation from the ABox is computed. This is especially beneficial when very large ABoxes
are considered and it is assumed that only a small part of the ABox is affected by the
changes.

The K*-transformation was implemented together with methods for deletion of asser-
tions, insertion of assertions and r Chapter [4 presents promising experimental results.

For both challenges we decided to adapt successful techniques used in other logics
to description logic knowledge bases. We believe that the transfer of ideas is a fruitful
approach since it allows that the different areas of logic can benefit from another. This
approach avoids to reinvent the wheel again and again.
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