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Abstract

Confidentiality, integrity, and availability are often listed as the three major requirements
for achieving data security and are collectively referred to as the C-I-A triad. Confiden-
tiality of data restricts the data access to authorized parties only, integrity means that
the data can only be modified by authorized parties, and availability states that the data
must always be accessible when requested. Although these requirements are relevant for
any computer system, they are especially important in open and distributed networks.
Such networks are able to store large amounts of data without having a single entity in
control of ensuring the data’s security. The Semantic Web applies to these characteristics
as well as it aims at creating a global and decentralized network of machine-readable
data. Ensuring the confidentiality, integrity, and availability of this data is therefore
also important and must be achieved by corresponding security mechanisms. However,
the current reference architecture of the Semantic Web does not define any particular
security mechanism yet which implements these requirements. Instead, it only contains
a rather abstract representation of security.

This thesis fills this gap by introducing three different security mechanisms for each of
the identified security requirements confidentiality, integrity, and availability of Semantic
Web data. The mechanisms are not restricted to the very basics of implementing each
of the requirements and provide additional features as well. Confidentiality is usually
achieved with data encryption. This thesis not only provides an approach for encrypting
Semantic Web data, it also allows to search in the resulting ciphertext data without
decrypting it first. Integrity of data is typically implemented with digital signatures.
Instead of defining a single signature algorithm, this thesis defines a formal framework
for signing arbitrary Semantic Web graphs which can be configured with various algo-
rithms to achieve different features. Availability is generally supported by redundant
data storage. This thesis expands the classical definition of availability to compliant
availability which means that data must only be available as long as the access request
complies with a set of predefined policies. This requirement is implemented with a mod-
ular and extensible policy language for regulating information flow control. This thesis
presents each of these three security mechanisms in detail, evaluates them against a set
of requirements, and compares them with the state of the art and related work.
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Zusammenfassung

Als wichtigste Anforderungen an Datensicherheit werden oft Vertraulichkeit, Integrität
und Verfügbarkeit genannt. Vertraulichkeit von Daten bedeutet, dass nur berechtigte
Parteien auf sie zugreifen können. Datenintegrität erfordert, dass nur berechtigte Par-
teien die Daten ändern dürfen. Verfügbarkeit von Daten bedeutet, dass auf die Daten
jederzeit bei Bedarf zugegriffen werden kann. Obgleich die Umsetzung dieser Sicherheits-
anforderungen für jedes Computersystem relevant ist, gilt dies insbesondere bei offenen
und verteilten Netzen. Solche Netze speichern große Mengen an Daten ohne eine zentrale
Instanz, die den sicheren Zugriff und die sichere Verarbeitung der Daten steuert. Das
Semantic Web teilt diese grundlegende Eigenschaft, da es das Erstellen eines globalen
und dezentralen Netzes von maschinenlesbaren Daten anstrebt. Auch für solche Daten
muss daher durch entsprechende Sicherheitsmaßnahmen die Vertraulichkeit, Integrität
und Verfügbarkeit garantiert werden können. Obgleich die aktuelle Referenzarchitektur
des Semantic Webs durchaus das Umsetzen von Sicherheitsmaßnahmen vorsieht, defi-
niert sie selbst noch keine konkreten Maßnahmen. Stattdessen enthält sie lediglich einen
abstrakten Baustein, dem solche Maßnahmen zugeordnet werden können.

Diese Arbeit stellt drei konkrete Sicherheitsmaßnahmen vor, welche sich in die Re-
ferenzarchitektur des Semantic Webs einbetten lassen und die Anforderungen an die
Vertraulichkeit, Integrität und Verfügbarkeit der Semantic-Web-Daten umsetzen. Die
einzelnen Maßnahmen setzen die Anforderungen dabei nicht minimalistisch um, son-
dern bieten zugleich noch weiterführende Funktionen. Vertraulichkeit von Daten wird
üblicherweise durch Datenverschlüsselung umgesetzt. Diese Arbeit stellt einen Ansatz
zum Verschlüsseln von Semantic-Web-Daten vor, der zugleich auch ein Suchen auf den
verschlüsselten Daten ohne vorhergehende Entschlüsselung erlaubt. Datenintegrität wird
meist durch digitale Signaturen sichergestellt. Diese Arbeit definiert ein formales Rah-
menwerk zum Signieren beliebiger Semantic-Web-Daten, welches mit verschiedenen Al-
gorithmen flexibel konfiguriert werden kann. Verfügbarkeit wird oft durch eine red-
undante Datenhaltung garantiert. In dieser Arbeit wird eine Erweiterung der klassi-
schen Definition von Verfügbarkeit verwendet, die als konforme Verfügbarkeit bezeichnet
wird. Konforme Verfügbarkeit bedeutet, dass Daten nur dann bei einem Zugriffsversuch
verfügbar sein müssen, wenn der Zugriff konform ist zu einem vordefinierten Regelsatz.
Diese Sicherheitsanforderung wird umgesetzt durch eine modulare und erweiterbare for-
male Sprache zum Beschreiben von Regelsätzen zur Steuerung von Informationsflüssen.
Jede der drei Sicherheitsmaßnahmen wird in dieser Arbeit im Detail beschrieben, anhand
definierter Anforderungen evaluiert und mit verwandten Arbeiten verglichen.
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Katharina Bräunlich, Nico Jahn, Helge Hundacker, Brigitte Jung, Marco Krause,
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Chapter 1.

Secure Data Management
in the Semantic Web

The Data Management Association (DAMA) defines data management as the “devel-
opment, execution, and supervision of plans, policies, programs, projects, processes,
practices and procedures that control, protect, deliver, and enhance the value of data
and information assets” [207]. According to this definition, data management comprises
all steps of processing data including its initial creation, storage, and usage. In order to
implement these steps, DAMA defines a data management framework [207] consisting of
ten basic components, each of which covers a different aspect of managing data. One of
these components is data security management which aims at implementing the security
requirements confidentiality and integrity of data as well as protection against unau-
thorized data access [208]. Confidentiality of data means that only authorized parties
are aware of the data’s existence and are able to see its contents [37]. Integrity of data
means that any unauthorized modification of the data must be prohibited [37]. Protec-
tion against unauthorized data access prevents a party from accessing the data in such
a way the party is not allowed to. Although general definitions of computer security [37]
also focus on confidentiality and integrity, they do not include protection against un-
wanted data access as one of the main security requirements. Instead, this requirement
is often replaced by availability of data. Availability means that data must always be
accessible to any requesting party [28]. The three security requirements confidentiality,
integrity, and availability of data are often collectively referred to as the C-I-A triad [28].

Although DAMA is mainly concerned with data management in closed environments
such as organizations [207], its basic principles of data management can also be trans-
ferred to open and distributed networks [288] such as the Internet. The Semantic Web
relies on these characteristics of the Internet as its own design is inherently open and
decentralized as well. The aim of the Semantic Web is to create a global network of
machine-readable data [35] by interlinking various distributed data sources [39]. Each
data source provides a different type of data, including both publicly available data such
as media [187, 240], life science [30], and e-government [134] as well as sensitive private
data like medical records [256, 106] and information about business processes [143]. As
the application areas and the size of the Semantic Web are still increasing, securing and
protecting the data stored in the Semantic Web is also gaining more importance [185].
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Since the Semantic Web is essentially a large collection of data, DAMA’s security re-
quirements for data management can be applied to it as well.

The architecture of the Semantic Web is often depicted as the Semantic Web layer
cake [31, 32, 33, 47] as shown in Figure 1.1. Although not officially published, the layer
cake serves as the current reference architecture when implementing Semantic Web ap-
plications [128]. It divides existing Semantic Web technologies into disjoint layers and
depicts their interdependencies. The bottom layers describe the basic encoding of Se-
mantic Web data which is usually represented by using RDF graphs [275] as data format.
This data format is accompanied by data models, enriched by additional logic, and inte-
grated into an application domain which is covered in the top layer. The layer cake also
contains a crypto layer which comprises different cryptographic operations such as digital
signatures or data encryption. Although cryptographic operations can be used to imple-
ment particular security requirements such as confidentiality and integrity of data, not
all security mechanisms are based on cryptographic operations. For example, solutions
for access control which protect Semantic Web data against unauthorized access have
already been proposed [239, 247, 2, 164]. As access control does not necessarily require
cryptographic operations, these solutions cannot be mapped to the Semantic Web layer
cake depicted in Figure 1.1. Even alternative versions of the layer cake [141, 153, 127]
do not provide additional security layers. As the crypto layer does not suggest any par-
ticular security mechanisms for protecting Semantic Web data, the current architectural
representation of the Semantic Web can be considered as incomplete regarding security.

User Interface & Applications

Trust

Proof

C
ry

pt
o

Unifying Logic

Ontology: OWL

RDF-S

XML

URI/IRI

Rule:
RIF

Query:
SPARQL

Data Interchange:
RDF

Figure 1.1.: The Semantic Web layer cake [47].

This thesis provides three different security mechanisms to facilitate a secure data
management for the Semantic Web. Each mechanism implements one of the three secu-
rity requirements of the C-I-A triad which are confidentiality, integrity, and availability
of Semantic Web data. These security mechanisms can be integrated into the Seman-
tic Web architecture depicted in Figure 1.1 by replacing the crypto layer with a more
generic security layer. Such a security layer does not necessarily imply any crypto-
graphic operations and is able to comprise all types of security mechanisms independent
from their particular design and implementation. The rest of this chapter defines the
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research questions of this thesis, identifies its main contributions, and describes the used
methodology.

1.1. Research Questions

This section defines the research questions which are answered in this thesis. These
research questions derive from the motivation outlined in the previous section and from
the three security requirements of the C-I-A triad. Each of the security requirements
confidentiality, integrity, and availability is mapped to one research question. As in-
tegrity of Semantic Web graph data is closely related to the data’s authenticity [37], this
security requirement is mapped to a fourth research question. Integrity requires that
only authorized parties are able to modify the graph data and authenticity means that
the data is retrieved from a verified source [28]. If the source of the data is not verified,
it cannot be guaranteed that the graph data is only modified by authorized parties. In
the following, the four research questions are explained in more detail.

RQ.1: How can confidentiality of Semantic Web data be ensured in open and dis-
tributed networks so that only authorized parties are able to access parts of
the data?
Implementing confidentiality of a Semantic Web graph requires that the contents
of the graph are hidden from any unauthorized party. Even authorized parties are
not necessarily able to access all contents of the graph. Instead, their access may
be restricted to particular triples of the graph.

RQ.2: How can integrity of Semantic Web data be achieved in open and distributed
networks so that any unauthorized modification of the data is detected?
Integrity of a Semantic Web graph requires that only authorized parties are able
to alter the graph’s contents. Any unauthorized modification destroys the graph’s
integrity and must therefore be detected. Please note that parties who are allowed
to view the contents of a graph may still be prohibited from altering it.

RQ.3: How can authenticity of Semantic Web data be ensured in open and dis-
tributed networks so that the data can be related to a verified source?
Authenticity of a Semantic Web graph requires that the identity of the source
which the graph is retrieved from can be verified. In providing a Semantic Web
graph, the party acting as the data source approves of the graph’s contents.

RQ.4: How can Semantic Web data be made available in open and distributed net-
works to such parties whose access requests are compliant with predefined and
transparently communicated policies?
Availability of data usually requires that the data is always accessible for autho-
rized parties [28]. This thesis enhances this classical definition of availability to
compliant availability which states that graph data must only be accessible to au-
thorized parties as long as the parties’ access complies with a set of predefined
conditions. Compliant availability corresponds to DAMA’s security requirement
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for protection of data against unauthorized access [208]. If the conditions are not
met, the graph data must not be available to the requesting party. In contrast to
research question RQ.1, this research question aims at regulating the availability
of complete graphs and not of individual triples.

1.2. Contributions

The main contributions of this thesis are three different security mechanisms which an-
swer the four research questions from the previous section. The security mechanisms
implement the security requirements confidentiality, integrity, authenticity, and compli-
ant availability of Semantic Web graph data. They can be integrated into the Semantic
Web layer cake as shown in Figure 1.1 by replacing the crypto layer with a more generic
security layer. In the following, the three contributions are described in more detail.

Confidentiality is implemented by T-Store, an approach for searching in encrypted
Semantic Web graphs. Data encryption is a common security mechanism to achieve
the data’s confidentiality [96]. Encrypting plaintext data results in ciphertext data
which can only be decrypted by authorized parties with access to the correct decryption
keys. Searching in encrypted data extends this basic encryption scheme by supporting
queries on the ciphertext. T-Store encrypts a plaintext graph in such a way that the
resulting ciphertext graph can be directly used for processing queries without decrypting
it first. A query corresponds to a decryption key which only decrypts those parts of
the ciphertext graph that fulfill the query. T-Store supports arbitrary queries on the
ciphertext graph and is not restricted to a set of queries which are defined at encryption
time. It distinguishes between a data owner who encrypts the plaintext graph and users
who are authorized by the data owner to perform queries on the ciphertext graph. As
unauthorized parties are not able to access any part of the plaintext graph, T-Store
answers research question RQ.1. A preliminary version of T-Store was first published
in [171].

Integrity and authenticity are implemented by Siggi, a formal framework for signing
Semantic Web graph data. Digital signatures are a security mechanism for achieving
both integrity [267] and authenticity of the signed data [215]. Siggi formally defines a
generic signature pipeline for signing arbitrary graph data. The pipeline is independent
from any particular algorithm and can be configured with various algorithms to provide
different features such as minimum signature overhead or minimum runtime. It divides
the signing process into separate functions, each of which implements a specific step of
the process. These functions include a canonicalization function, a serialization function,
a hash function, and a signature function. Siggi specifies the input and output of each
function. The functions are designed in such a way that the resulting signature is
independent from the encoding of the signed graph. The signature only covers the graph’s
semantics and not its syntactical representation. An additional assembly function is
applied at the end of the signing process. It stores all information about how a signature
was created and how it can be verified by another party. A signature associates a
signed graph with the signing party. Modifying the semantics of a graph after it was
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signed invalidates the signature and also destroys the graph’s integrity. Furthermore, the
modification affects the graph’s authenticity as well as the signing party only signed the
original graph and has not approved of its modified version. Thus, Siggi answers research
question RQ.2 and RQ.3. Preliminary versions of Siggi were published in [168, 169, 173].

Finally, compliant availability is implemented by InFO, a policy language for regulat-
ing information flow in open and distributed networks. Although availability is usually
implemented by providing redundant data storage systems [28], compliant availability
requires a different implementation. Compliant availability of data requires the data to
be accessible to any requesting party as long as the access complies with a predefined
policy. InFO is specifically designed to regulate communication flow in open networks
such as the Internet. A policy is a set of rules which share the same purpose and allow
or deny a particular communication. A communication is described by a sender and
receiver, the exchanged data, and the used communication channel. Policies define the
conditions under which a party can access data stored at a server. Each policy contains
all details for technically enforcing a regulation and can be implemented on various com-
munication systems such as application-level proxy servers, name servers, and routers.
InFO’s modular and extensible design also allows to support additional enforcing sys-
tems as well. A policy is further enriched by a legal justification and an organizational
motivation. As this background information can be transparently communicated to all
involved parties, InFO fulfills research question RQ.4. A preliminary version of InFO
was first published in [172].

1.3. Methodology

Design science research is a paradigm for developing computer-related artifacts in infor-
mation systems research and computer science [299, 231, 22]. Possible artifacts include
abstract models, algorithms and processes, and software implementations [145]. T-Store,
Siggi, and InFO comply with this definition and can therefore be considered as artifacts
as well. The development process of all three artifacts is based on the design science
research paradigm. Several different suggestions have been made to define the particular
steps involved in design science research [194, 299, 145, 231]. Although all suggestions
define the creation of an artifact and its evaluation as the two most important steps,
additional steps have also been proposed. The particular steps for developing T-Store,
Siggi, and InFO are based on Vaishnavi and Kuechler [299], Hevner et al. [145], and
Peffers et al. [231]. These steps are depicted in Figure 1.2 and are further explained
in the following. The overall process of developing an artifact is iterative and uses the
results of one iteration to further improve the artifact in the next iteration.

Step 1: Problem identification and motivation
Design science research focuses on developing computer-related artifacts which
solve a particular problem. The first step is therefore the identification of this
problem [299, 145, 231]. It describes why this problem is important and motivates
the development of possible solutions.
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Problem identification and motivation

Definition of objectives

Implementation

Demonstration

Evaluation

Communication

Step 1

Step 2

Step 4

Step 5

Step 6

Step 7

Process Iteration

ConceptStep 3

Figure 1.2.: The individual steps of the design science research paradigm [299, 145,
231]. As indicated, the steps can be conducted in multiple iterations.

Step 2: Definition of objectives
In the second step, the functional and non-functional requirements for the artifact
are defined [231]. Functional requirements cover the general functions that an
artifact must provide and non-functional requirements define general properties
and constraints of the artifact [282]. Requirements usually derive from the problem
description of the first step.

Step 3: Concept
The third step is the development of the artifact’s concept [299]. Depending on
the type of artifact to be developed, this concept may already be the final artifact
or only a conceptual model of it. As the concept is the core part of an artifact,
this step is the most important one in the process of design science research.

Step 4: Implementation
In the fourth step, a prototype of the artifact is implemented based on the concept
which is developed in the third step [299]. The particular implementation of the
prototype depends on the type of artifact being developed. For example, algorithms
can be implemented in software or hardware.

Step 5: Demonstration
The fifth step demonstrates that the artifact can solve a particular instance of
the problem identified in the first step [231]. Possible demonstrations include
simulations with artificial data and detailed scenarios which show the artifact’s
utility [145]. The fifth step is a particular type of evaluation which is further
conducted in the sixth step.

Step 6: Evaluation
The sixth step is closely related to the fifth step and also evaluates the arti-
fact [299, 145, 231]. However, the sixth step focuses on assessing how well the
artifact solves the identified problem [231]. The form of the evaluation depends on
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the developed artifact and includes security analyses, performance measurements,
or a comparison with the requirements identified in the second step [145].

Step 7: Communication
In the last step, the artifact and its importance is communicated to other re-
searchers and professionals [145, 231]. This allows to receive feedback on the
artifact in order to further improve it. Possible forms of communication include
scientific publications and conference presentations.

Steps two, three, and four cover individual aspects of the artifact’s creation whereas the
last three steps evaluate the artifact and assess its quality. These steps provide feedback
on the artifact’s design and can be used in further iterations of the process as depicted
in Figure 1.2. As design science research is only an abstract paradigm, conducting
each of the seven steps requires a corresponding methodology [22]. Selecting a suitable
methodology for a particular step depends on the type of artifact being development.
Table 1.1 summarizes how the individual steps are applied to the three artifacts InFO,
Siggi, and T-Store. Each of these artifacts is presented in a separate chapter. InFO
is described in Chapter 3, Siggi is covered in Chapter 4, and T-Store is described in
Chapter 5. As depicted in Table 1.1, all three chapters are subdivided into different
sections which correspond to the individual steps of the design science research paradigm
shown in Figure 1.2. In the following, this mapping is further described in more detail.

Table 1.1.: Methodological overview of this thesis. Each of the artifacts InFO, Siggi,
and T-Store is developed along the individual steps of the design science
research paradigm. The table shows how the steps are mapped to the
development process of each artifact.

Description InFO Siggi T-Store

Step 1
Scientific background Chapter 1 Chapter 1 Chapter 1

Practical scenarios Chapter 2 Chapter 2 Chapter 2

Step 2
Related work Section 3.1 Section 4.1 Section 5.1

Identified requirements Section 3.2 Section 4.2 Section 5.2

Step 3 Concept Section 3.3 Section 4.3 Sections 5.3 to 5.5

Step 4 Prototypical implementation Section 3.5 Section 4.6 Section 5.6

Step 5
Scenario implementation Section 3.4 Section 4.7 Section 5.8

General applicability – Sections 4.4 to 4.6 –

Step 6

Fulfillment of requirements Section 3.6 Section 4.8 Section 5.9

Performance analysis – – Section 5.6

Cryptanalysis – – Section 5.7

Limitations Section 3.7 Section 4.9 Section 5.10

The motivation of all three artifacts is divided into a scientific background and two
practical scenarios which collectively implement Step 1 of the design science research
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paradigm. The scientific background is based on the four security requirements confiden-
tiality, integrity, authenticity, and compliant availability as described at the beginning of
this chapter. These requirements derive from the literature on computer security [37, 28].
Their application to the Semantic Web is motivated by analyzing its architecture which
is represented by the Semantic Web layer cake depicted in Figure 1.1. Although the
layer cake contains a section which summarizes different security mechanisms, it does
not define any particular mechanism yet. The practical scenarios are introduced in Chap-
ter 2 and provide two comprehensive example use cases for applying the three artifacts
T-Store, Siggi, and InFO to Semantic Web data. The scenarios necessitate the implemen-
tation of the security requirements confidentiality, integrity, authenticity, and compliant
availability. The first scenario covers the regulation of information flow on the Internet
and derives from analyzing the current practice of such regulations [321, 89]. The second
scenario discusses the secure management of medical data in electronic healthcare. It
results from analyzing the literature on electronic healthcare [224, 136] as well as its
legal requirements [297, 90].

Step 2 is implemented by first identifying the general application domain of each
artifact and then extracting its functional and non-functional requirements from the
identified domain. In particular, the domain is comprised of the two scenarios defined
in Chapter 2 and the related work of each artifact. The related work is summarized
in separate sections of the three chapters 3, 4, and 5. Each summarized approach is
analyzed regarding its individual features and design characteristics. The result of this
analysis is used together with the general requirements of the two scenarios to define the
specific requirements for each artifact which are listed in Sections 3.2, 4.2, and 5.2.

The conceptual design resulting from Step 3 is created differently for each artifact.
InFO is designed as a set of ontology design patterns [237, 121], which are described
in Section 3.3. The patterns extend the foundational ontology DOLCE+DnS Ultralite
(DUL) [119] which defines several ontological concepts and axioms for various applica-
tion domains [266]. By reusing and further specifying these concepts and axioms, the
vocabulary of InFO can be related to the basic categories of human cognition [222] which
results in a better linguistic foundation. Siggi provides a mathematical formalization of
a generic signing framework that is presented in Section 4.3. The formalization defines
a signature pipeline consisting of several steps, which are implemented using different
algorithms. The pipeline is based on the XML signature syntax and processing stan-
dard [20] for signing and verifying XML documents. The framework is designed in such
a way that it is compatible with already existing algorithms that can be used in the
individual steps of the signature pipeline. T-Store is basically a collection of mathemat-
ical algorithms and data structures. Its concept is described in three different sections.
Section 5.3 summarizes the overall process of T-Store by outlining its general design and
terminology, Section 5.4 provides a mathematical formalization of the terminology, and
Section 5.5 applies the formalization to describe all steps of T-Store in more detail.

InFO, Siggi, and T-Store are essentially formal models and not particular software
implementations. As such, the implementation of these artifacts conducted in Step 4 is
not an integral part of this thesis and is mainly used for demonstrating their practical
applicability and for supporting further evaluations. InFO is implemented on three
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prototypical systems which enforce particular regulation policies and are presented in
Section 3.5. The feedback drawn from each implementation was used for improving
the design of InFO’s ontological model. Siggi is implemented by mapping its formal
specification to source code. The implementation is described as part of Section 4.6
which discusses the performance of four example configurations of the framework. T-
Store is implemented similarly to Siggi by transforming its mathematical model into
a software application. The implementation is also used for evaluating the artifact’s
performance and is described as part of Section 5.6.

Step 5 demonstrates the applicability of an artifact and is a particular type of evalu-
ation. The applicability and utility of all three artifacts are demonstrated by using them
to implement the two scenarios of Chapter 2. InFO is used for creating example regula-
tions which are enforced by the prototypical implementations described in Section 3.5.
The policies and their enforcement show that InFO can in fact be used for regulating in-
formation flow in open and distributed networks. Section 4.7 shows how Siggi is applied
to sign the example regulations and thereby demonstrates the general signing process
of Semantic Web graphs. In addition, Section 4.4 shows four different example configu-
rations of a particular signature pipeline. These configurations demonstrate that Siggi
in fact supports different algorithms. The configurations are further analyzed with re-
spect to their cryptographic security in Section 4.5 and their performance in Section 4.6.
The applicability of T-Store is demonstrated by outlining two possible applications for
searching in encrypted data in Section 5.8. Both applications derive from the example
scenarios of Chapter 2 and extend the basic concept of T-Store with additional features.

The evaluation of an artifact as required in Step 6 depends on the type of the artifact
and on the particular criteria to be assessed [145, 238]. All three artifacts are compared
with their related work and analyzed regarding the fulfillment of their functional and
non-functional requirements defined in Step 2. This analysis is conducted manually in
Sections 3.6, 4.8, and 5.9 by considering the artifacts’ individual characteristics. In addi-
tion, all artifacts are evaluated against their conceptual limitations in Sections 3.7, 4.9,
and 5.10. T-Store provides a particular algorithm for searching in encrypted data which
is further evaluated with regard to its performance and cryptographic security in Sec-
tions 5.6 and 5.7. The performance evaluation is based on an evaluation framework [40]
which provides artificial graph data. It is conducted in several experiments in which
different artificial graphs are encrypted and queried. In each experiment, the runtime
and memory usage are measured. The cryptanalysis is based on different attacks which
derive from the related work and state of the art. It is conducted by carefully analyzing
the mathematical design of T-Store. As neither InFO nor Siggi provide a particular
algorithm, they cannot be evaluated the same way. Although four example configura-
tions of Siggi are analyzed regarding their cryptographic security and performance, these
analyses do not apply to the whole framework. Instead, they only cover the particular
configurations and are part of Step 5.

In order to receive feedback from other researchers on all three artifacts as required in
Step 7, each artifact was published at scientific workshops and conferences as well as in
journals. InFO was published in [172], Siggi was published in [168, 169, 170, 173], and T-
Store was first published in [171]. All publications were peer-reviewed and the feedback
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from the reviewers was used for further improvement together with the discussions at the
workshops and conferences. In addition, InFO and Siggi were implemented by university
students who also provided helpful comments on the artifacts’ conceptual design.
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Chapter 2.

Scenarios for Secure Semantic Web Data
Management

This section describes two different scenarios which demonstrate the need for secure se-
mantic web data management in open and distributed networks. The scenarios consist
of several parts which motivate the research questions RQ.1, RQ.2, RQ.3, and RQ.4
defined in Section 1.1. They also serve as two example applications of the artifacts
developed in this thesis which are described in Chapters 3 to 5. The first scenario is
given in Section 2.1 and focuses on regulating communication in open networks such as
the Internet. The scenario requires a policy language for modeling allowed and prohib-
ited communication, a framework for signing regulation policies, and a mechanism for
securely evaluating log data of Internet activities. The second scenario is described in
Section 2.2 and covers the secure distribution of medical data between patients and med-
ical institutions. The scenario requires a framework for signing medical data, a policy
language for managing the secure distribution, and a mechanism for regulating access to
the patients’ personal data. At the end of each subsection, the scenario is summarized
and its relation to the research questions is demonstrated. The implementation of the
two scenarios is demonstrated in Chapters 3 to 5 as part of the developed artifacts.

2.1. Regulating Internet Communication

The Internet is a global communication medium which interconnects several computer
networks located in different countries and managed by different authorities. The content
provided on the Internet can generally be accessed by anyone from anywhere. However,
each country connected to the Internet has its own national laws and wants to enforce
these laws on the Internet as well. For example, neo-Nazi material can legally be accessed
in the USA but its access is regulated in Germany due to the country’s history [198,
293]. Additionally, organizations and institutions want to enforce their own rules within
their local computer network on top of existing national regulations. For example,
companies may want to prohibit their employees from accessing any non-work-related
Internet content which distracts them from their actual work [280, 186]. Schools are
even required by law to protect their students from accessing any content which is
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inappropriate for minors [151, 61]. Besides these examples, there are many other cases
where such regulations are desired or even needed [89].

This section outlines a scenario for regulating Internet communication. The scenario
covers an example computer network, a workflow for creating and distributing regulation
details, and a concept of privacy compliant logging of Internet activities. The example
network consists of several communication nodes and smaller sub-networks which are
managed by different authorities. These authorities regulate the communication flow in
the networks by applying a workflow for creating and distributing regulation policies.
The policies are implemented by technical regulation systems which may also record
all Internet traffic. In order to support traffic analyses without interfering with the
privacy of the affected Internet users, the logging mechanism stores all recorded data in
encrypted form and restricts decryption to authorized parties only.

2.1.1. Example Network Topology

Computer networks consist of communication end nodes such as web servers and client
systems as well as intermediary communication nodes like routers and application-level
proxy servers. An example computer network connecting various communication nodes
located in the USA, Germany, and Saudi Arabia is depicted in Figure 2.1. Each of
the three countries has its own national network which includes smaller subnetworks
such as access provider networks or networks of organizations and institutions. National
networks and their subnetworks again contain several communication end nodes and
intermediary nodes. The communication end nodes cover both end user computers
such as the US client, the DE client, and the SA client as well as web servers such
as weather servers and pornography servers. End users and small institutions such
as schools do not access the Internet directly. Instead, they are customers of access
providers and access the Internet through their respective access provider network in
their country. For example, the US client resides in the USA and uses the TDS Telecom1

as its access provider. The SA client is located in Saudi Arabia and is connected to
the Internet via the network of Sahara Net2. The DE client and the comprehensive
school are located in Germany and use the German Telecom3 as their access provider.
The network of the comprehensive school contains several student computers which
act as client systems. These computers only access the Internet after having passed
the intermediary communication nodes of the school’s network and the network of the
German Telecom.

Each web server in the example network is operated by a content provider and can
be accessed by any user from any country. A content provider can in principle regulate
the access to its provided content at server side. However, content providers may not
always be capable of or even interested in denying access for particular users based on
national laws. Thus, regulations of information flow on the Internet are often imple-
mented on intermediary nodes like routers, name servers, and application-level proxy

1http://www.tdstelecom.com, last accessed: 01/21/16
2http://www.sahara.com, last accessed: 01/21/16
3http://www.telekom.de, last accessed: 01/21/16
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Figure 2.1.: Illustrating example of a network topology and its involved authorities.

servers [212, 321, 79]. Routers are able to regulate Internet communication by dropping
IP packets. Application-level proxy servers can control the flow of information by fil-
tering the accessed URLs and evaluating the content of web-pages. Name servers can
restrict the access to a web server by returning a wrong IP address or no IP address
at all. The example network depicted in Figure 2.1 contains the router ro-1, the name
server ns-2, and the proxy server pr-1 which can be used for regulating the information
flow. The router ro-1 and the name server ns-2 are both operated by their respec-
tive access providers. Access providers are able to regulate the Internet communication
between their users and the accessed web servers [95], since they operate in the same
country their users reside in. Unlike content providers, access providers are not only
familiar with the laws that the users must abide by but are also required to enforce
them. Although they are required to enforce the same laws, access providers often inter-
pret these laws differently which results in different flow control implementations [95].
Even if the access providers reside in different countries, they often have to implement
transnational laws such as EU directives. Depending on the country where the user lives
in, access to particular websites may be either legal or illegal. For example, pornographic
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content may be legally accessible by German users and US users over a specific age4, but
not by Saudi Arabians according to §6 of the Saudi Arabian Anti-Cyber Crime Law [179].
Access to neo-Nazi propaganda is legal in the USA and in Saudi Arabia but not in Ger-
many according to §86 of the German Criminal Code [62]. Finally, weather information
provided by a weather server can be accessed by users of all three countries. In order to
reduce the number of possible errors when interpreting national laws or transnational
directives, this interpretation is sometimes made by third parties. The details of the
interaction between all parties involved in the regulation process are further described
in the next section.

2.1.2. Creating and Distributing Regulation Policies

As outlined above, information flow control can be enforced at three different types of
network nodes [212, 321, 79], namely routers, application-level proxy servers, and name
servers. The example network depicted in Figure 2.1 provides different instances of these
enforcing communication nodes. Each type of node requires specific content identifiers
such as IP addresses, domain names, or URLs. The collection of such identifiers is of-
ten based on interpreting national laws or transnational directives. This process differs
from country to country and is implemented by access providers and/or by third parties
which may even be authorized by the country’s government. In Saudi Arabia, all content
identifiers are collected and managed centrally by the King Abdulaziz City for Science
& Technology (KACST)5 [226]. The USA does not have such a central institution. In-
stead, the identifiers of the regulated web content are collected and managed decentrally
by private parties such as Internet access providers [227]. In Germany, there is a hy-
brid situation in which the Federal Criminal Police Office (Bundeskriminalamt; BKA)6

centrally collects content identifiers and delivers them to the access providers [64]. In ad-
dition, several court decisions have required German access providers to manage content
identifiers themselves in order to block access to particular web servers [95]. Apart from
the national laws of a country, access providers can also define their own code of conduct
or guiding principles for information flow control. An example of such principles is the
code of conduct of the German Telecom [91]. It basically states that the internationally
operating company abides by the national law of the physical location of its subsidiary.
Another example of a code of conduct are the Principles on Freedom of Expression and
Privacy [129] issued by the Global Network Initiative (GNI). The GNI consists of large
companies of the information and communications technology sector including Google
Inc., Microsoft Corporation, and Yahoo! Inc. It aims at providing more transparency
in Internet regulations. Furthermore, organizations and institutions such as the com-
prehensive school located in Germany may also want to enforce their own rules and
regulations. In the case of the comprehensive school, the underage students must be
prevented from accessing mature content such as pornography according to §184 of the
German Criminal Code [61]. Instead of creating the corresponding regulations itself,

4Please note that this excludes specific content like child abuse images.
5http://www.kacst.edu.sa, last accessed: 01/21/16
6http://www.bka.de, last accessed: 01/21/16
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the comprehensive school entrusts third parties such as ContentWatch and JusProg to
compile such regulations. ContentWatch Inc.7 is a private company located in the USA
which provides different solutions for regulating Internet communication within organi-
zations and institutions. JusProg e. V.8 is a registered society in Germany that creates
and distributes filter lists of websites which are considered to be harmful to minors. By
using regulation policies from two different sources, the comprehensive school achieves
a larger coverage of undesirable web content.

BKA

German Telecom

Name Server

(a) Regulating the network of the
German Telecom

Comprehensive School

JusProg

Proxy Server

ContentWatch

XXX

XXX

(b) Regulating the network of the
comprehensive school

Figure 2.2.: Process of distributing policies for regulating Internet communication.

All regulating authorities encode their collected content identifiers and other regulation
details as Semantic Web graph data. If the implementation of a particular regulation
involves several authorities, these authorities follow a specific workflow for creating and
exchanging regulation information. Each regulating authority receives signed graph data
from another authority, adds its own graph data, digitally signs the result, and sends it
to the next authority. Digitally signing the graph data allows the authorities to verify
the data’s integrity and authenticity. Integrity means that the data was not modified
after the signature had been created and authenticity means that the signing authority
has approved of the data. Figure 2.2a depicts the regulation workflow for the German
Telecom and Figure 2.2b shows the workflow for the German comprehensive school
depicted in Figure 2.1. The regulation workflow of the German Telecom involves the
BKA and the access provider itself. The BKA not only provides the content identifiers
for specific regulations but also a set of formally defined ontologies for describing them.
The ontologies consist of several ontology design patterns [122] which allow to represent
different types of knowledge including wanted persons, recent crimes, and details for
regulating Internet communication. The content identifiers provided by the BKA are
summarized as a blacklist of web sites. These web sites contain neo-Nazi material and

7http://www.contentwatch.com, last accessed: 01/21/16
8http://www.jugendschutzprogramm.de, last accessed: 01/21/16
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are to be blocked according to §86 of the German Criminal Code. Each entry in the
blacklist corresponds to a particular regulation rule that describes which web sites are to
be regulated. As the German Telecom implements the regulations on a name server, the
BKA uses domain names as content identifiers for the web sites. After having created
the blacklist, the BKA digitally signs the list and the ontologies as well and publishes
the ontologies on the web. It then sends the signed blacklist to the German Telecom via
a secure communication channel by using, e. g., an SSL [113] connection. The German
Telecom receives the regulating information from the BKA and verifies its signature.
The blacklist provided by the BKA only describes the URLs of the web sites which are
to be regulated but not how the regulation shall be implemented. Thus, the German
Telecom interprets the data received from the BKA and adds concrete implementation
details such as the IP address of the name server used for blocking the web sites. As
shown in Figure 2.2a, the German Telecom compiles its technical regulation details as
RDF graph which is based on the BKA’s ontology design pattern. It digitally signs the
BKA’s blacklist together with its own regulation graph and sends it to its name server.
The name server verifies the signature of the German Telecom in order to prohibit any
unauthorized party from manipulating its implemented regulations. If the verification
is successful, the name server maps the blacklist of the BKA to a native format. This
format can then directly be used by the name server for regulating access to web sites.

As depicted in Figure 2.2b, the regulation workflow of the German comprehensive
school involves ContentWatch, JusProg, and the school itself. The comprehensive school
has to ensure that its students cannot illegally access neo-Nazi content and other mature
material such as pornography. As the comprehensive school is connected to the Internet
via the network of the German Telecom, all regulations implemented in the network of
the access provider also affect the school’s network. Thus, the comprehensive school
does not need to implement any regulations for blocking access to neo-Nazi material
since such regulations are already implemented by the German Telecom. However, the
school still needs to regulate access to pornographic content as the German Telecom does
not provide such regulations. To this end, the school receives regulation information for
adult content from ContentWatch and JusProg. ContentWatch and JusProg collect
URLs of web pages which contain pornographic content and other adult material which
is harmful to minors. These URLs are used for creating specific regulation rules which
are signed and sent to the comprehensive school via a secure communication channel.
ContentWatch provides its regulation information as Named Graphs whereas JusProg
provides its regulation data as regular RDF graphs. After having received both blacklists,
the school verifies their signatures and consolidates them into a single regulation policy.
The school digitally signs this regulation policy again and sends it to its local proxy
server. The proxy server verifies the policy’s signature and maps the regulation rules to
its local database. By redirecting all Internet traffic from the student computers located
in the school’s network through this proxy server, the school ensures that its students
can only access the Internet after having passed the predefined regulation mechanisms.
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2.1.3. Privacy Compliant Logging of Internet Activities

The proxy server of the comprehensive school not only regulates access to the Internet for
all student computers but also records their Internet traffic. This is necessary as German
schools are required by law to supervise the actions of their students [144] which also
includes their Internet activities [284]. To achieve this, the proxy server maintains a
database with several log entries each of which stores all details of a particular Internet
communication. These details include the IP address and the port number of the student
computer and the contacted web server, the URL of the requested web page, and the date
and time of the access. Figure 2.3 shows an example log database of the school’s proxy
server. It also shows how the proxy server acts as a gateway to other computer networks
and thus is able to record all Internet traffic of the student computers. As depicted,
log entries may contain personal information such as the student’s search interests [81].
Therefore, the proxy server encrypts all log entries before storing them in its database.
Encrypting the entries ensures their confidentiality, which means that they can only be
accessed by authorized parties [37]. In addition, the encryption also prohibits any abuse
of the logged Internet traffic [310].

Comprehensive School (CS) Network

Student Computer Proxy

Client Address Client Port Server AddressDate and time Requested URL

Wed 21. Oct 16:04:08 UTC 2015 192.168.2.101 1337 173.194.112.15 443

Server Port

https://www.google.de/search?q=all

Wed 21. Oct 16:15:16 UTC 2015 192.168.2.101 1337 173.194.112.15 443 https://www.google.de/search?q=base

... ... ... ... ... ...

Wed 21. Oct 16:23:42 UTC 2015 192.168.2.103 24154 104.20.26.14 80 http://www.porntube.com/

US Network

Search Engine Server

Nazi Propaganda Server

Pornography Server

Weather Server

Student Computer

Router

Wed 21. Oct 16:29:13 UTC 2015 192.168.2.103 3903 77.247.179.176 443 https://www.tnaflix.com/

Figure 2.3.: Example log database with several entries of students’ Internet activities.
The database is maintained by the school’s proxy server which also serves
as a gateway to other computer networks.

In order to prevent the comprehensive school from abusing the log entries itself, access
is restricted to a supervisory school authority and first must be authorized by both the
school’s administration and the parent’s association. These two parties have different
organizational functions, consist of different members, and have different interests. Nei-
ther of them is able to authorize any access to the log entries without the other party’s
consent. The supervisory school authority acts as an independent investigator and is
neither associated with the school’s administration nor with the parent’s association. It
oversees all actions of the school and regularly analyzes the students’ Internet activities.
During an analysis, the authority checks if the school’s regulation is implemented cor-

17



Chapter 2 Scenarios for Secure Semantic Web Data Management

rectly and if any additional regulation might be necessary. To support an analysis while
simultaneously protecting the entries’ confidentiality, the encrypted log database can
be queried without decrypting it first. The different steps of storing and querying the
log entries are depicted in Figure 2.4. When recording an Internet communication, the
school’s proxy server sends all technical communication details to its integrated hardware
security module (HSM) [287]. The HSM encrypts the log entries and also creates and
securely stores the used encryption keys in such a way that they cannot be extracted.
Directly embedding the HSM in the proxy server ensures that the plaintext entries are
not processed outside of the server. The process of encrypting and storing the log entries
is shown in Figure 2.4a. In order to apply a query to the encrypted database, it first
must be authorized by both the school’s administration (SA) and the parents’ associa-
tion (PA). To this end, each encryption key stored in the HSM is split into two parts
which are sent to the two parties. Figure 2.4b depicts the process of splitting encryption
keys and storing the resulting fragments and Figure 2.4c shows how the two fragments
are used for authorizing a particular query. When the supervisory school authority wants
to analyze the log database, it creates a corresponding query and sends it to both the
school’s administration and the parents’ association. The two parties combine the query
with their own fragment of the encryption key independently and return the result to
the supervisory school authority. The authority combines the two values into a single
decryption key which encodes the authorized query. A valid decryption key can only be
created if both the school’s administration and the parents’ association have authorized
the query. Otherwise, the supervisory school authority has an invalid decryption key
which cannot be used for decrypting any entry in the log database. If the decryption
key is created correctly, the authority applies it to the encrypted database and thereby

Proxy Server

HSM

Log Database

(a) Storing the log entries

HSMHSM

PASA

(b) Splitting the encryption
key

PASA

Supervisory School Authority

Log Database

Supervisory School Authority

(c) Querying the database

Figure 2.4.: Overview of the steps for storing and querying encrypted log entries.
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searches for all log entries which match the encoded query. Finally, the authority uses
the resulting entries for further analyzing the student’s Internet activities and checks
them for any inappropriate access.

2.1.4. Summary of the Scenario

The scenario for regulating Internet communication requires a policy language for de-
scribing allowed and prohibited communication flow. This policy language must be able
to describe the communication flow in the example network described in Section 2.1.1.
The policy language answers research question RQ.4 as it makes Internet content avail-
able as long as it is compliant with a set of predefined rules. A particular policy is
created by several authorities which communicate with each other. In order to provide
integrity and authenticity of their exchanged data, all data is signed before its trans-
mission. The provided signature is permanently attached to the signed data and not
restricted to the existence of a secure communication channel. Creating a signature
requires a corresponding signing framework which answers research questions RQ.2
and RQ.3. Internet regulations are enforced by different communication nodes such
as routers, application-level proxy servers, and name servers. As an enforcing system’s
regulations may be further analyzed by its operator or a third party, the system logs all
of its activities. However, logging the Internet activities of regulated Internet users may
invade their privacy. Thus, each enforcing system encrypts its log files and makes them
only partially available to authorized parties. This is achieved by providing a mechanism
for searching in encrypted data. The corresponding approach achieves confidentiality of
data and thus answers research question RQ.1.

2.2. Securing Medical Data Records in Electronic Healthcare

E-health commonly refers to the application of electronic technologies in health care
and aims at improving medical processes in various aspects [224]. A core part of e-
health is the digitization of medical data records and their exchange between different
care delivery organizations (CDOs) by using information and communication technology
such as the Internet [105]. CDOs are medical institutions such as general practitioners,
medical specialists, or hospitals. The use of electronic records in e-health aims at easing
the process of exchanging medical information between different CDOs and providing
more accurate data than paper-based records [177, 136]. In addition, electronic records
can be processed automatically by software applications and can be used to support
medical decisions and treatments [279, 220]. These main goals of e-health can be achieved
by improving the interoperability between different CDOs and their patients. As e-
health relies on electronic records, the aspired interoperability requires a standardized
data format for exchanging such records [154]. This section presents a scenario which
focuses on the secure exchange of electronic records based on a standardized format.
The scenario distinguishes between different types of medical data records, defines the
security requirements for exchanging them between different parties, and provides an
example use case of the data exchange.
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2.2.1. Medical Data Records Used in Electronic Healthcare

Medical data records of a patient can generally be distinguished between electronic
medical records (EMR), electronic health records (EHR), and personal health records
(PHR) [135, 125, 289]. An EMR is an electronic data record that stores the results of a
single medical test, examination, or operation which is conducted by a single CDO for
an individual patient. This CDO not only creates the EMR but also manages all access
requests to it [177]. An EHR is a collection of several EMRs of the same patient and may
be created by different CDOs [177]. EHRs support the aspired interoperability of e-health
as they are used for exchanging medical information between different CDOs. An EHR
may focus on a particular medical case and only covers EMRs which are relevant to that
case.9 Both EMRs and EHRs are created, managed, and owned by CDOs while PHRs
are managed and owned by the patients themselves. A PHR contains both subjective
and objective medical information of an individual patient [289]. Subjective data is
created by the patient directly and includes symptoms as well as their descriptions and
assessments. Objective data covers measured values such as blood pressure or weight
and is created by technical devices used by the patient. Each patient is associated
with a single PHR which is stored in a personal storage device or in a cloud system.
Medical information about the same patient may also be stored in several EHRs which
are scattered across different CDOs.

Depending on their actual use, EMRs, EHRs, and PHRs may store similar data and
overlap with each other. However, each type of record also contains some information
which is not part of other record types. Thus, combining all types of records results in a
comprehensive collection of medical information about a single patient which can be used
by CDOs to conduct medical treatments [289]. An expedient integration of all records
requires that they share a common data format or that they are stored in different data
formats which can easily be mapped to each other [303]. Compatibility between all
records is also necessary in order to achieve interoperability between different CDOs and
their patients’ PHRs. Vizenor et al. [300] argue that Semantic Web ontologies are best
suited as a common data format for different e-health records. Ontologies can be used
for aligning different vocabularies and terminologies from different medical departments.
Furthermore, they allow to reason on medical data which can be used to support medical
decisions by relating a patient’s medical records to medical knowledge bases. Example
ontologies which are specifically designed for reasoning on medical data are presented in
[279, 220, 246].

2.2.2. Security Requirements for Medical Data Records

Medical data records store sensitive information about a patient and must therefore be
protected against unauthorized access. The legal foundation for e-health applications
in the USA is the Health Insurance Portability and Accountability Act (HIPAA) [297].
HIPAA does not only motivate the use of interoperable e-health applications and data

9Please note that there are varying definitions of EMRs and EHRs in the literature [318]. In this thesis,
the terms EMR and EHR are used as defined in this section.
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formats but also defines several requirements for achieving security and privacy of the
medical data. The security requirements are further refined by the Security Standards
for the Protection of Electronic Protected Health Information [90] and correspond to
confidentiality, integrity, and availability of the data. Confidentiality states that the
patient’s medical data must be protected from any unauthorized access. This require-
ment is especially necessary since medical data contains highly sensitive information such
as a patient’s health status and diseases [312]. Integrity requires that the data is not
modified or destroyed by unauthorized parties. Since medical data is used for medical
examinations and treatments, ensuring that the data is correct and accurate is essential
to ensure a patient’s safety [108]. Availability states that the data must be accessible to
authorized parties whenever needed. Supporting this requirement is also fundamental
to a health care system as incomplete or missing data may otherwise affect a patient’s
treatment [108, 136]. In Europe, the legal foundation for e-health applications is based
on several directives which focus on protecting any type of personal data. The Data Pro-
tection Directive [100] requires that processing and transmitting personal data is only
conducted if the data’s privacy and confidentiality can be guaranteed. The directive can
be equally applied to electronic processing and non-electronic processing. The Directive
on Privacy and Electronic Communications [101] complements the Data Protection Di-
rective and is specifically designed for electronic processing and transmission of personal
data. The directive states that the basic security requirements confidentiality, integrity,
and availability of the data must be implemented in computer systems which process
the data. As both directives can be applied to various types of personal data, they cover
medical data records as well.

2.2.3. Example Medical Case

Marla manages her own PHR in order to keep track of her health. She uses the PHR
to monitor various medical information including her weight, blood pressure, and pulse.
Whenever she feels sick, she records her symptoms in the PHR to support a medical
professional’s diagnosis. She also uses her PHR to record any prescribed medicine and
its recommended taking. In order to ensure the confidentiality of her health data, Marla
encrypts her PHR and stores it on a portable device. If she consults a CDO such as
a doctor or hospital, she grants the medical personnel access to particular parts of her
PHR to support her medical treatment. Marla provides all medical information in her
PHR as Semantic Web graph data to achieve a better interoperability between her PHR
and the EHRs and EMRs managed by CDOs. Figure 2.5 depicts the application of this
data for a particular medical case.

When Marla senses a lump in her throat and suffers from swallowing difficulties,
she consults her general practitioner (GP). The GP asks Marla to grant him access to
those parts of her PHR which he suspects to be related to her symptoms. After having
analyzed the requested entries in the PHR, the GP relates the symptoms to a goiter
and performs an ultrasonography to examine Marla’s thyroid. He records all results
of the examination as graph data and digitally signs it to ensure the data’s integrity
and authenticity. The resulting graph corresponds to an EMR and is stored on a local
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server in the GP’s office. As Marla’s thyroid is slightly enlarged, the GP prescribes her
iodine tablets after having reviewed Marla’s PHR to ensure that she does not take any
medicine which is incompatible with the tablets. The GP records the prescription as an
additional EMR, signs it, and stores it on the local server as well. Marla also records
the GP’s prescription and the recommended intake in her PHR.

Hospital (HP)

Marla

EMR

EHR-HP

Radiographer (RG)

EMR

EHR-RG

General Practitioner (GP)

EMR EMR

EHR-GP

PHR

...
EHR-GP

...

EHR-RGEHR

Figure 2.5.: Example medical case which depicts the secure transmission and storage
of medical data. Arrows indicate the flow of medical data.

Even after taking the prescribed medicine, Marla’s symptoms do not disappear and
she consults her GP again. The GP performs another ultrasonography, digitally signs
the resulting EMR, and stores it on the local server. As the second ultrasonography
shows a noticeable enlargement of Marla’s thyroid, the GP refers her to a radiographer
for additional examinations. The GP creates an EHR which contains the EMRs of the
two examinations and his prescription. He digitally signs the EHR and sends it to the
radiographer via the Internet. By signing the EHR, the GP states that all medical
records contained in it are part of the same medical case and that this data is complete.
The proxy server of the GP’s office ensures that medical data is only transmitted to
other CDOs via a secure communication channel such as an SSL [113] connection. If
the GP accidentally tries to use an insecure communication channel or send the data
to a different destination, the transmission is blocked by the proxy server. Thus, the
proxy server implements the requirement for compliant availability of medical data.
After having received the EHR from the GP, the radiographer verifies its signature in
order to ensure its integrity and authenticity. Based on the EHR from the GP and on
Marla’s PHR, the radiographer performs a scintigraphy on Marla’s thyroid in order to
test whether or not Marla suffers from hyperthyroidism. The results of the examination
correspond to an EMR which is stored on a local server in the radiographer’s office. As
the results confirm the radiographer’s assumption on hyperthyroidism, he refers Marla
to a hospital. The radiographer creates an additional graph containing his diagnosis and
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signs it together with the EMR of the scintigraphy and the EHR received from the GP.
In doing so, the radiographer states that his own examinations are based on the findings
of the GP. The signed graph corresponds to another EHR which is sent to the hospital.
Similar to the GP’s office, the proxy server of the radiographer’s office ensures that
medical data such as EHRs are only transmitted via a secure communication channel.

The hospital receives the EHR from the radiographer and verifies its signature. After
having evaluated the findings from the radiographer and the GP as well as Marla’s
symptoms stored in her PHR, the hospital staff conducts a second scintigraphy on the
patient’s thyroid. Again, the results of this scintigraphy are provided as graph data
and stored as an EMR on the hospital’s server. Since the second scintigraphy provides
similar results as the first scintigraphy, the hospital staff initiates a thyroidectomy in
order to surgically remove parts of Marla’s thyroid. An operation generally consists of
several steps which must all be documented according to the guidelines of the World
Health Organization [313]. The steps include the preoperative note, operating room
records, and postoperative notes. Each of these steps is recorded as a separate graph.
After having completed the operation, the graphs are collectively signed by the operation
team as an EHR. When discharging Marla from the hospital, the hospital staff compiles
a discharge note and signs it along with the EMR of the performed scintigraphy and the
EHR from the operation. As depicted in Figure 2.5, the hospital also includes the EHR
from the radiographer in the new graph to state that the operation was conducted after
having reviewed the radiographer’s examination results. The resulting EHR is sent back
to Marla’s GP for documentation reasons by using a secure communication channel.
Again, the hospital’s proxy server ensures that medical records are only transmitted via
secure channels.

2.2.4. Summary of the Scenario

E-health aims at improving various aspects of medical processes such as the storage and
the transmission of medical data records. Medical records are created by different parties
including patients and care delivery organizations (CDOs). Patients who maintain their
own medical records encrypt the records in order to ensure their confidentiality. A CDO
accesses specific parts of the encrypted records by applying queries to them which are
authorized by the patients. Such a protection mechanism requires an approach for query-
ing encrypted data which answers research question RQ.1. CDOs create medical data
records after having examined the patients or having operated on them. A CDO signs
the medical records in order to ensure their integrity and authenticity. The organization
can even sign medical data records from other CDOs which have already been signed.
Such an iterative signing can be used to track the provenance of the medical records
and document the data flow of the signed data. Signing medical data requires a signing
framework which answers research questions RQ.2 and RQ.3. Exchanging the signed
records between different CDOs must be done via a secure communication channel. In
addition, transmitting the records to any other destination which is not a CDO must
be prohibited. Describing such rules for sending content via open networks requires a
policy language for regulating information flow control. Such a policy language answers
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research question RQ.4 as it ensures that medical records are only available to parties
which comply with the predefined rules.
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Chapter 3.

InFO: A Policy Language for Regulating
Information Flow

This chapter presents the Information Flow Ontology (InFO), a generic policy language
for regulating information flow in open and distributed networks such as the Internet.
Regulations expressed with the InFO policy language can be enforced by various com-
munication nodes operating on different levels of the OSI reference model [159] such as
the Internet layer or the application layer. Example nodes which are natively supported
by InFO as enforcing systems are routers, application-level proxy servers, and name
servers. However, InFO’s generic language model can also be further refined to support
other types of communication nodes as well. An InFO policy consists of multiple rules
which share the same purpose. Each rule regulates one particular communication flow
and provides several technical regulation details for implementing the regulation on an
enforcing node. The purpose of a policy is expressed with human-readable background
information which is directly embedded into the policy. This allows an easy comparison
between different policies and to check whether or not a policy implements the correct
high-level regulation. The provided background information covers a regulation’s le-
gal foundation and its organizational motivation. The InFO policy language achieves
compliant availability and thus answers research question RQ.4 by making information
available to authorized parties as long as they comply with the rules of the regulation
policies. If a policy rule prohibits the access to any requested information, the party
trying to access the information is considered to be unauthorized. A prior version of the
InFO policy language was published in [172]. This chapter is based on this publication
but rephrases its contents and further enriches them with additional aspects.

The remainder of this chapter is organized as follows: The state of the art and related
work for regulating information processing is summarized in Section 3.1. Based on this
section and on the scenarios introduced in Chapter 2, Section 3.2 defines the functional
and non-functional requirements for the InFO policy language. The design of InFO is
described in Section 3.3. Section 3.4 demonstrates how the policy language is used for
expressing specific regulations which can be enforced by routers, application-level proxy
servers, and name servers. These example regulations are implemented on prototypical
systems which are presented in Section 3.5. Section 3.6 assesses the state of the art and
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related work and compares it with the InFO policy language. Limitations and possible
improvements of InFO are discussed in Section 3.7 before the chapter is concluded.

3.1. State of the Art and Related Work

Policy languages for regulating information processing can generally be distinguished
between access control languages, flow control languages, and usage control languages.
A simplified depiction of these three different types of policy languages for information
regulation is provided in Figure 3.1. As depicted, classical access control focuses on reg-
ulating access to information at the content provider’s side (i. e., the server) whereas
usage control covers the regulation of information at the consumer’s side (i. e., the
client) [229, 260]. In contrast, flow control allows to regulate the flow of information
between the provider and the consumer. This section provides a summary of different
policy languages for access control, usage control, and flow control as well as general
purpose languages. This section also covers content labeling schemes as they are closely
related to the regulation of information processing. Content labeling schemes provide
descriptions of the content being regulated which may be used directly by other policy
languages. A detailed comparison of the outlined policy languages and content labeling
schemes with InFO is provided in Section 3.6.

Content ProviderContent Consumer

Client Server
Communication Channel

Content

Flow Control

Usage Control Access Control

ContentContent

Figure 3.1.: Three different types of policy languages and their involved systems for
regulating information processing. The types for regulating information
processing include access control, flow control, and usage control.

3.1.1. Access Control Languages

Access control languages ease the configuration of access control systems which regu-
late access to digital resources [257]. The Access Management Ontology (AMO) [58] is
an RDFS [195] ontology for describing access control rules for collaborative web-based
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document systems such as wikis or content management systems. In order to ease the
creation of access rules and their integration into such systems, AMO’s design is very
simple and only allows to model permitted actions. Other types of rules such as pro-
hibitions are not supported. Actions, which are not explicitly allowed by AMO, are
considered to be forbidden. CommonPolicy [276] is an XML-based language for describ-
ing access rules for personal data. Similar to AMO, the language model of Common
Policy is rather lightweight and only allows to define permitted actions. Furthermore,
Common Policy is designed to be used only in combination with additional application-
level protocols such as FTP or HTTP. These protocols must cover the authentication of
the requesting user and the transmission of the requested data. WebAccessControl1 is
another lightweight RDFS ontology for describing access control rules for web resources.
It is designed for decentralized systems in which the web resources and the users can be
managed by different parties. All users are identified by their WebID2 which serves as
a globally unique identifier. User authentication is based on the WebID authentication
protocol. Similar to AMO and CommonPolicy, WebAccessControl has a simple design
which only supports permitted actions. The Enterprise Privacy Authorization Language
(EPAL) [15] and the eXtensible Access Control Markup Language (XACML) [205] are
XML-based access control languages which allow to create much more expressive policies
than AMO, Common Policy, or WebAccessControl. Both languages are designed to be
used within closed network environments such as intranets of large corporations. While
EPAL merely focuses on regulating access to personal data, XACML does not have a
predefined use case and can be used for regulating the access to arbitrary data. Specific
use cases are implemented by creating corresponding XACML profiles. A profile for
regulating access to personal data is given in [206]. XACML is much more expressive
than EPAL and can replace it in many applications [12].

In summary, classical access control regulates access to data within a closed environ-
ment [229, 260]. XACML and EPAL can be considered as classical access control systems
since they require a centrally controlled enforcing infrastructure. On the other hand,
AMO, Common Policy, and WebAccessControl focus on regulating access to pieces of
information in a rather open environment such as the Internet. In all access control sys-
tems, content providers regulate the access to their content. However, such regulations
cannot be used for regulating the communication flow between an arbitrary server and
arbitrary client in the Internet.

3.1.2. Usage Control Languages

Rights Expression Languages (REL) allow to define usage control policies for digital
objects. RELs often define only an abstract policy model which is accompanied by an
additional Rights Data Dictionary (RDD). The REL defines a basic syntax shared by all
policies while the RDD provides a vocabulary for creating specific policies. The PLUS
License Data Format (LDF)3 provides a lightweight RDFS ontology for creating usage

1http://www.w3.org/wiki/WebAccessControl, last accessed: 01/21/16
2http://www.w3.org/wiki/WebID, last accessed: 01/21/16
3http://www.useplus.com, last accessed: 01/21/16
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policies for digital images. The policies are primarily designed for human recipients and
cannot directly be enforced by a technical system. Instead, the design of PLUS focuses
on a technical support for communicating usage policies between all involved parties.
ccREL [3] is a lightweight RDFS ontology primarily designed for describing Creative
Commons4 licenses. Such licenses describe actions that may, must, or must not be ap-
plied to the digital good. In order to be easy to use, there are six predefined licenses
which can be applied to arbitrary goods. Although ccREL can generally be extended
with additional terms, using such terms may lead to licenses which do not correspond
to Creative Commons licenses. The Linked Data Rights ontology (LDR) [253, 254] is
a lightweight OWL [302] ontology which supports usage control licenses for linked data
resources. Although it defines a few terms itself, it is mainly designed to be extended
with additional terms for particular use cases. The Metadata Encoding and Transmis-
sion Standard (METS) [93] is a general language model for describing different types of
metadata of digital resources. METS itself only defines a basic XML language struc-
ture which must be extended with additional vocabularies in order annotate the digital
resource. METSRights5 is an example vocabulary which provides a very basic REL. It
only allows to define which parties are allowed to perform which actions on a digital
resource. It does not provide any means for defining prohibitions. More complex us-
age control languages are MPEG-21 REL [306] and the Open Digital Rights Language
(ODRL) [156, 157]. MPEG-21 REL is the successor of XrML [308] and shares the same
basic architecture [307]. It is part of MPEG-21 [65] which is a language framework sim-
ilar to METS for annotating digital resources with different types of metadata. Both
MPEG-21 REL and ODRL can be used for the same applications and allow to cre-
ate almost arbitrary usage control policies. MPEG-21 REL is an XML-based language
while ODRL provides an abstract language model which can be expressed with different
encodings. The current version of ODRL provides an OWL ontology [199] as well as
encodings for XML [155] and JSON [221]. Although both MPEG-21 REL and ODRL
define their own REL and RDD, using the default RDD is not mandatory when creating
specific policies. Instead, the creation of user-defined RDDs are also possible. In ODRL,
user-defined RDDs are called profiles. An example profile is RightsML [162] which is
designed for managing usage rights in the news industry.

In summary, RELs allow to describe which users are permitted to perform which
actions on which digital resources. Contrary to flow control languages, these descriptions
are rather abstract and must be interpreted manually in order to enforce them on a
technical system. The more abstract a particular policy is, the more interpretations and
implementations of the same policy are possible. For example, ODRL’s RDD defines
the action anonymize as the process to “anonymize all or parts of the Asset” [157].
Although an additional comment in the RDD further explains this as the process to
“remove identifying particulars”, it still remains unclear what the identifying particulars
cover in detail. Thus, the anonymizing action cannot be directly enforced by a computer
system since the system does not have a precise understanding of what the identifying

4http://creativecommons.org, last accessed: 01/21/16
5http://www.loc.gov/standards/rights/METSRights.xsd, last accessed: 01/21/16
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particulars are. Instead, enforcing the action on a technical system requires manual
interpretation and therefore human interaction. However, since RELs usually do not
provide a precise human-readable description of their policies, different interpretations
of the same policy may be considered as valid.

3.1.3. Flow Control Languages

Flow control languages are primarily designed for managing a closed network environ-
ment supervised by a single organization or institution. The languages aim at easing the
configuration of the network by mapping high-level organizational security policies to
different network systems such as routers and switches. The XML-based firewall meta-
model proposed by Cuppens et al. [85], the UML-based DEN-ng [286], and the OWL-
based Ontology-Based Policy Translator (OPoT) [21] provide languages for describing
flow control regulations. While both the firewall metamodel and DEN-ng merely focus
on low-level routers and do not directly support communication end points such as web
servers, OPoT also covers different nodes of a communication path including the end
systems. The firewall model of Cuppens et al. only supports permitting rules. It does
not provide any means for defining prohibited communication flows. Any communication
that is not explicitly allowed is considered to be forbidden. OPoT uses a set of twelve
predefined basic policies each of which covers a particular use case. A basic policy can
be considered as a template for implementing a specific organizational security policy.
In order to actually enforce such an organizational policy, a corresponding basic policy
has to be chosen and mapped to the current network environment. This mapping corre-
sponds to filling in the basic policy with specific IP addresses and other implementation
details.

In summary, flow control languages focus on regulating the flow of communication
within a closed network environment which is centrally administrated by a single entity.
The existing languages are designed to allow a direct enforcement of their policies by
network nodes without requiring any further interpretation. This is achieved by precisely
describing the actions that must be performed by the nodes including all necessary
parameters such as IP addresses, port numbers, and communication protocols.

3.1.4. General Purpose Languages

General purpose languages do not focus on one particular type of information regulation
but rather follow a more general approach in order to cover several scenarios such as
access control or flow control. KAoS [298], Rei [166], and Ponder [88] are examples of
such languages. Since these languages support different types of control policies, they
cannot be clearly categorized as access control, usage control, or flow control. KAoS
is based on OWL and allows to create policies that describe which systems a user can
access within a closed management environment such as an organization. An example
of such a policy is granting a user access to a specific server. However, KAoS only allows
to regulate access to the server or its provided services and cannot further distinguish
between the data hosted by them. More specifically, KAoS does not directly provide
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any means for regulating the content hosted by a server. A KAoS policy can generally
be enforced by any application-level communication system including content providers,
content consumers, and application-level proxy servers. Contrary to KAoS, both Rei
and Ponder allow to define document-centric policies. This allows to create more pre-
cise access control policies. Rei is based on OWL and merely considers reasoning about
policies and is not designed for enforcing them [294]. Ponder uses its own low-level
object-oriented language syntax which is not compatible with W3C standards such as
XML or RDF. The language is able to define policies which can be enforced on the con-
tent providers’ server, the end users’ clients, as well as on intermediary communication
nodes. However, due to its low-level descriptive language, Ponder is not able to cover
different levels of abstraction on the same regulation [294] such as organizational or legal
background information.

In summary, the applicability of a general purpose language as well as the implemen-
tation and enforcement of its policies heavily depends on the language’s design. While
KAoS and Rei focus on a more abstract view of a policy, Ponder merely covers its
technical implementation details.

3.1.5. Content Labeling Schemes

Content labeling schemes allow to annotate digital resources with additional metadata
describing their topic. Although these schemes usually do not provide a policy language
for regulating information processing, they are specifically designed to be used together
with such languages. The Restricted to Adults (RTA) label6 and age-de.xml [264] allow
to annotate web resources with an age category. Both formats are used by child protec-
tion software such as Net Nanny7 or the Jugendschutzprogramm8 for prohibiting minors
from accessing adult web content. The RTA label is a simple label for flagging adult
content. It consists of a single string which represents the age category of all adults.
The label is either directly included in a web page or part of the HTTP response that
a client receives from the server when requesting the page. In contrast, the XML-based
age-de.xml supports arbitrary age categories which can be defined for single web pages
or whole web sites. Similar to the RTA label, age categories defined with age-de.xml
can also be included directly in the affected web pages or into the HTTP responses that
contain the web pages. The Platform for Internet Content Selection (PICS) [183] sup-
ports more complex descriptions of web content than the RTA label or age-de.xml. It
defines a proprietary format for annotating web content with arbitrary labels. A label
consists of several ratings which contain a string and a numerical value. Labels can refer
to single web pages or complete web sites. PICSRules [103] provides a policy language
for allowing or denying access to web pages based on PICS labels or the pages’s URLs.

In summary, content labeling schemes focus on the description of web content. With
the exception of PICS, the discussed schemes do not provide a policy language for de-
scribing how these annotations shall be used for regulating information processing. How-

6http://www.rtalabel.org, last accessed: 01/21/16
7https://www.netnanny.com/support/changelog/, last accessed: 01/21/16
8http://www.jugendschutzprogramm.de/faq6.php, last accessed: 01/21/16
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ever, content labeling schemes can also be used together with other policy languages.
The policy language InFO described in this chapter also supports the description of web
content. Such descriptions can either be modeled by using the InFO vocabulary or by
integrating one of the existing content labeling schemes.

3.2. Requirements for a Policy Language

The policy language InFO defines several ontology design patterns [237, 121] for de-
scribing policies for regulating information flow control on the Internet. These policies
cover both a human-readable description of their actual meaning as well as the tech-
nical implementation details for enforcing them on a particular communication node.
A particular flow control policy models a specific use case and consists of several flow
control rules that implement this use case. Multiple use cases require several policies.
Based on these general objectives, this section defines the specific requirements for InFO
which are divided into functional requirements (RA.F.*) and non-functional require-
ments (RA.N.*). Functional requirements describe the services and functions that a
system must provide [282]. In the case of the InFO policy language, these requirements
define the content of a particular flow control policy which must cover all details for
regulating information flow control. Thus, the functional requirements for InFO focus
on the language’s vocabulary. On the other hand, non-functional requirements define
general properties and constraints of a system [282]. While functional requirements
basically focus on a particular aspect of the system, non-functional requirements are
usually abstract and cover the system as a whole [282]. In the case of InFO, non-
functional requirements define restrictions of the language’s design and implementation.
Although there is no clear distinction between functional and non-functional require-
ments [182, 282], separating both types of requirements can help to better identify the
purpose of a particular requirement. The specific requirements for the policy language
InFO derive from the scenario for regulating Internet communication presented in Sec-
tion 2.1 and on the related work summarized in Section 3.1. InFO must support the
following functional requirements:

RA.F.1: Supporting different types of enforcing communication nodes
The policy language must be able to describe flow control policies which can
be enforced by different intermediate communication nodes on the Internet such
as routers (RA.F.1.1), name servers (RA.F.1.2), and application-level proxy
servers (RA.F.1.3). As outlined in Section 2.1, different enforcing nodes are in fact
used in practice for regulating information processing on the Internet [212, 321, 79].
Thus, these nodes must also be supported by the InFO policy language. The ex-
ample computer network introduced in the scenario in Section 2.1.1 includes all
three types of enforcing nodes.

RA.F.2: Operationalizing the policies
The interpretation of a particular control policy by a corresponding enforcing node
requires a detailed description of the communication flow that shall be regulated.
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This description must contain all relevant parameters such as the IP addresses of
the communicating parties, the URL of the web content, or the domain name of the
web server. The policy language InFO must be able to describe such parameters.
Each of the enforcing nodes of the scenario requires their own parameters in order
to operate properly.

RA.F.3: Supporting different modalities of control rules
The InFO policy language must be able to describe control rules that either al-
low (RA.F.3.1) or deny (RA.F.3.2) a communication flow between two commu-
nicating parties. Supporting both types of rule modalities allows a more flexible
creation of regulations such as regulations based on whitelisting or blacklisting [19].
Blacklisting allows every communication which is not explicitly forbidden whereas
whitelisting prohibits all communication which is not explicitly allowed. Prohibit-
ing a particular communication flow can be implemented in different ways such as
redirecting to a different communication party or preventing the establishment of
the communication channel. InFO must also support such different implementa-
tions.

RA.F.4: Resolving rule conflicts
Conflicts between two control rules occur when a particular flow of communication
is allowed by one rule and prohibited by another one. The contradicting rules may
appear in the same control policy (RA.F.4.1) or in different policies (RA.F.4.2).
The policy language InFO must provide mechanisms for resolving both types of
rule conflicts. In the scenario, the regulations derive from different sources such as
ContentWatch and JusProg which may lead to conflicting rules.

RA.F.5: Identifying involved parties
The policy language must provide information about the parties who are respon-
sible for a particular policy. This includes the party who technically enforces the
policy (enforcer) (RA.F.5.1), the party who provides the details for this enforce-
ment (provider) (RA.F.5.2), and the party who legislates the enforcement (legis-
lator) (RA.F.5.3). Distinguishing between all three parties can help in achieving
more transparency in the regulation’s implementation. In the scenario of Sec-
tion 2.1, access providers such as the German Telecom act as regulation enforcers.
Examples of regulation providers are the BKA and ContentWatch and examples
of regulation legislators are the German states and their federation [60].

RA.F.6: Identifying regulated content
Regulating access to web content may cause unwanted side-effects such as over-
blocking or under-blocking [249]. Over-blocking affects the access to more content
than is actually intended. Under-blocking covers only parts of the content to be
regulated. In order to reduce such unwanted side-effects, InFO must allow to
identify the content or its hosting server as precisely as possible. Examples of
precise identifiers are the IP address of the hosting web servers, the domain names
of the websites, and the URLs of the individual web pages.
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RA.F.7: Classifying regulated content
Access regulation is often based on the content’s topic such as online gambling,
adult websites, or neo-Nazi propaganda. In order to provide a clear reason for
why access to particular web content is regulated, the topic of the content must
be identified. Thus, InFO must provide means for representing the classification
of content. In the scenario, the classification of the provided web content is given
by the label of its respective web server, e. g. each “Weather Server” provides
information about the weather.

RA.F.8: Providing users’ access location
Each information flow control policy is ultimately based on a set of laws issued for
and active in a specific country. Since an end user’s current location also defines
the laws she must abide by, InFO must relate a user to her corresponding location.
The scenario presented in Section 2.1 distinguishes between end users of the three
example countries USA, Germany, and Saudi Arabia.

RA.F.9: Providing background information
The regulation represented by a flow control policy is authorized by a legal foun-
dation and/or motivated by an organizational code of conduct. In order to en-
rich a policy with human-readable explanations, InFO must be able to attach
corresponding background information to the policy in form of its legal justifica-
tion (RA.F.9.2) and/or organizational motivation (RA.F.9.1). As outlined in
the scenario, §86 of the German Criminal Code [62] is an example of a legal justifi-
cation which prohibits the distribution of neo-Nazi material. The code of conduct
of the German Telecom [91] is a statement to actually enforce this law as well as
the local laws of other countries in which the Internet access provider operates.

Besides these functional requirements, the InFO policy language must also fulfill the
following non-functional requirements:

RA.N.1: Complying with standards
The policy language must provide a particular encoding for creating specific poli-
cies. This encoding must be based on common standards such as XML or RDFS.
Avoiding a proprietary syntax simplifies the process of interpreting and implement-
ing particular regulation policies on an enforcing system. Furthermore, it eases the
creation and distribution of the policies for all involved parties. In the scenario,
different parties such as the BKA and the German Telecom interact with each
other by exchanging regulation details. Using a common standard for encoding
these details improves the interoperability between the parties.

RA.N.2: Supporting a modular design
The InFO policy language must have a modular design in which each module im-
plements a particular function of the language [266]. This allows a flexible use of
the actually needed parts of the ontology. For example, requirement RA.F.1 states
that the policy language must be able to support different systems as enforcing
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nodes. Each type of enforcing nodes requires specific parameters and enforcement
details, which may be irrelevant for other enforcing nodes. By designing a partic-
ular module for routers, name servers, and proxy servers, a specific enforcing node
only needs to implement its respective regulation module. In the scenario, each
enforcing node only implements those regulation modules which it can technically
enforce.

RA.N.3: Supporting an extensible design
Although InFO must natively support three different types of enforcing nodes, this
support can only cover a limited set of all possible attributes and functions that a
specific node may have. For example, the build-in support for routers as enforcing
nodes does not guarantee a complete support for all functions of all possible routers
like Cisco’s 3945 Integrated Services Router9. An extensible design [266] allows to
further enrich InFO with product-specific concepts. Furthermore, such a design
can also be used for defining new concepts of future regulation mechanisms.

The fulfillment of all functional and non-functional requirements by the InFO pattern
system and a comparison with the state of the art and related work is provided in
Section 3.6.

3.3. Design of the InFO policy language

This section presents the pattern-based design of the InFO policy language. The de-
sign is based on the state of the art and related work discussed in Section 3.1 as well
as on the requirements stated in Section 3.2. InFO is a set of several ontology design
patterns [237, 121] for describing flow control policies which regulate the exchange of
information on the Internet. Ontology design patterns are adapted from software engi-
neering. They provide both a description of a specific, recurring modeling problem of a
particular modeling context and present a proven, generic solution to this problem [67].
The provided solution consists of a description of the required components, their relation-
ships and responsibilities, and the possible collaboration between these components [67].
Similar to a software design pattern, an ontology design pattern is also independent of a
particular application domain [117] and can be used in a variety of different application
contexts. Each pattern of InFO implements a different aspect of controlling the flow of
information that distinguishes it from the other patterns. The patterns are not a collec-
tion of independent ontology design patterns but are instead designed to be used together
in order to create flow control policies. Thus, InFO corresponds to a so-called pattern
system [67]. The pattern system reuses and extends design patterns from the founda-
tional ontology DOLCE+DnS Ultralite (DUL) [119] and the Ontopic core ontology10. It
is implemented using the Web Ontology Language (OWL) [302] and axiomatized using
Description Logics [16]. This section first briefly describes these reused ontologies and

9http://www.cisco.com/c/en/us/products/routers/3945-integrated-services-router-isr/

index.html, last accessed: 01/21/16
10http://ontologydesignpatterns.org/ont/dul/ontopic.owl, last accessed: 01/21/16
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gives an overview of the InFO pattern system. Subsequently, each pattern is explained
in more detail.

3.3.1. Modeling Methodology and Reused Ontologies

InFO uses DOLCE+DnS Ultralite (DUL) [119] as a foundational ontology since it pro-
vides a rich axiomatization based on several design patterns. In addition, the use of DUL
has proven to be a good design choice [266]. Figure 3.2 depicts the main classes and
reused design patterns of DUL. The ontology defines the class Entity and its subclasses
Object, Quality, and Abstract, which are depicted in Figure 3.2a. Objects are entities
that exist in time and space such as Agents. They are either physical objects such as
natural persons or social objects such as Roles. A Quality describes a feature of an
Entity whose feature value is specified by a Region. Abstract refers to entities that do
neither have spatial nor temporal features. Regions are Abstracts and represent data
value spaces such as time intervals. The relations between the three classes Entity,
Quality, and Region are covered by DUL’s qualities and quality region pattern [119]
which is depicted in Figure 3.2c. The pattern distinguishes between a feature of an entity
and its corresponding feature value. While a feature is inextricably linked to the entity
that has the feature, its value can also exist independently. Apart from this pattern,
InFO also uses other design patterns from DUL which are the collection pattern, the
participation pattern, the sequence pattern, the information realization pattern, and the
description and situation (DnS) pattern.

Abstract

Entity

Object

AgentRegion

Quality

Role Parameter

(a) Basic class hierarchy

parametrizes

Role

classifies

Description

Situation

satisfies

1..*

Region

hasSetting

defines

Parameter

Object

(b) Description and situation pattern

RegionEntity QualityhasQuality hasRegion valuehasRegionDataValue1..*

(c) Qualities and quality region pattern (cf. [265])

Figure 3.2.: Important classes and patterns of DOLCE+DnS Ultralite (DUL).

The collection pattern defines the property hasMember which can be used for describing
the relationship between a collection and its elements. As depicted in Figure 3.2d,
the property links a particular collection to each of its members. The participation
pattern models the relationship between an event and all involved objects. The pattern
is depicted in Figure 3.2e and defines the property hasParticipant to link an event
to any social object or physical object. The sequence pattern depicted in Figure 3.2f
defines the two properties follows and precedes. These properties are inverse to each
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EntityCollection hasMember

(d) Collection pattern

ObjectEvent  1..*hasParticipant 

(e) Participation pattern

Entity

precedes

follows

(f) Sequence pattern

realizes

InformationEntity

InformationRealization InformationObject
1..* 1..*

(g) Information realization pattern

Figure 3.2.: Important classes and patterns of DOLCE+DnS Ultralite (DUL). Contin-
ued from previous page.

other and allow to describe a relative order between two entities. A sequence consisting
of multiple entities can be created by using the properties for modeling a relationship
between all pairs of consecutive entities. The information realization pattern [44] is
shown in Figure 3.2g. It defines the classes InformationObject and InformationRe-

alization as well as the property isRealizedBy. An InformationObject is an abstract
piece of information and is realized by a physical object or a digital resource. The entity
realizing the abstract piece of information is called an InformationRealization. An
example of an InformationObject is Shakespeare’s Hamlet. Hamlet is an abstract work
which can be encoded as a written book or performed as a play in theater. The book
and the performed play both correspond to two different InformationRealizations
of the same abstract piece of information. The DnS pattern [120] is a central design
pattern of DUL and models n-ary relationships between arbitrary entities. The pattern
strictly distinguishes between a conceptual view of the relationships and a specific state
of affairs. The conceptual view is modeled as a Description and defines the context
and functions of all involved entities. Functions can be modeled as Roles or Parame-

ters. The state of affairs corresponds to a Situation which acts as the setting for all
entities of the relation. A Situation satisfies a Description by mapping all abstract
functions to specific entities such as Objects or Regions. A simplified depiction of the
DnS pattern is shown in Figure 3.2b.

TopicSocialObject

Collection

TermisTopicOf isExpressedBy 1..*

Word Multiword
2..*

unionOf

hasComponent

Figure 3.3.: Topic pattern of the Ontopic ontology.

InFO also imports the Ontopic core ontology which is an extension of DUL. The
ontology defines the class Topic and a corresponding design pattern, which is depicted
in Figure 3.3. A Topic is a collection of semantically related social objects such as In-

formationObjects or Roles. A specific topic is expressed using one or more descriptive
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Terms. A term is either a single word or a multiword consisting of several single words.
Multiwords can be used for modeling compound words such as the word “neo-Nazi”. An
example Topic is “neo-Nazi propaganda” which is basically a collection of all neo-Nazi
propaganda material. This topic can be expressed using the single word “propaganda”
and a multiword consisting of the two single words “neo” and “Nazi”.

3.3.2. Overview of the pattern system

An overview of the InFO pattern system is depicted in Figure 3.4. The overview distin-
guishes between foundational ontologies, core ontologies, and domain ontologies. Foun-
dational ontologies do not focus on a specific use case or application domain. Instead,
they define a broad set of generic concepts and axioms for describing the world [266].
Foundational ontologies can be used in various fields and form a basis for creating other
ontologies such as core ontologies or domain ontologies [222]. Core ontologies further
specify a particular field by providing more detailed axioms and concepts [266]. They
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Figure 3.4.: Overview of the InFO pattern system. Dark gray elements are external
ontologies reused by InFO whereas white elements are patterns of InFO
or their domain-specific extensions.
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are usually built upon foundational ontologies and serve as the modeling basis for do-
main ontologies [266]. Thus, core ontologies cover various domains within a particular
field [222]. Finally, domain ontologies focus on a particular domain within a specific
field [222]. They provide concepts and axioms which are only relevant to the particular
domain and are not used in other domains [102]. Domain ontologies can be based on
foundational ontologies and core ontologies [222].

The InFO pattern system represents a core ontology for modeling regulations of In-
ternet communication. It is based on the foundational ontology DUL and on the core
ontology Ontopic. Its patterns are subdivided into the Technical Regulation patterns,
the Organizational Regulation patterns, and the Legal Regulation patterns. Each cate-
gory of patterns implements a specific aspect of information flow control. The Technical
Regulation patterns cover the description of all technical regulation details which are
InFO’s main focus. The Organizational Regulation patterns and the Legal Regulation
patterns enrich the technical policies with human-readable descriptions. Domain specific
extensions of the InFO pattern system are provided for routers, proxy servers, and name
servers as corresponding domain ontologies. As depicted in Figure 3.4, the InFO pattern
system also allows to integrate existing content labeling schemes such as PICS [183], the
RTA label, or age-de.xml [264].

In detail, the Technical Regulation consists of five different patterns which are based
on DUL’s DnS pattern depicted in Figure 3.2b. Each pattern models a different flow
control aspect which defines the context of the involved entities. The DnS pattern is
used since it allows entities such as computer systems to participate in a specific context
by fulfilling a specific function. Policies are basically descriptions of regulations and thus
are modeled as subclasses of Description. Their implementation leads to a Situation

where each concept defined by the policy is fulfilled by a corresponding entity. The
Flow Control Rule Pattern describes a flow control rule which covers the technical reg-
ulation details for a particular communication flow. The pattern describes whether or
not this flow of communication is to be allowed or denied and thus implements require-
ments RA.F.3.1 and RA.F.3.2. The regulation details include an identifier (RA.F.6)
and a classification (RA.F.7) of the content to be regulated as well as the location of
the user accessing the content (RA.F.8). All technical regulation details are provided
by an agent who acts as the rule data provider (RA.F.5.2). The Flow Control Rule
Pattern is further extended by the Redirecting Flow Control Rule Pattern and the Re-
placing Flow Control Rule Pattern, which allow the creation of more complex rules for
prohibiting a communication flow. Several flow control rules sharing the same purpose
are combined to form a flow control policy, which is provided by the Flow Control Policy
Pattern. In order to further describe the rules’ purpose, a flow control policy is linked
to an organizational code of conduct and/or a legal foundation. Therefore, the Flow
Control Policy Pattern imports the Organizational Regulation patterns and the Legal
Regulation patterns. A flow control policy also covers the enforcing party (RA.F.5.1)
and the enforcing system in form of routers (RA.F.1.1), proxy servers (RA.F.1.3), and
name servers (RA.F.1.2) which implement the flow control. Possible conflicts between
rules of one policy (RA.F.4.1) or multiple policies (RA.F.4.2) are resolved by using
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a meta-policy described with the Flow Control Meta-Policy Pattern. A meta-policy is
basically a collection of all flow control policies which are enforced by the same system.

The Organizational Regulation patterns and the Legal Regulation patterns enrich the
Technical Regulation with human-readable descriptions. The Code of Conduct Pattern
fulfills requirement RA.F.9.1 by defining concepts for describing an organizational code
of conduct as well as its legal background. The Flow Regulation Norm Pattern defines
the legality of a particular communication flow and implements requirement RA.F.9.2.
The Legislation Pattern pattern allows to model how the legal norm conceptualized
in the Flow Regulation Norm Pattern was actually created. This corresponds to a
legislative procedure and allows to specify the legislator of the norm to fulfill require-
ment RA.F.5.3. The Organizational Regulation patterns and the Legal Regulation
patterns do not define all details for covering human-readable descriptions themselves.
Instead, the patterns define generic concepts which can be integrated into existing legal
ontologies such as the Legal Knowledge Interchange Format (LKIF) [146, 147] or the
Core Legal Ontology (CLO) [123, 118]. This allows to reuse all concepts defined in these
ontologies together with the Technical Regulation of InFO. An external ontology is inte-
grated by using a corresponding mapping ontology like LKIFMapping or CLOMapping
as shown in Figure 3.4.

The Technical Regulation patterns only define the basic structure of the technical reg-
ulation details. This structure is independent of any particular enforcing node. Thus,
policies for particular types of enforcing nodes are described using domain ontologies
which are specialized from the Technical Regulation patterns. Policies for IP-based reg-
ulation are described using the Router Ontology (RA.F.1.1), policies for the Domain
Name System use the Name Server Ontology (RA.F.1.2), and policies for proxy servers
are based on the Application-level Proxy Ontology (RA.F.1.3). Each domain ontology
provides concepts and axioms for precisely specifying all parameters required for imple-
menting the flow control (RA.F.2) on a specific type of enforcing node. For example, the
Router Ontology contains concepts of IP-based rules which must be enforced by routers,
the Name Server Ontology provides concepts and axioms for modeling rules based on
domain names, and the Application-level Proxy Ontology provides concepts for model-
ing URL-based rules which are enforced by application-level proxy servers. In addition
to these three domain ontologies, it is also possible to create new domain ontologies by
extending the Technical Regulation patterns.

The fulfillment of all functional requirements is summarized in Table 3.1. The non-
functional requirements standards compliance RA.N.1, modularity RA.N.2 and ex-
tensibility RA.N.3 cannot be mapped to a particular pattern, since they affect the
InFO pattern system as a whole. Requirement RA.N.1 is achieved by using OWL as
the modeling language. Requirement RA.N.2 is addressed by InFO’s modular design
and its use of DUL as modeling basis. Requirement RA.N.3 is supported by allowing
the creation of new domain ontologies besides the already existing ones. Furthermore,
it is also possible to import other legal ontologies as the foundation for describing the
legal and organizational background. In summary, InFO covers all functional as well
as non-functional requirements defined in Section 3.2. A detailed discussion of these
requirements and a comparison with the state of the art and related work is provided in
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Table 3.1.: Functional requirements and their implementations by the InFO patterns.

Requirement Implementation

RA.F.1.1 Support for routers as enforcing nodes Router Ontology

RA.F.1.2 Support for name servers as enforcing nodes Name Server Ontology

RA.F.1.3 Support for proxy servers as enforcing nodes Application-level Proxy Ontology

RA.F.2 Operationalization of policies Router Ontology,

Application-level Proxy Ontology,

Name Server Ontology

RA.F.3.1 Support for allowing rules Flow Control Rule Pattern

RA.F.3.2 Support for denying rules Flow Control Rule Pattern

RA.F.4.1 Rule conflict resolution for single policies Flow Control Meta-Policy Pattern

RA.F.4.2 Rule conflict resolution for multiple policies Flow Control Meta-Policy Pattern

RA.F.5.1 Identification of regulation enforcer Flow Control Policy Pattern

RA.F.5.2 Identification of regulation provider Flow Control Rule Pattern

RA.F.5.3 Identification of regulation legislator Legislation Pattern

RA.F.6 Identification of regulated content Flow Control Rule Pattern

RA.F.7 Classification of regulated content Flow Control Rule Pattern

RA.F.8 User’s access location Flow Control Rule Pattern

RA.F.9.1 Organizational background Code of Conduct Pattern

RA.F.9.2 Legal background Flow Regulation Norm Pattern

Section 3.6. In the following, each pattern of InFO is described in more detail. First, the
different Technical Regulation patterns are explained. Afterwards, the Organizational
Regulation patterns and the Legal Regulation patterns are described. Finally, the inte-
gration of existing legal ontologies and content labeling schemes into the InFO pattern
system is covered.

3.3.3. Flow Control Rule Pattern

The Technical Regulation patterns cover three different patterns for expressing flow
control rules. These patterns are the Flow Control Rule Pattern, the Redirecting Flow
Control Rule Pattern, and the Replacing Flow Control Rule Pattern. All three pat-
terns define several communication aspects such as the communicating end points and
the transmitted content. Each communication aspect is modeled using the same basic
structure which is depicted in Figure 3.5. This structure defines a communication aspect
as a Role which is played by an instance of the class Object or one of its subclasses.
Example objects are client systems, web servers, or web pages. An object is identified by
its features which are described as a quality of the object. According to DUL’s qualities
and quality region pattern depicted in Figure 3.2c, the actual values of these features
are modeled as subclasses of Region. Possible identifiers for client systems and web
servers are IP addresses and domain names, possible identifiers for web pages are URLs,
and possible identifiers for communication channels are protocol names such as HTTP
or FTP. Each communication aspect is further specified by a corresponding Specifier

which parametrizes its Region.
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Figure 3.5.: Basic structure of a communication aspect in the Flow Control Rule Pat-
tern. This structure uses DUL’s qualities and quality region pattern.
<Aspect> is a placeholder for Sender, Receiver, Content, and Channel.
For example, a SenderSpecifier specifies a SenderRole.
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Figure 3.6.: Flow Control Rule Pattern.

The main class of the Flow Control Rule Pattern is FlowControlRuleMethod which
is modeled as a subclass of DUL’s Method. A flow control rule regulates if the establish-
ment of a particular Internet communication is to be allowed or denied. FlowControl-

RuleMethod itself does not specify whether the described flow control shall be allowed
or prohibited. Instead, this is expressed by its subclasses AllowingFlowControlRule-

Method and DenyingFlowControlRuleMethod. The Flow Control Rule Pattern allows
to describe such a regulation by associating the regulating rule with four different as-
pects of an Internet communication. These aspects are defined according to Shannon’s
communication model [278] and cover the sender and receiver of the communication as
well as the transmitted content and the communication channel. All four aspects are
modeled using the basic structure depicted in Figure 3.5 by replacing the placeholder
<Aspect> with Sender, Receiver, Content, and Channel, respectively. Such a generic
solution allows the Flow Control Rule Pattern to cover almost any arbitrary type of
information flow. For reasons of simplicity, the depiction of this pattern provided in Fig-
ure 3.6 only shows the aspect’s role as well as the classified object. As a flow control rule
regulates the establishment of a technical communication flow, the sender and receiver
of this communication are modeled as TechnicalSystems. The content is modeled as an
instance of InformationRealization since the rule operates on a specific digital data
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file and not on an abstract piece of information. If a flow control rule does not specify
one of the four communication aspects, it will be evaluated for all possible aspects. For
example, if a rule does not explicitly define a sender, it will be evaluated for all senders.

Besides the four communication aspects, the Flow Control Rule Pattern also defines
the provider of the rule as well as a regulated topic. RuleDataProvider represents the
party who creates a flow control rule by providing all information for technically enforc-
ing it. This includes the identifiers of all communication aspects such as IP addresses,
domain names, or URLs. Possible RuleDataProviders are given in the scenario in Sec-
tion 2.1 and include the BKA and KACST. The regulated topic describes the content
whose transmission is regulated by the rule. Example topics are neo-Nazi propaganda
or pornography. The content’s topic is described using the topic pattern of the Ontopic
ontology depicted in Figure 3.3. For simplicity reasons, Figure 3.6 only shows the class
Topic and not the complete topic pattern. Since a topic is independent from any spe-
cific encoding and primarily associated with abstract piece of information, the Ontopic
ontology associates a topic with an InformationObject. In order to be able to associate
a topic with an InformationRealization, the Flow Control Rule Pattern includes an
InformationObject as an indirect link between the two classes. If additional descrip-
tions of the content are desired, the InformationObject can be further described by
using additional content labeling schemes such as age-de.xml and their integration into
the InFO pattern system. The general process of such an integration is presented in
Section 3.3.8 and the details are covered in Appendix B.2.
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Figure 3.7.: Redirecting Flow Control Rule Pattern.
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The Flow Control Rule Pattern is extended by the Redirecting Flow Control Rule
Pattern and the Replacing Flow Control Rule Pattern. The Redirecting Flow Control
Rule Pattern allows to deny a particular communication flow by replacing the original
receiver with a different, predefined receiver. The intended communication flow is there-
fore not possible. The pattern may be useful if the sender of the communication shall
be redirected to another server which provides additional background information about
the regulation. The Redirecting Flow Control Rule Pattern is depicted in Figure 3.7. It
extends the Flow Control Rule Pattern by adding a RedirectionTarget which is mod-
eled according to the basic structure for communication aspects as shown in Figure 3.5.
The Replacing Flow Control Rule Pattern depicted in Figure 3.8 is similar to the Redi-
rection Flow Control Rule Pattern. It also denies a particular communication flow by
replacing one of its four basic communication aspects with a predefined value. More
specifically, the Replacing Flow Control Rule Pattern replaces the intended content with
a replacement content. The pattern extends the Flow Control Rule Pattern by defining
the class ReplacementTarget which is also modeled according to the basic structure of
communication aspects depicted in Figure 3.5.

3.3.4. Flow Control Policy Pattern

A flow control policy is a collection of multiple flow control rules sharing the same
purpose. The Flow Control Policy Pattern depicted in Figure 3.9 allows to define such
collections and associates them with a legal norm and/or code of conduct. Both the
legal norm and the code of conduct express the purpose of a flow control policy and all
of its rules in a human-readable form. Their usage and modeling is further described
in Section 3.3.6. The Flow Control Policy Pattern also associates a flow control policy
with one enforcing party and one technical enforcing system. The party is represented
by a SocialAgent and acts as a ResponsibleOperator. Possible types of operators are
natural persons and organizations. The system which technically implements the flow
control is modeled as a TechnicalSystem in the role of an EnforcingSystem. Example
systems are routers, name servers, and application-level proxy servers.

In order to resolve conflicting rules, the pattern provides two optional conflict reso-
lution algorithms. The LocalNonApplicabilityAlgorithm covers the handling of such
flow control rules which cannot be fully implemented on the enforcing system. An
example of such rules is described below in Section 3.3.5. The LocalConflictResolu-

tionAlgorithm defines how conflicts between two contradicting flow control rules of the
same policy are resolved. Such conflicts occur when rules of the same policy share the
same specifiers of their aspects but differ in the actual handling of the communication
flow. For example, one rule is allowing the specified communication flow while another
rule is prohibiting it. Before the algorithm is evaluated, all rules of the policy are or-
dered according to the rule priority algorithm of the policy’s meta-policy which is further
described in the next section. Both types of local conflict resolution algorithms are also
provided as global algorithms in a policy’s meta-policy. If a flow control policy does not
specify a local conflict resolution algorithm, existing conflicts are resolved by using the
corresponding algorithms of the meta-policy. The local algorithms are optional and are,
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Figure 3.9.: Flow Control Policy Pattern.

if existing, applied before their respective global algorithm. This allows to overwrite the
global algorithms within a particular policy.

3.3.5. Flow Control Meta-Policy Pattern

A flow control meta-policy provides several algorithms for resolving conflicts of flow
control rules. These algorithms either resolve conflicts between two contradicting rules
of one or more flow control policies or between a rule and its enforcing system. The
Flow Control Meta-Policy Pattern depicted in Figure 3.10 provides a conceptualiza-
tion for a meta-policy. It defines the class FlowControlMetaPolicyMethod as a col-
lection of several flow control policies and four different conflict resolution algorithms.
These algorithms are the PolicyPriorityAlgorithm, the RulePriorityAlgorithm, the
GlobalConflictResolutionAlgorithm, and the GlobalNonApplicabilityAlgorithm.
The algorithms are inspired by the policy languages XACML [205], DEN-ng [286], the
Ontology-Based Policy Translator (OPoT) [21], Ponder [88], and ODRL [156, 157] as
further described in Section 3.6. However, InFO provides a more fine-grained and flexi-
ble approach for solving conflicts than these policy-languages. Each algorithm covers a
specific aspect of the conflict resolution process which is further described below. Un-
like to the optional conflict resolution algorithms of a flow control policy, all global
algorithms of a meta-policy are mandatory. The behavior of a particular algorithm
is specified via a corresponding subclass of the algorithm type. For example, possible
GlobalConflictResolutionAlgorithms are IgnoreAffectedRulesAlgorithm and Ig-

noreAffectedPoliciesAlgorithm. The former algorithm only discards the conflicting
rules but leaves other rules of the same policy unchanged. The latter algorithm dis-
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cards the whole policies which contain the conflicting rules. Additional algorithms are
described in Appendix A. Apart from these algorithms, a flow control meta-policy also
defines the enforcing system’s default behavior via a DefaultRule. Each flow control
rule covers a specific communication flow. If no rule can be applied to a particular
communication, the DefaultRule will be used instead. This rule does not define any
specific sender, receiver, content, or channel. Instead, it only covers those parameters
necessary for the rule’s implementation, e. g., redirection targets or replacement targets.
A default rule will be evaluated for every communication as long as there is no other
flow control rule which already covers that communication. Similar to the Flow Control
Policy Pattern, the Flow Control Meta-Policy Pattern associates a meta-policy with one
enforcing party and one technical enforcing system. Each enforcing system is related to
exactly one flow control meta-policy and can implement multiple flow control policies
and corresponding rules.
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Figure 3.10.: Flow Control Meta-Policy Pattern.

Lupu and Sloman distinguish between two different categories of possible conflicts
of rules which are modality conflicts and application specific conflicts [192]. Modality
conflicts occur between two rules when the establishment of a particular flow of com-
munication is allowed by one rule and prohibited by the other rule. InFO resolves
modality conflicts with the PolicyPriorityAlgorithm, the RulePriorityAlgorithm,
the GlobalConflictResolutionAlgorithm, and the optional LocalConflictResolu-
tionAlgorithm. Application specific conflicts occur between a flow control rule and
its enforcing system and correspond to an incompatibility between the two. Such an
incompatibility exists if the rule uses ontological concepts which are unknown to the
enforcing system. In this case, the enforcing system does not know the meaning of the
unknown concepts and cannot implement the corresponding rule. Resolving applica-
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tion specific conflicts is important as InFO’s open design allows to define new types of
rules by creating a corresponding subclass of FlowControlRuleMethod. However, if the
enforcing system does not understand this new rule type, it cannot interpret it. For
example, a new rule type ReplaceWordOnWebPage may be defined in order to replace
offensive words on web pages by an application-level proxy server. If the enforcing proxy
server does not know the semantics of this rule, it cannot replace any offensive word.
Application-specific conflicts like these are handled by the GlobalNonApplicability-

Algorithm and the optional LocalNonApplicabilityAlgorithm which are evaluated
before applying any other conflict solution algorithm. All algorithms are evaluated by
an enforcing system in the following order:

1 Apply the LocalNonApplicabilityAlgorithm to the rules of each flow control
policy which defines such an algorithm. If a policy does not define a local non-
applicability algorithm, this step is skipped.

2 Apply the GlobalNonApplicabilityAlgorithm to the rules of all other flow con-
trol policies associated with the enforcing system’s meta-policy.

3 Order all flow control policies according to the meta-policy’s PolicyPriorityAl-
gorithm.

4 Order the rules of each flow control policy according to the meta-policy’s Rule-

PriorityAlgorithm.

5 Apply the optional LocalConflictResolutionAlgorithm to all rules which are in
conflict with each other and are part of the same policy. Skip this step if a policy
does not define a local conflict resolution algorithm.

6 Apply the GlobalConflictResolutionAlgorithm to all remaining rules which are
in conflict with each other.

Steps 1 and 2 resolve all application-specific conflicts. After these steps, every flow
control policy only contains such rules which can be completely interpreted by and
implemented on their enforcing system. Modality conflicts which can be resolved by
defining different priorities of the conflicting rules are eliminated by applying steps 3
and 4. Rules with a low priority that are in conflict with a rule of higher priority
are ignored by the enforcing system. Any modality conflict which still remains after
steps 3 and 4 is resolved during steps 5 and 6. In order to achieve this, the Global-

ConflictResolutionAlgorithms are designed to remove all contradicting rules or their
corresponding policies in the final step 6. A flow control meta-policy must define at least
one algorithm for each type. If there is more than one algorithm per type, the property
follows from DUL’s sequence pattern defines the order of their application. Evaluating
the six steps above ensures that all remaining rules can completely be interpreted by the
enforcing system. However, if rules or policies are removed during this process, manual
intervention may be necessary to further analyze and eliminate the actual cause of the
conflict.
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3.3.6. Organizational Regulation and Legal Regulation Patterns

The Organizational Regulation patterns and the Legal Regulation patterns allow to as-
sociate human-readable background information with a flow control policy. The pat-
terns are designed to integrate existing legal ontologies such as LKIF [146, 147] or
CLO [123, 118] into InFO by using corresponding mapping ontologies. This flexible
design allows to reuse different external ontologies with variable expressiveness in dif-
ferent scenarios. The Organizational Regulation defines the Code of Conduct Pattern
and the Legal Regulation defines the Flow Regulation Norm Pattern and the Legislation
Pattern. This section describes these three patterns. The integration of existing legal
ontologies into InFO is discussed in Section 3.3.7.

The Code of Conduct Pattern depicted in Figure 3.11 allows to describe the organi-
zational code of conduct on which a technical flow control implementation is based. A
code of conduct is represented by the pattern’s main concept CodeOfConductDescrip-

tion. It is created by the party acting as the CodeOfConductCreator and based on
at least one legal foundation such as a legal norm or a law. The legal foundation can
define the boundaries of a code of conduct by stating that the code must not violate
any legal norm. A code of conduct is expressed by a CodeOfConductText which is a
subclass of InformationObject and describes the code in a human-readable form. The
class CodeOfConductDescription is used in the Flow Control Policy Pattern depicted
in Figure 3.9 to link a particular flow control policy to its organizational motivation.
The code of conduct then holds for all flow control rules of the associated policy.

CodeOfConductCreator Role LegalFoundation

CodeOfConductDescriptionDescription

SocialAgent

classifies

1

Description

classifies

1

1

defines

1..*

CodeOfConductText

isExpressedBy 

1..*

InformationObject

Figure 3.11.: Code of Conduct Pattern.

The Flow Regulation Norm Pattern is depicted in Figure 3.12 and models the legal
state of a particular communication flow. It defines whether a technical communication
flow is permitted or prohibited by using a corresponding subclass of the pattern’s main
concept FlowRegulationNorm. The pattern can be considered as a legal view on the
technical Flow Control Rule Pattern described in Section 3.3.3. The Flow Regulation
Norm Pattern models a particular communication flow as an event by using DUL’s
participation pattern as depicted in Figure 3.2e. The participants of this event are
both communicating parties, the transmitted content, and the content’s topic. The
communicating parties are distinguished between the content provider and the content
consumer. Both parties are represented by their technical communication system such
as a web server or a web browser and the agent who uses that system. Possible agents
include organizations which may operate a web server and natural persons which may use
a web browser. In contrast to the Flow Control Rule Pattern, the Flow Regulation Norm
Pattern does not specify all details of a technical communication system. Instead, the
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Figure 3.12.: Flow Regulation Norm Pattern.

legal view modeled by this pattern focuses on the system’s type such as a router or a name
server. The type of the event defines the specific aspect of the communication flow that
is actually regulated. ContentTransmissionType states that the legal norm regulates
the content’s transmission between two communicating parties and affects both parties.
If the event type corresponds to a ContentProvidingType, the legal norm mainly affects
the content provider whereas a ContentConsumingType primarily regulates the actions
of the content consumer. For example, §86 of the German Criminal Code [62] regulates
the distribution of neo-Nazi propaganda and could be modeled using the event type
ContentProvidingType. Similar to a code of conduct, a legal norm is also expressed
by an InformationObject which models a human-readable representation of the norm.
The specific relations between all entities of the Flow Regulation Norm Pattern depend
on the integrated legal ontology. The general procedure of this integration is discussed
in Section 3.3.7 and possible mappings are provided in Appendix B.1. A FlowRegu-

lationNorm is associated with a flow control policy by using the Flow Control Policy
Pattern described in Section 3.3.4. This pattern models the norm as the policy’s legal
foundation, thereby linking it to all of the policy’s flow control rules as well.

The Legislation Pattern is depicted in Figure 3.13 and complements the Flow Regula-
tion Norm Pattern. It models the altering process of a legal norm and provides further
background information about how the current state of a legal norm was achieved. This
altering process is considered as a LegislationAct which is performed by a Legislator

who is responsible for the process. The Legislation Pattern has a similar design as the
Flow Regulation Norm Pattern. Its main concept LegislationNorm is associated with
all concepts relevant for passing or modifying a legal norm. The particular alteration
of a legal norm is modeled as a subclass of AlteredNorm and may be the creation, the
suspension, or the modification of a norm.
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3.3.7. Integration of Existing Legal Ontologies into InFO

The Organizational Regulation patterns and the Legal Regulation patterns are designed
for using existing legal ontologies together with InFO by integrating them into InFO’s
pattern system. The main goal of this integration is the reuse of the legal ontologies
without modifying or refactoring them beforehand. Statements of the integrated exist-
ing legal ontologies must be valid in both InFO and in the original legal ontology. The
integration of these legal ontologies is done in four steps and based on the alignment
method by Scherp et al. [265]. In the first step, the structure and design of a legal
ontology is analyzed and the core concepts and properties are identified. The analysis
is based on reviewing the ontology model and/or any additional documentation. In the
second step, existing groups of concepts and properties are identified. Such groups may
be explicitly modeled by using, e. g., ontology design patterns or only described in ex-
ternal documents. The third step corresponds to the actual integration and is based on
creating a mapping ontology for each legal ontology. As depicted in Figure 3.4, such
a mapping ontology imports the Organizational Regulation and the Legal Regulation
of InFO as well as the legal ontology to be integrated. A mapping ontology does not
define any new classes or properties. Instead, it only defines subclass and subproperty
relationships between the concepts and properties of InFO and the legal ontology. How-
ever, in contrast to Scherp et al. [265], modifying the original ontology by, e. g., removing
concepts or axioms is not intended. Therefore, the internal structure of both InFO and
the integrated legal ontology remains intact. The fourth step is the validation of the
mappings and can be done using an ontology reasoner. The validation ensures that the
mapping is correct and does not contain any modeling errors.

Figure 3.4 shows how the legal ontologies CLO [123, 118] and LKIF [146, 147] are in-
tegrated into InFO. They can be used for both describing the organizational background
and the legal background of an information flow regulation. The actual integration is
done with the mapping ontologies LKIFMapping and CLOMapping. Both mapping ontolo-
gies import the Organizational Regulation patterns and the Legal Regulation patterns
as well as their respective legal ontology and define additional statements for the inte-
gration. The details of the mapping ontologies are provided in Appendix B.1.
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3.3.8. Integration of Existing Content Labeling Schemes into InFO

The Flow Control Rule Pattern introduced in Section 3.3.3 uses the topic pattern of
the Ontopic ontology for describing the topic of the transmitted content. Although the
descriptions created with this pattern are sufficient for many scenarios, it is also possi-
ble to further describe the transmitted content by importing content labeling schemes
such as the RTA label, age-de.xml [264], or PICS [248] into InFO. These schemes are
designed to be used by child protection software for prohibiting minors from accessing
adult web content. Thus, integrating these schemes into InFO can achieve more com-
patibility between the InFO pattern system and other implementations for regulating
access to web pages such as Net Nanny and the Jugendschutzprogramm. Figure 3.4
shows how the RTA label, age-de.xml, and PICS are integrated into InFO. The integra-
tion of the content labeling schemes is done in a similar way as the integration of the
legal ontologies described in the previous section. The mapping uses the corresponding
mapping ontologies RTAMapping, AgeDeXmlMapping, and PICSMapping. The details
of the three mapping ontologies are provided in Appendix B.2.

3.3.9. Summary

The pattern system InFO consists of several ontology design patterns which cover specific
aspects for describing the regulation of information flow on the Internet. These aspects
are either of technical, of organizational, or of legal issue. The main focus of InFO is the
technical regulation of Internet communication. The Organizational Regulation and the
Legal Regulation are designed to be used together with existing legal ontologies.

3.4. Applications and Use Cases

This section demonstrates how the InFO policy language is applied for implementing
the scenarios provided in Section 2. The first scenario covers the regulation of Internet
communication and is described in Sections 3.4.1 to 3.4.4. Afterwards, Section 3.4.5
describes the second scenario for securing the access to medical data.

3.4.1. Example Policies for Regulating Internet Communication

Figure 3.14 depicts a subnetwork of the example network described in Section 2.1 in-
cluding more technical details such as the addresses of the communication nodes and the
URLs of the web content. These details are required for precisely defining a set of flow
control policies. The policies are created using three different domain ontologies that
extend InFO’s Technical Regulation patterns. These domain ontologies are the Router
Ontology, the Name Server Ontology, and the Application-Level Proxy Ontology. Each
ontology defines specific flow control rules which are designed to be implemented on their
respective enforcement systems. For example, the Router Ontology defines the classes
IPAddressBlockingRuleMethod and IPAddressRedirectingRuleMethod as subclasses
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Figure 3.14.: Regulated web servers and web content of the example policies. The
depicted topology is a subnetwork of Figure 2.1 extended with more
technical details such as IP addresses and domain names.

of the generic classes DenyingFlowControlRuleMethod and RedirectingFlowControl-

RuleMethod. The ontology also provides additional axioms which reduce the possibility
of creating invalid flow control rules and flow control policies. Flow control rules based
on IP addresses require at least one IP address for the sender and/or the receiver of a
communication. If such a flow control rule does not contain at least one IP address, the
rule cannot be enforced by a router and is therefore considered as invalid. Similarly, the
Name Server Ontology defines classes and axioms for flow control rules based on domain
names and the Application-Level Proxy Ontology covers classes and axioms based on
URLs. Further details of the classes and axioms of the three domain ontologies are
provided in Appendix A.

The following subsections present three example flow control regulations for each of
the three domain ontologies. The example policies cover the regulation of the computer
networks cn-1 and cn-3 as well as the web server ws-2. The network cn-1 provides neo-
Nazi material whose access shall be prohibited for all German users. The flow control
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rules implementing this access regulation are based on domain names and are enforced
by the name server ns-2 of the German Telecom. The network cn-3 located in Germany
and the web server ws-2 located in the USA provide pornographic web content. Access
to this content shall be prohibited for all users in Saudi Arabia and for all students of
the German comprehensive school. In Saudi Arabia, the access regulations are based on
IP addresses and enforced by the router ro-1 whereas the German comprehensive school
regulates the access using its proxy server pr-1 which operates on URLs. For illustration
purpose, each flow control regulation consists of two or three FlowControlRuleMethods,
one FlowControlPolicyMethod that contains these rules, and one FlowControlMeta-

PolicyMethod. All rules of the same policy share the same regulated topic and sender.
The sender of each rule and hence the requester of the regulated content is modeled as
a whole computer network rather than a single computer.

In general, a communication between a content consumer and a content provider can
be regulated in two different ways. The first option is to regulate the content consumer’s
request before it is sent to the content provider. In this case, the server acting as the
content provider does not receive any message from the client which acts as the content
consumer. The second option is to regulate the content provider’s response after it has
processed the content consumer’s request. Implementing this option allows the server
to receive messages from the client but prohibits the transmission of messages in the
opposite direction. InFO generally supports both types of regulation by defining the
sender and receiver of a communication accordingly. Choosing a particular type of
regulation may depend on technical, on organizational and/or on legal factors and must
be decided before creating particular regulation policies. For example, the first option
results in a faster regulation as an enforcing system can immediately regulate a request
without having to wait for a corresponding response. This also reduces the amount of
transmitted data and may result in a faster Internet connection of the enforcing node.
On the other hand, the legal foundation of a regulation may allow requesting particular
content but not the transmission of the content itself. In this case, the second option
might be used for implementing the regulation. In addition, there are also technical
constraints when choosing between the two types of regulation. Although routers and
proxy servers can regulate the flow of communication in both directions, name servers can
only regulate requests from a client system. This is due to the use of the domain name
system when initiating an Internet communication [212]. If a client wants to contact a
server, it first maps the domain name of the server to its IP address. The IP addresses of
the client and the server are then included in the messages which are exchanged between
the two systems. When sending a response, the server already has the IP address of the
client and does not need to contact a name server. Thus, prohibiting the communication
between two parties is only possible by implementing the regulation on the client’s name
server. In the following, all example rules are designed in such a way that the initial
request of a client system is regulated by the enforcing system.

For reasons of brevity, the following depictions of flow control rules, policies, and
meta-policies only show their most important aspects although the actual regulation
is still complete. All three meta-policies define a global conflict resolution algorithm
and a global non-applicability algorithm as these algorithms are mandatory for the
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conflict resolution process. In contrast, the three flow control policies do neither define a
local conflict resolution algorithm nor a local non-applicability algorithm. Local conflict
resolution algorithms are only evaluated if a policy contains two or more contradicting
rules. Since the flow control rules used in the following examples do not provoke any
conflicts, the algorithm is omitted for simplicity reasons. On the other hand, local non-
applicability algorithms are only evaluated if an enforcing system cannot implement a
particular flow control rule. The flow control rules used in the examples are basic blocking
and allowing rules. The following subsections provide three examples of flow control
rules, flow control policies, and flow control meta-policies to be enforced on a router, a
name server, and a proxy server. A detailed workflow of creating and distributing these
regulations is provided in Section 4.7.1 as part of the graph signing framework Siggi.

3.4.2. Applying the Name Server Ontology

In the first example regulation, the German Telecom regulates the access to the Storm-
front network, which provides an online platform hosting neo-Nazi material [95, 319].
The regulation prohibits the clients of the German Telecom to access any neo-Nazi ma-
terial available in the network. The regulation is implemented using the Name Server
Ontology and enforced by a name server of the German Telecom. The Stormfront net-
work is a real-world example of regulating Internet communication and was the target
of several regulations in the past. The network is still regulated in some way, e. g. the
French11 and the German12 versions of the Google search engine exclude the website
from their search results [196]. A detailed discussion of the regulation of Stormfront
is provided in [95, 319]. As depicted in Figure 3.14, the Stormfront network is identi-
fied as cn-1 and its domain name is stormfront.org. The network contains a name
server represented by the individual ns-1 and a web server represented by the indi-
vidual ws-1. While ns-1 is a regular name server managing the domain names of the
domain stormfront.org, ws-1 corresponds to the web server providing the Stormfront
web forum. The domain name of the web server is www.stormfront.org and the name
server can be accessed by its domain name iserver.stormfront.org. The example
policy for regulating the Stormfront network cn-1 only blocks access to those parts of
the network that can be directly associated with neo-Nazi material. At the same time,
the regulations allow access to other network nodes such as the name server ns-1. The
name server only provides a mapping between domain names and IP addresses and does
not host any web content of neo-Nazi material itself.

Figure 3.15 depicts the general definitions used for the example flow control rules
shown in Figure 3.16. Figure 3.15a shows an ontological representation of the Stormfront
network cn-1 and Figure 3.15b depicts the ontological representation of the network
cn-4 of the German Telecom. Both representations use DUL’s qualities and quality
region pattern to associate a computer network with its network address and its domain
name. The computer network of the German Telecom is identified as cn-4 and its
network address is 2.160.0.0/12. The postfix /12 of the network address denotes the

11http://www.google.fr, last accessed: 01/21/16
12http://www.google.de, last accessed: 01/21/16
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CIDR notation [114] of the network’s subnet mask. 12 corresponds to the subnet mask
255.240.0.0. Figure 3.15c shows how the topic pattern of the Ontopic ontology is used
for modeling a topic representing neo-Nazi propaganda. The topic is identified as nnpt-1
and consists of one multiword and one regular word.

hasQuality hasRegion hasDomainNamedq-1: DomainQuality dnr-1: DomainNameRegion 'stormfront.org'cn-1: ComputerNetwork

(a) Representation of the Stormfront network cn-1. DUL’s qualities and quality region pattern
depicted in Figure 3.2c is used to model the network’s domain name.
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'2.160.0.0'

'256.240.0.0'

'2.160.0.0'hasIPAddress

hasSubnetMask

ipar-1: IPAv4AddressRegion

(b) Representation of the computer network cn-4 of the German Telecom. The network is
associated with its IP address by using DUL’s qualities and quality region pattern.
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(c) Representation of the topic nnpt-1 describing neo-Nazi material. The topic is modeled using
the topic pattern of the Ontopic ontology depicted in Figure 3.3.

Figure 3.15.: General definitions used in the example regulation of the Name Server
Ontology.

The example regulation consists of two flow control rules, one flow control policy, and
one flow control meta-policy. Both flow control rules cover the same sender, the same
regulated topic, and the same rule data provider. The sender of each rule and thus
the requester of the regulated content corresponds to the computer network cn-4 of the
German Telecom. The topic of the regulated content is nnpt-1 and corresponds to neo-
Nazi material. The rule data provider of each rule is bka-1 and corresponds to the BKA
which is in charge of creating flow control rules and sending them to the German Telecom.
The first rule dnsr-1 depicted in Figure 3.16a states that any German client connected
to the network cn-4 shall be prevented from establishing a connection to the Stormfront
network cn-1. The intention of this rule is to prevent users of the German Telecom
from accessing neo-Nazi material hosted within the Stormfront network. However, the
network also includes servers which do not provide neo-Nazi material such as the name
server ns-1. Thus, the second flow control rule dnsr-2 depicted in Figure 3.16b allows to
access this name server. dnsr-2 shares the same rule data provider and sender network
as rule dnsr-1. For reasons of brevity, not all of these details are depicted in the figure.

The flow control policy dnsp-1 of the flow control rules dnsr-1 and dnsr-2 is depicted
in Figure 3.16c. It associates both rules with their enforcing system and their respon-
sible operator. The responsible operator gt-1 represents the German Telecom and the
enforcing system ns-2 corresponds to the name server depicted in Figure 3.14. For rea-
sons of brevity, the name server is not further specified. However, it is also possible to
further describe the name server by using DUL’s qualities and quality region pattern
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dnsrs-1: DomainNameBlockingRuleSituation

satisfies

dnsr-1: DomainNameBlockingRuleMethod

rr-1: ReceiverRole

cn-1: ComputerNetwork

classifies

rs-1: ReceiverSpecifier

dnr-1: DomainNameRegion

parametrizes

ss-1: SenderSpecifier

classifies

nnpt-1: Topic

rt-1: RegulatedTopic

classifies

bka-1: SocialAgent

classifies

rdp-1: RuleDataProvider

defines

hasSetting

sr-1: SenderRole

cn-4: ComputerNetwork

classifies

hasSetting

specifies specifies

ipar-1: IPAv4AddressRegion

(a) First example flow control rule of the Name Server Ontology

hasSetting dnsrs-2: DomainNameAllowingRuleSituation

satisfies

dnsr-2: DomainNameAllowingRuleMethod

rr-2: ReceiverRole

ns-1: NameServer

rs-2: ReceiverSpecifier

dnr-2: DomainNameRegion

defines

specifiesss-1: SenderSpecifier

classifies

sr-1: SenderRole

cn-4: ComputerNetwork

classifies

specifies

classifies parametrizes

ipar-1: IPAv4AddressRegion

(b) Second example flow control rule of the Name Server Ontology

dnsp-1: FlowControlPolicyMethod

dnsps-1: FlowControlPolicySituation

dnsr-2: DomainNameAllowingRule

satisfies

la-1: LegalAuthorization

defines

coc-1: CodeOfConductDescription

om-1: OrganizationalMotivation

dnsr-1: DomainNameBlockingRule

stgb86-1: FlowRegulationNorm

hasSetting

hasMember

hasMember

ro-1: ResponsibleOperator

classifies

gt-1: SocialAgent

es-1: EnforcingSystem

ns-2: NameServer

classifies classifies classifies

(c) Example flow control policy of the Name Server Ontology

dnsmp-1: FlowControlMetaPolicyMethod

dnsmps-1: FlowControlMetaPolicySituation

satisfies

dnsp-1: FlowControlPolicyMethod

dnsr-3: DomainNameAllowingRuleMethod

dr-1: DefaultRule

classifies

defines

hasSetting

hasSetting

ppa-1: PreferLatestPolicyAlgorithm

ppr-1: PolicyPriorityRole

classifies

follows

hasMember 

rpa-2: PreferDomainNameToDomainAlgorithm

rpr-2: RulePriorityRolerpr-1: RulePriorityRole

rpa-1: PreferLongestDomainNameAlgorithm

ro-1: ResponsibleOperator

classifies

gt-1: SocialAgent

classifies classifies

gcra-1: IgnoreAffectedRulesAlgorithm

gcrr-1: GlobalConflictResolutionRole

classifies

gnaa-1: IgnoreAffectedRuleAlgorithm

gnar-1: GlobalNonApplicabilityRole

classifies

es-1: EnforcingSystem

classifies

ns-2: NameServer

(d) Example flow control meta-policy of the Name Server Ontology

Figure 3.16.: Example regulating using the Name Server Ontology.
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for, e. g., associating it with its IP address. The flow control policy dnsp-1 also links the
two rules dnsr-1 and dnsr-2 to their respective legal authorization and organizational
motivation. In the case of the Stormfront network, the legal authorization is §86 of the
German Criminal Code [62] which is identified as stgb86-1. The code of conduct of the
German Telecom [91] is used as an organizational motivation and represented as coc-1.

The flow control meta-policy dnsmp-1 of the of the name server ns-2 is depicted in
Figure 3.16d. As depicted, it shares the same enforcing enforcing system and responsible
operator as the flow control policy dnsp-1. Furthermore, it defines a default rule and
several conflict resolution algorithms. The default rule is identified as dnsr-3 and states
that any communication which is not explicitly covered by another rule is to be allowed.
This type of regulation corresponds to a blacklisting approach in which all communica-
tion is to be allowed as long as it is not explicitly forbidden by a particular rule. As
depicted in Figure 3.16c, the flow control policy dnsp-1 does not define any local conflict
resolution algorithm or local non-applicability algorithm. Therefore, all non-applicable
rules and conflicts between contradicting rules are handled by the meta-policy dnsmp-2.
The global non-applicability algorithm gnaa-1 states that all rules which cannot be en-
forced by the name server ns-2 are to be ignored. As both rules dnsr-1 and dnsr-2 only
use standard concepts of the InFO policy language, they are not affected by this algo-
rithm. The policy priority algorithm ppa-1 states that newer policies have higher priority
than older policies. Since the example regulation only uses one policy, this algorithm
does not affect the flow control policy dnsp-1. The meta-policy defines two different rule
priority algorithms which are rpa-1 and rpa-2. The algorithms decide which of the two
flow control rules dnsr-1 and dnsr-2 are used for regulating access to the name server
ns-1. Both rules cover the domain name dnr-1 of the name server and can therefore
generally be applied for regulating its access. DUL’s sequence pattern is used to define
that the algorithm rpa-1 has a higher priority than rpa-2 and must therefore be applied
first. The algorithm rpa-1 states that longer domain names shall be preferred to shorter
ones. In this case, the domain name iserver.stormfront.org of the name server ns-1
is longer that the domain name stormfront.org of the whole computer network cn-1.
Thus, the enforcing system ns-2 applies the rule dnsr-2 to the name server ns-1 and
the rule dnsr-1 to all other servers of the same domain. This results in the refusal of
any communication attempts to any server in the network stormfront.org except for
the name server with the domain name iserver.stormfront.org. Finally, the global
conflict resolution algorithm gcra-1 states that all conflicting rules which are still in
conflict with each other after having applied all other algorithms are to be ignored by
the enforcing system. The conflict between the two rules dnsr-1 and dnsr-2 is resolved
after having applied the rule priority algorithm rpa-1. Thus, these rules are not affected
by the global conflict resolution algorithm gcra-1.

3.4.3. Applying the Router Ontology

In the second example regulation, the Saudi Arabian access provider Sahara Net pro-
hibits its users from accessing pornographic web content. The regulation to this web
content is enforced by a router of Sahara Net and implemented using the Router On-
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tology. The regulated web content is provided by a web server located in the USA and
by the FunDorado network located in Germany. The US web server is identified as
ws-2 and has the two IP addresses 104.20.26.14 and 104.20.27.14. The FunDorado
network is identified as cn-3 and has the network address 64.104.23.0/24. It contains
the two web servers ws-3 and ws-4. Similar to the web server ws-2, the web server
ws-3 also provides pornographic content. On the other hand, the web server ws-4 hosts
the website of FunDorado GmbH, the company managing the FunDorado network. The
company’s web site does not contain any pornographic content and only provides infor-
mation about the company and its services. Thus, access to the web server ws-4 with the
IP address 64.104.23.17 shall not be blocked. Figure 3.17 shows how the IP addresses
of the web server ws-2 are defined. The network address of the FunDorado network and
the IP addresses of its web servers are defined similarly and are not included for reasons
of brevity.

ws-2: WebServer ipaq-1: IPAddressQualityhasQuality hasRegion

'104.20.27.14'

'104.20.26.14'hasIPAddress

hasIPAddress

ipar-3: IPAv4AddressRegion

Figure 3.17.: Representation of the US web server ws-2 and its two IP addresses.

The example regulation is depicted in Figure 3.18 and consists of three flow control
rules, one flow control policy, and one flow control meta-policy. All flow control rules
cover the same sender, the same rule data provider, and the same regulated topic.
The sender of each rule corresponds to the network cn-2 of Sahara Net. All rules
are created by the KACST which is identified as kacst-1. The rule data provider is
responsible for regulating all Internet communication in Saudi Arabia and sends the
created rules to Sahara Net. The topic of the regulated web content is identified as pt-1
and represents pornography. The first flow control rule ipr-1 is depicted in Figure 3.18a.
It states that any client system of the network cn-2 shall be prevented from establishing
a connection to the web server ws-2. Similarly, the second flow control rule ipr-1

depicted in Figure 3.18b blocks the access for all users of the computer network cn-2 to
the FunDorado network cn-3. This network mainly contains web servers such as ws-3

which provide pornographic web content which is to be blocked. However, the network
also covers the web server ws-4 which does not provide such content. Thus, the flow
control rule ipr-3 depicted in Figure 3.18c allows the access to this web server. The flow
control rules ipr-2 and ipr-3 share the same rule data provider and regulated topic as
rule ipr-1. For reasons of brevity, this is not shown in Figures 3.18b and 3.18c.

The flow control policy ipp-1 depicted in Figure 3.18d associates the flow control rules
ipr-1, ipr-2, and ipr-3 with their enforcing system and their responsible operator as
well as their legal authorization. The enforcing system is the Router ro-1. It is operated
by Sahara Net which is identified as sn-1. The legal authorization of the flow control
rules is §6 of the Saudi Arabian Anti-Cyber Crime Law [179] and represented as accl6-1.
An organizational motivation for the regulations is not provided in the policy. Since
the flow control policy ipp-1 does not define any local conflict resolution algorithm,
all conflicts between conflicting rules are resolved by the policy’s meta-policy ipmp-1
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iprs-1: IPAddressBlockingRuleSituation

satisfies

ipr-1: IPAddressBlockingRuleMethod

rr-3: ReceiverRole

ws-2: WebServer

classifies

rs-3: ReceiverSpecifier

parametrizes

ss-2: SenderSpecifier

classifies

pt-1: Topic

rc-2: RegulatedTopic

classifies

kacst-1: SocialAgent

classifies

rp-2: RuleDataProvider

defines

hasSetting

sr-2: SenderRole

cn-2: ComputerNetwork

classifies

hasSetting

specifies specifies

ipar-2: IPAv4AddressRegion ipar-3: IPAv4AddressRegion

(a) First example flow control rule of the Router Ontology

iprs-2: IPAddressBlockingRuleSituation

satisfies

ipr-2: IPAddressBlockingRuleMethod

rr-4: ReceiverRole

cn-3: ComputerNetwork

classifies

rs-4: ReceiverSpecifier

parametrizes

ss-2: SenderSpecifier

classifies

sr-2: SenderRole

cn-2: ComputerNetwork

classifies

hasSetting

specifies specifies

defines

ipar-4: IPAv4AddressRegionipar-2: IPAv4AddressRegion

(b) Second example flow control rule of the Router Ontology

hasSettingiprs-3: IPAddressAllowingRuleSituation

satisfies

ipr-3: IPAddressAllowingRuleMethod

rr-5: ReceiverRole

ws-4: WebServer

classifies

rs-5: ReceiverSpecifier

defines

specifiesss-2: SenderSpecifier

classifies

sr-2: SenderRole

cn-2: ComputerNetwork

classifies

specifies

parametrizes

ipar-5: IPAv4AddressRegionipar-2: IPAv4AddressRegion

(c) Third example flow control rule of the Router Ontology

ipp-1: FlowControlPolicyMethod

ipps-1: FlowControlPolicySituation

ipr-3: IPAddressAllowingRuleMethod

satisfies

la-2: LegalAuthorization
ipr-1: IPAddressBlockingRuleMethod

accl6-1: FlowRegulationNorm

classifies

followshasMember 

hasMember 

ro-2: ResponsibleOperator

classifies

sn-1: SocialAgent

es-2: EnforcingSystem

ro-1: Router

classifies

defines

hasSetting 

ipr-2: IPAddressBlockingRuleMethodhasMember 

follows

(d) Example flow control policy of the Router Ontology

ipmp-1: FlowControlMetaPolicyMethod

ipmps-1: FlowControlMetaPolicySituation

satisfies

ipp-1: FlowControlPolicyMethod

ipr-4: IPAddressAllowingRuleMethod

dr-2: DefaultRule

classifies

rpa-3: EvaluateRuleOrderingAlgorithm

rpr-3: RulePriorityRole

classifies

defines

hasSetting

hasMember 

ro-2: ResponsibleOperator

classifies

sn-1: SocialAgent

es-2: EnforcingSystem

ro-1: Router

classifies

(e) Example flow control meta-policy of the Router Ontology

Figure 3.18.: Example usage of the Router Ontology.
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depicted in Figure 3.18e. The meta-policy contains the flow control policy ipp-1 and
shares the same responsible operator and enforcing system. Its default rule ipr-4 states
that any communication is allowed as long as it is not explicitly forbidden by another
rule. For reasons of brevity, Figure 3.18e does not depict all conflict resolution algorithms
of the meta-policy. Instead, it only shows a rule priority algorithm for resolving the
conflict between the two flow control rules ipr-2 and ipr-3. Both rules cover the same
IP address region ipar-5 which is associated with the web server ws-4. Thus, they can
in general be applied to this server. In order to decide which of the two rules are to
be used, the enforcing router ro-1 must apply the rule priority algorithm rpa-3. This
algorithm requires an explicit ordering of flow control rules with the property follows.
As depicted in Figure 3.18d, the rule ipr-3 has a higher priority than ipr-2 in order
to allow access to the web server ws-4. Thus, the router ro-1 applies the rule ipr-3

to the web server ws-4 and the rule ipr-2 to all other servers of the computer network
cn-2. This results in the refusal of any communication attempts to any server in the
network 64.104.23.0/24 except for the web server with the IP address 64.104.23.17.
As the flow control rule ipr-1 is not in conflict with the other flow control rules, it is
not affected by the meta-policy’s rule priority algorithm.

3.4.4. Applying the Application-Level Proxy Ontology

In the third example regulation, the German comprehensive school cs-1 prohibits its
students from accessing pornographic web content by using the Application-Level Proxy
Ontology. The regulation is enforced by the school’s proxy server pr-1 which serves
as a gateway for all student computers. The regulated web content corresponds to
the websites wst-1 and wst-2 which are hosted by the web servers ws-2 and ws-3,
respectively. The example regulation consists of three flow control rules, one flow control
policy, and one flow control meta-policy as depicted in Figure 3.19. The first flow control
rule alpr-1 is depicted in Figure 3.19a. It states that any user of the school’s network
cn-5 shall be prevented from accessing the website wst-1. The rule is provided by the US
company ContentWatch which is represented as cw-1. The regulated topic corresponds
to pornography and is identified as pt-1. The website wst-1 consists of several web pages
including the web page wp-1. Although most of these web pages provide pornographic
content, the web page wp-1 does not. Instead, it only provides textual information about
the website such as its terms of services and its privacy policy. Thus, the second flow
control rule alpr-2 depicted in Figure 3.19b allows the student computers to access
the web page wp-1. The third flow control rule alpr-3 depicted in Figure 3.19c blocks
the access to the FunDorado website wst-2. The rule is created by JusProg which is a
registered society located in Germany and identified as jp-1. General information about
the website wst-2 such as its terms of services is provided by a separate website which is
hosted by the web server ws-4. Access to this website is not covered by any flow control
rule and therefore not regulated in any way.

The flow control policy alpp-1 combines the three rules alpr-1, alpr-2, and alpr-3

and is depicted in Figure 3.19d. The policy states that the rules are enforced by the
proxy server pr-1 which is operated by the school itself. Although the rules are created
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alprs-1: URLBlockingRuleSituation

satisfies

alpr-1: URLBlockingRuleMethod

cr-1: ContentRole

wst-1: WebSite

classifies

cs-1: ContentSpecifier

ur-1: URLRegion

parametrizes

pt-1: Topic

rc-2: RegulatedTopic

classifies

cw-1: SocialAgent

classifies

rp-3: RuleDataProvider

defines

hasSetting

hasSetting

specifies

ss-3: SenderSpecifier

nar-4: NetworkAddressRegion

classifies

sr-3: SenderRole

cn-5: ComputerNetwork

classifies

specifies

uq-1: URLQualityhasQuality hasRegion 'http://www.porntube.com/'hasURL

(a) First example flow control rule of the Application-Level Proxy Ontology

alprs-2: URLAllowingRuleSituation

satisfies

alpr-2: URLAllowingRuleMethod

cr-2: ContentRole

wp-1: WebPage

classifies

cts-2: ContentSpecifier

ur-2: URLRegion

classifies

rp-3: RuleDataProvider

classifies

defines

uq-2: URLQuality

'http://www.porntube.com/info'

hasQuality hasRegion

hasSetting

hasURL

specifies

cw-1: SocialAgent

(b) Second example flow control rule of the Application-Level Proxy Ontology

alprs-3: URLBlockingRuleSituation

satisfies

alpr-3: URLBlockingRuleMethod

cr-3: ContentRole

wst-2: WebSite

classifies

cts-3: ContentSpecifier

ur-3: URLRegion

classifies

rp-4: RuleDataProvider

classifies

defines

uq-3: URLQuality

'http://www.fundorado.de/'

hasQuality hasRegion

hasSetting 

hasURL

specifies

jp-1: SocialAgent pt-1: Topic

rc-2: RegulatedTopic

classifies

(c) Third example flow control rule of the Application-Level Proxy Ontology

Figure 3.19.: Example usage of the Application-Level Proxy Ontology.

by different rule data providers which even operate in different countries, they cover
the same topic. Access to this topic is to be regulated according to §184 of the German
Criminal Code [61]. Thus, the flow control policy defines this article as a legal foundation
for all flow control rules. As an organizational motivation, the policy uses the school’s
code of conduct coc-2. Again, alpp-1 does neither define a local conflict resolution
algorithm nor a local non-applicability algorithm itself and relies on its corresponding
flow control meta-policy alpmp-1 for resolving conflicts between contradicting rules and
handling non-applicable rules. The flow control meta-policy alpmp-1 is depicted in
Figure 3.16d and shares the same enforcing system and responsible operator as the
policy alpp-1. It defines the rule priority algorithm rpa-4 which is an instance of the
class PreferWebPageToWebSiteAlgorithm. This algorithm states that rules associated
with single web pages shall be preferred to rules with whole websites. The website wst-1
covered by the rule alpr-1 contains the web page wp-1. In applying the algorithm rpa-4,
the proxy server pr-1 uses the rule alpr-2 for allowing access to the web page wp-1
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alpp-1: FlowControlPolicyMethod

alpps-1: FlowControlPolicySituation

alpr-2: URLAllowingRuleMethod

satisfies

la-3: LegalAuthorization

defines

coc-2: CodeOfConductDescription

om-2: OrganizationalMotivation

alpr-1: URLBlockingRuleMethod

classifies

stgb184-1: FlowRegulationNorm

classifies

hasSetting 

hasMember 

hasMember 

ro-3: ResponsibleOperator

classifies

cs-1: SocialAgent

es-3: EnforcingSystem

pr-1: ProxyServer

classifies

alpr-3: URLBlockingRuleMethodhasMember 

(d) Example flow control policy of the Application-Level Proxy Ontology

alpmp-1: FlowControlMetaPolicyMethod

alpmps-1: FlowControlMetaPolicySituation

satisfies

alpp-1: FlowControlPolicyMethod

alpr-4: URLAllowingRuleMethod

dr-3: DefaultRule

classifies

rpa-4: PreferSingleFileToWebSiteAlgorithm

rp-3: RulePriorityRole

classifies

defines

hasSetting

hasMember 

ro-3: ResponsibleOperator

classifies

cs-1: SocialAgent

es-3: EnforcingSystem

pr-1: ProxyServer

classifies

(e) Example flow control meta-policy of the Application-Level Proxy Ontology

Figure 3.19.: Example usage of the Application-Level Proxy Ontology. Continued from
previous page.

while blocking access to all other web pages of the website wst-1. The flow control rule
alpr-3 is not affected by this algorithm since it covers a different website than the other
two rules.

3.4.5. Example Policies for Securing the Exchange of Medical Data

The scenario for securing medical data records introduced in Section 2.2 covers a medical
case which involves the transmission of such records between different care delivery
organizations (CDOs). Ensuring the confidentiality of medical records is required by
law as these records contain sensitive personal information. Thus, the transmission of
medical data records between different CDOs must be protected as well. In general, the
secure transmission of data can be achieved by using secure communication protocols

Radiographer Network cn-6 Hospital Network cn-7

Proxy pr-4

General Practitioner (GP)
Network cn-8 Proxy pr-2

Proxy pr-3

Figure 3.20.: Example computer network connecting three different CDOs. The proxy
server of each network serves as a gateway to the other networks.
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such as SSL [113]. InFO policies are applied to ensure that medical records can only be
transmitted between CDOs via a secure SSL connection and that any other transmission
of the records is prohibited. Figure 3.20 shows a simplified depiction of three computer
networks which correspond to the three CDOs of the scenario. These CDOs are the
general practitioner (GP), the radiographer, and the hospital. Each computer network
includes a proxy server which serves as a gateway to the other networks and regulates
the transmission of all data. For example, the computer network cn-8 contains the
proxy server pr-2 which is operated by the GP. The server implements the flow control
regulation depicted in Figure 3.21 which consists of two flow control rules, one flow
control policy, and one flow control meta policy. For reasons of brevity, the figure only

alprs-5: MIMETypeBlockingRuleSituation

satisfies

alpr-5: MIMETypeBlockingRuleMethod defines

hasSetting

hct-1: Topic

rc-3: RegulatedTopic

classifies

cr-4: ContentRole

rdf-1: RDFGraph

classifies

cts-4: ContentSpecifier

mtr-1: MIMETypeRegion

classifies

mtq-2: MIMETypeQuality

'application/rdf+xml'

hasQuality hasRegion

specifies

'application/x-turtle' hasMIMEType

hasMIMEType

(a) Flow control rule for blocking the transmission of all RDF graphs.

alprs-6: MIMETypeAllowingRuleSituation

satisfies

alpr-6: MIMETypeAllowingRuleMethod

chr-1: ChannelRole

ssl-1: CommunicationProtocol

classifies

rs-6: ReceiverSpecifier

ipar-6: IPAv4AddressRegion

classifies

defines

hasSetting

cr-4: ContentRole

rdf-1: RDFGraph

classifies

rr-6: ReceiverRole

cn-6: ComputerNetwork

classifies

specifies

(b) Flow control rule for allowing the transmission of RDF graphs via an SSL connection to the
computer network cn-6.

alpp-2: FlowControlPolicyMethod

alpps-2: FlowControlPolicySituation

alpr-6: MIMETypeAllowingRuleMethod

satisfies

alpr-5: MIMETypeBlockingRuleMethodhasMember 

hasMember 

ro-4: ResponsibleOperator

classifies

gp-1: SocialAgent

es-4: EnforcingSystem

pr-2: ProxyServer

classifies

defines

hasSetting

follows 
la-4: LegalAuthorization

hipaa-1: FlowRegulationNorm

classifies

(c) Flow control policy containing two flow control rules.

alpmp-2: FlowControlMetaPolicyMethod

alpmps-2: FlowControlMetaPolicySituation

alpp-2: FlowControlPolicyMethod

rpa-5: EvaluateRuleOrderingAlgorithm

rp-3: RulePriorityRole

classifies
hasMember ro-4: ResponsibleOperator

classifies

gp-1: SocialAgent

es-4: EnforcingSystem

pr-2: ProxyServer

classifies

defines

hasSetting

satisfies

(d) Flow control meta policy.

Figure 3.21.: Regulating the transmission of medical data records.
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depicts the most important parts of the regulation. The complete regulation is similar
to the example of the application-level proxy ontology presented in Section 3.4.4. The
first flow control rule alpr-5 is shown in Figure 3.21a and blocks the transmission
of all RDF graphs which are associated with the topic hct-1. This topic is used for
classifying all health care related data and is modeled using the topic pattern of the
Ontopic ontology as depicted in Figure 3.3. Instead of regulating the transmission of
a particular RDF graph by using a URI, the rule uses two different MIME types in
order to cover all RDF graphs. Multipurpose Internet Mail Extensions (MIME) [112]
support the transmission of arbitrary data including binary data over the Internet. The
format of the transmitted data is defined by its MIME type which consists of a type and
a subtype. The flow control rule alpr-5 uses the MIME types application/rdf+xml

and application/x-turtle to identify RDF graphs which are encoded with the formats
RDF/XML [26] or Turtle [27], respectively. The second flow control rule alpr-6 is shown
in Figure 3.21b and allows the transmission of RDF graphs containing medical data to
the computer network cn-6 as long as they are transmitted via an SSL connection. As
depicted in Figure 3.20, the computer network cn-6 corresponds to the network of the
radiographer. Thus, the rule alpr-6 allows the GP to securely transmit medical data
records to the radiographer. If transmitting such records to the hospital’s computer
network cn-7 shall be possible as well, an additional flow control rule must be created.

The flow control policy alpp-2 depicted in Figure 3.21c contains the two rules alpr-5
and alpr-6 and associates them with their responsible operator, enforcing system, and
legal authorization. The legal authorization for the regulation is HIPAA [297] which
defines security requirements for transmitting medical records in the USA. The flow
control meta policy alpmp-2 is depicted in Figure 3.21d and defines EvaluateRuleOr-

deringAlgorithm as a rule priority algorithm. This algorithm creates an explicit order
of the flow control rules alpr-5 and alpr-5 by evaluating the property follows as used
in the flow control policy alpp-2. The algorithm ensures that the proxy server pr-2

applies the rule alpr-6 before the rule alpr-5. In doing so, the GP can only send medical
data records encoded as RDF graphs via a secure SSL connection to the radiographer
while all other transmissions of such graphs are blocked. If the other CDOs depicted in
Figure 3.20 shall be able to exchange medical data records as well, additional regulations
must be provided. These regulations are created similar to the regulation depicted in
Figure 3.21 and are enforced by the proxy servers pr-3 and pr-4.

3.5. Prototypical Implementation of the InFO Pattern System

The pattern system InFO and its three domain-specific extensions for routers, proxy
servers, and name servers have been implemented on three prototypical enforcing sys-
tems. All systems share the same basic design which is shown in Figure 3.22. Each
system consists of three different parts which are the preparation module, the rule stor-
age, and the regulation module. The preparation module is used by the enforcing system’s
operator to import new InFO policies, which are provided as RDF data. The prepara-
tion module resolves any existing conflicts in the policies and transforms the remaining
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Enforcing System

Policies Rule
Storage

Preparation
Module

Regulation
Module

Figure 3.22.: Basic architecture of the prototypical implementations of the three en-
forcing systems. The arrows indicate the direction of the flow of regula-
tion data.

policy rules to a simpler data structure. This data structure is stored in the rule storage
and can be directly interpreted by the enforcing system. The regulation module per-
forms the actual regulation by applying the transformed rules of the rule storage. The
module interacts with the users that are affected by the regulation. All three enforcing
systems are based on a common preparation module which is implemented in Java and
uses the Jena triple store13. In contrast, the implementation details of the rule storage
and the regulation module depend on the corresponding enforcing system. The following
subsections describe the prototypical implementations of the three enforcing systems in
more detail.

3.5.1. Example Name Server Implementation

The Name Server Ontology has been implemented as a prototypical, modified name
server. The preparation module of this name server transforms the InFO policies into a
set of DNS resource records [202]. Resource records are the data format of the domain
name system and store information about domain names and IP addresses. A resource
record contains a domain name, a type, and a value. The value of a resource record
depends on the record’s type and can be, e. g., an IP address, an alternative domain
name, or a textual description. Resource records are stored in zone files which are
basically collections of resource records of the same domain. In the prototypical name
server, these zone files correspond to the server’s rule storage and are directly used by
the regulation module. The regulation module operates as a name server and answers
IP address requests from users. Such requests contain a domain name and ask for the
corresponding IP address. If the domain name is not regulated, the regulation module
returns the correct IP address. Otherwise, the result depends on the type of regulation
and can contain a wrong IP address or no IP address at all. The implementation of the
regulation module is based on the Java name server EagleDNS14 and described in more
detail in [204].

13http://jena.apache.org, last accessed: 01/21/16
14http://www.unlogic.se/projects/eagledns, last accessed: 01/21/16

64



Prototypical Implementation of the InFO Pattern System Section 3.5

An example IP address request for the domain stormfront.org using the Unix tool
dig15 looks like: dig +tcp stormfront.org. This request asks the name server to re-
trieve the IP address for the given domain name. As the example flow control rule dnsr-1
depicted in Figure 3.16a states, access to this domain name is to be blocked by the name
server ns-2 of the German Telecom. The name server’s response is depicted in List-
ing 3.1. As shown in line 5, the server REFUSED answering the request and did not return
any IP address. Additional background information about the flow control rule is re-
turned as several TXT records which are shown in lines 10 to 14. Resource records of type
TXT are generally used for associating a domain name with textual descriptions [202].
The prototypical name server uses TXT records to store human-readable background in-
formation about a regulation. It returns this information when a user requests the IP
address of a regulated domain name. In order to better describe the content of a partic-
ular TXT record, the name server inserts two additional prefixes into its value. The first
prefix shown in line 10 has the value ID which indicates that the TXT record contains the
URI of the used flow control rule. The second prefix of this record has the value 0 and
corresponds to a local identifier of this URI. This identifier is used for grouping all TXT
records which are associated with the same rule. Since the TXT records shown in lines 10
to 14 all share the same local identifier, they are all based on the same flow control rule.
If there is more than one rule which covers the same domain name, this number is used
for distinguishing between these rules. The name server’s response also contains further
information about the flow control rule including its organizational motivation (line 11),
its legal authorization (line 12), its rule data provider (line 13), and its regulated topic
(line 14). While the topic is directly embedded into the name server’s response, further
information about the other regulation details can be obtained by dereferencing the URI
provided in the corresponding TXT records.

1 ; <<>> DiG 9.10.1-P1 <<>> +tcp stormfront.org

2 ; (1 server found)

3 ;; global options: +cmd

4 ;; Got answer:

5 ;; ->>HEADER<<- opcode: QUERY, status: REFUSED, id: 44811

6 ;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 9

7 ;; QUESTION SECTION:

8 ;stormfront.org. IN A

9 ;; ADDITIONAL SECTION:

10 stormfront.org. 3600 IN TXT "ID:0:http://..uni-koblenz.de/../dnsPolicy01.owl#dnsr-1"

11 stormfront.org. 3600 IN TXT "PH:0:http://..uni-koblenz.de/../TelekomCoC.owl#coc-1"

12 stormfront.org. 3600 IN TXT "LW:0:http://..uni-koblenz.de/../StGB.owl#stgb86-1"

13 stormfront.org. 3600 IN TXT "DP:0:http://..uni-koblenz.de/../dnsPolicy01.owl#bka-1"

14 stormfront.org. 3600 IN TXT "TO:0:neo-Nazi propaganda"

Listing 3.1: Example blocking result of a name server.

15http://www.isc.org/software/bind, last accessed: 01/21/16.
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3.5.2. Example Router Implementation

The Router Ontology has been implemented as a set of routers, which are configured
via a dedicated administration node. This node serves as the preparation module which
transforms all InFO policies into a configuration script for the Linux firewall software
iptables16. The administration node sends the configuration script to all connected
routers via an encrypted SSL connection [113]. The iptables software runs on all routers.
After having received the configuration script, each router applies the script in order to
update the current configuration of its local iptables installation. The iptables software
consists of a packet filter and several tables which store the active firewall rules. The
tables correspond to the rule storage and the packet filter is directly used as the regulation
module. Thus, an additional implementation of the regulation module is not required. If
a user wants to access a prohibited IP address, she receives an Internet Control Message
Protocol (ICMP) [236] message that informs about the regulation. ICMP is specifically
designed for exchanging information messages and error messages between IP-based
communication nodes. The ICMP message is encapsulated in an IP message and send
back to the original requester. The sender of this message is the router implementing
the flow control. All routers and their administration node are implemented in Java and
described in more detail in [311].

Listing 3.2 shows an ICMP message after a user with the IP address 89.108.23.155

has tried to access the server with the IP address 104.20.26.14. The message was
captured with the packet analyzing software Wireshark17 and slightly modified for il-
lustration. The user is connected to the Internet via the Saudi Arabian access provider
Sahara Net. The server is located in the USA and provides pornographic content. Ac-
cording to the example flow control rule ipr-1 shown in Figure 3.18a, access to this
server is to be blocked for all users of Sahara Net. As depicted in the example net-
work in Figure 3.14, the users of Sahara Net communicate with the Internet through
the gateway router ro-1 with the IP address 89.108.200.111. This router acts as
the enforcing system which implements the example regulation shown in Figure 3.18.
Lines 1 to 5 of Listing 3.2 show the header of the IP packet which encapsulates the
ICMP message. Line 2 states that the sender of the ICMP message was the enforc-
ing router and line 3 indicates that the receiver was the user of Sahara Net. Lines 6
to 18 cover the actual ICMP message. The meaning of an ICMP message is generally
defined by its type and code. The type defines the category of the message and the
code further specifies the particular reason for sending the message. Line 7 states that
the server with the IP address 104.20.26.14 was unreachable due to administrative
filtering as explained in line 8. The ICMP message also contains the header of the orig-
inal request which is shown in lines 9 to 15. The request consists of the IP header and
the TCP header. As depicted in the example network in Figure 3.14, the IP address
104.20.26.14 corresponds to the server hosting the website http://porntube.com/.
The lines 12 and 15 further describe this server as a web server since such a server typi-
cally uses the port number 80 and the transport layer protocol TCP. The data section

16http://www.netfilter.org/projects/iptables/, last accessed: 01/21/16
17http://www.wireshark.org/, last accessed: 01/21/16
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of the ICMP message depicted in lines 16 to 18 is used to provide further background
information about the regulation. Line 17 shows an encoded version of the hyper-
link http://icp.it-risk.iwvi.uni-koblenz.de/policies/ipPolicy01.owl#ipr-1.
This hyperlink refers to the regulation details including their legal authorization and
organizational motivation.

1 Internet Protocol Version 4

2 |--Source: 89.108.200.111 (89.108.200.111)

3 |--Destination: 89.108.23.155 (89.108.23.155)

4 |--Protocol: ICMP (1)

5 |--Options: (28 bytes)

6 +--Internet Control Message Protocol

7 |--Type: 3 (Destination unreachable)

8 |--Code: 13 (Communication administratively filtered)

9 +--Internet Protocol Version 4

10 |--Source: 89.108.23.155 (89.108.23.155)

11 |--Destination: 104.20.26.14 (104.20.26.14)

12 |--Protocol: TCP (6)

13 |--Transmission Control Protocol

14 | |--Source port: 32517 (32517)

15 | +--Destination port: 80 (80)

16 +--Data

17 |--Data: 436f6d6d756e69636174696f6e20686173206265656e20626c6f636b65642e...

18 +--[Length: 126 Bytes]

Listing 3.2: Example blocking result of a router.

3.5.3. Example Proxy Server Implementation

The Application-level Proxy Ontology has been implemented as a prototypical proxy
server. The preparation module of this proxy server resolves any existing conflicts of
flow control rules and stores the remaining rules in a relational database. This database
serves as the proxy server’s rule storage. Whenever the proxy server’s regulation module
receives a request for a particular URL, the URL is looked up in the rule storage. If
the URL is not found, the request is allowed. Otherwise, the proxy server performs a
corresponding regulation. The regulation module of the proxy server is implemented in
Java and uses standard Java libraries. A detailed description of its implementation is
provided in [18].

An example request for the website http://www.porntube.com/ using the Unix tool
cURL18 looks like: curl -v http://www.porntube.com/. The website provides porno-
graphic content. According to the example flow control rule alpr-1 depicted in Fig-
ure 3.19a, access to this website is to be blocked by the proxy server pr-1 of the German
comprehensive school. The regulation affects all student computers of the school’s com-
puter network cn-5 shown in Figure 3.14. The response of the proxy server is depicted in
Listing 3.3. Line 1 contains the status code returned by the server. The status code 451
indicates that the access to the requested website was denied due to legal reasons [48].

18https://curl.haxx.se/, last accessed: 01/21/16
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1 < HTTP/1.1 451 Unavailable For Legal Reasons

2 < Content-Length: 406

3 < Content-Type: text/html; charset=iso-8859-1

4 <

5 <html>

6 <head>

7 <title>Unavailable For Legal Reasons</title>

8 </head>

9 <body>

10 <h1>Unavailable For Legal Reasons</h1>

11 <p>The web page you are trying to access is not accessible due to legal reasons.

12 For more information about the regulation see <a

13 href="http://icp.it-risk.iwvi.uni-koblenz.de/policies/proxyPolicy01.owl#alpr-1"

14 >the regulation details</a>.</p>

15 </body>

16 </html>

Listing 3.3: Example blocking result of a proxy server.

Along with the status code, the proxy server also returns a short web page providing a
human-readable explanation about the regulation’s background. The web page is shown
in lines 5 to 16 and contains a hyperlink which refers to the flow control rule that initiated
the regulation.

3.6. Evaluation and Comparison with Existing Approaches

This section evaluates how the related work discussed in Section 3.1 and the InFO policy
language fulfill the requirements introduced in Section 3.2. The results of this assessment
are shown in Table 3.2. Most of the reviewed policy languages and content labeling
schemes focus on a particular application and do not fulfill all requirements. In the
following, the related work is analyzed regarding the functional requirements RA.F.1
to RA.F.9 as well as the non-functional requirements RA.N.1 to RA.N.3.

3.6.1. Evaluating the Functional Requirements

Access control systems require the user accessing a digital resource to be authenticated
first. As this authentication process is usually done by an application layer protocol,
access control languages such as AMO, Common Policy, WebAccessControl, EPAL, and
XACML exclude routers as possible enforcing systems (RA.F.1.1). These systems oper-
ate on lower layers of the OSI model such as the network layer and possibly the transport
layer as well. EPAL and XACML are designed to be used separately from the server
providing the regulated content while AMO, Common Policy, and WebAccessControl
require a more close integration with the server. This allows EPAL and XACML poli-
cies to be enforced by proxy servers (RA.F.1.3), while policies created with AMO,
Common Policy, or WebAccessControl can only be enforced by the content providing
server. Although the flow control languages DEN-ng, OPoT, and the firewall metamodel
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Table 3.2.: Comparison of different policy languages and content labeling schemes with
the requirements introduced in Section 3.2. Rows correspond to the dif-
ferent approaches and columns to requirements. Requirements RA.F.1.1
to RA.F.9.2 are functional, while RA.N.1 to RA.N.3 are non-functional.
The letter y represents a complete fulfillment of the requirement, l stands for
a partial fulfillment, and n corresponds to no fulfillment of the requirement.
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Access Control

AMO [58] n n n n y n n n n n n y n n n n y n y

CommonPolicy [276] n n n n y n n n n n n n y n n n y n y

EPAL [15] n n y l y y l n n y n n y y n n y n y

WebAccessControl n n n y y n n n n n n y n n n n y n y

XACML [205] n n y l y y y y n y n y y y n n y n y

Flow Control

Cuppens et al. [85] y n n y y n n n n n n n n y y n y n n

DEN-ng [286] y n n y y y l l n n n n n y n n n n y

OPoT [21] y n n y y y l l n n n n n y y n y n n

Usage Control

ccREL [3] n n n n y y n n n n n y n n n l y n l

LDR [253, 254] n n n n y y n n n n n y y n n l y n y

ODRL [156, 157] n n n n y y n l n y n y n y n n y l l

METSRights n n y n y n n n n y n y l n n n y n l

MPEG-21 REL [306] n n n n y n n n n y n y n n n n y l l

PLUS n n n n y l n n n y n y l y l n l n n

General purpose

KAoS [298] n n y n y y y n n y n n n y y n y y y

Rei [166] n n y n y y l n n y n y y y n n y y y

Ponder [88] y n y y y y y n n n n y y y n n n n y

Continued on next page.
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Table 3.2.: Comparison of the related work with InFO. Continued from previous page.
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Content labeling

age-de.xml [264] n n y l y y l n n y n y l l n n y n l

PICS [183, 103] n n y n y y l n n y n y y n l l l l l

RTA n n y n n y n n n l n n l n n n y n n

InFO y y y y y y y y y y y y y y y y y y y

focus on managing low-level enforcing nodes such as routers (RA.F.1.1), they are not
designed to define policies enforced by proxy servers or name servers. Usage control
policies also require an enforcement at the application layer. These policies are gener-
ally enforced at the user’s site as this requires the user’s actions to be monitored. Thus,
ccREL, LDR, ODRL, MPEG-21 REL, and PLUS do not fulfill requirements RA.F.1.1
to RA.F.1.3. However, METS is designed to be used within closed library environments
making METSRights suitable to be enforced at the library’s proxy server (RA.F.1.3).
KAoS and Rei focus on rather abstract behavioral policies which are also designed to be
enforced by application-layer systems. This makes it possible to enforce their policies by
proxy servers. On the other hand, Ponder allows to define policies which can be enforced
by almost arbitrary communication nodes including end user systems, content-providing
servers, or intermediary communication nodes such as routers. However, neither Pon-
der nor any other of the evaluated policy languages support name servers as enforcing
nodes (RA.F.1.2). Name servers are not part of the communication path between a
content provider and a content consumer. Instead, they only provide a means for estab-
lishing this communication path, which is not covered by any of the languages depicted
in Table 3.2. Content labeling schemes such as age-de.xml, PICS, and the RTA la-
bel allow to annotate web content which is processed at the application layer together
with its annotations. Thus, these schemes do not support an enforcement by routers
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or name servers and do not fulfill requirements RA.F.1.1 and RA.F.1.2. As both the
web content and their annotations can be interpreted by proxy servers, content label-
ing schemes fulfill requirement RA.F.1.3. InFO supports different enforcing systems
including routers, name servers, and proxy servers. Each enforcing system is supported
by a specific domain ontology such as the Router Ontology, the Name Server Ontology,
and the Application-Level Proxy Ontology.

Many of the examined policy languages and content labeling schemes define rather ab-
stract rules whose enforcement cannot be directly mapped onto the enforcing systems’
capabilities. Instead, the enforcement requires additional parameters and a further in-
terpretation of how to interpret the policy’s actual meaning. These parameters are
sometimes not included in the policy directly (RA.F.2) and must therefore be added
through a different process. Although policies created with AMO or Common Policy
contain a reference to those users who are allowed to access a specific piece of infor-
mation, they do not define how the users shall be authenticated. EPAL and XACML
provide such a description but do not explicitly define the rest of the enforcement pro-
cedure. WebAccessControl requires user identification via the WebID authentication
process. Usage control only describes on an abstract level what a user may do with a
digital resource. However, usage control languages do not define how the permitted or
prohibited actions shall actually be regulated. For example, it is unclear how a permis-
sion to print a text document is to be technically enforced. Thus, the evaluated usage
control policies do not fulfill requirement RA.F.2. Since the general purpose languages
Rei and KAoS also define rather abstract policies and not their specific enforcement,
they also do not fulfill requirement RA.F.2. However, Ponder’s low-level language can
be directly used for enforcing mechanisms. Although content labeling schemes are de-
signed to block the access to web content based on their annotations, most schemes do
not define how the blocking procedure shall actually be implemented. age-de.xml allows
to redirect all requests to another website instead of just blocking the access. However,
it does not support a precise definition of how the redirection or the default blocking
behavior shall be technically implemented. On the other hand, flow control languages
are specifically designed for a direct enforcement of policies. Each created policy already
contains enough information to be enforced without requiring any additional interpre-
tation or parameters. Similarly, InFO is also designed for enforcing particular policies.
Support for a precise description of all enforcement parameters are provided by the do-
main extensions of InFO such as the Router Ontology, the Name Server Ontology, and
the Application-Level Proxy Ontology.

All policy languages for access control, usage control, and flow control as well as all
general purpose languages shown in Table 3.2 support allowing rules and thus fulfill
requirement RA.F.3.1. Allowing rules are also supported by PICSRules. age-de.xml
supports allowing rules by annotating web content with the all ages category. In contrast,
the RTA label does not fulfill requirement RA.F.3.1 as it represents a single age category
which results in the blocking of the annotated content. In order to ease the creation of
specific policies, some languages such as AMO, Common Policy, WebAccessControl, and
the firewall metamodel do not support denying rules (RA.F.3.2) and focus on allowing
rules only. In doing so, these languages completely avoid potential conflicts between
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two or more contradicting rules. Thus, they do not provide any means for resolving
such conflicts (requirements RA.F.4.1 and RA.F.4.2). Similarly, the RTA label only
provides a means for denying access and does not require any conflict resolution algorithm
as well. PLUS only supports allowing rules and expresses denying rules as constraints on
such a rule. Consequently, the support for denying rules is only limited and the language
does not support any conflict resolution mechanism. InFO allows to create both allowing
and denying rules as well as specific types of denying rules. The different types of rules
are provided by the Flow Control Rule Pattern as well as the Redirecting Flow Control
Rule Pattern and the Replacing Flow Control Rule Pattern described in Section 3.3.3.

The usage control policy languages ccREL and LDR assume that there is only one
policy for each regulated good which is created by its owner. Thus, the languages do not
provide any means for resolving conflicts between contradicting rules. EPAL, Rei, and
PICSRules only provide the order of rules as a mechanism for resolving conflicts between
rules of the same policy (RA.F.4.1). Since all three languages support only one active
policy, they do not provide any means for resolving conflicts between rules of different
policies (RA.F.4.2). Similarly, age-de.xml uses the order of the defined age categories
for a single web page to resolve any conflicts between contradicting categories. DEN-ng
also uses the order of rules for resolving conflicts between them. Additionally, policies can
also be ordered to resolve conflicts between rules of different policies. OPoT is only able
to detect conflicting rules of one or more policies and shows them to the policy’s creator.
The actual conflict resolution must be performed manually by the creator of the policy.
ODRL assumes that a single policy does not contain any conflicting rules. Since each
policy is created by a single party, the party must pay attention when creating the policy.
On the other hand, resolving conflicts between rules of different policies is supported
by ODRL. This is done by either preferring the allowing or the denying rule of two
contradicting rules. However, the preferred rule modality is defined within each policy.
Thus, ODRL’s conflict resolution algorithm only works if all affected policies prefer the
same modality. Otherwise, conflicts cannot be resolved [24]. XACML and Ponder allow
to define specific conflict resolution algorithms which provide a much greater flexibility
than a simple order of rules. These algorithms can be used for resolving conflicts between
rules of one or more policies. KAoS also provides algorithms for resolving conflicts. Since
KAoS only supports one active policy, these algorithms can only be used for contradicting
rules of one policy. The conflict resolution mechanisms of InFO are inspired by XACML.
Similar to XACML and Ponder, InFO allows to resolve conflicts between contradicting
rules of one or multiple policies based on predefined or user-defined algorithms. The
Flow Control Meta-Policy Pattern described in Section 3.3.5 is especially designed for
expressing such algorithms and thus for resolving conflicts as well. The pattern also
splits the whole conflict resolution process of XACML and Ponder into four different
steps and assigns a particular algorithm to each step. This achieves a greater flexibility
as some algorithms can be reused for different enforcing systems while others must be
replaced with more specific algorithms.

Most of the discussed policy languages do not distinguish between a policy’s creator
(i. e. the provider) and its enforcer. Languages like EPAL, XACML, ODRL, METS-
Rights, MPEG-21 REL, PLUS, KAoS, Rei, and PICSRules, which allow naming a pol-
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icy’s provider within the policy itself (RA.F.5.2), do not allow to name a separate
enforcer (RA.F.5.1). Similarly, the content labeling scheme age-de.xml only supports
providers of age categories. However, InFO explicitly requires such a distinction as out-
lined in the scenario for regulating Internet communication of Section 2.1. Support for a
regulation’s provider is given as the rule data provider defined in the Flow Control Rule
Pattern and a means for defining the regulation’s enforcer is given in the Flow Control
Policy Pattern described in Section 3.3.4.

Most of the reviewed policy languages are not able to link a policy to its legal back-
ground (RA.F.9.2). Consequently, they do not allow to specify the legislator of the
policy’s legal background (RA.F.5.3). Both ccREL and LDR allow policies to be linked
to their jurisdiction. This jurisdiction defines the circumstances under which a policy is
valid and may even add additional permissions or prohibitions. However, the jurisdiction
only refers to a country’s legislation and not to particular laws. Identifying the creators
of this legislation is neither supported by ccREL nor by LDR. InFO supports both re-
lating a flow control to its legal background and the definition of a legislator as well.
The legal background is described by the Flow Regulation Norm Pattern introduced in
Section 3.3.6 and the legislator is part of the Legislation Pattern. By linking technical
policies to their legal background, InFO allows a better comparison between different
policies of various enforcing systems.

The identification and classification of content (RA.F.6) is only supported by those
policy languages which are directly able to regulate the processing of particular infor-
mation documents rather than whole systems or services only. Such languages include
access control and usage control languages as well as most general purpose languages.
Both AMO and WebAccessControl require the explicit identification of the document to
be protected by using an URI (RA.F.6). Content classification is neither supported by
AMO nor by WebAccessControl. On the other hand, both Common Policy and EPAL
only support classes of documents (RA.F.7) but do not allow a more precise identifica-
tion of the content. Data classification with Common Policy can be achieved by using
the sphere constraint whereas EPAL provides data categories. XACML allows to reg-
ulate access based on either the contents’ ID or its topic. Usage control languages are
designed to control the consumption of digital resources. Thus, they all support a precise
identification of the content to be controlled. METSRights also supports a simple clas-
sification of the content according to its licensing status such as copyrighted or licensed.
However, an actual content description is not supported. Similarly, PLUS and the RTA
label only support the classification of adult content but do not provide more precise
content descriptions. Flow control languages only focus on regulating communication
between complete systems and thus do not fulfill requirements RA.F.6 and RA.F.7.
age-de.xml uses URIs to associate web content with its respective age category and
thus fulfills requirement RA.F.6. However, the precise topic of the content cannot be
described. On the other hand, the RTA label is directly embedded into the labeled
web content and does not require any content identifier. PICS supports precise content
descriptions by associating the content’s URI with arbitrary labels and thus fulfills re-
quirements RA.F.6 and RA.F.7. Although InFO also focus on regulating flow control,
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it considers the topic of the regulated content as well. The Flow Control Rule Pattern
associates each particular flow regulation with such a topic.

The location of the user who wants to access a regulated resource can be implemented
in different ways. EPAL, XACML, ODRL, KAoS, Rei, Ponder, and PLUS support
constraints regarding the applicability of their rules. These constraints also cover lo-
cation constraints which directly implement requirement RA.F.8. All evaluated flow
control languages are able to regulate network communication using IP addresses. Since
these addresses can be mapped to a geographical location, the flow control languages
fulfill requirement RA.F.8 as well. age-de.xml fulfills requirement RA.F.8 by support-
ing ISO 3166-1 alpha-2 country codes [161] such as DE for defining the user’s location.
InFO also uses IP addresses to refer to a requesting user’s country and thus supports
requirement RA.F.8.

Organizational background information corresponds to the enforcer’s motivation to
implement a specific policy. Although some of the analyzed policy languages provide
a purpose constraint, this property does not correspond to an actual explanation of a
policy’s meaning and function. Instead, it only restricts the applicability of allowing
and denying rules to a specific use case. The firewall metamodel and OPoT are designed
for mapping high-level organizational security policies to their technical representation.
Such a design also allows to link policies created with one of these languages to their
corresponding security policy. In doing so, the policies are enriched by a human-readable
description and thus implement requirement RA.F.9.1. KAoS and PICSRules follow
a different approach by directly embedding human-readable descriptions into a created
policy using the properties hasDescription and description, respectively. As these
properties are designed for annotating arbitrary strings, they can be used for describing
both organizational and legal background information. PLUS provides several attributes
for embedding human-readable conditions and restrictions into the policy. However,
these attributes are not sufficient for describing the complete organizational background
of a particular policy as each of the attributes only covers a specific part of it. InFO
allows to express a regulation enforcer’s code of conduct with the Code of Conduct
Pattern described in Section 3.3.6.

3.6.2. Evaluating the Non-Functional Requirements

Most of the policy languages and content labeling schemes are based on standard formats
such as XML, RDFS, or OWL and thus support requirement RA.N.1. DEN-ng uses
UML for describing policies. Although UML is a well-known standard, it cannot be
directly used for implementing policies. Instead, policies modeled as UML diagrams have
to be mapped to other formats which can natively be interpreted by an enforcing system.
As DEN-ng does not provide such a mapping, it does not fulfill requirement RA.N.1.
Although PLUS uses an RDFS ontology, many essential parts of a PLUS policy are
encoded as structured string values. Since these string values have their own proprietary
format, PLUS does not completely fulfill requirement RA.N.1. Ponder uses its own
proprietary format which is not compatible with other formats such as XML or OWL.
Although PICS and PICSRules also use their own format, a suggestion for mapping
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PICS labels to a lightweight RDFS ontology is provided in [51]. However, the ontology
does not cover PICSRules and only focuses on PICS labels. InFO is modeled as an OWL
ontology and thus fulfills requirement RA.N.1.

None of the evaluated access control languages has a modular design and thus do not
fulfill requirement RA.N.2. Instead, their specification consists of a single document
which cannot be further partitioned into different sections. However, the main entities
defined by the languages can still be extended with additional terms such as new actions
or new roles (RA.N.3). The examined flow control languages solely focus on network
management and already provide a sufficient vocabulary for expressing corresponding
policies. Due to their restricted use case and their straightforward design, they do
not provide a modular structure or a broad extensibility. However, based on its open
design on UML, DEN-ng is still able to be extended with additional language elements.
Based on their lightweight design, neither ccREL, LDR, nor PLUS have a modular
structure. Although both ccREL and LDR can be extended with additional terms,
using such terms in a ccREL policy may result in a policy which no longer corresponds
to a Creative Commons license. In contrast, PLUS cannot be extended with additional
terms. ODRL and MPEG-21 REL define an REL and a separate RDD. Since the default
RDD is not mandatory and can be replaced with a user-defined one, the separation
between the REL and the RDD can be considered as limited modularity. However,
the REL of both languages itself is not modular. The extendability of both ODRL
and MPEG-21 REL is limited to defining new vocabulary terms for their corresponding
RDD such as new actions or constraints. Adding new entities to their REL’s model
is not possible. METSRights does not define separate specifications for an REL and
an RDD and thus cannot be considered as modular. However, it is still possible to
add new terms to the language’s vocabulary. KAoS and Rei are based on OWL. The
concepts of these languages are separated into different ontologies, each of which covers
a specific aspect of them. For example, both languages define an ontology for describing
actions and a separate ontology for policies. Since the languages are based on OWL,
they also fulfill requirement RA.N.3 by supporting user-defined extensions. Although
Ponder also supports the definition of new language entities such as new rule types, its
proprietary representation format does not permit a modular design (RA.N.2). Due
to their simple design, neither age-de.xml nor the RTA label have a modular design.
However, age-de.xml can be extended with new XML elements. The PICS framework
consists of the PICS labeling scheme and PICSRules which are two separate formats.
Since both formats can also be used separately from each other, PICS supports a limited
modularity. The PICS labels can also be extended with arbitrary new labels, similar
to the RDD of a rights expression language. However, PICSRules cannot be extended
with new types of rules. InFO’s modular design consists of several ontology design
patterns (RA.N.2). Many of these patterns can be extended with new concepts such
as introducing new rule types as subclasses of FlowControlRuleMethod. Furthermore,
InFO is specifically designed to be extended with domain-specific ontologies that cover
concepts relevant for particular use cases.
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3.6.3. Summary

None of the evaluated policy languages and content labeling schemes can be used for
regulating information flow control in open and distributed networks such as the Internet.
However, InFO reuses some of their concepts such as meta-policies and different conflict
resolution algorithms. InFO’s extendability is inspired by Ponder which allows to model
arbitrary types of communication flow. XACML’s flexible conflict resolution algorithms
are also adopted by InFO. Since InFO is a pattern system which covers a core ontology,
ontological languages such as AMO, WebAccessControl, KAoS, and Rei may be aligned
as domain specific extensions. Other domain specific extensions are also possible and
cover the integration of content labeling schemes such as PICS or age-de.xml into InFO.
Such extensions can be used to further describe the content of a regulated Internet
communication.

3.7. Limitations and Possible Extensions

As demonstrated in the previous section, the InFO policy language fulfills all functional
and non-functional requirements defined in Section 3.2. However, InFO still has some
limitations when applying a particular policy to an enforcing system. This section first
describes these limitations and their causes. Afterwards, possible extensions to InFO
are discussed which provide additional features.

3.7.1. Enforcing InFO Policies

InFO primarily focuses on providing a policy language for precisely describing how a
regulation shall be technically implemented. However, the policy language itself does not
to provide any means for ensuring that an enforcing system interprets and implements
a regulation correctly. It is also possible that the enforcing system’s behavior does not
comply with the intended meaning of a policy and thus implements a regulation which
differs from the provided flow regulation policies. In order to reduce the possibility of
such effects, each enforcing system should be tested according to its conformance to the
InFO policy language. Such a conformance test should be conducted by an independent
party in order to reduce the chance of manipulating the test’s procedure and outcome.
Systems which pass the test should be certified accordingly and the resulting certificate
should be provided to all parties involved in a regulation. Similarly, the responsible
operator of the enforcing system should also be tested and certified in order to eliminate
any organizational mistakes in the regulation’s implementation.

3.7.2. Legal Background

InFO provides a solution for a technical regulation of Internet communication without re-
quiring any manual interaction. Although each policy is associated with its legal and/or
organizational background, this background is primarily used as the policy’s human-
readable explanation. It is expressed using external ontologies such as LKIF [146, 147]
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or CLO [123, 118] which are integrated into InFO. However, even existing legal on-
tologies may not be able to completely replace every human intervention. As Brown
and Greenberg [55] have demonstrated, not all legal cases are formally decidable and
require manual interaction instead. Thus, InFO considers the mapping from an organi-
zational background and/or a legal background to a technical regulation to be a manual
process as well. The process may supported by KORA (Konkretisierung rechtlicher
Anforderungen; concretizing of legal requirements) [139], a methodology for deriving
technical requirements from legal requirements.

In addition to this creation process, some legal regulations also contain exceptions
regarding the affected users. For example, the German Criminal Code contains several
norms related to computer crimes including §202c [63]. §202c prohibits the creation
and distribution of software tools which can be used for conducting computer crimes.
However, §202c does not apply to security experts who use the software tools for assessing
the security of a computer system [277]. The treatment of such exceptions generally
requires human intervention and is usually done by courts [277]. Thus, a completely
automatic assessment of a particular situation is not always possible. Even a security
expert may violate §202c if she uses software tools to deliberately sabotage a computer
system without having a proper authorization. Although InFO can easily be extended
with additional roles representing the intervening parties, the actual interpretation of
the exceptions would still require a manual intervention.

3.7.3. Consistency Between Different Layers

An InFO flow control policy associates several flow control rules with their organizational
motivation and/or legal authorization. As described in the previous section, deriving a
particular flow control policy from an organizational code of conduct and/or legal norm
is considered to be a manual process. Similarly, ensuring that the technical regulation
details comply with its organizational and legal background is a manual process as well.
Although the Flow Regulation Norm Pattern described in Section 3.3.6 can be considered
as a legal view on the technical Flow Control Rule Pattern described in Section 3.3.3,
InFO does not provide any means for checking the consistency between both patterns.
Instead, the patterns can only be used as a basis for evaluating whether or not a technical
flow control policy complies with its organizational and legal background. The actual
evaluation must be conducted via a manual process. However, this process may be
supported by ontological reasoning on the InFO policies and by evaluating additional
rules such as RIF expressions [178].

3.7.4. Supporting Child Protection Software

Child protection software aims at prohibiting minors from accessing adult web content.
Most software applications focus on regulating the Internet access of a local home envi-
ronment and can be installed on local proxy servers, home routers, or client computers.
Although some child protection software such as NetNanny19 and the Jugendschutzpro-

19see https://www.netnanny.com/support/changelog/, last accessed: 01/21/16
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gramm20 evaluate third-party formats such as the RTA label or age-de.xml as well, their
regulation is mainly based on a proprietary rule syntax created via the software’s user
interface. Since child protection software focuses on a similar use case as the InFO policy
language, it is possible to configure the software by using corresponding InFO policies.
This would achieve a greater interoperability between different software products and
also between different installations of the same product. Regulation policies created with
InFO could then be imported into any child protection software without having to re-
configure any specific regulation. This could also be used for separating the developers
of child protection software from the providers of regulation rules. A particular soft-
ware installation could then be configured with regulation rules from different providers.
Supporting the configuration of child protection software with InFO can be achieved by
providing corresponding domain ontologies.

3.7.5. Integration into Software Defined Networking

Software Defined Networking (SDN) [225] defines a generic architecture for flexible and
dynamic management of closed networks which are centrally administrated by a single
organization. SDN generally distinguishes between the controller plane and the data
plane. The controller plane is a central control node which manages and configures other
network nodes such as routers and switches. These network nodes correspond to the data
plane and carry out the actual packet forwarding. The configuration of these nodes is
done via a specific protocol. This protocol and the distinction between the controller
plane and the data plane are the main components of the SDN architecture. Since
SDN defines a generic architecture, a particular implementation of all three components
is not provided. Instead, different protocols and even different routers and switches
can be used. The only requirement is that all three components of the architecture
are compatible with each other. InFO can be a used as part of the SDN protocol
for exchanging regulation information between the controller plane and the data plane.
However, as InFO does not provide such a protocol itself, designing and implementing
a complete protocol for both the controller plane and the data plane would still be
necessary. A first step towards this integration has been conducted by implementing
policy-based regulation rules on routers which is described in Section 3.5.2 and further
explained in [311]. The implementation also uses a central administration node for
configuring a set of routers with InFO regulations.

3.8. Summary

This chapter has presented InFO, a policy language for regulating information flow in
open and distributed networks such as the Internet. Regulations expressed with InFO
can be implemented on different types of enforcing systems such as routers, application-
level proxy servers, and name servers. Additionally, other types of enforcing systems
can also be supported due to InFO’s modular and extensible design. Each regulation

20See http://www.jugendschutzprogramm.de/faq6.php, last accessed: 01/21/16
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policy consists of several rules which contain precise technical details for implement-
ing a particular regulation. Any conflicts between two or more rules are eliminated by
InFO’s conflict resolution mechanism. The purpose of a policy is described by attaching
human-readable background information such as a regulation’s legal foundation and the
organizational motivation. InFO achieves compliant availability and thus answers re-
search question RQ.4 by restricting the availability of information to authorized parties
only. Parties are considered to be authorized as long as they comply with the InFO
regulations.
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Chapter 4.

Siggi: A Framework for Iterative Signing of
Graph Data

This chapter presents Siggi, a generic framework for iterative signing of Semantic Web
graph data. Signing graph data is a security mechanism for achieving integrity and
authenticity of the data [28]. Thus, the graph signing framework Siggi answers the
research questions RQ.2 and RQ.3. The framework is independent from any particular
algorithm or software implementation. It can be configured to achieve different features
such as minimum signature overhead or minimum runtime. The framework divides the
signing process into multiple steps, each of which can be implemented with different
algorithms. Due to its generic design, the framework also serves as a guideline for
creating new algorithms. It provides various features such as signing Named Graphs,
signing multiple graphs at once, and iterative signing of graph data. Iteratively signing
graph data is the process of signing already signed graph data again. This can be
used for provenance tracking which documents the data flow of the signed data. A
signature created with the graph signing framework Siggi is independent of the graph’s
encoding. The signature only covers the actual contents of the graph’s triples but not
their syntactical representation. This allows it to change the order of the triples within
a graph or rename the local identifiers of the graph’s blank nodes without invalidating
the signature. Prior versions of the graph signing framework were published in [168, 169,
170, 173]. This chapter is based on these publications but rephrases, consolidates, and
extends them with additional aspects.

The remainder of this chapter is organized as follows: The state of the art and related
work for achieving integrity and authenticity of graph data is summarized in Section 4.1.
Based on this section and on the scenarios introduced in Chapter 2, Section 4.2 defines
the functional and non-functional requirements for the graph signing framework Siggi.
The formal specification of Siggi is provided in Section 4.3. Section 4.4 presents four
example configurations of the signing framework. These configurations are further an-
alyzed in Sections 4.5 and 4.6 which conduct a detailed cryptanalysis and performance
analysis, respectively. Section 4.7 demonstrates how the graph signing framework is used
for signing different types of graph data. Section 4.8 assesses the state of the art and re-
lated work and compares it with the framework. Limitations and possible improvements
of Siggi are discussed in Section 4.9 before the chapter is concluded.
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4.1. State of the Art and Related Work

The signature framework Siggi divides the process of signing graph data and verifying
their signatures into different steps as depicted in Figure 4.1. These steps are based on
the XML signature syntax and processing standard [20] for signing and verifying XML
documents. Each of these steps can be implemented by different algorithms making them
interchangeable with each other. Thus, the framework forms a basis for different graph
signing implementations. After having loaded the graph data into memory, a canonical-
ization function κN [193] normalizes the data to a unique form. Second, a serialization
function νN transforms the canonicalized data into a sequential representation. Third, a
hash function for graphs λN computes a cryptographic hash value on the serialized data.
Fourth, a signature function ϕ combines the data’s hash value with a private signature
key [268]. The results of the first four functions are combined to the graph signing func-
tion σN . Fifth, an assembly function αN creates a signature graph containing all data
for verifying the graph’s integrity and authenticity including the signature value and an
identifier of the signature verification key. The actual verification is conducted in the
last step by the verification function δN .

Graph signing

Canonicalization

Step 1

Serialization

Step 2

Hash

Step 3

Assembly

Step 5

Verification

Step 6

Signature

Step 4

Import

Step 0

Figure 4.1.: The general process of signing and verifying graph data (cf. [20]).

This section presents the state of the art and related work on signing graphs along
the individual graph signing sub-functions as depicted in Figure 4.1. For each sub-
function, its runtime complexity and space complexity is discussed as well. Subsequently,
existing assembly functions are presented. Verification functions operate similarly to
graph signing functions and use the same sub-functions or their inverse. Thus, they are
not discussed in more detail. This section concludes with a discussion of alternative
approaches for achieving integrity and authenticity of graph data. A formalization of all
functions is provided in Section 4.3. Table 4.1 summarizes the complexity of different
implementations of the four sub-functions. In the table, n refers to the number of triples
to be signed and b corresponds to the number of blank nodes in the graph. A detailed
comparison with the related work on graph signing functions and the signing framework
Siggi is given in Section 4.8.

4.1.1. Graph Signing Functions

Tummarello et al. [295] present a graph signing function for fragments of RDF graphs.
These fragments are minimum self-contained graphs (MSGs) and are defined over triples.
An MSG of a triple t is the smallest subgraph of the complete RDF graph that contains t

82



State of the Art and Related Work Section 4.1

and the triples of all blank nodes associated directly or recursively with t. Triples without
blank nodes are an MSG on their own. The graph signing function of Tummarello et
al. is based on Carroll’s canonicalization function and hash function [72] described in
Section 4.1.2. A signature is stored as six triples, which are linked to the signed MSG via
RDF statement reification [142] of one of the MSG’s triples. The approach of Tummarello
et al. only supports signing one MSG at a time. Signing a full graph with multiple MSGs
requires multiple signatures. Thus, the graph signing process depicted in Figure 4.1 has
to be applied to each MSG in the graph. This creates a large overhead of six signature
triples per MSG. Furthermore, sining arbitrary sets of triples which do not correspond
to complete MSGs is not supported by the approach.

Signing a graph can also be accomplished by signing a document containing a par-
ticular serialization of the graph [262]. For example, a graph can be serialized using an
XML-based format such as RDF/XML [26] or OWL/XML [210]. This results in an XML
document which can be signed using the XML signature standard [20]. If the graph is
serialized using a plain text-based format such as the triple-based serialization formats
N-Triples [25] or Turtle [27], also standard text document signing approaches may be
used [268]. However, these approaches inextricably link the signature with a concrete
encoding of the graph [262]. Consequently, such a signature can only be verified as long
as the very specific serialization of the graph contained in the document is provided.

4.1.2. Canonicalization Functions for Graphs

A canonicalization function κN deterministically normalizes a graph in such a way that
its syntactical representation does not affect its hash value and its signature. A canon-
icalization function ensures that a graph’s signature only covers its semantics and not
its syntax [193]. As depicted in Figure 4.1, a cryptographic hash function is used for
computing a hash value of a serialized and canonicalized graph. Such a hash function
operates on string values and outputs different hash values for different input strings.
Blank node identifiers of a graph also influence the graph’s hash value and thus its signa-
ture as well. These blank node identifiers can be consistently renamed within the whole
graph without modifying the graph’s semantics. This means that a particular blank node
identifier can be renamed to another identifier without destroying the graph’s meaning
as long as this identifier is renamed in all its occurrences. However, renaming blank
node identifiers changes the graph’s syntactical representation and thus its hash value
and signature as well. A canonicalization function prohibits blank node renaming from
invalidating a graph’s signature. A formal specification for canonicalization functions is
provided in Section 4.3.3.

Hogan [148] canonicalizes an RDF graph by computing all its isomorphic graphs, sort-
ing them, and selecting the first graph as canonical graph. A single isomorphic graph is
computed by replacing all blank nodes in the graph with the same identifier, computing
the hash values of all triples in the graph, and computing the hash values of all blank
nodes by using the hash values of the triples in which they occur. If several blank nodes
share the same hash value, one of the blank nodes is replaced by a new identifier and
the hash values are computed again. This process is repeated until the hash values of
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Table 4.1.: Complexity of the sub-functions used by the graph signing function σN for
signing a single graph with n triples and b blank nodes.

Function Example Runtime Space

Canonicalization κN

Hogan [148] O(b2b!) O(b!)

Carroll [72] O(n log n) O(n)

Fisteus et al. [110] O(n log n) O(n)

Sayers and Karp [261] O(n) O(b)

Kuhn and Dumontier [184] O(n) O(b)

Serialization νN

N-Triples [25] O(n) O(1)

Turtle [27] O(n) O(1)

N3 [34] O(n) O(1)

TriG [38] O(n) O(1)

TriX [75] O(n) O(1)

RDF/XML [26] O(n) O(1)

OWL/XML [210] O(n) O(1)

Hash λN

Melnik [200] O(n log n) O(n)

Carroll [72] O(n log n) O(n)

Fisteus et al. [110] O(n) O(1)

Sayers and Karp [261] O(n) O(1)

Signature ϕ

ElGamal [97] O(1) O(1)

RSA [251] O(1) O(1)

DSA [214] O(1) O(1)

all blank nodes are unique. All isomorphic graphs are computed by replacing different
blank nodes with a unique identifier in each run. Creating a single isomorphic graph
renames b blank nodes which is done in at most b − 1 iterations. This corresponds
to a runtime complexity of O(b2). Since there are b! different isomorphic graphs for a
graph with b blank nodes, the runtime complexity for computing all isomorphic graphs
is O(b2b!). Sorting all b! isomorphic graphs with a sorting algorithm such as merge
sort [241] results in a overall space complexity of O(b!). Carroll [72] presents a canoni-
calization function for RDF graphs that replaces all blank node identifiers with uniform
place holders, sorts all triples of the graph based on their N-Triples [25] representation,
and renames the blank nodes according to the order of their triples. If this results in
two blank nodes having the same identifier, additional triples are added for these blank
nodes. Carroll’s canonicalization function uses a sorting algorithm with a runtime com-
plexity of O(n log n) and a space complexity of O(n) [72]. Fisteus et al. [110] perform a
canonicalization of blank node identifiers based on the hash values of a graph’s triples.
First, all blank nodes are associated with the same identifier. Second, a triple’s hash
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value is computed by multiplying the hash values of its subject, predicate, and object
with corresponding constants and combining all results with XOR modulo a large prime.
If two triples have the same hash value, new identifiers of the blank nodes are computed
by combining the hash values of the triples in which they occur either directly or tran-
sitively. This process is repeated until there are no collisions left. Colliding hash values
are detected by sorting them. Using merge sort as sorting algorithm leads to a runtime
complexity of O(n log n) and a space complexity of O(n). Sayers and Karp [261] pro-
vide a canonicalization function for RDF graphs which stores the identifier of each blank
node in an additional triple. If the identifier is changed, the original one can be recreated
using this triple. Since this does not require sorting the triples, the runtime complexity
of the function is O(n). In order to detect already processed blank nodes, the function
maintains a list of additional triples created so far. This list contains at most b entries
with b being the total number of additional blank node triples. Thus, the space complex-
ity of the function is O(b). Finally, Kuhn and Dumontier [184] canonicalize an online
available RDF graph by transforming all its blank nodes to URIs. In order to prohibit
name clashes with similar URIs stored in other graphs, all created URIs are prefixed
with the same string based on the graph’s designated web address. As this renaming
process does not require sorting, it can be implemented with a runtime complexity of
O(n). To achieve a consistent renaming of blank nodes, the canonicalization function
requires a list of already transformed blank nodes and their respective URIs. This list
contains at most b entries, resulting in a space complexity of O(b).

4.1.3. Serialization Functions for Graphs

A serialization function νN transforms an RDF graph into a sequential representation
such as a set of bit strings. A formal definition of serialization functions is given in
Section 4.3.4. The sequential representation is encoded in a specific format such as triple-
based N-Triples [25] and Turtle [27] or XML-based RDF/XML [26] and OWL/XML [210].
TriX [75] and TriG [38] are formats for expressing Named Graphs. While TriX is based
on XML, TriG has a triple-based syntax built upon Turtle. Notation3 (N3) [34] is an-
other superset of Turtle for expressing RDF graphs as well as RDF rules. When signing
RDF graphs, triple-based formats are often preferred to XML-based notations due to
their simpler structure. If a serialization function processes each triple in the graph
individually, it can be implemented with a runtime complexity of O(n) and a space
complexity of O(1). Some canonicalization functions such as [72] directly operate on
a serialized graph. Such canonicalization functions also include a serialization function
and output a canonical serialization of the graph.

4.1.4. Hash Functions for Graphs

Applying a hash function for graphs λN is often based on computing the hash values of
the graph’s triples and combining them into a single value. Computing a triple’s hash
value can be done by using a basic hash function λ such as MD5 [250] or SHA-2 [218]. A
formalization of basic hash functions and hash functions for graphs functions is provided
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in Section 4.3.5. Melnik [200] uses a simple hash function for RDF graphs. A triple’s
hash value is computed by concatenating the hash value of its subject, predicate, and
object and hashing the result. The hash values of all triples are sorted, concatenated,
and hashed again to form the hash value of the entire RDF graph. Using a sorting
algorithm like merge sort, the function’s runtime complexity is O(n log n) and its space
complexity is O(n). Carroll [72] uses a graph-hashing function which sorts all triples,
concatenates the result, and hashes the resulting bit string using a basic hash function
such as SHA-2 [218]. As the function uses a sorting algorithm with a runtime complexity
of O(n log n) and a space complexity of O(n), the runtime complexity and the space
complexity of the canonicalization function are the same. Fisteus et al. [110] suggest
a hash function for N3 [34] datasets. The triples’ hash values are computed with the
canonicalization function of the same authors described in Section 4.1.2. The hash value
of a graph is computed by incrementally multiplying the hash values of its triples modulo
a large prime. Since this operation is commutative, sorting the triples’ hash values is
not required. Thus, the runtime complexity of the hash function is O(n). Due to the
incremental multiplication, the space complexity is O(1). Finally, Sayers and Karp [261]
compute a hash value of an RDF graph similar to the approach of Fisteus et al. First,
the triples are serialized as single bit string and then hashed. Second, the incremental
multiplication is conducted. Thus, the runtime complexity of this approach is O(n) and
the space complexity is O(1).

4.1.5. Signature Functions

A signature function ϕ computes the actual graph signature by combining the graph’s
hash value with a secret signature key. Signature functions are formalized in Sec-
tion 4.3.7. Examples of existing signature functions are DSA [214], RSA [251], and
ElGamal [97]. Since the graph’s hash value is independent from the number of triples,
the signature is as well. Thus, the runtime complexity and the space complexity of all
signature functions are O(1).

4.1.6. Assembly Function

An assembly function αN creates a detailed description of how a graph’s signature can
be verified. This description may then be added to the signed graph data or be stored
at a separate location. Section 4.3.8 provides a formal definition of assembly functions.
Tummarello et al. [295] present a simple assembly function which adds additional triples
to each signed MSG containing the signature value and a URL to the public key used
for verifying the signature value. Information about the graph signing function and
its sub-functions is not provided. Once the URL to the signature verification key is
broken, i. e., the key is not available anymore at this URL, the signature can no longer
be verified. Even if a copy of the verification key is still available at a different location,
the verifier has no proof that this copy is really a legitimate copy of the original public
key. Since the issuer and other identifying metadata of the signature verification key are
not provided by the triples of the assembly function, the verifier cannot check the true
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authenticity of the copied key. The assembly function described in the XML signature
standard [20] provides an XML schema for covering all information about the signature’s
creation and verification. This includes the names of the used canonicalization function,
the hash function, and the signature function used for computing the signature value.
The XML schema also provides a unique identifier of the signature key issuer, the key’s
serial number, and further information.

4.1.7. Alternative Approaches for Achieving Integrity of Graph Data

RDF graph data is usually stored at a data provider located in the web [39]. In order to
access the graph data, a recipient has to first download it from such a provider. Thus,
ensuring integrity of RDF graph data can also be accomplished by securing this down-
load process. The Transport Layer Security (TLS) protocol [92] and its predecessor, the
Secure Sockets Layer (SSL) protocol [113], can be used to create a secure communication
channel between a recipient and a data provider. Such a secure communication channel
can be used for achieving both integrity and authenticity of the transmitted graph data.
When the recipient downloads the graph from the data provider, the communication
channel is digitally signed by the data provider. Any unauthorized modification of the
data during its transmission can be identified by the recipient. Furthermore, the dig-
ital signature also associates the transmitted graph with the data provider, achieving
authenticity of the graph data. However, secure communication channels based on TLS
or SSL only protect the transmitted data during the transmission process. They cannot
be used for permanently achieving integrity and authenticity of the data. Once a secure
communication channel is closed after the graph data has been transmitted, the recip-
ient cannot verify the graph data again without retrieving it once more from the data
provider. Additional verifications might be necessary if the data is stored on untrusted
devices such as cloud storage services or when it is transmitted further to other parties
which need to verify the graph data themselves. Furthermore, secure communication
channels require the data provider to be completely trusted. If the data provider is
different from the graph’s original creator, it may not be considered as completely trust-
worthy. In this case, the data provider can modify the graph at any time and therefore
violate the graph’s integrity. The recipient of the graph cannot notice such modifications
as the secure communication channel originates from the data provider and not from
the graph’s creator.

Kuhn and Dumontier [184] present trusty URIs, an approach for achieving integrity of
RDF graphs without digitally signing them. A trusty URI is a web address of an RDF
graph which contains the graph’s cryptographic hash value. After having downloaded a
graph, the recipient computes the graph’s hash value again and compares it with the hash
value encoded into the trusty URI. If both hash values are identical, the graph’s integrity
is confirmed. Publishing a graph on the web requires the data provider to first compute
the graph’s hash value. In order to remove the influence of the graph’s blank nodes
on the computed hash value, all blank nodes are transformed into preliminary URIs by
using the canonicalization function of the same authors described in Section 4.1.2. In
this case, the prefix used for the preliminary URIs is the graph’s designated web address
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without its hash value. After having transformed the blank nodes, the graph’s hash
value is computed by using the hash function of Carroll [72] as described in Section 4.1.4.
Finally, the computed hash value is used for creating the trusty URI of the graph. The
security of trusty URIs is based on the connection between a graph’s hash value and
its web address. Any modifications of a graph can be identified as the hash value of
the modified graph differs from the hash value encoded into the graph’s web address.
However, trusty URIs are only capable of protecting the integrity of a graph if the
graph is downloaded from the web. After this process has been completed, verifying
the graph’s integrity is no longer possible without having to download the graph again.
Furthermore, trusty URIs do not create a connection between a data provider and the
provided graph data. Thus, trusty URIs are not able to protect a graph’s authenticity
and are vulnerable to spoofing attacks in which an attacker masquerades as the data
owner. An attacker may fake a trusty URI for a self-created graph which contains the
web address of the data owner, thereby claiming that this data owner has published the
graph. The attacker then publishes the trusty URI on the web. If a recipient wants to
download the graph from the data owner, the attacker uses a spoofing attack such as IP
spoofing [291] or ARP cache poisoning [1] to redirect and intercept the communication.
The attacker then sends the self-created graph to the recipient, pretending that the
recipient is actually communicating with the data provider. As trusty URIs do not use
any mechanisms for achieving the graph’s authenticity, a recipient cannot verify the
identity of the respective communication partner and thus cannot distinguish between
an attacker and a legitimate data owner. Such attacks can be prohibited by establishing
a secure communication channel based on a protocol such as TLS or SSL. However, as
such connections also achieve integrity of the transmitted data, the use of trusty URIs
would become obsolete in this case.

4.2. Requirements for a Graph Signing Framework

The graph signing framework Siggi formally defines a process for signing arbitrary graph
data. Due to the framework’s flexible design, each step in this process can be imple-
mented by a different algorithm. Based on these general objectives, this section defines
the functional (RI.F.*) and non-functional (RI.N.*) requirements for the graph signing
framework Siggi. As defined in Section 3.2, functional requirements define the services
and functions that a system must provide [282]. On the other hand, non-functional re-
quirements define the overall design of a system and describe how functional requirements
are implemented. The following requirements are based on the scenario for regulating In-
ternet communication presented in Section 2.1 and on the related work for signing graph
data summarized in Section 4.1. The graph signing framework Siggi must support the
following functional requirements:

RI.F.1: Signing different types of graph data
The graph signing framework must allow a party to sign different types of graph
data such as RDF(S) graphs (RI.F.1.1), OWL graphs (RI.F.1.2), and Named
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Graphs (RI.F.1.3). This allows the framework to be used in heterogeneous envi-
ronments such as Linked Open Data [39]. In the workflow for exchanging regulation
policies introduced in the scenario in Section 2.1.2, the BKA provides OWL ontol-
ogy design patterns, ContentWatch provides Named Graphs, and JusProg provides
its regulation data as RDF graphs.

RI.F.2: Signing at different levels of granularity
The graph signing framework must support signing graph data at different levels of
granularity including single triples (RI.F.2.1), arbitrary sets of triples (RI.F.2.2),
MSGs (RI.F.2.3), and entire graphs (RI.F.2.4). This results in a most flexible
use of the framework. In the scenario, the BKA signs ontology design patterns
and the German Telecom signs its entire regulation graph.

RI.F.3: Signing T-box and A-box knowledge
The graph signing framework must allow a party to sign both assertional (A-box)
knowledge (RI.F.3.2) and terminological (T-box) knowledge (RI.F.3.1). A-box
knowledge corresponds to factual knowledge whereas T-box knowledge represents
the knowledge encoded in the ontological model, i. e., the schema knowledge [152].
This enables the framework to be used for signing vocabularies issued by, e. g.,
standardization bodies. In addition, parties publishing their own instance data us-
ing those vocabularies can sign their assertional knowledge as well. In the scenario,
the BKA signs both its ontologies and its technical regulation details.

RI.F.4: Signing graph data iteratively
The graph signing framework must support signing graph data which is already
signed, i. e., iterative signing of graph data. An iterative signature may cover signed
graph data from a previous signing step as well as newly added graph data. Signing
already signed graph data again without adding any additional triples can be used
for countersigning the data. Other applications of iterative signing are provenance
tracking where each party receives signed data from a party, sings the data again,
and sends the result to another party. This allows it to re-create the flow of the
signed data. In the scenario, the German Telecom receives signed graph data from
the BKA and signs it again in order to track the provenance of the exchanged
regulation details.

RI.F.5: Signing multiple and distributed graphs
The graph signing framework must allow a party to sign multiple graphs at the
same time which are distributed over different locations. In the scenario, the Ger-
man comprehensive school retrieves two different graphs from the ContentWatch
and JusProg and signs both graphs at once.

In addition to these functional requirements, the graph signing framework Siggi must
also support the following non-functional requirements:

RI.N.1: Creating encoding-independent signatures
The signatures created with the graph signing framework must not rely on a par-
ticular encoding or serialization of the graph. It must be possible to modify the
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graph’s syntactical representation after having signed the graph without invalidat-
ing the created signature. For example, it must be possible to transform a signed
graph stored as an RDF/XML document into an N-Triples file while still being
able to verify the graph’s signature. Changing the order of the triples of a signed
graph or renaming its blank node identifiers must also be possible without destroy-
ing the graph’s signature. As these two modifications do not influence the graph’s
semantics, they are also considered to be plain syntactical modifications and are
subsumed by this requirement as well.

RI.N.2: Supporting flexible configurability
The graph signing framework must support different configurations for signing
graph data. A configuration implements each step of the general signing process
depicted in Figure 4.1 with a particular algorithm. Possible configurations of the
framework must at least cover already existing approaches for signing graph data
as discussed in the related work in Section 4.1. Furthermore, the design of the
framework should also support future configurations.

RI.N.3: Supporting a modular design
The graph signing framework must have a modular design which allows to combine
different sub-functions for signing graphs as one framework configuration. The
framework must support interchangeable implementations for each sub-function
and allow the creation of new configurations by using these sub-functions as build-
ing blocks. For example, it must be possible to use the canonicalization function
of one author and combine it with a hash function for graphs from another author.

RI.N.4: Separating the signing process from software implementations
The graph signing framework must not rely on a particular software implementa-
tion or programming language. Instead, it must be possible to sign a graph with a
particular software implementation and verify the created signature with another
implementation.

Integrity and authenticity of graph data are not listed as specific requirements for the
graph signing framework Siggi. Instead, integrity and authenticity of graph data corre-
spond to the research questions RQ.2 and RQ.3, respectively, which are answered by
the graph signing framework Siggi. The fulfillment of all functional and non-functional
requirements by the the graph signing framework Siggi is summarized in Section 4.3.10
and a comparison with the related work is given in Section 4.8.

4.3. Formalization of the Graph Signing Framework Siggi

Based on the state of the art and the related work discussed in Section 4.1 as well as on
the requirements defined in Section 4.2, this section provides a formal specification of
the graph signing framework Siggi. This specification covers the input and output of all
functions which are part of the graph signing process as depicted in Figure 4.1. The spec-
ification can be used as a guideline to create new functions for each step in the process.
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As the formal specification is independent from any particular software implementation,
the created signatures can be verified using any available implementation.

4.3.1. Definition of Graphs

An RDF graph G is an unordered, finite set of RDF triples t. The set of all RDF triples
is defined as follows with the pairwise disjoint sets of resource URIs R, blank nodes B,
and literals L1:

T := (R ∪B)×R× (R ∪B ∪ L) (4.1)

It is t = (s, p, o) with s ∈ R∪B being the subject of the triple, p ∈ R being the predicate,
and o ∈ R ∪ B ∪ L being the object [13]. An OWL graph can be mapped to an RDF
graph [230]. Thus, in the following only RDF graphs are denoted while OWL graphs
are included by mapping them to RDF graphs. The set of all possible RDF graphs is
defined as follows:

G := P(T) = P((R ∪B)×R× (R ∪B ∪ L)) (4.2)

A Named Graph extends the notion of RDF graphs and associates a unique name in
form of a URI to a single RDF graph [73] or set of RDF graphs. This URI can be
described by further triples, which form the so-called annotation graph. Consequently,
the original RDF graph is also called the content graph. A Named Graph NG ∈ GN is
defined as NG = (a,A, {C1, C2, . . . , Cl}) with a ∈ R∪ {ε} being the name of the graph,
A ∈ G being the annotation graph, and Ci ∈ GN being content graphs with i = 1 . . . l
and l ∈ N. If a Named Graph does not explicitly specify an identifier, ε is used as
its name. This corresponds to associating a blank node with the graph. In this case,
the annotation graph A is empty, i. e., A = ∅. Any RDF graph G ∈ G can be defined
as Named Graph C using the notation above as C = (ε, ∅, G). The set of all Named
Graphs GN is recursively defined as follows:

GN := (R×G× P(GN )) ∪ ({ε} × {∅} ×G) (4.3)

4.3.2. Graph Signing Function σN

The graph signing function σN consists of several sub-functions and creates a signature
value s of a set of Named Graphs. These sub-functions are the canonicalization func-
tion κN , the serialization function νN , the hash function for graphs λN , the combining
function for graphs %N , and the signature function ϕ, which are formally defined be-
low. The combining function for graphs %N allows the graph signing function to sign
multiple graphs at once. The assembly function αN and the verification function γN
are not part of the graph signing function σN and are applied afterwards. The graph
signing function σN requires a secret key ks ∈ Ks as input with Ks being the set of
all secret keys. Additionally, the function requires a set of m Named Graphs NG with

1Please note that this thesis uses the symbol R for representing resources and not real numbers. The
set of real numbers is not used at all in this work.
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NGi = (ai, Ai, {C1i , . . . , Cli}), i = 1, . . . ,m, and m ∈ N. The resulting signature value s
is a bit string of length d′ ∈ N, i. e., s ∈ {0, 1}d′ . The graph signing function σN is
defined as follows:

σN : Ks × P(GN )→ {0, 1}d′ , σN (ks, {NG1, . . . , NGm}) := s (4.4)

s := ϕ(ks, %N (λN (νN (κN (NG1))), . . . , λN (νN (κN (NGm))))) (4.5)

The graph signing function σN first canonicalizes all Named Graphs using the canonical-
ization function κN . Each canonicalized graph is then serialized using the serialization
function νN and transformed into a bit string using the hash function for graphs λN .
The combining function for graphs %N is applied to these bit strings in order to create
a single bit string which can then be signed with the signature function ϕ.

4.3.3. Canonicalization Function for Graphs κN

The canonicalization function κ transforms a graph G ∈ G into its canonical form Ĝ ∈ Ĝ
with Ĝ ⊂ G being the set of all canonical graphs. Example implementations of the
function κ are discussed in Section 4.1.2. The function is defined as follows:

κ : G→ Ĝ, κ(G) := Ĝ (4.6)

For Named Graphs, the canonicalization function κN is recursively defined. It computes
a canonical representation of a Named Graph NG = (a,A, {C1, . . . , Cl}) by comput-
ing the canonical representations Â and Ĉi of its annotation graph A and its content
graphs Ci with i = 1, . . . , l and l ∈ N. The result is a canonical representation N̂G ∈ ĜN

with ĜN ⊂ GN being the set of all canonical Named Graphs. Using the function κ, the
canonicalization function κN is defined as follows:

κN : GN → ĜN , κN (NG) := N̂G (4.7)

N̂G :=

{
(ε, ∅, κ(G)) if NG = (ε, ∅, G), G ∈ G
(a, κ(A), {κN (C1), . . . , κN (Cl)}) if NG = (a,A, {C1, . . . , Cl})

(4.8)

4.3.4. Serialization Function νN

The serialization function ν transforms a graph G ∈ G into a set G of bit strings b ∈
{0, 1}∗ with G ∈ P({0, 1}∗). A single bit string usually represents a triple in the graph G.
The concrete characteristics of the bit strings in G depend on the used serialization
format. Example formats of the serialization function ν are discussed in Section 4.3.4.
The serialization function ν is defined as follows:

ν : G→ P({0, 1}∗), ν(G) := G (4.9)

The serialization function ν can be extended to the serialization function νN for Named
Graphs NG ∈ GN . The result of the function νN is a set NG of o bit strings bi ∈ {0, 1}∗
with NG = {b1, b2, . . . , bo}, i = 1, . . . , o, and o ∈ N. The particular value of o depends
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on the used implementation of the serialization function νN and on the serialized Named
Graph NG. Using the function ν, the serialization function νN is recursively defined as
follows:

νN : GN → P({0, 1}∗), νN (NG) := NG (4.10)

NG :=

{
ν(G) if NG = (ε, ∅, G), G ∈ G
{a} ∪ ν(A) ∪ νN (C1) ∪ . . . ∪ νN (Cl) if NG = (a,A, {C1, . . . , Cl})

(4.11)

4.3.5. Hash Function for Graphs λN

The basic hash function λ computes a hash value h of an arbitrary bit string b ∈ {0, 1}∗.
The resulting hash value h has a fixed length d ∈ N, i. e., h ∈ {0, 1}d. The function λ is
defined as follows:

λ : {0, 1}∗ → {0, 1}d, λ(b) := h (4.12)

The hash function for graphs λN computes a hash value hN ∈ {0, 1}d of a set of bit
strings b ∈ {0, 1}∗. It is built upon the basic hash function λ. The function λN directly
operates on bit strings and can be used for computing hash values of graphs G ∈ G and
hash values of Named Graps NG ∈ GN . Example implementations of the basic hash
function λ and the hash function for graphs λN are presented in Section 4.3.5. The hash
function for graphs λN is defined as follows:

λN : P({0, 1}∗)→ {0, 1}d, λN (NG) := hN (4.13)

4.3.6. Combining Function for Graphs %N

The combining function for graphs %N combines a set of hash values h ∈ {0, 1}d of equal
length d ∈ N into a single hash value hM ∈ {0, 1}d. The function %N allows the graph
signing function σN to sign multiple graphs at once. Example combining functions of
graphs %N are discussed in [261]. The combining function for graphs %N is defined as
follows:

%N : P({0, 1}d)→ {0, 1}d, %N ({h1, h2, . . .}) := hM (4.14)

4.3.7. Signature Function ϕ

A signature function ϕ computes the signature value of a set of graphs based on the
set’s hash value hN ∈ {0, 1}d and a cryptographic key. The keyspace, i. e., the set
of all asymmetric, cryptographic keys is defined as Ka = Kp × Ks with Kp as the
set of public keys and Ks as the set of secret keys. For computing signatures, a secret
key ks ∈ Ks is used. Possible implementations for the signature function ϕ are presented
in Section 4.1.5. Using s ∈ {0, 1}d′ as identifier for the resulting bit string, the signature
function is defined as follows:

ϕ : Ks × {0, 1}d → {0, 1}d
′
, ϕ(ks, b) := s (4.15)
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4.3.8. Assembly Function αN

The assembly function αN is applied after the graph signing function σN . It creates a
signature graph S ∈ G and includes it in a new Named Graph NGS ∈ GN . The content
and structure of S depend on the implementation of the assembly function αN . The
graph S provides information about how to verify the signature of a set of a graphs.
This includes all sub-functions of the graph signing function σN , the public key kp of
the used secret key ks, the identifiers ai of the signed Named Graphs, and the signature
value s. A possible structure of a signature graph is shown in the examples in Section 4.7.
Additional examples of an assembly function are presented in Section 4.1.6. The Named
Graph NGS contains the signature graph S as its annotation graph and the signed
graphs NGi with i = 1, . . . ,m and m ∈ N as its content graphs. In order to support
iterative signing of Named Graphs, the result of the assembly function αN is also a
Named Graph. The function is defined as follows:

αN : Kp × {0, 1}d
′ × P(GN )→ GN , αN (kp, s, {NG1, . . . , NGm}) := NGS (4.16)

NGS := (aS , S, {NG1, . . . , NGm}) (4.17)

4.3.9. Verification Function γN

The verification of a signature is similar to its creation. A verification function γN
requires a canonicalization function κN , a serialization function νN , and a hash func-
tion λN for graphs. It also requires a signature verification function δN as inverse of the
signature function ϕ. The function δN requires a bit string s ∈ {0, 1}d′ and a public
key kp ∈ Kp as input. It is defined as follows with b ∈ {0, 1}d being the resulting bit
string. If a secret key ks ∈ Ks is inverse to the public key kp, it holds δN (kp, ϕ(ks, b)) = b
for all b ∈ {0, 1}d.

δN : Kp × {0, 1}d
′ → {0, 1}d, δN (kp, s) := b (4.18)

The verification function γN checks whether or not a given signature is a valid signature
of a set of Named Graphs. The function requires a public key kp and a signature value s
which can be taken from the signature graph S. Additionally, the function requires a
set of signed Named Graphs {NG1, . . . , NGm} with m ∈ N. The key kp is the public
counterpart of the secret key ks, which was used for creating the signature value s.
The verification function γN combines the signature value s with the public key kp
and computes the hash value h′ of the Named Graphs NGi with i = 1, . . . ,m. The
signature is valid iff both computed values are equal. Using h′ = λN (νN (κN (NG1)) ∪
. . . ∪ νN (κN (NGm))), the verification function γN is defined as follows:

γN : Kp × P(GN )× {0, 1}∗ → {TRUE,FALSE} (4.19)

γN (kp, {NG1, . . . , NGm}, s) :=

{
TRUE if δN (kp, s) = h′

FALSE otherwise
(4.20)
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4.3.10. Fulfillment of the Requirements

This section outlines how the functional and non-functional requirements defined in Sec-
tion 4.2 are fulfilled by the graph signing framework Siggi. A further discussion and
comparison with the related work is provided in Section 4.8. The requirement of signing
different types of graph data (RI.F.1) is supported via the definition of Named Graphs
given in Equation 4.3. This definition allows to map RDF(S) graphs (RI.F.1.1) and
OWL graphs (RI.F.1.2) to Named Graphs by using a representation like (ε, ∅, G). In
this case, ε is used as the graph’s name, ∅ is used as the annotation graph, and G ∈ G
corresponds to the original graph. Signing Named Graphs (RI.F.1.3) is directly sup-
ported by the graph signing function σN as defined in Equation 4.4. Thus, this function
can also be used to sign RDF(S) graphs and OWL graphs. The fulfillment of the require-
ment of signing graph data at different levels of granularity (RI.F.2) depends on the
particular granularity level. Signing a complete graph (RI.F.2.4) is directly supported
by the graph signing function σN . Signing individual triples (RI.F.2.1), arbitrary sets
of triples (RI.F.2.2), or MSGs (RI.F.2.3) is achieved by first creating a new graph
which contains all triples to be signed. The resulting graph can then be transformed
into a Named Graph by applying Equation 4.3 and signed using the graph signing func-
tion ϕ. T-box knowledge and A-box knowledge (RI.F.3) share the same syntactical
representation which consists of a set of triples. A Named Graph can contain any type
of triples and does not distinguish between schema knowledge and factual knowledge.
Thus, signing T-box knowledge (RI.F.3.1) and A-box knowledge (RI.F.3.2) is equally
supported by the graph signing function σN . The requirement of iterative signing of
graph data (RI.F.4) is fulfilled by the design of the assembly function αN defined in
Equation 4.16. The output of the function is a Named Graph which can be signed again
using the graph signing function σN . Signing multiple graphs at once (RI.F.5) is sup-
ported by the combining function for graphs %N defined in Equation 4.14. The function
combines the hash values of multiple graphs into a single hash value. Singing this hash
value corresponds to signing these graphs at the same time. As the function does not
distinguish between local graphs and remote graphs, it equally supports both types of
graphs.

The requirement of an encoding-independent signature (RI.N.1) is collectively ful-
filled by the canonicalization function for graphs κN , the hash function for graphs λN ,
and the design of the framework’s formal specification. The canonicalization function
for graphs κN ensures that renaming a graph’s blank node identifiers does not invalidate
the graph’s signature. The hash function for graphs λN normalizes the order of the
graph’s triples in such a way that changing this order does not influence the signature.
The framework’s formal specification does not rely on a particular encoding of the graph
and interprets the graph as an abstract data structure which is processed as such. As
the encoding format used by the assembly function αN is independent of the signing
process, it can be changed without invalidating the graph’s signature. The requirement
of different configurations of the graph signing framework (RI.N.2) is supported by the
generic design of the framework’s formal specification. The specification only defines the
basic characteristics of the signing process and focuses on the input and output data of
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each signing step. As it does not rely on a particular algorithm, it can be configured with
different algorithms from different authors. Distinguishing between the different steps of
the signing process also fulfills the requirement of a modular design (RI.N.3). Finally,
the formal specification is independent from any particular software implementation
and thus fulfills requirement RI.N.4. Signing a graph and verifying a graph’s signature
can be done using different software implementations as long as both implementations
comply with the framework’s formal specification.

4.4. Four Configurations of the Signing Framework

This section discusses four possible configurations A, B, C, and D of the graph signing
framework Siggi. The example configurations are extracted from the related work de-
scribed in Section 4.1 and are referred to by the names of their respective authors. New
configurations can also be created by combining different algorithms from different au-
thors or by creating new algorithms from scratch. Each configuration of the graph signing
framework must define the particular implementation of the assembly function αN and
of all sub-functions of the graph signing function σN . However, the formal specification
provided in Section 4.3 already defines the concrete operation of the canonicalization
function κN for Named Graphs, the serialization function νN for Named Graphs, and
the graph signing function σN . Thus, a particular configuration of the framework must
only define those functions of the signing process whose implementation details are not
covered by the formal specification. These functions are the canonicalization function κ,
the serialization function ν, the basic hash function λ, the hash function for graphs λN ,
the combining function for graphs %N , and the assembly function αN .

Table 4.2.: Basic implementation of the four example configurations of the the graph
signing framework. To ease comparability, the four configurations mostly
use the same sub-functions and only differ in the canonicalization func-
tion κ, the hash function for graphs λN , and in the assembly function αN .

Function Implementation

Graph signing function σN as defined in Equation 4.4

Canonicalization function κ depending on the configuration

Canonicalization function κN for Named Graphs as defined in Equation 4.7

Serialization function ν N-Triples [25]

Serialization function νN for Named Graphs as defined in Equation 4.10

Basic hash function λ SHA-2 [218]

Hash function for graphs λN depending on the configuration

Combining function for graphs %N as defined in Equation 4.21

Signature function ϕ RSA [251]

Assembly function αN depending on the configuration
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In order to ease the comparability between the four example configurations, the config-
urations only differ in their used canonicalization function κ, hash function for graphs λN ,
and assembly function αN . All configurations use N-Triples [25] for the serialization func-
tion ν, SHA-2 [218] as basic hash function λ, and RSA [251] as signature function ϕ. As
for the combining function for graphs %N , all four configurations use a function based
on the hash function for graphs of Carroll [72]. The used function combines the hash
values of all graphs to be signed by sorting them, concatenating them, and hashing the
resulting string using a basic hash function λ. SHA-2 is also used as the basic hash
function λ in the combining function %N . Using sort as sorting function and concat as
concatenation function, the definition of the combining function for graphs %N provided
in Equation 4.14 is refined as follows:

%N : P({0, 1}d)→ {0, 1}d, %N ({h1, h2, . . .}) := hM (4.14)

%N ({h1, h2, . . .}) := λ(concat(sort({h1, h2, . . .}))) (4.21)

Table 4.2 summarizes the similarities and differences of the four example configurations.
Each of the four configurations is further analyzed regarding its runtime complexity,
space complexity, and signature overhead when signing a single graph. The runtime
complexity and space complexity depend on the characteristics of the graph to be signed
as well as on the graph signing function σN and its sub-functions. The signature overhead
depends on the additional triples created by these sub-functions and on the size of the
signature graph S created by the assembly function αN . Table 4.3 summarizes the
complexity and signature overhead of the example configurations for signing a single
graph.

Table 4.3.: Configurations A–D of the graph signing framework with runtime complex-
ity, space complexity, and signature overhead for singing a single graph. n
is the number of triples in the graph, b is the number of blank nodes, bh
is the number of blank nodes which require special treatment, and r is the
number of disjoint MSGs in the graph.

Configuration
Complexity of σN Signature overhead

runtime space of σN and αN

A) Carroll [72] O(n log n) O(n) bh + 25 triples, bh ≤ b

B) Tummarello et al. [295] O(n log n) O(n)
bh + 6r triples,

bh ≤ b, r ≤ n
C) Fisteus et al. [110] O(n log n) O(n) 0 + 25 triples

D) Sayers & Karp [261] O(n) O(n) b+ 25 triples

4.4.1. Configuration A: Carroll

Configuration A is based on the canonicalization function κ and the hash function for
graphs λN of Carroll [72]. Due to their use of a sorting operation, both functions have
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a runtime complexity of O(n log n) and a space complexity of O(n) with n being the
number of triples in the processed graph. The resulting graph signing function σN
built upon these functions shares the same complexity. The canonicalization function κ
handles blank node identifiers by sorting all of a graph’s triples and creating additional
triples for blank nodes sharing the same identifier. With b as the total number of
blank nodes in the graph and bh ≤ b as the number of blank nodes which require
an additional triple, the canonicalized graph contains bh more triples than the original
graph. Configuration A uses an assembly function αN which creates a signature graph S
based on the signature ontology provided in Appendix C. This signature graph contains
25 triples which results in a total signature overhead consisting of bh + 25 triples.

4.4.2. Configuration B: Tummarello et al.

Configuration B corresponds to the approach by Tummarello et al. [295] and is based
on the canonicalization function κ and hash function for graphs λN of Carroll [72].
Although both functions are also used in configuration A, configuration B only allows
to sign individual MSGs. Signing a complete graph with n triples and r disjoint MSGs
requires the graph to be split into its MSGs first. Splitting the graph can be done with a
runtime complexity of O(n) and a space complexity of O(n) by using an implementation
based on bucket sort [83] where each MSG corresponds to one bucket. Each MSG is
then signed individually using Carroll’s functions. Signing a complete graph results in
a runtime complexity of O (

∑r
i=1 ni log ni) and a space complexity of O (

∑r
i=1 ni) with

ni being the number of triples in MSG i. Since all MSGs are disjoint, it is
∑r

i=1 ni = n.
Thus, the total runtime complexity of configuration B’s graph signing function σN is
O(n log n) and its space complexity is O(n). The assembly function αN of Tummarello
et al. stores a signature using six additional triples. Since each MSG of the graph is
signed individually, the assembly function creates a separate set of signature triples for
each MSG. Thus, the overhead created by the assembly function αN for a graph with
r MSGs is 6r triples. Combining these triples with the bh triples created by Carroll’s
canonicalization function κ results in a total overhead of bh + 6r triples.

4.4.3. Configuration C: Fisteus et al.

Configuration C uses the canonicalization function κ and hash function for graphs λN
of Fisteus et al. [110]. Combining these two functions results in a configuration with
minimum signature overhead. Due to its use of a sorting algorithm, the canonicalization
function κ has a runtime complexity of O(n log n) and a space complexity of O(n) when
canonicalizing a graph with n triples. Since the hash function for graphs λN operates
incrementally on the triples of the graph and does not require sorting, its has a runtime
complexity of O(n) and a space complexity of O(1). This results in a runtime complexity
of the graph signing function σN of O(n log n) and a space complexity of O(n). As the
functions of Fisteus et al. do not create any additional triples, the signature overhead is
independent of the signed graph and only depends on the signature graph S. Using the
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same assembly function αN as configuration A which creates a signature graph S with
25 triples results in a total signature overhead of 25 triples.

4.4.4. Configuration D: Sayers and Karp

Configuration D is based on the canonicalization function κ and hash function for
graphs λN by Sayers and Karp [261]. Signing a graph with n triples and b blank nodes
using this configuration results in a minimum runtime complexity of O(n) of the graph
signing function σN . The canonicalization function κ creates an additional triple for
each blank node in the graph. In order to detect already handled blank nodes, this
function maintains a list of additional triples created so far. This list contains at most
b entries with b being the total number of additional triples. Blank nodes can only occur
on subject and/or object position in a triple. Thus, each triple of a graph contains no,
one, or two blank nodes. Assuming that each blank node is part of at least one triple,
a graph can contain at most twice as many blank nodes as triples, i. e., b ≤ 2n. This
results in a space complexity of O(n) of the graph signing function σN . Using the same
assembly function as configuration A and C, the signature overhead of configuration D
consists of b triples added by the canonicalization function κ and 25 triples created by
the assembly function αN .

4.5. Cryptanalysis of the Four Configurations

The cryptographic security of a particular configuration of the graph signing framework
Siggi depends on the cryptographic security of the graph signing function σN and its
used sub-functions. A comprehensive cryptanalysis of a graph signing function σN must
therefore cover all algorithms used for implementing these sub-functions. This section
first introduces an attack model which covers different attacks on signing graph data.
This attack model is then used as a foundation for analyzing the cryptographic security
of the four example configurations A, B, C, and D presented in Section 4.4 for signing a
set of Named Graphs. The analysis first covers the common security aspects of all four
example configurations and then discusses the particular security of each configuration
in more detail. As the four example configurations mainly differ in their used canoni-
calization function κ and hash function for graphs λN , the specific cryptanalysis of each
configuration focuses on these two functions.

4.5.1. Attack Model

The graph signing framework Siggi implements the two security requirements authen-
ticity and integrity of a set of Named Graphs. Authenticity means that the party who
claims to have signed the set of graphs is actually the signature’s creator. Integrity
means that the signed graph data was not modified by an unauthorized party after the
signature had been created [28]. Modifications of the set of graphs are considered to
be unauthorized if they modify the semantics of at least one graph in the set. As re-
quirement RI.N.1 implies, purely syntactical modifications of a graph such as consistent
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renaming of blank nodes or re-ordering the triples in the graph do not modify the graph’s
semantics. Thus, such modifications are not considered to be unauthorized and are even
necessary for canonicalizing and hashing a graph as defined in the formal specification
in Section 4.3. All unauthorized modifications are summarized as the following attacks
on a set of signed Named Graphs. These attacks also form the basis of the cryptanalysis
provided in this section.

AI.1: Removing triples from a signed graph
An attacker removes at least one triple from a graph in the set. The resulting
graph has fewer triples than the original graph. This violates the integrity of the
modified graph and thus the integrity of the set of graphs as well.

AI.2: Inserting additional triples into a signed graph
An attacker inserts at least one new triple into a graph in the set. The resulting
graph has more triples than the original graph. Again, this violates the integrity
of the modified graph and thus the integrity of the set of graphs as well. Inserting
an already existing triple of a graph into the same graph again is not considered as
an attack. As RDF graphs do not contain any duplicate triples, inserting already
existing triples does not modify the graph’s semantics.

AI.3: Modifying existing triples in a signed graph
An attacker modifies at least one existing triple in a graph or replaces an existing
triple in the graph with a new triple which is not part of the graph. Possible modi-
fications include the substitution of a subject URI with a different URI. Modifying
or replacing triples in a graph violate the graph’s integrity and thus the integrity
of the set as well.

AI.4: Removing a signed graph from the set
An attacker removes at least one graph from the set of signed graphs. The resulting
set of graphs has fewer graphs than the original set. Thus, this attack violates the
integrity of the set of graphs.

AI.5: Inserting a new graph into the set
An attacker inserts a new graph into the set of signed graphs. The resulting set of
graphs has more graphs than the original set. Inserting an already existing graph
into the set a second time is not considered as an attack as the set can contain a
graph at most once. Again, this attack violates the integrity of the set of graphs.

AI.6: Forging signatures of a set of graphs
An attacker creates a signature for a set of graphs of own choice without having
access to the secret signing key ks. The forged signature is considered as valid by
the verification function γN as the function uses the corresponding public key kp of
the secret key ks for verification. In this attack, the real owner of the secret key ks
has not approved of the signed set of graphs. However, the verification function γN
cannot distinguish between a legitimate signature and a forged signature. Thus,
this attack violates the authenticity of the set of graphs.
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Removing a triple from the graph (AI.1) and inserting the triple again (AI.2) into
the same graph at another position is not considered as an attack. This corresponds
to simply re-ordering the graph’s triples which is not an unauthorized modification.
Modifying a signed graph is not listed as a separate attack since it is already covered
by the attacks AI.1, AI.2 and AI.3. All attacks violate the authenticity of the set of
signed graphs. Modifying a single graph in the set or changing the number of graphs
results in a new set of graphs which was not approved by the signing party. This
directly contradicts with the authenticity of the set. Forging signatures of a set of
graphs (AI.6) does not violate the integrity of this set as the attacker does not perform
any unauthorized modifications of already existing graph data. However, this attack
still violates the authenticity of the set of graphs.

4.5.2. Cryptanalysis of the Canonicalization Function κN

The canonicalization function κ deterministically renames the blank nodes of a graph.
The cryptographic security of the canonicalization function κ determines the difficulty
for an attacker to forge a signature of a graph (AI.6). If the canonicalization function κ
works correctly, semantically equivalent graphs are mapped to an identical canonical
form and semantically different graphs are mapped to different canonical forms. How-
ever, if the canonicalization function κ does not work correctly, semantically identical
graphs may be mapped to different canonical forms. Similarly, semantically different
graphs may be mapped to the same canonical representation. As this would allow an
attacker to replace a signed graph with another graph of identical canonical form (AI.6),
the cryptographic security of the canonicalization function for graphs κ depends on the
function’s stability and correctness. The canonicalization function for Named Graphs κN
is built upon the function κ. Thus, the cryptographic security of the function κN de-
pends solely on the function κ. The particular security of the canonicalization function κ
used in the four example configurations is further discussed for each of the four example
configurations below.

4.5.3. Cryptanalysis of the Serialization Function νN

The serialization function ν transforms a canonical graph into a set of bit strings. The
cryptographic security of the serialization function ν determines the difficulty for an
attacker to modify a triple of a signed graph without being noticed by the verification
function γN (AI.3). All four example configurations use N-Triples [25] as serialization
format. In this format, each bit string in the set corresponds to a syntactical represen-
tation of a single triple in the graph. As the serialization function ν does not require
any cryptographic operations or secret information such as secret keys, its cryptographic
security is solely based on its stability. The output of the serialization function serves as
the input for the hash function for graphs λN . In order to create the same hash value for
semantically identical graphs, the output of the serialization function ν must be stable,
i. e., the serialization function must output identical sets of bit strings for identical input
graphs. Although N-Triples does not support any shortcuts such as compact URI repre-
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sentations, it still allows different syntactical notations for a single triple. For example,
the type and amount of whitespace characters between the subject, predicate, and object
of a triple is not restricted in the N-Triples format. However, using different whitespace
characters still affects the syntactical representation of a triple and therefore also the
output of the hash function for graphs λN . In order to produce a stable serialization for
a canonicalized graph, each triple must be transformed to a canonical serialization. This
is achieved in all four example configurations by using a single space as delimiter between
all three triple parts and removing all other whitespace characters. This results in a sta-
ble serialization function ν which outputs identical sets of bit strings for identical input
graphs, prohibiting an attacker from modifying any triple (AI.3) without being noticed
by the verification function γN . As the serialization function for Named Graphs νN is
built upon the serialization function ν, its cryptographic security also depends on this
function and the used serialization format.

4.5.4. Cryptanalysis of the Hash Function for Graphs λN

The basic hash function λ is used by the hash function for graphs λN for computing the
hash value of a graph. The specific effects of the basic hash function on the cryptographic
security of the graph signing function σN depend on its particular usage within the hash
function for graphs λN . Basic hash functions λ used for signing graph data must be
resistant against pre-image attacks, second pre-image attacks, and collision attacks [56].
A basic hash function λ is resistant against pre-image attacks if it is difficult to find
any input value that maps to a given hash value. Hash functions with this property
are called one-way functions. A basic hash function λ is resistant against second pre-
image attacks if it is difficult to find another input value with the same hash value as a
given input value. Finally, a basic hash function λ is resistant against collision attacks
if it is difficult to find any two different input values with the same hash value. All
collision resistant hash functions are also resistant against pre-image attacks and second
pre-image attacks [56].

All four example configurations use SHA-2 [218] as basic hash function λ as recom-
mended by the National Institute for Standards and Technology (NIST) [217]. Comput-
ing a hash value with SHA-2 is done incrementally in several rounds. Each round uses
the output of the previous round as input. The total number of rounds depends on the
cryptographic strength of the resulting hash value. All four example configurations use
SHA-2 with an output length of 224 bits which corresponds to a cryptographic strength
of 112 bit [217]. This particular variant of SHA-2 uses 64 rounds for computing the hash
value. Although several attacks on SHA-2 have already been published [258, 158, 201],
all of them only use a reduced version of the hash function in which not all 64 rounds are
covered. These attacks focus on collision resistance which also includes resistance against
pre-image attacks and second pre-image attacks [56]. As there is no attack on complete
SHA-2 yet, this basic hash function λ can still be considered as collision resistant.

The hash function for graphs λN is built upon the basic hash function λ and outputs
a hash value for each graph to be signed. The cryptographic security of this function
determines the difficulty for an attacker to remove triples from a signed graph (AI.1),
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insert new triples into a signed graph (AI.2), modify triples in a signed graph (AI.3),
and forge a signature of a graph (AI.6). In order to prohibit such attacks, the hash
function for graphs λN must create different hash values for semantically different graphs.
Additionally, the function must create identical hash values for semantically identical
graphs. The cryptographic security of the hash function for graphs λN depends on the
security of the used basic hash function λ and on how the function λ is particularly used
within the function λN . As the four example configurations use different hash function
for graphs λN , the cryptographic security of these functions is further discussed for each
of the configurations below.

4.5.5. Cryptanalysis of the Combining Function for Graphs %N

The combining function for graphs %N combines the hash values of several graphs created
with the hash function for graphs λN into a single hash value. The cryptographic security
of the combining function for graphs %N determines the difficulty for an attacker to
remove a graph from the set of signed graphs (AI.4) or insert a new graph into this
set (AI.5) without being noticed by the verification function γN . All four example
configurations use a combining function for graphs %N which operates similar as the
hash function for graphs λN of Carroll [72]. As defined in Equation 4.14, the combining
function for graphs %N sorts the hash values of all graphs, concatenates them, and hashes
the resulting string using a basic hash function λ. Using a stable sorting algorithm such
as merge sort [241], the sorting function produces identical output values for identical
input values. Similarly, the concatenation function also produces identical output values
for identical input values. As both functions do not influence the stability and security of
the combining function for graphs %N , the cryptographic security of this function solely
depends on the used basic hash function λ. Using SHA-2 [218] as basic hash function, the
combining function for graphs %N can be considered as secure. Modifying the processed
set of hash values by removing a hash value of a graph (AI.4) or inserting a hash value
of a new graph (AI.5) results in a different output of the function %N . Unauthorized
modifications like these can therefore be identified by the verification function γN .

4.5.6. Cryptanalysis of the Signature Function ϕ

The signature function ϕ digitally signs the hash value created with the combining func-
tion for graphs %N using the signing party’s secret key ks. The cryptographic security of
the signature function ϕ determines the difficulty for an attacker to forge a signature for
a set of graphs (AI.6). Signature functions ϕ can generally be used for digitally signing
arbitrary messages. In the graph signing framework Siggi, these messages correspond
to graph data. Signature functions ϕ must be resistant against key-only attacks and
message attacks [130]. In both types of attacks, an attacker forges a valid signature for
a message of own choice so that the resulting signature can be verified with the real
signing party’s public key kp. In a key-only attack, the attacker has only access to this
public key kp whereas a message attack provides the attacker with several messages and
their respective signature values. Message attacks can be further distinguished by the
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influence that the attacker has on the received messages [130]. The strongest message
attack is the adaptive chosen-message attack in which the attacker can requests a set
of messages to be directly signed by the real signing party with the secret key ks. The
resulting pairs of messages and corresponding signatures can then be used by the at-
tacker to create valid signatures for new messages of own choice. In order to prohibit
an attacker from forging signatures (AI.6), a digital signature scheme must be resistant
against adaptive chosen-message attacks as these are the strongest attacks which include
all other weaker attacks.

All four example configurations use RSA [251] as signature function ϕ as recommended
by NIST [217]. An RSA key pair consists of a secret key ks = 〈d,N〉 and a public
key kp = 〈e,N〉 with d being a secret value, e being its public counterpart, and N being
the product of large primes p and q. The primes p and q are only known to the owner
of the secret key ks. The cryptographic security of an RSA signature is based on the
factorization problem for large numbers which is considered to be hard to solve [174].
The larger the prime factors of a number are, the more difficult it is to find them. An
attacker who can factorize N can easily compute the value of d. Thus, the size of N and
its prime factors p and q defines the cryptographic security of an RSA key pair. The
four example configurations use a value of N with a length of 2048 bit as recommended
by NIST [217]. This corresponds to a cryptographic strength of 112 bit. Although
factorizations of 512 bit and 768 bit numbers N have already been implemented in
reasonable time [77, 180], a factorization of a 2048 bit number has not been found yet.

However, factorizing N is not necessary in order to forge signatures for a message when
using plain RSA which does not use any additional security operations. Plain RSA is not
secure against key-only attacks which allows an attacker to create a valid signature for a
message of own choice using only the public key 〈e,N〉 [175]. Furthermore, plain RSA is
also not secure against adaptive chosen-message attacks in which an attacker choses two
different messages to be signed by the signing party in order to create a valid signature
for any other message. However, such attacks can be made more difficult for an attacker
by signing a hash value of the message instead of signing the message directly [175]. All
four example configurations use the combining function for graphs %N in order to create
a combined hash value of all graphs to be signed. This hash value is used as input for the
signature function ϕ which makes the attacks described above much harder to implement.
In summary, the signature function ϕ used in the four example configurations can be
considered as secure and resistant against signature forging attacks (AI.6).

4.5.7. Cryptanalysis of Configuration A

Configuration A uses the canonicalization function κ and hash function for graphs λN of
Carroll [72]. The canonicalization function κ also includes a serialization function ν and
outputs a canonical serialization of a graph. The canonicalization function κ removes all
blank node identifiers from the graph, sorts the resulting triples based on their canonical
N-Triples representation, and renames the blank nodes based on the order of the triples.
If the order of the triples is not unique due to the removal of the blank node identifiers,
additional triples are added for these blank nodes in order to create a unique triple
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order. This ensures that the canonicalization function κ of Carroll always produces a
stable output, prohibiting an attacker from finding two semantically different graphs with
the same canonical form (AI.6). As the canonicalization function κ does not perform
any further cryptographic operations, it does not affect the cryptographic security of
configuration A.

The hash function for graphs λN of Carroll sorts all bit strings of the canonicalized
and serialized graph, concatenates them, and computes a hash value of the resulting
string using a basic hash function λ. Hash values of several graphs are combined with
the combining function %N into a single value which is then signed using the signature
functions ϕ. Since the combining function for graphs %N also uses a basic hash func-
tion λ, the cryptographic security of configuration A solely depends on the basic hash
function λ and on the signature functions ϕ. If an attacker removes a triple from a
signed graph (AI.1), its hash value changes which results in a different hash value of the
set of graphs and an invalid signature as well. Similarly, adding new triples to a single
graph (AI.2) or modifying existing triples (AI.3) changes the graph’s hash value and
thus invalidates the signature of the set as well. In order to prohibit an attacker from
forging graph signatures (AI.6), configuration A uses SHA-2 as collision resistant basic
hash function λ and RSA as signature function ϕ which is resistant against adaptive
chosen-message attacks.

4.5.8. Cryptanalysis of Configuration B

Configuration B only differs from configuration A by using an additional split function
which partitions a graph into disjoint MSGs. As the MSGs of a graph are well-defined,
the split function operates deterministically and produces identical outputs for identi-
cal inputs. Thus, the split function does not influence the cryptographic security of
configuration B. The canonicalization function κ and hash function for graphs λN of
configuration B are identical to configuration A. Thus, the cryptographic security of
configuration B also depends on the basic hash function λ and on the signature func-
tions ϕ.

4.5.9. Cryptanalysis of Configuration C

Configuration C uses the canonicalization function κ and hash function for graphs λN
of Fisteus et al. [110]. The canonicalization function κ uses hash values as blank node
identifiers. The hash values are based on the structure of the graph and are computed
in several steps. First, the initial hash value of all blank nodes is set to a constant
value. Second, the hash value of each triple is computed with a hash function λt. The
function combines the hash values of a triple’s subject, predicate, and object using XOR
modulo a large prime p. Finally, the hash values of the blank nodes are computed
again using a hash function λb. The function combines the hash value of all triples
of a blank node using XOR modulo a large prime p. If this results in two or more
blank node identifiers being identical, the hash values of the blank nodes and triples are
computed again. This process is repeated until there are either no collisions left or if the
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remaining collisions cannot be resolved. In the latter case, the graph contains disjoint
subgraphs which are syntactically equivalent except for their blank node identifiers. As
these subgraphs are also isomorphic, they cannot be semantically distinguished from
each other. Thus, the semantics of the canonicalized graph is also not affected by these
subgraphs. The stability of the canonicalization function therefore only depends on the
two hash functions λt and λb. Both functions are based on XHash, which is proven to
be vulnerable to pre-image attacks and collision attacks [29]. This allows an attacker
to create colliding hash values with the function λt and replace an existing triple with
another triple of identical hash value. In a similar attack on the hash function λb, an
attacker can replace blank nodes in the graph with other blank nodes sharing the same
hash value. Both attacks allow an attacker to modify a triple in a signed graph (AI.3)
without being noticed by the verification function γN .

The hash function for graphs λN of Fisteus et al. also uses the hash function λt for
computing the hash value of each triple in the graph. The function λN combines these
hash values by multiplying them modulo a large prime p. This operation is based on
MuHash [29] which is considered to be collision resistant as long as the hash function λt
is a one-way-function and the prime p is large enough. If both requirements are met, the
cryptographic security of MuHash can be reduced to the discrete logarithm problem [29]
which is considered to be hard to solve [197]. The hash function for graphs λN uses a
prime p with a length of 1024 bit as recommended in the literature [285]. However, the
hash function λt is not a one-way function as it is not resistant against pre-image attacks.
Since the hash function for graphs λN is therefore vulnerable as well, it is possible to find
two different input graphs with the same hash value. This allows an attacker to replace
a graph in the set of signed graphs with another graph of identical hash value (AI.1,
AI.2, AI.3).

In order to improve the cryptographic security of configuration C, the two hash func-
tions λt and λb are modified as follows: The XOR operation used in the hash function λb
is replaced with multiplication, resulting in a variant of MuHash. As prime p, the hash
function λb also uses a value with a length of 1024 bit. The hash function λt is modi-
fied so that it computes the hash value of a triple by concatenating all of its parts and
hashing the resulting bit string using a basic hash function λ. As basic hash function λ,
SHA-2 is used with an output length of 224 bit. These modifications improve the cryp-
tographic security of the hash function for graphs λN and thus the overall security of
configuration C as well.

4.5.10. Cryptanalysis of Configuration D

Configuration D uses the canonicalization function κ and hash function for graphs λN
of Sayers and Karp [261]. Instead of altering the blank node identifiers of a graph, the
canonicalization function κ stores the current identifier of each blank node in an addi-
tional triple which is added to the original graph. The subject of such a triple corresponds
to the blank node and the object is a literal containing the blank node’s current label.
As the new triples are deterministically created, the canonicalization function κ outputs
the same canonical graph for identical input graphs and different canonical graphs for
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different input graphs. The additional triples can be used to re-create the original graph
by undoing any later modifications of the graph’s blank node identifiers. Thus, the
canonicalization function κ of Sayers and Karp prohibits an attacker from finding two
semantically different graphs with the same canonical form (AI.6).

The hash function for graphs λN of Sayers and Karp computes the hash value of each
serialized triple in the graph using a basic hash function λ and multiplies the resulting
hash values modulo a large prime p. Similar to the hash function for graphs λN of
Fisteus et al. [110], the hash function for graphs λN of Sayers and Karp is also based on
MuHash [29]. Thus, the cryptographic security of hash function for graphs λN of Sayers
and Karp is based on the collision resistance of the used basic hash function λ and the
size of the prime p. The hash function for graphs λN uses SHA-2 with an output length of
224 bit as basic hash function λ and a prime p with a length of 1024 bit as recommended
in the literature [285]. As the used SHA-2 variant is collision resistant, an attacker cannot
replace an existing triple in the graph with another triple of identical hash value (AI.3)
without being noticed by the verification function γN . Since the resulting hash function
for graphs λN is collision resistant as well, an attacker cannot insert new triples into
the graph (AI.2) or remove existing triples from the graph (AI.1) without changing
the hash value of the graph. Configuration D prohibits an attacker from forging graph
signatures (AI.6) by using SHA-2 as collision resistant basic hash function λ and RSA
as signature function ϕ which is resistant against adaptive chosen-message attacks.

4.6. Performance of the Four Configurations

This section assesses the performance of the four example configurations A, B, C, and D
introduced in Section 4.4. Each configuration and its sub-functions are analyzed and
the experimental findings are compared with the theoretical analysis provided in Sec-
tion 4.4. In the experiments, the runtime and required memory for singing a single graph
and the number of additional triples created by the graph signing function σN and the
assembly function αN were measured. As datasets, synthetic RDF graphs ranging from
10,000 to 250,000 triples were used. The datasets were created with the Berlin SPARQL
benchmark (BSBM) [40] which provides a framework for comparing different RDF data
stores. In order to measure the influence of blank nodes in the graph on the graph sign-
ing function σN and the assembly function αN , different percentages of blank nodes were
introduced into the BSBM graph with 250,000 triples. This was done by mapping 1%,
5%, 10%, 25%, and 50% of the unique subject URIs [131] in the graph to corresponding
blank node identifiers. The graph signing framework is implemented in Java using Open-
JDK version 1.7. A detailed description of the implementation’s architecture is provided
in [263]. The evaluation was conducted using a system with 100 GB memory and an
Intel R© Xeon R© CPU with 2.00 GHz running Debian GNU/Linux version 7. In order to
avoid interference with statistical outliers, each operation was performed ten times and
the mean value was calculated. Additionally, three warm-up phases were performed to
reduce the influence of any initializations on the measured values.

107



Chapter 4 Siggi: A Framework for Iterative Signing of Graph Data

4.6.1. Runtime and Memory Usage of the Functions κN and λN

Figure 4.2 shows the effect on the canonicalization function κN and hash function for
graphs λN when increasing the size of a signed graph without blank nodes. The functions
are taken from the four example configurations A, B, C, and D. As depicted, the run-
time and required memory of both functions increase as the size of the graph increases.
Since configurations A and B use the same canonicalization function κN , the runtime
and required memory is also the same. As expected, the runtime of this function has
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Figure 4.2.: Runtime and required memory of the canonicalization functions κN and
hash functions for graphs λN from the four example configurations A–D.
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complexity of O(n log n) and the required memory corresponds to O(n). Although con-
figurations A and B also use the same hash function for graphs λN , the hash function
of configuration B requires more memory. This is due to the splitting function used
in configuration B that splits the graph into disjoint MSGs. The splitting function is
executed after the canonicalization function κN . As the hash function for graphs λN of
configuration B is applied separately to all resulting MSGs, a slightly higher memory
usage is observed. Although the expected runtime of the hash function for graphs λN
used in configurations A and B has a complexity of O(n log n), the observed complexity
is only O(n). The theoretical complexity of the hash function for graphs λN is based
on the complexity of the sorting algorithm used by this function. However, the canon-
icalization function κN used in configurations A and B already sorts the triples in the
graph. As consequence, this reduces the runtime of the sorting operation used in the
hash function for graphs κN since the triples are still sorted. Furthermore, this also
reduces the runtime of the hash function for graphs κN used in configurations A and B.

Regarding configurations C and D, both the runtime and the required memory of
the canonicalization function κN and the runtime of the hash function for graphs λN
are as expected. Due to their incremental approach, the hash functions for graphs λN
of these two configurations can be implemented with a memory complexity of O(1).
After having processed one triple, the temporarily allocated memory can be freed and
used again to process the next triple. However, Java does not support to explicitly free
memory which results in a permanent increase of memory usage. Thus, the observed
memory complexity of the hash functions for graphs λN of configurations C and D is
O(n).

4.6.2. Accumulated Runtime of all Functions

Figure 4.3 shows the accumulated runtime of the four example configurations A–D for
signing the BSBM graphs with no blank nodes. As depicted, the total runtime increases
for all four configurations as the size of the signed graph increases. The signature
functions ϕ of configurations A, C, and D are called only once for the whole graph,
making their runtime independent from the graph size. On the other hand, the signature
function ϕ of configuration B signs each MSG in the graph individually. In a graph with
no blank nodes, each triple corresponds to one MSG. Thus, for such graphs, the number
of MSGs increases as the size of the graph increases. This results in a larger runtime
of configuration B’s signature function ϕ. Although the runtime of the cryptographic
operations conducted by the signature function ϕ are usually insignificant compared to
other functions, executing a large amount of them highly influences the total runtime.

4.6.3. Influence of Blank Nodes

Figure 4.4 shows the influence of blank nodes on the four example configurations A–D
for signing the BSBM graph with 250,000 triples. The overall runtime of configuration A
increases and the required memory decreases as the signed graph contains more blank
nodes. The larger runtime is primarily caused by the configuration’s canonicalization
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Figure 4.3.: Accumulated runtime of the four example configurations A–D.

function κN which renames all blank node identifiers. Renaming more blank node iden-
tifiers also increases the function’s runtime. The memory required by configuration A’s
hash function for graphs λN and assembly function αN declines, resulting in less required
memory in total. Both functions operate on string representations of URIs and blank
node identifiers. Since blank node identifiers usually have shorter string representations
than URIs, processing them also requires less memory. Since all graphs used in the ex-
periments have no blank nodes bh, which require special treatment by configuration A’s
canonicalization function (see Section 4.4.1), the signature overhead is constant.
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Figure 4.4.: Effect of blank nodes on the runtime, memory usage, and signature over-
head for signing a graph with 250,000 triples.

The runtime and required memory of configuration B is mostly affected by the split
function, the signature function ϕ, and the assembly function αN . The runtime and
required memory of the split function increase as the graph contains more blank nodes.
At the same time, there are less MSGs to be signed which results in less signature
data. Thus, the runtime and required memory of both the signature function ϕ and the
assembly function αN decrease. Similarly, the signature overhead also decreases as the
assembly function αN creates fewer signature graphs.

The total runtime and required memory of configuration C mainly depends on the
canonicalization function κN and hash function for graphs λN . The canonicalization
function κN renames blank nodes based on their hash values. Since the computation of
a blank node’s hash value requires more operations than the hash value of a URI or literal
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(see Section 4.5.9), the runtime of the canonicalization function κN increases as more
blank nodes are introduced into the graph. If the graph contains no blank nodes, only one
iteration for renaming blank node identifiers is performed. However, all signed graphs
with blank nodes result in two renaming iterations and thus double the memory required
by the canonicalization function κN . As the hash function for graphs λN also requires
the computation of blank nodes’ hash values, its runtime increases with the number
of blank nodes in the graph. Thus, the total runtime of configuration C increases as
well. Configuration C does not create any additional triples which results in a constant
signature overhead.

The overall runtime and required memory of configuration D is mainly affected by
its hash function for graphs λN . The runtime of this function depends on the number
of triples and the length of the strings to be hashed. The canonicalization function κN
of configuration D creates an additional triple for each blank node in the graph. These
additional triples are also processed by the hash function for graphs λN . The more blank
nodes the graph contains, the more additional triples are hashed. However, blank node
identifiers are also shorter than URIs and their hash values can be computed faster.
Both aspects result in an almost constant runtime of the hash function for graphs λN .
Although the memory required by the hash function for graphs λN is also affected by
both aspects, its memory usage declines. Thus, the shorter string representations of
the blank node identifiers have a larger impact on the hash function’s memory usage
than on its runtime. The signature overhead rises in configuration D since the signed
graph contains additional triples for all blank nodes created by the canonicalization
function κN .

4.6.4. Summary

All four example configurations A–D use RSA [251] with a key length of 2048 bit as
signature function ϕ. This corresponds to a cryptographic security of 112 bit [217]. If
a cryptographic security of 128 bit is desired, a key length of 3072 bit could be used
instead. However, this would increase the runtime of the signature function ϕ by a
factor of three. Although this hardly affects the overall runtime of configurations A, C,
and D as they only compute a single signature for the whole graph, a larger key length
highly increases the runtime of configuration B which signs all MSGs individually. As
alternative, Elliptic Curve DSA [219] with a key length of 256 bits could be used as the
signature function ϕ. It has the same security as RSA with a key length of 3072 bit but
is about 76 times faster.

The experimental results show that the approach by Sayers and Karp (configuration D)
is best suited for signing graphs with few blank nodes. For such graphs, the overhead
created by the canonicalization function κN may be negligible. Signing RDF graphs with
many blank nodes should be done with the approach by Fisteus et al. (configuration C).
If indeed the approach by Tummarello et al. (configuration B) shall be used, e. g., for
signing MSGs individually, the faster Elliptic Curve DSA should be used instead of RSA
as signature function ϕ.
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4.7. Applications and Use Cases

This section describes how the graph signing framework Siggi is used for implementing
the scenarios introduced in Section 2. The first scenario described in Section 2.1 focuses
on the regulation of Internet communication and is covered in Sections 4.7.1 to 4.7.5.
The second scenario introduced in Section 2.2 covers the secure management of medical
data and is addressed in Section 4.7.6.

4.7.1. Signing Policies for Regulating Internet Communication

The scenario for regulating Internet communication defines a workflow for creating and
distributing regulation policies. The workflow is described in Section 2.1.2 and involves
several authorities. Each authority creates a specific part of a regulation policy, signs it,
and sends it to the next authority. This authority verifies the signature, adds its own
part of the policy, signs the result again, and sends it to the next authority. The process
is repeated until the policy is completed and contains all regulation details. The sub-
sequent examples are structured along the workflow of the German Telecom depicted
in Figure 2.2a and on the workflow of the German comprehensive school depicted in
Figure 2.2b. The regulation policies are modeled with the InFO policy language and
its domain-specific extensions as described in Chapter 3. The example graphs used in
this section correspond to the example policies provided in Section 3.4.1. Each example
is represented using an extension of the TriG syntax [38] that supports nested Named
Graphs and blank nodes as graph identifiers. Alternative formats for representing signed
graph data are also possible and are discussed in Section 4.9.6. Figure 4.5a and Fig-

_:bka-patterns-1

bka:bka-sg-1

gt:gt-sg-1

_:gt-data-1

_:bka-rules-1

(a) Resulting graph signed by the German Telecom

cw:cw-sg-1

cw:cw-rules-1

cs:cs-sg-1

_:cs-data-1 jp:jp-sg-1

_:jp-rules-1

(b) Resulting graph from the German comprehensive school

Figure 4.5.: Different examples of iteratively signed graphs which containing policies
for regulating Internet communication.
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ure 4.5b show the resulting graphs after having completed the two workflows. Figure 4.5a
depicts the resulting graph signed by the German Telecom. The graph contains signed
graph data from the BKA which consists of a graph containing T-box knowledge and an-
other graph with A-box knowledge. Figure 4.5b depicts the graph signed by the German
comprehensive school. The graph contains a signed Named Graph from ContentWatch
and another signed graph from JusProg. All signed graphs are created by applying the
graph signing function σN and the assembly function αN . In the following, the signing
process for each party is demonstrated. The examples are based on configuration C of
the graph signing framework as discussed in Section 4.4.3 and are presented along the
functional requirements RI.F.1 to RI.F.5 as described in Section 4.2.

4.7.2. Signing an OWL Graph

The first workflow covers the regulation of the Stormfront network by the German Tele-
com. The BKA creates the regulation details for prohibiting access to the network based
on the network’s domain name. To this end, the BKA provides corresponding ontology
design patterns (RI.F.2.2) which support the definition of name server-specific regula-
tion policies. These patterns correspond to the patterns of the Name Server Ontology
which is further described in Appendix A.3. The BKA uses these patterns in order to
create two particular flow control rules. The rules contain the domain name of the Storm-
front network and the BKA as their rule data provider. The complete rules are depicted
in the InFO chapter in Figure 3.19a and Figure 3.19b. After having compiled all data,
the BKA signs both the patterns of the Name Server Ontology and the two flow control
rules. A fragment of the resulting graph is depicted in Listing 4.1. The graph contains
the design patterns, the two flow control rules, and a signature graph. The patterns
contain T-box knowledge of the BKA (RI.F.3.1) and are modeled as a separate graph
shown in lines 30 to 37. The graph is identified by the blank node :bka-patterns-1.
The two flow control rules are encoded as an OWL graph (RI.F.1.2) and provide A-
box knowledge (RI.F.3.2). They correspond to the graph :bka-rules-1 which is also
identified by a blank node and shown in lines 40 to 51. Signing both :bka-patterns-1

and :bka-rules-1 results in the new Named Graph bka:bka-sg-1 and a signature
graph. The Named Graph bka:bka-sg-1 contains the graphs :bka-patterns-1 and
:bka-rules-1 as its content graphs and the signature graph as its annotation graph.

The graph bka:bka-sg-1 is shown in lines 11 to 52 and the triples of the signature
graph are shown in lines 14 to 27. The graph bka:bka-sg-1 and its two content graphs
:bka-patterns-1 and :bka-rules-1 are also shown in Figure 4.5 as part of the graph
gt:gt-sg-1.

1 @prefix bka: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/bka-graph.owl#> .

2 @prefix dns:

3 <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/name_server_flow_control.owl#> .

4 @prefix dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#> .

5 @prefix owl: <http://www.w3.org/2002/07/owl#> .

6 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

7 @prefix sig: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/signature.owl#> .

8 @prefix tec:
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9 <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/technical_regulation.owl#> .

10

11 bka:bka-sg-1 {

12

13 # Signature graph of the BKA

14 {

15 bka:bka-sig-1 a sig:Signature ;

16 sig:hasGraphSigningMethod bka:bka-gsm-1 ;

17 sig:hasSignatureValue "TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXA=" ;

18 sig:hasVerificationCertificate bka:bka-pck-1 .

19 bka:bka-gsm-1 a sig:GraphSigningMethod ;

20 sig:hasGraphCanonicalizationMethod sig:gcm-fisteus-2010 ;

21 sig:hasGraphSerializationMethod sig:gsm-n-triples ;

22 sig:hasDigestMethod sig:dm-sha224 ;

23 sig:hasGraphDigestMethod sig:gdm-fisteus-2010 ;

24 sig:hasGraphCombiningMethod sig:cm-sort-concat ;

25 sig:hasSignatureMethod sig:sm-rsa .

26 ...

27 }

28

29 # T-box knowledge containing design patterns

30 _:bka-patterns-1 {

31 dns:DomainNameBlockingRuleMethod a owl:Class ;

32 rdfs:subClassOf tec:DenyingFlowControlRuleMethod , [

33 a owl:Restriction ; owl:onProperty dul:isSatisfiedBy ;

34 owl:allValuesFrom dns:DomainNameBlockingRuleSituation

35 ] .

36 ...

37 }

38

39 # A-box knowledge containing flow control rules

40 _:bka-rules-1 {

41 bka:dnsr-1 a dns:DomainNameBlockingRuleMethod ; dul:defines bka:rdp-1 , bka:rt-1 ,

42 bka:sr-1 , bka:ss-1 , bka:rr-1 , bka:rs-1 .

43 bka:rr-1 a tec:ReceiverRole ; dul:classifies cn-1 .

44 bka:cn-1 a tec:ComputerNetwork ;

45 dul:hasQuality bka:dq-1 ; dul:hasSetting bka:dnsrs-1 .

46 bka:dq-1 a tec:DomainQuality ; dul:hasRegion bka:dnr-1 .

47 bka:dnr-1 a tec:DomainNameRegion ;

48 tec:hasDomainName "stormfront.org" ; dul:hasSetting bka:dnsrs-1 .

49 bka:dnsrs-1 a dns:DomainNameBlockingRuleSituation ; dul:satisfies bka:dnsr-1 .

50 ...

51 }

52 }

Listing 4.1: Example of a signed OWL graph.

The complete signature graph created by the assembly function αN is depicted in
Figure 4.6. The signature graph is modeled with the Signature Ontology which is pre-
sented in Appendix C and based on the XML signature standard [20]. The signature
graph stores the computed signature bka-sig-1, its signature value, and all parame-
ters of the graph signing function σN required for verifying this value. In the signature
graph, the function σN is identified as bka-gsm-1 and linked to all its subfunctions.
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bka-gsm-1

"TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXA="

hasGraphSigningMethod 

hasSignatureValue 

Signaturetype

GraphSigningMethodtype

gcm-fisteus-2010

dm-sha224

sm-rsa type

type

type

type

hasSignatureMethod 

hasGraphSerializationMethod 

hasDigestMethod 

hasGraphCanonicalizationMethod GraphCanonicalizationMethod

DigestMethod

SignatureMethod

GraphSerializationMethodgsm-n-triples

gdm-fisteus-2010 type GraphDigestMethodhasGraphDigestMethod

bka-sig-1

bka-pck-1 X509Certificatetype 

"12:E5:D0:01:D8:13:C8"hasSerialNumber 
"C=DE, O=Zentrum fuer Informationsverarbeitung

 und Informationstechnik, OU=Betrieb,
 CN=ZIVIT CA - G01, E=ca@zivit.de"

hasDistinguishedName 

type 

hasIssuer 

hasVerificationCertificate 

zivit-1

cm-sort-concat type GraphCombiningMethodhasGraphCombiningMethod

"C=DE, ST=Nordrhein-Westfalen, L=Bonn,
 O=Zentrum fuer Informationsverarbeitung und
 Informationstechnik, OU=Betrieb, CN=www.bka.de"

hasDistinguishedName bka-1

Organization

hasSubject

Figure 4.6.: Example signature graph of the BKA. The graph consists of 25 triples
and is modeled using the Signature Ontology described in Appendix C.
The Signature Ontology is based on the XML signature standard [20] and
describes all details for verifying a graph signature.

This includes the canonicalization function for graphs gcm-fisteus-2010, the serial-
ization function gsm-n-triples, the basic hash function (also called digest function)
dm-sha224, the hash function for graphs gdm-fisteus-2010, the combining function
for graphs cm-sort-concat, and the signature function sm-rsa. In order to verify the
signature value, the signature graph also covers a reference to the BKA’s public key
certificate. The certificate contains the corresponding public key of the BKA’s secret
key, which was used as the signature key. The certificate is represented as bka-pck-1

and corresponds to an X.509 certificate [82] issued by the German Center for Infor-
mation Processing and Information Technology (Zentrum für Informationsverarbeitung
und Informationstechnik; ZIVIT)2. The certificate’s owner is identified as bka-1 and
its issuer is represented as zivit-1. X.509 certificates are uniquely identified by their
serial number and the distinguished name [317] of their issuer. A distinguished name is
an hierarchically structured identifier of an organization or natural person. In order to
precisely identify the certificate used for verifying the graph’s signature, the signature
graph contains the certificate’s serial number as well as the distinguished names of its
owner and issuer.

4.7.3. Iteratively Signing of Graphs

The German Telecom receives the signed Named Graph bka:bka-sg-1 from the BKA
and verifies its signature. Although this graph contains two flow control rules which
already provide some regulation details, it does not contain a complete flow control pol-

2http://www.zivit.de, last accessed: 01/21/16
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icy with all necessary information for the regulation’s enforcement. For example, the
graph does not define the name server which shall be used as the regulation’s enforcing
system. Thus, the German Telecom completes the flow control policy by adding its own
RDF graph :gt-data-1 with additional regulation details. These details include the IP
address 2.160.15.78 of the enforcing name server ns-2, the regulation’s legal authoriza-
tion la-1, and the German Telecom’s code of conduct om-1. The resulting flow control
policy corresponds to the example policy of the InFO chapter depicted in Figure 3.16c.
Subsequently, the German Telecom signs its own graph :gt-data-1 (RI.F.2.4) to-
gether with the received Named Graph bka:bka-sg-1. Thus, the access provider itera-
tively signs the graph bka:bka-sg-1 (RI.F.4) which results in the new Named Graph
gt:gt-sg-1 depicted in Listing 4.2. This graph contains the created signature graph
shown in lines 8 to 14, the graph :gt-data-1 created by the German Telecom shown
in lines 17 to 27, and the BKA’s Named Graph bka:bka-sg-1 shown in lines 30 to
40. The signature graph covers the used graph signing function gt:gt-gsm-1 (line 10),
the resulting signature value (line 11), and the public key certificate gt:gt-pck-1 of
the German Telecom (line 12). The Named Graph gt:gt-sg-1 contains the signature
graph as its annotation graph and the two graphs :gt-data-1 and bka:bka-sg-1 as
its content graphs.

1 @prefix bka: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/bka-graph.owl#> .

2 @prefix gt: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/gt-graph.rdf#> .

3 ...

4

5 gt:gt-sg-1 {

6

7 # Signature Graph of the German Telecom

8 {

9 gt:gt-sig-1 a sig:Signature ;

10 sig:hasGraphSigningMethod gt:gt-gsm-1 ;

11 sig:hasSignatureValue "YXJlIGJlbG9uZyB0byB1cw==" ;

12 sig:hasVerificationCertificate gt:gt-pck-1 .

13 ...

14 }

15

16 # Flow regulation details of the German Telecom

17 _:gt-data-1 {

18 gt:dnsp-1 a tec:FlowControlPolicyMethod ; dul:hasMember bka:dnsr-1 , bka:dnsr-2 ;

19 dul:defines gt:ro-1 , gt:es-1 , gt:la-1 , gt:om-1 .

20 gt:es-1 a tec:EnforcingSystem ; dul:classifies ns-2 .

21 gt:ns-2 a tec:NameServer ; dul:hasSetting gt:dnsps-1 ; dul:hasQuality gt:ipaq-2 .

22 gt:ipaq-2 a tec:IPAddressQuality ; dul:hasRegion gt:ipar-6 .

23 gt:ipar-6 a tec:IPv4AddressRegion ; dul:hasSetting gt:dnsps-1 ;

24 tec:hasIPAddress "2.160.15.78" .

25 gt:dnsps-1 a tec:FlowControlPolicySituation ; dul:satisfies gt:dnsp-1 .

26 ...

27 }

28

29 # Graph data received from the BKA

30 bka:bka-sg-1 {

31 {
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32 bka:bka-gsm-1 a sig:Signature ;

33 sig:hasGraphSigningMethod bka:bka-gsm-1 ;

34 sig:hasSignatureValue "TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXA=" ;

35 sig:hasVerificationCertificate bka:bka-pck-1 .

36 ...

37 }

38 _:bka-patterns-1 { ... }

39 _:bka-rules-1 { ... }

40 }

41 }

Listing 4.2: Example of iteratively signed graphs.

4.7.4. Signing a Named Graph

The second workflow describes how the German comprehensive school prohibits its stu-
dents from accessing pornographic web content. To this end, the school receives regula-
tion details from ContentWatch and JusProg. The regulation details contain the URLs of
the websites to be blocked and are modeled with the Application-Level Proxy Ontology,
which is further described in Appendix A.4. ContentWatch provides its regulation details
as Named Graph (RI.F.1.3) while JusProg uses a regular RDF graph (RI.F.1.1). Due
to the design of the graph signing framework described in Section 4.3, signing a Named
Graph is similar to signing an RDF graph or OWL graph. Listing 4.3 depicts the Named
Graph cw:cw-sg-1 created by ContentWatch. The regulation details of ContentWatch
are modeled as the graph cw:cw-rules-1 which is shown in lines 18 to 24. They corre-
spond to the example flow control rules depicted in Figure 3.19a and Figure 3.19b. Sign-
ing the Named Graph cw:cw-rules-1 results in the signature graph shown in lines 9 to
15. The signature graph covers the used graph signing function cw:cw-gsm-1 (line 11),
the signature value (line 12), and ContentWatch’s public key certificate cw:cw-pck-1

(line 13). The signature graph and the Named Graph cw:cw-rules-1 are part of the
newly created Named Graph cw:cw-sg-1 (lines 6 to 25), which contains the signature
graph as its annotation graph and the graph cw:cw-rules-1 as its content graph.

1 @prefix cw: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/cw-graph.owl#> .

2 @prefix prx:

3 <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/proxy_flow_control.owl#> .

4 ...

5

6 cw:cw-sg-1 {

7

8 # Signature graph of ContentWatch

9 {

10 cw:cw-sig-1 a sig:Signature ;

11 sig:hasGraphSigningMethod cw:cw-gsm-1 ;

12 sig:hasSignatureValue "SXQncyBibHVlIGxpZ2h0" ;

13 sig:hasVerificationCertificate cw:cw-pck-1 .

14 ...

15 }

16
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17 # Flow control rules of ContentWatch

18 cw:cw-rules-1 {

19 cw:wst-1 a tec:WebSite ; dul:hasQuality cw:uq-1 ; dul:hasSetting cw:alprs-1 .

20 cw:uq-1 a tec:URLQuality ; dul:hasRegion cw:ur-1 .

21 cw:ur-1 a tec:URLRegion ;

22 tec:hasURL "http://www.porntube.com/" ; dul:hasSetting cw:alprs-1 .

23 ...

24 }

25 }

Listing 4.3: Example of a signed Named Graph.

The Named Graph created by JusProg is depicted in Listing 4.4 and identified as
jp:jp-sg-1. Its structure is similar to that of the Named Graph cw:cw-rules-1

created by ContentWatch. JusProg provides its regulation details as the RDF graph
:jp-rules-1 shown in line 15. This graph contains the flow control rule depicted in

Figure 3.19c. Signing the graph results in the signature graph shown in lines 7 to 12.
The Named Graph jp:jp-sg-1 contains the signature graph as its annotation graph
and the RDF graph :jp-rules-1 as its content graph.

1 @prefix jp: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/jp-graph.rdf#> .

2 ...

3

4 jp:jp-sg-1 {

5

6 # Signature graph of JusProg

7 {

8 jp:jp-sig-1 a sig:Signature ;

9 sig:hasGraphSigningMethod jp:jp-gsm-1 ;

10 sig:hasSignatureValue "SSBsaWtlIHRyYWlucw==" ;

11 ...

12 }

13

14 # Flow control rule of JusProg

15 _:jp-rules-1 { ... }

16 }

Listing 4.4: Example of a signed RDF Graph.

4.7.5. Signing Multiple and Distributed Graphs

The German comprehensive school receives the graph cw:cw-sg-1 from ContentWatch
and the graph jp:jp-sg-1 from JusProg. As both graphs only provide flow control rules
and not a complete flow control policy, the school adds its own RDF graph :cs-data-1

with additional regulation details. These details cover the flow control policy which
includes the flow control rules and associates them with their legal authorization and
organizational motivation as well as their enforcing proxy server. The policy corresponds
to the example flow control policy depicted in Figure 3.19d. The school signs the graph
:cs-data-1 together with the two graphs cw:cw-sg-1 and jp:jp-sg-1, thereby signing

multiple and distributed graphs at once (RI.F.5). This results in the Named Graph
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cs:cs-sg-1 shown in Listing 4.5. It contains the school’s graph :cs-data-1 (lines 16 to
24), ContentWatch’ graph cw:cw-sg-1 (lines 27 to 30), and JusProg’s graph jp:jp-sg-1

(lines 33 to 36). The school’s signature graph contains the used graph signing function
cs:cs-gsm-1 (line 9), the created signature value (line 10), and the school’s public key
certificate cs:cs-pck-1 (line 11).

1 @prefix cs: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/cs-graph.owl#> .

2 ...

3

4 cs:cs-sg-1 {

5

6 # Signatue graph of the comprehensive school

7 {

8 cs:cs-sig-1 a sig:Signature ;

9 sig:hasGraphSigningMethod cs:cs-gsm-1 ;

10 sig:hasSignatureValue "QWxsIHlvdXIgYmFzZSBhcmU=" ;

11 sig:hasVerificationCertificate cs:cs-pck-1 .

12 ...

13 }

14

15 # Flow regulation details of the comprehensive school

16 _:cs-data-1 {

17 cs:alpp-1 a tec:FlowControlPolicyMethod ;

18 dul:hasMember cw:alpr-1 , cw:alpr-2 , jp:alpr-3 ;

19 dul:defines cs:ro-3 , cs:es-3 , cs:la-3 , cs:om-2 .

20 cs:es-3 a tec:EnforcingSystem ; dul:classifies cs:pr-1 .

21 cs:pr-1 a tec:ProxyServer ; dul:hasSetting cs:alpps-1 .

22 cs:alpps-1 a tec:FlowControlPolicySituation ; dul:satisfies cs:alpp-1 .

23 ...

24 }

25

26 # Graph data received from ContentWatch

27 cw:cw-sg-1 {

28 { ... }

29 cw:cw-rules-1 { ... }

30 }

31

32 # Graph data received from JusProg

33 jp:jp-sg-1 {

34 { ... }

35 jp:jp-rules-1 { ... }

36 }

37 }

Listing 4.5: Example of multiple signed graphs.

4.7.6. Signing Medical Data

The scenario for securing medical data records introduced in Section 2.2 covers three
different CDOs which exchange medical data records with each other. The overall pro-
cess of these transmissions is depicted in Figure 2.5 and involves a GP, a radiographer,
and a hospital. Each CDO creates several records, compiles them into an EHR, signs
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the EHR, and sends it to the next CDO. Figure 4.7 depicts the final EHR which is
created by the hospital and identified as hp:hp-ehr-1. This graph contains the EMR
hp:hp-emr-1, the EHR hp:hp-ehr-1, and the graph :hp-rls-1 which are created
by the hospital as well as the EHR rg:rg-ehr-1 which is received from the radiogra-
pher. The EMR hp:hp-emr-1 stores the results of the hospitals examination, the EHR
hp:hp-ehr-1 contains several graphs describing the different steps of the performed
surgery, and the graph :hp-rls-1 corresponds to the hospital’s discharge note. The
EHR rg:rg-ehr-1 created by the radiographer contains the EMR rg:rg-emr-1 which
covers the results of the radiographer’s examination and the graph :rg-dia-1 which
compiles the associated diagnosis. In addition, the graph rg:rg-ehr-1 also contains
the EHR gp:gp-ehr-1 which is received from the GP. This graph contains the EMRs
gp:gp-emr-1 and gp:gp-emr-2 which provide the results of two different examinations
conducted by the GP. The EHR also contains the graph :gp-prs-1 which covers the
GP’s prescription for iodine tablets. All three graphs are signed individually before
including them into the EHR gp:gp-ehr-1.

rg:rg-ehr-1

gp:gp-ehr-1

_:gp-prs-1

gp:gp-sg-1

gp:gp-emr-1

gp:gp-sg-2 gp:gp-sg-3

gp:gp-emr-2_:rg-dia-1

rg:rg-emr-1

hp:hp-emr-1 hp:hp-ehr-1

_:hp-op-2_:hp-op-1 _:hp-op-3

_:hp-rls-1

hp:hp-ehr-1

Figure 4.7.: Example graph signed by the hospital which contains medical data records
from different CDOs.

All EMRs and EHRs of the scenario are provided as Named Graphs while all other
graphs are associated with blank nodes as graph identifiers. EHRs are signed by their
respective creators and are basically a collection of several other graphs without adding
any additional triples. Thus, EHRs are directly used as output of the assembly func-
tion αN and contain the other graphs as their content graphs. An additional signature
graph stores the actual signature value. Listing 4.6 shows how the EHR hp:hp-ehr-1

created by the hospital is encoded by using the extension of TriG for nested Named
Graphs and blank nodes as graph identifiers. The EHR provides an example of signing
multiple graphs at once (RI.F.5) as well as of iterative signing of graphs (RI.F.4). All
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depicted graphs are either RDF graphs (RI.F.1.1) or Named Graphs (RI.F.1.3) and
contain A-box knowledge (RI.F.3.2).

1 hp:hp-ehr-1 {

2

3 # Signatue graph of the hospital

4 { ... }

5

6 # EMR of the hospital containing the results of the scintigraphy

7 hp:hp-emr-1 { ... }

8

9 # EHR of the hospital containing several graphs documenting the operation

10 hp:hp-ehr-1 {

11 { ... }

12 _:hp-op-1 { ... }

13 _:hp-op-2 { ... }

14 _:hp-op-1 { ... }

15 }

16

17 # Graph containing the discharge note of the hospital

18 _:hp-rls-1 { ... }

19

20 # EHR of the radiographer including the EHR of the general practitioner

21 rg:rg-ehr-1 {

22 { ... }

23 rg:rg-emr-1 { ... }

24 _:rg-dia-1 { ... }

25

26 # EHR of the general practitioner including the EMRs of two ultrasonographies

27 gp:gp-ehr-1 {

28 { ... }

29 gp:gp-sg-1 { { ... } gp:gp-emr-1 { ... } }

30 gp:gp-sg-2 { { ... } _:gp-prs-1 { ... } }

31 gp:gp-sg-3 { { ... } gp:gp-emr-2 { ... } }

32 }

33 }

34 }

Listing 4.6: Example of signed medical graphs.

4.8. Evaluation and Comparison with Existing Approaches

This section evaluates how the related work and state of the art discussed in Section 4.1
as well as the graph signing framework Siggi fulfill the requirements introduced in Sec-
tion 4.2. The results of this assessment are depicted in Table 4.4. Although the related
work presents different algorithms for signing graph data, only two approaches cover
the whole signing process. These approaches are Tummarello et al. [295] and the XML
signature standard [20]. Other approaches which focus on particular sub-functions of the
signing process such as canonicalization functions and hash functions are not discussed
as they cannot be directly used for achieving integrity and authenticity of graph data.
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Similarly, alternative approaches for achieving integrity of graph data as presented in
Section 4.1.7 are also not evaluated. These approaches include trusty URIs [184] and
transmitting the graphs over SSL connections. As these approaches are designed for a
different use case, they cannot be directly compared with the graph signing framework
Siggi. In the following, Tummarello et al. and the XML signature standard are compared
with Siggi along the functional requirements RI.F.1.1 to RI.F.5 and non-functional re-
quirements RI.N.1 to RI.N.4.

Table 4.4.: Comparison of the capabilities of different approaches for signing graph
data with the requirements introduced in Section 4.2. Rows correspond
to the different approaches and columns correspond to requirements. Re-
quirements RI.F.1.1 to RI.F.5 are functional, while RI.N.1 to RI.N.4
are non-functional. The letter y corresponds to a complete fulfillment of
the requirement, l corresponds to a partial fulfillment, and n corresponds
to no fulfillment of the requirement.
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Tummarello et al. [295] y y n l n y y y y l n y n n y

XML Signature Standard [20] y y y y y y y y y y y n l y y

Siggi y y y y y y y y y y y y y y y

4.8.1. Evaluating the Functional Requirements

Signing RDF(S) graphs and OWL graphs is natively supported by Tummarello et al.
The graph to be signed first must be split into disjoint MSGs which are then signed
individually. The XML signature standard can be used for signing RDF(S) graphs and
OWL graphs by first applying an XML-based serialization format to the graphs and
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then signing the resulting document. RDF(S) graphs can be transformed into XML
documents by using the serialization format RDF/XML [26] and OWL graphs can be
serialized using OWL/XML [210]. Thus, both approaches fulfill requirements RI.F.1.1
and RI.F.1.2. The graph signing framework Siggi supports these requirements by map-
ping RDF(S) graphs and OWL graphs to Named Graphs which can be directly signed
with the framework. A Named Graph is uniquely identified by its URI and associates
this URI with all its triples. Signing a Named Graph must therefore cover both the
graph’s triples as well as the link between these triples and the graph’s URI. In order to
sign a Named Graph with Tummarello et al., all MSGs of the graph must be associated
with the graph’s URI. As the approach does not natively support such a relation, it does
not fulfill requirement RI.F.1.3. The XML signature standard can be directly used for
signing Named Graphs by using TriX [75] as serialization format for the graph. TriX
is an XML-based format which supports Named Graphs. The graph signing framework
Siggi natively supports Named Graphs via the design of its formal specification.

The approach of Tummarello et al. is restricted to signing complete MSGs and can
generally not be used for signing individual triples. An MSG is defined over blank
nodes and contains one or more triples. Triples without blank nodes form an MSG on
their own. Signing a single triple with Tummarello et al. is therefore only possible if
the triple does not contain any blank nodes. This corresponds to a partial fulfillment
of requirement RI.F.2.1. The structure of a graph and the number of blank nodes
define how the graph is split into disjoint MSGs. As MSGs cannot flexibly be defined,
arbitrary sets of triples cannot be signed with Tummarello et al. (RI.F.2.2). Signing
an entire graph (RI.F.2.4) with multiple MSGs is possible by signing each of its MSGs
individually. The XML signature standard does not have any restrictions on the triples
to be signed. The standard can be used for signing single triples, arbitrary sets of triples,
MSGs, and entire graphs. Similarly, the graph signing framework Siggi also supports
signing different types of graph data. Triples which do not form a graph on their own,
can be mapped to a new graph which can then be processed by the framework. T-
box knowledge and A-box knowledge are syntactically represented as triples. These
triples can be signed with any of the discussed approaches. Thus, Tummarello et al.
and the XML signature standard as well as the graph signing framework Siggi fulfill
requirements RI.F.3.1 and RI.F.3.2.

Iterative signing allows to sign an already signed graph again which leads to a nested
structure of graph signatures. In each iteration, the signing party may choose to coun-
tersign the already signed data or to add additional triples to the signed graph in order
to sign them as well. Verifying a particular signature requires a clear distinction be-
tween signatures of different signing iterations. A signature created with Tummarello et
al. is stored in six triples which are linked to the signed MSG by reifying one of the its
triples. As these triples do not natively allow to distinguish between different signing
iterations, Tummarello et al. do not fulfill requirement RI.F.4. In contrast, the XML
signature standard can be directly used for iterative signing of graph data. A signature
is stored in a new XML element Signature which is added to the XML serialization of
the signed graph. This element precisely identifies the XML fragments which represent
the signed graph data. The element can also identify other Signature elements as well.
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This can be used for iteratively signing a graph together with additional triples. The
graph signing framework Siggi supports iterative signing of graph data via the design of
its assembly function αN .

Tummarello et al. do not support signing multiple graphs at once (RI.F.5) as it focuses
on signing individual MSGs only. Due to its design, the approach neither supports
signing all MSGs of a single graphs at once nor signing all MSGs of multiple graphs
at the same time. On the other hand, the XML signature standard can be used for
signing multiple and distributed XML documents via the use of detached signatures.
Such signatures allow to refer to the signed XML documents by their remote URI. Each
XML document can contain one or more graphs, allowing the XML signature standard
to sign multiple and distributed graphs as well. The graph signing framework Siggi
fulfills requirement RI.F.5 via the design of its combining function for graphs %N .

4.8.2. Evaluating the Non-Functional Requirements

Tummarello et al. and the graph signing framework Siggi do not rely on a particular
serialization format of the graph data to be signed. Instead, they interpret the graph as
an abstract data structure and thus fulfill requirement RI.N.1. In contrast, the XML
signature standard requires an XML serialization of the graph. Although a graph can
also be signed by signing a particular XML serialization of it, the resulting signature is
inextricably linked to the signed XML document. It is attached to the signed document
as a new Signature element which consists of plain XML data and does not contain any
triples. If the serialization of the graph is lost, e. g., by loading the graph into a triple
store, the signature can no longer be verified. Re-creating the particular serialization
requires the same blank node identifiers and the same order of triples as used in the
signed graph. Even if the serialization can be re-created, the Signature element may
still be lost as it does not contain any triples which can be processed as graph data.
Thus, the contents of this element cannot be stored with the graph when loading it
into a triple store. In order to create a stable signature for a graph using the XML
signature standard, a canonicalization function κN , a hash function for graphs λN , and
an assembly function αN must be used as defined in the graph signing framework Siggi.
The canonicalization function and the hash function ensure that renaming blank node
identifiers and re-ordering the triples does not invalidate the graph’s signature. The
assembly function ensures that the information for verifying the signature is provided as
graph data which can also be processed together with the signed graph. None of these
functions are natively supported by the XML signature standard and are only part of
the graph signing framework Siggi. Thus, the XML signature standard does not fulfill
requirement RI.N.1.

The graph signing framework Siggi provides a generic signature pipeline without rely-
ing on any particular algorithm. Instead, it can be configured with different algorithms
and thus fulfills requirement RI.N.2. As the signature pipeline of the framework also has
a modular design, it fulfills requirement RI.N.3 as well. Similarly, the XML signature
standard also provides a generic signature pipeline which supports different algorithms.
However, in contrast to Siggi, the XML signature standard only supports one particular
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assembly function αN which stores all details for verifying the signature in an XML
element. Thus, the XML signature standard only partially fulfills requirement RI.N.2.
As the signature pipeline of the XML signature standard has a modular design, the stan-
dard fulfills requirement RI.N.3 as well. In contrast, Tummarello et al. define specific
algorithms for the signing process to be used. Thus, the approach neither fulfills require-
ment RI.N.2 nor requirement RI.N.3. All three approaches focus on signing graph data
on a conceptual level. As they do not rely on any particular software implementation,
they all fulfill requirement RI.N.4.

4.8.3. Summary

Tummarello et al. do not fulfill all functional and non-functional requirements defined
in Section 4.2. As the graph signing framework Siggi provides a generic framework
of the signing process, the approach of Tummarello et al. can be integrated into Siggi
and corresponds to configuration B of the framework as described in Section 4.4.2. In
contrast, the XML signature standard fulfills almost all of these requirements except
for requirement RI.N.1 which corresponds to an encoding independent signature. The
XML signature standard only supports signing XML documents and cannot be directly
used for signing Semantic Web graphs. Even signing XML serializations of such graphs
still requires the steps defined in the signature pipeline of Siggi. However, the graph
signing framework Siggi reuses many of the concepts provided in the XML signature
standard such as its modular signature pipeline which can be configured with various
algorithms.

4.9. Limitations and Future Extensions

As demonstrated in the previous section, the graph signing framework Siggi fulfills all
functional and non-functional requirements defined in Section 4.2. However, the frame-
work only provides a formal specification of the signing process. In order to actually
use the framework for signing graph data, it must be implemented in software or hard-
ware. Furthermore, this implementation may be part of a particular environment or
application context which requires additional security considerations. This section first
describes the aspects that must be considered when using the graph signing framework
Siggi in practice. Afterwards, possible extensions to the framework are discussed.

4.9.1. Reasoning on Signed Graph Data

Reasoning is the process of inferring additional data from existing data [11]. A Semantic
Web reasoner uses T-box knowledge in order to interpret the provided A-box knowledge.
The interpretation results in additional triples which may be included in the original
A-box knowledge. Reasoning on signed data may invalidate the signature if it is no
longer possible to distinguish between the original data and the data created through the
reasoning process. In order to prohibit a reasoner from invalidating a graph’s signature,
it is necessary to store the inferred data separately from the original graph data. This
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can be achieved by creating additional graphs for storing only the inferred triples. Triple
stores such as Sesame [54] and Jena [74] provide mechanisms for implementing such a
distinction. If it is also required to sign the inferred triples together with the original
triples, iterative signing can be used. In this case, the graph which stores the inferred
triples is signed together with the already signed graph that contains the original triples.

4.9.2. Security of the Graph Signing Framework

The main goal of the graph signing framework Siggi is to provide integrity and authen-
ticity of graph data. In order to achieve these main objectives, the framework must be
secure. The security of the graph signing framework Siggi depends on several aspects, in-
cluding the cryptographic security of the algorithms used for a particular configuration,
the security of the software implementation, and the security of the environment in which
the software implementation is applied. The cryptographic security of the algorithms
is discussed in Section 4.5. However, a cryptanalysis does not consider the context in
which the algorithms are applied. Even though the used algorithms may be secure, it is
still possible for a software implementation of the framework to contain implementation
errors which may lead to security vulnerabilities. In order to assess the security of a
particular software implementation, product-oriented methods such as [80, 66] can be
used. These methods provide a framework for assessing the security of various IT prod-
ucts including software and hardware. A particular implementation of the graph signing
framework may be part of a larger IT system. The security of such IT systems as well
as their environment also influences the security of the actual signing process. Thus, it
is necessary to evaluate the security of these systems and their respective environment
to ensure that the framework’s main objectives are fulfilled. The security of the environ-
ment can be evaluated by using holistic approaches such as [133, 59]. Important security
aspects of the environment such as trust models and key management are discussed in
Sections 4.9.4 and 4.9.3.

4.9.3. Key Management

The signature of a signed graph associates the graph with the owner of the secret signing
key. Key management defines different organizational tasks for protecting the signing
key as well as its corresponding public key from being compromised and misused by
unauthorized parties. The tasks of key management include the generation of the key
pair, its secure storage, its distribution, and its secure destruction [269, 217]. These
tasks ensure that a secret signature key is only known to and used by its actual owner
and that the corresponding public signature verification key can be related to this owner.
Creating a key pair and storing the private key in a secure environment ensures that
only authorized parties have access to the private key. Destroying old keys is necessary
to prohibit a usage beyond their intended lifetime. Keys which are too old may not be
secure anymore due to new attacks or greater computational power available to break
the keys. Compromised keys must be revoked to prevent any further usage of them. The
particular implementation of the individual key management tasks depends on the appli-
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cation and environment in which the graph signing framework Siggi is used. Professional
environments may have higher security requirements than private applications. Detailed
guidelines for key management in professional environments are provided in [216, 217].

4.9.4. Public Key Infrastructure and Trust Model

Digitally signing graph data is a security mechanism for implementing authenticity of
the signed data. The graph data is authentic if it is retrieved from an identified data
source and if the identity of this data source is proven to be correct [28]. In order to
prove the identity of the signing party, authenticity of graph data requires a connection
between the secret signing key and its owner. Such a connection is created via a public
key certificate which contains both the public key of the secret signing key and an
identifier of its owner [4, 317]. Example identifiers are e-mail addresses or distinguished
names [317]. Public key certificates are managed by public key infrastructures (PKIs)
which ensure that the mapping provided by a public key certificate is actually correct.
The management of public key certificates includes the creation and distribution of
the certificates as well as their revocation [5]. A PKI consists of several services which
include a certification authority (CA) and a registration authority (RA). The registration
authority verifies the identity of a party and the party’s ownership of a key pair [232, 4].
The verified mapping is then sent to the certification authority which issues the public
key certificate [269].

A PKI only provides an infrastructure for managing public keys. The organizational
processes for verifying the identities of certificate owners and issuing their certificates
depend on the certificate authority. A trust model defines the conditions under which an
entity trusts a public key certificate and its creation by a CA [6]. By signing a public key
certificate, a CA states that the party identified in the certificate is actually the owner of
the certificate’s public key. Thus, the trustworthiness of a public key certificate depends
on the trustworthiness of its issuing CA. Trust is basically a subjective assumption of a
PKI user [6] that the CA behaves in such a way the user expects it to [290]. Different
trust models provide different methods for managing trust between users and CAs of
a PKI. Two widely used trust models for public key certificates are PGP [320] and
X.509 [82]. X.509 organizes all CAs as a hierarchy with a few trusted root CAs which
issue public key certificates for other CAs. These CAs may issue public key certificates
to other CAs as well or provide public key certificates to end users. In the X.509 model,
the trust of the hierarchy depends on the trust of the root CAs which are usually pre-
configured as trust-worthy in most operating systems. In contrast, PGP has no hierarchy
and allows its participants to be end users and CAs at the same time, resulting in a
interconnected web of certificates. In the PGP model, trusting a CA is achieved by
issuing a certificate directly or by manually selecting a trust-worthy certification path.
Applying a particular trust model depends on the intended application. While X.509
may be used in professional environments, PGP is mostly sufficient for private use. An
overview of different trust models and their characteristics is provided in [232, 6].
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4.9.5. Secure Time Stamps

The examples provided in Section 4.7 demonstrate how the graph signing framework
Siggi can be applied for signing graph data. The examples also include a possible sig-
nature graph providing the basic information about the signature verification process.
However, the examples do not contain any additional data which may be relevant for
the context in which the signature is used. Such data may include a time stamp that
specifies when the signature was created. This can be used for defining the topicality of
the signature and the data. A time stamp may be provided by a secure time stamping
service which provides signed time stamp information [7]. If the time stamp is provided
as graph data, it can be signed using the graph signing framework. The resulting graph
can then be signed together with the actual graph data using the framework’s iterative
signing feature.

4.9.6. Alternative Assembly Functions

The assembly function αN attaches a signature graph to a signed graph by embedding
both graphs into a new Named Graph. In the examples of Section 4.7, the assembly
function encodes this Named Graph by using an extended version of TriG [40] which sup-
ports nested Named Graphs and blank nodes as graph identifiers. However, the assembly
function can also be built upon alternative encodings which are directly compatible with
existing Semantic Web concepts such as RDF datasets [87]. An RDF dataset is similar
to a Named Graph except that it does not support nested structures or blank nodes as
graph identifiers. Thus, RDF datasets can be expressed with the regular TriG syntax.
In order to encode a Named Graph as an RDF dataset, its nested structure must be
mapped to a flat structure and blank nodes as graph identifiers must be eliminated.
Removing the nested structure can be achieved by storing all subgraphs in different
TriG documents so that the resulting documents contain only valid RDF datasets. The
nested structure of the original graphs can then be expressed by creating additional
triples which explicitly describe the graphs’ nested structures. This can be done by
using a property such as hasSubGraph to relate a graph to its corresponding subgraphs.
Blank nodes used as graph identifiers can be eliminated by replacing them with URIs.

Another alternative encoding of nested Named Graphs is the use of N-Quads [71].
N-Quads is an extension of N-Triples which adds an optional additional context URI
to each triple. The context URI corresponds to the URI of the graph containing the
triple and allows N-Quads to be used for encoding Named Graphs. Similar to TriG,
N-Quads does not support nested graphs or blank nodes as graph identifiers. In order
to use N-Quads for encoding Named Graphs as defined in Equation 4.3, blank nodes
first must be mapped to URIs and the nested structure must be transformed to a flat
structure. This can be achieved by storing all subgraphs in separate N-Quads documents
and introducing additional triples which describe the nested structure of the original
graphs. As the graph signing framework Siggi does not rely on any particular assembly
function αN , both alternative encodings are already compatible with the framework.

129



Chapter 4 Siggi: A Framework for Iterative Signing of Graph Data

4.10. Summary

This chapter has presented the graph signing framework Siggi which supports iterative
signing of graph data. It allows to sign graphs at different levels of granularity, signing
Named Graphs, and signing multiple and distributed graphs at once. It is based on
a formal specification which divides the signing process into different steps. Each step
can be implemented with various algorithms, allowing the framework to be configured
for achieving different features such as minimum signature overhead or minimum run-
time. The framework processes a graph as abstract data structure and does not rely on
a particular encoding. Thus, a signature created with the graph signing framework is
independent from the order of the triples in the graph, the local identifiers of the graph’s
blank nodes, and the used serialization format. As signing a graph achieves integrity
and authenticity of the graph, the graph signing framework Siggi answers research ques-
tions RQ.2 and RQ.3.
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Chapter 5.

T-Store:
Searching in Encrypted Graph Data

This chapter presents T-Store, an approach for searching in encrypted RDF graphs.
T-Store restricts access to particular triples of a plaintext graph to authorized parties,
i. e., only authorized parties are able to apply queries to the corresponding ciphertext
graph. Unauthorized parties are not able to access any plaintext triples and even autho-
rized parties can only retrieve triples which match a legitimate query. Thereby, T-Store
achieves confidentiality of the plaintext graph and answers research question RQ.1. A
fundamental design principle of T-Store is the distinction between a data owner and
several users. The data owner possesses the plaintext graph and manages its access. To
this end, the data owner encrypts the plaintext graph and sends the resulting ciphertext
graph to the users. Users are authorized by the data owner to apply queries to the
ciphertext graph. The design of T-Store requires only little communication between the
data owner and the users which covers the distribution of the ciphertext graph and the
exchange of query authorizations. Query processing is conducted offline by the users
on their local systems and does not involve the data owner or any third party. T-Store
supports a restricted set of SPARQL [292] queries of type ASK, CONSTRUCT, and SELECT.
The basic concept of T-Store was first published in [171]. This chapter extends this basic
concept with additional features, evaluates the performance of the extended approach,
and conducts a detailed analysis of its cryptographic security.

The remainder of this chapter is organized as follows: The state of the art and re-
lated work for searching in encrypted data is summarized in Section 5.1. Based on this
section and on the scenarios introduced in Chapter 2, the functional and non-functional
requirements for T-Store are defined in Section 5.2. Section 5.3 provides a short overview
of the concept for searching in encrypted graphs including a basic formalization. The
basic formalization is then used to describe the details of T-Store’s design in Section 5.5.
The performance of T-Store is evaluated in Section 5.6 and Section 5.7 analyses its
cryptographic security. Section 5.8 shows two different applications of the approach for
searching in encrypted graphs which are based on the scenarios of Chapter 2. Section 5.9
discusses the state of the art and related work and compares it with T-Store. Limitations
and possible improvements of T-Store are discussed in Section 5.10 before the chapter
is concluded.
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5.1. State of the Art and Related Work

The general process of searching in encrypted RDF graphs can be separated into five
different steps as depicted in Figure 5.1. The first two steps prepare the plaintext graph
for query processing. In the first step, the graph is encoded with a serialization format
that can be used for querying. Possible formats are RDF/XML [26] and relational
databases. RDF/XML transforms the graph into an XML document and a relational
database stores the graph’s triples in one or more database tables [99, 54]. In the second
step, the encoded plaintext graph is encrypted to create a ciphertext graph. In order to
apply a query to the ciphertext graph, each query is processed similarly to the plaintext
graph. The third step transforms a SPARQL query [292] so that it can be applied to the
encoded graph created in the first step. Possible encodings are XPath [252] for querying
XML documents and SQL [160] for querying relational databases. The encoded query is
encrypted in the fourth step so that it is compatible with the ciphertext graph created
in the second step. The last step conducts the actual query processing by applying the
ciphertext query to the ciphertext graph.

Preparing the graph

Encode plaintext
RDF graph

Step 1

Encrypt encoded
RDF graph

Step 2

Preparing the query

Encode plaintext
SPARQL query

Step 3

Encrypt encoded
SPARQL query

Step 4

Apply ciphertext
query to
ciphertext graph

Step 5

Figure 5.1.: The general process of searching in encrypted RDF graphs.

This section summarizes the state of the art and related work of searching in encrypted
data. As far as the author knows, there is no approach yet which is specifically designed
for searching in encrypted RDF graphs. Therefore, this section presents such approaches
that operate on other data structures but can generally be used for RDF graphs as well
by mapping them to the process depicted in Figure 5.1. The approaches are distinguished
between the type of data on which they operate and support relational databases, XML
documents, and graph structures. A detailed analysis of each approach, its mapping
to the general process of Figure 5.1, and a comparison with T-Store is provided in
Section 5.9. This section focuses on such approaches that can be used for applying
generic SPARQL queries to encrypted RDF graphs. Approaches which only support
very specific queries such as range queries are not discussed as they cannot be used for
other types of queries as well. Examples of range queries are provided in [150, 188, 305].
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Approaches which focus on document collections are also not discussed as they only
retrieve complete documents and do not support searching within them. Examples of
such approaches are presented in [107, 68, 234].

5.1.1. Searching in Encrypted Relational Databases

A relational database stores data records in tables which consist of columns, rows, and
cells. A row contains a particular data record, a column represents an attribute, and
a cell stores a record’s value of a specific attribute. All approaches for searching in
encrypted relational databases store the encrypted data records at an untrusted server.
Depending on the approach, the records are encrypted row-wise or cell-wise. A row-wise
encryption maps the complete record to a single ciphertext and a cell-wise encryption
encrypts each attribute value separately. Many approaches focus on data outsourcing
in which a user stores encrypted data at a potentially untrusted server managed by a
third party [281]. The user is completely trusted and the server conducts most of the
query processing. Data outsourcing is often implemented with filtering and refining [296]
which processes queries in two steps. The user initiates a query by transforming it into
a ciphertext query and sending it to the server. The server conducts a filtering step in
which it applies the ciphertext query to the encrypted data. This leads to an encrypted
superset of the actual query result which is sent back to the user. In a refining step,
the user decrypts the preliminary query result and applies the plaintext query to the
resulting plaintext data to retrieve the final query result.

Filtering and refining is used by Hacıgümüş et al. [137] as well as Wang et al. [309].
Both approaches allow to search for all ciphertext records which match a set of attribute
values. Hacıgümüş et al. use row-wise encryption and index all ciphertext records based
on their attribute values with bucketization. Bucketization splits the value space of each
attribute into disjoint buckets. The server stores a mapping from a ciphertext record
to the buckets of its attributes and the user associates each plaintext value with their
corresponding buckets. In order to search for particular attribute values, the user maps
the values to their respective bucket identifiers and sends them to the server. The server
returns all ciphertext records for the specified buckets which are then further processed
by the user in a refining step. Wang et al. use cell-wise encryption and associate each
ciphertext with a hash value. The hash value is used as an index and stored together
with the ciphertext at the server. In order to search for all data records with particular
attribute values, the user computes their hash values and sends them to the server which
returns all matching ciphertext records. As the used hash function produces collisions,
the received records form a superset of the actual query result which is further refined
by the user.

Exact query results without refining are returned by Z. Yang et al. [316], Elovici et
al. [98], and Evdokimov and Günther [104]. All three approaches use probabilistic, cell-
wise encryption which maps identical plaintexts to different ciphertexts. Z. Yang et al.
and Elovici et al. support queries that retrieve all ciphertext records with a particu-
lar attribute value whereas Evdokimov and Günther support keyword queries with an
arbitrary keyword. Z. Yang et al. use trapdoors [42] to check if a particular cipher-
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text record matches a query. Each plaintext is mapped to a tuple of two ciphertexts
which are stored at the server. The first ciphertext encrypts the actual plaintext and
the second ciphertext encrypts the first ciphertext with the plaintext and the name of
its corresponding attribute. A user initiates a query by creating a trapdoor from the
queried value and the name of its attribute and sends it to the server. The server tries to
decrypt the second ciphertext of each tuple with the trapdoor. If the result is identical to
the tuple’s first ciphertext, the corresponding ciphertext record is returned to the user.
Evdokimov and Günther propose a similar approach which is also based on trapdoors
but supports keyword queries instead of attribute queries. Elovici et al. create an index
tree for each column and store it together with the encrypted cell values at the server.
A user applies an attribute query by iteratively traversing the index tree and sending
corresponding messages to the server. In each iteration, the user receives an encrypted
tree node, decrypts it, and requests the next node. This process is repeated until the
user has received all matching tree nodes which are then used to retrieve the desired
ciphertext records.

Exact queries and multiple users are supported by CryptDB [235], Probabilistic Ran-
domly Partitioned Encryption (Prob-RPE) [259], and Y. Yang et al. [315]. CryptDB
supports different types of queries, Y. Yang et al. support keyword queries, and Prob-
RPE supports range queries and attribute queries for a single attribute. CryptDB en-
crypts all cell values of a column individually with the same encryption key. Each
column is encrypted as multiple layers which provide different security and functional-
ity. Processing a query may require to permanently remove an encryption layer from a
queried column. A trusted proxy server authorizes querying users, maps their queries to
ciphertext queries, and sends them to the database server. The proxy server also stores
all encryption keys and can remove encryption layers. The database server executes
ciphertext queries and sends the encrypted results to the proxy server which are then
decrypted and forwarded to the querying user. Prob-RPE divides all values of a column
into random buckets and probabilistically encrypts all values of a bucket individually.
Identical plaintext values are mapped to different tuples consisting of a bucket identifier
and a ciphertext. This mapping is stored at a trusted proxy server which authorizes
all users, intercepts and transforms their queries, and stores all encryption keys. If a
plaintext value is mapped to multiple tuples, the proxy server requests all tuples from
the database server. Y. Yang et al. use a row-wise, probabilistic encryption. Each user
is authenticated with a public key pair which is registered at the database server. The
server associates ciphertext records with encrypted keywords. In order to apply a query,
a user digitally signs the requested keyword with her private key and sends it to the
server. The server verifies the signature and thereby removes any user-specific parts
from the keyword which is then used to retrieve all matching ciphertext records.

In summary, all presented approaches for searching in encrypted relational databases
can generally be used for searching in encrypted RDF graphs as well. This can be
accomplished by storing a graph in a single database table with three different columns.
The columns represent the subject, predicate, and object of the graph’s triples. The
presented approaches can then be directly applied to the resulting database.
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5.1.2. Searching in Encrypted XML Documents

XML documents [49] store data in a hierarchically organized tree of elements. The
tree has a single root element and can be divided into subtrees with their own root.
Each element has a name and can optionally have attributes and data values. The
set of all possible element names and attribute names are restricted by the document’s
schema [124]. A path is a sequence of connected elements in the tree, starting at the
root and ending at a particular element. Approaches for searching in encrypted XML
documents generally support path queries, element queries, and subtree queries. Path
queries match a path against the XML tree and return the elements at the end of
the path. Each element in the path may be further specified by its attribute values.
Element queries retrieve individual elements with particular attribute values and data
values. Subtree queries return individual subtrees based on the query parameters.

Approaches based on filtering and refining are Lin and Candan [191, 190], Jammala-
madaka and Mehrotra [165], and Order Preserving Encryption with Splitting and Scal-
ing (OPESS) [304]. Lin and Candan support path queries by traversing the XML tree.
Each element is stored in multiple buckets, encrypted individually, and stored at the
server together with two indexes. The first index lists all ciphertexts for each bucket
and the second index maps an element to its child elements and their buckets. A user
initiates a query by requesting all child elements of the root element and their buckets.
The user randomly selects one bucket for each child element, retrieves all its ciphertexts,
and selects the next element in the queried path. The process is repeated until the
user has retrieved all query results. Jammalamadaka and Mehrotra support element
queries which retrieve elements based on their attribute values. The approach is similar
to Hacıgümüş et al. and splits all attribute values into disjoint buckets. Each element
is encrypted together with its attribute values and indexed with their bucket identi-
fiers. Storage, index management, and query processing is identical to Hacıgümüş et al.
OPESS supports path queries based on the names and data values of the path’s elements.
All subtrees of an XML tree are encrypted individually and indexed with structural and
value-based information. The structural index maps all subtrees to their encrypted root
element and the value index maps all encrypted data values to the subtrees in which
they occur. The user prepares a query by encrypting its element names and data values
and sends it to the server. The server uses its indexes to retrieve all matching subtrees
and sends them to the user who conducts a refining step to extract the desired elements.

Exact query results without refining are provided by SemCrypt [274], Bouganim et
al. [46], and two approaches of Brinkman et al., which are referred to as Brinkman 1 [52]
and Brinkman 2 [53]. Bouganim et al. allow multiple users whereas the other approaches
focus on data outsourcing. Brinkman 1 supports subtree queries which retrieve all
subtrees with a particular element. The XML tree is encoded as hierarchically structured
polynomial by mapping all element names to integers. The polynomial is randomly split
into two parts which are stored at the user and the server, respectively. A user searches
for an element by sending its integer representation to the server. Starting at the root
element, the server iteratively computes the value of its polynomial and returns the
result. The user computes its own polynomial, combines it with the server’s value and
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compares it with a predefined value. If both values are equal, the queried element is part
of the subtree whose polynomial was just calculated. Brinkman 2 supports path queries
which are based on trapdoors and consist of element names, attribute values, and data
values. Encryption and query processing is similar to Z. Yang et al. SemCrypt supports
path queries based on element names, attribute values, and data values. The user maps
each path in the XML tree to a unique identifier which is used in a structural index and
a value index stored at the server. The structural index maps a path identifier to an
encrypted data value and the value index associates a data value with all elements that
have the same data value. A user initiates a path query by transforming it into a sequence
of ciphertext queries for each step in the path. Each ciphertext query is sent to the server
and evaluated by applying the two indexes. Bouganim et al. support arbitrary queries
and require a secure processing unit for every user. The XML document is split into
subtrees which are encrypted with different encryption keys. An access policy is created
for each user and associated with several encryption keys. An authorized user receives
the encrypted document and her secure processing unit receives the access policy and
the encryption keys. The unit processes the user’s queries after having decided whether
a query is allowed or prohibited by evaluating the access policy.

In summary, many approaches for searching in encrypted XML documents focus on
queries which evaluate the document’s structure such as path queries and subtree queries.
These queries cannot be directly used for searching in encrypted RDF graphs. Although
such a graph can easily be encoded as XML document, the actual contents of a triple
are either stored as attribute values or data values. Storing the contents of a triple as
element names is not possible as the set of possible element names is restricted by the
document’s schema. However, element queries can be used for searching in RDF graphs
as they can contain data values like a URIs and literals as query parameters.

5.1.3. Searching in Encrypted Graph Structures

A graph is an abstract data structure which can be used for storing different types of
data such as text documents and RDF triples. A graph generally consists of nodes
which are connected via edges and can be split into subgraphs by removing some of the
nodes and edges. Depending on the type of graph, the graph may also have additional
characteristics. A labeled graph associates its nodes and/or edges with a name. In a
bipartite graph, the nodes are divided into two disjoint sets and the edges connect two
nodes from each set. This section summarizes three different approaches for searching in
encrypted graph data. All approaches store the encrypted graph and an encrypted index
at an untrusted server. The server processes queries from a single user by applying the
index to the ciphertext graph. Privacy-Preserving Graph Query (PPGQ) [69] supports
subgraph queries in encrypted graph collections which retrieve all graphs with a partic-
ular subgraph. Each graph is indexed with a feature vector which lists all its subgraphs.
The feature vector is encrypted and stored together with the encrypted graph at the
server. A user initiates a subgraph query by mapping it to a feature vector, encrypting
it, and sending it to the server. The server combines the received feature vector with the
feature vector of each encrypted graph. If the result matches a predefined comparison
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value, the encrypted graph is sent to the user. Chase and Kamara [78] provide a generic
indexing mechanism to support different queries on encrypted labeled graphs. The index
essentially maps one or two query parameters to an encrypted set of query results. A
user initiates a query by computing a query key from the query parameters and sending
it to the server. The server processes the query by applying the query key to the index.
Chase and Kamara apply their index to support neighbor queries, subgraph queries, and
queries that retrieve all edges between two nodes. CryptGraph [314] supports subgraph
queries on bipartite graphs. A graph is represented by its adjacency matrix which is
encrypted using probabilistic homomorphic encryption. Homomorphic encryption [111]
allows arithmetic operations on ciphertexts without decrypting them first. A subgraph
query combines several atomic queries which ask whether or not two nodes are directly
connected. An atomic query is a polynomial and is evaluated with the adjacency matrix.
A user initiates a subgraph query by creating the polynomials for all atomic queries and
sending them to the server. The server applies the polynomials to the adjacency matrix
and sends the resulting value to the user who decrypts it to retrieve the actual query
result.

In summary, some approaches for searching in encrypted graph structures focus on
subgraph queries and can only partially be used for searching in RDF graphs. Subgraph
queries basically correspond to SPARQL ASK queries and determine whether or not a
graph contains a set of triples. However, SPARQL also supports SELECT queries which
are used more often in practice than ASK queries [203, 14, 233].

5.1.4. SPARQL Query Language

SPARQL [292] is a W3C-standardized query language for RDF graphs and is supported
by several RDF triple stores such as Sesame [54] and Jena [74]. The syntax and design of
SPARQL is inspired by SQL [160]. A SPARQL query consists of a query form and a query
algebra and is applied to an RDF dataset. The query form defines the type of the query
and the format of the query result. Possible query types include SELECT, CONSTRUCT, and
ASK. A SELECT query returns a list of individual query results whereas a CONSTRUCT query
returns a new graph created from these results. An ASK query determines whether or
not the query algebra matches against the queried dataset and returns a boolean value.
The query algebra corresponds to the WHERE clause of a query. It defines the query’s
matching conditions and consists of several triple patterns. A triple pattern is similar
to a triple but may contain an unbound query variable at subject, predicate, and/or
object position. Considering that each position in a triple pattern can be either bound
or unbound results in eight different variants of the same pattern. Triple patterns of a
query algebra are combined into graph patterns. The simplest form of a graph pattern
is a basic graph pattern which is a collection of an arbitrary number of triple patterns.
More complex graph patterns such as unions of basic graph patterns or optional basic
graph patterns are also possible. Finally, an RDF dataset [87] is a collection of several
graphs. It is similar to a Named Graph as defined in Section 4.3.1 except that it does
not allow nested graphs and blank nodes as graph identifiers.
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A SPARQL query is evaluated by matching the query algebra against the queried RDF
dataset. This process replaces the query variables in the algebra’s triple patterns with
corresponding URIs, blank nodes, or literals. A mapping from a single query variable to
its corresponding value is referred to as a variable binding [292]. A solution mapping is a
set of variable bindings and corresponds to a single solution of a triple pattern or a basic
graph pattern. It is created by matching a pattern against a graph and replacing all
query variables in the pattern with corresponding URIs, blank nodes, or literals. Several
solution mappings are combined into a solution sequence which contains all solutions of
a triple pattern or a basic graph pattern. Solution sequences may either be returned
as the query result or only used during query processing. If the query algebra contains
multiple triple patterns sharing the same query variables, their solution sequences are
combined with a join operation. A join can only be conducted on two solution sequences
if they are compatible with each other. This is the case if their solution mappings share
identical variable bindings, i. e., if their query variables are mapped to identical values.
The result of a join on two solution sequences is a new solution sequence which contains
the combination of all compatible solution mappings.

An example SPARQL query of type SELECT is depicted in Listing 5.1. The query
returns the name of all persons with the e-mail address tdurden@example.com. The
namespace foaf corresponds to the FOAF vocabulary [50] for describing social networks.
The query contains a single basic graph pattern with two triple patterns. The solution
sequences of both triple patterns are joined using the variable bindings of the query
variable ?person. Line 2 states that the bindings of the variable ?name are returned as
the query result while the bindings of ?person are only used during query processing.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 SELECT ?name

3 WHERE {

4 ?person foaf:name ?name .

5 ?person foaf:mbox "tdurden@example.com" .

6 }

Listing 5.1: Example SPARQL query.

5.2. Requirements for Searching in Encrypted Graphs

T-Store allows to apply different types of SPARQL queries to encrypted RDF graphs.
The queries are executed locally by authorized users without involving a server. Based
on these general objectives, this section defines the specific requirements for T-Store.
The requirements are distinguished between functional (RC.F.*) requirements and non-
functional (RC.N.*) requirements. As defined in Section 3.2, functional requirements
define the functions that a system must provide and non-functional requirements describe
how functional requirements are implemented [282]. The following requirements are
based on the scenario for regulating Internet communication presented in Section 2.1
and on the related work for searching in encrypted data summarized in Section 5.1.
T-Store must fulfill the following functional requirements:

138



Requirements for Searching in Encrypted Graphs Section 5.2

RC.F.1: Applying SPARQL triple patterns
T-Store must support queries which consist of a single SPARQL triple pattern with
none, one, two, or three query variables. Such queries are the most basic types of
queries and are the foundation for creating more complex queries.

RC.F.2: Applying SPARQL basic graph patterns
The approach must support queries which consist of a single SPARQL basic graph
pattern. A basic graph pattern contains an arbitrary number of triple patterns.
If the triple patterns share the same query variables, executing the basic graph
pattern requires the computation of a join operation. Thus, this requirement also
implies the support of join operations. In the scenario, the German comprehensive
school applies queries to the encrypted log files of its proxy server.

RC.F.3: Supporting SPARQL query forms
T-Store must support the three different SPARQL query forms SELECT, ASK, and
CONSTRUCT. The query forms define the format of the query result. Supporting the
three different query forms is necessary as they are most frequently used in many
SPARQL queries [14, 233].

RC.F.4: Supporting dynamic query authorizations
T-Store must support the authorization of particular queries after the plaintext
graph has been encrypted. This allows a more flexible query authorization than
predefining all supported queries when encrypting the plaintext graph. In the
scenario, an investigator is authorized to apply queries to the log file after it has
been encrypted by the proxy server.

RC.F.5: Separating the data owner from authorized users
The approach must distinguish between a data owner who encrypts the plaintext
graph and users who can apply queries to the encrypted graph. The data owner can
access the complete graph and possesses all encryption keys. In contrast, users are
explicitly authorized by the data owner to apply particular queries to the graph.
In the scenario, the school’s administration (SA) and the parents’ association (PA)
collectively authorize an investigator to apply particular queries.

RC.F.6: Supporting query templates
T-Store must support the authorization of specific queries and query templates.
A query template represents a group of similar queries. It corresponds to an
incomplete query which must be further refined by the querying user in order
to receive a complete query. Query templates reduce the communication overhead
between the data owner who encrypts the plaintext graph and the users who query
the ciphertext graph. Thus, this requirement implies requirement RC.F.5.

In addition to these functional requirements, T-Store must also support the following
non-functional requirements:
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RC.N.1: Processing queries offline
T-Store must not rely on a server which processes the queries, even if the server op-
erates only on encrypted data. Instead, users must be able to process all authorized
queries on their local systems after having received a corresponding query autho-
rization and the ciphertext graph. In the following, this type of query processing
is referred to as an offline approach. In the scenario, the authorized investigator
applies the queries locally at her own computer system after having received a copy
of the encrypted log files.

RC.N.2: Eliminating trusted systems
T-Store must not involve a trusted system which processes queries on behalf of
authorized users and which can access the query results or parts of them. Instead,
query results must only be accessible to the user who initiates a query. Examples
of trusted systems are secure processing units, which are located at the user side,
and proxy servers, which act as an intermediary between an authorized user and
a server.

RC.N.3: Providing exact query results
Conducting queries with T-Store must not reveal any triples of the plaintext graph
which are not part of the final query result. Thus, authorized users must receive
exactly those triples of the plaintext graph which satisfy their queries. This re-
quirement is necessary as otherwise an authorized user may receive more plaintext
triples than the authorization intends. In the scenario, the investigator must only
receive the graph data which is being investigated.

RC.N.4: Prohibiting data distinguishability
T-Store must encrypt the plaintext graph in such a way that the resulting cipher-
text graph does not reveal the amount of identical plaintext URIs, blank nodes, or
literals and their individual positions in the graph. More specifically, it must be
computationally hard to identify identical plaintext URIs, blank nodes, or literals
as such. This requirement is called data indistinguishability [167]. It is fulfilled if
there is no algorithm which decides in polynomial time whether or not two cipher-
texts represent the same plaintext value. Fulfilling this requirement is necessary
in order to prevent an attacker from analyzing the ciphertext graph and use it to
infer any information about the plaintext graph.

RC.N.5: Concealing graph characteristics
The ciphertext graph created by T-Store must not reveal any characteristics of
the corresponding plaintext graph. The characteristics of a graph can generally
be distinguished between local characteristics and global characteristics. Local
characteristics cover individual plaintext triples and their respective parts. Such
characteristics include the string length of all URIs, blank nodes, and literals in
the graph (RC.N.5.1). Global characteristics depend on the whole graph and not
on individual triples. Such characteristics include the density and the connectivity
of the plaintext graph (RC.N.5.2) as well as the number of different plaintext
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triples (RC.N.5.3). The density indicates how the individual triples of a graph
are connected with each other, i. e., how many independent subgraphs a graph
contains. Similar to requirement RC.N.4, fulfilling this requirement prevents an
attacker from analyzing the ciphertext graph and inferring any information about
the corresponding plaintext graph.

The non-functional requirements RC.N.3 to RC.N.5.3 cover the security of T-Store
and affect the confidentiality of the plaintext graph. If these requirements are not ful-
filled, information about the plaintext triples may be revealed to unauthorized parties.
Section 5.9 describes how T-Store fulfills the functional and non-functional requirements
and provides a comparison with the state of the art and related work.

5.3. Basic Terminology and Solution Overview

This section provides a general overview of the design and functions of T-Store. First,
a representation of SPARQL queries in T-Store as well as the used data structures and
cryptographic keys is given. A formalization of the terminology is provided in Section 5.4.
Subsequently, the different cryptographic operations of preparing and processing queries
in T-Store are introduced. T-Store allows to search in encrypted RDF graphs. An RDF
graph consists of several triples and is owned by a data owner. The data owner encrypts
a plaintext graph by encrypting all its triples individually and creates an additional
index for the resulting ciphertext graph. The ciphertext graph and its index are then
published on the web. Users are authorized by the data owner to apply queries to
the ciphertext graph. A query allows a user to specifically access those triples of the
plaintext graph which satisfy the query. Users are authorized by receiving authorization
keys from the data owner. They combine the authorization keys with self-defined user
patterns to create query keys. Query functions apply query keys to a ciphertext graph
and its index and search for all matching triples. The index allows it to quickly identify
all triples in the ciphertext graph that match a particular query key.

5.3.1. Representing SPARQL Queries in T-Store

T-Store supports the execution of SPARQL queries of type SELECT, CONSTRUCT, and ASK

on a ciphertext graph. The supported query algebra is restricted to a single basic graph
pattern which consists of an arbitrary number of triple patterns. Figure 5.2 depicts
how the supported SPARQL queries are represented in T-Store. The representation
distinguishes between a query form and a query algebra. The query form defines the type
and format of the query result and the query algebra defines the matching conditions.
When processing a particular query, the query algebra is first applied to the queried
ciphertext graph. This results in a single solution sequence which is further refined by
the query form in order to create the final query result. As depicted in Figure 5.2a, the
query algebra consists of several triple keys each of which represents a single SPARQL
triple pattern. A triple key contains all information for creating the solution sequence of
its corresponding triple pattern. In particular, a triple key associates a query key with
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Figure 5.2.: Representing a SPARQL query in T-Store. A query has a query form and
a query algebra. The query form distinguishes between SELECT queries,
CONSTRUCT queries, and ASK queries. The query form of SELECT queries
defines a list of query variables, CONSTRUCT queries require a graph tem-
plate with template patterns, and ASK queries do not need any additional
parameters. The query algebra is identical for all types of queries and con-
sists of multiple triple keys. A triple key associates a query key with several
query variables. A query key combines a basic key with a query pattern.

a respective number of query variables. The query key defines the matching condition
of the triple key and the query variables are used to create the variable bindings of
all successful matches. A query key is created from a query pattern and a basic key.
The query pattern consists of bound and unbound parts which determine the input and
output of a SPARQL triple pattern, respectively. I. e., the bound parts define the values
that are being matched when applying a query key to a ciphertext graph and the unbound
parts are returned for each successful match. Similar to a SPARQL triple pattern, there
are eight different variants of a query pattern in T-Store. A basic key defines the position
of the bound and unbound parts in the query pattern and determines its variant. T-
Store uses eight different basic keys to distinguish between the different variants of a
query pattern. The query variables of a triple key associate the unbound parts of the
query pattern with a name in order to support join operations. Join operations combine
compatible solution sequences of different triple keys of the same query algebra into a
single solution sequence.
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The refinement that is conducted by the query form depends on the type of the
query. The query form of SELECT queries is depicted in Figure 5.2b. It defines a list of
query variables whose variable bindings shall be returned as the final query result. The
variable bindings are taken from the solution sequence created by the query algebra.
Figure 5.2c shows the query form of CONSTRUCT queries, which return a new graph as
the query result. The query form defines a graph template which contains an arbitrary
number of template patterns. A template pattern is similar to a triple except that it may
contain a query variable at subject position, predicate position, or object position. When
processing a CONSTRUCT query, the query variables in the graph template are replaced by
corresponding variable bindings in order to create the new graph to be returned. Again,
the variable bindings are taken from the solution sequence of the query algebra. Finally,
ASK queries only return a boolean value. Thus, their query form does not define any
additional parameters for refining the solution sequence created by the query algebra.

5.3.2. Preparing and Applying Queries in T-Store

Preparing and processing a SPARQL query in T-Store requires different cryptographic
operations. These operations are essentially implemented by query keys whereas triple
keys are only used to support join operations. When applying the query algebra of
a SPARQL query to a ciphertext graph, all its triple keys are processed individually
and their individual solution sequences are combined with a join operation. A single
triple key is applied to the graph by processing its query key and associating the result
with its query variables. Query keys can directly be applied to ciphertext graphs. This
section provides an overview of the different cryptographic operations used by T-Store for
preparing and processing a query on a ciphertext graph. Figure 5.3 shows the different
operations for encrypting a plaintext graph and querying the resulting ciphertext graph
with a single query key. The operations must be conducted for all query keys in the
query algebra. As depicted, the operations are divided into three different phases.

The first phase is shown in Figure 5.3a. In this phase, the data owner chooses eight
different basic keys for each of the eight variants of a query pattern. The basic key as well
as the bound parts of a query pattern are combined into an encryption key. Encryption
keys are used for encrypting all triples in the plaintext graph individually for each of
the eight variants of a query pattern. The second phase is shown in Figure 5.3b and
covers the creation of an authorization key which combines a basic key and a restriction
pattern. The basic key defines the query pattern variant, i. e., the number and position of
the bound and unbound parts of a query pattern. The restriction pattern is created by
the data owner and further restricts the number of possible user patterns that a user can
define for querying the ciphertext graph. To this end, the data owner predefines some of
the bound parts of a query pattern in the restriction pattern. Thus, the resulting autho-
rization key already contains some of the required query parameters. The authorization
key is sent to the user via a secure communication channel. The third phase covers the
creation and application of a query key and is depicted in Figure 5.3c. The user creates
a query key based on the received authorization key by adding a user pattern which
contains additional query parameters. The resulting query key encodes all bound and
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Figure 5.3.: Overview of the computations for searching in encrypted graphs. The
overview shows the different keys and cryptographic operations involved
in the process.

unbound parts of a particular SPARQL triple pattern. The bound parts are either taken
from the user pattern or from the data owner’s restriction pattern which is embedded
into the authorization key. The combination of the user pattern and the restriction pat-
tern corresponds to a query pattern. Thus, a query key combines a query pattern with
a corresponding basic key. If an encrypted triple can successfully be decrypted using
a query key, the triple matches the encoded query pattern. If the decryption fails, the
triple does not match the pattern. The decryption of an encrypted triple is successful iff
the query key is identical to the encryption key. This is the case if the combination of
the data owner’s restriction pattern and the user pattern correspond to the bound triple
parts of the encryption key. Section 5.4 formally defines the basic data structures and
cryptographic keys used by T-Store. A detailed description of the approach is given in
Section 5.5.

5.4. Basic Formalization

This section provides a basic mathematical formalization of the queries, data structures,
and cryptographic keys of T-Store as introduced in the previous section. This formal-
ization is used in Section 5.5 to describe the detailed process of querying encrypted
graphs.

5.4.1. Plaintext Graphs and Plaintext Triples

A plaintext RDF graph G is a finite set of triples t. As described in Section 4.3.1, the
set of all plaintext triples t is defined as follows:

T := (R ∪B)×R× (R ∪B ∪ L) (4.1)

R corresponds to the set of all resource URIs, B is the set of blank nodes, and L is the
set of literals. It is t = (s, p, o) with s ∈ R ∪ B being the subject of the triple, p ∈ R
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being the predicate, and o ∈ R∪B∪L being the object. A plaintext graph consisting of
m triples is defined as G = {t1, t2, . . . , tm} with m ∈ N. The set of all plaintext graphs
is defined as follows:

G := P(T) = P((R ∪B)×R× (R ∪B ∪ L)) (4.2)

5.4.2. Encrypted Graphs and Encrypted Triples

Encrypting a plaintext triple t results in an encrypted triple c. An encrypted triple is a
tuple of eight bit strings. Each bit string is used for one of the eight variants of a query
pattern. Thus, an encrypted triple c contains eight different ciphertexts of the same
plaintext triple t for each of the eight query pattern variants. The set of all possible
encrypted triples is defined as follows:

TC := {0, 1}∗ × {0, 1}∗ × . . .× {0, 1}∗︸ ︷︷ ︸
8 times

(5.1)

It is c = (c---, c+--, c-+-, c--+, c++-, c+-+, c-++, c+++). The indices + and - state if the cor-
responding part of the query pattern is bound or unbound. For example, the bit string
c-+- supports query patterns with a bound predicate that retrieve tuples of subjects and
objects for each matching triple. Encrypting a plaintext graph G results in an encrypted
graph GC = {c1, c2, . . . , cm}. The set of all encrypted graphs is defined as follows:

GC := P(TC) = P({0, 1}∗ × {0, 1}∗ × . . .× {0, 1}∗︸ ︷︷ ︸
8 times

) (5.2)

5.4.3. Basic Keys

A basic key bk ∈ Kb is a bit string of length d ∈ N and is used for encrypting the
triples t of a plaintext graph G for a particular query pattern variant. The data owner
choses eight different basic keys for each pattern variant which are identified as bk---,
bk+--, bk-+-, bk--+, bk++-, bk+-+, bk-++, and bk+++. Each of these keys is used for creating
a particular bit string of the encrypted triples c. For example, the basic key bk-+- is used
for creating the bit strings c-+-. The set of all basic keys is defined as Kb ⊂ {0, 1}d.

5.4.4. Query Keys, Query Patterns, and Authorization Keys

A query key qk ∈ Kq is a bit string of length d ∈ N which encodes the bound and
unbound parts of a query pattern. It is applied to an encrypted graph and may contain
an unbound subject, predicate, and/or object. The type of a query key is defined by
using the symbols + and - which mark the bound and unbound parts, respectively. For
example, a query key of type +++ encodes a bound subject, a bound predicate, and a
bound object. It can be used for SPARQL ASK queries and determines whether or not
the specified triple is part of the queried graph. Applying a query key returns a set of all
matching values. For example, applying a query key of type -++ returns a set of subject
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URIs and requires a bound predicate and a bound object. The set of all query keys is
defined as Kq ⊂ {0, 1}d.

As described in Section 5.3.1, a query key is created from a basic key and a query
pattern. The basic key defines the type of the query key and the query pattern specifies
its bound and unbound parts. A query pattern consists of two different parts which are
a restriction pattern r and a user pattern u. A restriction pattern r ∈ Pq is defined
a-priori by the data owner and narrows down the possible queries that a user can apply.
A user pattern u ∈ Pq represents the query parameters specified by the user. The set of
all query patterns Pq is defined as follows:

Pq := (R ∪B ∪ {?})× (R ∪ {?})× (R ∪B ∪ L ∪ {?}) (5.3)

The symbol ? identifies the unbound parts of a query pattern and corresponds to a
variable like ?x. A query key encodes a query pattern (s?, p?, o?) with s? ∈ (R∪B∪{?})
as the queried subject, p? ∈ (R ∪ {?}) being the queried predicate, and o? ∈ (R ∪B ∪
L ∪ {?}) as the queried object. An authorization key ak ∈ Ka is a bit string which
corresponds to a partially specified query key. It already encodes a basic key bk and
a data owner’s restriction pattern r. However, an authorization key does not encode
a user pattern u. Thus, a complete query key is created from an authorization key
by combining it with a user pattern u. The set of all authorization keys is defined as
Ka ⊂ {0, 1}∗.

5.4.5. Index

An index I ∈ I is a mapping from a query key qk ∈ Kq to a set of encrypted triples c ∈
TC . The index associates a query key with a set of all encrypted triples of a ciphertext
graph GC ∈ GC that match the query pattern which is encoded in the query key. An
index is created by the data owner and applied by a user to speed up the querying
process. The set I of all indexes is defined as follows:

I := Kq −→ P(TC) (5.4)

5.4.6. Query Functions

A query function f applies a single query key qk ∈ Kq to an encrypted graph GC ∈ GC

and its corresponding index I ∈ I and returns a result set based on all matching triples t
of the plaintext graph G ∈ G. A query function requires a query key qk, the encrypted
graph GC , and its index I as input. Each query function supports one particular type of
query keys. Thus, there are eight different query functions which are identified as f---,
f+--, f-+-, f--+, f++-, f+-+, f-++, and f+++. Again, the symbols + and - mark the bound
and unbound parts of the supported query keys, respectively. A + at the first position
requires a subject to be specified in the query key. At the second or the third position,
the symbol + requires a predicate or an object to be specified, respectively. The result
of a query function f also depends on the symbols + and -. The result can be a set
of triples, a set of tuples, a set of resources, a set of blank nodes, a set of literals, or a
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boolean value. For example, the query function f+-- returns a set of tuples (p, o) with
p ∈ R ∪B and o ∈ R ∪B ∪ L.

The bound and unbound parts of a query key qk are defined by its encoded query
pattern. The query pattern consists of a user pattern u = (su, pu, ou) and a data owner’s
restriction pattern r = (sr, pr, or) as depicted in Figure 5.3 and must comply with the
type of the query function. For example, the query function f-++ requires a bound pred-
icate and a bound object, i. e., the function requires either pr 6= ? or pu 6= ? and either
or 6= ? or ou 6= ?. The data owner may define a restriction pattern r = (?, rdf:type, ?)
which specifies rdf:type as the predicate of the query pattern. This restriction pattern
allows a user to search for instances of a particular ontological class. However, the user
must still define a specific class in the user pattern u = (?, ?, ou) and cannot leave the
object position unbound. In this case, the object ou contains the URI of the class to be
queried. Furthermore, any particular value which is already specified in the restriction
pattern r cannot be specified in the user pattern u as well. For example, if the data
owner defines a restriction pattern r = (?, rdf:type, ?) for the query function f-++, the
user cannot define a user pattern u = (?, foaf:mbox, ?) and overwrite the data owner’s
restriction on the predicate. Thus, a restriction pattern allows the data owner to restrict
the possible queries that a user can apply by specifying the corresponding parts in the
restriction pattern r. The result of the query function f-++ is a list of all subjects s
for which the plaintext graph G contains a matching triple (s, p, o). Given a plaintext
graph G, its ciphertext graph GC , an index I, and a query key qk which encodes the
query pattern (s, p, o), the eight different query functions f are defined as follows:

f--- : Kq ×GC × I −→ P(T), f---(qk---, GC , I) := G (5.5)

f+-- : Kq ×GC × I −→ P(R× (R ∪B ∪ L)) (5.6)

f+--(qk+--, GC , I) := {(y, z) | y ∈ R, z ∈ (R ∪B ∪ L),∃(s, y, z) ∈ G}

f-+- : Kq ×GC × I −→ P((R ∪B)× (R ∪B ∪ L)) (5.7)

f-+-(qk-+-, GC , I) := {(x, z) | x ∈ (R ∪B), z ∈ (R ∪B ∪ L), ∃(x, p, z) ∈ G}

f--+ : Kq ×GC × I −→ P((R ∪B)×R) (5.8)

f--+(qk--+, GC , I) := {(x, y) | x ∈ (R ∪B), y ∈ R, ∃(x, y, o) ∈ G}

f++- : Kq ×GC × I −→ P(R ∪B ∪ L) (5.9)

f++-(qk++-, GC , I) := {z | z ∈ (R ∪B ∪ L), ∃(s, p, z) ∈ G}

f+-+ : Kq ×GC × I −→ P(R) (5.10)

f+-+(qk+-+, GC , I) := {y | y ∈ R,∃(s, y, o) ∈ G}
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f-++ : Kq ×GC × I −→ P(R ∪B) (5.11)

f-++(qk-++, GC , I) := {x | x ∈ (R ∪B), ∃(x, p, o) ∈ G}

f+++ : Kq ×GC × I −→ {TRUE,FALSE} (5.12)

f+++(qk+++, GC , I) :=

{
TRUE if (s, p, o) ∈ G
FALSE otherwise

The query function f--- returns the complete plaintext graph G if neither the restriction
pattern r = (sr, pr, or) nor the user pattern u = (su, pu, ou) specify any particular URIs,
blank nodes, or literals. Thus, the function requires r = u = (?, ?, ?). On the other
hand, the query function f+-- requires either sr 6= ? or su 6= ?. The function searches
for all triples (s, p, o) ∈ G with s = sr or s = su and returns a set of tuples (p, o).
Similarly, the functions f-+- and f--+ return sets of tuples (s, o) or (s, p), respectively.
The function f++- requires both a subject and a predicate to be encoded in the query key.
For every matching triple (s, p, o) ∈ G, the object o is returned. The query functions f+-+
and f-++ are similar and return a set of predicates or subjects, respectively. Finally, the
function f+++ returns TRUE if a query key encoding the query pattern (s, p, o) matches
a triple in G, i. e., if (s, p, o) ∈ G. Otherwise, the function returns FALSE.

5.4.7. Triple Keys

A triple key tk ∈ Kt represents a SPARQL triple pattern and is used for supporting join
operations. It contains a query key qk ∈ Kq and associates it with zero, one, two, or
three query variables. The specific number of query variables depends on the number of
unbound parts which are encoded in the query key. The type of a triple key corresponds
to the type of its query key as defined in Section 5.4.4. It is denoted using the symbols +
and - which mark the bound and unbound parts of the query key, respectively. For
example, triple keys of type +-- contain query keys with two unbound parts. Such triple
keys require a query variable for the predicate and a query variable for the object. In
contrast, triple keys of type +++ do not require any query variables as their query keys
only contain bound triple parts. A triple key is applied to an encrypted graph GC ∈ GC

by processing its query key qk with a corresponding query function f and binding the
individual results to their respective query variables. The resulting variable bindings
form a solution sequence. Using V as the set of all possible query variables and Kq as
the set of all query keys as defined in Section 5.4.4, the set Kt of all triple keys is defined
as follows:

Kt := Kq × (∅ ∪V ∪ (V ×V) ∪ (V ×V ×V)) (5.13)

The number of query variables in a triple key must be equal to the number of unbound
parts that are encoded in its query key qk.

5.4.8. Query Algebras, Query Forms, and Queries

A query q ∈ Q consists of a query form and a query algebra QA ∈ A. The structure
of the query form depends on the type of the query whereas the query algebra has the
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same structure for all query types. The query algebra QA contains an arbitrary number
of triple keys tk ∈ Kt and corresponds to the WHERE clause of a SPARQL query. The
set of all query algebras is defined as A := P(Kt). A query algebra is applied to an
encrypted graph GC by applying all its triple keys to the graph and combining their
individual solution sequences with a join operation into a single solution sequence. Join
operations are conducted by evaluating the variable bindings of the solution sequences
of all triple keys. The query form of a query defines how the solution sequence of the
query algebra shall be further refined. The query form of a SELECT query defines a list
of query variables whose variable bindings shall be returned as the final query result.
The set of all SELECT queries is defined as follows:

QSELECT := {(v1, . . . , vn) | vi ∈ V, i ∈ {1, . . . , n}, n ∈ N} ×A (5.14)

The query variables vi ∈ V of a query form must also be defined within the triple keys
of the query algebra QA ∈ A. The query form of a CONSTRUCT query defines a graph
template which is used for creating a new RDF graph from the solution sequence of
the query algebra. This RDF graph is then returned as the final query result. A graph
template contains an arbitrary number of template patterns tp ∈ Pt. A template pattern
is similar to a query pattern and also contains both bound and unbound triple parts.
In a template pattern, bound parts are identified by resources R, blank nodes B, or
literals L whereas unbound parts are represented as query variables V. The set of all
template patterns is defined as follows:

Pt := (R ∪B ∪V)× (R ∪V)× (R ∪B ∪ L ∪V) (5.15)

A graph template is instantiated by replacing all query variables in the template patterns
with corresponding values. The values are taken from the solution mappings of the query
algebra’s solution sequence. The triples that result from all instantiations are combined
into a single RDF graph which is returned as the final query result. Using the set A
of all query algebras and the set Pt of all template patterns, the set of all CONSTRUCT
queries is defined as follows:

QCONSTRUCT := P(Pt)×A (5.16)

All query variables of the graph template must also be defined in the triple keys tk of
the query algebra QA ∈ A. Finally, ASK queries return a boolean value and only require
a query algebra with an arbitrary number of triple keys. The set of all ASK queries is
defined as follows:

QASK := A (5.17)

Based on these three different sets of queries, the set of all SPARQL queries is defined
as follows:

Q := QSELECT ∪QCONSTRUCT ∪QASK (5.18)
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5.5. Design of T-Store

The overall process for searching in encrypted RDF graphs is divided into four phases
which are depicted in Figure 5.4. The encryption phase encrypts a plaintext graphG ∈ G
which results in a ciphertext graph GC ∈ GC . The indexing phase creates an index I ∈
I on top of the ciphertext graph in order to speed up the querying process. In the
authorization phase, the data owner authorizes users to apply queries to the encrypted
graph. The last phase is the actual querying phase which is carried out by an authorized
user. The following subsections describe each phase in more detail.

Authorization
phase

Encryption
phase

Choosing basic keys

Creating encryption keys

Encrypting the triples

Indexing
phase

Choosing ciphertext identifiers

Grouping ciphertext identifiers

Creating ciphertext arrays

Computing index keys

Creating the index tree

Encrypting ciphertext arrays

Creating authorization keys

Distributing authorization keys to usersStep 12

Step 10

Step 11

Step 9

Step 8

Step 7

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

Publishing ciphertext graph and index

Query
phase Creating query keys

Identifying the query results

Decrypting the triples

Step 13

Step 14

Step 15

Step 16

Creating user patterns

Figure 5.4.: Different phases and steps for searching in encrypted graphs.

5.5.1. Encryption Phase

The encryption phase consists of three steps in which the data owner encrypts all triples
of the plaintext graph in such a way that the resulting ciphertext graph can be used for
querying. Users are not involved in this phase.

Step 1: Choosing Basic Keys

The data owner chooses eight different basic keys bk ∈ Kb. Each basic key bk defines a
specific variant of query patterns. Basic keys are used for creating encryption keys ek
and authorization keys ak. A particular set of basic keys is only used for one plaintext
graph. This ensures that users who are able to apply queries to one graph cannot apply
queries to other graphs as well by using the same authorization keys.
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Step 2: Creating Encryption Keys

The data owner creates a symmetric encryption key ek for each plaintext triple t ∈ G and
for each of the eight basic keys bk created in the first step. An encryption key ek ∈ Ke

is a bit string of length d ∈ N with Ke ⊂ {0, 1}d being the set of all encryption keys. It
encodes a basic key bk ∈ Kb and the bound parts of a query pattern which correspond
to the query parameters. The number and position of the bound parts are defined by
the query pattern variant encoded in the basic key. For example, the basic key bk+--
requires a bound subject. Thus, it is encoded in an encryption key ek together with a
triple’s subject. An encryption key ek is similar to a query key qk which is created and
applied by an authorized user in the query phase.

An encryption key ek is created with a basic hash function λ and a combining func-
tion %. A basic hash function transforms a bit string of arbitrary length to a hash
value of fixed length [255]. Examples of basic hash functions are MD5 [250] and SHA-
2 [218]. A formal definition of the basic hash function is provided in Equation 4.12 in
Section 4.3.5. The basic hash function is used for reducing the possibility of creating
identical encryption keys for different input data. The combining function % combines a
bit string b ∈ {0, 1}∗ and the bound parts of a triple t into a single bit string. Each of
the bound triple parts is represented as a bit string of arbitrary length. The combining
function % is based on the basic hash function λ. Given a product N ∈ N of two large
prime numbers and n ∈ {0, 1, 2, 3} as the number of all bound triple parts, the function
is defined as follows:

% : {0, 1}∗ × P({0, 1}∗)→ {0, 1}∗, (5.19)

%(b, {b1, . . . , bn}) := bit
(
int(b)

∏n
i=1 int(λ(bi)) mod N

)

Table 5.1.: Step 2. Creating encryption keys ek for a single triple t = (s, p, o) using
eight different basic keys bk. The symbol || represents the operator for
concatenating bit strings.

Input Output

Basic key bk Plaintext triple t Resulting encryption key ek

bk--- (s, p, o) ek--- = λ(%(bk---, {}))
bk+-- (s, p, o) eks-- = λ(%(bk+--, {ws||s}))
bk-+- (s, p, o) ek-p- = λ(%(bk-+-, {wp||p}))
bk--+ (s, p, o) ek--o = λ(%(bk--+, {wo||o}))
bk++- (s, p, o) eksp- = λ(%(bk++-, {ws||s, wp||p}))
bk+-+ (s, p, o) eks-o = λ(%(bk+-+, {ws||s, wo||o}))
bk-++ (s, p, o) ek-po = λ(%(bk-++, {wp||p, wo||o}))
bk+++ (s, p, o) ekspo = λ(%(bk+++, {ws||s, wp||p, wo||o}))
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The function int maps a bit string to an integer and bit maps an integer to a bit string.
When creating an encryption key ek with the combining function %, the bit string b
corresponds to a basic key bk ∈ Kb. However, the function is also used for creating
authorization keys ak and query keys qk. Before applying the combining function % to
a particular triple, each of the bound parts of the triple is prefixed with a bit string
of fixed length. The prefix ws is used for the triple’s subject, wp identifies the triple’s
predicate, and wo marks the triple’s object. In Equation 5.19, the bit strings bi with
i ∈ {1, . . . , n} correspond to the prefixed bit string representations of the bound triple
parts. Table 5.1 depicts the details of creating different encryption keys ek for the same
triple t = (s, p, o) and different basic keys bk.

Step 3: Encrypting the Triples

The data owner uses the encryption key ek for encrypting the unbound parts of a triple
which are not already encoded in the encryption key. For example, an encryption key ek
based on a basic key bk+-- encodes the subject of a triple t. This encryption key is used
for encrypting the predicate and object of the same triple t. The ciphertext resulting
from this operation is denoted as c+--. Each ciphertext depends on all parts of the
plaintext triple which are either encoded in the encryption key ek or encrypted with
this key. The encryption is conducted using a symmetric encryption function ξ. The
function requires a bit string representation of the triple and the encryption key as input
and returns an encrypted bit string. Examples of symmetric encryption functions are
AES [213] and Twofish [273]. The encryption function ξ is defined as follows:

ξ : Ke × {0, 1}∗ → {0, 1}∗ (5.20)

Table 5.2.: Step 3. Encrypting a single triple t = (s, p, o) with the encryption keys ek
created in step 2. The symbol || corresponds to the concatenation operator
and ε corresponds to the empty bit string. The result is an encrypted triple
c = (c---, . . . , c+++).

Input Output

Encryption key ek Plaintext triple t Resulting ciphertext

ek--- (s, p, o) c--- = ξ(ek---, s||p||o)
eks-- (s, p, o) c+-- = ξ(eks--, p||o)
ek-p- (s, p, o) c-+- = ξ(ek-p-, s||o)
ek--o (s, p, o) c--+ = ξ(ek--o, s||p)
eksp- (s, p, o) c++- = ξ(eksp-, o)

eks-o (s, p, o) c+-+ = ξ(eks-o, p)

ek-po (s, p, o) c-++ = ξ(ek-po, s)

ekspo (s, p, o) c+++ = ξ(ekspo, ε)
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Table 5.2 depicts the details of encrypting a single triple t. Each triple t ∈ G is en-
crypted for each of the eight basic keys bk. This results in an encrypted triple c =
(c---, c+--, c-+-, c--+, c++-, c+-+, c-++, c+++) as defined Section 5.4.2. The ciphertext c+++ is
created by encrypting the empty bit string ε ∈ {0, 1}∗. The result of this step is an
encrypted graph GC ∈ GC .

5.5.2. Indexing Phase

The indexing phase consists of six steps in which the data owner creates an index I ∈ I
for all encrypted triples c. This index is used for speeding up the query processing
conducted by the user. It is based on a self-balancing binary search tree (BST) [181]
and stores sets of all those ciphertexts which match against the same query pattern. As
a query pattern is encoded in a query key qk ∈ Kq, the index allows a user to efficiently
retrieve all ciphertexts which can be decrypted with a given query key qk. The creation
and usage of the index is explained along the example graph shown in Listing 5.2, which
consists of eight simplified triples and is encoded using N-Triples [25].

<a> <b> <c> . <a> <b> <d> . <a> <b> <e> . <a> <f> <c> .

<a> <f> <e> . <c> <b> <a> . <c> <b> <e> . <e> <f> <d> .

Listing 5.2: Example graph which consists of eight triples. For simplicity reasons, the
triples only contain URIs which are represented as single letters.

Step 4: Choosing Ciphertext Identifiers

The data owner associates each of the eight ciphertexts of an encrypted triple c with a
unique and random identifier idc. Encrypting a plaintext graph G with n ∈ N triples
results in an encrypted graph GC with 8n different ciphertexts. Thus, the data owner
creates 8n different ciphertext identifiers idc ∈ {1, . . . , 8n}. Table 5.3 shows the result
of this step for the example plaintext graph depicted in Listing 5.2. Since the example
graph consists of eight triples, the data owner creates 64 different ciphertext identifiers.

Step 5: Grouping Ciphertext Identifiers

The data owner divides the ciphertext identifiers idc created in the previous step into
disjoint sets S in such a way that the corresponding ciphertexts of each set can be
decrypted with the same encryption key ek. Thus, each set S is associated with a
particular encryption key ek. The results of this step for the example graph is depicted
in Table 5.4. In the example, 35 different sets S are created.

Step 6: Creating Ciphertext Arrays

The data owner maps all sets S of ciphertext identifiers to one-dimensional arrays A of
equal size z ∈ N. The array size z is a parameter of the index and chosen by the data
owner. Its particular value may influence the efficiency and size of the index. Suitable
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Table 5.3.: Step 4. Associating each ciphertext in an encrypted graph GC with a unique
and random ciphertext identifier idc. The identifiers are created for all eight
ciphertexts of an encrypted triple c.

Encrypted triple c

c--- c+-- c-+- c--+ c++- c+-+ c-++ c+++
P

la
in

te
x
t

tr
ip

le
t <a> <b> <c> 34 52 48 3 40 12 46 50

<a> <b> <d> 10 44 25 53 41 35 14 11

<a> <b> <e> 30 18 59 4 21 63 61 20

<a> <f> <c> 39 7 45 5 38 47 28 49

<a> <f> <e> 55 56 16 6 43 62 60 31

<c> <b> <a> 17 27 29 51 13 58 57 24

<c> <b> <e> 1 32 23 33 15 8 54 19

<e> <f> <d> 22 26 36 2 9 42 64 37

Table 5.4.: Step 5. Sets S of ciphertext identifiers idc whose ciphertexts are created
with the same encryption key ek. For readability reasons, the sets are
grouped according to the basic keys bk which are used for creating the
corresponding encryption keys ek.

Basic key bk Encryption key ek Set of ciphertext identifiers idc

bk--- ek--- S1 = {1, 10, 17, 22, 30, 34, 39, 55}
bk+-- eka-- S2 = {7, 18, 44, 52, 56}
bk+-- ekc-- S3 = {27, 32}
bk+-- eke-- S4 = {26}
bk-+- ek-b- S5 = {23, 25, 29, 48, 59}
bk-+- ek-f- S6 = {16, 36, 45}
. . . . . . . . .

bk+++ ekafe S32 = {31}
bk+++ ekcba S33 = {24}
bk+++ ekcbe S34 = {19}
bk+++ ekefd S35 = {37}

values of the array size z are discussed in Section 5.6.4. Let |S| be the number of
ciphertext identifiers idc in a set S. If it is |S| > z, the data owner creates multiple

arrays for the set S. The total number of arrays which are created for a set S is d |S|z e.
Arrays which contain less than z ciphertext identifiers idc are padded with the value 0
so that all arrays are of identical size z. The result of this step for the example graph is
shown in Table 5.5. In the example, 38 arrays are created with an array size of z = 4.
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The sets S1, S2, and S5 are mapped to two arrays and all other sets are mapped to a
single array.

Table 5.5.: Step 6. Mapping the sets S of ciphertext identifiers to arrays A of equal
size z. In the example it is z = 4. Sets containing more than four identifiers
are split into multiple arrays. Arrays of smaller sets are padded with 0s.

Set S Corresponding arrays A

S1 A1.1 = 〈1, 10, 17, 20〉, A1.2 = 〈30, 34, 39, 55〉
S2 A2.1 = 〈7, 18, 44, 52〉, A2.2 = 〈56, 0, 0, 0〉
S3 A3 = 〈27, 32, 0, 0〉
. . . . . .

S35 A35 = 〈37, 0, 0, 0〉

Step 7: Encrypting Ciphertext Arrays

The data owner encrypts each array A with the encryption key ek of its corresponding
set S by using the encryption function ξ as defined in Equation 5.20. Different arrays
of the same set are encrypted with the same encryption key. The resulting encrypted
arrays are stored in the index created in step 9. In order to speed up the process of
retrieving all arrays of the same set, each array is encrypted together with an additional
bit marking whether or not there are more arrays of the same set. For example, the set
S1 is mapped to the two arrays A1.1 and A1.2. The first array A1.1 is encrypted together
with the bit 1. This bit indicates the existence of an array A1.2. In contrast, the array
A1.2 is encrypted together with the bit 0 since an array A1.3 does not exist. The result
of this step for the example graph is depicted in Table 5.6.

Step 8: Computing Index Keys

The data owner associates each encrypted array with an index key ik. An index
key ik ∈ Ki is a bit string of length d with Ki ⊂ {0, 1}d being the set of all index
keys. An index key is used for locating an encrypted array in the index I. It is com-
puted with a basic hash function λ by using the encryption key ek of the array’s set S
and an array identifier idA ∈ {1, . . . , d |S|z e} as input. Array identifiers idA distinguish
between different arrays of the same set. For example, the index keys ik1.1 and ik1.2
refer to the arrays A1.1 and A1.2, respectively. The index key ik1.1 is computed from the
encryption key ek--- and from the array identifier idA1.1 = 1 as λ(ek---||1) using || as
the concatenation operator. The index key ik1.2 is computed from ek--- and idA1.2 = 2
as λ(ek---||2). The result of this step for the example graph is shown in Table 5.7.
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Table 5.6.: Step 7. Encrypting ciphertext arrays A with encryption keys ek. Each
array is encrypted with an additional bit denoting whether or not there are
more arrays of the same set. The value 1 marks the existence of such an
array and 0 denotes its absence. Arrays of the same set are encrypted with
the same encryption key. The symbol || corresponds to the concatenation
operator.

Input Output

Array A Encryption key ek Resulting encrypted array

A1.1 ek--- ξ(ek---, 1||A1.1)

A1.2 ek--- ξ(ek---, 0||A1.2)

A2.1 eka-- ξ(eka--, 1||A2.1)

A2.2 eka-- ξ(eka--, 0||A2.2)

A3 ekc-- ξ(ekc--, 0||A3)

. . . . . . . . .

A35 ekefd ξ(ekefd, 0||A35)

Table 5.7.: Step 8. Creating index keys ik for the encrypted arrays A. An index key is
created from the encryption key ek which is associated with the array’s set S
and an array identifier idA. The identifiers distinguish between different
arrays of the same set S. The symbol || marks the concatenation operator.

Input Output

Array A Encryption key ek Array identifier idA Resulting index key ik

A1.1 ek--- idA1.1 = 1 ik1.1 = λ(ek---||1)

A1.2 ek--- idA1.2 = 2 ik1.2 = λ(ek---||2)

A2.1 eka-- idA2.1 = 1 ik2.1 = λ(eka--||1)

A2.2 eka-- idA2.1 = 2 ik2.2 = λ(eka--||2)

A3 ekc-- idA3 = 1 ik3 = λ(ekc--||1)

. . . . . . . . . . . .

A35 ekefd idA35 = 1 ik35 = λ(ekefd||1)

Step 9: Creating the Index Tree

The data owner creates an index which uses the index keys ik from the previous step
for indexing the encrypted ciphertext arrays created in step 7. Thus, the index provides
a mapping from index keys to encrypted arrays. The index is a self-balancing binary
search tree (BST) [181]. All nodes in such a tree consist of a key and a value and are
ordered according to their key. In T-Store, the keys of the nodes correspond to index
keys ik and the values are encrypted ciphertext arrays. The root node and all internal
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nodes of a BST have one or two child nodes which form separate subtrees. All keys
in the left subtree of a particular node are smaller than the key of this node and all
keys in the right subtree are larger. As the index keys ik of T-Store are bit strings,
the encrypted ciphertext arrays are ordered according to the natural order of these bit
strings. For example, if the bit string representation of the index key ik2.1 is larger than
the bit string representation of ik1.2, the ciphertext array A1.2 is positioned to the left
of the array A2.1. In addition to these basic characteristics, all paths in a BST which
start at the root node and end at a leaf node have almost the same length. This results
in a runtime complexity of searching a node in the tree of O(logm) with m being the
number of nodes in the tree. Example implementations of self-balancing binary search
trees are red-black trees [23] and AVL trees [9]. The result of this step for the example
graph shown in Listing 5.2 is depicted in Figure 5.5.

ik2.1 = λ(eka--||1)
ξ(eka--, 1||A2.1)

ik1.2 = λ(ek---||2)
ξ(ek---, 0||A1.2)

ik1.1 = λ(ek---||1)
ξ(ek---, 1||A1.1)

ik35 = λ(ekefd||1)
ξ(ekefd, 0||A35)

ik2.2 = λ(eka--||2)
ξ(eka--, 0||A2.2)

ik4 = λ(eke--||1)
ξ(eke--, 0||A4)

ik3 = λ(ekc--||1)
ξ(ekc--, 0||A3)

Figure 5.5.: Step 9. A fragment of the index for storing the encrypted ciphertext
arrays created in step 7. The index is a self-balancing binary search tree.
Encrypted ciphertext arrays are indexed using the index keys ik created
in step 8. Index keys ik are basically hashed encryption keys ek and are
ordered according to their bit string representation.

5.5.3. Authorization Phase

The authorization phase consists of three steps and involves both the data owner and
the authorized users. In this phase, the data owner authorizes users to apply queries to
an encrypted graph.

Step 10: Publishing ciphertext graph and index

The data owner publishes the ciphertext graphGC created in step 3 and the index created
in step 9 on the web. As the data stored in the graph and in the index is encrypted, a user
cannot access any data without being authorized by the data owner first. Alternatively,
the data owner can send the ciphertext graph and the index specifically to authorized
users. However, this requires a direct interaction between the data owner and a user.
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Step 11: Creating Authorization Keys

The data owner creates an authorization key ak for each query pattern of an allowed
query. As defined in Section 5.4.4, an authorization key ak ∈ Ka is created from a basic
key bk ∈ Kb and a data owner’s restriction pattern r = (sr, pr, or) ∈ Pq. The bound parts
of the restriction pattern r are first prefixed with identifiers that define their position
within the query pattern. Again, the prefix ws marks the triple’s subject, wp denotes
the triple’s predicate, and wo identifies the triple’s object. The prefixed strings are then
combined with the basic key bk to create an authorization key ak by using the combining
function % defined in Equation 5.19. The detailed process for creating authorization keys
is depicted in Table 5.8. A basic key also determines the number and type of different
authorization keys which can be created for a particular query pattern variant. For
example, the basic key bk+-- can be used for creating the two authorization keys akr??
and aku??. The index r states that the corresponding part of the authorization key is
predefined by the data owner’s restriction pattern r and u indicates that the user must
specify the part within the user pattern u. The index ? marks the unbound parts in the
authorization key which correspond to the query result.

Table 5.8.: Step 11: Creating authorization keys ak ∈ Ka by applying the combining
function % to basic keys bk ∈ Kb and restriction patterns r ∈ Pq.

Input Output

Basic key bk Restriction pattern r Resulting authorization key ak

bk--- (?, ?, ?) ak??? = %(bk---, {})
bk+-- (sr, ?, ?), sr 6= ? akr?? = %(bk+--, {ws||sr})
bk+-- (?, ?, ?) aku?? = %(bk+--, {})
bk++- (sr, pr, ?), sr, pr 6= ? akrr? = %(bk++-, {ws||sr, wp||pr})
bk++- (sr, ?, ?), sr 6= ? akru? = %(bk++-, {ws||sr})
bk++- (?, pr, ?), pr 6= ? akur? = %(bk++-, {wp||pr})
bk++- (?, ?, ?) akuu? = %(bk++-, {})
· · · · · · · · ·

Step 12: Distributing Authorization Keys to Users

The data owner sends a set of authorization keys ak to a user. In doing so, the data
owner authorizes the user to apply all queries which can be applied to an encrypted graph
by using the received authorization keys ak. The authorization keys ak are transmitted
via a secure communication channel in order to ensure that only authorized users can
apply the queries. This step is the only step that requires a direct interaction between
the data owner and the user. All previous steps are solely conducted by the data owner
and all following steps are conducted by the user alone.
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5.5.4. Query Phase

The query phase consists of four steps which are conducted by an authorized user. In
this phase, an authorized user queries an encrypted graph GC by using the received
authorization keys ak. This section describes how a user can process a query consisting
of a single triple key tk. The application of more complex queries consisting of multiple
triple keys is discussed in Section 5.5.5. The user applies each triple key to the ciphertext
graph GC by processing its query key qk with a corresponding query function f .

Step 13: Choosing User Patterns

The user choses a user pattern u ∈ Pq which is compatible with the received authoriza-
tion key ak ∈ Ka. As described in Section 5.4.4, an authorization key ak already encodes
a data owner’s restriction pattern r ∈ Pq. The more parts the data owner specifies in the
restriction pattern r, the fewer choices does the user have to formulate a user pattern u.
For example, the query function f-++ requires a predicate and an object to be either
specified in r or in u. If the data owner defines r = (?, rdf:type, foaf:Person), a user
can only search for resources of rdf:type foaf:Person from the FOAF vocabulary [50].
In this case, the user can only define a user pattern u = (?, ?, ?) which does not add
any further query parameters to the restriction pattern r. However, if the data owner
defines r = (?, rdf:type, ?), the user can specify different values for the object of the
user pattern. For example, the user may define u = (?, ?, foaf:Organization) to search
for all resources of rdf:type foaf:Organization.

Step 14: Creating Query Keys

The user creates a query key qk ∈ Kq by combining an authorization key ak ∈ Ka with
a compatible user pattern u ∈ Pq created in the previous step. A query key qk is similar
to an encryption key ek ∈ Ke and thus created similarly as well. A query key encodes
a query pattern and is used as input for a corresponding query function f . Table 5.9
depicts the details of creating a query key qk from a received authorization key ak and
a user pattern u. A query key is created by using the combining function % and the
basic hash function λ. The bound parts of the user pattern are first prefixed with the
identifiers ws, wp, and wo. These identifiers are used to determine the position of the
bound parts of the user pattern. If a query key qk was created correctly, it encodes all
bound parts of a query pattern and is identical to the encryption key ek which was used
for encrypting the unbound parts. In this case, the query key can be directly used for
decrypting the unbound triple parts.

Step 15: Identifying the Query Results

The user applies the index I in order to identify all ciphertexts which match against
a particular query pattern. The index is accessed by index keys ik ∈ Ki which are
computed from the query keys created in the previous step. For each query key qk,
the user computes ik1 = λ(qk||1) and locates ik1 in the index. If the index does not
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Table 5.9.: Step 14: Creating a query key qk from an authorization key ak and a user
pattern u = (su, pu, ou). The authorization key encodes a basic key bk and
the data owner’s restriction pattern r = (sr, pr, or).

Input Output

Authorization key ak User pattern u Resulting query key qk

ak??? (?, ?, ?) qk??? = λ(%(ak???, {}))
akr?? (?, ?, ?) qkr?? = λ(%(akr??, {})
aku?? (su, ?, ?), su 6= ? qku?? = λ(%(aku??, {ws||su}))
akrr? (?, ?, ?) qkrr? = λ(%(akrr?, {})
akru? (?, pu, ?), pu 6= ? qkru? = λ(%(akru?, {wp||pu}))
akur? (su, ?, ?), su 6= ? qkur? = λ(%(akur?, {ws||su}))
akuu? (su, pu, ?), su, pu 6= ? qkuu? = λ(%(akuu?, {ws||su, wp||pu}))
· · · · · · · · ·

contain an entry for the index key ik1, the query pattern encoded in the query key qk
has an empty result. In this case, the user can immediately stop any further processing.
Otherwise, the user can retrieve the encrypted array associated with the index key ik1
and decrypt it using the query key qk and a decryption function µ. The decryption
function µ is inverse to the encryption function ξ defined in Equation 5.20. It requires
a query key qk and a bit string as input and returns a decrypted bit string as output.
The decryption function is defined as follows:

µ : Kq × {0, 1}∗ → {0, 1}∗ (5.21)

Applying the decryption function to an encrypted array results in a plaintext array A and
a preceding bit value. The array A contains up to z ciphertext identifiers idc which refer
to encrypted triples satisfying the query pattern. If the plaintext array A is preceded
by the bit value 0, the user has already retrieved all ciphertext triples for the query
pattern. In contrast, a leading bit value of 1 states that there are more arrays in the
index which also contain relevant ciphertext identifiers. In this case, the user computes
a new index key ik2 = λ(qk||2) and looks it up in the tree. This process is repeated
until the preceding bit value of a plaintext array is 0. Finally, the user has obtained
all ciphertext identifiers which refer to exactly those ciphertexts that match against the
query pattern encoded in the query key qk.

Step 16: Decrypting the Triples

The user applies a query key qk to the decryption function µ in order to decrypt each
ciphertext identified in the previous step. If the query key qk was created correctly in
step 14, it is ek = qk. In this case, the decryption process is inverse to the encryption
operation, i. e., b = µ(qk, ξ(ek, b)) with b ∈ {0, 1}∗ being the bit string representation of
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the unbound parts of a plaintext triple t. Steps 15 and 16 are combined into a query
function f . Thus, the user processes these two steps by applying a query function to a
query key qk, an index I, and a ciphertext graph GC .

5.5.5. Applying Queries with Multiple Triple Keys

A query q ∈ Q is applied to a ciphertext graph GC ∈ GC and its index I ∈ I by
applying the query algebra and further processing the resulting solution sequence with
the query form. T-Store supports SPARQL queries of type SELECT, CONSTRUCT, and ASK.
Processing the query algebra is the same for all three types of queries whereas processing
the query form depends on the query type. This section first defines a basic algorithm for
applying a query algebra to a ciphertext graph. Subsequently, three different algorithms
are presented for each of the supported query types. These algorithms process the query
algebra using the first algorithm and refine the resulting solution sequence with a specific
query form.

Algorithm 5.1 applies a query algebra QA ∈ A of a query q to a ciphertext graph GC
and its index I. A query algebra is applied to a ciphertext graph by matching all its triple
keys tk ∈ QA with the graph’s triples. The query algebra can successfully be applied
to the graph if all triple keys match at least one triple in the graph. In this case, the
solution sequence of the query algebra is created from all successful matches. However,
if the query algebra does not match at all, an empty solution sequence is returned. This
is the case if at least one triple key of the query algebra does not match any of the
graph’s triples. Algorithm 5.1 first applies all triple keys of type +++ to the ciphertext
graph (line 2). These triple keys determine whether or not their encoded query pattern
corresponds to a triple in the plaintext graph G. They are applied by using their query
keys qk as input for the query function f+++ (line 3). If at least one triple key of type +++
does not match a triple, the query algebra QA has an empty solution sequence and the
query q cannot be satisfied. In this case, query processing is stopped immediately and
an empty result is returned (line 4). After having applied a triple key of type +++, it
is removed from the query algebra QA (line 6). Thus, all triple keys tk remaining after
the first step contain at least one unbound variable. Second, the algorithm applies all
remaining triple keys to the ciphertext graph (line 9). Again, each triple key is applied
by using its query key qk as input for a corresponding query function f . A query
function returns a set of plaintext tuples, each of which represents a matching triple of
the plaintext graph (line 11). These tuples are then bound to the query variables of
the triple key in order to create the solution sequence of the key (line 12). A solutions
sequence contains all possible solution mappings of a triple key’s query variables. It
can be interpreted as a table with its columns being the query variables and its rows
being the different solution mappings [86]. The solution sequences of all triple keys are
incrementally combined using the join operator on (line 13). If two triple keys share the
same query variables, a natural join is conducted on their solution sequences using these
variables. Otherwise, the result of the join operation is the Cartesian product of the
solution sequences. In its current design, T-Store conducts a join operation on plaintext
solution sequences. The operation can be implemented using an arbitrary join algorithm
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such as nested loop joins, sort-merge joins, or hash joins [242]. A detailed description of
the use of join operators on SPARQL query results is provided in [86]. Implementing a
join operation in T-Store which can be applied to encrypted solution sequences directly
is left for future work. Finally, the algorithm returns the combined solution sequence
(line 40). The columns of this solution sequence correspond to the query variables of all
triple keys.

Algorithm 5.1 Applying a query algebra QA with multiple triple keys to a ciphertext
graph GC and its index I. Each triple key tk ∈ Kt is processed individually by applying
its corresponding query key qk ∈ Pq to a query function f . The solution sequences of
each triple keys are joined to create a single solution sequence.

1 function applyQueryAlgebra(QA, GC , I)
2 for all tk ∈ QA with tk.type = +++ do Apply all triple keys of type +++.

3 if f+++(tk.qk,GC , I) = false then
4 return {} Stop if a triple key does not match.

5 end if
6 QA := QA \ {tk} Remove the current triple key.

7 end for
8 result := {} Prepare the query result.

9 for all tk ∈ QA do Apply all remaining triple keys.

10 if tk.type = --- then
11 tuples := f---(tk.qk,GC , I) Apply the query key.

12 sequence := bindVariables(tk.vars, tuples) Bind the query variables.

13 result := result on sequence Join the solution sequences.

. . .
34 else if tk.type = -++ then
35 tuples := f-++(tk.qk,GC , I)
36 sequence := bindVariables(tk.vars, tuples)
37 result := result on sequence
38 end if
39 end for
40 return result Return the joined solution sequence.

41 end function

Algorithm 5.2 applies a SELECT query q ∈ QSELECT to a ciphertext graph GC and its
index I. As defined in Section 5.4.8, the query form of a SELECT query contains a list
of query variables whose variable bindings shall be returned as the final query result.
First, the algorithm retrieves the solution sequence of the query algebra by applying
the function applyQueryAlgebra of Algorithm 5.1 to the query (line 2). Second,
the query form of the query is evaluated by conducting a projection Π on the solution
sequence (line 3). The projection removes the variable bindings of all query variables
which are not defined in the query form. Thus, after having conducted the projection,
the modified solution sequence only contains the variable bindings of query variables
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which are also defined in the query form. Finally, the algorithm returns the modified
solution sequence as the final query result (line 4).

Algorithm 5.2 Applying a SELECT query q to a ciphertext graph GC and its index I.
The result of the query is a list of variable bindings.

1 function applySelectQuery(q, GC , I)
2 solutionSequence := applyQueryAlgebra(q.QA, GC , I)
3 projectedSequence := Πv1,...,vn∈q.queryV ariables(solutionSequence)
4 return projectedSequence
5 end function

Algorithm 5.3 applies a CONSTRUCT query q ∈ QCONSTRUCT to a ciphertext graph GC
and its index I. The query form of a CONSTRUCT query contains a graph template which
is used for creating a new graph resultGraph ∈ G based on the solution sequence of
the query algebra. First, the algorithm processes the query algebra with the function
applyQueryAlgebra of Algorithm 5.1 in order to retrieve an initial solution sequence
(line 2). Second, an empty graph is created which serves as a basis for the new graph to
be created (line 3). Third, the graph template is instantiated with each solution mapping
of the initial solution sequence (line 5). This is done by substituting all query variables
in the graph template with the variable bindings of a particular solution mapping. Each
instantiation of the graph template corresponds to a new set of triples. Fourth, the set
of triples is combined with the current result graph (line 6). Finally, the combined graph
created from all instantiations of the graph template is returned as the final query result
(line 8).

Algorithm 5.3 Applying a CONSTRUCT query q to a ciphertext graph GC and its index I.
The result of the query is a newly created graph.

1 function applyConstructQuery(q, GC , I)
2 solutionSequence := applyQueryAlgebra(q.QA, GC , I)
3 resultGraph := {}
4 for all mapping ∈ solutionSequence do
5 tripleSet := substitute(q.graphTemplate, mapping)
6 resultGraph := resultGraph ∪ tripleSet
7 end for
8 return resultGraph
9 end function

Algorithm 5.4 applies an ASK query q ∈ QASK to an ciphertext graphGC and its index I.
An ASK query determines whether or not the query algebra of a query matches against
a graph and returns a corresponding boolean value. The algorithm first applies the
function applyQueryAlgebra of Algorithm 5.1 in order to retrieve an initial solution
sequence (line 2). If the solution sequence contains at least one solution mapping, the
algorithm returns TRUE and FALSE otherwise (line 3).
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Algorithm 5.4 Applying an ASK query q to a ciphertext graph GC and its index I. The
result of the query is a boolean value.

1 function applyAskQuery(q, GC , I)
2 solutionSequence := applyQueryAlgebra(q.QA, GC , I)
3 return size(solutionSequence) > 0
4 end function

The four algorithms demonstrate how T-Store can be used for applying SPARQL
queries of type SELECT, CONSTRUCT, and ASK to an encrypted graph and its corresponding
index. Please note that these algorithms primarily serve as a basic proof-of-concept and
can be further optimized towards their efficiency.

5.6. Performance of T-Store

This section assesses the performance of T-Store for processing queries on encrypted
graphs. The performance is evaluated in different experiments, each of which covers a
particular aspect of the query process. In order to assess the influence of the index on
the query process, two different variants of T-Store are implemented and compared with
each other. These variants are referred to as T-Store BSC and T-Store NDX, which
correspond to the basic version and indexed version of T-Store, respectively. T-Store
BSC directly operates on a ciphertext graph without using an index and implements the
encryption phase, the authorization phase, and the query phase as depicted in Figure 5.4.
In the query phase, T-Store BSC successively tries to decrypt all encrypted triples in the
ciphertext graph with all query keys in a query algebra. If the decryption is successful,
the decrypted triple satisfies the query pattern encoded in the query key. The triple
is then included in the solution sequence of the query algebra. If the decryption fails
otherwise, the triple does not satisfy the query pattern. This process is conducted for
all encrypted triples in the ciphertext graph and all query keys in the query algebra. As
T-Store BSC does not use any optimization, query processing solely depends on the size
of the ciphertext graph and on the number of triple keys in the query algebra. T-Store
NDX implements all four phases depicted in Figure 5.4 including the indexing phase. It
applies an index to the ciphertext graph to identify all ciphertext triples which satisfy
a particular query pattern. This speeds up query processing since not all ciphertext
triples in the encrypted graph must be processed anymore. In addition, both variants
of T-Store are compared with the plaintext triple store Sesame version 2.6.10 [54]. This
triple store is chosen as it is implemented in the same programming language as the two
variants of T-Store. This section first presents the setup of the experimental analysis
and the implementation details of T-Store before the experimental results are discussed.

5.6.1. Experimental Setup and Implementation Details

The experimental analysis is divided into two phases which are the preparation phase
and the query processing phase. The preparation phase combines the encryption phase
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and the indexing phase as depicted in Figure 5.4 and the query processing phase cor-
responds to the query phase. In the preparation phase, different plaintext graphs are
generated, encrypted, indexed, and loaded into memory. The runtime of encrypting a
graph, creating its index, and loading the created files is measured. In addition, the size
of the created files is measured as well. In the query processing phase, multiple queries
with different numbers of triple keys are applied to the ciphertext graphs. Again, the
runtime of applying each query is measured. In order to avoid interference with statis-
tical outliers, each operation is performed ten times and the mean value is calculated.

As experimental data, the Berlin SPARQL benchmark (BSBM) [40] is used which
is designed to assess the performance of different SPARQL implementations. BSBM
provides tools for generating synthetic RDF graphs and SPARQL queries which simulate
a user browsing through the graphs. The tools are used to create five different RDF
graphs ranging from 10, 000 triples to 200, 000 triples. Each graph is serialized using
N-Triples [25] and stored in a separate file. Queries are taken from the explore scenario
of the BSBM framework which provides twelve different queries. The queries differ in
their number of SPARQL triple patterns and in the size of their solution sequence.
Queries that use SPARQL features which are not yet supported by T-Store such as
OPTIONAL and FILTER are modified by removing the unsupported parts. Queries using
UNION are split into separate queries and the runtime of these queries is summed up.
The modified queries are available online at the website of this thesis which is referenced
in the conclusion.

As described in Section 5.5.2, the array size z is a parameter of the index of T-Store
NDX. In order to measure the influence of the array size on the index, twelve indexes
with different values of z are created for the BSBM graph with 200,000 triples. For a
fair comparison between T-Store and Sesame, all files required for processing a query
are loaded into main memory before the actual query processing is conducted. This
minimizes potential side effects from accessing the hard drive when applying a query. T-
Store BSC only loads the ciphertext graph while T-Store NDX loads the ciphertext graph
and its index. Sesame loads the plaintext graph using its MemoryStore which stores all
triples in main memory. When loading a graph, the MemoryStore automatically creates
an index for the graph from scratch. The index provides a mapping from every subject,
predicate, and object in the graph to a one-dimensional array of all triples in which they
occur. All experiments were conducted on a system with 50 GB memory and an Intel R©

Xeon R© CPU with 3.00 GHz running Ubuntu GNU/Linux version 14.04.2.
Both variants of T-Store are implemented in Java and use the Java Cryptography

Extension (JCE) for all cryptographic operations. JCE is an official Java API which
provides different encryption algorithms and hash algorithms. As the encryption func-
tion ξ, the Advanced Encryption Standard (AES) [213] with a key length of 256 bits is
used. The algorithm and the used key length are proven of high security and are rec-
ommended by the National Institute of Standards and Technology (NIST) [215]. AES
is a block-based symmetric encryption scheme which operates on blocks of 16 bytes. In
order to encrypt arbitrary plaintext data, the data is first split into blocks which are
then encrypted. If the data is not a multiple of the block size, it is padded before the
encryption, which may slightly increase the size of the resulting ciphertext. As the basic
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hash function λ, the Secure Hash Algorithm 2 (SHA-2) [218] is used with an output
length of 256 bits as recommended by NIST [215]. Thus, the set {0, 1}d of all bit strings
with fixed length d corresponds to the set {0, 1}256, i. e., d = 256. As feature by design,
the length of the hash value and the key length of the encryption function ξ are the
same. This allows it to directly use the computed hash values as encryption keys ek.
The combining function % uses a value of N with a length of 2048 bit. The index ap-
plied by T-Store NDX is based on the Java class TreeMap which implements a red-black
tree [23]. A red-black tree is a self-balancing BST which stores a color for each node in
order to balance the tree.

5.6.2. Preparation Phase

Figure 5.6 shows the file size of the created plaintext graph, the ciphertext graph, the
indexed ciphertext graph, and the file size of the created index. As depicted, increasing
the size of a plaintext graph by a certain factor roughly increases the size of the other
files by the same factor as well. The ciphertext graphs created by T-Store BSC are about
4.5 times larger than their corresponding plaintext graphs. For the indexed ciphertext
graphs of T-Store NDX, this ratio is about 4.6 due to the additional ciphertext identi-
fiers idc stored in each file. The files storing the index are about 1.02 times larger than
the respective plaintext graphs. Thus, the total amount of ciphertext data created by
T-Store NDX for a particular plaintext graph is about 5.62 times larger than the file
size of this graph.
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Figure 5.6.: File size of the plaintext graph, ciphertext graph without an index, indexed
ciphertext graph, and index. The file sizes are given in bytes (B).

Figure 5.7 depicts the runtime of the different steps in the preparation phase. Fig-
ure 5.7a shows the runtime of encrypting the different plaintext graphs with both T-Store
BSC and T-Store NDX. T-Store BSC only creates the ciphertext graph and T-Store NDX
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creates both the indexed ciphertext graph and its corresponding index. The index of a
ciphertext graph is created simultaneously while encrypting its corresponding plaintext
graph. This allows it to process each triple only once which reduces the overall runtime
of the preparation phase of T-Store NDX. As depicted in Figure 5.7a, the overhead of
creating the index hardly influences the overall runtime of T-Store NDX. Thus, the en-
cryption time of T-Store NDX and T-Store BSC is roughly the same. The runtime of
encrypting a plaintext graph is linear in both variants of T-Store with respect to the
number of triples in the graph. Increasing the size of the plaintext graph by a certain
factor also increases the runtime required for its encryption by the same factor. Both
variants of T-Store encrypt the BSBM graph with 2 · 105 triples in about 104 minutes.
The large encryption time is mainly caused by the combining function % which is used
for creating eight different encryption keys for each triple in the graph.
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Figure 5.7.: Runtime of preparing plaintext graphs of different sizes. The preparation
includes the encryption of the plaintext graph and the creation of the index
as well as and loading all created files into main memory.

Figure 5.7b shows the runtime of loading all files into memory which are required for
processing a query. T-Store BSC loads the ciphertext graph and maps it to several Java
byte arrays which do not require any further processing. In contrast, T-Store NDX loads
both the indexed ciphertext graph and its index and maps the loaded data to instances
of Java classes. This is necessary to re-create the index stored in the file in such a way
that it can be used for query processing. However, this process requires more time than
simply loading byte arrays into memory. Thus, T-Store NDX has a higher runtime than
T-Store BSC for loading all necessary files. The Sesame MemoryStore loads the plaintext
graph into memory and simultaneously creates a new index from scratch. The creation of
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the index is conducted while the graph is being loaded and cannot be separated from the
loading process. This makes the index creation an integral part of the loading process.
As creating an index requires more time than parsing an already existing index stored
in a file, the Sesame MemoryStore has a higher loading time than T-Store NDX.

5.6.3. Query Processing Phase

Figure 5.8 depicts the runtime of applying the BSBM queries to graphs of different size
for the two variants of T-Store and the Sesame MemoryStore. For a better comparison
between the different results, the figure also shows the number of triples in a query’s
solution sequence which is depicted in Figure 5.8d. The query processing time generally
depends on the number of a query’s triple keys, the size of its solution sequence, and
on the size of the queried graph. Figure 5.8a shows the runtime of processing a query
with T-Store BSC. As depicted, the runtime is mainly affected by the number of triple
keys and the size of the queried graph and hardly influenced by the size of a query’s
solution sequence. Increasing the size of a graph by a certain factor roughly increases
the runtime of querying the graph by the same factor. Similarly, increasing the number
of triple keys in a query by a given factor increases the query’s runtime by the same
factor as well. This linear dependency is due to the fact that T-Store BSC does not use
any query optimization. Instead, it always processes all ciphertext triples with all triple
keys of the query. The runtime of processing the BSBM query #5 slightly differs from
this observation. As depicted in Figure 5.8d, the solution sequence of this query is larger
than the solution sequences of the other queries. A large solution sequence increases the
overall processing time of a query due to the larger runtime that is required for joining
the individual solution sequences of the query’s triple keys. Furthermore, one triple key
of query #5 is of type -+- and specifies a common RDFS predicate as a query parameter.
This results in a large solution sequence of the key which has to be further processed
during query execution.

Figure 5.8b shows the runtime of processing the BSBM queries with T-Store NDX.
As depicted, the runtime is mainly affected by the size of a query’s solution sequence
and hardly influenced by the number of its triple keys or the size of the queried graph.
Due to the use of an index, query processing in T-Store NDX is significantly faster than
in T-Store BSC. The only exception is query #5 whose processing time is almost the
same. Thus, the index is not yet sufficient for speeding up queries which produce large
solution sequences. Processing the two queries #5 and #6 is slower than processing
other queries which have a similar number of triple keys. The higher runtime of these
two queries is based on their large solution sequences as depicted in Figure 5.8d. The
queries #7 and #9 are processed even faster than in the Sesame MemoryStore. This is
due to the fact that both queries consist of one very specific triple key which produces a
solution sequence with a single triple. The index used in T-Store NDX basically stores
the solution sequences of all possible triple keys. Thus, assembling the solution sequence
of a very specific triple key essentially corresponds to traversing the index tree once and
decrypting the identified ciphertext triples.
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Figure 5.8.: Runtime of applying the BSBM queries to graphs of different sizes and
their respective solution sequences. The queries differ in their number of
triple keys and in the size of their solution sequences.

Figure 5.8c depicts the runtime of processing the BSBM queries with the Sesame
MemoryStore. As depicted, the runtime mainly depends on the number of triple keys
in the query and on the size of the query’s solution sequence. The size of the queried
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plaintext graph affects the runtime of the query only indirectly through a potentially
larger solution sequence. As depicted, the queries #1, #7, and #9 are not significantly
affected by the size of the queried graph since they only produce small result sets.
Although query #1 produces a small query result, its runtime is almost as large as
query #5 which produces a large result. This is due to the fact that both queries
contain the same triple key of type -+- which specifies a common RDFS predicate as
a query parameter. Applying this triple key results in a large solution sequence which
also affects the overall runtime of processing the whole query.

5.6.4. Influence of the Array Size z

The index of T-Store NDX basically maps a query key to one-dimensional arrays of size z.
These arrays contain the identifiers of all ciphertexts which can be decrypted with the
same query key. As described in Section 5.5.2, the array size z is a parameter of the
index and influences its size and efficiency. Storing all ciphertext identifiers that match
a particular query key requires at least 1 array and at most n

z arrays with n ∈ N being
the number of triples in the plaintext graph. The specific number of arrays required
for storing all ciphertext identifiers depends on the structure of the plaintext graph and
on the number of possible triple keys which contain the query keys. In general, smaller
values of z require more traversals of the index as the ciphertext identifiers are stored
in more arrays. This increases the runtime of processing a query. In contrast, larger
values of z result in less arrays which are stored in the index. However, some of these
arrays may require additional padding if they contain less than z ciphertext identifiers.
Padding a high number of arrays increases the size of the index. Thus, the value of z
must be optimized towards the graph structure and the average size of all non-empty
solution sequences produced by the triple keys.

Figure 5.9 depicts the runtime of encrypting and indexing the BSBM graph with
200.000 triples for different values of z ranging from 1 to 12. The figure also shows
the size of the resulting index in bytes. Since the index is created while encrypting
the graph, the depicted runtime covers the time for creating both the ciphertext graph
and the index. As shown in Figure 5.9a, the runtime of creating the indexed ciphertext
graph and its index is almost constant and hardly affected by the value of z. In contrast,
the file size of the index is significantly influenced by the array size z as depicted in
Figure 5.9b. As described in Section 5.5.2, each array contains z ciphertext identifiers
and an additional bit which marks whether or not there are more arrays of the same
set idS . Each ciphertext identifier is stored as a Java integer variable which requires
4 bytes per value. Since Java does not allow to store a single bit separately, the bit is
stored as an additional byte. Thus, storing an array with z ciphertext identifiers requires
4 · z + 1 bytes in total. In order to encrypt a plaintext array with AES, the number
of bytes that the array occupies must be a multiple of the AES block size of 16 bytes.
If this is not the case, the array must be padded with v ∈ N additional bytes so that
4 · z + 1 + v mod 16 = 0. For example, an array size of z = 1 requires a padding of
11 bytes since 4 · 1 + 1 + 11 = 16 and 16 mod 16 = 0. The same padding of 11 bytes is
also used for z = 1 + k with k ∈ {x | x mod 4 = 0} being a multiple of 4. Arrays storing

170



Performance of T-Store Section 5.6

1 2 3 4 5 6 7 8 9 10 11 12

0

20

40

60

80

100

120

array size z

ru
n
ti

m
e

(m
in

)

a) Graph encryption time

1 2 3 4 5 6 7 8 9 10 11 12

0

0.2

0.4

0.6

0.8

1
·108

array size z

fi
le

si
ze

(B
)

b) Index file size

Figure 5.9.: Effects of the array size z on the index for the BSBM graph with
2 · 105 triples. The file sizes are given in bytes (B) and the runtime of
encrypting the graph and creating the indexes are given in minutes (min).

z = 2 ciphertext identifiers require a padding of 7 bytes, arrays with a size of z = 3
are padded with 3 additional bytes, and arrays containing z = 4 ciphertext identifiers
contain 15 bytes of additional padding. The same padding size is also used for z = 2+k,
z = 3 + k, and z = 4 + k with k ∈ {x | x mod 4 = 0}. Thus, there are only four different
paddings which are used for every fourth value of z. This is also reflected in the overall
size of the index as depicted in Figure 5.9b. As the diagram shows, an array size of z = 1
introduces a large overhead due to the high amount of padding bytes. In general, the
storage efficiency of an array size can be represented by the ratio between the number of
bytes storing ciphertext identifiers and the number of padding bytes. As each ciphertext
identifier occupies four bytes, this ratio is 4·z

v with v ∈ N being the number of padding
bytes. A higher value corresponds to a better efficiency and a smaller value corresponds
to a worse efficiency. For a array size z = 1, the efficiency ratio is 4·1

11 which is smaller
than the efficiency ratio of other array sizes sharing the same amount of padding bytes.
For example, an array size of z = 5 has a higher efficiency ratio of 4·5

11 . As shown in
Figure 5.9b, this results in less bytes for storing the index. The diagram also shows that
an array size of z = 3 results in an index which requires the least amount of bytes to be
stored. In the example BSBM graph, the average number of triples matching a triple
key, which does not produce an empty solution sequence, is 2.32. Thus, an array size
of z = 3 achieves the best efficiency for storing ciphertext identifiers as it results in the
least amount of padding bytes on average.

Figure 5.10 shows how different values of the array size z affect the runtime of applying
the individual BSBM queries to the graph with 200.000 triples. As depicted, the array
size mostly affects those queries which return a small solution sequence such as the
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Figure 5.10.: Runtime of applying the BSBM queries to the indexed ciphertext graph
with 200.000 triples using different values of the array size z. The dia-
gram shows how different values of z influence the processing time of the
individual queries. The queries differ in the number of their triple keys
and the size of their solution sequence.

1 2 3 4 5 6 7 8 9 10 11 12
-2

-1

0

1

2

3

4

5

6

7
·104

array size z

ru
n
ti

m
e

(m
s)

average runtime

standard deviation

minimum runtime

maximum runtime

Figure 5.11.: Average runtime and standard deviation of applying all BSBM queries to
the indexed ciphertext graph with 200.000 triples using different values
of the array size z. The diagram also shows the minimum and maximum
runtime of the queries.

queries #1 to #4. The diagram shows that some queries may benefit from a particular
array size while the processing time of other queries increases for the same array size.
Thus, there is no array size which simultaneously reduces the runtime of all queries.
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Figure 5.11 shows how different values of the array size z influence the average runtime
of all BSBM queries. The diagram depicts the minimum runtime, maximum runtime,
average runtime, and standard deviation of processing all twelve queries for each of
the different values of z. As depicted, an array size z = 4 results in the smallest
average runtime of processing the queries as well as the smallest standard deviation.
The maximum runtime and the minimum runtime of all queries are also smaller when
using a value of z = 4 than for other values. Thus, it can be stated that this array
size is best suited for minimizing the average runtime when querying the BSBM graphs.
However, the optimal value of z may be different for other graphs as the optimal value
depends on the graph’s structure.

5.7. Cryptanalysis of T-Store

T-Store implements confidentiality of RDF graphs by restricting access to the graph’s
triples to authorized users only. Accessing the triples is considered to be authorized
if a user has received a set of corresponding authorization keys from the data owner.
Obtaining any other triples which are not explicitly permitted by the data owner is con-
sidered to be unauthorized. This section describes how T-Store achieves confidentiality
of RDF graphs. First, the cryptographic security of creating and applying authorization
keys is analyzed. This analysis follows directly from the design of T-Store as covered in
Section 5.5. Afterwards, an attack model is presented which introduces different attacks
on this design. Finally, this section analyzes how the attacks are prevented by T-Store.

5.7.1. Achieving Confidentiality of RDF Graphs

Figure 5.4 divides the overall process of T-Store into four different phases which include
the encryption phase, the authorization phase, and the query phase. In the encryption
phase, all triples t ∈ G of a plaintext graph G ∈ G are encrypted for all eight triple
pattern variants to create the ciphertext graph GC ∈ GC . The encryption is conducted
with symmetric encryption keys ek ∈ Ke which encode all bound parts of a SPARQL
triple pattern. In the authorization phase, the data owner creates an authorization
key ak ∈ Ka for each allowed triple pattern and sends it to a user. An authorization key
is a preliminary query key qk ∈ Kq and encodes a data owner’s restriction pattern r ∈ P.
In the query phase, a user combines a received authorization key ak with a self-defined
user pattern u ∈ Pq to create a query key qk. A query key encodes a query pattern
which contains all bound parts of a SPARQL triple pattern. It is also a symmetric key
and created similarly to an encryption key. A query key qk is applied to a ciphertext
graph GC by decrypting all compatible ciphertext triples c ∈ GC . A ciphertext triple
is compatible with a query key if its corresponding plaintext triple t matches the query
pattern encoded in the key. The result of this application is a set of all matching plaintext
triples. In order to ensure the confidentiality of a plaintext graph G, the set must not
contain any triple t ∈ G which does not match the query pattern. This implies that
decrypting a ciphertext triple c with a query key qk must only be successful if qk encodes
the same query pattern as the encryption key ek which was used for creating the triple c.
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If the two keys encode different query patterns, decrypting the ciphertext triple c must
not be successful. Otherwise, a user would receive an unauthorized plaintext triple t ∈ G
which would directly contradict with the confidentiality of the plaintext graph G. In the
following, the individual steps of the encryption phase, the authorization phase, and the
query phase are analyzed in more detail. As running example, all steps are conducted
on a plaintext triple t = (s, p, o) ∈ G which is processed for the pattern variant ++-.
Please note that this example is without loss of generality and can be applied to other
triples and other pattern variants as well.

In the encryption phase, each plaintext triple t is encrypted for all eight pattern
variants with a corresponding encryption key ek. Encryption keys are created from
basic keys bk as defined in Table 5.1. Encrypting the plaintext triple (s, p, o) for the
pattern variant ++- requires an encryption key eksp- ∈ Ke. The key encodes the subject
and the predicate of the triple and is created as follows:

eksp- = λ
(
%
(
bk++-, {ws||s, wp||p}

))
(5.22)

= λ
(
bit
(
int (bk++-)

int(λ(ws||s))·int(λ(wp||p)) mod N
))

(5.23)

The prefix ws identifies the triple’s subject and wp marks its predicate. The resulting
encryption key eksp- is used for encrypting the triple (s, p, o) as defined in Table 5.2.
The key eksp- corresponds to a bit string of length d as it is Ke ⊂ {0, 1}d. In the
authorization phase, the data owner creates a restriction pattern r = (sr, ?, ?) ∈ Pq and
combines it with a basic key bk++- ∈ Kb to create an authorization key akru? ∈ Ka. As
defined in Table 5.8, the key akru? is computed as follows:

akru? = % (bk++-, {ws||sr}) (5.24)

= bit
(
int (bk++-)

int(λ(ws||sr)) mod N
)

(5.25)

Again, the prefix ws identifies the triple’s subject. The data owner sends the result-
ing authorization key akru? to the user. In the query phase, the user creates a user
pattern u = (?, pu, ?) and combines it with the received authorization key akru? into a
query key qkru? ∈ Kq. As defined in Table 5.9, the query key is created as follows:

qkru? = λ
(
%
(
akru?, {wp||pu}

))
(5.26)

= λ
(
bit
(
int (akru?)

int(λ(wp||pu)) mod N
))

(5.27)

= λ

(
bit

((
int (bk++-)

int(λ(ws||sr)) mod N
)int(λ(wp||pu))

mod N

))
(5.28)

= λ
(
bit
(
int (bk++-)

int(λ(ws||sr))·int(λ(wp||pu)) mod N
))

(5.29)

Similar to an encryption key, the resulting query key qkru? is also a bit string of length d
as it is Kq ⊂ {0, 1}d. The query key qkru? is identical to the encryption key eksp- if the
data owner’s restriction pattern r is defined as r = (s, ?, ?) and if the user chooses a user
pattern u = (?, p, ?). In this case, it is sr = s and pu = p and both keys are mapped to
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the same bit string. Thus, the query key qkru? can be used for decrypting the ciphertext
triple which was created with the encryption key eksp-.

Ensuring the confidentiality of the plaintext graph requires that different query keys qk
do not collide with each other. Query keys collide with each other if they encode different
query patterns but are mapped to the same bit string. Similarly, different encryption
keys ek must not collide with each other as well. T-Store reduces the possibility of
such collisions by ensuring that each step of creating encryption keys and query keys is
collision-resistant as well. First, the data owner chooses eight different basic keys bk when
encrypting a plaintext graph. As these keys form the foundation for creating encryption
keys and query keys, choosing different basic keys reduces the possibility of key collisions.
Second, the data owner chooses three distinct prefixes ws, wp, and wo. These prefixes
are used for combining the bound parts of a query pattern with a basic key and indicate
the position of each bound part in the pattern as shown in Equations 5.23 and 5.29.
Using distinct prefixes for each bound part ensures that query patterns which share the
same bound parts at different positions result in different keys. For example, the query
patterns (x, ?, y) and (y, ?, x) are both of type +-+ and contain the two values x and y.
However, the patterns differ in their bound subject and object. The prefixes ws and wo

ensure that they are mapped to different encryption keys and query keys as long as it
is ws 6= wo. In this case, it is int(λ(ws||x)) · int(λ(wo||y)) 6= int(λ(ws||y)) · int(λ(wo||x))
which results in different exponents as they are used in Equations 5.23 and 5.29. Third,
the data owner uses a collision-resistant basic hash function λ for creating encryption
keys and query keys. As described in Section 4.5.4, the function λ is collision resistant
if it is difficult to find any two different input values with the same hash value [56]. A
collision resistant basic hash function prohibits collisions between encryption keys and
query keys which encode different query patterns and ensures that such keys are mapped
to different bit strings. As described in Section 5.6.1, T-Store uses SHA-2 with an output
length of 256 bit as the basic hash function λ. Although collision attacks on reduced
versions of this hash function have already been published [258, 158, 201], an attack on
complete SHA-2 has not been found yet. Thus, this basic hash function can still be
considered as collision resistant. Finally, T-Store ensures that the combination of all
bound parts of a query pattern does not produce any collisions as well. For example,
finding a collision of two different query patterns (s1, ?, o1) and (s2, ?, o2) corresponds
to solving the following equation:

int(bk)
int(λ(ws||s1))·int(λ(wo||o1))
+-+ mod N = int(bk+-+)

int(λ(ws||s2))·int(λ(wo||o2)) mod N (5.30)

Computing such collisions is similar to finding collisions in MuHash [29]. As described in
Section 4.5.9, MuHash is considered to be collision resistant if the basic hash function λ
is collision-resistant and the modulus N is large enough. In this case, the cryptographic
security of MuHash can be reduced to the discrete logarithm problem which is considered
to be hard to solve [197]. As described in Section 5.6.1, the combining function % of
T-Store uses a modulus N with a size of 2048 bit which is sufficiently large. Since
the used basic hash function λ can also be considered as collision resistant, solving
Equation 5.30 in order to find two colliding query patterns can be considered as hard.
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In summary, it can be stated that the possibility of colliding encryption keys and query
keys is sufficiently small. Thus, the ciphertexts stored in a ciphertext graph GC can only
be decrypted with the correct query key qk. As long as correct query keys can only be
created by authorized users, the confidentiality of the plaintext graph is ensured.

5.7.2. Attack Model

An attacker tries to retrieve triples from the plaintext graph without having received
a proper authorization from the data owner. Although an attacker may try to retrieve
other information about the graph as well such as its size and connectivity, this infor-
mation is only used as an intermediate step to obtain particular triples. Thus, accessing
triples is the ultimate goal of an attacker while all other attacks are used to achieve this
goal. Attackers can generally be distinguished between authorized users and unautho-
rized parties. Authorized users have received legitimate authorization keys from the data
owner. In their attacks, they want to retrieve more triples from the plaintext graph than
the data owner has originally intended. In contrast, unauthorized parties do not have
any authorization key. However, they have access to the ciphertext graph and possibly
some general knowledge about the plaintext graph as well. As authorized users also have
access to this information, all attacks which can be conducted by an unauthorized party
can also be executed by authorized users. This section introduces relevant attacks on
T-Store for authorized users and unauthorized parties. Each of these attacks is analyzed
in more detail in the subsequent sections.

AC.1: Guessing basic keys
An attacker guesses a valid basic key bk ∈ Kb by trying all possible basic keys of
the key space Kb. The goal of this attack is to find a basic key which can be used
for creating arbitrary query keys qk ∈ Kq. This attack corresponds to a brute force
attack [270]. It can be conducted by unauthorized parties and only requires access
to the ciphertext graph.

AC.2: Guessing query keys
An attacker guesses a valid query key qk ∈ Kq by trying all possible query keys of
the key space Kq. The goal of this attack is to find a query key which can be used
for decrypting ciphertext triples c ∈ TC . This attack is also a brute force attack
and can be conducted by unauthorized parties with access to the ciphertext graph.

AC.3: Extracting basic keys
An attacker has access to an authorization key ak ∈ Ka and extracts the encoded
basic key bk ∈ Kb. The goal of this attack is to retrieve a valid basic key which can
be used for creating different authorization keys and query keys for a particular
query pattern variant. The attack can be conducted by authorized users and
requires a valid authorization key ak.

AC.4: Computing basic keys
An attacker has access to two different authorization keys ak1, ak2 ∈ Ka which
encode the same basic key bk ∈ Kb. The attacker computes the basic key bk by
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utilizing the relationship between the keys ak1 and ak2. The goal of this attack is
also to retrieve a valid basic key which can be used to create arbitrary authorization
keys and query keys for a particular query pattern variant. The attack can be
conducted by authorized users and requires two valid authorization key ak1 and
ak2 which encode the same basic key bk.

AC.5: Reducing authorization keys
An attacker has access to an authorization key ak ∈ Ka which encodes a restriction
pattern r ∈ Pq with two or three bound triple parts. The attacker reduces the
authorization key by removing parts of its encoded restriction pattern so that the
resulting key encodes only one bound triple part. The goal of this attack is to
create an authorization key with less restrictions than the original key ak. This
allows the attacker to define more flexible user patterns u ∈ Pq and thus to decrypt
more ciphertext triples c ∈ GC from the encrypted graph GC ∈ GC . The attack
can be conducted by authorized users and requires access to a valid authorization
key ak.

AC.6: Analyzing the ciphertext frequency
An attacker knows the frequency of potential plaintext triples and compares it
with the frequency of the ciphertext triples in the encrypted graph GC . The at-
tacker matches the ciphertext triples with those plaintext triples that share the
same number of occurrences. The goal of this attack is to identify the contents of
ciphertext triples with certain probability without decrypting them first [296]. For
example, two predicates which are most used in many RDF graphs are rdf:type

and rdfs:seeAlso [149]. An attacker searches for the most frequent ciphertext
triples and identifies their predicates as being either rdf:type or rdfs:seeAlso

with certain probability. The attack requires deterministic encryption which en-
crypts identical plaintexts to identical ciphertexts. In this case, the distribution of
plaintext triples is identical to the distribution of their corresponding ciphertext
triples. The attack is known as a frequency-based attack [296]. It can be conducted
by unauthorized parties and requires access to the ciphertext graph GC as well as
knowledge about the frequency of potential plaintext triples.

AC.7: Analyzing the ciphertext size
An attacker knows the size of potential plaintext triples and compares it with the
size of the ciphertext triples in the encrypted graph GC [296]. Here, size covers the
number of bits in the bit string representation of plaintext triples and ciphertext
triples. The attack is similar to a frequency-based attack but compares the size
instead of the frequency. The goal of this attack is to identify the contents of
ciphertext triples without decrypting them. An attacker can exploit her knowledge
about widely-used classes and properties in order to guess with certain probability
the contents of a ciphertext graph GC . The attack requires that the size of a
ciphertext is proportional to the size of its corresponding plaintext. This is the
case if the encryption function ξ produces larger ciphertexts for larger plaintexts
and smaller ciphertexts for smaller plaintexts. The attack is known as a size-based
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attack [296]. It can be conducted by unauthorized parties and requires access to
the ciphertext graph GC as well as knowledge about the size of potential plaintext
triples.

AC.8: Reasoning on query results
An attacker has access to a limited set of plaintext triples t ∈ G which may be
retrieved by applying legitimate queries to the ciphertext graph GC . The attacker
conducts reasoning on the plaintext triples in order to obtain additional triples from
the plaintext graph G. The goal of this attack is to retrieve such triples t which
are not authorized by the data owner. The attack can be conducted by authorized
users who have access to a valid authorization key ak to apply legitimate queries
to the ciphertext graph GC .

AC.9: Analyzing the graph’s characteristics
An attacker analyzes a ciphertext graph GC in order to obtain structural infor-
mation about the graph such as its size or connectivity. The attacker can exploit
this information to achieve different goals. The information can be used to de-
cide whether or not two different ciphertext graphs encrypt the same plaintext
graph. In addition, the attacker can also compare the characteristics of a cipher-
text graph GC with the characteristics of a given plaintext graph G in order to
decide whether or not the graph GC is an encryption of the graph G. The at-
tack can be conducted by unauthorized parties and requires access to a ciphertext
graph GC and possibly to a plaintext graph G as well.

The attacks AC.1 to AC.5 are cryptographic attacks on a ciphertext graph whereas
the attacks AC.6 to AC.8 exploit an attacker’s knowledge about plaintext triples. In
contrast, the attack AC.9 assesses the characteristics of a ciphertext graph as a whole
and does not necessarily reveal any triples of its corresponding plaintext graph.

5.7.3. Guessing Basic Keys (AC.1)

The data owner creates eight different basic keys bk ∈ Kb which are kept secret from all
other parties. As described in Section 5.6.1, T-Store uses a key space of Kb = {0, 1}256
which corresponds to 2256 possible basic keys. The probability of guessing a valid basic
key is therefore 8

2256
≈ 6.91 · 10−77. As this probability is sufficiently small, T-Store can

be considered as secure against brute force attacks AC.1 for guessing basic keys.

5.7.4. Guessing Query Keys (AC.2)

A query key qk ∈ Kq is created from a basic hash function λ and encodes a particular
query pattern. As described in Section 5.6.1, T-Store uses SHA-2 as the basic hash
function with an output length of 256 bits. The set of all query keys Kq is therefore
Kq = {0, 1}256 which corresponds to 2256 possible query keys. A query key is used for
retrieving all plaintext triples from the ciphertext graph GC which satisfy the query
pattern encoded in the key. Since each plaintext triple is encrypted for each of the eight
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basic keys, encrypting a plaintext graph G with n ∈ N triples results in a ciphertext
graph GC with 8n ciphertexts. Each valid query key retrieves at least one and at most
n plaintext triples from the graph GC . Thus, the maximum number of possible query
keys per graph is 8n. This results in a probability of 8n

2256
= n

2253
for an attacker to

guess a valid query key. For a plaintext graph with n = 106 triples, this corresponds
to 8·106

2256
≈ 6.91 · 10−71 which is sufficiently small. In practice, this probability is usually

smaller since a particular query key can decrypt multiple ciphertexts in a graph. This
also results in less query keys for the graph. T-Store can therefore be considered as
secure against brute force attacks AC.2 for guessing query keys.

5.7.5. Extracting Basic Keys (AC.3)

As defined in Section 5.5.3, an authorization key ak ∈ Ka is created from a basic key bk ∈
Kb and a data owner’s restriction pattern r ∈ Pq by applying the combining function %
as defined in Equation 5.19. In order to extract the basic key from an authorization
key ak, an attacker must eliminate the restriction pattern from the key ak. Assume
without loss of generality that an attacker has access to the authorization key akru?.
The key is created from the basic key bk++- and the restriction pattern r = (sr, ?, ?) as
follows:

akru? = %(bk++-, {ws||sr}) (5.31)

= bit
(
int(bk++-)

int(λ(ws||sr)) mod N
)

(5.32)

The function int transforms a bit string into an integer and bit transforms an integer into
a bit string. The modulus N ∈ N is a product of two large primes p, q ∈ N which are
only known to the data owner. Extracting the basic key bk++- from the authorization
key akru? requires that the attacker is able to eliminate the exponent int(λ(ws||sr)) in
Equation 5.32.

The combining function % is based on the RSA encryption algorithm [251] and shares
the same security. The security of RSA is based on two mathematical problems which
are assumed to be hard to solve. These problems are the factorization of large integers
and the RSA problem [174]. An attacker who wants to eliminate the restriction pattern
from an authorization key must solve one of these problems and thus has two different
options. For the authorization key akru?, the first option is to compute an x ∈ N which
satisfies the following equation:

int(bk++-)
int(λ(ws||sr))·x mod N = int(bk++-) mod N (5.33)

This is equivalent to computing an x ∈ N which is inverse to int(λ(ws||sr)) mod (p −
1) · (q − 1) [57]. Thus, the attacker must compute x so that it satisfies the following
equation:

x · int(λ(ws||sr)) ≡ 1 mod (p− 1) · (q − 1) (5.34)

In order to solve this equation and to retrieve the value of x, the attacker must know
the values of the two prime factors p and q. However, these values are only known to
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the data owner. Furthermore, factorizing the modulus N is assumed to be hard to solve
for large values of N [174]. The implementation of T-Store uses a value of N with a size
of 2048 bit as recommended by NIST [217]. As an efficient way to factorize a modulus
of this size has not been found yet, an attacker cannot compute the two primes p and
q and apply Equation 5.34 in order to compute x. Consequently, the attacker can also
not apply Equation 5.33 to extract the basic key bk from the authorization key ak.

The second option for the attacker to eliminate the restriction pattern from an au-
thorization key is to compute a discrete root of an exponent. For the authorization
key akru?, the attacker must solve the following equation:

int(λ(ws||sr))
√
int(akru?) mod N = int(λ(ws||sr))

√
int(bk++-)int(λ(ws||sr)) mod N (5.35)

= int(bk++-) mod N (5.36)

Solving this equation corresponds to solving the RSA problem which is also assumed
to be hard to solve [174]. In summary, eliminating a restriction pattern r from an
authorization key ak and extracting its basic key bk is hard as long as the factorization
problem and the RSA problem are hard to solve as well. When using a value of N with
a size of 2048 bit, T-Store can be considered as secure against attacks of type AC.3.

5.7.6. Computing Basic Keys (AC.4)

The combining function % creates authorization keys ak ∈ Ka from basic keys bk ∈ Kb

and restriction patterns r ∈ P. As described in the previous section, the function %
is based on the RSA encryption algorithm [251]. RSA encrypts a plaintext message
with a public exponent and a public modulus N . In the combining function %, the
plaintext message corresponds to the basic key bk and the public exponent corresponds
to the bound parts of the restriction pattern r. The ciphertext resulting from an RSA
encryption corresponds to the authorization key ak. The modulus N is the same as in
RSA and used for all authorization keys of a particular graph.

Although RSA is considered to be secure as long as the factorization problem and the
RSA problem are hard to solve, it is still vulnerable to the common modulus attack [271].
This attack exploits the relationship of two different RSA key pairs which share the same
modulus N and encrypt the same plaintext message. It allows an attacker to retrieve
the plaintext message from the two ciphertexts by using only the public keys which were
used to create them. The common modulus attack can also be applied to the combining
function % as its design is similar to the RSA encryption algorithm. In order to conduct
the attack on the combining function, an attacker must have access to two different
authorization keys ak1, ak2 ∈ Ka which encode the same basic key bk. In addition, the
attacker must know the corresponding restriction patterns r1, r2 ∈ P which are encoded
into the keys ak1 and ak2, respectively, as well as the modulus N . Assume without
loss of generality that the two authorization keys ak1 and ak2 encode the restriction
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patterns r1 = (s1, ?, ?) and r2 = (s2, ?, ?), respectively, and the basic key bk+--. The
keys ak1 and ak2 are created with the combining function % as follows:

ak1 = %(bk+--, {ws||s1}) (5.37)

= bit
(
int(bk+--)

int(λ(ws||s1)) mod N
)

(5.38)

ak2 = %(bk+--, {ws||s2}) (5.39)

= bit
(
int(bk+--)

int(λ(ws||s2)) mod N
)

(5.40)

The attacker uses the bound parts s1 ∈ R ∪ B and s2 ∈ R ∪ B of the restriction
patterns r1 and r2 to compute the greatest common divisor of the two the exponents
int(λ(ws||s1)) and int(λ(ws||s2)) as well as the coefficients of Bézout’s identity [36]. This
can be achieved by using the extended Euclidian algorithm [84]. I. e., the attacker applies
this algorithm such that she receives the coefficients c1, c2 ∈ Z in the following equation:

c1 · int(λ(ws||s1)) + c2 · int(λ(ws||s2)) = gcd
(
int(λ(ws||s1)), int(λ(ws||s2))

)
(5.41)

Since the values int(λ(ws||s1)) and int(λ(ws||s2)) are created with a basic hash function λ,
they are similar to pseudo-random values. Thus, they are very likely to be co-prime,
i. e., it is gcd

(
int(λ(ws||s1)), int(λ(ws||s2))

)
= 1 with high probability. The attacker can

exploit this relationship between the two coefficients c1 and c2 and use them to compute
the basic key bk+-- from the authorization keys ak1 and ak2 as follows:

int(ak1)
c1 · int(ak2)c2 mod N (5.42)

=
(
int(bk++-)

int(λ(ws||s1)) mod N
)c1 · (int(bk++-)int(λ(ws||s2)) mod N

)c2
mod N (5.43)

=
(
int(bk++-)

int(λ(ws||s1))
)c1 · (int(bk++-)int(λ(ws||s2))

)c2
mod N (5.44)

= int(bk++-)
c1·int(λ(ws||s1)) · int(bk++-)c2·int(λ(ws||s2)) mod N (5.45)

= int(bk++-)
c1·int(λ(ws||s1))+c2·int(λ(ws||s2)) mod N (5.46)

= int(bk++-) mod N (5.47)

These computations utilize the laws of exponentiation and the properties of multipli-
cation in modular arithmetic. The attacker can apply the resulting basic key bk+-- to
create arbitrary authorization keys of type ++- and use these keys to decrypt correspond-
ing ciphertext triples. Implementations of RSA usually prevent the common modulus
attack by ensuring that all created RSA key pairs use different moduli N . This pre-
vents an attacker from exploiting any relationship between different key pairs and from
decrypting the plaintext message. In T-Store, however, using a different modulus N
for each authorization key ak is not possible. T-Store requires that all plaintext triples
which share the same bound parts for the same query type are encrypted with the same
encryption key ek ∈ Ke. This implies that the encryption key is created from the same
bound parts and the same modulus N . Thus, T-Store is vulnerable to the attack AC.4
which allows an attacker to compute the basic key from two authorization keys of the
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same query type. In order to successfully prevent the attack, the combining function %
must be replaced by a secure function. Designing, implementing, and evaluating an
alternative combining function is left for future work.1

5.7.7. Reducing Authorization Keys (AC.5)

In general, an authorization key ak ∈ Ka may be reduced to a different authorization key
which shares the same basic key bk ∈ Kb but has a less restrictive restriction pattern r ∈
Pq. Assume without loss of generality that an attacker has access to the authorization
key akrr? which encodes the basic key bk++- and the data owner’s restriction pattern r =
(sr, pr, ?) ∈ Pq. This restriction pattern already specifies all bound parts of a query
pattern of type ++-. Thus, an attacker can only define a user pattern u ∈ Pq as
u = (?, ?, ?). In order to specify a bound subject or predicate herself, the attacker
first must reduce the authorization key akrr? to the authorization key akru? or to the
key akur?. In the following, the process of reducing the key akrr? to the key akru? is
described in more detail. A reduction to the authorization key akur? is similar and
omitted for reasons of brevity. The key akrr? is reduced to akru? as follows:

akrr? = %(bk++-, {ws||sr, wp||pr}) (5.48)

= bit
(
int(bk++-)

int(λ(ws||sr))·int(λ(wp||pr)) mod N
)

(5.49)

= bit

((
int(bk++-)

int(λ(ws||sr))
)int(λ(wp||pr))

mod N

)
(5.50)

= bit

((
int(bk++-)

int(λ(ws||sr)) mod N
)int(λ(wp||pr))

mod N

)
(5.51)

= bit
(
int(akru?)

int(λ(wp||pr)) mod N
)

(5.52)

Again, these computations are based on the laws of exponentiation and on the the prop-
erties of multiplication in modular arithmetic. In order to extract the authorization
key akru? from the key akrr?, the attacker must eliminate the exponent int(λ(ws||sr))
from Equation 5.52. As described in Section 5.7.5, this would either require a factor-
ization of the modulus N or the computation of a discrete root which are both hard to
solve [174]. Thus, the authorization key akrr? cannot be reduced to the less restrictive
authorization keys akru? and akur? as long as these two problems are hard to solve. In
this case, T-Store is able to prevent attacks of type AC.5.

5.7.8. Analyzing Ciphertext Frequency (AC.6)

Frequency-based attacks allow an attacker to infer the contents of ciphertext triples with-
out decrypting them first. Conducting a frequency-based attack requires a deterministic

1This weakness of T-Store was discovered only recently with the help of a colleague of the author in
February, 2016. Due to time constraints, it was not possible to apply and evaluate a new combining
function before submitting this thesis.
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encryption and knowledge about the distribution of potential plaintext triples. An at-
tacker can acquire such knowledge by assessing the usage of widely-used properties and
classes such as rdf:type or foaf:Person [149]. Deterministic encryption maps identical
plaintexts to identical ciphertexts. In order to prohibit a frequency-based attack, it is
necessary to encrypt identical plaintext triples as different ciphertext triples.

As described in Section 5.5.1, a single plaintext triple t is encrypted as eight different
ciphertexts which correspond to each of the eight query pattern variants. Each ciphertext
depends on a particular basic key bk ∈ Kb and on the complete plaintext triple. It
encodes the triple’s subject, predicate, and object as either bound or unbound. The
bound parts are combined with the basic key into an encryption key ek and the unbound
parts are encrypted with the key ek by using the encryption function ξ. The data owner
chooses a different basic key for each of the eight query pattern variants. Thus, the eight
ciphertexts created from a single plaintext triple are distinguished from each other by
their unique combination of bound parts, unbound parts, and basic keys. A plaintext
graph G is a set of plaintext triples t ∈ G which contains each triple at most once.
Therefore, the corresponding ciphertext graphGC also contains each ciphertext triple c ∈
GC at most once. In summary, all ciphertexts stored in the ciphertext graph GC are
unique which prohibits frequency-based attacks AC.6.

5.7.9. Analyzing Ciphertext Size (AC.7)

Size-based attacks require that the size of a plaintext roughly corresponds to the size of
its respective ciphertext. Here, size refers to the length of the bit string representation
of plaintexts and ciphertexts. In order to prevent size-based attacks in T-Store, all
ciphertexts of an encrypted graph GC must have the same size. This prohibits an
attacker from distinguishing between different ciphertext triples c ∈ GC and relating
them to their respective plaintext triples t ∈ G in the plaintext graph G.

In its current design, T-Store does not normalize the size of different ciphertexts and
is therefore vulnerable to size-based attacks AC.7. However, these attacks can easily be
eliminated by slightly modifying the encryption of the plaintext triples. In particular,
all plaintext triples t must be transformed to the same size before encrypting them. This
can be done similarly to splitting the sets idS of ciphertext identifiers into arrays idA as
described in steps 6 and 7 of Section 5.5.2. A plaintext triple is first split into multiple
fragments so that each fragment covers x bytes of data with x ∈ N. Fragments which
contain less than x bytes are padded accordingly. Each resulting fragment is associated
with a unique ciphertext identifier idc ∈ N. Fragments of the same plaintext are related
to each other by prefixing them with the ciphertext identifier of the next fragment. The
prefixed fragments of the same plaintext are then encrypted separately with the same
encryption key ek. The details of this modification are as follows: Let y ∈ N be the size
of each ciphertext to be stored in the encrypted graph GC . Each ciphertext encrypts
5 bytes of meta data and x = y − 5 bytes of content data which stores a fragment of
the actual plaintext triple. The meta data describes how the content bytes are to be
interpreted. The first byte of meta data states whether or not there are more ciphertexts
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storing additional fragments of the same plaintext triple2. The value 1 states that this is
the case and 0 indicates that this is not the case. The next 4 bytes of meta data store a
32 bit integer. The meaning of this integer is determined by the value of the first byte. If
the first byte is 1, the integer contains the ciphertext identifier idc of another ciphertext
which stores the next fragment of the plaintext triple. In this case, all remaining x bytes
of ciphertext data contain encrypted plaintext data. In contrast, if the first byte of meta
data is 0, the integer defines the amount of actual content bytes. If these content bytes
are less than y − 5, they are padded with random bytes.

For example, the URI http://www.w3.org/1999/02/22-rdf-syntax-ns#type has a
length of 47 bytes. In order to encrypt this URI for the query pattern type +-+ and the
ciphertext size y = 32, it is first split into two different bit strings. The first bit string
consists of 32 − 5 = 27 bytes and the second bit string covers the remaining 20 bytes.
Both bit strings are encrypted individually which results in two different ciphertexts. Let
the first ciphertext be identified as 3 and the ciphertext identifier of the second ciphertext
be 12. The ciphertexts c3 and c12 are computed as follows with the encryption function ξ
by using the encryption key ek+-+ ∈ Ke and || as the concatenation operator:

c3 := ξ(ek+-+,

5 bytes of meta data︷ ︸︸ ︷
1 byte︷︸︸︷

1 ||
4 bytes︷︸︸︷

12 ||
x3=27 bytes of content︷ ︸︸ ︷

http://www.w3.org/1999/02/2) (5.53)

c12 := ξ(ek+-+, 0︸︷︷︸
1 byte

|| 20︸︷︷︸
4 bytes︸ ︷︷ ︸

5 bytes of meta data

|| 2-rdf-syntax-ns#type︸ ︷︷ ︸
x12=20 bytes of content

.......︸ ︷︷ ︸
7 bytes of
padding

) (5.54)

Encrypting a single URI is necessary when encrypting a plaintext triple for the query
pattern variant +-+. However, the described approach can also be used for encrypting
plaintext triples for other query pattern variants. The presented modification of T-Store
ensures that all ciphertexts stored in a ciphertext graph GC are of equal size. This
prevents an attacker from conducting a size-based attack AC.7.

5.7.10. Reasoning on Query Results (AC.8)

An authorized user has access to a limited set of authorization keys and can use these
keys to apply queries to the ciphertext graph GC . A corresponding query result con-
sists different plaintext triples which contain A-box knowledge and/or T-box knowledge.
A-box knowledge represents the factual data stored in the graph while T-box knowl-
edge provides information about the ontology which was used for modeling the graph’s
triples [152]. More specifically, the T-box knowledge consists of URIs which identify
properties and/or classes of the ontology. If the complete ontology of the plaintext
graph is not already provided, a malicious user can guess the ontology based on these
URIs. The user can then apply the ontology to reason about the A-box knowledge which

2Please note that a single bit would actually be sufficient for storing this information. However, T-Store
is implemented in Java which does not allow to store individual bits.
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she received with her query results as well. The reasoning process may provide addi-
tional triples from the plaintext graph which are not explicitly authorized by the data
owner.

For example, an authorized user receives the triple ex:Jay foaf:knows ex:Bob after
having applied a query to the ciphertext graph GC . This triple contains both A-box
knowledge and T-box knowledge. The A-box knowledge consists of the two URIs ex:Jay
and ex:Bob and the T-box knowledge consists of the property foaf:knows. Based on
this property, the user can infer that the FOAF ontology [50] was used for modeling at
least one of the plaintext triples in the graph. The FOAF ontology defines several classes
and properties for describing information about natural persons and their relationships.
The user can apply these classes and properties to reason about the A-box knowledge of
the query result. Using the property foaf:knows in a triple states that the subject and
object of this triple are both of type foaf:Person. Furthermore, the FOAF ontology
defines the class foaf:Person as being a subclass of foaf:Agent. By applying this
T-box knowledge, the user can infer the four triples depicted in Listing 5.3 in addition
to the single triple received from the actual query result.

1 ex:Jay rdf:type foaf:Person . ex:Jay rdf:type foaf:Agent .

2 ex:Bob rdf:type foaf:Person . ex:Bob rdf:type foaf:Agent .

Listing 5.3: Example triples resulting from reasoning.

T-Store is vulnerable to reasoning attacks AC.8 as they are difficult to prevent in general.
Preventing such attacks requires that the user does not have access to the used ontology
and cannot apply it for reasoning. However, this would contradict with the principles of
the Semantic Web [35] which is designed to support reasoning on machine-readable data.
If the data owner does not want to prevent a user from reasoning on the query results,
she must accept that the user can retrieve more information about the plaintext graph
than the authorization keys allow. However, in many cases, the triples resulting from
reasoning may not reveal any secret data about the plaintext graph and can therefore
be considered as acceptable.

5.7.11. Analyzing the graph’s characteristics (AC.9)

The characteristics of a graph cover several aspects such as the graph’s size and con-
nectivity as well as the number of all non-empty solution sequences, i. e., the number
of query patterns which match at least one triple. Analyzing a graph’s characteristics
allows an attacker to distinguish between different ciphertext graphs and to relate a ci-
phertext graph to its corresponding plaintext graph. T-Store hides most characteristics
with a graph’s size being the only exception. As described in Section 5.5.1, encrypting
a plaintext graph G with n ∈ N triples results in a ciphertext graph GC with 8n ci-
phertexts. Thus, a ciphertext graph reveals the number of triples in its plaintext graph.
Although the exact number can be concealed by inserting random bit strings as fake
ciphertexts into the ciphertext graph and its index, the relative size of the plaintext
graph is still revealed. This allows an attacker to distinguish between small graphs and
large graphs.
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As described in Section 5.7.8, T-Store ensures that each ciphertext in an encrypted
graph GC is unique. This prohibits an attacker from determining the contents of the
plaintext triples t ∈ G by relating their frequency to the frequency of the ciphertext
triples c ∈ GC . It also prevents an attacker from discovering the number of unique
URIs, blank nodes, and literals in the plaintext graph G and from determining how
often they occur at subject position, predicate position, or object position. This is nec-
essary to determine the connectivity of the graph G which states how its triples are
connected with each other. The connectivity can be used, e. g., for identifying the num-
ber of disjoint subgraphs or for distinguishing between loosely connected and strongly
connected graphs. As an attacker cannot determine the frequency of individual triple
parts, she cannot assess a graph’s connectivity as well.

Neither a ciphertext graph GC nor its corresponding index I reveal the number of
query patterns which match at least one plaintext triple. The graph GC is an unordered
set of ciphertexts and does not provide any grouping of similar ciphertexts which match
the same query pattern. Thus, the ciphertext graph does not reveal any information
about the structure of the plaintext graphG. Although the index I provides a grouping of
similar ciphertexts by using arrays of ciphertext identifiers as described in Section 5.5.2,
these arrays are all of equal size and are scattered across the index. This prohibits an
attacker from relating such arrays to each other which are associated with the same
query pattern. Consequently, the attacker cannot determine the number of different
ciphertexts matching a particular query pattern as well. In addition, the ciphertexts for
all eight query pattern variants are stored in a single index. This prevents an attacker
from determining the number of valid query patterns for each variant. In summary,
T-Store only reveals the size of a plaintext graph but does hide any other structural
information about it. Thus, the approach is only partially vulnerable to attacks AC.9.

5.8. Applications and Use Cases

This section describes how T-Store is used for implementing the scenarios introduced in
Chapter 2. The first scenario focuses on the regulation of Internet communication as
described in Section 2.1.3 and is covered in Sections 5.8.1 to 5.8.3. The second scenario
is introduced in Section 2.2 and covers the secure management of medical data. Its
implementation is addressed in Section 5.8.4.

5.8.1. Searching in Encrypted Log Files

The scenario for regulating Internet communication defines several computer networks
which consist of communication end nodes such as client systems and intermediary nodes
like application-level proxy servers. One of the computer networks introduced in Sec-
tion 2.1.1 is the network of the German comprehensive school. It consists of several
student computers which access the Internet via the school’s proxy server. The proxy
server acts as an enforcing system and implements the school’s regulation policies which
are further described in Section 3.4.4. In addition to this regulation, the server also
records all Internet activities of the student computers in a log database. Each log entry
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in the database represents one particular Internet communication. It contains the IP
addresses and port numbers of a student computer and the contacted web server, the
time and date of the communication, and the requested URL. The log entries stored by
the proxy server are modeled with the Extended Log Format Ontology which is based
on the Extended Log Format [138]. A detailed description of the ontology is provided in
Appendix D. Thus, the log database corresponds to an RDF graph. Listing 5.4 shows
an excerpt of the example log database depicted in Figure 2.3 which consists of two log
entries. As depicted, each entry consists of seven different triples which share the same
subject. The technical communication details are stored as the triples’ objects. The first
log entry is shown in lines 2 to 8 and represented as the blank node :entry47. The entry
states that the student computer with the IP address 192.168.2.103 and the port num-
ber 24154 requested the URL http://www.porntube.com/ from the web server with the
IP address 104.20.26.14 on Tuesday, October 21st, 2015, at 4:23:42 PM. The second en-
try is depicted in lines 10 to 16 and corresponds to the blank node :entry11. The entry
states that the same student computer requested the URL https://www.tnaflix.com/

from the web server with the IP address 77.247.179.176 about six minutes later.

1 ...

2 _:entry47 log:date "2015-10-21" .

3 _:entry47 log:time "16:23:42" .

4 _:entry47 log:c-ip "192.168.2.103" .

5 _:entry47 log:c-port "24154" .

6 _:entry47 log:s-ip "104.20.26.14" .

7 _:entry47 log:s-port "80" .

8 _:entry47 log:cs-uri "http://www.porntube.com/" .

9

10 _:entry11 log:date "2015-10-21" .

11 _:entry11 log:time "16:29:12" .

12 _:entry11 log:c-ip "192.168.2.103" .

13 _:entry11 log:c-port "3903" .

14 _:entry11 log:s-ip "77.247.179.176" .

15 _:entry11 log:s-port "443" .

16 _:entry11 log:cs-uri "https://www.tnaflix.com/" .

17 ...

Listing 5.4: Excerpt from an example log database which is modeled with the Extended
Log Format Ontology described in Appendix D.

The following sections describe how a supervisory school authority can securely query the
log database depicted in Listing 5.4 using T-Store. The sections are based on the steps
of storing and querying encrypted log entries as depicted in Figure 2.4 in Section 2.1.3.

5.8.2. Splitting Query Authorizations

In order to prohibit any unauthorized use of the log entries, the log database of the
proxy server is encrypted with T-Store. The encryption is conducted by a hardware
security module (HSM) [287] which is part of the proxy server. The HSM encrypts
the triples of each log entry for each of the eight query pattern variants and stores
the resulting ciphertexts triples in the log database GC ∈ GC . To this end, the HSM

187



Chapter 5 T-Store: Searching in Encrypted Graph Data

securely creates and stores eight different basic keys bk ∈ Kb. Queries on the encrypted
log database are collectively authorized by the school’s administration (SA) and the
parent’s association (PA). Both parties only store a fragment of each basic key which
cannot be directly used to create authorizations keys ak ∈ Ka. Instead, the creation
of a valid authorization key requires a separate authorization from both the school’s
administration and the parent’s association. The fragments of basic keys stored by the
school are defined as sa = (sa---, sa+--, . . . , sa+++) ∈ J and the fragments of the parent’s
association are pa = (pa---, pa+--, . . . , pa+++) ∈ J with J being the set of all tuples of key
fragments. As a basic key bk is a bit string of length d ∈ N, each fragment of a basic
key is a bit string of length d

2 ∈ N. The set J is therefore defined as follows:

J := {0, 1} d2 × {0, 1} d2 × . . .× {0, 1} d2︸ ︷︷ ︸
8 times

(5.55)

The individual key fragments of the tuples sa and pa are chosen at random by the
HSM when initializing the basic keys. Each basic key bk is then created by combining
its respective fragments from the tuples sa and pa. The fragments are combined by
multiplying their respective integer representations as follows:

bk--- = bit (int(sa---) · int(pa---)) (5.56)

bk+-- = bit (int(sa+--) · int(pa+--)) (5.57)

. . .

bk-++ = bit (int(sa-++) · int(pa-++)) (5.58)

bk+++ = bit (int(sa+++) · int(pa+++)) (5.59)

Again, the function int maps bit strings to integers and bit transforms integers to bit
strings. In order to apply a query to the encrypted log database, the supervisory school
authority sends its query to the school’s administration and the parent’s association.
Both parties collectively act as the data owner and compute a partial authorization
key for each query pattern in the query. The partial authorization keys are based on
a restriction pattern r ∈ Pq and on the basic key fragments stored by each party.
The restriction patterns contain bound parts of each query pattern and the basic key
fragments define the pattern variant. The computation of a partial authorization key
is similar to the computation of a regular authorization key ak ∈ Ka as described in
step 11 in Section 5.5.3. For example, in order to authorize a query pattern of type -++

with a restriction pattern r = (?, pr, or), the school’s administration computes a partial
authorization key sa?rr by using its basic key fragment sa-++ as follows:

sa?rr = %(sa-++, {wp||pr, wo||or}) (5.60)

= bit
(
int(sa-++)

int(λ(wp||pr))·int(λ(wo||or)) mod N
)

(5.61)
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The function % corresponds to the combining function defined in Equation 5.19 and N is
a product of two large primes. Similarly, the parent’s association computes its own
partial authorization key pa?rr wit its basic key fragment pa-++ as follows:

pa?rr = %(pa-++, {wp||pr, wo||or}) (5.62)

= bit
(
int(pa-++)

int(λ(wp||pr))·int(λ(wo||or)) mod N
)

(5.63)

As each of the two keys sa and pa only cover a part of a complete authorization key ak?rr,
they cannot be directly applied to the encrypted log database GC . Both the school’s
administration and the parent’s association send their partial authorization keys sa?rr
and pa?rr to the supervisory school authority via a secure communication channel. The
authority then computes the complete authorization key ak?rr ∈ Ka by combining the
two keys sa?rr and pa?rr as follows:

ak?rr = bit (int(sa?rr) · int(pa?rr) mod N) (5.64)

= bit
((

int(sa-++)
int(λ(wp||pr))·int(λ(wo||or)) mod N

)
·(

int(pa-++)
int(λ(wp||pr))·int(λ(wo||or)) mod N

)
mod N

) (5.65)

= bit
((

int(sa-++)
int(λ(wp||pr))·int(λ(wo||or)) ·

int(pa-++)
int(λ(wp||pr))·int(λ(wo||or))

)
mod N

) (5.66)

= bit
(

(int(sa-++) · int(pa-++))int(λ(wp||pr))·int(λ(wo||or)) mod N
)

(5.67)

= bit
(
int(bk-++)

int(λ(wp||pr))·int(λ(wo||or)) mod N
)

(5.68)

= %(bk-++, {wp||pr, wo||or}) (5.69)

These computations are based on the laws of exponentiation and on the properties of
multiplication in modular arithmetic. The resulting authorization key ak?rr of Equa-
tion 5.69 is identical to an authorization key which is created from the basic key bk++-
and the restriction pattern r as described in Table 5.8. The supervisory school authority
uses the authorization key ak?rr to create a corresponding query key qk?rr ∈ Kq. It
then applies this key to the encrypted log database GC in the query phase as described
in Section 5.5.4.

5.8.3. Analyzing the Log Database

According to §184 of the German Criminal Code [61], the comprehensive school must
prohibit its students from accessing pornographic Internet content. The school imple-
ments this legal requirement by applying the regulation policy alpp-1 which is expressed
with the InFO policy language and further described in Section 3.4.4. The policy is tech-
nically enforced by the school’s proxy server and contains two rules which prevent the
school’s students from accessing two web sites with pornographic content. The URLs
of these web sites are http://www.porntube.com/ and http://www.fundorado.de/.
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Although the school’s proxy server prohibits any access to these web sites, it still
logs a student’s attempts of accessing them. As depicted in the log database in List-
ing 5.4, the student computer with the IP address 192.168.2.103 tried to access the
web site http://www.porntube.com/. This access request was blocked by the proxy
server and stored in its log database. The student then tried to access a different
web site with similar content several minutes later. The URL of this web site is
https://www.tnaflix.com/ which is not regulated according to the policy alpp-1.

The supervisory school authority suspects that the regulation policies of the school’s
proxy server might not cover all web sites providing pornographic content. Thus, it reg-
ularly analyzes the server’s log database and searches for additional URLs to be included
in the regulation as well. The authority assumes that students who unsuccessfully tried
to access a blocked web site switched to an alternative web site with similar content.
Based on this assumption, the authority searches the log database for all requests of
blocked web sites. It then extracts the dates of the found log entries and searches for
all URLs which were accessed on the same date, assuming that they may also lead to
similar content. The query depicted in Listing 5.5 applies all these steps for the blocked
web site http://www.porntube.com/. It consists of a single basic graph pattern with
four different triple patterns and requires three join operations on the query variables
?logEntry1, ?date, and ?logEntry2. A similar query must also be created for all other
web sites which are blocked according to the proxy server’s regulation policies.

1 SELECT ?URL

2 WHERE {

3 ?logEntry1 log:cs-uri "http://www.porntube.com/" .

4 ?logEntry1 log:date ?date .

5 ?logEntry2 log:date ?date .

6 ?logEntry2 log:cs-uri ?URL .

7 }

Listing 5.5: Example query of retrieving the URLs of all log entries which were
created on the same date as the web site http://www.porntube.com/

was requested.

As described in Section 5.5.5, the current design of T-Store only supports join oper-
ations on plaintext data. Each triple pattern of a query is applied to the ciphertext
graph individually in order to create a plaintext solution sequence. The join operation
is then conducted on all individual solution sequences. However, this process may reveal
plaintext triples to the querying party that are not included in the final query result and
are only part of an intermediary solution sequence. In order to protect the students’
search interests and to prohibit any abuse of the logged Internet traffic, the supervisory
school authority should only receive such plaintext triples that precisely match its query.
Therefore, query processing is conducted differently than the process described in Sec-
tion 5.5.5. In particular, queries with multiple triple patterns like the query depicted in
Listing 5.5 are first split into different queries, each of which contains only a single triple
pattern. The restriction patterns r ∈ P of these queries are chosen carefully so that
their corresponding solution sequences are precisely as possible and do not provide any
additional solution mappings which are irrelevant to the final query result. These queries
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are then applied separately to the encrypted log database. Table 5.10 shows how the
query of Listing 5.5 is split into four different queries. Each of these four queries must
be authorized by the school’s administration and the parent’s association as described
in Section 5.8.2. Although this increases the communication overhead between the two
authorizing parties and the supervisory school authority, it also gives the authorizing
parties more control over the queries that can be applied to the ciphertext graph.

Query Description

Query 1 Retrieve all log entries containing a regulated URL

Query 2 Retrieve the date of all log entries found in query 1

Query 3 Retrieve all log entries for the dates found in query 2

Query 4 Retrieve the URL of all log entries found in query 3

Table 5.10.: Overview of the different queries for analyzing the encrypted log database.

The first query is depicted in Listing 5.6. Its triple pattern contains the URL of a
blocked web site as a query parameter which is taken from the regulation policy alpp-1.
The query retrieves the blank node identifiers of all log entries which contain a regulated
URL. The query must be applied for all URLs which are blocked according to the proxy
server’s regulation policies. In the following, the overall query process is described for the
URL http://www.porntube.com/. Querying other URLs is based on the same process.
The first query requires an authorization key of type -++ which encodes a restriction
pattern r1 = (?, log:cs-uri, http://www.porntube.com/). As this restriction pattern
encodes all bound parts of the pattern variant -++, the supervisory school authority can
only define a user pattern u1 = (?, ?, ?) for creating a query key qk1. The authority
applies this query key to the encrypted log database which results in a solution sequence
containing all possible variable bindings of the query variable ?logEntry. Applying the
key qk1 to the database shown in Listing 5.4 results in a solution sequence with a single
variable binding which maps the variable ?logEntry to the value :entry47.

1 SELECT ?logEntry

2 WHERE { ?logEntry log:cs-uri "http://www.porntube.com/" . }

Listing 5.6: First example query of retrieving the blank node identifiers of all log entries
which cover the requested URL http://www.porntube.com/.

The second query is depicted in Listing 5.4. It retrieves the dates of the log entries
returned by the first query. The query uses the blank node identifier of the entries as a
query parameter. A separate query must be created for each of these identifiers. In the
example, the supervisory school authority only needs to create a single query for the log
entry with the identifier :entry47. Applying the query requires an authorization key
of type ++- which encodes a restriction pattern r2 = (?, log:date, ?). The authority
combines this authorization key with a user pattern u2 = ( :entry47, ?, ?) which defines
the bound subject. Applying the resulting query key qk2 to the log database of Listing 5.4
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results in a solution sequence which contains a single variable binding for the query
variable ?date. The variable binding maps the variable to the value 2015-10-21.

1 SELECT ?date

2 WHERE { _:entry47 log:date ?date . }

Listing 5.7: Second example query of retrieving the date of the log entry :entry47.

The third query is depicted in Listing 5.8. It retrieves all log entries which were created
on the dates returned by the second query. Again, a particular query must be created for
each returned date. However, in the example, the solution sequence of the second query
consists of a single variable binding only. Thus, the supervisory school authority must
only create a single query which retrieves all log entries of the date 2015-10-21. Creating
a query key for this query requires an authorization key of type -++ which encodes a
restriction pattern r3 = (?, log:date, 2015-10-21). As the restriction pattern already
contains all bound parts, the authority can only define a user pattern u3 = (?, ?, ?).
Applying the resulting query key qk3 to the example log database results in a solution
sequence which contains two variable bindings for the query variable ?logEntry. These
variable bindings map the query variable to the values :entry47 and :entry11.

1 SELECT ?logEntry

2 WHERE { ?logEntry log:date "2015-10-21" . }

Listing 5.8: Third example query of retrieving all log entries of the date 2015-10-21.

The fourth query is depicted in Listing 5.9. It retrieves the URLs of all log entries which
are returned by the third query. Again, the supervisory school authority must create a
particular query for each returned log entry. In this case, however, the authority already
knows the URL of the log entry :entry47 as this was the result of the first query.
Therefore, it must only create a query for the log entry :entry11 which is depicted
in Listing 5.9. The query requires an authorization key ak4 of type ++- which encodes
a restriction pattern r4 = (?, log:cs-uri, ?). In order to complete the required bound
parts, the authority defines a user pattern u4 = ( :entry11, ?, ?) and combines it with
the authorization key ak4 to create a query key qk4. Applying the query key qk4 to the
encrypted log database produces a solution sequence with a single variable binding that
maps the variable ?URL to the URL https://www.tnaflix.com/.

1 SELECT ?URL

2 WHERE { _:entry11 log:cs-uri ?URL . }

Listing 5.9: Fourth example query of retrieving the URL of the log entry :entry11.

After having applied all four queries, the supervisory school authority further analyzes
the URLs received from the fourth query. If a URL refers to pornographic content, the
authority checks whether or not the URL is already blocked by the proxy server. If
this is not the case, it suggests to add a new flow control rule to the server’s regulation
policies in order to regulate the URL as well.

The example queries demonstrate the general applicability of T-Store and its limita-
tions. As the approach does not yet support join operations, each of the four queries is
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applied separately to the encrypted log database. The restriction patterns of each query
are chosen in such a way that they reduce the number of additional solution mappings
which are returned by the query but are actually irrelevant for the final query result.
However, even this querying process may still result in more solution mappings than the
supervisory school authority requires for its analysis. In particular, the third query re-
trieves all log entries from the log database which were created on a specific date. These
log entries may be created for different student computers and may also record the ac-
cess of non-pornographic content which is irrelevant for the analysis of the supervisory
school authority. In order to restrict the query’s result, it should be redefined so that
it only returns the log entries for a particular student computer on a particular date.
Listing 5.10 shows a possible modification of the third query. The query only returns
the log entries for the student computer with the IP address 192.168.2.103 on the
date 2015-10-21 and conceals the log entries for all other computers on the same date.
However, the query contains two different triple patterns whose solution sequences are
joined on the query variable ?logEntry. Thus, applying the query shown in Listing 5.10
on ciphertext graphs is not possible in the current version of T-Store without conducting
a join operation on plaintext solution sequences. A further discussion of join operations
and their implementation is provided in Section 5.9.4.

1 SELECT ?logEntry

2 WHERE {

3 ?logEntry log:c-ip "192.168.2.103" .

4 ?logEntry log:date "2015-10-21" .

5 }

Listing 5.10: Example query of retrieving all log entries of the date 2015-10-21 and
the student computer with the IP address 192.168.2.103.

5.8.4. Searching on Encrypted Medical Data

The second scenario covers the secure storage of medical data records and is introduced
in Section 2.2. The scenario focuses on the patient Marla who manages her own personal
health record (PHR) to monitor various medical information such as her weight, blood
pressure, and pulse. Marla models her PHR as an RDF graph using an ontology which is
based on the Health Level 7 reference information model (HL7 RIM). HL73 is a non-profit
organization which develops several standards for managing electronic health data. HL7
RIM provides a generic language concept for such data which can be mapped to different
serialization formats such as ontologies [163, 223, 228] or XML-based formats [94]. Marla
encrypts her PHR with T-Store and stores the resulting ciphertext graph on a portable
device. Whenever she consults a care delivery organization (CDO), she brings the device
along with her. She then authorizes the CDO to apply queries to the encrypted PHR in
order to support her medical treatment.

Marla acts as the data owner as she creates and encrypts all plaintext triples in her
PHR herself. She also creates and securely stores the basic keys bk ∈ Kb required for

3http://www.hl7.org, last accessed: 01/21/16
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creating all encryption keys ek ∈ Ke. In order to flexibly define a CDOs access on her
PHR, she replaces the basic keys after each year with new keys. Thus, Marla only uses
a particular set of basic keys for encrypting all triples of a specific year. Table 5.11
shows the different basic keys which Marla has created in n ∈ N years. When Marla
consults a CDO, she decides which triples of her PHR shall be accessible to the CDO.
More specifically, she defines the queries the CDO can apply to the PHR and for which
years the queries can be applied. She then creates a set of authorization keys ak ∈ Ka

for each allowed query and year. Each authorization key is created from a restriction
pattern r ∈ P and a basic key bk. In order to further restrict a CDO’s access, Marla
encodes all bound parts of an authorization key ak in its restriction pattern r. If Marla
wants to allow the CDO to apply the same query pattern to her PHR for several years,
she creates an authorization key ak for each year. The keys ak share the same restriction
pattern r but differ in their basic key bk. For example, if she wants to authorize the
query pattern (?, rp, ro) for the last three years, she creates three different authorization
keys ak of type -++. The keys ak are based on the basic keys bk-++,n−2, bk-++,n−1, and
bk-++,n with n ∈ N being the current year. After having created all authorization keys ak,
Marla authorizes the CDO by handing over the keys together with the encrypted PHR
stored on her portable device. The CDO then creates a query key qk ∈ Kq for each
authorization key by combining it with a user pattern u = (?, ?, ?). It applies the query
key qk to the encrypted PHR and uses the resulting plaintext triples to support Marla’s
medical treatment.

Key type Year 1 Year 2 · · · Year n− k · · · Year n− 1 Year n

--- bk---,1 bk---,2 · · · bk---,n−k · · · bk---,n−1 bk---,n
+-- bk+--,1 bk+--,2 · · · bk+--,n−k · · · bk+--,n−1 bk+--,n
-+- bk-+-,1 bk-+-,2 · · · bk-+-,n−k · · · bk-+-,n−1 bk-+-,n
--+ bk--+,1 bk--+,2 · · · bk--+,n−k · · · bk--+,n−1 bk--+,n
++- bk++-,1 bk++-,2 · · · bk++-,n−k · · · bk++-,n−1 bk++-,n
+-+ bk+-+,1 bk+-+,2 · · · bk+-+,n−k · · · bk+-+,n−1 bk+-+,n
-++ bk-++,1 bk-++,2 · · · bk-++,n−k · · · bk-++,n−1 bk-++,n
+++ bk+++,1 bk+++,2 · · · bk+++,n−k · · · bk+++,n−1 bk+++,n

Table 5.11.: Basic keys bk created by Marla for n different years. All encryption keys ek
created within a particular year are based on the basic keys of this year.

In its current implementation, T-Store uses a basic key size of 256 bits which corre-
sponds to 32 bytes. A set of eight different basic keys requires 8 ·32 = 256 bytes of space.
If Marla creates a different set of basic keys for each year, she must store 8n different
basic keys which correspond to 256n bytes with n ∈ N being the number of years Marla
manages her PHR. Even if Marla lives to be a hundred years old, she only has to store
800 basic keys for her entire life which require 204, 800 bytes of space. This amount of
space can be considered as negligible regarding a timespan of a hundred years.
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5.9. Evaluation and Comparison with Existing Approaches

This section evaluates how the state of the art and related work presented in Section 5.1
as well as T-Store fulfill the requirements introduced in Section 5.2. In order to properly
assess how the approaches for searching in encrypted relational databases and XML
documents can be applied to RDF graphs, this section first defines a mapping from RDF
graphs to XML documents and a mapping from RDF graphs to relational databases.
The mappings are then used to assess the fulfillment of the different requirements. This
section concludes with a discussion about join operations on encrypted data.

5.9.1. Encoding RDF Graphs

Listing 5.11 shows an example RDF graph which is serialized using Turtle [27]. The
graph consists of three triples which are modeled with the FOAF ontology [50]. It
defines the name and e-mail address of ex:Tyler and states that the person identified
by this URI knows another person who is identified as ex:Marla. The graph can be
used to process SPARQL queries such as the query depicted in Listing 5.12. The query
retrieves the name of all persons with the e-mail address tdurden@example.com. It
contains two triple patterns, each of which produces a different solution sequence. Both
solution sequences are joined on the variable bindings of the query variable ?person.
Applying the query to the example graph results in a single solution mapping which
binds the query variable ?name to the value Tyler Durden.

1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

2 @prefix ex: <http://www.example.com/> .

3

4 ex:Tyler foaf:name "Tyler Durden" .

5 ex:Tyler foaf:mbox "tdurden@example.com" .

6 ex:Tyler foaf:knows ex:Marla .

Listing 5.11: Example RDF graph consisting of three triples. The graph is serialized
using Turtle [27] and modeled with the FOAF ontology [50].

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 SELECT ?name

3 WHERE {

4 ?person foaf:name ?name .

5 ?person foaf:mbox "tdurden@example.com" .

6 }

Listing 5.12: Example SPARQL query with two triple patterns. Applying the query
to the example graph of Listing 5.11 results in a single solution mapping
that maps the query variable ?name to the value Tyler Durden.

RDF/XML [26] and OWL/XML [210] are two formats for encoding RDF graphs as
XML documents. They are very flexible and support many different XML serializations
of the same graph, e. g., by varying the sequence of the used XML elements [54, 10].
However, the formats are not designed for processing queries on the resulting XML doc-
uments with XML query languages like XPath [252]. As many approaches for searching
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1 <graph>

2 <triple>

3 <subject>ex:Tyler</subject>

4 <predicate>foaf:name</predicate>

5 <object>Tyler Durden</object>

6 </triple>

7

8 <triple>

9 <subject>ex:Tyler</subject>

10 <predicate>foaf:mbox</predicate>

11 <object>tdurden@example.com</object>

12 </triple>

13

14 <triple>

15 <subject>ex:Tyler</subject>

16 <predicate>foaf:knows</predicate>

17 <object>ex:Marla</object>

18 </triple>

19 </graph>

(a) Using child elements

1 <graph>

2 <triple

3 subject="ex:Tyler"

4 predicate="foaf:name"

5 object="Tyler Durden"

6 />

7

8 <triple

9 subject="ex:Tyler"

10 predicate="foaf:mbox"

11 object="tdurden@example.com"

12 />

13

14 <triple

15 subject="ex:Tyler"

16 predicate="foaf:knows"

17 object="ex:Marla"

18 />

19 </graph>

(b) Using attributes

Listing 5.13: Two example XML encodings of the RDF graph depicted in Listing 5.11.
Both XML encodings store each triple in the graph as a separate triple

element. The first encoding uses child elements to store a triple’s subject,
predicate, and object whereas the second encoding uses attributes.

in encrypted XML documents support a subset of XPath queries, applying them to en-
crypted RDF graphs requires an XML encoding which can be used for query processing
directly. Listing 5.13 shows two alternative XML encodings of the example graph of
Listing 5.11 which are used in the following discussion. For reasons of brevity, all URIs
are represented by their compact representation. Both encodings define a flat XML tree
with graph as the root element and a separate triple element for each triple in the
graph. The first encoding is depicted in Listing 5.13a and stores each part of a triple
as a data value by using the three child elements subject, predicate, and object. In
contrast, the second encoding depicted in Listing 5.13b uses XML attributes to store
the triple’s individual parts. The two encodings are semantically equivalent and can be
easily converted into each other. They are both provided here as some approaches for
searching in encrypted XML documents focus on processing data values while others are
restricted to attribute values. Please note that the encodings are just two examples of
how RDF graphs can be stored in XML files. They are only used in the discussion of
this section and are not designed to be used in practice.

Both example encodings of Listing 5.13 can be used for processing XPath queries.
Listing 5.14 shows an example XPath query which can be applied to the XML document
of Listing 5.13a. The XPath query is equivalent to the SPARQL query of Listing 5.12.
It encodes the two triple patterns of the original SPARQL query and contains all their
bound parts. Each triple pattern is mapped to a path with starts at the root element
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1 /graph/triple Select all triples matching the first triple pattern.

2 [predicate/text() = "foaf:name"] Set the first pattern’s predicate.

3 [subject/text() = Join on the subjects of both patterns.

4 /graph/triple Select all triples matching the second pattern.

5 [predicate/text() = "foaf:mbox"] Set the second pattern’s predicate.

6 [object/text() = "tdurden@example.com"] Set the second pattern’s object.

7 /subject/text() Return all variable bindings of the second pattern’s subject.

8 ]

9 /object/text() Return all variable bindings of the first pattern’s object.

Listing 5.14: Example XPath query which corresponds to the SPARQL query of
Listing 5.12. Applying the query to the XML document of Listing 5.13a
results in one solution with the value Tyler Durden.

graph and ends at a particular part of a triple. The function text() retrieves the data
value of an XML element such as ex:Tyler. It is used to compare the retrieved value
with a bound part of the query and to conduct a join operation on the subjects of both
triple patterns. The result of the XPath query is identical to the result of the SPARQL
query of Listing 5.12. A similar XPath query can also be created for the second XML
encoding of Listing 5.13b.

RDF graphs can be stored in relational databases by using, e. g., triple stores such
as Sesame [54] and DB2RDF [45]. The two triple stores optimize query processing on
an RDF graph by exploiting its internal structure. Sesame creates a different database
table for each class of the graph’s ontology and stores all instances of this class in
the table. DB2RDF creates multiple tables and uses them to create a complex indexing
system. However, utilizing the internal structure of an RDF graph may reveal the graph’s
characteristics. For example, creating a separate database table for each ontological
class reveals how the instances are distributed across different classes. As described in
Section 5.7.11, revealing a graph’s characteristics may affect its confidentiality and must
therefore be prevented. In order to conceal the characteristics of an RDF graph, the
following discussion uses a single database table which contains all triples of the graph.
Table 5.12 shows the database table triples which stores each triple of the example

Table 5.12.: Example database table storing the RDF graph of Listing 5.11. The table
is named triples and stores each triple of the graph as a separate data
record. It consists of three columns which store the triples’ subjects,
predicates, and objects.

Subject Predicate Object

ex:Tyler foaf:name "Tyler Durden"

ex:Tyler foaf:mbox "tdurden@example.com"

ex:Tyler foaf:knows ex:Marla
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graph of Listing 5.11 as a separate data record. The table consists of three columns,
each of which represents one part of a triple.

The database table of Table 5.12 can be used for querying the encoded RDF graph.
Listing 5.15 shows an SQL query which is semantically equivalent to the SPARQL query
of Listing 5.12. The SELECT clause corresponds to the query form and defines the query
result, FROM sets the queried table, and the WHERE clause represents the query algebra
and defines the matching conditions. Each triple pattern of the original SPARQL query
is represented in the FROM clause with a different name. This allows it to distinguish
between the different patterns and their respective parts. The WHERE clause contains
all bound parts of the triple patterns and conducts a join operation on their subjects.
Applying the SQL query to the database table shown in Table 5.12 provides the same
result as applying the SPARQL query of Listing 5.12 to the RDF graph of Listing 5.11.

1 SELECT pattern1.object Return all bindings of the first pattern’s object.

2 FROM triples pattern1, triples pattern2 Distinguish between the two triple patterns.

3 WHERE pattern1.predicate = "foaf:name" Set the first pattern’s predicate.

4 AND pattern1.subject = pattern2.subject Join on the subjects of both patterns.

5 AND pattern2.predicate = "foaf:mbox"; Set the second pattern’s predicate.

6 AND pattern2.object = "tdurden@example.com" Set the second pattern’s object.

Listing 5.15: Example SQL query which corresponds to the SPARQL query in
Listing 5.12. Applying this query to the relational database table shown
in Table 5.12 results in one solution with the value Tyler Durden.

In the following, the two XML encodings shown in Listing 5.13 and the relational
database table depicted in Table 5.12 are used as a foundation to evaluate the state of the
art and related work. The results of this evaluation are summarized in Table 5.13. The
analysis is conducted with respect to the functional requirements RC.F.1 to RC.F.6
as well as the non-functional requirements RC.N.1 to RC.N.5.3.

5.9.2. Evaluating the Functional Requirements

Many of the requirements defined in Section 5.2 are not specific to searching on encrypted
RDF graphs and can be applied to any approach for searching in encrypted data. The
only exceptions are the functional requirements RC.F.1, RC.F.2, and RC.F.3 which
are specific to SPARQL queries. Requirement RC.F.1 covers the support of SPARQL
triple patterns. A triple pattern can have none, one, two, or three bound parts which
are the pattern’s query parameters. In order to fulfill requirement RC.F.1, an approach
must support queries with a varying number of query parameters as well. If an ap-
proach only allows a fixed number of query parameters, it does not completely fulfill
requirement RC.F.1. The approaches for searching in encrypted relational databases
can be applied to encrypted RDF graphs by storing the graph’s triples in a single table
as depicted in Table 5.12. Each triple corresponds to a database record with three dif-
ferent attributes. Approaches which use row-wise encryption map each plaintext triple
to a single ciphertext whereas approaches with cell-wise encryption create three differ-
ent ciphertexts for the triple’s subject, predicate, and object. Although all approaches
can process the resulting database table, they differ in their indexing, query processing,
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Table 5.13.: Comparison of the capabilities of different approaches for searching in en-
crypted relational databases, encrypted XML documents, and encrypted
graphs. The comparison is based on the requirements defined in Sec-
tion 5.2. Rows correspond to different approaches and columns corre-
spond to requirements. Requirements RC.F.1 to RC.F.6 are functional
and RC.N.1 to RC.N.5.3 are non-functional. The letter y corresponds
to a complete fulfillment of a requirement, l marks a partial fulfillment,
n corresponds to no fulfillment, and – states that the requirement is not
applicable.
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Relational databases

CryptDB [235] y y l y y n n n y n n n n

Elovici et al. [98] l n l y n – n y l y n y n

Evdokimov and Günther [104] l n l y n – n y y y n l n

Hacıgümüş et al. [137] y y n y n – n y n y y y n

Prob-RPE [259] y y l y y n n n y n y n y

Wang et al. [309] y n l y n – n y n y n y n

Y. Yang et al. [315] l n n y y n n y y y n y n

Z. Yang et al. [316] l n l y n – n y y y y y n

Continued on next page.

and their support of SPARQL queries. However, all approaches support SPARQL triple
patterns with at least one query parameter. CryptDB and Prob-RPE use a trusted
proxy server which intercepts all plaintext queries from authorized users and maps them
to corresponding ciphertext queries which are processed by a separate database server.
The proxy server can process queries of different complexity and supports triple pat-
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Table 5.14.: Comparing T-Store with the related work. Continued from previous page.
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XML documents

Bouganim et al. [46] y n l y y n y n y y n y n

Brinkman 1 [52] n n n y n – n y y – – y n

Brinkman 2 [53] l n l y n – n y y y n y n

Jammalamadaka and Mehrotra [165] y y n y n – n y n y y y n

Lin and Candan [191] n n n y n – n y n – – y n

OPESS [304] y n l y n – n y y y n y n

SemCrypt [274] y n l y n – n y y y n y n

Graph structures

Chase and Kamara [78] l n l y n – n y y y y y l

CryptGraph [314] n n n y n – n y y y – y l

PPGQ [69] n y l y n – n y n y y y l

T-Store y n y y y y y y y y y y l

terns with multiple query parameters as well as basic graph patterns. Thus, the two
approaches fulfill requirements RC.F.1 and RC.F.2. Hacıgümüş et al. and Wang et al.
index each part of a triple separately, resulting in three index values per triple. When
initiating a query, a user maps each query parameter to its index value and sends it
to the server. Both approaches support triple patterns with multiple query parameters
and fulfill requirement RC.F.1. Elovici et al. encrypt each part of a triple separately
and index the resulting ciphertexts with an index tree. A separate index tree is created
for each triple part. Triple patterns are processed by traversing the index tree for a
single query parameter. As the traversal can only be conducted on a single tree, triple
patterns with multiple query parameters are not supported. Evdokimov and Günther

200



Evaluation and Comparison with Existing Approaches Section 5.9

as well as Z. Yang et al. map each triple to three different ciphertext tuples. Triple
patterns correspond to trapdoors [42] which encode a single query parameter and are
processed at the server by comparing them with all ciphertext tuples. As the approaches
do not support triple patterns with multiple query parameters, they only partially fulfill
requirement RC.F.1. Y. Yang et al. encrypt a triple as a single ciphertext and index
it with three different index values based on its subject, predicate, and object. A user
creates a triple pattern by signing a single query parameter with her private key and
sends it to the server. As the used signature scheme does not support signing multiple
query parameters at once, the approach only partially fulfills requirement RC.F.1. The
approaches for searching in encrypted XML documents support different types of queries
which assess different parts of the document such as its element names, data values, and
attribute values. In order to apply an approach to RDF graphs, it must support arbi-
trary URIs, blank nodes, and literals as query parameters. Such an approach can be
used for searching in encrypted RDF graphs by using one of the encodings provided in
Listing 5.13. In contrast, approaches which only allow element queries cannot be used
for SPARQL queries. The number of possible element names in an XML document is
restricted by the document’s schema [124]. This prohibits element names from storing
arbitrary URIs, blank nodes, or literals and makes it impossible to use them as query
parameters. Brinkman 1 as well as Lin and Candan are restricted to element queries and
cannot be used for SPARQL queries. Thus, they do not fulfill requirements RC.F.1,
RC.F.2, and RC.F.3. Bouganim et al., Jammalamadaka and Mehrotra, OPESS, and
SemCrypt support triple patterns with multiple query parameters and fulfill require-
ment RC.F.1. Bouganim et al. use a secure processing unit at the user side which
processes all queries on the encrypted XML document. This unit is also capable of
processing triple patterns with multiple query parameters and can operate on both en-
codings of Listing 5.13. Each plaintext triple is mapped to three different ciphertexts
which correspond to the triple’s subject, predicate, and object. Jammalamadaka and
Mehrotra are essentially the same as Hacıgümüş et al. and fulfill the same requirements.
The approach requires the XML encoding of Listing 5.13b. It encrypts each triple ele-
ment as single ciphertext and associates it with three index values for the triple’s subject,
predicate, and object. Query processing is identical to Hacıgümüş et al. OPESS sup-
ports path queries based on element names and data values. As the approach does not
operate on attribute values, it requires the XML encoding of Listing 5.13a. Each triple
in the resulting XML document is encrypted as three different ciphertexts and indexed
based on its individual parts. A triple pattern corresponds to a path and is processed by
encrypting its query parameters and sending it to the server. SemCrypt supports path
queries based on element names, attribute values, and data values and can be used with
both encodings of Listing 5.13. Again, each plaintext triple is mapped to three different
ciphertexts. SemCrypt processes queries by exchanging messages between the user and
the server. Although each message only covers a single query parameter, multiple pa-
rameters are possible by exchanging several messages which are further processed by the
user. Brinkman 2 uses trapdoors and is similar to Z. Yang et al. Thus, the approach only
partially fulfills requirement RC.F.1. As supported queries may contain attribute values
and data values, the approach supports both encodings of Listing 5.13. The graph-based
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approaches Chase and Kamara, CryptGraph, and PPGQ focus on abstract graphs and
are not specifically designed to support RDF graphs. Chase and Kamara support queries
which retrieve all edges between two nodes. These queries can be used for triple patterns
of type +-+ which retrieve all predicates between a subject and and object. Although the
approach defines a flexible index structure which can generally be used to support other
types of triple patterns as well, the authors themselves only provide a small set of query
types. Thus, the approach only partially fulfills requirement RC.F.1. Although Crypt-
Graph operates on labeled graphs, it does not support labeled edges. However, RDF
graphs have labeled nodes and labeled edges, which correspond to the triples’ predicates.
Thus, CryptGraph cannot be used for searching in encrypted RDF graphs and does not
fulfill requirements RC.F.1, RC.F.2, and RC.F.3. PPGQ is restricted to subgraph
queries and cannot be used for applying a single triple pattern to an RDF graph. Thus,
the approach does not fulfill requirement RC.F.1. T-Store natively supports all eight
types of triple patterns by encrypting each triple in the plaintext graph separately for
each of the pattern types.

Requirement RC.F.2 covers SPARQL basic graph patterns which consist of several
triple patterns. If the triple patterns share identical query variables, their solution se-
quences are combined via a join operation on the variables. Thus, an approach which
fulfills requirement RC.F.2 must support join operations as well. Conducting a join
operation requires the identification of compatible solution sequences, i. e., solution se-
quences which share identical variable bindings. Hacıgümüş et al. divide the values of all
three triple parts into disjoint buckets which are used for processing queries and join op-
erations. When processing a basic graph pattern, the server first computes the solution
sequence of each triple pattern. It then combines all solution sequences by conducting
a join operation on all compatible variable bindings. Variable bindings are compati-
ble with each other if they map the same query variable to the same bucket identifier.
CryptDB uses deterministic encryption to support join operations. Deterministic en-
cryption maps identical plaintext values to identical ciphertext values. A join operation
can then be directly applied to the ciphertext values. Although Prob-RPE uses proba-
bilistic encryption, it associates each ciphertext with an additional join identifier. Join
identifiers are bit strings which are identical for equal plaintext values. They allow a
server to detect compatible ciphertexts and to conducts join operations on them. None
of the other approaches for searching in relational database support join operations.
Instead, they require the user to split a basic graph pattern into multiple SQL queries,
each of which consists of a single triple pattern. The server processes each triple pat-
tern individually and returns a corresponding solution sequence. Subsequently, the user
decrypts all received solution sequences and conducts a join operation on the resulting
plaintext. Jammalamadaka and Mehrotra are similar to Hacıgümüş et al. and support
join operations using bucket identifiers. In contrast, none of the other approaches which
operate on XML documents can detect compatible variable bindings and do not fulfill
requirement RC.F.2. Chase and Kamara are restricted to queries which consist of a
single triple pattern only. Join operations cannot be conducted on the ciphertext graph
and must be conducted by the user via combining several solution sequences. Thus,
the approach does not fulfill requirement RC.F.2. PPGQ supports subgraph queries
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which can be used for implementing basic graph patterns on RDF graphs. A basic graph
pattern is encoded as a single subgraph query and does not require any join operation.
PPGQ therefore fulfills requirement RC.F.2. Similar to Chase and Kamara, the current
design of T-Store does not support join operations and requires the user to conduct such
operations on all received solution sequences. A detailed discussion on join operations
is provided in Section 5.9.4.

Requirement RC.F.3 states that SELECT, CONSTRUCT, and ASK queries must be equally
supported. As described in Section 5.1.4, SELECT queries and CONSTRUCT queries operate
on variable bindings whereas ASK queries return a boolean value. In order to fulfill
requirement RC.F.3, an approach must support two different types of queries. Queries
of the first type are used in SELECT queries and CONSTRUCT queries and process the three
parts of all matching ciphertext triples individually in order to create the necessary
variable bindings. An approach which cannot process an encrypted triple’s subject,
predicate, or object separately and only operates on complete ciphertext triples neither
supports SELECT queries nor CONSTRUCT queries. Queries of the second type support
ASK queries and match a set of query conditions against the queried data. The resulting
boolean value indicates whether or not the query conditions have at least one match
in the encrypted data. The value does not reveal any additional information about
the plaintext data [140]. An approach which does not provide boolean query results
or reveals more information about the plaintext data does not support ASK queries.
None of the approaches which operate on relational databases support ASK queries as
they are not able to return boolean query results. However, most of them use cell-wise
encryption and encrypt each part of a triple individually. This can be used for returning
individual variable bindings as query results which is necessary to support SELECT queries
and CONSTRUCT queries. Thus, approaches using cell-wise encryption partially fulfill
requirement RC.F.3. In contrast, Hacıgümüş et al. and Y. Yang et al. apply row-
wise encryption and always return complete ciphertext triples. As they cannot create
individual variable bindings as query results, they do not fulfill requirement RC.F.3.
Many of the approaches which operate on XML documents can retrieve individual triple
parts as query results and thus support SELECT queries and CONSTRUCT queries. However,
none of them can be used for ASK queries. Bouganim et al. and Brinkman 2 encrypt each
part of a triple separately and support individual variable bindings. Similarly, OPESS
and SemCrypt map each plaintext triple to three different XML paths which correspond
to the triple’s subject, predicate, and object. The different paths can be processed
independently and support individual variable bindings. PPGQ is restricted to subgraph
queries which can be used for implementing ASK queries on encrypted RDF graphs. As
the approach does not provide any mechanism for implementing variable bindings, it only
partially fulfills requirement RC.F.3. In contrast, Chase and Kamara are not designed
for subgraph queries and are restricted to SELECT queries and CONSTRUCT queries which
contain triple patterns of type +-+. Thus, they partially fulfill requirement RC.F.3 as
well. In its current design, T-Store is only able to retrieve individual variable bindings
and natively supports SELECT queries and CONSTRUCT queries. Although Algorithm 5.4
describes a method for processing ASK queries, it requires the computation of all variable
bindings to determine the boolean query results. This contradicts with the specification
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of ASK queries since they do not reveal any additional information about the queried
graph. However, T-Store can easily be extended to support ASK queries as well. The
extension requires eight additional basic keys for each of the eight triple pattern variants.
These basic keys are independent from the basic keys that are used for SELECT queries and
CONSTRUCT queries. They are used for creating encryption keys as defined in Table 5.1.
Each created encryption key encrypts only a single value which indicates that the query
pattern encoded in the key has at least one match in the ciphertext graph. The value
does not provide any additional information about the graph and thus corresponds to the
boolean query result of an ASK query. The ciphertexts resulting from such an encryption
can be processed in the same way as the ciphertexts of SELECT queries and CONSTRUCT

queries. They can also be stored in the same ciphertext graph and be indexed in its
corresponding index. With this extension, T-Store is able to support ASK queries as well
and fulfills requirement RC.F.3.

None of the discussed approaches is limited to a predefined set of queries. Instead,
each approach allows the queries to be formulated after the plaintext graph has been
encrypted. Thus, all approaches including T-Store fulfill requirement RC.F.4. Require-
ment RC.F.5 demands that an approach must distinguish between a data owner who
encrypts the plaintext graph and users who apply queries to the ciphertext graph. The
data owner creates and permanently stores all encryption keys and a user can only access
those keys which are explicitly authorized by the data owner. This requirement implies
that an approach is not restricted to a single party which stores all cryptographic keys
and can exclusively access the plaintext triples. If an approach even supports multi-
ple users with different query authorizations, it implicitly fulfills requirement RC.F.5.
Supporting multiple users necessitates a distinction between the users and the data
owner who authorizes them. Most of the discussed approaches focus on data outsourc-
ing [281] and consider the data owner to be identical to a single user. As this user is
completely trusted and stores all cryptographic keys, the approaches do not fulfill re-
quirement RC.F.5. The only exceptions are CryptDB, Prob-RPE, Y. Yang et al., and
Bouganim et al. which support multiple users. CryptDB and Prob-RPE authorize each
user by a trusted proxy server and Y. Yang et al. authenticate a user with a public
key pair. Bouganim et al. require a trusted computing device at each user’s side which
authorizes and conducts all queries. T-Store distinguishes between the data owner and
users and fulfills requirement RC.F.5. A data owner creates and permanently stores all
basic keys which are used for creating particular query authorizations.

Requirement RC.F.6 covers query templates which represent groups of similar query
authorizations. Instead of authorizing each query individually, a query template com-
bines similar queries into a single authorization. As query templates imply a distinc-
tion between data owners and users, the fulfillment of requirement RC.F.6 necessitates
the fulfillment of requirement RC.F.5 as well. All approaches which support multiple
users require an explicit authorization for each query. As they do not support query
templates which combine similar queries, they do not fulfill requirement RC.F.6. In
contrast, T-Store provides query templates via authorization keys. An authorization
key is an incomplete query key which can be transformed into different query keys by
an authorized user. Thus, T-Store fulfills requirement RC.F.6.
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5.9.3. Evaluating the Non-Functional Requirements

Many of the discussed approaches require a server to conduct most of the query pro-
cessing and do not fulfill requirement RC.N.1. The only exception is Bouganim et al.
which use a secure processing unit for each user. The unit processes all queries without
involving any online system. T-Store also allows a user to process all queries offline
and fulfills requirement RC.N.1 as well. Requirement RC.N.2 states that an approach
must not involve a trusted system when applying queries to ciphertext graphs. A sys-
tem is considered to be trusted if it has access to plaintext triples but is not their final
recipient. Examples of trusted systems are proxy servers which apply queries on behalf
of authorized users. Most approaches only involve an authorized user and an untrusted
server when processing a query. The server solely operates on ciphertext triples and
cannot access any plaintext triples. The user is not a trusted system as she is the fi-
nal recipient of the query results. Thus, these approaches fulfill requirement RC.N.2.
In contrast, CryptDB, Prob-RPE, and Bouganim et al. require a trusted system for
processing queries. CryptDB and Prob-RPE use a proxy server which acts as an inter-
mediary between an authorized user and the database server and conducts the actual
query processing. It is also able to access all plaintext triples returned by the database
server. Bouganim et al. use a secure processing unit at the user’s side. Similar to a
proxy server, the unit intercepts all queries from the user, applies them to the ciphertext
graph, and returns the resulting plaintext triples. As the user neither controls the proxy
server nor the secure processing unit, she must trust that these systems do not abuse
any received plaintext triples. Thus, CryptDB, Prob-RPE, and Bouganim et al. do not
fulfill requirement RC.N.2. In contrast, T-Store does not use a trusted system and only
involves the user who applies queries directly to a ciphertext graph.

An approach fulfills requirement RC.N.3 if processing a query only reveals the match-
ing triples while all other triples remain inaccessible to the querying user. CryptDB,
Prob-RPE, and Bouganim et al. use a trusted system for query processing which con-
ducts any necessary refining steps itself and returns the final solution sequence to the
user. Thus, the three approaches fulfill requirement RC.N.3. Elovici et al. process
a triple pattern by traversing an index tree. During the traversal, the user receives
several tree nodes which point to ciphertext triples stored at the server. After having
identified all matching triples, the user retrieves them in a second step. Although an
honest user will only request matching ciphertext triples, the approach does not prevent
a dishonest user from retrieving other triples as well. Thus, the approach only partially
fulfills requirement RC.N.3. Evdokimov and Günther, Z. Yang et al., and Brinkman 2
encode triple patterns as trapdoors. Due to their design, trapdoors can only be applied
to ciphertext triples which match the encoded triple pattern. Otherwise, the decryp-
tion fails and the corresponding plaintext triple remains inaccessible. Consequently, the
three approaches return an exact solution sequence. Hacıgümüş et al. as well as Jam-
malamadaka and Mehrotra index ciphertext triples with the bucket identifiers of their
individual parts. A user initiates a query by mapping its parameters to corresponding
bucket identifiers and requesting all matching ciphertext triples from the server. As dif-
ferent plaintext values are mapped to the same bucket identifiers, the server may return
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false positives which require an additional refining step. Wang et al. index each part of a
ciphertext triple with a hash value using a non-collision-resistant hash function. Again,
query processing requires a refining step which contradicts with requirement RC.N.3.
Y. Yang et al. associate each ciphertext triple with three index values based on its sub-
ject, predicate, and object. As this allows the server to return exact query results, the
approach fulfills requirement RC.N.3. Brinkman 1 applies a subtree query to an XML
document by computing several polynomials. The user compares each polynomial with
a predefined value. A query result is found if both values are equal. Otherwise, nothing
is revealed about the plaintext data. Thus, the approach fulfills requirement RC.N.3.
Lin and Candan apply path queries to XML documents by traversing the document
tree. In order to conceal her actual query, the user retrieves multiple ciphertexts in each
traversal step. She decrypts all ciphertexts, re-encrypts them with a new encryption key,
and sends them to the server. As the user receives more plaintext data than necessary
for answering her query, the approach does not fulfill requirement RC.N.3. OPESS
generally supports path queries which retrieve complete subtrees of an XML document.
As a received subtree forms a superset of the actual query result, an additional refining
step is necessary. However, applying OPESS to an RDF graph is based on the encoding
of Listing 5.13a. Each triple is then encrypted individually which supports exact query
results. SemCrypt returns exact results for queries with a single query parameter. Mul-
tiple query parameters require a separate solution sequence for each parameter which
must be combined afterwards. As this may remove incompatible solution mappings,
SemCrypt only partially fulfills requirement RC.N.3. Chase and Kamara essentially
map all possible combinations of query parameters to a corresponding solution sequence
and return exact query results. CryptGraph processes subgraph queries by using homo-
morphic encryption [111] and does not reveal any intermediate query results. Instead,
it only returns an encrypted value which states whether or not the subgraph is part of
the queried graph. PPGQ supports subgraph queries in encrypted graph collections and
indexes each graph with a feature vector describing its subgraphs. To reduce the size
of the feature vector, similar subgraphs are mapped to the same feature. As this may
result in false positives, the user must conduct an additional refining step. In contrast,
T-Store returns exact query results since a query key can only decrypt those ciphertext
triples which match the query pattern encoded in the key.

Requirement RC.N.4 states that it must be computationally hard to detect identical
URIs, blank nodes, or literals in the ciphertext graph. This implies that neither the
ciphertext graph nor its index can be used for relating identical plaintext values to
each other. CryptDB and Prob-RPE support join operations by identifying compatible
ciphertext triples. CryptDB achieves this with deterministic encryption and Prob-RPE
uses join identifiers. Both solutions allow it to detect identical plaintext values which
directly contradicts with requirement RC.N.4. Elovici et al., Evdokimov and Günther,
and Z. Yang et al. use probabilistic encryption and map each plaintext value to a different
ciphertext. The resulting ciphertext triples prohibit the detection of identical plaintext
URIs, blank nodes, or literals. Elovici et al. use an index which is also probabilistically
encrypted and hides the frequency of the indexed values. In contrast, Evdokimov and
Günther as well as Z. Yang et al. do not use an index at all. Thus, all three approaches
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fulfill requirement RC.N.4. Hacıgümüş et al. and Y. Yang et al. use row-wise encryption
which combines all three parts of a plaintext triple into a single ciphertext and conceals
the distribution of individual plaintext values. In addition, Hacıgümüş et al. index each
ciphertext triple with bucketization which maps different plaintext values to the same
bucket identifier. Again, this hides the frequency of individual triple parts. Y. Yang et
al. index a ciphertext triple with three index values created from the triple’s subject,
predicate, and object. If different triples share the same parts, a counter is added to the
index value to ensure that all values are unique. Wang et al. apply cell-wise encryption
and index each ciphertext using a hash function which is not collision-resistant. As
the encryption can be conducted probabilistically, neither the ciphertexts nor the index
values reveal the exact distribution of the plaintext values. Most of the approaches
which operate on XML documents fulfill requirement RC.N.4. The only exceptions are
Brinkman 1 as well as Lin and Candan which are restricted to element queries. As they
do not operate on individual URIs, blank nodes, or literals, requirement RC.N.4 cannot
be applied to them. Bouganim et al. and Brinkman 2 apply probabilistic encryption and
use an index which only operates on structural information. Thus, the index does not
reveal any similarities between the ciphertext triples. OPESS probabilistically encrypts
each XML element and transforms its index in such a way that the frequency of all
indexed values is almost identical. Thus, the index cannot be used for determining the
exact distribution of identical plaintext values. SemCrypt maps each path in an XML
document to a unique identifier and stores this mapping at the user’s side. The index is
probabilistically encrypted and conceals identical plaintext URIs, blank nodes, or literals.
All approaches for searching in encrypted graphs fulfill requirement RC.N.4. Chase and
Kamara support triple patterns of type +-+ by mapping tuples of subjects and objects
to an encrypted list of predicates. Although the approach reveals the number of different
subjects and objects in the graph, it does not reveal how often they occur in different
plaintext triples. As this information is only provided by the encrypted predicates, the
approach hides the frequency of individual URIs, blank nodes, and literals. CryptGraph
represents a graph by its encrypted adjacency matrix. Similar to Chase and Kamara,
CryptGraph reveals the number of different subjects and objects in the plaintext graph
but hides all information about how they are connected. Thus, it neither reveals the
number of different predicates between a subject and an object nor how often a particular
value occurs at subject or object position. PPGQ encrypts a graph as a single ciphertext
and thereby hides the individual URIs, blank nodes, and literals in the graph. As
described in Section 5.7.8, T-Store encrypts a plaintext graph in such a way that all
resulting ciphertexts are unique. This prevents the identification of identical plaintext
URIs, blank nodes, or literals in the ciphertext triples.

Requirement RC.N.5.1 demands that an approach hides the string length of indi-
vidual URIs, blank nodes, and literals in the graph. Hacıgümüş et al. use row-wise
encryption which hides the individual string length of each triple part. Prob-RPE sup-
ports different encryption schemes and allows it to transform all plaintext values to
the same length before encrypting them. Z. Yang et al. apply cell-wise encryption af-
ter having padded each part of a triple to the same length. The resulting ciphertexts
all share the same string length and do not reveal the length of the plaintext values.
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Y. Yang et al. use row-wise encryption but associate each ciphertext triple with three
index values. Different index values are created for the same plaintext value by using
an additional counter. As this counter only slightly modifies the string length of the
index value, the approach partially fulfill requirement RC.N.5.1. All other approaches
which operate on relational databases use cell-wise encryption without any padding and
map plaintext triples to ciphertext triples with roughly the same string length. Apart
from Jammalamadaka and Mehrotra, none of the approaches for searching in encrypted
XML documents fulfill requirement RC.N.5.1. Similar to Hacıgümüş et al. Jammala-
madaka and Mehrotra encrypt each plaintext triple as a single ciphertext. Bouganim
et al., OPESS, and SemCrypt encrypt each path in the XML document individually
without using any padding. As a path also contains the data value of an element, the
string length of a ciphertext reveals the size of its plaintext. Brinkman 2 encrypts each
element together with its data value. Again, the approach does not use any padding
and reveals the size of the encrypted plaintext values. As Brinkman 1 and Lin and
Candan are restricted to element queries, requirement RC.N.5.1 cannot be applied to
them. Chase and Kamara use padding to transform all graph labels to the same size
before encrypting them and fulfill requirement RC.N.5.1. As CryptGraph does not
support labeled graphs, it cannot be evaluated for this requirement. PPGQ encrypts a
graph as a single ciphertext and thereby hides the string length of all URIs, blank nodes,
and literals in the graph. T-Store fulfills requirement RC.N.5.1 by using the extension
described in Section 5.7.9.

Requirement RC.N.5.2 states that an approach must conceal the density and con-
nectivity of a graph. The two characteristics can be used to distinguish between different
ciphertext graphs or to relate a ciphertext graph to its corresponding plaintext graph.
CryptDB uses deterministic encryption which allows it to analyze the frequency of all
ciphertexts and to compute the density and connectivity of the plaintext graph. Simi-
larly, Prob-RPE uses join identifiers which also allow such an analysis. Thus, the two
approaches do not fulfill requirement RC.N.5.2. In contrast, all other approaches which
operate on relational databases fulfill this requirement. Elovici et al. use probabilistic en-
cryption for the plaintext triples and their index values. Thus, the resulting ciphertexts
cannot be related to each other. Evdokimov and Günther as well as Z. Yang et al. also
use probabilistic encryption and do not use any index which can be used for analyzing
the ciphertext graph. The row-wise encryption applied by Hacıgümüş et al. prohibits an
analysis of a graph’s density and connectivity by using its ciphertext graph. Although
the approach uses bucketization which associates different ciphertext triples with each
other, the buckets do not provide precise information about a graph’s internal structure.
As different plaintext values are mapped to the same bucket, it is impossible to distin-
guish between ciphertexts triples which share the same plaintext values and ciphertext
triples with different plaintext values. Wang et al. apply probabilistic encryption and
use an index with colliding index values which does not reveal any information about the
graph’s characteristics. Y. Yang et al. uses row-wise encryption and create index values
using a counter which is unknown to the database server. Thus, the counter cannot
be used for analyzing the graph’s internal structure. All approaches for searching in
encrypted XML documents hide a graph’s density and connectivity and fulfill require-
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ment RC.N.5.2. Bouganim et al. and Brinkman 2 use probabilistic encryption and
apply a structural index which does not provide any information about a graph’s plain-
text values. Brinkman 1 as well as Lin and Candan only support path queries based on
element names and do not process URIs, blank nodes, or literals, which is necessary to
analyze a graph’s density and connectivity. Jammalamadaka and Mehrotra are similar
to Hacıgümüş et al. OPESS uses probabilistic encryption and normalizes its index in
such a way that it does not reveal the distribution of the encrypted URIs, blank nodes, or
literals. SemCrypt uses probabilistic encryption for the plaintext triples and the index.
All approaches for searching in encrypted graphs fulfill requirement RC.N.5.2 as they
do not provide complete information about a graph’s structure. Chase and Kamara map
pairs of subjects and objects to lists of all connecting predicates. These lists are padded
to the same length before encrypting them. Predicates which occur in many triples are
therefore indistinguishable from predicates which are only rarely used. CryptGraph rep-
resent a graph by its encrypted adjacency matrix which hides all connections between
two nodes in the graph and prevents any analysis of the graph’s structure. PPGQ en-
crypts a graph as a single ciphertext and thereby hides its internal structure. The feature
vector used for indexing a graph maps different subgraphs to the same feature and does
not reveal the density and connectivity of the graph. As described in Section 5.7.11,
T-Store also hides these characteristics of a graph.

Requirement RC.N.5.3 demands that a ciphertext graph does not reveal the number
of different triples in the plaintext graph. Most of the approaches for searching in rela-
tional databases do not fulfill this requirement. Approaches using row-wise encryption
map a plaintext triple to a single ciphertext triple. Thus, the number of triples in the
ciphertext graph is identical to the number of triples in the plaintext graph. Approaches
applying cell-wise encryption create three ciphertexts for each plaintext triple. Again,
the number of ciphertexts reveals the number of plaintext triples. The only exception is
Prob-RPE which maps a single plaintext triple to a varying number of ciphertext triples
and thereby hides the size of the plaintext graph. All approaches which operate on XML
documents reveal the number of plaintext triples in the ciphertext graph. Most of them
create the same number of ciphertexts for each plaintext triple. Thus, the number of
all ciphertexts in the ciphertext graph is a multiple of all plaintext triples. Brinkman 1
maps a plaintext graph to a hierarchically organized polynomial. However, the structure
of this polynomial is essentially the same as the structure of the original XML document
and reveals the number of all XML elements. The approaches for searching in encrypted
graphs partially fulfill requirement RC.N.5.3. Chase and Kamara as well as Crypt-
Graph index a graph by using its subjects and objects. Thus, the two approaches reveal
the number of different URIs, blank nodes, and literals at subject and object position.
However, they still hide the number of different predicates in the graph. PPGQ encrypts
each graph as a single ciphertext and hides the exact number of plaintext triples. As the
approach does not normalize the size of a graph, it maps larger plaintext graphs to larger
ciphertext graphs and smaller plaintext graphs to smaller ciphertext graphs. This can
be used for guessing the number of triples of a ciphertext graph. As described in Sec-
tion 5.7.11, T-Store reveals the exact number of plaintext triples in the ciphertext graph.
The section also suggests to insert random bit strings as fake ciphertexts into the cipher-
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text graph and its index. Although this minor modification hides the exact number of
triples in the plaintext graph, it still does not eliminate the possibility of distinguishing
between large graphs and small graphs. Thus, T-Store fulfills requirement RC.N.5.3
only partially even after implementing this modification.

5.9.4. Conducing Join Operations on Encrypted Data

As implied by requirement RC.F.2, processing a SPARQL query requires a join opera-
tion if two or more triple patterns share the same query variables. A join operation is
then conducted on the solution sequences of the triple patterns by combining all compat-
ible solution mappings. Solution mappings are compatible if they map the same query
variables to the same values. As described in the previous sections, only some approaches
for searching in encrypted data support join operations to be conducted on ciphertext
data directly and fulfill requirement RC.F.2. In contrast, other approaches require a
join operation on plaintext data. Even approaches that do support join operations on
ciphertext data achieve this by not fulfilling other requirements instead. This section
serves three different purposes. First, it outlines the general circumstances and diffi-
culties of conducting join operations on ciphertext data. Second, it describes how and
to what extent different approaches for searching in encrypted data solve these issues.
Finally, it presents a theoretical approach for conducing join operations on ciphertext
data which provides confidentiality of a plaintext graph at the expense of efficiency.

Conducting join operations requires two different steps which are the combination
of the solution sequences to be joined and the identification of all compatible solution
mappings [243]. These two steps can be processed in arbitrary order or even executed
simultaneously. They apply to join operations in general and are necessary for processing
both plaintext data and ciphertext data. In order to speed up the joining process, many
join algorithms which operate on plaintext data use an index to distinguish between
compatible and incompatible solution mappings. This allows a join processor to quickly
detect identical plaintext values and to reduce the number of solution mappings to be
evaluated. When conducting a join on ciphertext data, using such an index would allow
the join processor to distinguish between ciphertext triples that share the same URIs,
blank nodes, and literals and ciphertext triples that are completely different from each
other. However, this directly contradicts with requirement RC.N.4 which states that
it must be computationally hard to detect identical plaintext values in the ciphertext
graph. Thus, using a join index for ciphertext triples would affect the confidentiality
of the plaintext graph. On the other hand, fulfilling requirement RC.N.4 implies that
each occurrence of the same plaintext value is mapped to a different ciphertext value.
If an index is provided, it must conceal identical plaintext values as well. Although this
prevents frequency-based attacks AC.6 as described in Section 5.7.8, it also prohibits
an efficient execution of join operations on ciphertext triples.

The approaches which support join operations on ciphertext data solve this general
contradiction at the expense of the fulfillment of other requirements. Apart from the
approaches for searching in encrypted data that support join operations, there are also
other approaches which focus solely on joins without providing a complete querying en-
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vironment. Such approaches include Li and Chen [189], Carbunar and Sion [70], and
Furukawa and Isshiki [115]. Li and Chen use a trusted hardware module to conduct join
operations on two or more solution sequences. The module requires an encrypted cross
product of all sequences as input. It successively decrypts all entries of the cross prod-
uct to detect and remove incompatible solution mappings. The remaining compatible
mappings are returned as the join result. Carbunar and Sion use Bloom filters [41] to
detect potentially compatible solution mappings. A Bloom filter is a bit string which
represents a set of elements by mapping each element to a bit string and combining all
bit strings with binary OR. The resulting bit string allows to quickly determine if an
element is possibly part of the set or definitely not in the set. As the design of a Bloom
filter produces false positives, using them for joining produces incompatible solution
mappings which must be removed in an additional refining step conducted by the user.
Furukawa and Isshiki require a join identifier to detect compatible solution mappings.

Current approaches that allow join operations to be conducted on ciphertext data can
be divided into four different categories as shown in Table 5.15. Approaches which only
support plaintext joins such as T-Store are not listed in the table as they do not fulfill
requirement RC.F.2. Such approaches require a user to split a query into different
sub-queries, process them separately, and join their plaintext solution sequences. This
allows the user to access plaintext triples which are not part of the final query result
and are removed during the joining process. Thus, approaches which do not fulfill re-
quirement RC.F.2 cannot ensure the confidentiality of all triples in the graph. Each
of the four categories depicted in Table 5.15 has its own drawbacks and does not fulfill
one of the requirements RC.N.2, RC.N.3, and RC.N.4. If an approach fulfills one
requirement, it achieves this at the expense of another requirement. Approaches which
use deterministic encryption or join identifiers do not require a trusted system for query
processing or conducting join operations and fulfill requirement RC.N.2. They oper-
ate on individual ciphertext triples and return them as the final query result without
needing an additional refining step (RC.N.3). However, the frequency of determinis-
tically encrypted ciphertext triples and join identifiers is identical to the frequency of
the plaintext values. This supports frequency-based attacks AC.6 and contradicts with
requirement RC.N.4. Approaches based on filtering and refining prevent these attacks
and fulfill requirement RC.N.4. Instead of operating on individual triples, they combine
several ciphertext triples into sets. If at least one triple of a set fulfills a query, all triples
of the same set are returned as a preliminary query result. False positives are removed
by the user in a refining step. However, the confidentiality of the removed triples is no
longer protected. A querying user has access to these triples although they are not part
of the final query result as implied by requirement RC.N.3. Approaches which require
a trusted hardware module for processing joins ensure the confidentiality of all triples.
Such a module can operate on probabilistic encryption (RC.N.4) and return exact query
results (RC.N.3). However, the module must be protected against attacks from third
parties [116] so that its cryptographic keys and processing memory is not accessible to
anyone. Otherwise, the confidentiality of the processed triples cannot be guaranteed. As
completely protecting a trusted hardware module is generally difficult [17], using such a
module is not recommended (RC.N.2).
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Table 5.15.: Different approaches for conducting join operations on ciphertext data.
None of the current approaches fulfills all three requirements RC.N.2,
RC.N.3, and RC.N.4. The table only lists such approaches which sup-
port join operations on ciphertext data. Approaches which require join
operations on plaintext data such as T-Store are not listed.

Join method Examples R
C

.N
.2

:
N

o
tr

u
st

ed
co

m
p

o
n

en
t

R
C

.N
.3

:
E

x
a
ct

q
u

er
y

re
su

lt

R
C

.N
.4

:
D

a
ta

in
d

is
ti

n
g
u

is
h

a
b

il
it

y

Deterministic encryption CryptDB [235] y y n

Join identifiers
Furukawa and Isshiki [115]

y y n
Prob-RPE [259]

Filtering and refining

Carbunar and Sion [70]

y n y
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PPGQ [69]

Secure join hardware Li and Chen [189] n y y

The analysis of the related work suggests that it is generally difficult to fulfill all three
requirements RC.N.2, RC.N.4, and RC.N.3 at the same time. In order to support
join operations on encrypted graphs without affecting the graph’s confidentiality, the
solution sequences of all triple patterns must be combined before removing all incom-
patible solution mappings. Otherwise, the confidentiality of the plaintext triples cannot
be guaranteed. In the following, a general concept of a confidential join is outlined which
fulfills all three requirements RC.N.2, RC.N.4, and RC.N.3. The concept only de-
fines an abstract process without a particular implementation. It primarily focuses on
the confidentiality of the triples and not on the efficiency of its application. It serves
as a basis for discussion and demonstrates that it is generally difficult to process join
operations on ciphertext data in a practical way. The join is conducted after having
determined the solution sequences of all triple patterns and consists of two steps. These
steps correspond to the general steps of a join algorithm as described earlier in this sec-
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tion. In order to protect the confidentiality of the plaintext triples, all solution sequences
are still encrypted. In the first step, a complete cross product of all solution sequences
is computed. This step does not distinguish between compatible and incompatible so-
lution mappings and may produce many mappings which are not included in the final
join result. The result of this first step is also encrypted and does not reveal any infor-
mation about the plaintext triples. In the second step, a decryption key is applied to
each combined solution mapping. The decryption must only be successful if the solution
mapping is a valid join result, i. e., if it contains compatible plaintext triples. Otherwise,
the decryption must fail and must not reveal any information about the processed map-
ping. The second step identifies all compatible solution mappings and creates the final
join result. In order to protect the plaintext graph’s confidentiality, it is necessary to
process all solution mappings from the first step. Any optimization which only processes
a subset of the solution mappings would directly contradict with requirement RC.N.3.

Although the outlined join process is generally possible, it is highly inefficient. If a
query with m ∈ N triple patterns is applied to a graph with n ∈ N triples, the runtime
complexity of processing the query is O(nm) as each triple pattern may return n triples
at most. In worst case, nm decryption operations have to be conducted in order to
retrieve the final join result. Although most SPARQL queries used in practice contain
less than four triple patterns [203, 14], applying a query with three triples patterns to
a graph with 100, 000 triples still requires 1015 decryption operations. Even if a single
decryption operation required only 1 nanosecond to compute, processing 1015 decryption
operations would still take about 11.5 days. Thus, a join operation based on the sketched
concept is not practical unless the decryption itself is very efficient. However, finding a
suitable encryption algorithm which is efficient even for larger graphs is very unlikely.
On the other hand, any optimization of the concept would violate the confidentiality of
the plaintext graph. In conclusion, it is currently almost impossible to provide a join
algorithm which is both efficient and confidential at the same time.

5.9.5. Summary

Most approaches for searching in encrypted relational databases, encrypted XML docu-
ments, and encrypted graphs can also be used for searching in encrypted RDF graphs.
However, none of them fulfills all functional and non-functional requirements defined in
Section 5.2. T-Store fulfills most of these requirements with RC.F.2 being the only
exception. Fulfilling requirement RC.F.2 necessitates the ability to conduct join opera-
tions on ciphertext graphs. As discussed in Section 5.9.4, some approaches support join
operations at the expense of fulfilling other requirements. The section has also described
the general difficulty of providing a join algorithm that can be applied to a ciphertext
graph directly and is still efficient enough to be used in practice. Therefore, developing
a suitable compromise between efficiency and confidentiality is left for future work.
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5.10. Limitations and Future Extensions

As described in the previous section, T-Store fulfills most of the functional and non-
functional requirements defined in Section 5.2. In addition to the identified drawbacks,
T-Store has other limitations as well when querying encrypted RDF graphs. This section
first outlines these limitations and describes their effect on the query process. After-
wards, possible extensions of T-Store are discussed which may be added in the future.

5.10.1. Replacing the Combining Function %

As described in Section 5.7.6, T-Store is vulnerable to attack AC.4 and allows an at-
tacker to compute a basic key from two authorization keys of the same query type. The
attack exploits the relationship of the two authorization keys and their construction via
the combining function %. In order to prevent the attack, the combining function must
be replaced by a secure alternative. The alternative combining function must share the
same features as the current function which is defined in Equation 5.19. In particular,
the alternative combining function must satisfy the following conditions:

%(b, {}) = b, ∀b ∈ {0, 1}∗ (5.70)

%(b, {b1, b2}) = %(%(b, {b1}), {b2}), ∀b, b1, b2 ∈ {0, 1}∗ (5.71)

%(%(b, {b1}), {b2}) = %(%(b, {b2}), {b1}), ∀b, b1, b2 ∈ {0, 1}∗ (5.72)

These conditions cover the arithmetic capabilities of the combining function which are
used by T-Store to create authorization keys ak from basic keys bk and to create query
keys qk from authorization keys. As long as a function fulfills these conditions, it can
be used with T-Store without changing anything else of the approach. In addition, the
combining function must also prevent the attacks AC.3, AC.4, and AC.5 as described
in Section 5.7. This can be achieved by choosing a combining function % which makes
it difficult for an attacker to determine b when given b1 and b2 with %(b, {b1}) = b2 and
b, b1, b2 ∈ {0, 1}∗. Finding a suitable combining function which prevents the attacks and
fulfills the three conditions of Equations 5.70 to 5.72 is left for future work.

5.10.2. Query Results with Blank Nodes

An RDF graph represents blank nodes as blank node identifiers. The scope of these
identifiers is restricted to a particular graph, i. e., the same identifier can be used in
other graphs as well and refers to another blank node. Applying a SPARQL query to a
plaintext RDF graph may produce a query result with blank node identifiers. In this case,
the scope of the identifiers is restricted to the query result and the identifiers in the query
result are independent from the blank node identifiers in the queried graph [140]. T-
Store also supports blank node identifiers in query results. However, these identifiers are
identical to the blank node identifiers in the queried graph and refer to the same blank
nodes. This may reveal more information about the plaintext graph and its internal
structure than the data owner has indented. It allows an authorized user to relate
different query results to each other by analyzing their common blank node identifiers.
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Such a relation is not necessary possible when applying a SPARQL query to a plaintext
graph.

5.10.3. Distributing Authorization Keys

Users are allowed to apply queries to ciphertext graphs by receiving authorization keys
from the data owner. The secure distribution of authorization keys is therefore crucial
to ensure the confidentiality of a plaintext graph. Distributing the keys requires a secure
communication channel between an authorized user and the data owner which ensures
that the transmitted keys cannot be intercepted by any party. In addition, the data
owner should verify the identity of a user before sending an authorization key. A public
key certificate can be used for both creating the secure communication channel and for
verifying the user’s identity. It provides a mapping from a public key to its owner and
is managed by a public key infrastructure (PKI). Further information about PKIs is
provided in Section 4.9.4. For example, the data owner could apply a user’s public key
certificate to send an authorization key via an encrypted e-mail. Possible standards for
e-mail encryption are S/MIME [245] and PGP [320]. Transmitting an authorization key
in an encrypted e-mail by using a verified public key certificate ensures that only the
legitimate owner of the certificate can access the key.

Even a secure communication channel cannot prevent a user from forwarding autho-
rization keys to other parties. Forwarding such keys circumvents the data owner’s query
authorizations and affects the confidentiality of the plaintext graph. T-Store does not
prohibit the re-distribution of authorization keys as they are not bound to individual
users. Instead, an authorization key which encodes a specific restriction pattern is iden-
tical for all users. If several users have access to the same key and the key is sent to
another party, the data owner cannot identify the malicious user. In order to detect the
user, the data owner could create a different ciphertext graph with different basic keys
for each authorized user. Although this does not prevent a user from both forwarding
authorization keys together with the ciphertext graph, the data owner is at least able to
determine the malicious user. However, using different keys for each user increases the
number of keys that the data owner must manage.

5.10.4. Refining Query Authorizations

Query authorization in T-Store is currently restricted to distributing individual autho-
rization keys to users. An authorization key defines the basic matching conditions of a
single SPARQL triple pattern. However, as described in Section 5.1.4, SPARQL queries
are more complex and do not only consist of a single triple pattern. Instead, they have a
query algebra with an arbitrary number of triple patterns and a query form that defines
the format of the query result. Consequently, when authorizing a user to apply queries
to a ciphertext graph, the data owner should be able to precisely define the complete
SPARQL query that is being authorized. In particular, the data owner should be able
to specify all triple keys of a query algebra as well as a corresponding query form in such
a way that all triple keys and the query form can only be used in combination with each
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other. I. e., it must not be possible for a user to extract a triple key from one authorized
query and include it in another query or to replace the query form of an authorized
query with an alternative query form.

In order to support more precise query authorizations, the authorization mechanism
of T-Store must be further improved. This includes the implementation and enforcement
of join operations as described in Section 5.9.4 as well as the enforcement of query forms.
Enforcing join operations prevents an authorized user from applying an individual triple
key to a ciphertext graph without applying the other triple keys of the query as well. This
prohibits the user from receiving any temporary query results. Enforcing a query form
ensures that the query result does not provide any more information about the plaintext
triples than the data owner has originally intended. For example, the query form of
a SELECT query may only return the variable bindings of a single query variable and
hide the bindings of all other variables that are defined in the triple keys. In summary,
enforcing join operations and query forms ensures that a user can only apply a query to
a ciphertext graph if this exact query has been authorized by the data owner.

5.10.5. Revoking Basic Keys and Ciphertexts

The data owner uses eight different basic keys for creating a ciphertext graph which is
either published on the web or sent to all authorized users. If a basic key is compromised,
it should be revoked since the confidentiality of the plaintext graph can no longer be
guaranteed. In addition, the ciphertext graph should be revoked as well since the data
owner can no longer manage the parties who apply queries to it. However, T-Store does
not support the revocation of basic keys or ciphertext graphs. Once a ciphertext graph
has been made available, it can no longer be revoked. Since basic keys are bound to a
particular ciphertext graph, they cannot be revoked as well or replaced with new keys. In
general, any offline approach for searching in encrypted data suffers from this drawback
as it does not use a central system which regulates all access to the ciphertext data. In
contrast, online approaches such as CryptDB [235], Prob-RPE [259], and Y. Yang et
al. [315] support the revocation of query authorizations but require a central server for
storing the data. To circumvent the problem of key revocation, both the data owner and
all authorized users must ensure that their key material is safe and cannot be accessed
by any unauthorized party.

5.10.6. Additional Support for the SPARQL Algebra

The current design of T-Store only supports a small fragment of the SPARQL alge-
bra [140] and is limited to matching triple patterns against a ciphertext graph. However,
SPARQL also provides additional features such as filters, solution sequence modifiers,
and aggregates. A filter applies a boolean expression to each solution mapping of a
solution sequence and removes all mappings which do not match the expression. Filters
allow, e. g., value comparisons, type checking, and regular expressions. They can be in-
tegrated into T-Store by using functional encryption [43] which supports the application
of arbitrary functions to ciphertext data. Solution sequence modifiers are evaluated on
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all solution mappings of a solution sequence and affect the whole sequence. An example
modifier is ORDER BY which sorts all solution mappings in ascending or descending order.
Applying this modifier requires order-preserving encryption which ensures that the order
of the ciphertexts is the same as the order of their corresponding plaintexts. To sup-
port ORDER BY, T-Store can be combined with approaches which use order-preserving
encryption such as [304, 137]. Aggregates apply aggregation functions to all solution
mappings of a solution sequence. Example aggregates are SUM, which adds up numerical
literals, and AVG, which computes the mean value of such literals. Both aggregates can
be supported by integrating approaches for homomorphic encryption [111] into T-Store.
Example approaches which support aggregates on ciphertext data include [76, 126].

5.11. Summary

This chapter has presented T-Store, an approach for applying SPARQL queries to en-
crypted RDF graphs. A plaintext graph is encrypted by a data owner who authorizes
different users to apply queries to the resulting ciphertext graph. T-Store supports query
templates which represent sets of similar queries sharing the same query parameters. In-
stead of authorizing each query individually, the data owner can use a query template
and allow a user to define the remaining query parameters herself. T-Store limits the
communication between the data owner and an authorized user to a minimum and allows
the user to conduct the query processing offline on her local system. Query processing is
solely based on conducting cryptographic operations on the ciphertext graph and does
not need a trusted computing device at the user’s side. Query results are exact and
do not require any post-processing conducted by the user. Apart from an authorized
user, all other parties are prohibited from accessing any plaintext triples of the queried
graph. Thus, T-Store provides confidentiality of the graph and answers research ques-
tion RQ.1. Although the approach fulfills most of its requirements, it still has some
drawbacks which may affect a graph’s confidentiality. Eliminating these drawbacks and
enhancing T-Store with additional features is left for future work.
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Conclusion

This thesis has presented three different security mechanisms for achieving secure Seman-
tic Web data management. The mechanisms implement the four security requirements
confidentiality, integrity, authenticity, and compliant availability of Semantic Web graph
data. The first security mechanism is InFO, a policy language for regulating infor-
mation flow in open and distributed networks. A policy defines the conditions under
which Semantic Web data is accessible and contains all details for technically enforc-
ing them. InFO implements compliant availability of Semantic Web data and answers
research question RQ.4. The second security mechanism is Siggi, a formal framework
for digitally signing arbitrary Semantic Web graphs. A graph’s signature is invalidated
if the graph is modified by an unauthorized party. This affects the graph’s integrity
and authenticity since its original creator has not approved of the modifications. Thus,
Siggi implements integrity and authenticity of Semantic Web data and answers research
questions RQ.2 and RQ.3. The third security mechanism is T-Store, an approach for
searching in encrypted Semantic Web data. Only authorized parties are able to access
particular triples of a plaintext graph by applying queries to its corresponding ciphertext
graph. At the same time, all other triples remain inaccessible. Thus, T-Store implements
confidentiality of Semantic Web graphs and answers research question RQ.1. The rest
of this chapter describes how the three security mechanisms are used for implementing
the scenarios presented in Chapter 2, summarizes their main contributions, and outlines
possible future work.

6.1. Implementing the Scenarios

The scenario for regulating Internet communication defined in Section 2.1 involves differ-
ent authorities which create regulation policies and distribute them between each other.
The policies are created with InFO and describe allowed and prohibited communication
flow. In order to ensure the integrity and authenticity of a policy when transmitting it to
another authority, each policy is signed by its creator using the graph signing framework
Siggi. InFO policies are enforced by different communication systems which maintain a
log database of all regulated transmissions. The log database is encrypted with T-Store
in order to protect the log entries’ confidentiality and to ensure that only authorized
parties can retrieve particular entries. The scenario for securing medical data records in
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electronic healthcare is covered in Section 2.2 and focuses on a patient who manages her
own medical records. These records are encrypted with T-Store in order to ensure their
confidentiality. Only medical professionals can access specific records after being autho-
rized by the patient. In addition to the patient’s medical records, medical professionals
create medical records as well which are transmitted between different medical institu-
tions. Before transmitting a medical record, it is signed with Siggi in order to ensure
the record’s integrity and authenticity and prevent it from any unauthorized modifica-
tions. InFO is used to ensure that the signed records are only sent to other medical
institutions via an encrypted communication channel. At the same time, InFO blocks
any other transmission of medical records.

6.2. Summary of the Main Contributions

InFO, Siggi, and T-Store achieve confidentiality, integrity, authenticity, and compliant
availability of Semantic Web data in open and distributed networks such as the Internet.
Such networks are not regulated by a single authority which defines specific restrictions
on the network’s components and usage. Instead, they have a heterogeneous environment
with different computer systems and data formats. InFO is designed for creating policies
which are implemented in networks without a central regulatory authority. In contrast to
other policy language, InFO policies can be enforced by various communication systems
such as application-level proxy severs, name servers, and routers. This allows it to
apply InFO policies directly to the Internet without requiring any specific regulation
systems. InFO’s modular and extensible design allows it to support additional enforcing
systems as well. An InFO policy is enriched by human-readable background information
which covers the policy’s organizational motivation and its legal justification. In order
to precisely describe such information, InFO allows to integrate different legal ontologies
which provide a rich vocabulary for various legal scenarios. Although some other policy
languages also allow organizational background information to be included into a policy
as well, their support for legal information is very limited. InFO supports a conflict
resolution mechanism for resolving conflicts of contradicting rules within one or more
policies. This is especially important in open and distributed networks in which policies
are created by different authorities with different intentions.

Siggi defines a generic signature pipeline which can be configured with various algo-
rithms to achieve different features. The generic design of the pipeline also supports
the creation of new algorithms by adopting the framework’s formal specification. The
flexible configurability of Siggi allows it to be used in heterogeneous environments where
there is no standard set of algorithms that are used by all authorities. Instead, each au-
thority may use its own configuration of the framework. Siggi supports iterative signing
of graph data by signing already signed data again. This can be used for provenance
tracking in which each party receives a signed graph, signs it again, and sends it to the
next party. A signature created with Siggi only covers a signed graph’s semantics and
not its syntax. Therefore, the signature does not rely on a particular serialization of the
graph and is still valid after re-encoding the graph with a different serialization format.
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For this reason, the signature is permanently attached to the signed data and does not
rely on a secure communication channel. The signature value can be accompanied with
additional metadata which further describes its creation such the date and time the
graph was signed or the name of the signing party.

T-Store distinguishes between a data owner who encrypts a plaintext graph and au-
thorized users who perform queries on the resulting ciphertext graph. The approach
requires only little communication between the data owner and a user. Instead of au-
thorizing each query individually, similar queries can be combined into query templates.
A query template is an incomplete query which must be further specified by an autho-
rized user with additional query parameters before applying it to the ciphertext graph.
Query processing is conducted offline by the user without involving any online system
or a trusted system located at the user’s side.

The main contributions of this thesis are available online at https://github.com/

akasten/. InFO is provided as a set of OWL ontologies which also include the three
domain ontologies for application-level proxy severs, name servers, and routers. In addi-
tion, the mapping ontologies of the legal ontologies and the content classification schemes,
which are further described in Appendix B, are available as well. Siggi is available as
the source code of its prototypical Java implementation which covers both the generic
signing framework and the four example configurations discussed in Section 4.4. Fur-
thermore, the signature ontology which is used by the assembly function of Siggi and
further described in Appendix C is also provided. T-Store is available as the source code
of its two prototypical Java implementations which cover the two variants T-Store BSC
and T-Store NDX. In addition, the SPARQL queries used for evaluating the two variants
as described in Section 5.6.1 as well as the extended log format ontology, which is used
in the scenario of T-Store and further described in Appendix D, are also available.

6.3. Outlook and Future Work

All three security mechanisms have been prototypically implemented, applied to two
example scenarios, and evaluated against their respective requirements. However, all
three mechanisms can still be improved and further analyzed. InFO can be evaluated
by simulating a large computer network with several different communication end nodes
such as web servers and client systems as well as intermediary communication nodes
like routers and application-level proxy servers. The intermediary nodes can be used
as enforcing systems to implement different regulation policies. Such a simulation can
assess the scalability of InFO policies and its enforcing systems in a larger network.
In addition, it can provide general insights into large scaled network regulations and
possible side-effects. Siggi can be used as a basis to provide various applications for
securing integrity and authenticity of Semantic Web graphs. An example application
is provenance tracking of signed graph data which allows it to trace the graph’s path
along different authorities. Furthermore, Siggi can be used for applications which aim at
providing trust between different interacting parties. Finally, the framework can also be
integrated into ontology editors to provide permanent signatures for the created graph
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data. Similar to Siggi, T-Store can also be used as a foundation to provide different
applications for securing Semantic Web data. Example applications are outlined in this
thesis and cover an encrypted log database and a confidential storage for medical records.
In addition, T-Store’s prototypical implementation can be further extended to create a
generic triple store which supports arbitrary SPARQL queries on encrypted graphs and
restricts access to particular triples to authorized users only.
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Algorithms and Domain Ontologies of the
InFO Policy Language

This appendix provides additional details on the InFO policy language which is described
in Chapter 3. In particular, it describes different algorithms for resolving conflicts be-
tween two or more flow control rules. These algorithms are generic and can be used
within different application domains. Thus, they are part of InFO’s Technical Regula-
tion patterns. Apart from these algorithms, this appendix also provides further details
on the three domain-specific extensions for implementing InFO policies on routers, name
servers, and proxy servers. These details cover specific flow control rules as well as ad-
ditional algorithms for resolving conflicts.

A.1. Generic Algorithms for Resolving Conflicts

The Technical Regulation of InFO defines six different types of algorithms for resolving
conflicts between flow control rules of one or more flow control policies. The conflicts are
distinguished between modality conflicts and application specific conflicts [192]. Modal-
ity conflicts exist between two flow control rules if one rule allows a particular communi-
cation flow and the other rule prohibits it. In contrast, application specific conflicts exist
between an enforcing system and any flow control rule which cannot be completely inter-
preted by this enforcing system. The algorithms of the Technical Regulation are used in
the Flow Control Policy Pattern described in Section 3.3.4 and in the Flow Control Meta-
Policy Pattern described in Section 3.3.5. They are part of a flow control policy or a flow
control meta-policy. The different types of algorithms are represented by the classes Lo-
calNonApplicabilityAlgorithm, LocalConflictResolutionAlgorithm, GlobalNon-
ApplicabilityAlgorithm, GlobalConflictResolutionAlgorithm, RulePriorityAl-
gorithm, and PolicyPriorityAlgorithm. Particular algorithms are modeled as sub-
classes of these generic classes. In order to better distinguish between the different al-
gorithms and to avoid name clashes, each type of algorithm is associated with a unique
namespace. All algorithms are evaluated by the enforcing system which implements
the flow control regulation. The detailed process of resolving conflicts is described in
Section 3.3.5.
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A LocalNonApplicabilityAlgorithm solves application-specific conflicts within a
single flow control policy. The Technical Regulation of InFO defines the class Discard-
NonApplicableRuleAlgorithm as a particular instance of such an algorithm. The algo-
rithm removes all flow control rules from the policy which cannot be interpreted by the
policy’s enforcing system. Other algorithms for resolving application-specific conflicts of
a single policy are not provided. However, it is also possible to add new algorithms due
to InFO’s open design. GlobalNonApplicabilityAlgorithms solve application-specific
conflicts of one or more flow control policies. Particular instances are DiscardNonAp-

plicableRuleAlgorithm and DiscardNonApplicablePolicyAlgorithm. The first al-
gorithm has the same semantics as its local counterpart1 and removes all conflicting rules
while leaving all other rules intact. On the other hand, the second algorithm removes
all policies which contain at least one conflicting rule.

LocalConflictResolutionAlgorithms resolve modality conflicts between contradict-
ing flow control rules of the same policy. InFO’s Technical Regulation provides the class
DiscardConflictingRulesAlgorithm as an example of such algorithms. The algo-
rithm resolves modality conflicts by removing all affected rules from a policy. Similarly,
algorithms of type GlobalConflictResolutionAlgorithm resolve modality conflicts be-
tween contradicting flow control rules of the one or more policies. Specific algorithms
are DiscardAffectedRulesAlgorithm and DiscardAffectedPoliciesAlgorithm. The
first algorithm removes all conflicting rules and leaves all other rules intact while the
second algorithm removes all policies which contain at least one conflicting rule.

PolicyPriorityAlgorithms define the order of evaluating different flow control poli-
cies by the same enforcing system. PreferLatestPolicyAlgorithm states that newer
policies must be preferred to older policies and PreferOldestPolicyAlgorithm prefers
older policies instead of newer policies. The algorithm EvaluatePolicyOrderingAlgo-

rithm requires an explicit order between policies with the properties follows and/or
precedes and states that this order shall be evaluated. Similarly, RulePriorityAlgo-
rithms define the order of evaluating the rules of a particular policy. EvaluateRuleOr-
deringAlgorithm requires an explicit order between the rules and evaluates this order.

A.2. Details of the Router Ontology

The Router Ontology is a domain-specific extension of the InFO policy language for
routers. It provides several concepts and axioms for describing flow control policies
which shall be enforced by these network nodes. The concepts cover router-specific flow
control rules and rule priority algorithms. New patterns are not defined in the ontology.

A.2.1. Flow Control Rules

The Router Ontology refines the generic allowing flow control rule and the denying flow
control rule of the Flow Control Rule Pattern and the redirecting flow control rule of

1Please note that both algorithms share the same local name but have different URIs. Therefore, their
fully qualified name is unique and name clashes are prevented.
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the Redirecting Flow Control Rule Pattern with router-specific concepts. Each of the
refined rules requires a router as its enforcing system and may also require additional
parameters. An allowing flow control rule explicitly allows a sender to communicate with
a receiver. Further refinements of the generic class AllowingFlowControlRuleMethod

define how the sender and receiver shall be identified. The Router Ontology defines the
following allowing flow control rules:

IPAddressAllowingRuleMethod

This rule explicitly permits a communication between a sender and a receiver based
on the IP addresses of the two systems. The rule requires at least one IP address.

PortNumberAllowingRuleMethod

This rule explicitly permits a communication between a sender and a receiver based
on the port numbers they use for establishing their communication channel. As
each of the two communication systems choses their own port number, the port
number is directly associated with each system and not with the communication
channel. The rule requires at least one port number.

SocketAddressAllowingRuleMethod

This rule explicitly permits a communication between a sender and a receiver based
on their sockets of the communication channel. A socket address consists of an IP
address and a port number. The rule requires at least one IP address and one port
number which form the socket address.

TransportLayerProtocolAllowingRuleMethod

The rule explicitly permits a communication between a sender and a receiver based
on the transport layer protocol of their communication channel. Example transport
layer protocols are TCP and UDP. The rule requires at least one transport layer
protocol to be specified.

A denying flow control rule prevents a sender from communicating with a receiver.
Further refinements of the generic class DenyingFlowControlRuleMethod define how
the sender and receiver shall be identified. The Router Ontology defines the following
denying flow control rules:

IPAddressBlockingRuleMethod

This rule prohibits a communication between a sender and a receiver based on
their IP addresses. The rule requires at least one IP address.

PortNumberBlockingRuleMethod

This rule prohibits a communication between a sender and a receiver based on
the port numbers they use for establishing their communication channel. The rule
requires at least one port number to be specified.

SocketAddressBlockingRuleMethod

This rule prohibits a communication between a sender and a receiver based on
the socket addresses which they use for establishing their communication channel.
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The rule requires at least one IP address and one port number which form a socket
address.

TransportLayerProtocolBlockingRuleMethod

This rule prohibits a communication between a sender and a receiver based on the
transport layer protocol of their communication channel. The rule requires at least
one transport layer protocol.

A redirecting flow control rule prevents a sender from communicating with a receiver by
redirecting it to a different receiver. Further refinements of the generic class Redirect-
ingFlowControlRuleMethod define the parts of the original receiver’s address that shall
be replaced with other address information. The Router Ontology defines the following
redirecting flow control rules:

IPAddressRedirectingRuleMethod

This rule prohibits a communication between a sender and a receiver by redirecting
the sender to a different receiver with another IP address. The rule requires at
least one IP address as the redirection target.

PortNumberRedirectingRuleMethod

This rule prohibits a communication between a sender and a receiver by redirecting
the sender to a different receiver with another port number. The IP address of the
original receiver may stay the same. The rule requires at least one port number as
the redirection target.

SocketAddressRedirectingRuleMethod

This rule prohibits a communication between a sender and a receiver by redirecting
the sender to a different receiver with another IP address and another port number.
The rule requires at least one IP address and one port number which form the
socket address of the redirection target.

A.2.2. RulePriorityAlgorithms

The Router Ontology defines two additional rule priority algorithms which can be used
together with the generic algorithms described in Appendix A.1. Other types of algo-
rithms are not provided by the Router Ontology. The provided algorithms are Prefer-

ShortestSubnetMaskAlgorithm and PreferLongestSubnetMaskAlgorithm which are
both modeled as subclasses of RulePriorityAlgorithm. The two algorithms operate
on network addresses and thus only affect flow control rules which regulate the access to
computer networks. Single network systems such as clients and servers are not affected.
The first algorithm sorts all flow control rules in ascending order according to the subnet
mask of the regulated network’s IP address. The first element in the resulting order has
the shortest subnet mask. The shorter the subnet mask of a computer network is, the
more nodes the network contains. Thus, the algorithm prefers flow control rules which
cover larger computer networks to such rules which regulate access to smaller networks.
The second algorithm is inverse to the first algorithm. It also sorts all flow control rules

226



Details of the Name Server Ontology Section A.3

in descending order according to the subnet mask of the regulated network. However,
the algorithm prefers longer subnet masks and thus smaller networks.

A.3. Details of the Name Server Ontology

The Name Server Ontology is a domain-specific extension of the InFO policy language for
name servers. It provides several concepts and axioms for describing flow control policies
which shall be enforced by such systems. The concepts cover name server-specific flow
control rules and rule priority algorithms. New patterns are not defined in the ontology.
The flow control rules and algorithms of the Name Server Ontology operate on domains
and domain names. A domain is a hierarchically organized tree in the domain name
system and consists of several domain names. Each domain name corresponds to an
individual nodes in the tree. Domains are associated with computer networks while
individual domain names represent single computer systems. A domain is identified by
a domain name which corresponds to the root node of the tree.

A.3.1. Flow Control Rules

The Name Server Ontology refines the generic allowing flow control rule and the denying
flow control rule of the Flow Control Rule Pattern and the redirecting flow control
rule of the Redirecting Flow Control Rule Pattern with name server-specific concepts.
Each of the refined rules requires a name server as its enforcing system and may also
require additional parameters. An allowing flow control rule explicitly allows a sender to
communicate with a receiver. Further refinements of the generic class AllowingFlow-

ControlRuleMethod define how the sender and receiver shall be identified. The Name
Server Ontology defines the following allowing flow control rules:

DomainAllowingRuleMethod

This rule explicitly permits a communication between a sender and a receiver
based on their domains. The rule requires at least one domain name which is the
domain’s root node.

DomainNameAllowingRuleMethod

This rule explicitly permits a communication between a sender and a receiver based
on their domain names. The rule requires at least one domain name.

A denying flow control rule prevents a sender from communicating with a receiver.
Further refinements of the generic class DenyingFlowControlRuleMethod define how the
sender and receiver shall be identified. The Name Server Ontology defines the following
denying flow control rules:

DomainBlockingRuleMethod

This rule prohibits a communication between a sender and a receiver based on
their domains. The rule requires at least one domain name which corresponds to
the domain’s root node.
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DomainNameBlockingRuleMethod

This rule prohibits a communication between a sender and a receiver based on
their domain names. The rule requires at least one domain name.

A redirecting flow control rule prevents a sender from communicating with a receiver by
redirecting to a different receiver. Further refinements of the generic class Redirect-

ingFlowControlRuleMethod define the parts of the original receiver’s domain or domain
name that shall be replaced with other address information. The Name Server Ontology
defines the following redirecting flow control rules:

DomainRedirectingRuleMethod

This rule prohibits a communication between a sender and a receiver by redirecting
the sender to a different domain. The original receiver is identified by its domain
which is represented by the domain name of its root node. Apart from this domain
name, the rule also requires another domain name which identifies the domain used
as the redirection target.

DomainNameRedirectingRuleMethod

This rule prohibits a communication between a sender and a receiver by redirecting
the sender to a different domain name. The original receiver is identified by its
domain name. Apart from this domain name, the rule also requires another domain
name which is used as the redirection target.

A.3.2. RulePriorityAlgorithms

The Name Server Ontology extends the set of generic rule priority algorithms described
in Appendix A.1 with four additional algorithms. Other types of algorithms are not
provided. The ontology provides the following rule priority algorithms:

PreferDomainNameToDomainAlgorithm

This algorithm states that flow control rules regulating domains names shall be
preferred to such rules which cover whole domains. Thus, the algorithms prefers
rules which regulate the access to single computer systems to such rules which
cover whole networks.

PreferDomainToDomainNameAlgorithm

This algorithm states that flow control rules regulating whole domains shall be
preferred to such rules which cover single domain names. Thus, the algorithm
prefers rules which regulate the access to computer networks. Using this algorithm
is not recommended as it may lead to overblocking by discarding more precise flow
control rules. It is mainly included in the Name Server Ontology for reasons of
completeness.

PreferLongestDomainNameAlgorithm

This algorithm sorts all flow control rules which are based on domain names in
descending order according to the length of their domain name. Thus, the first
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rule of the resulting order has the longest domain name. The length of a domain
name is measured by the number of labels it contains. A label corresponds to the
string between two dots in a domain name. The algorithm basically prefers more
precise rules which affect less computer systems.

PreferShortestDomainNameAlgorithm

This algorithm sorts all flow control rules which are based on domain names in
ascending order according to the length of their domain name. Thus, the first rule
of the resulting order has the shortest domain name. This algorithm essentially
prefers more imprecise rules which affect more computer systems. Using this al-
gorithm is not recommended as it may lead to overblocking. It is included in the
Name Server Ontology for reasons of completeness.

A.4. Details of the Application-Level Proxy Ontology

The Application-Level Proxy Ontology is a domain-specific extension of the InFO policy
language for proxy servers. It provides several concepts and axioms for describing flow
control policies which shall be enforced by these servers. The concepts cover proxy
server-specific flow control rules and rule priority algorithms. The ontology also defines
a new pattern for describing denying flow control rules which modify the original content.

A.4.1. Flow Control Rules

The Application-Level Proxy Ontology refines the generic allowing flow control rule
and the denying flow control rule of the Flow Control Rule Pattern and the replacing
flow control rule of the Replacing Flow Control Rule Pattern with proxy server-specific
concepts. Each of the refined rules requires a proxy server as its enforcing system and
may also require additional parameters. Furthermore, the ontology also introduces the
Content Modifying Rule Pattern as a specialization of the Flow Control Rule Pattern.
An allowing flow control rule explicitly allows a sender to communicate with a receiver
by transmitting content via a channel. Further refinements of the generic class Allow-

ingFlowControlRuleMethod define how the transmitted content shall be identified. The
Application-Level Proxy Ontology defines the following allowing flow control rules:

URLAllowingRuleMethod

This rule explicitly permits the transmission of content that is identified by its
URL. The rule requires at least one URL.

HashValueAllowingRuleMethod

This rule explicitly permits the transmission of content that is identified by its
hash value. The rule may be used for regulating access to content independent
from its URL. Even if the same content is provided at different URLs, its hash
value remains the same. Thus, this rule is more robust than rules based on URLs.
The rule requires at least one hash value.
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FileExtensionAllowingRuleMethod

This rule explicitly permits the transmission of content based on its file extension.
Example file extensions are .jpg for JPEG images and .mp3 for MP3 audio files.
The rule requires at least one file extension.

MIMETypeAllowingRuleMethod

This rule explicitly permits the transmission of content based on its MIME type.
A MIME type [112] consists of a type and a subtype and can be used for describing
the format of a file. Example MIME types are image/jpeg for JPEG images and
audio/mp3 for MP3 audio files. The rule requires at least one MIME type.

A denying flow control rule prohibits the transmission of content between a sender and a
receiver. Further refinements of the generic class DenyingFlowControlRuleMethod de-
fine how transmitted content shall be identified. The Application-Level Proxy Ontology
defines the following denying flow control rules:

URLBlockingRuleMethod

This rule prohibits the transmission of content that is identified by its URL. The
rule requires at least one URL.

Hash value blocking RuleMethod

This rule prohibits the transmission of content that is identified by its hash value.
The rule requires at least one hash value.

FileExtensionBlockingRuleMethod

This rule prohibits the transmission of content based on its file extension. The
rule requires at least one file extension.

MIMETypeBlockingRuleMethod

This rule prohibits the transmission of content based on its MIME type. The rule
requires at least one MIME type.

A replacing flow control rule prohibits the transmission of content between a sender
and a receiver by exchanging the original content with other content. The Application-
Level Proxy Ontology defines the class FileReplacingRuleMethod as a subclass of the
generic class ReplacingFlowControlRuleMethod. The rule prohibits the transmission
of the original content by replacing the file to be transmitted with a different, predefined
file. This file is fixed and must exist before the rule is applied. The rule may be used for
replacing certain images with another image providing an explanation for the reasons of
the image blocking. Other rules for replacing the transmitted content are not provided
by the Application-Level Proxy Ontology. However, the ontology also defines a pat-
tern for modifying the original content to be transmitted. This pattern is the Content
Modifying Rule Pattern which is depicted in Figure A.1. The pattern allows to deny a
particular communication flow by modifying the original content with a specified modifi-
cation algorithm. In contrast to the FileReplacingRuleMethod, a content modification
rule does not use a predefined file as the replacement target. Instead, it requires the
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Figure A.1.: Content Modifying Rule Pattern.

computation of such a target for each content file. The Content Modifying Rule Pattern
extends the Flow Control Rule Pattern with a content modification algorithm and op-
tional modification parameters. These classes allow to describe the algorithm used for
modifying the original content as well as a list of additional modification parameters.
The Application-Level Proxy-based Flow Control Ontology defines the following content
modification rules:

ImageRescalingRuleMethod

This rule prohibits the transmission of the original image by rescaling it with a
corresponding image rescaling algorithm. The transmitted content must be an
image file. Other files are not affected by this rule. The rule requires at least one
image rescaling algorithm.

ImageBlurringRuleMethod

This rule prohibits the transmission of the original image by blurring it with a
corresponding image blurring algorithm. The transmitted content must be an
image file. This rule may be used to conceal the content of adult images without
having to block the web page containing this image. The rule requires at least one
image blurring algorithm.

A.4.2. RulePriorityAlgorithms

The Application-Level Proxy Ontology extends the set of generic rule priority algorithms
described in Appendix A.1 with several additional algorithms. Other types of algorithms
are not provided by the Application-Level Proxy Ontology. Most of the provided rule
priority algorithms operate on URLs or URL fragments such as query strings. Rules
which are not based on URLs are not affected by these algorithms. The ontology provides
the following rule priority algorithms:

PreferSingleFileToWebSiteAlgorithm

This algorithm states that flow control rules regulating single web files shall be
preferred to such rules which covers whole websites. Websites are collections of
several related web pages. Thus, the algorithm basically states that more precise
rules shall be preferred to rules which affect too many web pages.
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PreferWebSiteToSingleFileAlgorithm

This algorithm states that flow control rules regulating whole websites shall be
preferred to such rules which only covers single web files. This algorithm essentially
prefers more imprecise rules which affect more web pages. Using this algorithm
is not recommended as it may lead to overblocking. It is mainly included in the
Application-Level Proxy Ontology for reasons of completeness.

PreferLongestDomainNameAlgorithm

This algorithm sorts the flow control rules in descending order according to the
length of their URL’s domain name. Thus, the first rule of the resulting order
has the longest domain name. The length of a domain name corresponds to the
number of labels it contains. The algorithm basically prefers more precise rules
which affect less web pages. The algorithm is semantically equivalent with the
algorithm of the Name Server Ontology of the same name.

PreferShortestDomainNameAlgorithm

This algorithm sorts the flow control rules in ascending order according to the
length of their URL’s domain name. Thus, the first rule of the resulting order
has the shortest domain name. This algorithm essentially prefers more imprecise
rules which affect more web pages. Using this algorithm is not recommended as it
may lead to overblocking. It is included in the Application-Level Proxy Ontology
for reasons of completeness. The algorithm is semantically equivalent with the
algorithm of the Name Server Ontology of the same name.

PreferLongestPathAlgorithm

This algorithm sorts the flow control rules in descending order according to the
length of their URL’s local path. Thus, the first rule of the resulting order has the
longest path. The length of a path corresponds to the number of directory sections
it contains. The algorithm basically prefers more precise rules which affect less web
pages.

PreferShortestPathAlgorithm

This algorithm sorts the flow control rules in ascending order according to the
length of their URL’s local path. Thus, the first rule of the resulting order has
the shortest path. The algorithm essentially prefers more imprecise rules which
affect more web pages. Using this algorithm is not recommended as it may lead to
overblocking. It is included in the Application-Level Proxy Ontology for reasons
of completeness.

PreferLongestQueryStringAlgorithm

This algorithm sorts the flow control rules in descending order according to the
length of their URL’s query string. Thus, the first rule of the resulting order has
the longest query string. The length of a query string corresponds to the number of
query parameters. The algorithm basically prefers more precise rules which affect
less web content.
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PreferShortestQueryStringAlgorithm

This algorithm sorts the flow control rules in ascending order according to the
length of their URL’s query string. Thus, the first rule of the resulting order has
the shortest query string. The algorithm essentially prefers more imprecise rules
which affect less web content. Using this algorithm is not recommended as it may
lead to overblocking. It is included in the Application-Level Proxy Ontology for
reasons of completeness.
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Appendix B.

Integrating External Vocabularies
into the InFO Policy Language

This appendix describes how legal ontologies and content labeling schemes are integrated
into the InFO policy language which is introduced in Chapter 3. InFO policies focus on
the technical implementation details for regulating information flow and associate them
with human-readable background information. This information can be further enriched
by integrating external legal ontologies and content labeling schemes into InFO which
support more elaborate descriptions. In particular, legal ontologies provide a vocabu-
lary for annotating a flow control policy with its organizational motivation and legal
justification whereas content labeling schemes further describe the regulated content.

B.1. Integrating Legal Ontologies into InFO

This section describes how legal ontologies can be integrated into the InFO pattern
system. The discussed legal ontologies are the Core Legal Ontology (CLO) [123, 118]
and the Legal Knowledge Interchange Format (LKIF) [146, 147]. The ontologies are
integrated by extending the patterns of the Legal Regulation and the Organizational
Regulation of InFO as introduced in Section 3.3.6. These patterns are the Code of
Conduct Pattern, the Flow Regulation Norm Pattern, and the Legislation Pattern. The
integration of CLO and LKIF is implemented by using the mapping ontologies CLOMap-
ping and LKIFMapping, respectively, as depicted in Figure 3.4. Each mapping ontology
imports the InFO patterns and the legal ontology to be integrated. It defines subclass
and subproperty relationships between the concepts and properties of InFO and the
legal ontology. Where necessary, the mapping ontology also defines additional classes
and properties as well as new ontology design patterns. The integration is conducted
according to the general process described in Section 3.3.7.

B.1.1. Integrating the Core Legal Ontology

The Core Legal Ontology (CLO) [123, 118] is a legal core ontology which provides various
classes, properties, and design patterns for modeling different legal aspects such as legal
documents or legal norms. It is based on DOLCE+DnS Ultralite (DUL) [119] and
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Figure B.1.: Important classes of the Core Legal Ontology. The classes are modeled
as subclasses of corresponding DUL classes. Dark gray identifies classes
from DUL whereas light gray marks classes of the Core Legal Ontology.

extends many classes and patterns of DUL. The most important classes of CLO are
depicted in Figure B.1. Figure B.1a shows how CLO extends the class Role with more
specific subclasses such as LegalFunction or LegalAsset. LegalFunction is a legal role
which is played by LegalSubjects. A LegalSubject is a particular type of social agent
such as an organization or institution and is part of a legal context. In contrast, the
class LegalAsset represents non-agentive objects such as the content which is regulated
by a flow control rule. Figure B.1b shows different specializations of the DUL classes
Description and Situation that are used in the DnS pattern [120]. CLO also uses this
pattern to describe different legal states of affairs. It defines the classes LegalDescrip-
tion and LegalFact as direct subclasses of Description and Situation, respectively,
and further specifies them for particular use cases. The individual subclasses are used
in the following patterns which are part of the CLOMapping ontology.

The Code of Conduct Pattern of InFO is depicted in Figure 3.11. It models an
organizational code of conduct which motivates a flow control policy. The CLOMapping
ontology extends this pattern with additional details and aligns it to the classes of CLO.
The extended pattern is based on DUL’s DnS pattern and depicted in Figure B.2. It
defines a code of conduct as a collection of basic principles. Each principle corresponds
to a behavioral rule which is adopted by the organization that is also the creator of the
code of conduct. Thus, the organization acts as a CodeOfConductCreator and imposes
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Figure B.2.: Integrating the Code of Conduct Pattern into the Core Legal Ontology.
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the obligation to follow its code of conduct on itself. The legal foundation of a code of
conduct is a LegalDescription such as a legal norm. A code of conduct is expressed
by a CodeOfConductText which is a particular type of InformationObject. According
to DUL’s information realization pattern as depicted in Figure 3.2g, the code’s textual
representation is realized as an InformationRealization. The conceptualization of a
code of conduct is represented by the pattern’s main class CodeOfConductDescription
which is satisfied by a corresponding CodeOfConductSituation.

The Flow Regulation Norm Pattern of InFO is depicted in Figure 3.12 and describes
the legal background of a flow control policy. Figure B.3a shows the pattern after hav-
ing aligned it to CLO. The modified pattern extends the Norm↔Case pattern of CLO
which distinguishes between legal norms and their application in a legal case. Similar to
the DnS pattern of DUL, a norm defines the different roles and parameters which are
relevant for a legal setting whereas a legal case relates these roles and parameters to par-
ticular entities such as Agents or non-agentive objects. The modified Flow Regulation
Norm Pattern defines FlowRegulationNorm as a subclass of LegalNorm and replaces the
classes of DUL with more specific classes of CLO. In particular, EventType is replaced by
its subclass LegalTask and LegalSubject is used instead of SocialAgent. A flow regu-
lation norm models a particular communication flow to be either legal or illegal by using
corresponding subclasses of LegalModalDescription. The class FlowRegulationNorm

only represents a conceptualization of a legal norm which regulates the legality of the
communication flow. A particular communication setting involving real-world entities
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Figure B.3.: Flow Regulation Norm Pattern and Regulation Definition Pattern. The
Regulation Definition Pattern defines concepts which are used by the Flow
Regulation Norm Pattern.
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Figure B.3.: Flow Regulation Norm Pattern and Regulation Definition Pattern. Con-
tinued from previous page.

is modeled by the class ContentTransmissionCase which is directly related to all such
entities. Such a case can be checked for its legality by comparing it with a correspond-
ing flow regulation norm. This allows it to decide whether nor not the execution of this
particular case (and thus executing the communication flow) is actually legal or illegal.
CLO generally distinguishes between the usage of legal concepts and their definition.
The Flow Regulation Norm Pattern uses different legal concepts which are defined in
the Regulation Definition Pattern depicted in Figure B.3b. The Regulation Definition
Pattern essentially provides a vocabulary for the Flow Regulation Norm Pattern.

CLO defines a law as a collection of several legal norms which regulate the same social
context [123]. An example law is the German Criminal Code [62] which consists of
different legal norms regulating the handling of crimes. One of these legal norms is §86
which prohibits the distribution of neo-Nazi material. The Legislation Pattern of InFO
models the process of altering a legal norm and supports different modifications such
as passing the norm, updating the norm, or suspending it. Figure B.4 shows how this
pattern is integrated into CLO. Its main class LegislationNorm is associated with all
concepts relevant for passing or modifying a legal norm. Its component Legislation-
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Figure B.4.: Integrating the Legislation Pattern into the Core Legal Ontology.
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Power states that the legal subject acting as the legislator has the right to alter the law.
The actual situation in which the law is altered is expressed as a LegislationFact.
This class is related to all real-world entities involved in the altering process.

B.1.2. Integrating the Legal Knowledge Interchange Format

The Legal Knowledge Interchange Format (LKIF) [146, 147] is a legal core ontology
which provides a foundation for translating legal knowledge between different sources.
In contrast to CLO, LKIF is not based on an upper ontology such as DUL and defines all
classes and properties itself. These classes include different types of roles, legal norms,
and legal documents. Figure B.5 depicts a fragment of LKIF’s role hierarchy. LKIF
distinguishes between Legal Roles, Social Roles, and Functions. Legal Roles and
Social Roles are played by Agents which are either natural persons or organizations.
All other entities are not represented as agents in LKIF. Functions refer to physical ob-
jects which are not agents and may be used to classify technical systems. Legal Roles
are primarily used to classify agents which are active in a legal context such as judges
or lawyers whereas Social Roles refer to social activities. Examples of social roles are
Organization Roles which can be used for describing a position within an organiza-
tion. However, the complete organization can have both legal roles and social roles.
The different roles and legal norms of LKIF are used in the following patterns which
align the organizational patterns and legal patterns of InFO to the legal ontology. The
alignment is implemented in the LKIFMapping ontology. As LKIF does not define any
particular patterns itself, the alignment focuses on introducing subclass relationships be-
tween classes of the InFO patterns and LKIF classes. In the following, classes marked in
dark gray refer to classes of DUL, light gray identifies classes of LKIF, and white classes
correspond to classes which are either part of InFO or the LKIFMapping ontology.

Legal_RoleFunction

Social_Legal_Role

Role

Social_Role 

Organisation_Role

Figure B.5.: Hierarchy of different legal roles in LKIF.

The Code of Conduct Pattern of InFO introduces the class CodeOfConductDescrip-

tion which defines the context of all relevant classes for describing an organizational
code of conduct. Figure B.6 shows how the pattern is aligned to LKIF. CodeOfCon-
ductDescription is modeled as a subclass of LKIF’s Norm which is used for allowing
or disallowing different things. Norm is a subclass of Mental Object which is similar
to SocialObject in DUL. The actual contents of a code of conduct are encoded as a
CodeOfConductText which is a particular type of legal document. As a code of conduct
is a self-imposed set of rules of a social entity such as an organization, its creator is
represented as a Social Role rather than a Legal Role. The properties for relating
a CodeOfConductDescription to its different entities are modeled according to the
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CodeOfConductCreator LegalFoundation

CodeOfConductDescriptionNorm

Agent

played_by

1

Norm

played_by

1

1

1

context

1..*

Code_of_Conduct

bears

1..*

RoleSocial_Role

Soft_Law Legal_Document

CodeOfConductText

Figure B.6.: Integrating the Code of Conduct Pattern into LKIF.

properties provided in LKIF. In particular, the property defines of DUL is replaced by
context and bears corresponds to the inverse property of isExpressedBy.

The Flow Regulation Norm pattern of InFO defines the legal state of a particular
communication flow. Figure B.7 depicts the pattern after having aligned it to LKIF. A
FlowRegulationNorm is a specialization of Norm which models how the transmission of
content of a specific topic is regulated by law. The norm either allows or disallows the
transmission by using corresponding subclasses of Normatively Qualified. Transmit-
ting regulated content is represented by two different actions which cover the content’s
consumption by a consumer and its offer by a provider. Each action requires an Agent

such as a natural person and an additional technical system such as a client computer in
order to be executed. The distinction between providing content and consuming content
and splitting both steps of the content’s transmission is necessary as LKIF restricts an
action to a single agent. However, a transmission usually involves two agents which
are the sender and the receiver. As LKIF does not support such complex actions, both
steps of the transmission are split into individual parts. In each part, the agent plays a
Legal Role whereas the technical system provides a function to fulfill the action. For
reasons of brevity, Figure B.7 only depicts the consuming action and its related entities.
The providing action is modeled similarly.

The Legislation Pattern of InFO describes how a legal norm is created, altered, or
suspended. Figure B.8 shows how the pattern is integrated into LKIF. The main class of
the pattern is LegislationNorm which covers all entities for describing how a legal norm
is modified. The norm essentially allows a legislator to perform the modification and is

FlowRegulationNorm Norm Normatively_Qualifiedqualifies 1..*

Allowed

Disallowed

Role RegulatedContent

Topic

played_by

1

InformationObject

played_by

1

RegulatedTopic

ContentConsumingType

Role

ContentConsumingSystem

played_by

TechnicalSystem

ContentConsumingAgent

played_by

1

Agent ContentConsumingAction

Function

played_by

1
actor1 participant 1..*

Legal_Role

1

1..*

context

1..*

Action

0..1 0..1 0..1

1

Figure B.7.: Integrating the Flow Regulation Norm Pattern into LKIF. For reasons of
brevity, the figure only shows how the pattern models the consumption
of content. Providing the content is modeled similar to its consumption.
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Legislator

played_by

1

Role

Legislative_Body

Right
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1
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1

1

1 1

context

1

actor resultLegislationAct 

Act_of_LawAction

Agent

Legal_Role

Norm

Figure B.8.: Integrating the Legislation Pattern into LKIF.

therefore modeled as a subclass of Right. LKIF provides the class Legislative Body as
a particular type of Agent which is specifically designed to represent legislators. Similar
to the original pattern, a LegislationAct corresponds to an action in which both the
legislative body and the altered norm participate. The legislative body conducts the
action which results in the altered norm.

B.2. Integrating Content Labeling Schemes into InFO

This section describes how different content labeling schemes are integrated into the
InFO policy language. The discussed content labeling schemes are the RTA label, age-
de.xml [264], and PICS [183]. The integration mainly focuses on the classification of
regulated Internet content by using the labeling schemes. It does not map every feature
of a labeling scheme into InFO as most of the additional features can already be expressed
with InFO’s vocabulary. The three content labeling schemes are integrated using the
mapping ontologies RTAMapping, AgeDeXmlMapping, and PICSMapping as depicted
in Figure 3.4. The integration of the different labeling schemes is conducted according
to the general process outlined in Section 3.3.8.

B.2.1. Integrating the RTA Label

The Restricted to Adults (RTA) label1 is a simple label for classifying web content as
adult content. The label is embedded into the classified web page directly or included in
the HTTP response when requesting the web page from a server. Figure B.9 shows how
the RTA label is integrated into InFO by using the RTAMapping mapping ontology. As
the RTA label is only a single string which is identical for all web content, the mapping
ontology defines a single instance of the class Topic from the Ontopic core ontology2.
This instance is identified as rtat-1 and is expressed by a word which contains the
string representation of the RTA label. Web content is classified as adult content by
associating it with the topic rtat-1 using the topic pattern of the Ontopic ontology
as depicted in Figure 3.3. Figure B.10 shows an example usage of the topic rtat-1

for classifying the two web sites wst-1 and wst-2 which are taken from the example
regulation of Section 3.4.4. Both web sites are also classified with the topic pt-1 which

1http://www.rtalabel.org, last accessed: 01/21/16
2http://ontologydesignpatterns.org/ont/dul/ontopic.owl, last accessed: 01/21/16
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rtat-1: Topic isExpressedBy rtal-1: Word "RTA-5042-1996-1400-1577-RTA"hasDataValue

Figure B.9.: RTAMapping ontology which defines an individual Topic.

wst-1: WebSite ur-1: URLRegionuq-1: URLQualityhasQuality hasRegion 'http://www.porntube.com/'hasURL

pt-1: Topic

wst-2: WebSite ur-3: URLRegionuq-3: URLQuality 'http://www.fundorado.de/'hasQuality hasRegion hasURL

rtat-1: Topic

isTopicOf

isTopicOf

isTopicOf

isTopicOf

overlappingTopic

Figure B.10.: Example usage of the RTAMapping ontology.

represents pornographic content. As most pornographic content is also adult content,
both topics overlap with each other.

B.2.2. Integrating age-de.xml

age-de.xml [264] uses a single XML file for classifying all web content of a web site with
corresponding age categories. In contrast to the RTA label, age-de.xml is not restricted
to particular age categories and supports the definition of arbitrary categories. An age
category indicates the minimum age that a person must have when requesting the related
web content. The XML file can contain different categories for each part of a web site
such as individual web pages, subdomains, or directories. Age categories defined with
age-de.xml are used by child protection software to regulate the access to web content
based on the age of the content consumer, i. e., the human Internet user. If the Internet
user is younger than the minimum age of the requested web content, access to the content
is blocked. In addition to the default blocking behavior, age-de.xml also allows to redirect
users of a particular age to another web page. This allows it to present underage users
and adult users different web pages even if their request is identical.

age-de.xml is integrated into InFO by using the AgeDeXmlMapping mapping ontology.
The ontology defines the class AgeLabel as a subclass of Topic for defining arbitrary
age labels. It also contains five different instances of this class which represent the age
categories of the German rating system organization Voluntary Self Regulation of the

Table B.1.: Example age categories of the AgeDeXmlMapping ontology. The categories
are based on the German FSK rating system and are instances of AgeLabel.

Age category Instance of AgeLabel

FSK ab 0 fsk-ab-0

FSK ab 6 fsk-ab-6

FSK ab 12 fsk-ab-12

FSK ab 16 fsk-ab-16

FSK ab 18 fsk-ab-18
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Figure B.11.: Age-Based Redirecting Flow Control Rule Pattern.

Movie Industry (Freiwillige Selbstkontrolle der Filmwirtschaft; FSK)3. The individual
instances are depicted in Table B.1. The redirection ability of age-de.xml is mapped
to the Age-Based Redirecting Flow Control Rule Pattern depicted in Figure B.11. The
pattern extends the Redirecting Flow Control Rule Pattern of InFO described in Sec-
tion 3.3.3 with additional attributes of the regulated communication. The attributes are
represented by the classes ContentConsumer and ContentConsumerSpecifier which
describe human consumers and their personal features such as their age. The pattern
can be used to create redirecting rules for Internet users of different ages.

B.2.3. Integrating PICS

PICS [183] allows to describe digital resources with more complex labels than the RTA
label or age-de.xml. A PICS label associates a digital resource with several ratings, each
of which contains an arbitrary number of attribute-value pairs. Each attribute covers a
particular feature of the labeled resource and the value defines the feature’s intensity.
PICS labels do not describe digital resources by associating them with static categories
of similar resources like the RTA label or age-de.xml. Instead, resources are described
by specifying their individual characteristics. This is similar to the DUL’s qualities
and quality region pattern [119] as described in Section 3.3.1. Thus, the integration of
PICS into InFO is also based on this design pattern. It is implemented by using the
PICSMapping mapping ontology which is depicted in Figure B.12. The ontology defines
the two classes PICSRatingAttribute and PICSRatingValue as subclasses of Quality

and Region, respectively. They represent a single PICS rating and associate it with
the labeled resource. A separate entity for PICS labels is not defined as such a label is
basically a collection of several ratings and does not provide any additional functions for
describing a digital resource.

3http://www.spio.de/, last accessed: 01/21/16
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RegionInformationObject QualityhasQuality hasRegion valuehasRegionDataValue

PICSRatingAttribute PICSRatingValuehasRatingValue 1 hasValue

1..*

hasPICSRating

1..*

1..*

Figure B.12.: PICSMapping ontology which extends the qualities and quality region
pattern of DUL.
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Appendix C.

Signature Ontology

This appendix describes a lightweight Signature Ontology which can be used with the
graph signing framework Siggi presented in Chapter 4. As described in Section 4.3, the
Signature Ontology is used by the assembly function αN to create a signature graph S.
The signature graph contains the signature value of a set of signed Named Graphs and all
information about how to verify this value. This includes the names of all sub-functions
of the graph signing function σN involved in the signature’s creation, the public key
for verifying the signature value, the identifiers of all signed graphs, and the actual sig-
nature value. The design of the Signature Ontology is based on the XML signature
standard [20] which defines an XML schema for describing signatures of XML docu-
ments. The Signature Ontology provides three different ontology design patterns [121]
for describing this information. These patterns are the Signature Pattern, the Graph
Signing Method Pattern, and the Certificate Pattern. The Signature Pattern covers the
basic information about a signature value, the Graph Signing Method Pattern covers
all functions that were used during its creation, and the Certificate Pattern describes
the public key certificate used for verifying the signature value. The Signature Ontology
is implemented using the Web Ontology Language (OWL) [301] and axiomatized using
Description Logics [16]. In order to be compliant with the Information Flow Control
Ontology described in Chapter 3, the patterns of the Signature Ontology are aligned
to the upper ontology DOLCE+DnS Ultralite (DUL) [119]. However, the Signature
Ontology can also be used separately from DUL.

C.1. Signature Pattern

The Signature Pattern is the main pattern of the Signature Ontology and depicted
in Figure C.1. It covers the basic information about how to verify a signature value.
The Signature Pattern links a signature value to the identifiers of the signed Named
Graphs, the graph signing function σN that was used for creating the signature value,
and the public key certificate which is used for its validation. The signature is validated
by applying the specified graph signing function σN to the signature value, the set
of Named Graphs, and on the public key kp contained in the public key certificate.
The detailed process of this verification is described in Section 4.3.9 as part of the
graph signing formalization. Both the signature value and the public key certificate
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are modeled as subclasses of DUL’s class InformationObject as they correspond to
abstract information entities. The Signature Pattern does not provide a specific class
for the signed Named Graphs. Instead, the OWL class Thing is used directly.

PublicKeyCertificate

InformationObject

Signature

hasSignatureValue

GraphSigningMethod

hasVerificationCertificate 1

hasGraphSigningMethod 1

Thing isSignatureOf1..*

Figure C.1.: Signature Pattern. Gray entities are either taken from the upper ontology
DOLCE+DnS Ultralite (DUL) [119] or from the OWL core vocabulary
and white entities are part of the Signature Ontology.

C.2. Graph Signing Method Pattern

The Graph Signing Method Pattern describes the particular sub-functions of the graph
signing function σN and is depicted in Figure C.2. The sub-functions of the graph
signing function σN are the canonicalization function for graphs κN , the serialization
function νN , the basic hash function λ and the hash function for graphs λN , the combin-
ing function for graphs %N , and the signature function ϕ. The Graph Signing Method
Pattern defines all these functions as a component of the graph signing function σN
by using DUL’s componency pattern [119]. All functions are modeled as subclasses of
DUL’s class Method. Thus, their names end with Method instead of Function.

Method

SignatureMethod

GraphCanonicalizationMethod

DigestMethod

GraphSerializationMethod

Description

GraphDigestMethod

GraphCombiningMethod

hasSignatureMethod

hasDigestMethod

hasGraphSerializationMethod

hasGraphCanonicalizationMethod

hasGraphDigestMethod

hasGraphCombiningMethod

GraphSigningMethod

Figure C.2.: Graph Signing Method Pattern. The pattern models the sub-functions of
the graph signing process as components of the graph signing function σN .

The Signature Ontology also defines several individuals, each of which represents a
particular implementation of a sub-function in the graph singing process. Each individual
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is identified by a unique URI and corresponds to exactly one algorithm. The individuals
correspond to the related work for signing graphs discussed in Section 4.1 and are listed
in Table C.1. The hash algorithm SHA-2 [218] is mapped to multiple individuals, each
of which covers a specific bit length of the resulting hash value. For example, SHA-2
with an output length of 224 bits corresponds to dm-sha224.

Table C.1.: Identifiers used in the Signature Ontology for the sub-functions of the graph
signing function σN . The identifiers correspond to the related work for
signing graph data discussed in Section 4.1.

Function Example Identifier

Canonicalization Function κN

Carroll [72] gcm-carroll-2003

Fisteus et al. [110] gcm-fisteus-2010

Hogan [148] gcm-hogan-2015

Kuhn and Dumontier [184] gcm-kuhn-2014

Sayers and Karp [261] gcm-sayers-2004

Serialization Function νN

N-Triples [25] gsm-n-triples

Turtle [27] gsm-turtle

N3 [34] gsm-n3

TriG [38] gsm-trig

TriX [75] gsm-trix

RDF/XML [26] gsm-rdf-xml

OWL/XML [210] gsm-owl-xml

Basic Hash Function λ

MD5 [250] dm-md5

SHA-224 [218] dm-sha224

SHA-256 [218] dm-sha256

SHA-384 [218] dm-sha384

SHA-512 [218] dm-sha512

Hash Function for Graphs λN

Melnik [200] gdm-melnik-2001

Carroll [72] gdm-fisteus-2010

Fisteus et al. [110] gdm-carroll-2003

Sayers & Karp [261] gdm-sayers-2004

Combining Function for Graphs %N sort and concatenate cm-sort-concat

Signature Function ϕ

ElGamal [97] sm-elgamal

RSA [251] sm-rsa

DSA [214] sm-dsa

C.3. Certificate Pattern

The Certificate Pattern is depicted in Figure C.3 and describes the details of the public
key certificate used for verifying a signature of a set of graphs. The pattern introduces the

247



Appendix C Signature Ontology

class PublicKeyCertificate as subclass of DUL’s InformationObject. The class Pub-
licKeyCertificate serves as a superclass for all different types of public key certificates.
This includes the class PGPCertificates for expressing PGP certificates [320] and the
class X509Certificates for expressing certificates of the X.509 format [82]. All public
key certificates are owned by an Agent known as the certificate’s subject. The subject
of a certificate can be identified by a hierarchically structured distinguished name [317].
Other attributes of a PublicKeyCertificate depend on the certificate’s type. For
example, X.509 certificates are issued by certification authorities which are also identified
by their distinguished names. A X.509 certificate can be uniquely identified by using its
serial number and the distinguished name of its issuer.

X509Certificate

hasSerialNumberhasIssuer1
PGPCertificate

PublicKeyCertificate

Agent

hasDistinguishedName

InformationObject

hasSubject0..1hasSubject 1

Figure C.3.: Certificate Pattern.
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Extended Log Format Ontology

This appendix describes a lightweight OWL ontology of the Extended Log Format [138].
The format is designed for monitoring HTTP communication between two different
computer systems such as client computers, proxy servers, and web servers. It can
describe all technical communication details of a single HTTP transmission. The format
has an open design which can be extended with additional fields in order to further
describe a recorded transmission. It can be used by web servers to monitor incoming
client requests or applied by proxy servers to log all HTTP communication between
several client computers and their contacted servers. A recorded HTTP transmission is
represented by a log entry which describes the transmission’s technical communication
details. A log entry consists of several fields, each of which covers a particular detail such
as the IP address of the client computer or the requested URL. Several log entries are
combined into log files which are usually stored at the system that conducts the logging.
Example web servers which support the Extended Log Format include the Microsoft web
server IIS1 and Oracle WebLogic [211].

The Extended Log Format Ontology provides an OWL ontology of the Extended Log
Format by mapping each of the format’s fields to ontological classes and properties. The
ontology is used in the example application of T-Store, an approach for searching in
encrypted RDF graphs which is covered in Chapter 5. The details of this application
are described in Section 5.8. The ontology has a lightweight design which is primarily
based on data properties. This allows the ontology to be used for creating simple log
files without an unnecessary overhead. The ontology defines the three classes Log-

File, LogEntry, and SummaryEntry as well as several data properties for specifying
their attributes. The names of the data properties derive from the specification of
the Extended Log Format [138]. Figure D.1 depicts the relations between all three
classes and their most important data properties. In addition to the depicted classes
and properties, the ontology can also be extended with additional properties. The class
LogFile represents a log file which consists of several log entries. A log file can be
further described by subproperties of logFileProperty. Examples of such properties
are logFileDate and logFileSoftware. logFileSoftware describes the software which
was used for creating the log file and logFileDate specifies the date and time when the

1See https://msdn.microsoft.com/en-us/library/ms525807\%28v=vs.90\%29.aspx, last accessed:
01/21/16
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LogEntry 

LogFile

SummaryEntry

hasEntry

Literal

logFileProperty

summaryEntryProperty

logEntryProperty

logEntrySystemProperty

logEntryHeaderProperty

logEntryCommunicationProperty

1

1..*

Figure D.1.: Fragment of the Extended Log Format Ontology. The ontology maps
the vocabulary of the Extended Log Format [138] to different ontological
classes and data properties. For reasons of brevity, the figure only shows
the most important data properties. Each of the depicted data properties
is further refined by more specific subproperties. Dashed arrows indicate
subproperty relationships between data properties.

log file was created. For reasons of brevity, the specific subproperties are not depicted
in Figure D.1.
LogEntry represents a particular log entry of a LogFile and is further described by

subproperties of logEntryProperty. Example properties include date and time for
storing the date and time of the entry, respectively. More specific properties are summa-
rized by using the subproperties logEntrySystemProperty, logEntryCommunication-
Property, and logEntryHeaderProperty. logEntrySystemProperty covers all data
properties for describing a single system involved in the recorded HTTP transmission.
Examples of such properties are cIp for storing the IP address of the client computer
and sDns for describing the domain name of the web server. The prefix c indicates that
a property refers to the client whereas s refers to the server. logEntryCommunication-
Property covers data properties which are not restricted to a single system and affect
both communicating systems at once. An example for such a property is csMethod which
describes the HTTP method the client system has used when sending its request to the
web server. The prefix cs indicates the direction of the transmitted message and states
that the client system (c) is the sender while the web server (s) is the receiver. Example
values of this data property are GET and POST [109]. logEntryHeaderProperty further
specifies a logEntryCommunicationProperty and covers all data properties for describ-
ing a particular header field in an HTTP message header. Examples of such properties
are scSetCookie and csCookie which are used for setting a cookie at the client system
and sending it back to the server, respectively. Again, the prefixes sc and cs indicate
the direction of the sent message. A SummaryEntry does not describe an individual
HTTP transmission. Instead, it summarizes recurring events which are described with
subproperties of summaryEntryProperty. An example property is count which defines
how many times the described event occurred. Additional properties of SummaryEntry

can be used for specifying the time frame of the counted events. [132]
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[56] Johannes Buchmann. Einführung in die Kryptographie, chapter 12. Kryptografis-
che Hashfunktionen, pages 191–202. Springer, 2008.

255



Bibliography
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[190] Ping Lin and K. Selçuk Candan. Hiding traversal of tree structured data from un-
trusted data stores. In Proceedings of the 2nd International Workshop on Security
In Information Systems (WOSIS’04), pages 314–323, 2004.
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