Secure Semantic Web Data Management

Confidentiality, Integrity, and Compliant Availability
in Open and Distributed Networks

Vom Promotionsausschuss des Fachbereichs 4: Informatik der Universitat
Koblenz-Landau zur Verleihung des akademischen Grades Doktor der
Naturwissenschaften (Dr. rer. nat.) genehmigte

Dissertation

vorgelegt von

Andreas Kasten

Vorsitzender des Promotionsausschusses
Prof. Dr. Ralf Lammel, Universitdt Koblenz-Landau

Vorsitzender der Promotionskommission
Prof. Dr. Steffen Staab, Universitat Koblenz-Landau

Berichterstatter
Prof. Dr. Riidiger Grimm, Universitiat Koblenz-Landau
Prof. Dr. habil. Ansgar Scherp,
Universitat Kiel und Leibniz-Informationszentrum Wirtschaft

Datum der wissenschaftlichen Aussprache
11.11.2016

Datum der Einreichung
30.05.2016

Abstract

Confidentiality, integrity, and availability are often listed as the three major requirements
for achieving data security and are collectively referred to as the C-I-A triad. Confiden-
tiality of data restricts the data access to authorized parties only, integrity means that
the data can only be modified by authorized parties, and availability states that the data
must always be accessible when requested. Although these requirements are relevant for
any computer system, they are especially important in open and distributed networks.
Such networks are able to store large amounts of data without having a single entity in
control of ensuring the data’s security. The Semantic Web applies to these characteristics
as well as it aims at creating a global and decentralized network of machine-readable
data. Ensuring the confidentiality, integrity, and availability of this data is therefore
also important and must be achieved by corresponding security mechanisms. However,
the current reference architecture of the Semantic Web does not define any particular
security mechanism yet which implements these requirements. Instead, it only contains
a rather abstract representation of security.

This thesis fills this gap by introducing three different security mechanisms for each of
the identified security requirements confidentiality, integrity, and availability of Semantic
Web data. The mechanisms are not restricted to the very basics of implementing each
of the requirements and provide additional features as well. Confidentiality is usually
achieved with data encryption. This thesis not only provides an approach for encrypting
Semantic Web data, it also allows to search in the resulting ciphertext data without
decrypting it first. Integrity of data is typically implemented with digital signatures.
Instead of defining a single signature algorithm, this thesis defines a formal framework
for signing arbitrary Semantic Web graphs which can be configured with various algo-
rithms to achieve different features. Availability is generally supported by redundant
data storage. This thesis expands the classical definition of availability to compliant
availability which means that data must only be available as long as the access request
complies with a set of predefined policies. This requirement is implemented with a mod-
ular and extensible policy language for regulating information flow control. This thesis
presents each of these three security mechanisms in detail, evaluates them against a set
of requirements, and compares them with the state of the art and related work.

Zusammenfassung

Als wichtigste Anforderungen an Datensicherheit werden oft Vertraulichkeit, Integritét
und Verfiigbarkeit genannt. Vertraulichkeit von Daten bedeutet, dass nur berechtigte
Parteien auf sie zugreifen konnen. Datenintegritiat erfordert, dass nur berechtigte Par-
teien die Daten dndern diirfen. Verfiigbarkeit von Daten bedeutet, dass auf die Daten
jederzeit bei Bedarf zugegriffen werden kann. Obgleich die Umsetzung dieser Sicherheits-
anforderungen fiir jedes Computersystem relevant ist, gilt dies insbesondere bei offenen
und verteilten Netzen. Solche Netze speichern grofle Mengen an Daten ohne eine zentrale
Instanz, die den sicheren Zugriff und die sichere Verarbeitung der Daten steuert. Das
Semantic Web teilt diese grundlegende Eigenschaft, da es das Erstellen eines globalen
und dezentralen Netzes von maschinenlesbaren Daten anstrebt. Auch fiir solche Daten
muss daher durch entsprechende Sicherheitsmafinahmen die Vertraulichkeit, Integritat
und Verfiigbarkeit garantiert werden kénnen. Obgleich die aktuelle Referenzarchitektur
des Semantic Webs durchaus das Umsetzen von Sicherheitsmafinahmen vorsieht, defi-
niert sie selbst noch keine konkreten Mafinahmen. Stattdessen enthélt sie lediglich einen
abstrakten Baustein, dem solche Mafinahmen zugeordnet werden kénnen.

Diese Arbeit stellt drei konkrete Sicherheitsmafinahmen vor, welche sich in die Re-
ferenzarchitektur des Semantic Webs einbetten lassen und die Anforderungen an die
Vertraulichkeit, Integritit und Verfiigbarkeit der Semantic-Web-Daten umsetzen. Die
einzelnen Mafinahmen setzen die Anforderungen dabei nicht minimalistisch um, son-
dern bieten zugleich noch weiterfithrende Funktionen. Vertraulichkeit von Daten wird
tiblicherweise durch Datenverschliisselung umgesetzt. Diese Arbeit stellt einen Ansatz
zum Verschliisseln von Semantic-Web-Daten vor, der zugleich auch ein Suchen auf den
verschliisselten Daten ohne vorhergehende Entschliisselung erlaubt. Datenintegritét wird
meist durch digitale Signaturen sichergestellt. Diese Arbeit definiert ein formales Rah-
menwerk zum Signieren beliebiger Semantic-Web-Daten, welches mit verschiedenen Al-
gorithmen flexibel konfiguriert werden kann. Verfiigbarkeit wird oft durch eine red-
undante Datenhaltung garantiert. In dieser Arbeit wird eine Erweiterung der klassi-
schen Definition von Verfiigharkeit verwendet, die als konforme Verfiigharkeit bezeichnet
wird. Konforme Verfiighbarkeit bedeutet, dass Daten nur dann bei einem Zugriffsversuch
verfiigbar sein miissen, wenn der Zugriff konform ist zu einem vordefinierten Regelsatz.
Diese Sicherheitsanforderung wird umgesetzt durch eine modulare und erweiterbare for-
male Sprache zum Beschreiben von Regelsétzen zur Steuerung von Informationsfliissen.
Jede der drei Sicherheitsmafinahmen wird in dieser Arbeit im Detail beschrieben, anhand
definierter Anforderungen evaluiert und mit verwandten Arbeiten verglichen.

Acknowledgments

Although a PhD thesis should officially be the work of the one person writing the thesis,
it is completely unrealistic to avoid any support of other people. Quite the contrary, not
asking for any kind of help and trying to solve all problems alone even contradicts with
the basic principles of scientific work which involves communication and interaction with
other researchers. As I do not want to offend anyone by not listing her or him on this
page, I will use a brute-force approach by simply listing all people who have helped me in
the past years with at least something related to this work. In order to avoid a large and
confusing list of names, all persons listed below are grouped according to their type of
assistance. First of all, I would like to thank my supervisors Ansgar Scherp and Riidiger
Grimm for their extensive support on this thesis and on any related scientific activities.
This includes paying the conference fees and the trip to the respective locations as
well. T would also like to thank all former co-workers of the University of Koblenz for
giving various types of advice and for enduring my annoying personality. As most of the
software and some related artifacts mentioned in this thesis were developed by students of
this university, I would like to thank them as well. In addition to the developed software,
they also provided helpful suggestions for improving the different security mechanisms
presented in this thesis. Finally, I have to thank all people who participated in the time-
consuming and tedious proofreading process. The different categories of thankfulness
and their respective participants are listed below, sorted in alphabetical order by last
name. Multiple categories per person are possible.

Supervisors
Riidiger Grimm and Ansgar Scherp

Former co-workers
Katharina Braunlich, Nico Jahn, Helge Hundacker, Brigitte Jung, Marco Krause,
Daniel Pahler, Daniela Simi¢-Draws, Stefan Stein, and Tim Wambach

University students
Alexander Balke, Stefan Becker, Felix Gorbulski, Katharina Grofier (née
Naujokat), Benjamin Hiick, Michael Kornas, Dominik Mosen, Michael Ruster,
Peter Schauf}, Artur Schens, Erwin Schens, Arne Fritjof Schmeiser, Johann
Tissen, and Rainer Weiflenfels

Proofreaders
Katharina Braunlich, Nicole Koéhler, Katharina Krause, Marco Krause, Johannes
Siebel, Daniela Simi¢-Draws, and Tim Wambach

Contents

1. Secure Data Management in the Semantic Web
1.1. Research Questions L
1.2. Contributions
1.3. Methodology

2. Scenarios for Secure Semantic Web Data Management
2.1. Regulating Internet Communication
2.1.1. Example Network Topology
2.1.2. Creating and Distributing Regulation Policies
2.1.3. Privacy Compliant Logging of Internet Activities
2.1.4. Summary of the Scenario
2.2. Securing Medical Data Records in Electronic Healthcare
2.2.1. Medical Data Records Used in Electronic Healthcare
2.2.2. Security Requirements for Medical Data Records
2.2.3. Example Medical Case
2.2.4. Summary of the Scenario

3. InFO: A Policy Language for Regulating Information Flow
3.1. State of the Art and Related Work
3.1.1. Access Control Languages
3.1.2. Usage Control Languages
3.1.3. Flow Control Languages
3.1.4. General Purpose Languages
3.1.5. Content Labeling Schemes
3.2. Requirements for a Policy Language
3.3. Design of the InFO policy language
3.3.1. Modeling Methodology and Reused Ontologies
3.3.2. Overview of the pattern system
3.3.3. Flow Control Rule Pattern
3.3.4. Flow Control Policy Pattern.
3.3.5. Flow Control Meta-Policy Pattern
3.3.6. Organizational Regulation and Legal Regulation Patterns
3.3.7. Integration of Existing Legal Ontologies into InFO
3.3.8. Integration of Existing Content Labeling Schemes into InFO . . .
3.3.9. Summary e

11
11
12
14
17
19
19
20
20
21
23

25
26
26
27
29
29
30
31
34
35
37
40
43
44
47
49
50
50

Contents

ii

3.4.

3.9.

3.6.

3.7.

3.8.

Applications and Use Cases

3.4.1.
3.4.2.
3.4.3.
3.4.4.
3.4.5.

Example Policies for Regulating Internet Communication
Applying the Name Server Ontology
Applying the Router Ontology
Applying the Application-Level Proxy Ontology
Example Policies for Securing the Exchange of Medical Data

Prototypical Implementation of the InFO Pattern System

3.5.1.
3.5.2.
3.5.3.

Example Name Server Implementation
Example Router Implementation
Example Proxy Server Implementation

Evaluation and Comparison with Existing Approaches

3.6.1.
3.6.2.
3.6.3.

Evaluating the Functional Requirements
Evaluating the Non-Functional Requirements
SUMMATY o o e e e e e

Limitations and Possible Extensions

3.7.1.
3.7.2.
3.7.3.
3.7.4.
3.7.5.

Enforcing InFO Policies 0oL
Legal Background,
Consistency Between Different Layers
Supporting Child Protection Software
Integration into Software Defined Networking

SUMMATY o o e e e e e e

Siggi: A Framework for Iterative Signing of Graph Data
4.1. State of the Art and Related Work

4.2.
4.3.

4.1.1.
4.1.2.
4.1.3.
4.1.4.
4.1.5.
4.1.6.
4.1.7.

Graph Signing Functions o0
Canonicalization Functions for Graphs
Serialization Functions for Graphs
Hash Functions for Graphs
Signature Functions oo
Assembly Function
Alternative Approaches for Achieving Integrity of Graph Data

Requirements for a Graph Signing Framework
Formalization of the Graph Signing Framework Siggi

4.3.1.
4.3.2.
4.3.3.
4.3.4.
4.3.5.
4.3.6.
4.3.7.
4.3.8.
4.3.9.
4.3.10.

Definition of Graphs o
Graph Signing Function oy
Canonicalization Function for Graphs ky
Serialization Function vy oL
Hash Function for Graphs Ay
Combining Function for Graphs oy
Signature Function ¢ o o oL
Assembly Function ay Lo oL
Verification Function vxo
Fulfillment of the Requirements

Contents

4.4. Four Configurations of the Signing Framework 96
4.4.1. Configuration A: Carroll 97
4.4.2. Configuration B: Tummarelloet al. 98
4.4.3. Configuration C: Fisteuset al. 98
4.4.4. Configuration D: Sayers and Karp 99

4.5. Cryptanalysis of the Four Configurations 99
4.5.1. Attack Model 99
4.5.2. Cryptanalysis of the Canonicalization Function ky 101
4.5.3. Cryptanalysis of the Serialization Function vy 101
4.5.4. Cryptanalysis of the Hash Function for Graphs Ay 102
4.5.5. Cryptanalysis of the Combining Function for Graphs oy 103
4.5.6. Cryptanalysis of the Signature Function ¢ 103
4.5.7. Cryptanalysis of Configuration A 104
4.5.8. Cryptanalysis of Configuration B 105
4.5.9. Cryptanalysis of Configuration C 105
4.5.10. Cryptanalysis of Configuration D 106

4.6. Performance of the Four Configurations 107
4.6.1. Runtime and Memory Usage of the Functions ky and Ay 108
4.6.2. Accumulated Runtime of all Functions 109
4.6.3. Influence of Blank Nodes 109
4.6.4. SUMMATY o v s e 112

4.7. Applications and Use Cases oo v i v it 113
4.7.1. Signing Policies for Regulating Internet Communication 113
4.7.2. Signing an OWL Graph 114
4.7.3. TIteratively Signing of Graphs, 116
4.7.4. Signing a Named Graph 118
4.7.5. Signing Multiple and Distributed Graphs 119
4.7.6. Signing Medical Data oo 120

4.8. Evaluation and Comparison with Existing Approaches 122
4.8.1. Evaluating the Functional Requirements 123
4.8.2. Evaluating the Non-Functional Requirements 125
4.8.3. Summary . . .o ... e e e e 126

4.9. Limitations and Future Extensions 126
4.9.1. Reasoning on Signed Graph Data 126
4.9.2. Security of the Graph Signing Framework 127
4.9.3. Key Management 127
4.9.4. Public Key Infrastructure and Trust Model 128
4.9.5. Secure Time Stamps 129
4.9.6. Alternative Assembly Functions 129

4.10. SUMMATY . . . v v o e e e e e e e e e e e e e 130

. T-Store: Searching in Encrypted Graph Data 131

5.1. State of the Art and Related Work 132

5.1.1. Searching in Encrypted Relational Databases 133

iii

Contents

iv

5.2.
2.3.

5.4.

5.9.

5.6.

5.7.

5.8.

5.1.2. Searching in Encrypted XML Documents 135
5.1.3. Searching in Encrypted Graph Structures 136
5.1.4. SPARQL Query Language 137
Requirements for Searching in Encrypted Graphs 138
Basic Terminology and Solution Overview 141
5.3.1. Representing SPARQL Queries in T-Store 141
5.3.2. Preparing and Applying Queries in T-Store 143
Basic Formalization o000 144
5.4.1. Plaintext Graphs and Plaintext Triples 144
5.4.2. Encrypted Graphs and Encrypted Triples 145
54.3. BasicKeys 145
5.4.4. Query Keys, Query Patterns, and Authorization Keys 145
54.5. Index e 146
5.4.6. Query Functions 146
5.4.7. Triple Keys o . e 148
5.4.8. Query Algebras, Query Forms, and Queries 148
Design of T-Store 150
5.5.1. Encryption Phase 0. 150
5.5.2. Indexing Phase o 153
5.5.3. Authorization Phase 0 L. 157
55.4. Query Phase 159
5.5.5. Applying Queries with Multiple Triple Keys 161
Performance of T-Store 164
5.6.1. Experimental Setup and Implementation Details 164
5.6.2. Preparation Phase L. 166
5.6.3. Query Processing Phase 168
5.6.4. Influence of the Array Size z 170
Cryptanalysis of T-Store 173
5.7.1. Achieving Confidentiality of RDF Graphs 173
5.7.2. Attack Model 176
5.7.3. Guessing BasicKeys 178
5.7.4. Guessing Query Keys 178
5.7.5. Extracting BasicKeys oL 179
5.7.6. Computing BasicKeys 180
5.7.7. Reducing authorization keys. 182
5.7.8. Analyzing Ciphertext Frequency 182
5.7.9. Analyzing Ciphertext Size 183
5.7.10. Reasoning on Query Results 184
5.7.11. Analyzing the graph’s characteristics 185
Applications and Use Cases 186
5.8.1. Searching in Encrypted Log Files 186
5.8.2. Splitting Query Authorizations 187
5.8.3. Analyzing the Log Database 189
5.8.4. Searching on Encrypted Medical Data 193

Contents

5.9. Evaluation and Comparison with Existing Approaches
5.9.1. Encoding RDF Graphs.
5.9.2. Evaluating the Functional Requirements
5.9.3. Evaluating the Non-Functional Requirements
5.9.4. Conducing Join Operations on Encrypted Data
5.9.5. Summary e e e

5.10. Limitations and Future Extensions
5.10.1. Replacing the Combining Function ¢
5.10.2. Query Results with Blank Nodes
5.10.3. Distributing Authorization Keys
5.10.4. Refining Query Authorizations
5.10.5. Revoking Basic Keys and Ciphertexts
5.10.6. Additional Support for the SPARQL Algebra

5.11. Summary

. Conclusion
6.1. Implementing the Scenarios
6.2. Summary of the Main Contributions
6.3. Outlook and Future Work

. Algorithms and Domain Ontologies of the InFO Policy Language

A.1. Generic Algorithms for Resolving Conflicts
A.2. Details of the Router Ontology
A2.1. Flow Control Rules
A.2.2. RulePriorityAlgorithms
A.3. Details of the Name Server Ontology
A.3.1. Flow Control Rules
A.3.2. RulePriorityAlgorithms
A.4. Details of the Application-Level Proxy Ontology
A4.1. Flow Control Rules
A.4.2. RulePriorityAlgorithms

. Integrating External Vocabularies into the InFO Policy Language

B.1. Integrating Legal Ontologies into InFO
B.1.1. Integrating the Core Legal Ontology
B.1.2. Integrating the Legal Knowledge Interchange Format . . .

B.2. Integrating Content Labeling Schemes into InFO
B.2.1. Integrating the RTA Label
B.2.2. Integrating age-de.xml L.
B.2.3. Integrating PICS

. Signature Ontology

C.1. Signature Pattern oL
C.2. Graph Signing Method Pattern

Contents

C.3. Certificate Pattern 247
D. Extended Log Format Ontology 249
Bibliography 251
Curriculum Vitae 279

vi

List

of Figures

1.1.
1.2

2.1.
2.2.
2.3.
2.4.
2.5.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.

4.1.
4.2.
4.3.
4.4.

The Semantic Web layer cake 2
The design science research process 6
Example network topologyo 13
Distributing regulation policies oo 15
Example log database storing Internet activities 17
Storing and querying encrypted log entrieso 18
Example medical case o 22
Different types of policy languages for information control 26
Important classes and patterns of DOLCE+DnS Ultralite 35
Topic pattern of the Ontopic ontology 36
Overview of the InFO pattern system 37
Basic structure of the Flow Control Rule Pattern 41
Flow Control Rule Pattern 41
Redirecting Flow Control Rule Pattern 42
Replacing Flow Control Rule Pattern. 42
Flow Control Policy Pattern 44
Flow Control Meta-Policy Pattern 45
Code of Conduct Pattern 47
Flow Regulation Norm Pattern 48
Legislation Pattern L oo 49
Regulated example network oo 51
General definitions used for Name Server Ontology 54
Example regulating using the Name Server Ontology 55
Representation of a web server and its IP addresses 57
Example usage of the Router Ontology 58
Example usage of the Application-Level Proxy Ontology 60
Example medical network oo o o 61
Regulating the transmission of medical data records 62
Architecture of the prototypical implementations 64
General process of signing graphs 82
Runtime and required memory for signing graphs 108
Overall runtime for signing graphs 110
Signing graphs with blank nodes o0, 111

vii

List of Figures

viii

4.5. Examples of signed graphs containing regulation policies 113
4.6. Example signature graph L oo 116
4.7. Examples of signed graphs containing medical data 121
5.1. General process of searching in encrypted RDF graphs 132
5.2. Representing a SPARQL query in T-Store 142
5.3. Overview of the computations for searching in encrypted graphs 144
5.4. Overview of searching in encrypted graphs 150
5.5. Index tree for the ciphertext identifiers 157
5.6. File size of encrypted graphs oo 166
5.7. Runtime of preparing different graphs 167
5.8. Runtime of searching on different graphs 169
5.9. Filesizeof index 171
5.10. Runtime of searching on different indexed graphs 172
5.11. Average runtime and standard deviation of searching on indexed graphs . 172
A.1. Content Modifying Rule Pattern 231
B.1. Important classes of the Core Legal Ontology 236
B.2. Code of Conduct Pattern of the Core Legal Ontology 236
B.3. Flow Regulation Norm Pattern of the Core Legal Ontology 237
B.3. Flow Regulation Norm Pattern of the Core Legal Ontology 238
B.4. Legislation Pattern of the Core Legal Ontology 238
B.5. Different roles in LKIF 239
B.6. Code of Conduct Pattern of LKIF 240
B.7. Flow Regulation Norm Pattern of LKIF 240
B.8. Legislation Pattern of LKIF 241
B.9. RTAMapping ontology 242
B.10.Example usage of the RTAMapping ontology 242
B.11.Age-Based Redirecting Flow Control Rule Pattern 243
B.12.PICSMapping ontology 244
C.1. Signature Pattern 246
C.2. Graph Signing Method Pattern 246
C.3. Certificate Pattern 248
D.1. Extended Log Format Ontology 250

List

of Tables

1.1.

3.1.
3.2.

4.1.
4.2.
4.3.
4.4.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.
5.13.
5.14.
5.15.

B.1.

C.1.

Methodological overview Lo 7
Functional requirements implemented by the InFO patterns 40
Comparison of InFO with the related work 69
Complexity of the graph signing sub-functions 84
Implementation of the example configurations of Siggi 96
Complexity of the example configurations of Siggi 97
Comparison of Siggi with the related work 123
Creating encryption keys oo 151
Encrypting a single triple Lo 152
Creating ciphertext identifiers oL 154
Grouping ciphertext identifiers L. 154
Creating ciphertext arrayso 155
Encrypting ciphertext arrays oo 156
Creating index keys 156
Creating authorization keys L. 158
Creating query keys 160
Different queries for analyzing encrypted log data 191
Creating different basic keys for each year 194
Example database table storing an RDF graph 197
Comparison of T-Store with the related work 199
Comparison of T-Store with the related work 200
Approaches for supporting join operations 212
Age categories of the AgeDeXmlMapping mapping ontology 242
Identifiers used in the Signature Ontology 247

ix

List

of Listings

3.1.
3.2.
3.3.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.
5.13.
5.14.
5.15.

Example blocking result of a name server. 65
Example blocking result of a router. 67
Example blocking result of a proxy server. 68
Example of a signed OWL graph 114
Example of iteratively signed graphs 0L 117
Example of a signed Named Graph 118
Example of a signed RDF Graph 119
Example of multiple signed graphs 120
Example of signed medical graphs 122
Example SPARQL query 138
Example graph consisting of eight triples. 153
Example of reasoned tripleso oo 185
Example logfile. 187
Example query applied to encrypted graphs 190
First example query applied to encrypted graphs 191
Second example query applied to encrypted graphs 192
Third example query applied to encrypted graphs 192
Fourth example query applied to encrypted graphs 192
Fifth Example query applied to encrypted graphs 193
Example RDF graph oo 195
Example SPARQL query 195
Example XML encodings L o oo 196
Example XPath query oo 197
Example SQL query 198

xi

List of Algorithms

5.1.
5.2.
5.3.
5.4.

Applying a query to a ciphertext graph 162
Applying a SELECT query to a ciphertext graph 163
Applying a CONSTRUCT query to a ciphertext graph 163
Applying an ASK query to a ciphertext graph 164

xiii

Chapter 1.

Secure Data Management
in the Semantic Web

The Data Management Association (DAMA) defines data management as the “devel-
opment, execution, and supervision of plans, policies, programs, projects, processes,
practices and procedures that control, protect, deliver, and enhance the value of data
and information assets” [207]. According to this definition, data management comprises
all steps of processing data including its initial creation, storage, and usage. In order to
implement these steps, DAMA defines a data management framework [207] consisting of
ten basic components, each of which covers a different aspect of managing data. One of
these components is data security management which aims at implementing the security
requirements confidentiality and integrity of data as well as protection against unau-
thorized data access [208]. Confidentiality of data means that only authorized parties
are aware of the data’s existence and are able to see its contents [37]. Integrity of data
means that any unauthorized modification of the data must be prohibited [37]. Protec-
tion against unauthorized data access prevents a party from accessing the data in such
a way the party is not allowed to. Although general definitions of computer security [37]
also focus on confidentiality and integrity, they do not include protection against un-
wanted data access as one of the main security requirements. Instead, this requirement
is often replaced by availability of data. Availability means that data must always be
accessible to any requesting party [28]. The three security requirements confidentiality,
integrity, and availability of data are often collectively referred to as the C-I-A triad [28].

Although DAMA is mainly concerned with data management in closed environments
such as organizations [207], its basic principles of data management can also be trans-
ferred to open and distributed networks [288] such as the Internet. The Semantic Web
relies on these characteristics of the Internet as its own design is inherently open and
decentralized as well. The aim of the Semantic Web is to create a global network of
machine-readable data [35] by interlinking various distributed data sources [39]. Each
data source provides a different type of data, including both publicly available data such
as media [187, 240], life science [30], and e-government [134] as well as sensitive private
data like medical records [256, 106] and information about business processes [143]. As
the application areas and the size of the Semantic Web are still increasing, securing and
protecting the data stored in the Semantic Web is also gaining more importance [185].

Chapter 1

Secure Data Management in the Semantic Web

Since the Semantic Web is essentially a large collection of data, DAMA’s security re-
quirements for data management can be applied to it as well.

The architecture of the Semantic Web is often depicted as the Semantic Web layer
cake [31, 32, 33, 47] as shown in Figure 1.1. Although not officially published, the layer
cake serves as the current reference architecture when implementing Semantic Web ap-
plications [128]. It divides existing Semantic Web technologies into disjoint layers and
depicts their interdependencies. The bottom layers describe the basic encoding of Se-
mantic Web data which is usually represented by using RDF graphs [275] as data format.
This data format is accompanied by data models, enriched by additional logic, and inte-
grated into an application domain which is covered in the top layer. The layer cake also
contains a crypto layer which comprises different cryptographic operations such as digital
signatures or data encryption. Although cryptographic operations can be used to imple-
ment particular security requirements such as confidentiality and integrity of data, not
all security mechanisms are based on cryptographic operations. For example, solutions
for access control which protect Semantic Web data against unauthorized access have
already been proposed [239, 247, 2, 164]. As access control does not necessarily require
cryptographic operations, these solutions cannot be mapped to the Semantic Web layer
cake depicted in Figure 1.1. Even alternative versions of the layer cake [141, 153, 127]
do not provide additional security layers. As the crypto layer does not suggest any par-
ticular security mechanisms for protecting Semantic Web data, the current architectural
representation of the Semantic Web can be considered as incomplete regarding security.

| User Interface & Applications ‘

| Trust ‘

Proof
| Unifying Logic |

Query: Ontology: OWL

[e]
SPARQL RDE-S %
Rule: ©
Data Interchange: RIF
RDF XML
URI/IRI |

Figure 1.1.: The Semantic Web layer cake [47].

This thesis provides three different security mechanisms to facilitate a secure data
management for the Semantic Web. Each mechanism implements one of the three secu-
rity requirements of the C-I-A triad which are confidentiality, integrity, and availability
of Semantic Web data. These security mechanisms can be integrated into the Seman-
tic Web architecture depicted in Figure 1.1 by replacing the crypto layer with a more
generic security layer. Such a security layer does not necessarily imply any crypto-
graphic operations and is able to comprise all types of security mechanisms independent
from their particular design and implementation. The rest of this chapter defines the

Research Questions

research questions of this thesis, identifies its main contributions, and describes the used
methodology.

1.1. Research Questions

This section defines the research questions which are answered in this thesis. These
research questions derive from the motivation outlined in the previous section and from
the three security requirements of the C-I-A triad. Each of the security requirements
confidentiality, integrity, and availability is mapped to one research question. As in-
tegrity of Semantic Web graph data is closely related to the data’s authenticity [37], this
security requirement is mapped to a fourth research question. Integrity requires that
only authorized parties are able to modify the graph data and authenticity means that
the data is retrieved from a verified source [28]. If the source of the data is not verified,
it cannot be guaranteed that the graph data is only modified by authorized parties. In
the following, the four research questions are explained in more detail.

RQ.1: How can confidentiality of Semantic Web data be ensured in open and dis-

tributed networks so that only authorized parties are able to access parts of
the data?
Implementing confidentiality of a Semantic Web graph requires that the contents
of the graph are hidden from any unauthorized party. Even authorized parties are
not necessarily able to access all contents of the graph. Instead, their access may
be restricted to particular triples of the graph.

RQ.2: How can integrity of Semantic Web data be achieved in open and distributed
networks so that any unauthorized modification of the data is detected?
Integrity of a Semantic Web graph requires that only authorized parties are able
to alter the graph’s contents. Any unauthorized modification destroys the graph’s
integrity and must therefore be detected. Please note that parties who are allowed
to view the contents of a graph may still be prohibited from altering it.

RQ.3: How can authenticity of Semantic Web data be ensured in open and dis-
tributed networks so that the data can be related to a verified source?
Authenticity of a Semantic Web graph requires that the identity of the source
which the graph is retrieved from can be verified. In providing a Semantic Web
graph, the party acting as the data source approves of the graph’s contents.

RQ.4: How can Semantic Web data be made available in open and distributed net-
works to such parties whose access requests are compliant with predefined and
transparently communicated policies?

Availability of data usually requires that the data is always accessible for autho-
rized parties [28]. This thesis enhances this classical definition of availability to
compliant availability which states that graph data must only be accessible to au-
thorized parties as long as the parties’ access complies with a set of predefined
conditions. Compliant availability corresponds to DAMA’s security requirement

Section 1.1

Chapter 1

Secure Data Management in the Semantic Web

for protection of data against unauthorized access [208]. If the conditions are not
met, the graph data must not be available to the requesting party. In contrast to
research question RQ.1, this research question aims at regulating the availability
of complete graphs and not of individual triples.

1.2. Contributions

The main contributions of this thesis are three different security mechanisms which an-
swer the four research questions from the previous section. The security mechanisms
implement the security requirements confidentiality, integrity, authenticity, and compli-
ant availability of Semantic Web graph data. They can be integrated into the Semantic
Web layer cake as shown in Figure 1.1 by replacing the crypto layer with a more generic
security layer. In the following, the three contributions are described in more detail.

Confidentiality is implemented by T-Store, an approach for searching in encrypted
Semantic Web graphs. Data encryption is a common security mechanism to achieve
the data’s confidentiality [96]. Encrypting plaintext data results in ciphertext data
which can only be decrypted by authorized parties with access to the correct decryption
keys. Searching in encrypted data extends this basic encryption scheme by supporting
queries on the ciphertext. T-Store encrypts a plaintext graph in such a way that the
resulting ciphertext graph can be directly used for processing queries without decrypting
it first. A query corresponds to a decryption key which only decrypts those parts of
the ciphertext graph that fulfill the query. T-Store supports arbitrary queries on the
ciphertext graph and is not restricted to a set of queries which are defined at encryption
time. It distinguishes between a data owner who encrypts the plaintext graph and users
who are authorized by the data owner to perform queries on the ciphertext graph. As
unauthorized parties are not able to access any part of the plaintext graph, T-Store
answers research question RQ.1. A preliminary version of T-Store was first published
in [171].

Integrity and authenticity are implemented by Siggi, a formal framework for signing
Semantic Web graph data. Digital signatures are a security mechanism for achieving
both integrity [267] and authenticity of the signed data [215]. Siggi formally defines a
generic signature pipeline for signing arbitrary graph data. The pipeline is independent
from any particular algorithm and can be configured with various algorithms to provide
different features such as minimum signature overhead or minimum runtime. It divides
the signing process into separate functions, each of which implements a specific step of
the process. These functions include a canonicalization function, a serialization function,
a hash function, and a signature function. Siggi specifies the input and output of each
function. The functions are designed in such a way that the resulting signature is
independent from the encoding of the signed graph. The signature only covers the graph’s
semantics and not its syntactical representation. An additional assembly function is
applied at the end of the signing process. It stores all information about how a signature
was created and how it can be verified by another party. A signature associates a
signed graph with the signing party. Modifying the semantics of a graph after it was

Methodology

signed invalidates the signature and also destroys the graph’s integrity. Furthermore, the
modification affects the graph’s authenticity as well as the signing party only signed the
original graph and has not approved of its modified version. Thus, Siggi answers research
question RQ.2 and RQ.3. Preliminary versions of Siggi were published in [168, 169, 173].

Finally, compliant availability is implemented by InFO, a policy language for regulat-
ing information flow in open and distributed networks. Although availability is usually
implemented by providing redundant data storage systems [28], compliant availability
requires a different implementation. Compliant availability of data requires the data to
be accessible to any requesting party as long as the access complies with a predefined
policy. InFO is specifically designed to regulate communication flow in open networks
such as the Internet. A policy is a set of rules which share the same purpose and allow
or deny a particular communication. A communication is described by a sender and
receiver, the exchanged data, and the used communication channel. Policies define the
conditions under which a party can access data stored at a server. Each policy contains
all details for technically enforcing a regulation and can be implemented on various com-
munication systems such as application-level proxy servers, name servers, and routers.
InFO’s modular and extensible design also allows to support additional enforcing sys-
tems as well. A policy is further enriched by a legal justification and an organizational
motivation. As this background information can be transparently communicated to all
involved parties, InFO fulfills research question RQ.4. A preliminary version of InFO
was first published in [172].

1.3. Methodology

Design science research is a paradigm for developing computer-related artifacts in infor-
mation systems research and computer science [299, 231, 22]. Possible artifacts include
abstract models, algorithms and processes, and software implementations [145]. T-Store,
Siggi, and InFO comply with this definition and can therefore be considered as artifacts
as well. The development process of all three artifacts is based on the design science
research paradigm. Several different suggestions have been made to define the particular
steps involved in design science research [194, 299, 145, 231]. Although all suggestions
define the creation of an artifact and its evaluation as the two most important steps,
additional steps have also been proposed. The particular steps for developing T-Store,
Siggi, and InFO are based on Vaishnavi and Kuechler [299], Hevner et al. [145], and
Peffers et al. [231]. These steps are depicted in Figure 1.2 and are further explained
in the following. The overall process of developing an artifact is iterative and uses the
results of one iteration to further improve the artifact in the next iteration.

Step 1: Problem identification and motivation
Design science research focuses on developing computer-related artifacts which
solve a particular problem. The first step is therefore the identification of this
problem [299, 145, 231]. It describes why this problem is important and motivates
the development of possible solutions.

Section 1.3

Chapter 1

Secure Data Management in the Semantic Web

| Step 1 | Problem identification and motivation |
Y
| Step 2 | Definition of objectives

|._
| Step 3 | Concept |<—
v
| Step 4 | Implementation |<—
v Process Iteration
| Step 5 | Demonstration l—
v
| Step 6 | Evaluation - l—
|_

| Step 7 | Communication

Figure 1.2.: The individual steps of the design science research paradigm [299, 145,

231]. As indicated, the steps can be conducted in multiple iterations.

Step 2: Definition of objectives

In the second step, the functional and non-functional requirements for the artifact
are defined [231]. Functional requirements cover the general functions that an
artifact must provide and non-functional requirements define general properties
and constraints of the artifact [282]. Requirements usually derive from the problem
description of the first step.

Step 3: Concept

The third step is the development of the artifact’s concept [299]. Depending on
the type of artifact to be developed, this concept may already be the final artifact
or only a conceptual model of it. As the concept is the core part of an artifact,
this step is the most important one in the process of design science research.

Step 4: Implementation

In the fourth step, a prototype of the artifact is implemented based on the concept
which is developed in the third step [299]. The particular implementation of the
prototype depends on the type of artifact being developed. For example, algorithms
can be implemented in software or hardware.

Step 5: Demonstration

The fifth step demonstrates that the artifact can solve a particular instance of
the problem identified in the first step [231]. Possible demonstrations include
simulations with artificial data and detailed scenarios which show the artifact’s
utility [145]. The fifth step is a particular type of evaluation which is further
conducted in the sixth step.

Step 6: Evaluation

The sixth step is closely related to the fifth step and also evaluates the arti-
fact [299, 145, 231]. However, the sixth step focuses on assessing how well the
artifact solves the identified problem [231]. The form of the evaluation depends on

Methodology

the developed artifact and includes security analyses, performance measurements,
or a comparison with the requirements identified in the second step [145].

Step 7: Communication
In the last step, the artifact and its importance is communicated to other re-
searchers and professionals [145, 231]. This allows to receive feedback on the
artifact in order to further improve it. Possible forms of communication include
scientific publications and conference presentations.

Steps two, three, and four cover individual aspects of the artifact’s creation whereas the
last three steps evaluate the artifact and assess its quality. These steps provide feedback
on the artifact’s design and can be used in further iterations of the process as depicted
in Figure 1.2. As design science research is only an abstract paradigm, conducting
each of the seven steps requires a corresponding methodology [22]. Selecting a suitable
methodology for a particular step depends on the type of artifact being development.
Table 1.1 summarizes how the individual steps are applied to the three artifacts InFO,
Siggi, and T-Store. Each of these artifacts is presented in a separate chapter. InFO
is described in Chapter 3, Siggi is covered in Chapter 4, and T-Store is described in
Chapter 5. As depicted in Table 1.1, all three chapters are subdivided into different
sections which correspond to the individual steps of the design science research paradigm
shown in Figure 1.2. In the following, this mapping is further described in more detail.

Table 1.1.: Methodological overview of this thesis. Each of the artifacts InFO, Siggi,
and T-Store is developed along the individual steps of the design science
research paradigm. The table shows how the steps are mapped to the
development process of each artifact.

Description InFO Siggi T-Store
Step 1 Scientific background Chapter 1 Chapter 1 Chapter 1
P Practical scenarios Chapter 2 Chapter 2 Chapter 2
Step 2 Related work Section 3.1 Section 4.1 Section 5.1
P Identified requirements Section 3.2 Section 4.2 Section 5.2
Step 3 Concept Section 3.3 Section 4.3 Sections 5.3 to 5.5
Step 4 Prototypical implementation Section 3.5 Section 4.6 Section 5.6
Step 5 Scenario implementation Section 3.4 Section 4.7 Section 5.8
P General applicability - Sections 4.4 to 4.6 —
Fulfillment of requirements Section 3.6 Section 4.8 Section 5.9
Step 6 Performance. analysis - — Sect%on 5.6
Cryptanalysis — — Section 5.7
Limitations Section 3.7 Section 4.9 Section 5.10

The motivation of all three artifacts is divided into a scientific background and two
practical scenarios which collectively implement Step 1 of the design science research

Section 1.3

Chapter 1

Secure Data Management in the Semantic Web

paradigm. The scientific background is based on the four security requirements confiden-
tiality, integrity, authenticity, and compliant availability as described at the beginning of
this chapter. These requirements derive from the literature on computer security [37, 28].
Their application to the Semantic Web is motivated by analyzing its architecture which
is represented by the Semantic Web layer cake depicted in Figure 1.1. Although the
layer cake contains a section which summarizes different security mechanisms, it does
not define any particular mechanism yet. The practical scenarios are introduced in Chap-
ter 2 and provide two comprehensive example use cases for applying the three artifacts
T-Store, Siggi, and InFO to Semantic Web data. The scenarios necessitate the implemen-
tation of the security requirements confidentiality, integrity, authenticity, and compliant
availability. The first scenario covers the regulation of information flow on the Internet
and derives from analyzing the current practice of such regulations [321, 89]. The second
scenario discusses the secure management of medical data in electronic healthcare. It
results from analyzing the literature on electronic healthcare [224, 136] as well as its
legal requirements [297, 90].

Step 2 is implemented by first identifying the general application domain of each
artifact and then extracting its functional and non-functional requirements from the
identified domain. In particular, the domain is comprised of the two scenarios defined
in Chapter 2 and the related work of each artifact. The related work is summarized
in separate sections of the three chapters 3, 4, and 5. Each summarized approach is
analyzed regarding its individual features and design characteristics. The result of this
analysis is used together with the general requirements of the two scenarios to define the
specific requirements for each artifact which are listed in Sections 3.2, 4.2, and 5.2.

The conceptual design resulting from Step 3 is created differently for each artifact.
InFO is designed as a set of ontology design patterns [237, 121], which are described
in Section 3.3. The patterns extend the foundational ontology DOLCE+DnS Ultralite
(DUL) [119] which defines several ontological concepts and axioms for various applica-
tion domains [266]. By reusing and further specifying these concepts and axioms, the
vocabulary of InFO can be related to the basic categories of human cognition [222] which
results in a better linguistic foundation. Siggi provides a mathematical formalization of
a generic signing framework that is presented in Section 4.3. The formalization defines
a signature pipeline consisting of several steps, which are implemented using different
algorithms. The pipeline is based on the XML signature syntax and processing stan-
dard [20] for signing and verifying XML documents. The framework is designed in such
a way that it is compatible with already existing algorithms that can be used in the
individual steps of the signature pipeline. T-Store is basically a collection of mathemat-
ical algorithms and data structures. Its concept is described in three different sections.
Section 5.3 summarizes the overall process of T-Store by outlining its general design and
terminology, Section 5.4 provides a mathematical formalization of the terminology, and
Section 5.5 applies the formalization to describe all steps of T-Store in more detail.

InFO, Siggi, and T-Store are essentially formal models and not particular software
implementations. As such, the implementation of these artifacts conducted in Step 4 is
not an integral part of this thesis and is mainly used for demonstrating their practical
applicability and for supporting further evaluations. InFO is implemented on three

Methodology

prototypical systems which enforce particular regulation policies and are presented in
Section 3.5. The feedback drawn from each implementation was used for improving
the design of InFO’s ontological model. Siggi is implemented by mapping its formal
specification to source code. The implementation is described as part of Section 4.6
which discusses the performance of four example configurations of the framework. T-
Store is implemented similarly to Siggi by transforming its mathematical model into
a software application. The implementation is also used for evaluating the artifact’s
performance and is described as part of Section 5.6.

Step 5 demonstrates the applicability of an artifact and is a particular type of evalu-
ation. The applicability and utility of all three artifacts are demonstrated by using them
to implement the two scenarios of Chapter 2. InFO is used for creating example regula-
tions which are enforced by the prototypical implementations described in Section 3.5.
The policies and their enforcement show that InFO can in fact be used for regulating in-
formation flow in open and distributed networks. Section 4.7 shows how Siggi is applied
to sign the example regulations and thereby demonstrates the general signing process
of Semantic Web graphs. In addition, Section 4.4 shows four different example configu-
rations of a particular signature pipeline. These configurations demonstrate that Siggi
in fact supports different algorithms. The configurations are further analyzed with re-
spect to their cryptographic security in Section 4.5 and their performance in Section 4.6.
The applicability of T-Store is demonstrated by outlining two possible applications for
searching in encrypted data in Section 5.8. Both applications derive from the example
scenarios of Chapter 2 and extend the basic concept of T-Store with additional features.

The evaluation of an artifact as required in Step 6 depends on the type of the artifact
and on the particular criteria to be assessed [145, 238]. All three artifacts are compared
with their related work and analyzed regarding the fulfillment of their functional and
non-functional requirements defined in Step 2. This analysis is conducted manually in
Sections 3.6, 4.8, and 5.9 by considering the artifacts’ individual characteristics. In addi-
tion, all artifacts are evaluated against their conceptual limitations in Sections 3.7, 4.9,
and 5.10. T-Store provides a particular algorithm for searching in encrypted data which
is further evaluated with regard to its performance and cryptographic security in Sec-
tions 5.6 and 5.7. The performance evaluation is based on an evaluation framework [40]
which provides artificial graph data. It is conducted in several experiments in which
different artificial graphs are encrypted and queried. In each experiment, the runtime
and memory usage are measured. The cryptanalysis is based on different attacks which
derive from the related work and state of the art. It is conducted by carefully analyzing
the mathematical design of T-Store. As neither InFO nor Siggi provide a particular
algorithm, they cannot be evaluated the same way. Although four example configura-
tions of Siggi are analyzed regarding their cryptographic security and performance, these
analyses do not apply to the whole framework. Instead, they only cover the particular
configurations and are part of Step 5.

In order to receive feedback from other researchers on all three artifacts as required in
Step 7, each artifact was published at scientific workshops and conferences as well as in
journals. InFO was published in [172], Siggi was published in [168, 169, 170, 173], and T-
Store was first published in [171]. All publications were peer-reviewed and the feedback

Section 1.3

Chapter 1 Secure Data Management in the Semantic Web

from the reviewers was used for further improvement together with the discussions at the
workshops and conferences. In addition, InFO and Siggi were implemented by university
students who also provided helpful comments on the artifacts’ conceptual design.

10

Chapter 2.

Scenarios for Secure Semantic Web Data
Management

This section describes two different scenarios which demonstrate the need for secure se-
mantic web data management in open and distributed networks. The scenarios consist
of several parts which motivate the research questions RQ.1, RQ.2, RQ.3, and RQ.4
defined in Section 1.1. They also serve as two example applications of the artifacts
developed in this thesis which are described in Chapters 3 to 5. The first scenario is
given in Section 2.1 and focuses on regulating communication in open networks such as
the Internet. The scenario requires a policy language for modeling allowed and prohib-
ited communication, a framework for signing regulation policies, and a mechanism for
securely evaluating log data of Internet activities. The second scenario is described in
Section 2.2 and covers the secure distribution of medical data between patients and med-
ical institutions. The scenario requires a framework for signing medical data, a policy
language for managing the secure distribution, and a mechanism for regulating access to
the patients’ personal data. At the end of each subsection, the scenario is summarized
and its relation to the research questions is demonstrated. The implementation of the
two scenarios is demonstrated in Chapters 3 to 5 as part of the developed artifacts.

2.1. Regulating Internet Communication

The Internet is a global communication medium which interconnects several computer
networks located in different countries and managed by different authorities. The content
provided on the Internet can generally be accessed by anyone from anywhere. However,
each country connected to the Internet has its own national laws and wants to enforce
these laws on the Internet as well. For example, neo-Nazi material can legally be accessed
in the USA but its access is regulated in Germany due to the country’s history [198,
293]. Additionally, organizations and institutions want to enforce their own rules within
their local computer network on top of existing national regulations. For example,
companies may want to prohibit their employees from accessing any non-work-related
Internet content which distracts them from their actual work [280, 186]. Schools are
even required by law to protect their students from accessing any content which is

11

Chapter 2

Scenarios for Secure Semantic Web Data Management

inappropriate for minors [151, 61]. Besides these examples, there are many other cases
where such regulations are desired or even needed [89].

This section outlines a scenario for regulating Internet communication. The scenario
covers an example computer network, a workflow for creating and distributing regulation
details, and a concept of privacy compliant logging of Internet activities. The example
network consists of several communication nodes and smaller sub-networks which are
managed by different authorities. These authorities regulate the communication flow in
the networks by applying a workflow for creating and distributing regulation policies.
The policies are implemented by technical regulation systems which may also record
all Internet traffic. In order to support traffic analyses without interfering with the
privacy of the affected Internet users, the logging mechanism stores all recorded data in
encrypted form and restricts decryption to authorized parties only.

2.1.1. Example Network Topology

Computer networks consist of communication end nodes such as web servers and client
systems as well as intermediary communication nodes like routers and application-level
proxy servers. An example computer network connecting various communication nodes
located in the USA, Germany, and Saudi Arabia is depicted in Figure 2.1. Each of
the three countries has its own national network which includes smaller subnetworks
such as access provider networks or networks of organizations and institutions. National
networks and their subnetworks again contain several communication end nodes and
intermediary nodes. The communication end nodes cover both end user computers
such as the US client, the DE client, and the SA client as well as web servers such
as weather servers and pornography servers. End users and small institutions such
as schools do not access the Internet directly. Instead, they are customers of access
providers and access the Internet through their respective access provider network in
their country. For example, the US client resides in the USA and uses the TDS Telecom'
as its access provider. The SA client is located in Saudi Arabia and is connected to
the Internet via the network of Sahara Net?. The DE client and the comprehensive
school are located in Germany and use the German Telecom?® as their access provider.
The network of the comprehensive school contains several student computers which
act as client systems. These computers only access the Internet after having passed
the intermediary communication nodes of the school’s network and the network of the
German Telecom.

Each web server in the example network is operated by a content provider and can
be accessed by any user from any country. A content provider can in principle regulate
the access to its provided content at server side. However, content providers may not
always be capable of or even interested in denying access for particular users based on
national laws. Thus, regulations of information flow on the Internet are often imple-
mented on intermediary nodes like routers, name servers, and application-level proxy

'http://www.tdstelecom. com, last accessed: 01/21/16
*http://wuw.sahara.com, last accessed: 01/21/16
*http://wuw.telekom.de, last accessed: 01/21/16

12

Regulating Internet Communication

US Network Saudi Arabian Network
TDS Telecom (TT) Network

Sahara Net (SN) Network

|US Client |~——'| Ro::ter |¢—'| Proxy | | Weather Server |
! !
Proxy |-—-| Router |-—

% 4
Router ro-1 |- —-{ KACST

Router |-—v| Weather Server |
T

(AP >> |Name Serverl | Router |-— Router [«
T

| Pornography Server }——|
| Nazi Propaganda Server H Router F—-Euter

L)

Pornography Server H Router |<—~| Router |<——| Weather Server |
[) I

German Telecom (GT) Network

DE Client |————| Ro:ner I‘——l Proxy I‘—-l Router |<

Regulatory Input

| fouloy RIOXYjpEaT | Communication Flow

~<--{_ ContentWatch

Computer Network

~-{_JusProg

@

|Student ComputerH Router HStudent Computerl
T

i Technical
c s O e . Communication Node
omprehensive Schoo etworl
German L (€s) Regulating Party
Network

Figure 2.1.: Illustrating example of a network topology and its involved authorities.

servers [212, 321, 79]. Routers are able to regulate Internet communication by dropping
IP packets. Application-level proxy servers can control the flow of information by fil-
tering the accessed URLs and evaluating the content of web-pages. Name servers can
restrict the access to a web server by returning a wrong IP address or no IP address
at all. The example network depicted in Figure 2.1 contains the router ro-1, the name
server ns—2, and the proxy server pr-1 which can be used for regulating the information
flow. The router ro-1 and the name server ns-2 are both operated by their respec-
tive access providers. Access providers are able to regulate the Internet communication
between their users and the accessed web servers [95], since they operate in the same
country their users reside in. Unlike content providers, access providers are not only
familiar with the laws that the users must abide by but are also required to enforce
them. Although they are required to enforce the same laws, access providers often inter-
pret these laws differently which results in different flow control implementations [95].
Even if the access providers reside in different countries, they often have to implement
transnational laws such as EU directives. Depending on the country where the user lives
in, access to particular websites may be either legal or illegal. For example, pornographic

13

Section 2.1

Chapter 2

Scenarios for Secure Semantic Web Data Management

content may be legally accessible by German users and US users over a specific age*, but
not by Saudi Arabians according to §6 of the Saudi Arabian Anti-Cyber Crime Law [179].
Access to neo-Nazi propaganda is legal in the USA and in Saudi Arabia but not in Ger-
many according to §86 of the German Criminal Code [62]. Finally, weather information
provided by a weather server can be accessed by users of all three countries. In order to
reduce the number of possible errors when interpreting national laws or transnational
directives, this interpretation is sometimes made by third parties. The details of the
interaction between all parties involved in the regulation process are further described
in the next section.

2.1.2. Creating and Distributing Regulation Policies

As outlined above, information flow control can be enforced at three different types of
network nodes [212, 321, 79], namely routers, application-level proxy servers, and name
servers. The example network depicted in Figure 2.1 provides different instances of these
enforcing communication nodes. Each type of node requires specific content identifiers
such as IP addresses, domain names, or URLs. The collection of such identifiers is of-
ten based on interpreting national laws or transnational directives. This process differs
from country to country and is implemented by access providers and/or by third parties
which may even be authorized by the country’s government. In Saudi Arabia, all content
identifiers are collected and managed centrally by the King Abdulaziz City for Science
& Technology (KACST)® [226]. The USA does not have such a central institution. In-
stead, the identifiers of the regulated web content are collected and managed decentrally
by private parties such as Internet access providers [227]. In Germany, there is a hy-
brid situation in which the Federal Criminal Police Office (Bundeskriminalamt; BKA)5
centrally collects content identifiers and delivers them to the access providers [64]. In ad-
dition, several court decisions have required German access providers to manage content
identifiers themselves in order to block access to particular web servers [95]. Apart from
the national laws of a country, access providers can also define their own code of conduct
or guiding principles for information flow control. An example of such principles is the
code of conduct of the German Telecom [91]. It basically states that the internationally
operating company abides by the national law of the physical location of its subsidiary.
Another example of a code of conduct are the Principles on Freedom of Expression and
Privacy [129] issued by the Global Network Initiative (GNI). The GNI consists of large
companies of the information and communications technology sector including Google
Inc., Microsoft Corporation, and Yahoo! Inc. It aims at providing more transparency
in Internet regulations. Furthermore, organizations and institutions such as the com-
prehensive school located in Germany may also want to enforce their own rules and
regulations. In the case of the comprehensive school, the underage students must be
prevented from accessing mature content such as pornography according to §184 of the
German Criminal Code [61]. Instead of creating the corresponding regulations itself,

4Please note that this excludes specific content like child abuse images.
"http://wuw.kacst.edu.sa, last accessed: 01/21/16
http://wuw.bka.de, last accessed: 01/21/16

14

Regulating Internet Communication

the comprehensive school entrusts third parties such as ContentWatch and JusProg to
compile such regulations. ContentWatch Inc.” is a private company located in the USA
which provides different solutions for regulating Internet communication within organi-
zations and institutions. JusProg e.V.® is a registered society in Germany that creates
and distributes filter lists of websites which are considered to be harmful to minors. By
using regulation policies from two different sources, the comprehensive school achieves
a larger coverage of undesirable web content.

| ContentWatch | JusProg
German Telecom Comprehensive School

| Name Server | Proxy Serve |
(a) Regulating the network of the (b) Regulating the network of the
German Telecom comprehensive school

Figure 2.2.: Process of distributing policies for regulating Internet communication.

All regulating authorities encode their collected content identifiers and other regulation
details as Semantic Web graph data. If the implementation of a particular regulation
involves several authorities, these authorities follow a specific workflow for creating and
exchanging regulation information. Each regulating authority receives signed graph data
from another authority, adds its own graph data, digitally signs the result, and sends it
to the next authority. Digitally signing the graph data allows the authorities to verify
the data’s integrity and authenticity. Integrity means that the data was not modified
after the signature had been created and authenticity means that the signing authority
has approved of the data. Figure 2.2a depicts the regulation workflow for the German
Telecom and Figure 2.2b shows the workflow for the German comprehensive school
depicted in Figure 2.1. The regulation workflow of the German Telecom involves the
BKA and the access provider itself. The BKA not only provides the content identifiers
for specific regulations but also a set of formally defined ontologies for describing them.
The ontologies consist of several ontology design patterns [122] which allow to represent
different types of knowledge including wanted persons, recent crimes, and details for
regulating Internet communication. The content identifiers provided by the BKA are
summarized as a blacklist of web sites. These web sites contain neo-Nazi material and

"http://wuw.contentwatch. com, last accessed: 01/21/16
Shttp://wuw.jugendschutzprogramm.de, last accessed: 01/21/16

15

Section 2.1

Chapter 2

Scenarios for Secure Semantic Web Data Management

are to be blocked according to §86 of the German Criminal Code. Each entry in the
blacklist corresponds to a particular regulation rule that describes which web sites are to
be regulated. As the German Telecom implements the regulations on a name server, the
BKA uses domain names as content identifiers for the web sites. After having created
the blacklist, the BKA digitally signs the list and the ontologies as well and publishes
the ontologies on the web. It then sends the signed blacklist to the German Telecom via
a secure communication channel by using, e.g., an SSL [113] connection. The German
Telecom receives the regulating information from the BKA and verifies its signature.
The blacklist provided by the BKA only describes the URLs of the web sites which are
to be regulated but not how the regulation shall be implemented. Thus, the German
Telecom interprets the data received from the BKA and adds concrete implementation
details such as the IP address of the name server used for blocking the web sites. As
shown in Figure 2.2a, the German Telecom compiles its technical regulation details as
RDF graph which is based on the BKA’s ontology design pattern. It digitally signs the
BKA’s blacklist together with its own regulation graph and sends it to its name server.
The name server verifies the signature of the German Telecom in order to prohibit any
unauthorized party from manipulating its implemented regulations. If the verification
is successful, the name server maps the blacklist of the BKA to a native format. This
format can then directly be used by the name server for regulating access to web sites.

As depicted in Figure 2.2b, the regulation workflow of the German comprehensive
school involves ContentWatch, JusProg, and the school itself. The comprehensive school
has to ensure that its students cannot illegally access neo-Nazi content and other mature
material such as pornography. As the comprehensive school is connected to the Internet
via the network of the German Telecom, all regulations implemented in the network of
the access provider also affect the school’s network. Thus, the comprehensive school
does not need to implement any regulations for blocking access to neo-Nazi material
since such regulations are already implemented by the German Telecom. However, the
school still needs to regulate access to pornographic content as the German Telecom does
not provide such regulations. To this end, the school receives regulation information for
adult content from ContentWatch and JusProg. ContentWatch and JusProg collect
URLs of web pages which contain pornographic content and other adult material which
is harmful to minors. These URLs are used for creating specific regulation rules which
are signed and sent to the comprehensive school via a secure communication channel.
ContentWatch provides its regulation information as Named Graphs whereas JusProg
provides its regulation data as regular RDF graphs. After having received both blacklists,
the school verifies their signatures and consolidates them into a single regulation policy.
The school digitally signs this regulation policy again and sends it to its local proxy
server. The proxy server verifies the policy’s signature and maps the regulation rules to
its local database. By redirecting all Internet traffic from the student computers located
in the school’s network through this proxy server, the school ensures that its students
can only access the Internet after having passed the predefined regulation mechanisms.

16

Regulating Internet Communication

2.1.3. Privacy Compliant Logging of Internet Activities

The proxy server of the comprehensive school not only regulates access to the Internet for
all student computers but also records their Internet traffic. This is necessary as German
schools are required by law to supervise the actions of their students [144] which also
includes their Internet activities [284]. To achieve this, the proxy server maintains a
database with several log entries each of which stores all details of a particular Internet
communication. These details include the IP address and the port number of the student
computer and the contacted web server, the URL of the requested web page, and the date
and time of the access. Figure 2.3 shows an example log database of the school’s proxy
server. It also shows how the proxy server acts as a gateway to other computer networks
and thus is able to record all Internet traffic of the student computers. As depicted,
log entries may contain personal information such as the student’s search interests [81].
Therefore, the proxy server encrypts all log entries before storing them in its database.
Encrypting the entries ensures their confidentiality, which means that they can only be
accessed by authorized parties [37]. In addition, the encryption also prohibits any abuse
of the logged Internet traffic [310].

US Network

| Search Engine Server | | Pornography Server

| Weather Server |———| Router |<—-| Nazi Propaganda Server

Comprehensive School (CS) Network

StudentComputer|~——| Proxy I~——|StudentComputer

Date and time Client Address | Client Port | Server Address | Server Port Requested URL

Wed 21. Oct 16:04:08 UTC 2015 | 192.168.2.101 1337 173.194.112.15 | 443 https://www.google.de/search?q=all
Wed 21. Oct 16:15:16 UTC 2015 | 192.168.2.101 | 1337 173.194.112.15 | 443 https://www.google.de/search?g=base
Wed 21. Oct 16:23:42 UTC 2015 | 192.168.2.103 | 24154 104.20.26.14 80 http://www.porntube.com/

Wed 21. Oct 16:29:13 UTC 2015 | 192.168.2.103 | 3903 77.247.179.176 | 443 https://www.tnaflix.com/

Figure 2.3.: Example log database with several entries of students’ Internet activities.
The database is maintained by the school’s proxy server which also serves
as a gateway to other computer networks.

In order to prevent the comprehensive school from abusing the log entries itself, access
is restricted to a supervisory school authority and first must be authorized by both the
school’s administration and the parent’s association. These two parties have different
organizational functions, consist of different members, and have different interests. Nei-
ther of them is able to authorize any access to the log entries without the other party’s
consent. The supervisory school authority acts as an independent investigator and is
neither associated with the school’s administration nor with the parent’s association. It
oversees all actions of the school and regularly analyzes the students’ Internet activities.
During an analysis, the authority checks if the school’s regulation is implemented cor-

17

Section 2.1

Chapter 2

Scenarios for Secure Semantic Web Data Management

rectly and if any additional regulation might be necessary. To support an analysis while
simultaneously protecting the entries’ confidentiality, the encrypted log database can
be queried without decrypting it first. The different steps of storing and querying the
log entries are depicted in Figure 2.4. When recording an Internet communication, the
school’s proxy server sends all technical communication details to its integrated hardware
security module (HSM) [287]. The HSM encrypts the log entries and also creates and
securely stores the used encryption keys in such a way that they cannot be extracted.
Directly embedding the HSM in the proxy server ensures that the plaintext entries are
not processed outside of the server. The process of encrypting and storing the log entries
is shown in Figure 2.4a. In order to apply a query to the encrypted database, it first
must be authorized by both the school’s administration (SA) and the parents’ associa-
tion (PA). To this end, each encryption key stored in the HSM is split into two parts
which are sent to the two parties. Figure 2.4b depicts the process of splitting encryption
keys and storing the resulting fragments and Figure 2.4c shows how the two fragments
are used for authorizing a particular query. When the supervisory school authority wants
to analyze the log database, it creates a corresponding query and sends it to both the
school’s administration and the parents’ association. The two parties combine the query
with their own fragment of the encryption key independently and return the result to
the supervisory school authority. The authority combines the two values into a single
decryption key which encodes the authorized query. A valid decryption key can only be
created if both the school’s administration and the parents’ association have authorized
the query. Otherwise, the supervisory school authority has an invalid decryption key
which cannot be used for decrypting any entry in the log database. If the decryption
key is created correctly, the authority applies it to the encrypted database and thereby

Proxy Server | V/O\V

| HSM | [sa

| e]
= @g %@
HSM |
| Supervi hool Author |
[I Il/e-\ I I]
L | I\Al\)l | 1 | SA | | PA |
° °
| Log Database | (b) Splitting the encryption
. . key
(a) Storing the log entries KD
v
| Log Database |

(c) Querying the database

Figure 2.4.: Overview of the steps for storing and querying encrypted log entries.

18

Securing Medical Data Records in Electronic Healthcare

searches for all log entries which match the encoded query. Finally, the authority uses
the resulting entries for further analyzing the student’s Internet activities and checks
them for any inappropriate access.

2.1.4. Summary of the Scenario

The scenario for regulating Internet communication requires a policy language for de-
scribing allowed and prohibited communication flow. This policy language must be able
to describe the communication flow in the example network described in Section 2.1.1.
The policy language answers research question RQ.4 as it makes Internet content avail-
able as long as it is compliant with a set of predefined rules. A particular policy is
created by several authorities which communicate with each other. In order to provide
integrity and authenticity of their exchanged data, all data is signed before its trans-
mission. The provided signature is permanently attached to the signed data and not
restricted to the existence of a secure communication channel. Creating a signature
requires a corresponding signing framework which answers research questions RQ.2
and RQ.3. Internet regulations are enforced by different communication nodes such
as routers, application-level proxy servers, and name servers. As an enforcing system’s
regulations may be further analyzed by its operator or a third party, the system logs all
of its activities. However, logging the Internet activities of regulated Internet users may
invade their privacy. Thus, each enforcing system encrypts its log files and makes them
only partially available to authorized parties. This is achieved by providing a mechanism
for searching in encrypted data. The corresponding approach achieves confidentiality of
data and thus answers research question RQ.1.

2.2. Securing Medical Data Records in Electronic Healthcare

E-health commonly refers to the application of electronic technologies in health care
and aims at improving medical processes in various aspects [224]. A core part of e-
health is the digitization of medical data records and their exchange between different
care delivery organizations (CDOs) by using information and communication technology
such as the Internet [105]. CDOs are medical institutions such as general practitioners,
medical specialists, or hospitals. The use of electronic records in e-health aims at easing
the process of exchanging medical information between different CDOs and providing
more accurate data than paper-based records [177, 136]. In addition, electronic records
can be processed automatically by software applications and can be used to support
medical decisions and treatments [279, 220]. These main goals of e-health can be achieved
by improving the interoperability between different CDOs and their patients. As e-
health relies on electronic records, the aspired interoperability requires a standardized
data format for exchanging such records [154]. This section presents a scenario which
focuses on the secure exchange of electronic records based on a standardized format.
The scenario distinguishes between different types of medical data records, defines the
security requirements for exchanging them between different parties, and provides an
example use case of the data exchange.

19

Section 2.2

Chapter 2

Scenarios for Secure Semantic Web Data Management

2.2.1. Medical Data Records Used in Electronic Healthcare

Medical data records of a patient can generally be distinguished between electronic
medical records (EMR), electronic health records (EHR), and personal health records
(PHR) [135, 125, 289]. An EMR is an electronic data record that stores the results of a
single medical test, examination, or operation which is conducted by a single CDO for
an individual patient. This CDO not only creates the EMR but also manages all access
requests to it [177]. An EHR is a collection of several EMRs of the same patient and may
be created by different CDOs [177]. EHRs support the aspired interoperability of e-health
as they are used for exchanging medical information between different CDOs. An EHR
may focus on a particular medical case and only covers EMRs which are relevant to that
case.” Both EMRs and EHRs are created, managed, and owned by CDOs while PHRs
are managed and owned by the patients themselves. A PHR contains both subjective
and objective medical information of an individual patient [289]. Subjective data is
created by the patient directly and includes symptoms as well as their descriptions and
assessments. Objective data covers measured values such as blood pressure or weight
and is created by technical devices used by the patient. Each patient is associated
with a single PHR which is stored in a personal storage device or in a cloud system.
Medical information about the same patient may also be stored in several EHRs which
are scattered across different CDOs.

Depending on their actual use, EMRs, EHRs, and PHRs may store similar data and
overlap with each other. However, each type of record also contains some information
which is not part of other record types. Thus, combining all types of records results in a
comprehensive collection of medical information about a single patient which can be used
by CDOs to conduct medical treatments [289]. An expedient integration of all records
requires that they share a common data format or that they are stored in different data
formats which can easily be mapped to each other [303]. Compatibility between all
records is also necessary in order to achieve interoperability between different CDOs and
their patients’ PHRs. Vizenor et al. [300] argue that Semantic Web ontologies are best
suited as a common data format for different e-health records. Ontologies can be used
for aligning different vocabularies and terminologies from different medical departments.
Furthermore, they allow to reason on medical data which can be used to support medical
decisions by relating a patient’s medical records to medical knowledge bases. Example
ontologies which are specifically designed for reasoning on medical data are presented in
[279, 220, 246].

2.2.2. Security Requirements for Medical Data Records

Medical data records store sensitive information about a patient and must therefore be
protected against unauthorized access. The legal foundation for e-health applications
in the USA is the Health Insurance Portability and Accountability Act (HIPAA) [297].
HIPAA does not only motivate the use of interoperable e-health applications and data

Please note that there are varying definitions of EMRs and EHRs in the literature [318]. In this thesis,
the terms EMR and EHR are used as defined in this section.

20

Securing Medical Data Records in Electronic Healthcare

formats but also defines several requirements for achieving security and privacy of the
medical data. The security requirements are further refined by the Security Standards
for the Protection of Electronic Protected Health Information [90] and correspond to
confidentiality, integrity, and availability of the data. Confidentiality states that the
patient’s medical data must be protected from any unauthorized access. This require-
ment is especially necessary since medical data contains highly sensitive information such
as a patient’s health status and diseases [312]. Integrity requires that the data is not
modified or destroyed by unauthorized parties. Since medical data is used for medical
examinations and treatments, ensuring that the data is correct and accurate is essential
to ensure a patient’s safety [108]. Availability states that the data must be accessible to
authorized parties whenever needed. Supporting this requirement is also fundamental
to a health care system as incomplete or missing data may otherwise affect a patient’s
treatment [108, 136]. In Europe, the legal foundation for e-health applications is based
on several directives which focus on protecting any type of personal data. The Data Pro-
tection Directive [100] requires that processing and transmitting personal data is only
conducted if the data’s privacy and confidentiality can be guaranteed. The directive can
be equally applied to electronic processing and non-electronic processing. The Directive
on Privacy and Electronic Communications [101] complements the Data Protection Di-
rective and is specifically designed for electronic processing and transmission of personal
data. The directive states that the basic security requirements confidentiality, integrity,
and availability of the data must be implemented in computer systems which process
the data. As both directives can be applied to various types of personal data, they cover
medical data records as well.

2.2.3. Example Medical Case

Marla manages her own PHR in order to keep track of her health. She uses the PHR
to monitor various medical information including her weight, blood pressure, and pulse.
Whenever she feels sick, she records her symptoms in the PHR to support a medical
professional’s diagnosis. She also uses her PHR to record any prescribed medicine and
its recommended taking. In order to ensure the confidentiality of her health data, Marla
encrypts her PHR and stores it on a portable device. If she consults a CDO such as
a doctor or hospital, she grants the medical personnel access to particular parts of her
PHR to support her medical treatment. Marla provides all medical information in her
PHR as Semantic Web graph data to achieve a better interoperability between her PHR
and the EHRs and EMRs managed by CDOs. Figure 2.5 depicts the application of this
data for a particular medical case.

When Marla senses a lump in her throat and suffers from swallowing difficulties,
she consults her general practitioner (GP). The GP asks Marla to grant him access to
those parts of her PHR which he suspects to be related to her symptoms. After having
analyzed the requested entries in the PHR, the GP relates the symptoms to a goiter
and performs an ultrasonography to examine Marla’s thyroid. He records all results
of the examination as graph data and digitally signs it to ensure the data’s integrity
and authenticity. The resulting graph corresponds to an EMR and is stored on a local

21

Section 2.2

Chapter 2

Scenarios for Secure Semantic Web Data Management

server in the GP’s office. As Marla’s thyroid is slightly enlarged, the GP prescribes her
iodine tablets after having reviewed Marla’s PHR to ensure that she does not take any
medicine which is incompatible with the tablets. The GP records the prescription as an
additional EMR, signs it, and stores it on the local server as well. Marla also records
the GP’s prescription and the recommended intake in her PHR.

ﬁ General Practitioner (GP) [:E Radiographer (RG) [:ﬁ
BER) - BoR - =

8 |

L

Hospital (HP)

)

Figure 2.5.: Example medical case which depicts the secure transmission and storage
of medical data. Arrows indicate the flow of medical data.

Even after taking the prescribed medicine, Marla’s symptoms do not disappear and
she consults her GP again. The GP performs another ultrasonography, digitally signs
the resulting EMR, and stores it on the local server. As the second ultrasonography
shows a noticeable enlargement of Marla’s thyroid, the GP refers her to a radiographer
for additional examinations. The GP creates an EHR which contains the EMRs of the
two examinations and his prescription. He digitally signs the EHR and sends it to the
radiographer via the Internet. By signing the EHR, the GP states that all medical
records contained in it are part of the same medical case and that this data is complete.
The proxy server of the GP’s office ensures that medical data is only transmitted to
other CDOs via a secure communication channel such as an SSL [113] connection. If
the GP accidentally tries to use an insecure communication channel or send the data
to a different destination, the transmission is blocked by the proxy server. Thus, the
proxy server implements the requirement for compliant availability of medical data.
After having received the EHR from the GP, the radiographer verifies its signature in
order to ensure its integrity and authenticity. Based on the EHR from the GP and on
Marla’s PHR, the radiographer performs a scintigraphy on Marla’s thyroid in order to
test whether or not Marla suffers from hyperthyroidism. The results of the examination
correspond to an EMR which is stored on a local server in the radiographer’s office. As
the results confirm the radiographer’s assumption on hyperthyroidism, he refers Marla
to a hospital. The radiographer creates an additional graph containing his diagnosis and

22

Securing Medical Data Records in Electronic Healthcare

signs it together with the EMR of the scintigraphy and the EHR received from the GP.
In doing so, the radiographer states that his own examinations are based on the findings
of the GP. The signed graph corresponds to another EHR which is sent to the hospital.
Similar to the GP’s office, the proxy server of the radiographer’s office ensures that
medical data such as EHRs are only transmitted via a secure communication channel.

The hospital receives the EHR from the radiographer and verifies its signature. After
having evaluated the findings from the radiographer and the GP as well as Marla’s
symptoms stored in her PHR, the hospital staff conducts a second scintigraphy on the
patient’s thyroid. Again, the results of this scintigraphy are provided as graph data
and stored as an EMR on the hospital’s server. Since the second scintigraphy provides
similar results as the first scintigraphy, the hospital staff initiates a thyroidectomy in
order to surgically remove parts of Marla’s thyroid. An operation generally consists of
several steps which must all be documented according to the guidelines of the World
Health Organization [313]. The steps include the preoperative note, operating room
records, and postoperative notes. Each of these steps is recorded as a separate graph.
After having completed the operation, the graphs are collectively signed by the operation
team as an EHR. When discharging Marla from the hospital, the hospital staff compiles
a discharge note and signs it along with the EMR of the performed scintigraphy and the
EHR from the operation. As depicted in Figure 2.5, the hospital also includes the EHR
from the radiographer in the new graph to state that the operation was conducted after
having reviewed the radiographer’s examination results. The resulting EHR is sent back
to Marla’s GP for documentation reasons by using a secure communication channel.
Again, the hospital’s proxy server ensures that medical records are only transmitted via
secure channels.

2.2.4. Summary of the Scenario

E-health aims at improving various aspects of medical processes such as the storage and
the transmission of medical data records. Medical records are created by different parties
including patients and care delivery organizations (CDOs). Patients who maintain their
own medical records encrypt the records in order to ensure their confidentiality. A CDO
accesses specific parts of the encrypted records by applying queries to them which are
authorized by the patients. Such a protection mechanism requires an approach for query-
ing encrypted data which answers research question RQ.1. CDOs create medical data
records after having examined the patients or having operated on them. A CDO signs
the medical records in order to ensure their integrity and authenticity. The organization
can even sign medical data records from other CDOs which have already been signed.
Such an iterative signing can be used to track the provenance of the medical records
and document the data flow of the signed data. Signing medical data requires a signing
framework which answers research questions RQ.2 and RQ.3. Exchanging the signed
records between different CDOs must be done via a secure communication channel. In
addition, transmitting the records to any other destination which is not a CDO must
be prohibited. Describing such rules for sending content via open networks requires a
policy language for regulating information flow control. Such a policy language answers

23

Section 2.2

Chapter 2 Scenarios for Secure Semantic Web Data Management

research question RQ.4 as it ensures that medical records are only available to parties
which comply with the predefined rules.

24

Chapter 3.

InFO: A Policy Language for Regulating
Information Flow

This chapter presents the Information Flow Ontology (InFO), a generic policy language
for regulating information flow in open and distributed networks such as the Internet.
Regulations expressed with the InFO policy language can be enforced by various com-
munication nodes operating on different levels of the OSI reference model [159] such as
the Internet layer or the application layer. Example nodes which are natively supported
by InFO as enforcing systems are routers, application-level proxy servers, and name
servers. However, InFO’s generic language model can also be further refined to support
other types of communication nodes as well. An InFO policy consists of multiple rules
which share the same purpose. Each rule regulates one particular communication flow
and provides several technical regulation details for implementing the regulation on an
enforcing node. The purpose of a policy is expressed with human-readable background
information which is directly embedded into the policy. This allows an easy comparison
between different policies and to check whether or not a policy implements the correct
high-level regulation. The provided background information covers a regulation’s le-
gal foundation and its organizational motivation. The InFO policy language achieves
compliant availability and thus answers research question RQ.4 by making information
available to authorized parties as long as they comply with the rules of the regulation
policies. If a policy rule prohibits the access to any requested information, the party
trying to access the information is considered to be unauthorized. A prior version of the
InFO policy language was published in [172]. This chapter is based on this publication
but rephrases its contents and further enriches them with additional aspects.

The remainder of this chapter is organized as follows: The state of the art and related
work for regulating information processing is summarized in Section 3.1. Based on this
section and on the scenarios introduced in Chapter 2, Section 3.2 defines the functional
and non-functional requirements for the InFO policy language. The design of InFO is
described in Section 3.3. Section 3.4 demonstrates how the policy language is used for
expressing specific regulations which can be enforced by routers, application-level proxy
servers, and name servers. These example regulations are implemented on prototypical
systems which are presented in Section 3.5. Section 3.6 assesses the state of the art and

25

Chapter 3

InFO: A Policy Language for Regulating Information Flow

related work and compares it with the InFO policy language. Limitations and possible
improvements of InFO are discussed in Section 3.7 before the chapter is concluded.

3.1. State of the Art and Related Work

Policy languages for regulating information processing can generally be distinguished
between access control languages, flow control languages, and usage control languages.
A simplified depiction of these three different types of policy languages for information
regulation is provided in Figure 3.1. As depicted, classical access control focuses on reg-
ulating access to information at the content provider’s side (i.e., the server) whereas
usage control covers the regulation of information at the consumer’s side (i.e., the
client) [229, 260]. In contrast, flow control allows to regulate the flow of information
between the provider and the consumer. This section provides a summary of different
policy languages for access control, usage control, and flow control as well as general
purpose languages. This section also covers content labeling schemes as they are closely
related to the regulation of information processing. Content labeling schemes provide
descriptions of the content being regulated which may be used directly by other policy
languages. A detailed comparison of the outlined policy languages and content labeling
schemes with InFO is provided in Section 3.6.

Content Consumer Content Provider

e ' Flow Control TTmmmmm oo o

i Communication Channel

Client Server

..

Usage Control Access Control

Figure 3.1.: Three different types of policy languages and their involved systems for
regulating information processing. The types for regulating information
processing include access control, flow control, and usage control.

3.1.1. Access Control Languages

Access control languages ease the configuration of access control systems which regu-
late access to digital resources [257]. The Access Management Ontology (AMO) [58] is
an RDFS [195] ontology for describing access control rules for collaborative web-based

26

State of the Art and Related Work

document systems such as wikis or content management systems. In order to ease the
creation of access rules and their integration into such systems, AMO’s design is very
simple and only allows to model permitted actions. Other types of rules such as pro-
hibitions are not supported. Actions, which are not explicitly allowed by AMO, are
considered to be forbidden. CommonPolicy [276] is an XML-based language for describ-
ing access rules for personal data. Similar to AMO, the language model of Common
Policy is rather lightweight and only allows to define permitted actions. Furthermore,
Common Policy is designed to be used only in combination with additional application-
level protocols such as FTP or HI'TP. These protocols must cover the authentication of
the requesting user and the transmission of the requested data. WebAccessControl® is
another lightweight RDFS ontology for describing access control rules for web resources.
It is designed for decentralized systems in which the web resources and the users can be
managed by different parties. All users are identified by their WebID? which serves as
a globally unique identifier. User authentication is based on the WebID authentication
protocol. Similar to AMO and CommonPolicy, WebAccessControl has a simple design
which only supports permitted actions. The Enterprise Privacy Authorization Language
(EPAL) [15] and the eXtensible Access Control Markup Language (XACML) [205] are
XML-based access control languages which allow to create much more expressive policies
than AMO, Common Policy, or WebAccessControl. Both languages are designed to be
used within closed network environments such as intranets of large corporations. While
EPAL merely focuses on regulating access to personal data, XACML does not have a
predefined use case and can be used for regulating the access to arbitrary data. Specific
use cases are implemented by creating corresponding XACML profiles. A profile for
regulating access to personal data is given in [206]. XACML is much more expressive
than EPAL and can replace it in many applications [12].

In summary, classical access control regulates access to data within a closed environ-
ment [229, 260]. XACML and EPAL can be considered as classical access control systems
since they require a centrally controlled enforcing infrastructure. On the other hand,
AMO, Common Policy, and WebAccessControl focus on regulating access to pieces of
information in a rather open environment such as the Internet. In all access control sys-
tems, content providers regulate the access to their content. However, such regulations
cannot be used for regulating the communication flow between an arbitrary server and
arbitrary client in the Internet.

3.1.2. Usage Control Languages

Rights Expression Languages (REL) allow to define usage control policies for digital
objects. RELs often define only an abstract policy model which is accompanied by an
additional Rights Data Dictionary (RDD). The REL defines a basic syntax shared by all
policies while the RDD provides a vocabulary for creating specific policies. The PLUS
License Data Format (LDF)? provides a lightweight RDFS ontology for creating usage

'http://www.w3.org/wiki/WebAccessControl, last accessed: 01/21/16
2http://wuw.w3.org/wiki/WebID, last accessed: 01/21/16
*http://www.useplus.com, last accessed: 01/21/16

27

Section 3.1

Chapter 3

InFO: A Policy Language for Regulating Information Flow

policies for digital images. The policies are primarily designed for human recipients and
cannot directly be enforced by a technical system. Instead, the design of PLUS focuses
on a technical support for communicating usage policies between all involved parties.
ccREL [3] is a lightweight RDFS ontology primarily designed for describing Creative
Commons? licenses. Such licenses describe actions that may, must, or must not be ap-
plied to the digital good. In order to be easy to use, there are six predefined licenses
which can be applied to arbitrary goods. Although ccREL can generally be extended
with additional terms, using such terms may lead to licenses which do not correspond
to Creative Commons licenses. The Linked Data Rights ontology (LDR) [253, 254] is
a lightweight OWL [302] ontology which supports usage control licenses for linked data
resources. Although it defines a few terms itself, it is mainly designed to be extended
with additional terms for particular use cases. The Metadata Encoding and Transmis-
sion Standard (METS) [93] is a general language model for describing different types of
metadata of digital resources. METS itself only defines a basic XML language struc-
ture which must be extended with additional vocabularies in order annotate the digital
resource. METSRights® is an example vocabulary which provides a very basic REL. It
only allows to define which parties are allowed to perform which actions on a digital
resource. It does not provide any means for defining prohibitions. More complex us-
age control languages are MPEG-21 REL [306] and the Open Digital Rights Language
(ODRL) [156, 157]. MPEG-21 REL is the successor of XrML [308] and shares the same
basic architecture [307]. It is part of MPEG-21 [65] which is a language framework sim-
ilar to METS for annotating digital resources with different types of metadata. Both
MPEG-21 REL and ODRL can be used for the same applications and allow to cre-
ate almost arbitrary usage control policies. MPEG-21 REL is an XML-based language
while ODRL provides an abstract language model which can be expressed with different
encodings. The current version of ODRL provides an OWL ontology [199] as well as
encodings for XML [155] and JSON [221]. Although both MPEG-21 REL and ODRL
define their own REL and RDD, using the default RDD is not mandatory when creating
specific policies. Instead, the creation of user-defined RDDs are also possible. In ODRL,
user-defined RDDs are called profiles. An example profile is RightsML [162] which is
designed for managing usage rights in the news industry.

In summary, RELs allow to describe which users are permitted to perform which
actions on which digital resources. Contrary to flow control languages, these descriptions
are rather abstract and must be interpreted manually in order to enforce them on a
technical system. The more abstract a particular policy is, the more interpretations and
implementations of the same policy are possible. For example, ODRL’s RDD defines
the action anonymize as the process to “anonymize all or parts of the Asset” [157].
Although an additional comment in the RDD further explains this as the process to
“remove identifying particulars”, it still remains unclear what the identifying particulars
cover in detail. Thus, the anonymizing action cannot be directly enforced by a computer
system since the system does not have a precise understanding of what the identifying

“http://creativecommons.org, last accessed: 01/21/16
Shttp://wuw.loc.gov/standards/rights/METSRights.xsd, last accessed: 01/21/16

28

State of the Art and Related Work

particulars are. Instead, enforcing the action on a technical system requires manual
interpretation and therefore human interaction. However, since RELs usually do not
provide a precise human-readable description of their policies, different interpretations
of the same policy may be considered as valid.

3.1.3. Flow Control Languages

Flow control languages are primarily designed for managing a closed network environ-
ment supervised by a single organization or institution. The languages aim at easing the
configuration of the network by mapping high-level organizational security policies to
different network systems such as routers and switches. The XML-based firewall meta-
model proposed by Cuppens et al. [85], the UML-based DEN-ng [286], and the OWL-
based Ontology-Based Policy Translator (OPoT) [21] provide languages for describing
flow control regulations. While both the firewall metamodel and DEN-ng merely focus
on low-level routers and do not directly support communication end points such as web
servers, OPoT also covers different nodes of a communication path including the end
systems. The firewall model of Cuppens et al. only supports permitting rules. It does
not provide any means for defining prohibited communication flows. Any communication
that is not explicitly allowed is considered to be forbidden. OPoT uses a set of twelve
predefined basic policies each of which covers a particular use case. A basic policy can
be considered as a template for implementing a specific organizational security policy.
In order to actually enforce such an organizational policy, a corresponding basic policy
has to be chosen and mapped to the current network environment. This mapping corre-
sponds to filling in the basic policy with specific IP addresses and other implementation
details.

In summary, flow control languages focus on regulating the flow of communication
within a closed network environment which is centrally administrated by a single entity.
The existing languages are designed to allow a direct enforcement of their policies by
network nodes without requiring any further interpretation. This is achieved by precisely
describing the actions that must be performed by the nodes including all necessary
parameters such as IP addresses, port numbers, and communication protocols.

3.1.4. General Purpose Languages

General purpose languages do not focus on one particular type of information regulation
but rather follow a more general approach in order to cover several scenarios such as
access control or flow control. KAoS [298], Rei [166], and Ponder [88] are examples of
such languages. Since these languages support different types of control policies, they
cannot be clearly categorized as access control, usage control, or flow control. KAoS
is based on OWL and allows to create policies that describe which systems a user can
access within a closed management environment such as an organization. An example
of such a policy is granting a user access to a specific server. However, KAoS only allows
to regulate access to the server or its provided services and cannot further distinguish
between the data hosted by them. More specifically, KAoS does not directly provide

29

Section 3.1

Chapter 3

InFO: A Policy Language for Regulating Information Flow

any means for regulating the content hosted by a server. A KAoS policy can generally
be enforced by any application-level communication system including content providers,
content consumers, and application-level proxy servers. Contrary to KAoS, both Rei
and Ponder allow to define document-centric policies. This allows to create more pre-
cise access control policies. Rei is based on OWL and merely considers reasoning about
policies and is not designed for enforcing them [294]. Ponder uses its own low-level
object-oriented language syntax which is not compatible with W3C standards such as
XML or RDF. The language is able to define policies which can be enforced on the con-
tent providers’ server, the end users’ clients, as well as on intermediary communication
nodes. However, due to its low-level descriptive language, Ponder is not able to cover
different levels of abstraction on the same regulation [294] such as organizational or legal
background information.

In summary, the applicability of a general purpose language as well as the implemen-
tation and enforcement of its policies heavily depends on the language’s design. While
KAoS and Rei focus on a more abstract view of a policy, Ponder merely covers its
technical implementation details.

3.1.5. Content Labeling Schemes

Content labeling schemes allow to annotate digital resources with additional metadata
describing their topic. Although these schemes usually do not provide a policy language
for regulating information processing, they are specifically designed to be used together
with such languages. The Restricted to Adults (RTA) label® and age-de.xml [264] allow
to annotate web resources with an age category. Both formats are used by child protec-
tion software such as Net Nanny” or the Jugendschutzprogramm?® for prohibiting minors
from accessing adult web content. The RTA label is a simple label for flagging adult
content. It consists of a single string which represents the age category of all adults.
The label is either directly included in a web page or part of the HT'TP response that
a client receives from the server when requesting the page. In contrast, the XML-based
age-de.xml supports arbitrary age categories which can be defined for single web pages
or whole web sites. Similar to the RTA label, age categories defined with age-de.xml
can also be included directly in the affected web pages or into the HT'TP responses that
contain the web pages. The Platform for Internet Content Selection (PICS) [183] sup-
ports more complex descriptions of web content than the RTA label or age-de.xml. It
defines a proprietary format for annotating web content with arbitrary labels. A label
consists of several ratings which contain a string and a numerical value. Labels can refer
to single web pages or complete web sites. PICSRules [103] provides a policy language
for allowing or denying access to web pages based on PICS labels or the pages’s URLs.

In summary, content labeling schemes focus on the description of web content. With
the exception of PICS, the discussed schemes do not provide a policy language for de-
scribing how these annotations shall be used for regulating information processing. How-

http://wuw.rtalabel.org, last accessed: 01/21/16
"https://www.netnanny.com/support/changelog/, last accessed: 01/21/16
8http://www.jugendschutzprogramm.de/faq6.php, last accessed: 01/21/16

30

Requirements for a Policy Language

ever, content labeling schemes can also be used together with other policy languages.
The policy language InFO described in this chapter also supports the description of web
content. Such descriptions can either be modeled by using the InFO vocabulary or by
integrating one of the existing content labeling schemes.

3.2. Requirements for a Policy Language

The policy language InFO defines several ontology design patterns [237, 121] for de-
scribing policies for regulating information flow control on the Internet. These policies
cover both a human-readable description of their actual meaning as well as the tech-
nical implementation details for enforcing them on a particular communication node.
A particular flow control policy models a specific use case and consists of several flow
control rules that implement this use case. Multiple use cases require several policies.
Based on these general objectives, this section defines the specific requirements for InFO
which are divided into functional requirements (RA.F.*) and non-functional require-
ments (RA.N.*). Functional requirements describe the services and functions that a
system must provide [282]. In the case of the InFO policy language, these requirements
define the content of a particular flow control policy which must cover all details for
regulating information flow control. Thus, the functional requirements for InFO focus
on the language’s vocabulary. On the other hand, non-functional requirements define
general properties and constraints of a system [282]. While functional requirements
basically focus on a particular aspect of the system, non-functional requirements are
usually abstract and cover the system as a whole [282]. In the case of InFO, non-
functional requirements define restrictions of the language’s design and implementation.
Although there is no clear distinction between functional and non-functional require-
ments [182, 282], separating both types of requirements can help to better identify the
purpose of a particular requirement. The specific requirements for the policy language
InFO derive from the scenario for regulating Internet communication presented in Sec-
tion 2.1 and on the related work summarized in Section 3.1. InFO must support the
following functional requirements:

RA.F.1: Supporting different types of enforcing communication nodes

The policy language must be able to describe flow control policies which can
be enforced by different intermediate communication nodes on the Internet such
as routers (RA.F.1.1), name servers (RA.F.1.2), and application-level proxy
servers (RA.F.1.3). As outlined in Section 2.1, different enforcing nodes are in fact
used in practice for regulating information processing on the Internet [212, 321, 79].
Thus, these nodes must also be supported by the InFO policy language. The ex-
ample computer network introduced in the scenario in Section 2.1.1 includes all
three types of enforcing nodes.

RA.F.2: Operationalizing the policies
The interpretation of a particular control policy by a corresponding enforcing node
requires a detailed description of the communication flow that shall be regulated.

31

Section 3.2

Chapter 3

InFO: A Policy Language for Regulating Information Flow

This description must contain all relevant parameters such as the IP addresses of
the communicating parties, the URL of the web content, or the domain name of the
web server. The policy language InFO must be able to describe such parameters.
Each of the enforcing nodes of the scenario requires their own parameters in order
to operate properly.

RA.F.3: Supporting different modalities of control rules

The InFO policy language must be able to describe control rules that either al-
low (RA.F.3.1) or deny (RA.F.3.2) a communication flow between two commu-
nicating parties. Supporting both types of rule modalities allows a more flexible
creation of regulations such as regulations based on whitelisting or blacklisting [19].
Blacklisting allows every communication which is not explicitly forbidden whereas
whitelisting prohibits all communication which is not explicitly allowed. Prohibit-
ing a particular communication flow can be implemented in different ways such as
redirecting to a different communication party or preventing the establishment of
the communication channel. InFO must also support such different implementa-
tions.

RA.F.4: Resolving rule conflicts

Conflicts between two control rules occur when a particular flow of communication
is allowed by one rule and prohibited by another one. The contradicting rules may
appear in the same control policy (RA.F.4.1) or in different policies (RA.F.4.2).
The policy language InFO must provide mechanisms for resolving both types of
rule conflicts. In the scenario, the regulations derive from different sources such as
ContentWatch and JusProg which may lead to conflicting rules.

RA.F.5: ldentifying involved parties

The policy language must provide information about the parties who are respon-
sible for a particular policy. This includes the party who technically enforces the
policy (enforcer) (RA.F.5.1), the party who provides the details for this enforce-
ment (provider) (RA.F.5.2), and the party who legislates the enforcement (legis-
lator) (RA.F.5.3). Distinguishing between all three parties can help in achieving
more transparency in the regulation’s implementation. In the scenario of Sec-
tion 2.1, access providers such as the German Telecom act as regulation enforcers.
Examples of regulation providers are the BKA and ContentWatch and examples
of regulation legislators are the German states and their federation [60].

RA.F.6: ldentifying regulated content

32

Regulating access to web content may cause unwanted side-effects such as over-
blocking or under-blocking [249]. Over-blocking affects the access to more content
than is actually intended. Under-blocking covers only parts of the content to be
regulated. In order to reduce such unwanted side-effects, InFO must allow to
identify the content or its hosting server as precisely as possible. Examples of
precise identifiers are the IP address of the hosting web servers, the domain names
of the websites, and the URLs of the individual web pages.

Requirements for a Policy Language Section 3.2

RA.F.7: Classifying regulated content

Access regulation is often based on the content’s topic such as online gambling,
adult websites, or neo-Nazi propaganda. In order to provide a clear reason for
why access to particular web content is regulated, the topic of the content must
be identified. Thus, InFO must provide means for representing the classification
of content. In the scenario, the classification of the provided web content is given
by the label of its respective web server, e.g. each “Weather Server” provides
information about the weather.

RA.F.8: Providing users’ access location
Fach information flow control policy is ultimately based on a set of laws issued for
and active in a specific country. Since an end user’s current location also defines
the laws she must abide by, InFO must relate a user to her corresponding location.
The scenario presented in Section 2.1 distinguishes between end users of the three
example countries USA, Germany, and Saudi Arabia.

RA.F.9: Providing background information

The regulation represented by a flow control policy is authorized by a legal foun-
dation and/or motivated by an organizational code of conduct. In order to en-
rich a policy with human-readable explanations, InFO must be able to attach
corresponding background information to the policy in form of its legal justifica-
tion (RA.F.9.2) and/or organizational motivation (RA.F.9.1). As outlined in
the scenario, §86 of the German Criminal Code [62] is an example of a legal justifi-
cation which prohibits the distribution of neo-Nazi material. The code of conduct
of the German Telecom [91] is a statement to actually enforce this law as well as
the local laws of other countries in which the Internet access provider operates.

Besides these functional requirements, the InFO policy language must also fulfill the
following non-functional requirements:

RA.N.1: Complying with standards

The policy language must provide a particular encoding for creating specific poli-
cies. This encoding must be based on common standards such as XML or RDFS.
Avoiding a proprietary syntax simplifies the process of interpreting and implement-
ing particular regulation policies on an enforcing system. Furthermore, it eases the
creation and distribution of the policies for all involved parties. In the scenario,
different parties such as the BKA and the German Telecom interact with each
other by exchanging regulation details. Using a common standard for encoding
these details improves the interoperability between the parties.

RA.N.2: Supporting a modular design
The InFO policy language must have a modular design in which each module im-
plements a particular function of the language [266]. This allows a flexible use of
the actually needed parts of the ontology. For example, requirement RA.F.1 states
that the policy language must be able to support different systems as enforcing

33

Chapter 3

InFO: A Policy Language for Regulating Information Flow

nodes. Each type of enforcing nodes requires specific parameters and enforcement
details, which may be irrelevant for other enforcing nodes. By designing a partic-
ular module for routers, name servers, and proxy servers, a specific enforcing node
only needs to implement its respective regulation module. In the scenario, each
enforcing node only implements those regulation modules which it can technically
enforce.

RA.N.3: Supporting an extensible design

Although InFO must natively support three different types of enforcing nodes, this
support can only cover a limited set of all possible attributes and functions that a
specific node may have. For example, the build-in support for routers as enforcing
nodes does not guarantee a complete support for all functions of all possible routers
like Cisco’s 3945 Integrated Services Router?. An extensible design [266] allows to
further enrich InFO with product-specific concepts. Furthermore, such a design
can also be used for defining new concepts of future regulation mechanisms.

The fulfillment of all functional and non-functional requirements by the InFO pattern
system and a comparison with the state of the art and related work is provided in
Section 3.6.

3.3. Design of the InFO policy language

This section presents the pattern-based design of the InFO policy language. The de-
sign is based on the state of the art and related work discussed in Section 3.1 as well
as on the requirements stated in Section 3.2. InFO is a set of several ontology design
patterns [237, 121] for describing flow control policies which regulate the exchange of
information on the Internet. Ontology design patterns are adapted from software engi-
neering. They provide both a description of a specific, recurring modeling problem of a
particular modeling context and present a proven, generic solution to this problem [67].
The provided solution consists of a description of the required components, their relation-
ships and responsibilities, and the possible collaboration between these components [67].
Similar to a software design pattern, an ontology design pattern is also independent of a
particular application domain [117] and can be used in a variety of different application
contexts. Each pattern of InFO implements a different aspect of controlling the flow of
information that distinguishes it from the other patterns. The patterns are not a collec-
tion of independent ontology design patterns but are instead designed to be used together
in order to create flow control policies. Thus, InFO corresponds to a so-called pattern
system [67]. The pattern system reuses and extends design patterns from the founda-
tional ontology DOLCE+DnS Ultralite (DUL) [119] and the Ontopic core ontology!’. Tt
is implemented using the Web Ontology Language (OWL) [302] and axiomatized using
Description Logics [16]. This section first briefly describes these reused ontologies and

Shttp://www.cisco.com/c/en/us/products/routers/3945-integrated-services-router-isr/
index.html, last accessed: 01/21/16
Ohttp://ontologydesignpatterns.org/ont/dul/ontopic.owl, last accessed: 01/21/16

34

Design of the InFO policy language

gives an overview of the InFO pattern system. Subsequently, each pattern is explained
in more detail.

3.3.1. Modeling Methodology and Reused Ontologies

InFO uses DOLCE+DnS Ultralite (DUL) [119] as a foundational ontology since it pro-
vides a rich axiomatization based on several design patterns. In addition, the use of DUL
has proven to be a good design choice [266]. Figure 3.2 depicts the main classes and
reused design patterns of DUL. The ontology defines the class Entity and its subclasses
Object, Quality, and Abstract, which are depicted in Figure 3.2a. Objects are entities
that exist in time and space such as Agents. They are either physical objects such as
natural persons or social objects such as Roles. A Quality describes a feature of an
Entity whose feature value is specified by a Region. Abstract refers to entities that do
neither have spatial nor temporal features. Regions are Abstracts and represent data
value spaces such as time intervals. The relations between the three classes Entity,
Quality, and Region are covered by DUL’s qualities and quality region pattern [119]
which is depicted in Figure 3.2c. The pattern distinguishes between a feature of an entity
and its corresponding feature value. While a feature is inextricably linked to the entity
that has the feature, its value can also exist independently. Apart from this pattern,
InFO also uses other design patterns from DUL which are the collection pattern, the
participation pattern, the sequence pattern, the information realization pattern, and the
description and situation (DnS) pattern.

| Description I| defines
/ 1..% \ \

A lassifies parametrizes
satisfies

/\
Object Region
| |
|Region| |Agent| |Role| |Parameter| |Situation II hasSetting
(a) Basic class hierarchy (b) Description and situation pattern

@1. .* hasQualit W hasRegion W hasRegionDataValue value
(¢) Qualities and quality region pattern (cf. [265])

Figure 3.2.: Important classes and patterns of DOLCE+DnS Ultralite (DUL).

The collection pattern defines the property hasMember which can be used for describing
the relationship between a collection and its elements. As depicted in Figure 3.2d,
the property links a particular collection to each of its members. The participation
pattern models the relationship between an event and all involved objects. The pattern
is depicted in Figure 3.2e and defines the property hasParticipant to link an event
to any social object or physical object. The sequence pattern depicted in Figure 3.2f
defines the two properties follows and precedes. These properties are inverse to each

35

Section 3.3

Chapter 3

InFO: A Policy Language for Regulating Information Flow

Collection hasMember |Eventl hasParticipant 1"*/I0bject|

(d) Collection pattern (e) Participation pattern

precedes InformationEntity

/\

| InformationRealization |- =2 iz is —>| InformationObject

(f) Sequence pattern (g) Information realization pattern

Figure 3.2.: Important classes and patterns of DOLCE+DnS Ultralite (DUL). Contin-
ued from previous page.

other and allow to describe a relative order between two entities. A sequence consisting
of multiple entities can be created by using the properties for modeling a relationship
between all pairs of consecutive entities. The information realization pattern [44] is
shown in Figure 3.2g. It defines the classes InformationObject and InformationRe-
alization as well as the property isRealizedBy. An InformationObject is an abstract
piece of information and is realized by a physical object or a digital resource. The entity
realizing the abstract piece of information is called an InformationRealization. An
example of an InformationObject is Shakespeare’s Hamlet. Hamlet is an abstract work
which can be encoded as a written book or performed as a play in theater. The book
and the performed play both correspond to two different InformationRealizations
of the same abstract piece of information. The DnS pattern [120] is a central design
pattern of DUL and models n-ary relationships between arbitrary entities. The pattern
strictly distinguishes between a conceptual view of the relationships and a specific state
of affairs. The conceptual view is modeled as a Description and defines the context
and functions of all involved entities. Functions can be modeled as Roles or Parame-
ters. The state of affairs corresponds to a Situation which acts as the setting for all
entities of the relation. A Situation satisfies a Description by mapping all abstract
functions to specific entities such as Objects or Regions. A simplified depiction of the
DnS pattern is shown in Figure 3.2b.

2..* hasComponent .
Word I I| Multiword I

A A
o)

unionOf
)) ’i . 1..*
Io . "’bjectl isTopicOf To isExpressedB Term

P

Figure 3.3.: Topic pattern of the Ontopic ontology.

InFO also imports the Ontopic core ontology which is an extension of DUL. The
ontology defines the class Topic and a corresponding design pattern, which is depicted
in Figure 3.3. A Topic is a collection of semantically related social objects such as In-
formationObjects or Roles. A specific topic is expressed using one or more descriptive

36

Design of the InFO policy language

Terms. A term is either a single word or a multiword consisting of several single words.
Multiwords can be used for modeling compound words such as the word “neo-Nazi”. An
example Topic is “neo-Nazi propaganda” which is basically a collection of all neo-Nazi
propaganda material. This topic can be expressed using the single word “propaganda”
and a multiword consisting of the two single words “neo” and “Nazi”.

3.3.2. Overview of the pattern system

An overview of the InFO pattern system is depicted in Figure 3.4. The overview distin-
guishes between foundational ontologies, core ontologies, and domain ontologies. Foun-
dational ontologies do not focus on a specific use case or application domain. Instead,
they define a broad set of generic concepts and axioms for describing the world [266].
Foundational ontologies can be used in various fields and form a basis for creating other
ontologies such as core ontologies or domain ontologies [222]. Core ontologies further
specify a particular field by providing more detailed axioms and concepts [266]. They

Domain
ontologies 1 1 1
Application-Level Proxy Ontology | PICSMapping l— - AgeDeXmlMapping
T ! T
_| 1 _| ! 1
1 ! 1
Router Ontologyl | Name Server Ontologyl RTAMapping = = = = = = = = = = = = \
T | T |
_ | _<<extend>> | 1
1 1
InFO Pattern | y
System ! !
Technical Regulation] Y 1
Comooco oo SRR oo oo o !
Sexbendy, Redirecting Flow Control Rule Pattern | ! |
1 v \', 1
Lo -I Replacing Flow Control Rule Pattern | !
| Legal Regulation Organizational Regulation] .
1
SR Code of Conduct Pattern 1
1 = T - Flow Control Rule Pattern Flow Regulation Norm Pattern _ .
1
| 1 - — A L
=== Flow Control Policy Pattern L — — - Legislation Pattern | |
1 1 <<import>> 1
| 1 X X X <- —I-P— =5 =y <<impprt>> ||
1 1 |F\ow Control Meta-Policy Pattern | \ \ 1 : : 1 poolb oo odq ! !
[
! (. y y | | 1 | | 1 1 1 1
1 L 1 1 \ \ | X X . . _|_| 0 1 :
- - -—-—-F=-=-=-- 1
! 1 ! r | 1 | | 1 1 1 00
! ! : :‘ -—— === | o _1___ | LKIFMappmql CLOMappmql 10
1 1
X " i i ! 1 1 T T o
<<extend>> | [<<import>> ! I I 1 1 1 1
0 J ! 1 !) 1 |
, T 1 T I i
Foundational 0 0 <<import>> | 1 1 <<import>> <<implort>> 1 1
ontologies <<imy Iort>> 1 1 1 1 1 1
1 1 H
and core 0 put | ! - jeimporte> 1 1 o
ontologies : : ' ; - 1 1 Y Y '
1
1 1 1
a—— LKIF CLO 1
! ! |Sequence Patternl ! |Part|cnpat|on Pattern |<- -—=1 1 1 | | | 1
1 1 / T
1 1 ! | (.
Collection Pattern = 1 1 1
1 L Ontopic | 1] i
1 1
Descriptions and Situations Pattern (DnS - ! | I
1 | P (En2) | Topic Pattern | |«<— + - = = = = SemEeers 1L - -
1 | 1
- ->| Information Realization Pattern | 1 !
T 1 X |
J — - - ! 1 1
L - ->| Qualities and Quality Regions Pattern | 1 | 1
e - oo = e e o m e Ssextend>> o ___ !

Figure 3.4.: Overview of the InFO pattern system. Dark gray elements are external
ontologies reused by InFO whereas white elements are patterns of InFO
or their domain-specific extensions.

37

Section 3.3

Chapter 3

InFO: A Policy Language for Regulating Information Flow

are usually built upon foundational ontologies and serve as the modeling basis for do-
main ontologies [266]. Thus, core ontologies cover various domains within a particular
field [222]. Finally, domain ontologies focus on a particular domain within a specific
field [222]. They provide concepts and axioms which are only relevant to the particular
domain and are not used in other domains [102]. Domain ontologies can be based on
foundational ontologies and core ontologies [222].

The InFO pattern system represents a core ontology for modeling regulations of In-
ternet communication. It is based on the foundational ontology DUL and on the core
ontology Ontopic. Its patterns are subdivided into the Technical Regulation patterns,
the Organizational Regulation patterns, and the Legal Regulation patterns. Each cate-
gory of patterns implements a specific aspect of information flow control. The Technical
Regulation patterns cover the description of all technical regulation details which are
InFO’s main focus. The Organizational Regulation patterns and the Legal Regulation
patterns enrich the technical policies with human-readable descriptions. Domain specific
extensions of the InFO pattern system are provided for routers, proxy servers, and name
servers as corresponding domain ontologies. As depicted in Figure 3.4, the InFO pattern
system also allows to integrate existing content labeling schemes such as PICS [183], the
RTA label, or age-de.xml [264].

In detail, the Technical Regulation consists of five different patterns which are based
on DUL’s DnS pattern depicted in Figure 3.2b. Each pattern models a different flow
control aspect which defines the context of the involved entities. The DnS pattern is
used since it allows entities such as computer systems to participate in a specific context
by fulfilling a specific function. Policies are basically descriptions of regulations and thus
are modeled as subclasses of Description. Their implementation leads to a Situation
where each concept defined by the policy is fulfilled by a corresponding entity. The
Flow Control Rule Pattern describes a flow control rule which covers the technical reg-
ulation details for a particular communication flow. The pattern describes whether or
not this flow of communication is to be allowed or denied and thus implements require-
ments RA.F.3.1 and RA.F.3.2. The regulation details include an identifier (RA.F.6)
and a classification (RA.F.7) of the content to be regulated as well as the location of
the user accessing the content (RA.F.8). All technical regulation details are provided
by an agent who acts as the rule data provider (RA.F.5.2). The Flow Control Rule
Pattern is further extended by the Redirecting Flow Control Rule Pattern and the Re-
placing Flow Control Rule Pattern, which allow the creation of more complex rules for
prohibiting a communication flow. Several flow control rules sharing the same purpose
are combined to form a flow control policy, which is provided by the Flow Control Policy
Pattern. In order to further describe the rules’ purpose, a flow control policy is linked
to an organizational code of conduct and/or a legal foundation. Therefore, the Flow
Control Policy Pattern imports the Organizational Regulation patterns and the Legal
Regulation patterns. A flow control policy also covers the enforcing party (RA.F.5.1)
and the enforcing system in form of routers (RA.F.1.1), proxy servers (RA.F.1.3), and
name servers (RA.F.1.2) which implement the flow control. Possible conflicts between
rules of one policy (RA.F.4.1) or multiple policies (RA.F.4.2) are resolved by using

38

Design of the InFO policy language

a meta-policy described with the Flow Control Meta-Policy Pattern. A meta-policy is
basically a collection of all flow control policies which are enforced by the same system.

The Organizational Regulation patterns and the Legal Regulation patterns enrich the
Technical Regulation with human-readable descriptions. The Code of Conduct Pattern
fulfills requirement RA.F.9.1 by defining concepts for describing an organizational code
of conduct as well as its legal background. The Flow Regulation Norm Pattern defines
the legality of a particular communication flow and implements requirement RA.F.9.2.
The Legislation Pattern pattern allows to model how the legal norm conceptualized
in the Flow Regulation Norm Pattern was actually created. This corresponds to a
legislative procedure and allows to specify the legislator of the norm to fulfill require-
ment RA.F.5.3. The Organizational Regulation patterns and the Legal Regulation
patterns do not define all details for covering human-readable descriptions themselves.
Instead, the patterns define generic concepts which can be integrated into existing legal
ontologies such as the Legal Knowledge Interchange Format (LKIF) [146, 147] or the
Core Legal Ontology (CLO) [123, 118]. This allows to reuse all concepts defined in these
ontologies together with the Technical Regulation of InFO. An external ontology is inte-
grated by using a corresponding mapping ontology like LKIFMapping or CLOMapping
as shown in Figure 3.4.

The Technical Regulation patterns only define the basic structure of the technical reg-
ulation details. This structure is independent of any particular enforcing node. Thus,
policies for particular types of enforcing nodes are described using domain ontologies
which are specialized from the Technical Regulation patterns. Policies for IP-based reg-
ulation are described using the Router Ontology (RA.F.1.1), policies for the Domain
Name System use the Name Server Ontology (RA.F.1.2), and policies for proxy servers
are based on the Application-level Proxy Ontology (RA.F.1.3). Each domain ontology
provides concepts and axioms for precisely specifying all parameters required for imple-
menting the flow control (RA.F.2) on a specific type of enforcing node. For example, the
Router Ontology contains concepts of IP-based rules which must be enforced by routers,
the Name Server Ontology provides concepts and axioms for modeling rules based on
domain names, and the Application-level Proxy Ontology provides concepts for model-
ing URL-based rules which are enforced by application-level proxy servers. In addition
to these three domain ontologies, it is also possible to create new domain ontologies by
extending the Technical Regulation patterns.

The fulfillment of all functional requirements is summarized in Table 3.1. The non-
functional requirements standards compliance RA.N.1, modularity RA.N.2 and ex-
tensibility RA.N.3 cannot be mapped to a particular pattern, since they affect the
InFO pattern system as a whole. Requirement RA.N.1 is achieved by using OWL as
the modeling language. Requirement RA.IN.2 is addressed by InFO’s modular design
and its use of DUL as modeling basis. Requirement RA.N.3 is supported by allowing
the creation of new domain ontologies besides the already existing ones. Furthermore,
it is also possible to import other legal ontologies as the foundation for describing the
legal and organizational background. In summary, InFO covers all functional as well
as non-functional requirements defined in Section 3.2. A detailed discussion of these
requirements and a comparison with the state of the art and related work is provided in

39

Section 3.3

Chapter 3

InFO: A Policy Language for Regulating Information Flow

Table 3.1.: Functional requirements and their implementations by the InFO patterns.

Requirement Implementation
RA.F.1.1 Support for routers as enforcing nodes Router Ontology
RA.F.1.2 Support for name servers as enforcing nodes Name Server Ontology
RA.F.1.3 Support for proxy servers as enforcing nodes Application-level Proxy Ontology
RA.F.2 Operationalization of policies Router Ontology,

RA.F.3.1
RA.F.3.2
RA.F.4.1
RA.F.4.2
RA.F.5.1

Support for allowing rules

Support for denying rules

Rule conflict resolution for single policies
Rule conflict resolution for multiple policies
Identification of regulation enforcer

Application-level Proxy Ontology,
Name Server Ontology

Flow Control Rule Pattern

Flow Control Rule Pattern

Flow Control Meta-Policy Pattern
Flow Control Meta-Policy Pattern
Flow Control Policy Pattern

Flow Control Rule Pattern
Legislation Pattern

Flow Control Rule Pattern
Flow Control Rule Pattern
Flow Control Rule Pattern
Code of Conduct Pattern

Flow Regulation Norm Pattern

RA.F.5.2 Identification of regulation provider
RA.F.5.3 Identification of regulation legislator
RA.F.6 Identification of regulated content
RA.F.7 Classification of regulated content
RA.F.8 User’s access location

RA.F.9.1 Organizational background
RA.F.9.2 Legal background

Section 3.6. In the following, each pattern of InFO is described in more detail. First, the
different Technical Regulation patterns are explained. Afterwards, the Organizational
Regulation patterns and the Legal Regulation patterns are described. Finally, the inte-
gration of existing legal ontologies and content labeling schemes into the InFO pattern
system is covered.

3.3.3. Flow Control Rule Pattern

The Technical Regulation patterns cover three different patterns for expressing flow
control rules. These patterns are the Flow Control Rule Pattern, the Redirecting Flow
Control Rule Pattern, and the Replacing Flow Control Rule Pattern. All three pat-
terns define several communication aspects such as the communicating end points and
the transmitted content. Each communication aspect is modeled using the same basic
structure which is depicted in Figure 3.5. This structure defines a communication aspect
as a Role which is played by an instance of the class Object or one of its subclasses.
Example objects are client systems, web servers, or web pages. An object is identified by
its features which are described as a quality of the object. According to DUL’s qualities
and quality region pattern depicted in Figure 3.2c, the actual values of these features
are modeled as subclasses of Region. Possible identifiers for client systems and web
servers are [P addresses and domain names, possible identifiers for web pages are URLs,
and possible identifiers for communication channels are protocol names such as HTTP
or FTP. Each communication aspect is further specified by a corresponding Specifier
which parametrizes its Region.

40

Design of the InFO policy language

| Role M_l <Aspect>Role I\l specifies 1..% I <Aspect>Specifier |—>| Parameter |
classifies classifies
1 . . 1..%
Obj;l hasQualit 1.. /l Quality] hasRegion 1-.- /IR_egion

Figure 3.5.: Basic structure of a communication aspect in the Flow Control Rule Pat-
tern. This structure uses DUL’s qualities and quality region pattern.
<Aspect> is a placeholder for Sender, Receiver, Content, and Channel.
For example, a SenderSpecifier specifies a SenderRole.

Method Description
— I

FlowControlRuleMethod

| \l/ \l,
1 1 0..1
@ I ContentRole | I SenderRole |
*
- _ classifies 0..1 0..1

I RuleDataProvider RegulatedTopic | I ReceiverRole | I ChannelRole |

defines

I AllowingFlowControlRuleMethod

I DenyingFlowControlRuleMethod .
classifies

1

classifies classifies [EformationRealization classifies| classifies

satisfies 1
1 L realizes 1 1 L

[SociaIAgentI [Topic haSTOPLcl . ITechnicaISys!eml [Objectl
1 T..* - Lot 0..2 1..%
InformationObject V
PhysicalAgent
ntr i i

hasSetting

AllowingFlowControlRuleSituation |

DenyingFlowControlRuleSituation |

Figure 3.6.: Flow Control Rule Pattern.

The main class of the Flow Control Rule Pattern is FlowControlRuleMethod which
is modeled as a subclass of DUL’s Method. A flow control rule regulates if the establish-
ment of a particular Internet communication is to be allowed or denied. FlowControl-
RuleMethod itself does not specify whether the described flow control shall be allowed
or prohibited. Instead, this is expressed by its subclasses AllowingFlowControlRule-
Method and DenyingFlowControlRuleMethod. The Flow Control Rule Pattern allows
to describe such a regulation by associating the regulating rule with four different as-
pects of an Internet communication. These aspects are defined according to Shannon’s
communication model [278] and cover the sender and receiver of the communication as
well as the transmitted content and the communication channel. All four aspects are
modeled using the basic structure depicted in Figure 3.5 by replacing the placeholder
<Aspect> with Sender, Receiver, Content, and Channel, respectively. Such a generic
solution allows the Flow Control Rule Pattern to cover almost any arbitrary type of
information flow. For reasons of simplicity, the depiction of this pattern provided in Fig-
ure 3.6 only shows the aspect’s role as well as the classified object. As a flow control rule
regulates the establishment of a technical communication flow, the sender and receiver
of this communication are modeled as TechnicalSystems. The content is modeled as an
instance of InformationRealization since the rule operates on a specific digital data

41

Section 3.3

Chapter 3

InFO: A Policy Language for Regulating Information Flow

file and not on an abstract piece of information. If a flow control rule does not specify
one of the four communication aspects, it will be evaluated for all possible aspects. For
example, if a rule does not explicitly define a sender, it will be evaluated for all senders.

Besides the four communication aspects, the Flow Control Rule Pattern also defines
the provider of the rule as well as a regulated topic. RuleDataProvider represents the
party who creates a flow control rule by providing all information for technically enforc-
ing it. This includes the identifiers of all communication aspects such as IP addresses,
domain names, or URLs. Possible RuleDataProviders are given in the scenario in Sec-
tion 2.1 and include the BKA and KACST. The regulated topic describes the content
whose transmission is regulated by the rule. Example topics are neo-Nazi propaganda
or pornography. The content’s topic is described using the topic pattern of the Ontopic
ontology depicted in Figure 3.3. For simplicity reasons, Figure 3.6 only shows the class
Topic and not the complete topic pattern. Since a topic is independent from any spe-
cific encoding and primarily associated with abstract piece of information, the Ontopic
ontology associates a topic with an InformationObject. In order to be able to associate
a topic with an InformationRealization, the Flow Control Rule Pattern includes an
InformationObject as an indirect link between the two classes. If additional descrip-
tions of the content are desired, the InformationObject can be further described by
using additional content labeling schemes such as age-de.xml and their integration into
the InFO pattern system. The general process of such an integration is presented in
Section 3.3.8 and the details are covered in Appendix B.2.

[Denying]

ZL{ RedirectingFlowControl d } define
1
1
Redirecti 1 specifies 1
m <l Target

classifies parametrizes

satisfies

1

1
I DenyingFlowControlRuleSituation | TechnicalSystem Region
1..* 1..%
RedirectingF ol ituation | hasserting

Figure 3.7.: Redirecting Flow Control Rule Pattern.

—

| defip
|
1
1
1 specifies 1
mq p \tTarget ifi

classifies parametrizes

satisfies

1

1
I DenyingFlowControlRuleSituation | Ol onEeaaaion Region
1..% T, .«
ReplacingFlowControlRuleSituation | il tting

Figure 3.8.: Replacing Flow Control Rule Pattern.

42

Design of the InFO policy language

The Flow Control Rule Pattern is extended by the Redirecting Flow Control Rule
Pattern and the Replacing Flow Control Rule Pattern. The Redirecting Flow Control
Rule Pattern allows to deny a particular communication flow by replacing the original
receiver with a different, predefined receiver. The intended communication flow is there-
fore not possible. The pattern may be useful if the sender of the communication shall
be redirected to another server which provides additional background information about
the regulation. The Redirecting Flow Control Rule Pattern is depicted in Figure 3.7. It
extends the Flow Control Rule Pattern by adding a RedirectionTarget which is mod-
eled according to the basic structure for communication aspects as shown in Figure 3.5.
The Replacing Flow Control Rule Pattern depicted in Figure 3.8 is similar to the Redi-
rection Flow Control Rule Pattern. It also denies a particular communication flow by
replacing one of its four basic communication aspects with a predefined value. More
specifically, the Replacing Flow Control Rule Pattern replaces the intended content with
a replacement content. The pattern extends the Flow Control Rule Pattern by defining
the class ReplacementTarget which is also modeled according to the basic structure of
communication aspects depicted in Figure 3.5.

3.3.4. Flow Control Policy Pattern

A flow control policy is a collection of multiple flow control rules sharing the same
purpose. The Flow Control Policy Pattern depicted in Figure 3.9 allows to define such
collections and associates them with a legal norm and/or code of conduct. Both the
legal norm and the code of conduct express the purpose of a flow control policy and all
of its rules in a human-readable form. Their usage and modeling is further described
in Section 3.3.6. The Flow Control Policy Pattern also associates a flow control policy
with one enforcing party and one technical enforcing system. The party is represented
by a SocialAgent and acts as a ResponsibleOperator. Possible types of operators are
natural persons and organizations. The system which technically implements the flow
control is modeled as a TechnicalSystem in the role of an EnforcingSystem. Example
systems are routers, name servers, and application-level proxy servers.

In order to resolve conflicting rules, the pattern provides two optional conflict reso-
lution algorithms. The LocalNonApplicabilityAlgorithm covers the handling of such
flow control rules which cannot be fully implemented on the enforcing system. An
example of such rules is described below in Section 3.3.5. The LocalConflictResolu-—
tionAlgorithm defines how conflicts between two contradicting flow control rules of the
same policy are resolved. Such conflicts occur when rules of the same policy share the
same specifiers of their aspects but differ in the actual handling of the communication
flow. For example, one rule is allowing the specified communication flow while another
rule is prohibiting it. Before the algorithm is evaluated, all rules of the policy are or-
dered according to the rule priority algorithm of the policy’s meta-policy which is further
described in the next section. Both types of local conflict resolution algorithms are also
provided as global algorithms in a policy’s meta-policy. If a flow control policy does not
specify a local conflict resolution algorithm, existing conflicts are resolved by using the
corresponding algorithms of the meta-policy. The local algorithms are optional and are,

43

Section 3.3

Chapter 3

InFO: A Policy Language for Regulating Information Flow

" *
ba L.-* S [FlowControlRuleMethod|
/\
1
| FlowControlPolicyMethod : define
1
defines m
1 1 £ 1..% 1..%
ResponsibleOperator EnforcingSystem LegalAuthorization | |OrganizationalMotivation
classfifies classfifies classfifies clasglifies
1 1 ; ;
SocialAgent | gperates 1. *Nerbrr ™ i inti
satisfies g Techmcal15ystem FIowReguIIa1t|o:|Norm | | CodeOfCondulchiscnptmn
hasSetting \v \J/
| LocalConflictSolutionRole 4—' LocalNonApplicabilityRole
clasglifies m clasgifies
/\
1 1
| FlowControlPolicySituation @&mg—' LocalConflictSolutionAlgorithm |—>| Algorithm |< I Local ApplicabilityAlgorithm

Figure 3.9.: Flow Control Policy Pattern.

if existing, applied before their respective global algorithm. This allows to overwrite the
global algorithms within a particular policy.

3.3.5. Flow Control Meta-Policy Pattern

A flow control meta-policy provides several algorithms for resolving conflicts of flow
control rules. These algorithms either resolve conflicts between two contradicting rules
of one or more flow control policies or between a rule and its enforcing system. The
Flow Control Meta-Policy Pattern depicted in Figure 3.10 provides a conceptualiza-
tion for a meta-policy. It defines the class FlowControlMetaPolicyMethod as a col-
lection of several flow control policies and four different conflict resolution algorithms.
These algorithms are the PolicyPriorityAlgorithm, the RulePriorityAlgorithm, the
GlobalConflictResolutionAlgorithm, and the GlobalNonApplicabilityAlgorithm.
The algorithms are inspired by the policy languages XACML [205], DEN-ng [286], the
Ontology-Based Policy Translator (OPoT) [21], Ponder [88], and ODRL [156, 157] as
further described in Section 3.6. However, InFO provides a more fine-grained and flexi-
ble approach for solving conflicts than these policy-languages. Each algorithm covers a
specific aspect of the conflict resolution process which is further described below. Un-
like to the optional conflict resolution algorithms of a flow control policy, all global
algorithms of a meta-policy are mandatory. The behavior of a particular algorithm
is specified via a corresponding subclass of the algorithm type. For example, possible
GlobalConflictResolutionAlgorithms are IgnoreAffectedRulesAlgorithm and Ig-
noreAffectedPoliciesAlgorithm. The former algorithm only discards the conflicting
rules but leaves other rules of the same policy unchanged. The latter algorithm dis-

44

Design of the InFO policy language

cards the whole policies which contain the conflicting rules. Additional algorithms are
described in Appendix A. Apart from these algorithms, a flow control meta-policy also
defines the enforcing system’s default behavior via a DefaultRule. Each flow control
rule covers a specific communication flow. If no rule can be applied to a particular
communication, the DefaultRule will be used instead. This rule does not define any
specific sender, receiver, content, or channel. Instead, it only covers those parameters
necessary for the rule’s implementation, e. g., redirection targets or replacement targets.
A default rule will be evaluated for every communication as long as there is no other
flow control rule which already covers that communication. Similar to the Flow Control
Policy Pattern, the Flow Control Meta-Policy Pattern associates a meta-policy with one
enforcing party and one technical enforcing system. Each enforcing system is related to
exactly one flow control meta-policy and can implement multiple flow control policies
and corresponding rules.

M, h. *
F E ha 1. I FlowControlPolicyMethod
7 1

N | define
| FlowControlMetaPolicyMethod I
1
1..%
defines PolicyPriorityRole -
RulePriorityRole
A 1..%
1 1 1 [GlobalNonApplicabilityRole |
EnforcingSysteml | ResponsibleOperatorl DefaultRule 1..%
|
|

| lobalConflictSolut i

o o classifies |classifies |classifies classifies
satisfies classifies classifies classifies

1
[GlobalconflictsolutionAlgorithm |—

1 1 1 1 1..%
TechnicalSystem | | SociaIAgentl | FlowControlRuleMethod | |GIobaINnnApplicabilityAIgorithm |—
T 1 1 1 T..%
RulePriorityAlgorithm
hasSetting 1 1*—|
PolicyPriorityAlgorithm
1..%
1 AV
| FlowControlMetaPolicySituati I/ hasselting Algorithm

Figure 3.10.: Flow Control Meta-Policy Pattern.

Lupu and Sloman distinguish between two different categories of possible conflicts
of rules which are modality conflicts and application specific conflicts [192]. Modality
conflicts occur between two rules when the establishment of a particular flow of com-
munication is allowed by one rule and prohibited by the other rule. InFO resolves
modality conflicts with the PolicyPriorityAlgorithm, the RulePriorityAlgorithm,
the GlobalConflictResolutionAlgorithm, and the optional LocalConflictResolu-—
tionAlgorithm. Application specific conflicts occur between a flow control rule and
its enforcing system and correspond to an incompatibility between the two. Such an
incompatibility exists if the rule uses ontological concepts which are unknown to the
enforcing system. In this case, the enforcing system does not know the meaning of the
unknown concepts and cannot implement the corresponding rule. Resolving applica-

45

Section 3.3

Chapter 3

InFO: A Policy Language for Regulating Information Flow

tion specific conflicts is important as InFO’s open design allows to define new types of
rules by creating a corresponding subclass of FlowControlRuleMethod. However, if the
enforcing system does not understand this new rule type, it cannot interpret it. For
example, a new rule type ReplaceWordOnWebPage may be defined in order to replace
offensive words on web pages by an application-level proxy server. If the enforcing proxy
server does not know the semantics of this rule, it cannot replace any offensive word.
Application-specific conflicts like these are handled by the GlobalNonApplicability-
Algorithm and the optional LocalNonApplicabilityAlgorithm which are evaluated
before applying any other conflict solution algorithm. All algorithms are evaluated by
an enforcing system in the following order:

1 Apply the LocalNonApplicabilityAlgorithm to the rules of each flow control
policy which defines such an algorithm. If a policy does not define a local non-
applicability algorithm, this step is skipped.

2 Apply the GlobalNonApplicabilityAlgorithm to the rules of all other flow con-
trol policies associated with the enforcing system’s meta-policy.

3 Order all flow control policies according to the meta-policy’s PolicyPriorityAl-
gorithm.

4 Order the rules of each flow control policy according to the meta-policy’s Rule-
PriorityAlgorithm.

5 Apply the optional LocalConflictResolutionAlgorithm to all rules which are in
conflict with each other and are part of the same policy. Skip this step if a policy
does not define a local conflict resolution algorithm.

6 Apply the GlobalConflictResolutionAlgorithm to all remaining rules which are
in conflict with each other.

Steps 1 and 2 resolve all application-specific conflicts. After these steps, every flow
control policy only contains such rules which can be completely interpreted by and
implemented on their enforcing system. Modality conflicts which can be resolved by
defining different priorities of the conflicting rules are eliminated by applying steps 3
and 4. Rules with a low priority that are in conflict with a rule of higher priority
are ignored by the enforcing system. Any modality conflict which still remains after
steps 3 and 4 is resolved during steps 5 and 6. In order to achieve this, the Global-
ConflictResolutionAlgorithms are designed to remove all contradicting rules or their
corresponding policies in the final step 6. A flow control meta-policy must define at least
one algorithm for each type. If there is more than one algorithm per type, the property
follows from DUL’s sequence pattern defines the order of their application. Evaluating
the six steps above ensures that all remaining rules can completely be interpreted by the
enforcing system. However, if rules or policies are removed during this process, manual
intervention may be necessary to further analyze and eliminate the actual cause of the
conflict.

46

Design of the InFO policy language

3.3.6. Organizational Regulation and Legal Regulation Patterns

The Organizational Regulation patterns and the Legal Regulation patterns allow to as-
sociate human-readable background information with a flow control policy. The pat-
terns are designed to integrate existing legal ontologies such as LKIF [146, 147] or
CLO [123, 118] into InFO by using corresponding mapping ontologies. This flexible
design allows to reuse different external ontologies with variable expressiveness in dif-
ferent scenarios. The Organizational Regulation defines the Code of Conduct Pattern
and the Legal Regulation defines the Flow Regulation Norm Pattern and the Legislation
Pattern. This section describes these three patterns. The integration of existing legal
ontologies into InFO is discussed in Section 3.3.7.

The Code of Conduct Pattern depicted in Figure 3.11 allows to describe the organi-
zational code of conduct on which a technical flow control implementation is based. A
code of conduct is represented by the pattern’s main concept Code0fConductDescrip-
tion. It is created by the party acting as the CodeOfConductCreator and based on
at least one legal foundation such as a legal norm or a law. The legal foundation can
define the boundaries of a code of conduct by stating that the code must not violate
any legal norm. A code of conduct is expressed by a CodeOfConductText which is a
subclass of InformationObject and describes the code in a human-readable form. The
class CodeOfConductDescription is used in the Flow Control Policy Pattern depicted
in Figure 3.9 to link a particular flow control policy to its organizational motivation.
The code of conduct then holds for all flow control rules of the associated policy.

T 1 defines
| Description M—' CodeOfConductDescription f
isExpressedBy 1 1..%
1..* CodeOfConductCreator > m <] LegalFoundation
[nformationobject |<}—] codeofConductText classifies classifies

1 1

| SocialAgent | | Description |

Figure 3.11.: Code of Conduct Pattern.

The Flow Regulation Norm Pattern is depicted in Figure 3.12 and models the legal
state of a particular communication flow. It defines whether a technical communication
flow is permitted or prohibited by using a corresponding subclass of the pattern’s main
concept FlowRegulationNorm. The pattern can be considered as a legal view on the
technical Flow Control Rule Pattern described in Section 3.3.3. The Flow Regulation
Norm Pattern models a particular communication flow as an event by using DUL’s
participation pattern as depicted in Figure 3.2e. The participants of this event are
both communicating parties, the transmitted content, and the content’s topic. The
communicating parties are distinguished between the content provider and the content
consumer. Both parties are represented by their technical communication system such
as a web server or a web browser and the agent who uses that system. Possible agents
include organizations which may operate a web server and natural persons which may use
a web browser. In contrast to the Flow Control Rule Pattern, the Flow Regulation Norm
Pattern does not specify all details of a technical communication system. Instead, the

47

Section 3.3

Chapter 3 InFO: A Policy Language for Regulating Information Flow

Description |<—| F i m I actones
0..1
| F ibiti i ContentC i g
| Permitting 1
C 3
classifies classifies
1 1
i sExpresseds SocialAgent | PhysicalAgent |<—| TechnicalSystem |
2 2
defines
m [~>| EventType
/\ 1. /\
| ontent I I g Topic | ContentTr issionType | | Ci rovidingType ContentConsumingType
classifies classifies classifies
1. 1 1 1
* . .
fonObject |—— hasTopic E"ic classifies 1 E"E 1 classifies

1..%
1..%

hasParticipant hasParticipant

Figure 3.12.: Flow Regulation Norm Pattern.

legal view modeled by this pattern focuses on the system’s type such as a router or a name
server. The type of the event defines the specific aspect of the communication flow that
is actually regulated. ContentTransmissionType states that the legal norm regulates
the content’s transmission between two communicating parties and affects both parties.
If the event type corresponds to a ContentProvidingType, the legal norm mainly affects
the content provider whereas a ContentConsumingType primarily regulates the actions
of the content consumer. For example, §86 of the German Criminal Code [62] regulates
the distribution of neo-Nazi propaganda and could be modeled using the event type
ContentProvidingType. Similar to a code of conduct, a legal norm is also expressed
by an InformationObject which models a human-readable representation of the norm.
The specific relations between all entities of the Flow Regulation Norm Pattern depend
on the integrated legal ontology. The general procedure of this integration is discussed
in Section 3.3.7 and possible mappings are provided in Appendix B.1. A FlowRegu-
lationNorm is associated with a flow control policy by using the Flow Control Policy
Pattern described in Section 3.3.4. This pattern models the norm as the policy’s legal
foundation, thereby linking it to all of the policy’s flow control rules as well.

The Legislation Pattern is depicted in Figure 3.13 and complements the Flow Regula-
tion Norm Pattern. It models the altering process of a legal norm and provides further
background information about how the current state of a legal norm was achieved. This
altering process is considered as a LegislationAct which is performed by a Legislator
who is responsible for the process. The Legislation Pattern has a similar design as the
Flow Regulation Norm Pattern. Its main concept LegislationNorm is associated with
all concepts relevant for passing or modifying a legal norm. The particular alteration
of a legal norm is modeled as a subclass of AlteredNorm and may be the creation, the
suspension, or the modification of a norm.

48

Design of the InFO policy language

Leai " defines

m
1 1 \l/ 1
> Legislator > m A m | EventType |<—| LegislationType |

~lassifies 1 ifies .
classifie _UpdatedNorm classifies m 4 classifies
SuspendedNorm
1 1 1
" P i N P
SocialAgent Description hasParticipant N
hasParticipant

Figure 3.13.: Legislation Pattern.

3.3.7. Integration of Existing Legal Ontologies into InFO

The Organizational Regulation patterns and the Legal Regulation patterns are designed
for using existing legal ontologies together with InFO by integrating them into InFO’s
pattern system. The main goal of this integration is the reuse of the legal ontologies
without modifying or refactoring them beforehand. Statements of the integrated exist-
ing legal ontologies must be valid in both InFO and in the original legal ontology. The
integration of these legal ontologies is done in four steps and based on the alignment
method by Scherp et al. [265]. In the first step, the structure and design of a legal
ontology is analyzed and the core concepts and properties are identified. The analysis
is based on reviewing the ontology model and/or any additional documentation. In the
second step, existing groups of concepts and properties are identified. Such groups may
be explicitly modeled by using, e.g., ontology design patterns or only described in ex-
ternal documents. The third step corresponds to the actual integration and is based on
creating a mapping ontology for each legal ontology. As depicted in Figure 3.4, such
a mapping ontology imports the Organizational Regulation and the Legal Regulation
of InFO as well as the legal ontology to be integrated. A mapping ontology does not
define any new classes or properties. Instead, it only defines subclass and subproperty
relationships between the concepts and properties of InFO and the legal ontology. How-
ever, in contrast to Scherp et al. [265], modifying the original ontology by, e. g., removing
concepts or axioms is not intended. Therefore, the internal structure of both InFO and
the integrated legal ontology remains intact. The fourth step is the validation of the
mappings and can be done using an ontology reasoner. The validation ensures that the
mapping is correct and does not contain any modeling errors.

Figure 3.4 shows how the legal ontologies CLO [123, 118] and LKIF [146, 147] are in-
tegrated into InFO. They can be used for both describing the organizational background
and the legal background of an information flow regulation. The actual integration is
done with the mapping ontologies LKIFMapping and CLOMapping. Both mapping ontolo-
gies import the Organizational Regulation patterns and the Legal Regulation patterns
as well as their respective legal ontology and define additional statements for the inte-
gration. The details of the mapping ontologies are provided in Appendix B.1.

49

Section 3.3

Chapter 3

InFO: A Policy Language for Regulating Information Flow

3.3.8. Integration of Existing Content Labeling Schemes into InFO

The Flow Control Rule Pattern introduced in Section 3.3.3 uses the topic pattern of
the Ontopic ontology for describing the topic of the transmitted content. Although the
descriptions created with this pattern are sufficient for many scenarios, it is also possi-
ble to further describe the transmitted content by importing content labeling schemes
such as the RTA label, age-de.xml [264], or PICS [248] into InFO. These schemes are
designed to be used by child protection software for prohibiting minors from accessing
adult web content. Thus, integrating these schemes into InFO can achieve more com-
patibility between the InFO pattern system and other implementations for regulating
access to web pages such as Net Nanny and the Jugendschutzprogramm. Figure 3.4
shows how the RTA label, age-de.xml, and PICS are integrated into InFO. The integra-
tion of the content labeling schemes is done in a similar way as the integration of the
legal ontologies described in the previous section. The mapping uses the corresponding
mapping ontologies RTAMapping, AgeDeXmlMapping, and PICSMapping. The details
of the three mapping ontologies are provided in Appendix B.2.

3.3.9. Summary

The pattern system InFO consists of several ontology design patterns which cover specific
aspects for describing the regulation of information flow on the Internet. These aspects
are either of technical, of organizational, or of legal issue. The main focus of InFO is the
technical regulation of Internet communication. The Organizational Regulation and the
Legal Regulation are designed to be used together with existing legal ontologies.

3.4. Applications and Use Cases

This section demonstrates how the InFO policy language is applied for implementing
the scenarios provided in Section 2. The first scenario covers the regulation of Internet
communication and is described in Sections 3.4.1 to 3.4.4. Afterwards, Section 3.4.5
describes the second scenario for securing the access to medical data.

3.4.1. Example Policies for Regulating Internet Communication

Figure 3.14 depicts a subnetwork of the example network described in Section 2.1 in-
cluding more technical details such as the addresses of the communication nodes and the
URLs of the web content. These details are required for precisely defining a set of flow
control policies. The policies are created using three different domain ontologies that
extend InFO’s Technical Regulation patterns. These domain ontologies are the Router
Ontology, the Name Server Ontology, and the Application-Level Proxy Ontology. Each
ontology defines specific flow control rules which are designed to be implemented on their
respective enforcement systems. For example, the Router Ontology defines the classes
IPAddressBlockingRuleMethod and IPAddressRedirectingRuleMethod as subclasses

50

Applications and Use Cases

US Network 2 5
Saudi Arabian Network
Pornography Server ws-2
Stormfront Network cn-1 www . porntube . com KACST
stormfront.org - 174.121.229.0/24 104.20.26.14, 104.20.27.14 :
V.
Nazi Propaganda Server ws-1 Web Site wst-1 Sahara Net (SN) Network cn-2
www.stormfront.org http://www.porntube.com/ 89.108.0.0/16
174.121.229.156 :
Web Page wp-1
info geve Router ro-1 |
j 89.108.200.111
Name Server ns-1
iserver.stormfront.org
174.121.229.147
4——| Router |-— I
—|—~| Router |<—~| Router H I Router |' | SA Client |

FunDorado Network cn-3
fundorado.de — 64.104.23.0/24

Info Server ws-4 Router
e [

info. .

64.104.23.17
German Telecom (GT) Network cn-4 i=—{ BKA
2.160.0.0/12 u

-l Router |<——| Router |¢—
T

Pornography Server ws-3
www . fundorado .de
64.104.23.47

Web Site wst-2
http://www. fundorado.de/

|DE Client |- »»»»»» —| Router |~—~| Name Server ns-2 |
T

<< ContentWatch)

<-{_JusProg)

German Network

Router Io——l Proxy pr-1 |--| StudentComputerl

Comprehensive School (CS) Network cn-5

— Regulatory Input <~—> Communication Flow () Regulating Party

[—_1 Technical Communication Node

Web Content

i Computer Network

Figure 3.14.: Regulated web servers and web content of the example policies. The
depicted topology is a subnetwork of Figure 2.1 extended with more
technical details such as IP addresses and domain names.

of the generic classes DenyingFlowControlRuleMethod and RedirectingFlowControl-
RuleMethod. The ontology also provides additional axioms which reduce the possibility
of creating invalid flow control rules and flow control policies. Flow control rules based
on IP addresses require at least one IP address for the sender and/or the receiver of a
communication. If such a flow control rule does not contain at least one IP address, the
rule cannot be enforced by a router and is therefore considered as invalid. Similarly, the
Name Server Ontology defines classes and axioms for flow control rules based on domain
names and the Application-Level Proxy Ontology covers classes and axioms based on
URLs. Further details of the classes and axioms of the three domain ontologies are
provided in Appendix A.

The following subsections present three example flow control regulations for each of
the three domain ontologies. The example policies cover the regulation of the computer
networks cn-1 and cn-3 as well as the web server ws-2. The network cn-1 provides neo-
Nazi material whose access shall be prohibited for all German users. The flow control

51

Section 3.4

Chapter 3

InFO: A Policy Language for Regulating Information Flow

rules implementing this access regulation are based on domain names and are enforced
by the name server ns-2 of the German Telecom. The network cn-3 located in Germany
and the web server ws-2 located in the USA provide pornographic web content. Access
to this content shall be prohibited for all users in Saudi Arabia and for all students of
the German comprehensive school. In Saudi Arabia, the access regulations are based on
IP addresses and enforced by the router ro-1 whereas the German comprehensive school
regulates the access using its proxy server pr-1 which operates on URLs. For illustration
purpose, each flow control regulation consists of two or three FlowControlRuleMethods,
one FlowControlPolicyMethod that contains these rules, and one FlowControlMeta-
PolicyMethod. All rules of the same policy share the same regulated topic and sender.
The sender of each rule and hence the requester of the regulated content is modeled as
a whole computer network rather than a single computer.

In general, a communication between a content consumer and a content provider can
be regulated in two different ways. The first option is to regulate the content consumer’s
request before it is sent to the content provider. In this case, the server acting as the
content provider does not receive any message from the client which acts as the content
consumer. The second option is to regulate the content provider’s response after it has
processed the content consumer’s request. Implementing this option allows the server
to receive messages from the client but prohibits the transmission of messages in the
opposite direction. InFO generally supports both types of regulation by defining the
sender and receiver of a communication accordingly. Choosing a particular type of
regulation may depend on technical, on organizational and/or on legal factors and must
be decided before creating particular regulation policies. For example, the first option
results in a faster regulation as an enforcing system can immediately regulate a request
without having to wait for a corresponding response. This also reduces the amount of
transmitted data and may result in a faster Internet connection of the enforcing node.
On the other hand, the legal foundation of a regulation may allow requesting particular
content but not the transmission of the content itself. In this case, the second option
might be used for implementing the regulation. In addition, there are also technical
constraints when choosing between the two types of regulation. Although routers and
proxy servers can regulate the flow of communication in both directions, name servers can
only regulate requests from a client system. This is due to the use of the domain name
system when initiating an Internet communication [212]. If a client wants to contact a
server, it first maps the domain name of the server to its IP address. The IP addresses of
the client and the server are then included in the messages which are exchanged between
the two systems. When sending a response, the server already has the IP address of the
client and does not need to contact a name server. Thus, prohibiting the communication
between two parties is only possible by implementing the regulation on the client’s name
server. In the following, all example rules are designed in such a way that the initial
request of a client system is regulated by the enforcing system.

For reasons of brevity, the following depictions of flow control rules, policies, and
meta-policies only show their most important aspects although the actual regulation
is still complete. All three meta-policies define a global conflict resolution algorithm
and a global non-applicability algorithm as these algorithms are mandatory for the

52

Applications and Use Cases

conflict resolution process. In contrast, the three flow control policies do neither define a
local conflict resolution algorithm nor a local non-applicability algorithm. Local conflict
resolution algorithms are only evaluated if a policy contains two or more contradicting
rules. Since the flow control rules used in the following examples do not provoke any
conflicts, the algorithm is omitted for simplicity reasons. On the other hand, local non-
applicability algorithms are only evaluated if an enforcing system cannot implement a
particular flow control rule. The flow control rules used in the examples are basic blocking
and allowing rules. The following subsections provide three examples of flow control
rules, flow control policies, and flow control meta-policies to be enforced on a router, a
name server, and a proxy server. A detailed workflow of creating and distributing these
regulations is provided in Section 4.7.1 as part of the graph signing framework Siggi.

3.4.2. Applying the Name Server Ontology

In the first example regulation, the German Telecom regulates the access to the Storm-
front network, which provides an online platform hosting neo-Nazi material [95, 319].
The regulation prohibits the clients of the German Telecom to access any neo-Nazi ma-
terial available in the network. The regulation is implemented using the Name Server
Ontology and enforced by a name server of the German Telecom. The Stormfront net-
work is a real-world example of regulating Internet communication and was the target
of several regulations in the past. The network is still regulated in some way, e.g. the
French!'! and the German'? versions of the Google search engine exclude the website
from their search results [196]. A detailed discussion of the regulation of Stormfront
is provided in [95, 319]. As depicted in Figure 3.14, the Stormfront network is identi-
fied as cn-1 and its domain name is stormfront.org. The network contains a name
server represented by the individual ns-1 and a web server represented by the indi-
vidual ws-1. While ns-1 is a regular name server managing the domain names of the
domain stormfront.org, ws-1 corresponds to the web server providing the Stormfront
web forum. The domain name of the web server is www.stormfront.org and the name
server can be accessed by its domain name iserver.stormfront.org. The example
policy for regulating the Stormfront network cn-1 only blocks access to those parts of
the network that can be directly associated with neo-Nazi material. At the same time,
the regulations allow access to other network nodes such as the name server ns-1. The
name server only provides a mapping between domain names and IP addresses and does
not host any web content of neo-Nazi material itself.

Figure 3.15 depicts the general definitions used for the example flow control rules
shown in Figure 3.16. Figure 3.15a shows an ontological representation of the Stormfront
network cn-1 and Figure 3.15b depicts the ontological representation of the network
cn-4 of the German Telecom. Both representations use DUL’s qualities and quality
region pattern to associate a computer network with its network address and its domain
name. The computer network of the German Telecom is identified as cn-4 and its
network address is 2.160.0.0/12. The postfix /12 of the network address denotes the

"http://www.google.fr, last accessed: 01/21/16
2http://wwu.google.de, last accessed: 01/21/16

53

Section 3.4

Chapter 3

InFO: A Policy Language for Regulating Information Flow

CIDR notation [114] of the network’s subnet mask. 12 corresponds to the subnet mask
255.240.0.0. Figure 3.15¢ shows how the topic pattern of the Ontopic ontology is used
for modeling a topic representing neo-Nazi propaganda. The topic is identified as nnpt-1
and consists of one multiword and one regular word.

cn-1: C Network } hasQualit dg-1: DomainQuality hasRegion dnr-1: D] hagDo"alm\am% 'stormfront.org'

(a) Representation of the Stormfront network cn-1. DUL’s qualities and quality region pattern
depicted in Figure 3.2c is used to model the network’s domain name.

cn-4: ComputerNetwor K |fasQuality Inaq-1: ddressQualit I hasRegion ipar-1: IPAVAA gion |aslBhddress N v 160.0.0'

hasSubnetMask '256.240.0.0'

(b) Representation of the computer network cn-4 of the German Telecom. The network is
associated with its IP address by using DUL’s qualities and quality region pattern.

S neo'
hasComponent w-1: Word hasDataValue neo'

hasDatavalue [Eamuery iskxpressedBy [onotq Topic|LsExpresseds mw-1: Multiword

hasComponent w2 Word|hasbatavalue S o

(c) Representation of the topic nnpt-1 describing neo-Nazi material. The topic is modeled using
the topic pattern of the Ontopic ontology depicted in Figure 3.3.

Figure 3.15.: General definitions used in the example regulation of the Name Server
Ontology.

The example regulation consists of two flow control rules, one flow control policy, and
one flow control meta-policy. Both flow control rules cover the same sender, the same
regulated topic, and the same rule data provider. The sender of each rule and thus
the requester of the regulated content corresponds to the computer network cn-4 of the
German Telecom. The topic of the regulated content is nnpt-1 and corresponds to neo-
Nazi material. The rule data provider of each rule is bka-1 and corresponds to the BKA
which is in charge of creating flow control rules and sending them to the German Telecom.
The first rule dnsr-1 depicted in Figure 3.16a states that any German client connected
to the network cn-4 shall be prevented from establishing a connection to the Stormfront
network cn-1. The intention of this rule is to prevent users of the German Telecom
from accessing neo-Nazi material hosted within the Stormfront network. However, the
network also includes servers which do not provide neo-Nazi material such as the name
server ns—-1. Thus, the second flow control rule dnsr-2 depicted in Figure 3.16b allows to
access this name server. dnsr-2 shares the same rule data provider and sender network
as rule dnsr-1. For reasons of brevity, not all of these details are depicted in the figure.

The flow control policy dnsp-1 of the flow control rules dnsr-1 and dnsr-2 is depicted
in Figure 3.16¢c. It associates both rules with their enforcing system and their respon-
sible operator. The responsible operator gt-1 represents the German Telecom and the
enforcing system ns-2 corresponds to the name server depicted in Figure 3.14. For rea-
sons of brevity, the name server is not further specified. However, it is also possible to
further describe the name server by using DUL’s qualities and quality region pattern

54

Applications and Use Cases

defines

dnsr-1: Domai Blockil I \l/

| rdp-1: RuleDataProvider | | rt-1: RegulatedTopic |

\l;lasmfies \l;lassifies
bka-1: SocialAgent nnpt-1: Topic
hasSetting

sr-1: SenderRole @m' ss-1: SenderSpecifier | | rr-1: ReceiverRole I specifies : iverSpecifier

satisfies

classifies classifies classifies parametrizes
| cn-4: ComputerNetwork | | ipar-1: IPAv4AddressRegion | | cn-1: ComputerNetwork | | dnr-1: DomainNameRegion
dnsrs-1: Domai i ituati I hasSetting
(a) First example flow control rule of the Name Server Ontology
dnsr-2: D i A ingl I defines
sr-1: SenderRole specifies ss-1: SenderSpecifier | | rr-2: ReceiverRole I specifies Specifier
classifies classifies classifies parametrizes|
satisfies
| cn-4: ComputerNetwork | | ipar-1: IPAv4AddressRegion | | ns-1: NameServerl | dnr-2: DomainNameRegion
dnsrs-2: D i A ing ituati I hasSetting | | |
(b) Second example flow control rule of the Name Server Ontology
hasMember I >y - -
| dnsr-2: D A \gRule |
hasMember [dnsr-1: D : |
| . d
dnsp-1: FlowControlPolicy d] defines
| ro-1: R il p | | es-1: ingSy | | la-1: LegalAuthorization | | om-1: OrganizationalMotivation |
s ofd classifies classifies classifies classifies
satisfies
| gt-1: SocialAgent | |ns-2: NameServerl | stgh86-1: FlowRegulationNorm | | coc-1: CodeOfConductDescription |

dnsps-1: FlowControlPolicySituati : hasSetting

(c) Example flow control policy of the Name Server Ontology

I%l dnsp-1: FlowControlPolicyMethod |

|dnsmp-1: FlowC olMetaPolicy I \l/ defines
|g|:rr-1: GlobalC i ionR .=| |gnar-1: ApplicabilityRol | dr-1: DefaultRule ppr-1: PolicyPriorityRole
classifies classifies classifies classifies
|gcra-1: Ig Affe dRulesAlgorithm | | gnaa-1: Ig Aff dRuleAlgorithm | | dnsr-3: D i Allowi d | | ppa-1: PreferLatestPolicyAlgorithm |
hasSetting
satisfies
| es-1: EnforcingSy ro-1: i perator | | rpr-1: RulePriorityRole | rpr-2: RulePriorityRole
follows
classifies classifies classifies classifies
|ns-2: NameServerl Igt-1: SocialAgentI | rpa-1: PreferLongestD i Algorithm | | rpa-2: PreferD i ToD: inAlgorithm |
| hasSetting |

1: FlowControlMetaPolicySi

(d) Example flow control meta-policy of the Name Server Ontology

Figure 3.16.: Example regulating using the Name Server Ontology.

55

Section 3.4

Chapter 3

InFO: A Policy Language for Regulating Information Flow

for, e. g., associating it with its [P address. The flow control policy dnsp-1 also links the
two rules dnsr-1 and dnsr-2 to their respective legal authorization and organizational
motivation. In the case of the Stormfront network, the legal authorization is §86 of the
German Criminal Code [62] which is identified as stgb86-1. The code of conduct of the
German Telecom [91] is used as an organizational motivation and represented as coc-1.

The flow control meta-policy dnsmp-1 of the of the name server ns-2 is depicted in
Figure 3.16d. As depicted, it shares the same enforcing enforcing system and responsible
operator as the flow control policy dnsp-1. Furthermore, it defines a default rule and
several conflict resolution algorithms. The default rule is identified as dnsr-3 and states
that any communication which is not explicitly covered by another rule is to be allowed.
This type of regulation corresponds to a blacklisting approach in which all communica-
tion is to be allowed as long as it is not explicitly forbidden by a particular rule. As
depicted in Figure 3.16¢, the flow control policy dnsp-1 does not define any local conflict
resolution algorithm or local non-applicability algorithm. Therefore, all non-applicable
rules and conflicts between contradicting rules are handled by the meta-policy dnsmp-2.
The global non-applicability algorithm gnaa-1 states that all rules which cannot be en-
forced by the name server ns-2 are to be ignored. As both rules dnsr-1 and dnsr-2 only
use standard concepts of the InFO policy language, they are not affected by this algo-
rithm. The policy priority algorithm ppa-1 states that newer policies have higher priority
than older policies. Since the example regulation only uses one policy, this algorithm
does not affect the flow control policy dnsp-1. The meta-policy defines two different rule
priority algorithms which are rpa-1 and rpa-2. The algorithms decide which of the two
flow control rules dnsr-1 and dnsr-2 are used for regulating access to the name server
ns-1. Both rules cover the domain name dnr-1 of the name server and can therefore
generally be applied for regulating its access. DUL’s sequence pattern is used to define
that the algorithm rpa-1 has a higher priority than rpa-2 and must therefore be applied
first. The algorithm rpa-1 states that longer domain names shall be preferred to shorter
ones. In this case, the domain name iserver.stormfront.org of the name server ns-1
is longer that the domain name stormfront.org of the whole computer network cn-1.
Thus, the enforcing system ns-2 applies the rule dnsr-2 to the name server ns-1 and
the rule dnsr-1 to all other servers of the same domain. This results in the refusal of
any communication attempts to any server in the network stormfront.org except for
the name server with the domain name iserver.stormfront.org. Finally, the global
conflict resolution algorithm gcra-1 states that all conflicting rules which are still in
conflict with each other after having applied all other algorithms are to be ignored by
the enforcing system. The conflict between the two rules dnsr-1 and dnsr-2 is resolved
after having applied the rule priority algorithm rpa-1. Thus, these rules are not affected
by the global conflict resolution algorithm gcra-1.

3.4.3. Applying the Router Ontology

In the second example regulation, the Saudi Arabian access provider Sahara Net pro-
hibits its users from accessing pornographic web content. The regulation to this web
content is enforced by a router of Sahara Net and implemented using the Router On-

56

Applications and Use Cases

tology. The regulated web content is provided by a web server located in the USA and
by the FunDorado network located in Germany. The US web server is identified as
ws-2 and has the two IP addresses 104.20.26.14 and 104.20.27.14. The FunDorado
network is identified as cn-3 and has the network address 64.104.23.0/24. It contains
the two web servers ws-3 and ws-4. Similar to the web server ws-2, the web server
ws=-3 also provides pornographic content. On the other hand, the web server ws-4 hosts
the website of FunDorado GmbH, the company managing the FunDorado network. The
company’s web site does not contain any pornographic content and only provides infor-
mation about the company and its services. Thus, access to the web server ws-4 with the
IP address 64.104.23.17 shall not be blocked. Figure 3.17 shows how the IP addresses
of the web server ws-2 are defined. The network address of the FunDorado network and
the IP addresses of its web servers are defined similarly and are not included for reasons
of brevity.

ws-2: WebServer| hasQualit ipag-1: IPAddressQuality hasRegion ipar-3: IPAV4A gion —hasiPAddress '104.20.26.14'
hasIPAddress

'104.20.27.14

Figure 3.17.: Representation of the US web server ws-2 and its two IP addresses.

The example regulation is depicted in Figure 3.18 and consists of three flow control
rules, one flow control policy, and one flow control meta-policy. All flow control rules
cover the same sender, the same rule data provider, and the same regulated topic.
The sender of each rule corresponds to the network cn-2 of Sahara Net. All rules
are created by the KACST which is identified as kacst-1. The rule data provider is
responsible for regulating all Internet communication in Saudi Arabia and sends the
created rules to Sahara Net. The topic of the regulated web content is identified as pt-1
and represents pornography. The first flow control rule ipr-1 is depicted in Figure 3.18a.
It states that any client system of the network cn-2 shall be prevented from establishing
a connection to the web server ws-2. Similarly, the second flow control rule ipr-1
depicted in Figure 3.18b blocks the access for all users of the computer network cn-2 to
the FunDorado network cn-3. This network mainly contains web servers such as ws-3
which provide pornographic web content which is to be blocked. However, the network
also covers the web server ws-4 which does not provide such content. Thus, the flow
control rule ipr-3 depicted in Figure 3.18c allows the access to this web server. The flow
control rules ipr-2 and ipr-3 share the same rule data provider and regulated topic as
rule ipr-1. For reasons of brevity, this is not shown in Figures 3.18b and 3.18c.

The flow control policy ipp-1 depicted in Figure 3.18d associates the flow control rules
ipr-1, ipr-2, and ipr-3 with their enforcing system and their responsible operator as
well as their legal authorization. The enforcing system is the Router ro-1. It is operated
by Sahara Net which is identified as sn-1. The legal authorization of the flow control
rules is §6 of the Saudi Arabian Anti-Cyber Crime Law [179] and represented as acc16-1.
An organizational motivation for the regulations is not provided in the policy. Since
the flow control policy ipp-1 does not define any local conflict resolution algorithm,
all conflicts between conflicting rules are resolved by the policy’s meta-policy ipmp-1

57

Section 3.4

Chapter 3

InFO: A Policy Language for Regulating Information Flow

| ipr-1: IPAddr 1 —1 defines

rc-2: RegulatedTopic

classifies classifies

kacst-1: SocialAgent pt-1: Topic

rp-2: RuleDataProvider

hasSetting

satisfies
sr-2: SenderRole specifies Iss-2: derSpecifi | | r-3: ReceiverRoIeI specifies
classifies classifies classifies parametrizes
| cn-2: ComputerNetwork | | ipar-2: IPAv4AddressRegion | |ws-2: WebServerl
iprs-1: IPA ing| : hasSetting
(a) First example flow control rule of the Router Ontology
ipr-2: IPAddr i } defines
sr-2: SenderRole specifies Iss-z: pecifi | |rr—4: i nulel specifies
classifies classifies \l;ldssifics parametrizes
satisfies
| cn-2: ComputerNetwork | | ipar-2: IPAV4A gion | | cn-3: C Network | | ipar-4: IPAv4AddressRegion
iprs-2: IPA : | hasSetting |
(b) Second example flow control rule of the Router Ontology
ipr-3: IPAddr A ing I defines ¢ ¢
sr-2: SenderRole specifies Iss-z: Sender ifi | |rr-5: ReceiverRoIeI specifies
satisfies classifies classifies classifies parametrizes
| cn-2: ComputerNetwork | | ipar-2: IPAv4AddressRegion | | ws-4: WebServer | | ipar-5: IPAv4AddressRegion
iprs-3: IPAdd A g ituation | hasSetting
(¢) Third example flow control rule of the Router Ontology
ipp-1: FlowC IPolicy I defines
hasMember I ipr-1: IPAddr i | follows ¢ ¢
e svont | ro-2: i p | |es-2: EnforcingSy | | la-2: LegalAuthorization |
2stiember Sipr-2: IPAddr i | Classifies Classifies classifies
satisfies
hasMenber N[0 3 PAddressAllowi | follows
L | sn-1: SocialAgen(l | ro-1: Routerl | accl6-1: FlowRegulationNorm |
ipps-1: FlowC ioySituati 'I hasSetting | | |

(d) Example flow control policy of the Router Ontology

l%l ipp-1: FlowControlPolicyMethod I

Iipmp-1: FlowControlMetaPolicy Il ¢

Iro-Z: il P! mu-l Ies-Z: EnforcingSy I Idr-z: DefauIlRuIeI

defines

classifies classifies classifies classifies
satisfies
| sn-1: SocialAgent | Iro-1: Routerl I ipr-4: IPAddr A ing d I I rpa-3: EvaluateRuIeOrderingAIgorithmI
1 hasSetting I

ipmps-1: FlowControlMetaPolicySi i [

(e) Example flow control meta-policy of the Router Ontology

Figure 3.18.: Example usage of the Router Ontology.

58

Applications and Use Cases

depicted in Figure 3.18e. The meta-policy contains the flow control policy ipp-1 and
shares the same responsible operator and enforcing system. Its default rule ipr-4 states
that any communication is allowed as long as it is not explicitly forbidden by another
rule. For reasons of brevity, Figure 3.18e does not depict all conflict resolution algorithms
of the meta-policy. Instead, it only shows a rule priority algorithm for resolving the
conflict between the two flow control rules ipr-2 and ipr-3. Both rules cover the same
IP address region ipar-5 which is associated with the web server ws-4. Thus, they can
in general be applied to this server. In order to decide which of the two rules are to
be used, the enforcing router ro-1 must apply the rule priority algorithm rpa-3. This
algorithm requires an explicit ordering of flow control rules with the property follows.
As depicted in Figure 3.18d, the rule ipr-3 has a higher priority than ipr-2 in order
to allow access to the web server ws-4. Thus, the router ro-1 applies the rule ipr-3
to the web server ws-4 and the rule ipr-2 to all other servers of the computer network
cn-2. This results in the refusal of any communication attempts to any server in the
network 64.104.23.0/24 except for the web server with the IP address 64.104.23.17.
As the flow control rule ipr-1 is not in conflict with the other flow control rules, it is
not affected by the meta-policy’s rule priority algorithm.

3.4.4. Applying the Application-Level Proxy Ontology

In the third example regulation, the German comprehensive school cs-1 prohibits its
students from accessing pornographic web content by using the Application-Level Proxy
Ontology. The regulation is enforced by the school’s proxy server pr-1 which serves
as a gateway for all student computers. The regulated web content corresponds to
the websites wst-1 and wst-2 which are hosted by the web servers ws-2 and ws-3,
respectively. The example regulation consists of three flow control rules, one flow control
policy, and one flow control meta-policy as depicted in Figure 3.19. The first flow control
rule alpr-1 is depicted in Figure 3.19a. It states that any user of the school’s network
cn-5 shall be prevented from accessing the website wst-1. The rule is provided by the US
company ContentWatch which is represented as cw-1. The regulated topic corresponds
to pornography and is identified as pt-1. The website wst-1 consists of several web pages
including the web page wp-1. Although most of these web pages provide pornographic
content, the web page wp—-1 does not. Instead, it only provides textual information about
the website such as its terms of services and its privacy policy. Thus, the second flow
control rule alpr-2 depicted in Figure 3.19b allows the student computers to access
the web page wp-1. The third flow control rule alpr-3 depicted in Figure 3.19c blocks
the access to the FunDorado website wst-2. The rule is created by JusProg which is a
registered society located in Germany and identified as jp-1. General information about
the website wst-2 such as its terms of services is provided by a separate website which is
hosted by the web server ws-4. Access to this website is not covered by any flow control
rule and therefore not regulated in any way.

The flow control policy alpp-1 combines the three rules alpr-1, alpr-2, and alpr-3
and is depicted in Figure 3.19d. The policy states that the rules are enforced by the
proxy server pr-1 which is operated by the school itself. Although the rules are created

59

Section 3.4

Chapter 3

InFO: A Policy Language for Regulating Information Flow

defines

[atpr-1: URLBIocking a
| rp-3: RuIeDatavaiderl | rc-2: RegulatedTopic | | sr-3: SenderRole I specifies
classifies classifies classifies classifies
cw-1: SocialAgent | pt-1: Topic | | cn-5: ComputerNetwork nar-4: NetworkAddressRegion
hasSetting
satisfies
specifies
Classifies barametrizes
wst-1: WebSite hasQualit ug-1: URLQuality hasRegion ur-1: URLRegion hasURL *http://www.porntube.com/'
alprs-1: URL i ituati I hasSetting
(a) First example flow control rule of the Application-Level Proxy Ontology
alpr-2: URLAllowing I defines
| rp-3: RuleDataProvider | | cr-2: C I specifies
satisfies classifies classifies classifies|
Icw-1: SociaIAgentl |wp-1: WebPage |—Y$hdsQ”a;1t ug-2: URLQuality hasRegion ur-2: URLRegion
alprs-2: URLAllowi ituati I | hasSetting |
*http://www.porntub info’ hasURL
(b) Second example flow control rule of the Application-Level Proxy Ontology
alpr-3: URL ing I defines
| rp-4: RuIeDataProviderl | rc-2: Regul "Topicl | cr-3: Ci I specifies
atisfies classifies classifies classifies classifies
satisfi
|jp-1: SocialAgent | | pt-1: Topicl |wst-2: WebsSite |—YMQ“a] 15 uq-3: URLQuality |-223R€g ion ur-3: URLRegion
alprs-3: URL i ituati I | hasSetting | |
hasURL

‘http:/lww de/"

(c) Third example flow control rule of the Application-Level Proxy Ontology

Figure 3.19.: Example usage of the Application-Level Proxy Ontology.

by different rule data providers which even operate in different countries, they cover
the same topic. Access to this topic is to be regulated according to §184 of the German
Criminal Code [61]. Thus, the flow control policy defines this article as a legal foundation
for all flow control rules. As an organizational motivation, the policy uses the school’s
code of conduct coc-2. Again, alpp-1 does neither define a local conflict resolution
algorithm nor a local non-applicability algorithm itself and relies on its corresponding
flow control meta-policy alpmp-1 for resolving conflicts between contradicting rules and
handling non-applicable rules. The flow control meta-policy alpmp-1 is depicted in
Figure 3.16d and shares the same enforcing system and responsible operator as the
policy alpp-1. It defines the rule priority algorithm rpa-4 which is an instance of the
class PreferWebPageToWebSiteAlgorithm. This algorithm states that rules associated
with single web pages shall be preferred to rules with whole websites. The website wst-1
covered by the rule alpr-1 contains the web page wp-1. In applying the algorithm rpa-4,
the proxy server pr-1 uses the rule alpr-2 for allowing access to the web page wp-1

60

Applications and Use Cases

hasMember | 1. LBI N d
{atpr-1: UR |
hasMember [aipr-2: URLAllowi]
hasMember ~[3 URL -
{ atpr-3: UR |

alpp-1: FlowControlPolicyMeth 1 defines

| v v V v

| ro-3: p il p | | es-3: EnforcingSy | | la-3: LegalAuthorization | | om-2: OrganizationalMotivation |

classifies classifies classifies classifies
satisfies

| cs-1: SocialAgent | | pr-1: ProxyServerl | stgb184-1: FlowRegulationNorm | | coc-2: CodeOfConductDescription |

alpps-1: FlowControlPolicySi i I hasSetting

(d) Example flow control policy of the Application-Level Proxy Ontology

I%' alpp-1: FlowControlPolicyMethod |

1 define

|alpmp-1: FlowC icy I
| ro-3: ResponsibleOp: | | es-3: i y | | dr-3: DefaultRule | rp-3: RulePriorityRole
classifies classifies classifies classifies
satisfies
| cs-1: SocialAgent | | pr-1: ProxyServerl | alpr-4: URLAllowingRuleMethod | | rpa-4: PreferSingleFileToWebSiteAlgorithm |
alpmps-1: FlowC icySituati I hasSetting

(e) Example flow control meta-policy of the Application-Level Proxy Ontology

Figure 3.19.: Example usage of the Application-Level Proxy Ontology. Continued from
Previous page.

while blocking access to all other web pages of the website wst-1. The flow control rule
alpr-3 is not affected by this algorithm since it covers a different website than the other
two rules.

3.4.5. Example Policies for Securing the Exchange of Medical Data

The scenario for securing medical data records introduced in Section 2.2 covers a medical
case which involves the transmission of such records between different care delivery
organizations (CDOs). Ensuring the confidentiality of medical records is required by
law as these records contain sensitive personal information. Thus, the transmission of
medical data records between different CDOs must be protected as well. In general, the
secure transmission of data can be achieved by using secure communication protocols

General Practitioner (GP)

Network cn-8 @.w

—| Proxy pr-3 Proxy pr-4

Radiographer Network cn-6 Hospital Network cn-7

Figure 3.20.: Example computer network connecting three different CDOs. The proxy
server of each network serves as a gateway to the other networks.

61

Section 3.4

Chapter 3

InFO: A Policy Language for Regulating Information Flow

such as SSL [113]. InFO policies are applied to ensure that medical records can only be
transmitted between CDOs via a secure SSL connection and that any other transmission
of the records is prohibited. Figure 3.20 shows a simplified depiction of three computer
networks which correspond to the three CDOs of the scenario. These CDOs are the
general practitioner (GP), the radiographer, and the hospital. Each computer network
includes a proxy server which serves as a gateway to the other networks and regulates
the transmission of all data. For example, the computer network cn-8 contains the
proxy server pr-2 which is operated by the GP. The server implements the flow control
regulation depicted in Figure 3.21 which consists of two flow control rules, one flow
control policy, and one flow control meta policy. For reasons of brevity, the figure only

alpr-5: MIMETypeBlocki dl defines

| rc-3: RegulatedTopic | | cr-4: C I specifies

classifies classifies

. classifies
satisfies

hasQualit hasRegion

Ihct-1: Topic] | rdf-1: RDFGraph

mtq-2: MIMETypeQuality

mtr-1: MIMETypeRegion

alprs-5: MIMETypeBlocki ituation | hasSetting

‘application/x-turtle' w

hasMIMEType

df+xml

(a) Flow control rule for blocking the transmission of all RDF graphs.

alpr-6: MIMETypeAllowing| } defines
Icr-A: ContentRoIeI Ichr-1: ChannelRole I Irr-s: ReceiverRoIe} specifies
classifies classifies classifies classifies
satisfies
I rdf-1: RDFGraph I Issl-1: CommunicationProtocol I I cn-6: ComputerNetwork I Iipar-G: IPAv4AddressRegionI

[atprs-6: MIMETypeAllowing ituation | hasSetting

(b) Flow control rule for allowing the transmission of RDF graphs via an SSL connection to the
computer network cn-6.

|alpp-2: FlowControlPolicyMethod I defines \l/
alpr-5: MIMETypeBlockingRuleMethod | ro-4: ResponsibleOperator | | es-4: EnforcingSystem | | la-4: LegalAuthorization |
follows \l;lassmles Classifies Classifies

hasMember

hastiember S [a1pr-6: MIMETypeAllowingRuleMethod

satisfies Igp-1: SOCiaIAgentl | pr-2: ProxyServer | | hipaa-1: FlowRegulationNorm |

alpps-2: FlowControlPolicySi i I hasSetting

(c) Flow control policy containing two flow control rules.

|a|pmp-2: FlowControlMetaPolicy "I defines ¢ ¢
-4: ResponsibleOperat -4: EnforcingSyst -3: RulePriorityRols
hasMember ; alpp-2: FlowControlPolicy Jl |ro esponsibleOper: orl |es nforcingSy: eml rp: ulePriorityRole
classifies classifies classifies
satisfies
gp-1: SocialAgent | pr-2: ProxyServerl | rpa-5: EvaluateRuleOrderingAlgorithm |
1 2: FlowC " " ion k hasSetting

pmp:

(d) Flow control meta policy.

Figure 3.21.: Regulating the transmission of medical data records.

62

Prototypical Implementation of the InFO Pattern System

depicts the most important parts of the regulation. The complete regulation is similar
to the example of the application-level proxy ontology presented in Section 3.4.4. The
first flow control rule alpr-5 is shown in Figure 3.21a and blocks the transmission
of all RDF graphs which are associated with the topic hct-1. This topic is used for
classifying all health care related data and is modeled using the topic pattern of the
Ontopic ontology as depicted in Figure 3.3. Instead of regulating the transmission of
a particular RDF graph by using a URI, the rule uses two different MIME types in
order to cover all RDF graphs. Multipurpose Internet Mail Extensions (MIME) [112]
support the transmission of arbitrary data including binary data over the Internet. The
format of the transmitted data is defined by its MIME type which consists of a type and
a subtype. The flow control rule alpr-5 uses the MIME types application/rdf+xml
and application/x-turtle to identify RDF graphs which are encoded with the formats
RDF /XML [26] or Turtle [27], respectively. The second flow control rule alpr-6 is shown
in Figure 3.21b and allows the transmission of RDF graphs containing medical data to
the computer network cn-6 as long as they are transmitted via an SSL connection. As
depicted in Figure 3.20, the computer network cn-6 corresponds to the network of the
radiographer. Thus, the rule alpr-6 allows the GP to securely transmit medical data
records to the radiographer. If transmitting such records to the hospital’s computer
network cn-7 shall be possible as well, an additional flow control rule must be created.

The flow control policy alpp-2 depicted in Figure 3.21c contains the two rules alpr-5
and alpr-6 and associates them with their responsible operator, enforcing system, and
legal authorization. The legal authorization for the regulation is HIPAA [297] which
defines security requirements for transmitting medical records in the USA. The flow
control meta policy alpmp-2 is depicted in Figure 3.21d and defines EvaluateRuleOr-
deringAlgorithm as a rule priority algorithm. This algorithm creates an explicit order
of the flow control rules alpr-5 and alpr-5 by evaluating the property follows as used
in the flow control policy alpp-2. The algorithm ensures that the proxy server pr-2
applies the rule alpr-6 before the rule alpr-5. In doing so, the GP can only send medical
data records encoded as RDF graphs via a secure SSL connection to the radiographer
while all other transmissions of such graphs are blocked. If the other CDOs depicted in
Figure 3.20 shall be able to exchange medical data records as well, additional regulations
must be provided. These regulations are created similar to the regulation depicted in
Figure 3.21 and are enforced by the proxy servers pr-3 and pr-4.

3.5. Prototypical Implementation of the InFO Pattern System

The pattern system InFO and its three domain-specific extensions for routers, proxy
servers, and name servers have been implemented on three prototypical enforcing sys-
tems. All systems share the same basic design which is shown in Figure 3.22. Each
system consists of three different parts which are the preparation module, the rule stor-
age, and the requlation module. The preparation module is used by the enforcing system’s
operator to import new InFO policies, which are provided as RDF data. The prepara-
tion module resolves any existing conflicts in the policies and transforms the remaining

63

Section 3.5

Chapter 3

InFO: A Policy Language for Regulating Information Flow

Enforcing System

Regulation

Rule
Module

Storage

A6 Preparation
| Module

Figure 3.22.: Basic architecture of the prototypical implementations of the three en-
forcing systems. The arrows indicate the direction of the flow of regula-
tion data.

policy rules to a simpler data structure. This data structure is stored in the rule storage
and can be directly interpreted by the enforcing system. The regulation module per-
forms the actual regulation by applying the transformed rules of the rule storage. The
module interacts with the users that are affected by the regulation. All three enforcing
systems are based on a common preparation module which is implemented in Java and
uses the Jena triple store!3. In contrast, the implementation details of the rule storage
and the regulation module depend on the corresponding enforcing system. The following
subsections describe the prototypical implementations of the three enforcing systems in
more detail.

3.5.1. Example Name Server Implementation

The Name Server Ontology has been implemented as a prototypical, modified name
server. The preparation module of this name server transforms the InFO policies into a
set of DNS resource records [202]. Resource records are the data format of the domain
name system and store information about domain names and IP addresses. A resource
record contains a domain name, a type, and a value. The value of a resource record
depends on the record’s type and can be, e.g., an IP address, an alternative domain
name, or a textual description. Resource records are stored in zone files which are
basically collections of resource records of the same domain. In the prototypical name
server, these zone files correspond to the server’s rule storage and are directly used by
the regulation module. The regulation module operates as a name server and answers
IP address requests from users. Such requests contain a domain name and ask for the
corresponding IP address. If the domain name is not regulated, the regulation module
returns the correct IP address. Otherwise, the result depends on the type of regulation
and can contain a wrong IP address or no IP address at all. The implementation of the
regulation module is based on the Java name server EagleDNS' and described in more
detail in [204].

3http://jena.apache.org, last accessed: 01/21/16
Y“http://www.unlogic.se/projects/eagledns, last accessed: 01/21/16

64

© 00 N 3 U R W N =

e e
B W N = O

Prototypical Implementation of the InFO Pattern System

An example IP address request for the domain stormfront.org using the Unix tool
dig!® looks like: dig +tcp stormfront.org. This request asks the name server to re-
trieve the IP address for the given domain name. As the example flow control rule dnsr-1
depicted in Figure 3.16a states, access to this domain name is to be blocked by the name
server ns-2 of the German Telecom. The name server’s response is depicted in List-
ing 3.1. As shown in line 5, the server REFUSED answering the request and did not return
any IP address. Additional background information about the flow control rule is re-
turned as several TXT records which are shown in lines 10 to 14. Resource records of type
TXT are generally used for associating a domain name with textual descriptions [202].
The prototypical name server uses TXT records to store human-readable background in-
formation about a regulation. It returns this information when a user requests the IP
address of a regulated domain name. In order to better describe the content of a partic-
ular TXT record, the name server inserts two additional prefixes into its value. The first
prefix shown in line 10 has the value ID which indicates that the TXT record contains the
URI of the used flow control rule. The second prefix of this record has the value 0 and
corresponds to a local identifier of this URI. This identifier is used for grouping all TXT
records which are associated with the same rule. Since the TXT records shown in lines 10
to 14 all share the same local identifier, they are all based on the same flow control rule.
If there is more than one rule which covers the same domain name, this number is used
for distinguishing between these rules. The name server’s response also contains further
information about the flow control rule including its organizational motivation (line 11),
its legal authorization (line 12), its rule data provider (line 13), and its regulated topic
(line 14). While the topic is directly embedded into the name server’s response, further
information about the other regulation details can be obtained by dereferencing the URI
provided in the corresponding TXT records.

; <<>> DiG 9.10.1-P1 <<>> +tcp stormfront.org

; (1 server found)

;5 global options: +cmd

;; Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: REFUSED, id: 44811

;; flags: qr rd ra; QUERY: 1, ANSWER: O, AUTHORITY: O, ADDITIONAL: 9

;5 QUESTION SECTION:

;stormfront.org. IN A

;3 ADDITIONAL SECTION:

stormfront.org. 3600 IN TXT "ID:0:http://..uni-koblenz.de/../dnsPolicy0O1.owl#dnsr-1"
stormfront.org. 3600 IN TXT "PH:0:http://..uni-koblenz.de/../TelekomCoC.owl#coc-1"
stormfront.org. 3600 IN TXT "LW:0:http://..uni-koblenz.de/../StGB.owl#stgb86-1"
stormfront.org. 3600 IN TXT "DP:0:http://..uni-koblenz.de/../dnsPolicy0Ol.owl#bka-1"
stormfront.org. 3600 IN TXT "T0:0:neo-Nazi propaganda"

Listing 3.1: Example blocking result of a name server.

http://www.isc.org/software/bind, last accessed: 01/21/16.

65

Section 3.5

Chapter 3

InFO: A Policy Language for Regulating Information Flow

3.5.2. Example Router Implementation

The Router Ontology has been implemented as a set of routers, which are configured
via a dedicated administration node. This node serves as the preparation module which
transforms all InFO policies into a configuration script for the Linux firewall software
iptables'®. The administration node sends the configuration script to all connected
routers via an encrypted SSL connection [113]. The iptables software runs on all routers.
After having received the configuration script, each router applies the script in order to
update the current configuration of its local iptables installation. The iptables software
consists of a packet filter and several tables which store the active firewall rules. The
tables correspond to the rule storage and the packet filter is directly used as the regulation
module. Thus, an additional implementation of the regulation module is not required. If
a user wants to access a prohibited IP address, she receives an Internet Control Message
Protocol (ICMP) [236] message that informs about the regulation. ICMP is specifically
designed for exchanging information messages and error messages between IP-based
communication nodes. The ICMP message is encapsulated in an IP message and send
back to the original requester. The sender of this message is the router implementing
the flow control. All routers and their administration node are implemented in Java and
described in more detail in [311].

Listing 3.2 shows an ICMP message after a user with the IP address 89.108.23.155
has tried to access the server with the IP address 104.20.26.14. The message was
captured with the packet analyzing software Wireshark!” and slightly modified for il-
lustration. The user is connected to the Internet via the Saudi Arabian access provider
Sahara Net. The server is located in the USA and provides pornographic content. Ac-
cording to the example flow control rule ipr-1 shown in Figure 3.18a, access to this
server is to be blocked for all users of Sahara Net. As depicted in the example net-
work in Figure 3.14, the users of Sahara Net communicate with the Internet through
the gateway router ro-1 with the IP address 89.108.200.111. This router acts as
the enforcing system which implements the example regulation shown in Figure 3.18.
Lines 1 to 5 of Listing 3.2 show the header of the IP packet which encapsulates the
ICMP message. Line 2 states that the sender of the ICMP message was the enforc-
ing router and line 3 indicates that the receiver was the user of Sahara Net. Lines 6
to 18 cover the actual ICMP message. The meaning of an ICMP message is generally
defined by its type and code. The type defines the category of the message and the
code further specifies the particular reason for sending the message. Line 7 states that
the server with the IP address 104.20.26.14 was unreachable due to administrative
filtering as explained in line 8. The ICMP message also contains the header of the orig-
inal request which is shown in lines 9 to 15. The request consists of the IP header and
the TCP header. As depicted in the example network in Figure 3.14, the IP address
104.20.26.14 corresponds to the server hosting the website http://porntube.com/.
The lines 12 and 15 further describe this server as a web server since such a server typi-
cally uses the port number 80 and the transport layer protocol TCP. The data section

http://www.netfilter.org/projects/iptables/, last accessed: 01/21/16
Yhttp://www.wireshark.org/, last accessed: 01/21/16

66

© 00 N 3 U R W N =

e T e =
W 9 O g os W N = O

Prototypical Implementation of the InFO Pattern System

of the ICMP message depicted in lines 16 to 18 is used to provide further background
information about the regulation. Line 17 shows an encoded version of the hyper-
link http://icp.it-risk.iwvi.uni-koblenz.de/policies/ipPolicy01l.owl#ipr-1.
This hyperlink refers to the regulation details including their legal authorization and
organizational motivation.

Internet Protocol Version 4
| --Source: 89.108.200.111 (89.108.200.111)
|--Destination: 89.108.23.155 (89.108.23.155)
|--Protocol: ICMP (1)
|--Options: (28 bytes)
+--Internet Control Message Protocol
|--Type: 3 (Destination unreachable)
|--Code: 13 (Communication administratively filtered)
+--Internet Protocol Version 4
|--Source: 89.108.23.155 (89.108.23.155)
| --Destination: 104.20.26.14 (104.20.26.14)
| --Protocol: TCP (6)
| --Transmission Control Protocol
| |--Source port: 32517 (32517)
| +--Destination port: 80 (80)
+--Data
|--Data: 436£f6d6d756e69636174696f6e20686173206265656e20626c6f636b65642¢. . .
+--[Length: 126 Bytes]

Listing 3.2: Example blocking result of a router.

3.5.3. Example Proxy Server Implementation

The Application-level Proxy Ontology has been implemented as a prototypical proxy
server. The preparation module of this proxy server resolves any existing conflicts of
flow control rules and stores the remaining rules in a relational database. This database
serves as the proxy server’s rule storage. Whenever the proxy server’s regulation module
receives a request for a particular URL, the URL is looked up in the rule storage. If
the URL is not found, the request is allowed. Otherwise, the proxy server performs a
corresponding regulation. The regulation module of the proxy server is implemented in
Java and uses standard Java libraries. A detailed description of its implementation is
provided in [18].

An example request for the website http://www.porntube.com/ using the Unix tool
cURL'® looks like: curl -v http://www.porntube.com/. The website provides porno-
graphic content. According to the example flow control rule alpr-1 depicted in Fig-
ure 3.19a, access to this website is to be blocked by the proxy server pr-1 of the German
comprehensive school. The regulation affects all student computers of the school’s com-
puter network cn-5 shown in Figure 3.14. The response of the proxy server is depicted in
Listing 3.3. Line 1 contains the status code returned by the server. The status code 451
indicates that the access to the requested website was denied due to legal reasons [48].

"¥https://curl.haxx.se/, last accessed: 01/21/16

67

Section 3.5

Chapter 3

© 0 N e G A W N =

I e e e e
D Utk W N = O

InFO: A Policy Language for Regulating Information Flow

< HTTP/1.1 451 Unavailable For Legal Reasons
< Content-Length: 406
< Content-Type: text/html; charset=iso-8859-1
<
<html>
<head>
<title>Unavailable For Legal Reasons</title>
</head>
<body>

<hi>Unavailable For Legal Reasons</h1>
<p>The web page you are trying to access is not accessible due to legal reasons.
For more information about the regulation see <a
href="http://icp.it-risk.iwvi.uni-koblenz.de/policies/proxyPolicy01l.owl#alpr-1"
>the regulation details.</p>
</body>
</html>

Listing 3.3: Example blocking result of a proxy server.

Along with the status code, the proxy server also returns a short web page providing a
human-readable explanation about the regulation’s background. The web page is shown
in lines 5 to 16 and contains a hyperlink which refers to the flow control rule that initiated
the regulation.

3.6. Evaluation and Comparison with Existing Approaches

This section evaluates how the related work discussed in Section 3.1 and the InFO policy
language fulfill the requirements introduced in Section 3.2. The results of this assessment
are shown in Table 3.2. Most of the reviewed policy languages and content labeling
schemes focus on a particular application and do not fulfill all requirements. In the
following, the related work is analyzed regarding the functional requirements RA.F.1
to RA.F.9 as well as the non-functional requirements RA.N.1 to RA.N.3.

3.6.1. Evaluating the Functional Requirements

Access control systems require the user accessing a digital resource to be authenticated
first. As this authentication process is usually done by an application layer protocol,
access control languages such as AMO, Common Policy, WebAccessControl, EPAL, and
XACML exclude routers as possible enforcing systems (RA.F.1.1). These systems oper-
ate on lower layers of the OSI model such as the network layer and possibly the transport
layer as well. EPAL and XACML are designed to be used separately from the server
providing the regulated content while AMO, Common Policy, and WebAccessControl
require a more close integration with the server. This allows EPAL and XACML poli-
cies to be enforced by proxy servers (RA.F.1.3), while policies created with AMO,
Common Policy, or WebAccessControl can only be enforced by the content providing
server. Although the flow control languages DEN-ng, OPoT, and the firewall metamodel

68

Section 3.6

Evaluation and Comparison with Existing Approaches

Table 3.2.: Comparison of different policy languages and content labeling schemes with

the requirements introduced in Section 3.2. Rows correspond to the dif-

ferent approaches and columns to requirements. Requirements RA.F.1.1
to RA.F.9.2 are functional, while RA.N.1 to RA.N.3 are non-functional.
The letter y represents a complete fulfillment of the requirement, 1 stands for

a partial fulfillment, and n corresponds to no fulfillment of the requirement.

AyQqusueixy g N'VH

AyrenpoN g°N'VH

oouerdwo)) sprepuels I°N'VYH
punoisSsoeq 1e8eT 26 I 'VH

punoisyoeq reuonyeziuesi0) 1°6°d VY
UOTI)ed0[SS90V :8° 'V

UOTYeOYISSe[O JUIUO)) :4° IV
UOI)ROYIHUSPI JUdIU0)) 9' VY

I0%e[S180] UOTIRNSY €°C 'V

1opraoad woryenSoy :Z'q I'VH

19010ud UOIYe[NSN 1°Q I 'VH

sororjod o1drynwr 10J UOTINOSAI PIFUOD) Z°F I VH
Aor10d su0 10J UOIIN[OSaI PIPUO) T'F I°'VYH
Ayrepowt Sutfua((g ¢ I VY

Ayrepowt SuImory T°€ A'VH

serorjod jo uoryezijeuonjeiod() g ' I°'VYH
SOpOU SUIDIOJUS S SIOAIdS AXOIJ €T ' 'VH
Sopou SUIDIOJUS St SIOAIdS owreN Z T VY

sopou SUIIOJUd Sk SIMOY T'T'd"VH

Access Control

n y nn n n

n

n

AMO [58]

CommonPolicy [276]

n

n

y n n y 'y n
n

n

n

ny 1l y y 1
n

n

EPAL [15]
WebAccessControl

n

y n n
nyyy y n

n

y v

n

n

n

y

n

y y y vy

n

n

XACML [205]

Flow Control
Cuppens et al. [85]

y n n y y n
y Yy vy
y Yy ¥

y
y

n

n

DEN-ng [286]

nny y n

n

n

n

OPoT [21]

Usage Control

(==
e
— —
S g 4
= =
[=I= -
e
S a8 4
S 49 =
(== =]
8 49—
4 4 4
> >
N
[=I =]
2 49 4
(== -]
S a8 4
=
&8s
=i
S Q=
=
= A

o

ny
n

n

METSRights
MPEG-21 REL [306]

n y nn n n

y

n

n

n

n

n

PLUS n

General purpose

ny nnnmnyynyy Yy
n y nyyy? ynmny y y
ny yy

n n y y y n
n n n
y y y Yy vy

y

Rei [166]

KAoS [298]
Ponder [88]

n

n

n

n

n

Continued on next page.

69

Chapter 3

InFO: A Policy Language for Regulating Information Flow

Table 3.2.: Comparison of the related work with InFO. Continued from previous page.

)
kS
. 2
n
LR 2 9
S 9 S A
P Q"E el
O op w0 QL g = g
< g 8 © g F =
S 5 T = o o
S5 5 8 5 5 B
—
=R = T T 5 8 2 g = =l g
g ¢ © 2 » & 8§ =2 & 2 8 g g =
Mmmﬂ:}fi.g-gh';"agp QL g =
S &« & 38 F 5§ E S8 58 5 § = - 2 &
gmmp@@~~s~?§’mu§gggg
waagooggwmﬁs,aoowo
2 £ 2 =2 B £ € ¢ g8 8 8 8% ZF %O 2
5 B E u = =2 9 9 8 8 =% R % oL B o=
g 2 2585 885558845 % %z
ftgysErEE £ EEEE,EE S = %
= & 5 = & £ £ & @ @ 8 3 % w H T B L
odgazwooomwééwsqwc:"dg
QﬁZtLg<CQOOCdCdCdOOSOQE§m><
i A B B S S - B B BB T B B
R R R R OR R RRRRRRRRRZZZ
<4< 4 49 < ¢ 49 < << 94 <4< 4L gg g <<
[a= R« A A A = A =R = <= e A A A
Content labeling
agedexml[264] n n y 1 y y 1 n n y n y Il 1 n n y n I
PICS[183,103)] n n y n y y I n n y n y y n 1 1 1 1 1
RTA n n y nn y n n n I nnlnmnmn y n n
InFO y v v v v v vy ¥y vy vy ¥y yyyy y Yy y Yy

focus on managing low-level enforcing nodes such as routers (RA.F.1.1), they are not
designed to define policies enforced by proxy servers or name servers. Usage control
policies also require an enforcement at the application layer. These policies are gener-
ally enforced at the user’s site as this requires the user’s actions to be monitored. Thus,
ccREL, LDR, ODRL, MPEG-21 REL, and PLUS do not fulfill requirements RA.F.1.1
to RA.F.1.3. However, METS is designed to be used within closed library environments
making METSRights suitable to be enforced at the library’s proxy server (RA.F.1.3).
KAoS and Rei focus on rather abstract behavioral policies which are also designed to be
enforced by application-layer systems. This makes it possible to enforce their policies by
proxy servers. On the other hand, Ponder allows to define policies which can be enforced
by almost arbitrary communication nodes including end user systems, content-providing
servers, or intermediary communication nodes such as routers. However, neither Pon-
der nor any other of the evaluated policy languages support name servers as enforcing
nodes (RA.F.1.2). Name servers are not part of the communication path between a
content provider and a content consumer. Instead, they only provide a means for estab-
lishing this communication path, which is not covered by any of the languages depicted
in Table 3.2. Content labeling schemes such as age-de.xml, PICS, and the RTA la-
bel allow to annotate web content which is processed at the application layer together
with its annotations. Thus, these schemes do not support an enforcement by routers

70

Evaluation and Comparison with Existing Approaches

or name servers and do not fulfill requirements RA.F.1.1 and RA.F.1.2. As both the
web content and their annotations can be interpreted by proxy servers, content label-
ing schemes fulfill requirement RA.F.1.3. InFO supports different enforcing systems
including routers, name servers, and proxy servers. Each enforcing system is supported
by a specific domain ontology such as the Router Ontology, the Name Server Ontology,
and the Application-Level Proxy Ontology.

Many of the examined policy languages and content labeling schemes define rather ab-
stract rules whose enforcement cannot be directly mapped onto the enforcing systems’
capabilities. Instead, the enforcement requires additional parameters and a further in-
terpretation of how to interpret the policy’s actual meaning. These parameters are
sometimes not included in the policy directly (RA.F.2) and must therefore be added
through a different process. Although policies created with AMO or Common Policy
contain a reference to those users who are allowed to access a specific piece of infor-
mation, they do not define how the users shall be authenticated. EPAL and XACML
provide such a description but do not explicitly define the rest of the enforcement pro-
cedure. WebAccessControl requires user identification via the WebID authentication
process. Usage control only describes on an abstract level what a user may do with a
digital resource. However, usage control languages do not define how the permitted or
prohibited actions shall actually be regulated. For example, it is unclear how a permis-
sion to print a text document is to be technically enforced. Thus, the evaluated usage
control policies do not fulfill requirement RA.F.2. Since the general purpose languages
Rei and KAoS also define rather abstract policies and not their specific enforcement,
they also do not fulfill requirement RA.F.2. However, Ponder’s low-level language can
be directly used for enforcing mechanisms. Although content labeling schemes are de-
signed to block the access to web content based on their annotations, most schemes do
not define how the blocking procedure shall actually be implemented. age-de.xml allows
to redirect all requests to another website instead of just blocking the access. However,
it does not support a precise definition of how the redirection or the default blocking
behavior shall be technically implemented. On the other hand, flow control languages
are specifically designed for a direct enforcement of policies. Each created policy already
contains enough information to be enforced without requiring any additional interpre-
tation or parameters. Similarly, InFO is also designed for enforcing particular policies.
Support for a precise description of all enforcement parameters are provided by the do-
main extensions of InFO such as the Router Ontology, the Name Server Ontology, and
the Application-Level Proxy Ontology.

All policy languages for access control, usage control, and flow control as well as all
general purpose languages shown in Table 3.2 support allowing rules and thus fulfill
requirement RA.F.3.1. Allowing rules are also supported by PICSRules. age-de.xml
supports allowing rules by annotating web content with the all ages category. In contrast,
the RTA label does not fulfill requirement RA.F.3.1 as it represents a single age category
which results in the blocking of the annotated content. In order to ease the creation of
specific policies, some languages such as AMO, Common Policy, WebAccessControl, and
the firewall metamodel do not support denying rules (RA.F.3.2) and focus on allowing
rules only. In doing so, these languages completely avoid potential conflicts between

71

Section 3.6

Chapter 3

InFO: A Policy Language for Regulating Information Flow

two or more contradicting rules. Thus, they do not provide any means for resolving
such conflicts (requirements RA.F.4.1 and RA.F.4.2). Similarly, the RTA label only
provides a means for denying access and does not require any conflict resolution algorithm
as well. PLUS only supports allowing rules and expresses denying rules as constraints on
such a rule. Consequently, the support for denying rules is only limited and the language
does not support any conflict resolution mechanism. InFO allows to create both allowing
and denying rules as well as specific types of denying rules. The different types of rules
are provided by the Flow Control Rule Pattern as well as the Redirecting Flow Control
Rule Pattern and the Replacing Flow Control Rule Pattern described in Section 3.3.3.

The usage control policy languages ccREL and LDR assume that there is only one
policy for each regulated good which is created by its owner. Thus, the languages do not
provide any means for resolving conflicts between contradicting rules. EPAL, Rei, and
PICSRules only provide the order of rules as a mechanism for resolving conflicts between
rules of the same policy (RA.F.4.1). Since all three languages support only one active
policy, they do not provide any means for resolving conflicts between rules of different
policies (RA.F.4.2). Similarly, age-de.xml uses the order of the defined age categories
for a single web page to resolve any conflicts between contradicting categories. DEN-ng
also uses the order of rules for resolving conflicts between them. Additionally, policies can
also be ordered to resolve conflicts between rules of different policies. OPoT is only able
to detect conflicting rules of one or more policies and shows them to the policy’s creator.
The actual conflict resolution must be performed manually by the creator of the policy.
ODRL assumes that a single policy does not contain any conflicting rules. Since each
policy is created by a single party, the party must pay attention when creating the policy.
On the other hand, resolving conflicts between rules of different policies is supported
by ODRL. This is done by either preferring the allowing or the denying rule of two
contradicting rules. However, the preferred rule modality is defined within each policy.
Thus, ODRL’s conflict resolution algorithm only works if all affected policies prefer the
same modality. Otherwise, conflicts cannot be resolved [24]. XACML and Ponder allow
to define specific conflict resolution algorithms which provide a much greater flexibility
than a simple order of rules. These algorithms can be used for resolving conflicts between
rules of one or more policies. KAoS also provides algorithms for resolving conflicts. Since
KAoS only supports one active policy, these algorithms can only be used for contradicting
rules of one policy. The conflict resolution mechanisms of InFO are inspired by XACML.
Similar to XACML and Ponder, InFO allows to resolve conflicts between contradicting
rules of one or multiple policies based on predefined or user-defined algorithms. The
Flow Control Meta-Policy Pattern described in Section 3.3.5 is especially designed for
expressing such algorithms and thus for resolving conflicts as well. The pattern also
splits the whole conflict resolution process of XACML and Ponder into four different
steps and assigns a particular algorithm to each step. This achieves a greater flexibility
as some algorithms can be reused for different enforcing systems while others must be
replaced with more specific algorithms.

Most of the discussed policy languages do not distinguish between a policy’s creator
(i.e. the provider) and its enforcer. Languages like EPAL, XACML, ODRL, METS-
Rights, MPEG-21 REL, PLUS, KAoS, Rei, and PICSRules, which allow naming a pol-

72

Evaluation and Comparison with Existing Approaches

icy’s provider within the policy itself (RA.F.5.2), do not allow to name a separate
enforcer (RA.F.5.1). Similarly, the content labeling scheme age-de.xml only supports
providers of age categories. However, InFO explicitly requires such a distinction as out-
lined in the scenario for regulating Internet communication of Section 2.1. Support for a
regulation’s provider is given as the rule data provider defined in the Flow Control Rule
Pattern and a means for defining the regulation’s enforcer is given in the Flow Control
Policy Pattern described in Section 3.3.4.

Most of the reviewed policy languages are not able to link a policy to its legal back-
ground (RA.F.9.2). Consequently, they do not allow to specify the legislator of the
policy’s legal background (RA.F.5.3). Both ccREL and LDR allow policies to be linked
to their jurisdiction. This jurisdiction defines the circumstances under which a policy is
valid and may even add additional permissions or prohibitions. However, the jurisdiction
only refers to a country’s legislation and not to particular laws. Identifying the creators
of this legislation is neither supported by ccREL nor by LDR. InFO supports both re-
lating a flow control to its legal background and the definition of a legislator as well.
The legal background is described by the Flow Regulation Norm Pattern introduced in
Section 3.3.6 and the legislator is part of the Legislation Pattern. By linking technical
policies to their legal background, InFO allows a better comparison between different
policies of various enforcing systems.

The identification and classification of content (RA.F.6) is only supported by those
policy languages which are directly able to regulate the processing of particular infor-
mation documents rather than whole systems or services only. Such languages include
access control and usage control languages as well as most general purpose languages.
Both AMO and WebAccessControl require the explicit identification of the document to
be protected by using an URI (RA.F.6). Content classification is neither supported by
AMO nor by WebAccessControl. On the other hand, both Common Policy and EPAL
only support classes of documents (RA.F.7) but do not allow a more precise identifica-
tion of the content. Data classification with Common Policy can be achieved by using
the sphere constraint whereas EPAL provides data categories. XACML allows to reg-
ulate access based on either the contents’ ID or its topic. Usage control languages are
designed to control the consumption of digital resources. Thus, they all support a precise
identification of the content to be controlled. METSRights also supports a simple clas-
sification of the content according to its licensing status such as copyrighted or licensed.
However, an actual content description is not supported. Similarly, PLUS and the RTA
label only support the classification of adult content but do not provide more precise
content descriptions. Flow control languages only focus on regulating communication
between complete systems and thus do not fulfill requirements RA.F.6 and RA.F.7.
age-de.xml uses URIs to associate web content with its respective age category and
thus fulfills requirement RA.F.6. However, the precise topic of the content cannot be
described. On the other hand, the RTA label is directly embedded into the labeled
web content and does not require any content identifier. PICS supports precise content
descriptions by associating the content’s URI with arbitrary labels and thus fulfills re-
quirements RA.F.6 and RA.F.7. Although InFO also focus on regulating flow control,

73

Section 3.6

Chapter 3

InFO: A Policy Language for Regulating Information Flow

it considers the topic of the regulated content as well. The Flow Control Rule Pattern
associates each particular flow regulation with such a topic.

The location of the user who wants to access a regulated resource can be implemented
in different ways. EPAL, XACML, ODRL, KAoS, Rei, Ponder, and PLUS support
constraints regarding the applicability of their rules. These constraints also cover lo-
cation constraints which directly implement requirement RA.F.8. All evaluated flow
control languages are able to regulate network communication using IP addresses. Since
these addresses can be mapped to a geographical location, the flow control languages
fulfill requirement RA.F.8 as well. age-de.xml fulfills requirement RA.F.8 by support-
ing ISO 3166-1 alpha-2 country codes [161] such as DE for defining the user’s location.
InFO also uses IP addresses to refer to a requesting user’s country and thus supports
requirement RA.F.8.

Organizational background information corresponds to the enforcer’s motivation to
implement a specific policy. Although some of the analyzed policy languages provide
a purpose constraint, this property does not correspond to an actual explanation of a
policy’s meaning and function. Instead, it only restricts the applicability of allowing
and denying rules to a specific use case. The firewall metamodel and OPoT are designed
for mapping high-level organizational security policies to their technical representation.
Such a design also allows to link policies created with one of these languages to their
corresponding security policy. In doing so, the policies are enriched by a human-readable
description and thus implement requirement RA.F.9.1. KAoS and PICSRules follow
a different approach by directly embedding human-readable descriptions into a created
policy using the properties hasDescription and description, respectively. As these
properties are designed for annotating arbitrary strings, they can be used for describing
both organizational and legal background information. PLUS provides several attributes
for embedding human-readable conditions and restrictions into the policy. However,
these attributes are not sufficient for describing the complete organizational background
of a particular policy as each of the attributes only covers a specific part of it. InFO
allows to express a regulation enforcer’s code of conduct with the Code of Conduct
Pattern described in Section 3.3.6.

3.6.2. Evaluating the Non-Functional Requirements

Most of the policy languages and content labeling schemes are based on standard formats
such as XML, RDFS, or OWL and thus support requirement RA.IN.1. DEN-ng uses
UML for describing policies. Although UML is a well-known standard, it cannot be
directly used for implementing policies. Instead, policies modeled as UML diagrams have
to be mapped to other formats which can natively be interpreted by an enforcing system.
As DEN-ng does not provide such a mapping, it does not fulfill requirement RA.N.1.
Although PLUS uses an RDFS ontology, many essential parts of a PLUS policy are
encoded as structured string values. Since these string values have their own proprietary
format, PLUS does not completely fulfill requirement RA.IN.1. Ponder uses its own
proprietary format which is not compatible with other formats such as XML or OWL.
Although PICS and PICSRules also use their own format, a suggestion for mapping

74

Evaluation and Comparison with Existing Approaches

PICS labels to a lightweight RDFS ontology is provided in [51]. However, the ontology
does not cover PICSRules and only focuses on PICS labels. InFO is modeled as an OWL
ontology and thus fulfills requirement RA.IN.1.

None of the evaluated access control languages has a modular design and thus do not
fulfill requirement RA.N.2. Instead, their specification consists of a single document
which cannot be further partitioned into different sections. However, the main entities
defined by the languages can still be extended with additional terms such as new actions
or new roles (RA.N.3). The examined flow control languages solely focus on network
management and already provide a sufficient vocabulary for expressing corresponding
policies. Due to their restricted use case and their straightforward design, they do
not provide a modular structure or a broad extensibility. However, based on its open
design on UML, DEN-ng is still able to be extended with additional language elements.
Based on their lightweight design, neither ccREL, LDR, nor PLUS have a modular
structure. Although both ccREL and LDR can be extended with additional terms,
using such terms in a ccREL policy may result in a policy which no longer corresponds
to a Creative Commons license. In contrast, PLUS cannot be extended with additional
terms. ODRL and MPEG-21 REL define an REL and a separate RDD. Since the default
RDD is not mandatory and can be replaced with a user-defined one, the separation
between the REL and the RDD can be considered as limited modularity. However,
the REL of both languages itself is not modular. The extendability of both ODRL
and MPEG-21 REL is limited to defining new vocabulary terms for their corresponding
RDD such as new actions or constraints. Adding new entities to their REL’s model
is not possible. METSRights does not define separate specifications for an REL and
an RDD and thus cannot be considered as modular. However, it is still possible to
add new terms to the language’s vocabulary. KAoS and Rei are based on OWL. The
concepts of these languages are separated into different ontologies, each of which covers
a specific aspect of them. For example, both languages define an ontology for describing
actions and a separate ontology for policies. Since the languages are based on OWL,
they also fulfill requirement RA.IN.3 by supporting user-defined extensions. Although
Ponder also supports the definition of new language entities such as new rule types, its
proprietary representation format does not permit a modular design (RA.N.2). Due
to their simple design, neither age-de.xml nor the RTA label have a modular design.
However, age-de.xml can be extended with new XML elements. The PICS framework
consists of the PICS labeling scheme and PICSRules which are two separate formats.
Since both formats can also be used separately from each other, PICS supports a limited
modularity. The PICS labels can also be extended with arbitrary new labels, similar
to the RDD of a rights expression language. However, PICSRules cannot be extended
with new types of rules. InFO’s modular design consists of several ontology design
patterns (RA.IN.2). Many of these patterns can be extended with new concepts such
as introducing new rule types as subclasses of FlowControlRuleMethod. Furthermore,
InFO is specifically designed to be extended with domain-specific ontologies that cover
concepts relevant for particular use cases.

75

Section 3.6

Chapter 3

InFO: A Policy Language for Regulating Information Flow

3.6.3. Summary

None of the evaluated policy languages and content labeling schemes can be used for
regulating information flow control in open and distributed networks such as the Internet.
However, InFO reuses some of their concepts such as meta-policies and different conflict
resolution algorithms. InFQO’s extendability is inspired by Ponder which allows to model
arbitrary types of communication flow. XACML’s flexible conflict resolution algorithms
are also adopted by InFO. Since InFO is a pattern system which covers a core ontology,
ontological languages such as AMO, WebAccessControl, KAoS, and Rei may be aligned
as domain specific extensions. Other domain specific extensions are also possible and
cover the integration of content labeling schemes such as PICS or age-de.xml into InFO.
Such extensions can be used to further describe the content of a regulated Internet
communication.

3.7. Limitations and Possible Extensions

As demonstrated in the previous section, the InFO policy language fulfills all functional
and non-functional requirements defined in Section 3.2. However, InFO still has some
limitations when applying a particular policy to an enforcing system. This section first
describes these limitations and their causes. Afterwards, possible extensions to InFO
are discussed which provide additional features.

3.7.1. Enforcing InFO Policies

InFO primarily focuses on providing a policy language for precisely describing how a
regulation shall be technically implemented. However, the policy language itself does not
to provide any means for ensuring that an enforcing system interprets and implements
a regulation correctly. It is also possible that the enforcing system’s behavior does not
comply with the intended meaning of a policy and thus implements a regulation which
differs from the provided flow regulation policies. In order to reduce the possibility of
such effects, each enforcing system should be tested according to its conformance to the
InFO policy language. Such a conformance test should be conducted by an independent
party in order to reduce the chance of manipulating the test’s procedure and outcome.
Systems which pass the test should be certified accordingly and the resulting certificate
should be provided to all parties involved in a regulation. Similarly, the responsible
operator of the enforcing system should also be tested and certified in order to eliminate
any organizational mistakes in the regulation’s implementation.

3.7.2. Legal Background

InFO provides a solution for a technical regulation of Internet communication without re-
quiring any manual interaction. Although each policy is associated with its legal and/or
organizational background, this background is primarily used as the policy’s human-
readable explanation. It is expressed using external ontologies such as LKIF [146, 147]

76

Limitations and Possible Extensions

or CLO [123, 118] which are integrated into InFO. However, even existing legal on-
tologies may not be able to completely replace every human intervention. As Brown
and Greenberg [55] have demonstrated, not all legal cases are formally decidable and
require manual interaction instead. Thus, InFO considers the mapping from an organi-
zational background and/or a legal background to a technical regulation to be a manual
process as well. The process may supported by KORA (Konkretisierung rechtlicher
Anforderungen; concretizing of legal requirements) [139], a methodology for deriving
technical requirements from legal requirements.

In addition to this creation process, some legal regulations also contain exceptions
regarding the affected users. For example, the German Criminal Code contains several
norms related to computer crimes including §202c¢ [63]. §202c prohibits the creation
and distribution of software tools which can be used for conducting computer crimes.
However, §202¢ does not apply to security experts who use the software tools for assessing
the security of a computer system [277]. The treatment of such exceptions generally
requires human intervention and is usually done by courts [277]. Thus, a completely
automatic assessment of a particular situation is not always possible. Even a security
expert may violate §202c if she uses software tools to deliberately sabotage a computer
system without having a proper authorization. Although InFO can easily be extended
with additional roles representing the intervening parties, the actual interpretation of
the exceptions would still require a manual intervention.

3.7.3. Consistency Between Different Layers

An InFO flow control policy associates several flow control rules with their organizational
motivation and/or legal authorization. As described in the previous section, deriving a
particular flow control policy from an organizational code of conduct and/or legal norm
is considered to be a manual process. Similarly, ensuring that the technical regulation
details comply with its organizational and legal background is a manual process as well.
Although the Flow Regulation Norm Pattern described in Section 3.3.6 can be considered
as a legal view on the technical Flow Control Rule Pattern described in Section 3.3.3,
InFO does not provide any means for checking the consistency between both patterns.
Instead, the patterns can only be used as a basis for evaluating whether or not a technical
flow control policy complies with its organizational and legal background. The actual
evaluation must be conducted via a manual process. However, this process may be
supported by ontological reasoning on the InFO policies and by evaluating additional
rules such as RIF expressions [178].

3.7.4. Supporting Child Protection Software

Child protection software aims at prohibiting minors from accessing adult web content.
Most software applications focus on regulating the Internet access of a local home envi-
ronment and can be installed on local proxy servers, home routers, or client computers.
Although some child protection software such as NetNanny'® and the Jugendschutzpro-

9see https://www.netnanny.com/support/changelog/, last accessed: 01/21/16

77

Section 3.7

Chapter 3

InFO: A Policy Language for Regulating Information Flow

gramm? evaluate third-party formats such as the RTA label or age-de.xml as well, their

regulation is mainly based on a proprietary rule syntax created via the software’s user
interface. Since child protection software focuses on a similar use case as the InFO policy
language, it is possible to configure the software by using corresponding InFO policies.
This would achieve a greater interoperability between different software products and
also between different installations of the same product. Regulation policies created with
InFO could then be imported into any child protection software without having to re-
configure any specific regulation. This could also be used for separating the developers
of child protection software from the providers of regulation rules. A particular soft-
ware installation could then be configured with regulation rules from different providers.
Supporting the configuration of child protection software with InFO can be achieved by
providing corresponding domain ontologies.

3.7.5. Integration into Software Defined Networking

Software Defined Networking (SDN) [225] defines a generic architecture for flexible and
dynamic management of closed networks which are centrally administrated by a single
organization. SDN generally distinguishes between the controller plane and the data
plane. The controller plane is a central control node which manages and configures other
network nodes such as routers and switches. These network nodes correspond to the data
plane and carry out the actual packet forwarding. The configuration of these nodes is
done via a specific protocol. This protocol and the distinction between the controller
plane and the data plane are the main components of the SDN architecture. Since
SDN defines a generic architecture, a particular implementation of all three components
is not provided. Instead, different protocols and even different routers and switches
can be used. The only requirement is that all three components of the architecture
are compatible with each other. InFO can be a used as part of the SDN protocol
for exchanging regulation information between the controller plane and the data plane.
However, as InFO does not provide such a protocol itself, designing and implementing
a complete protocol for both the controller plane and the data plane would still be
necessary. A first step towards this integration has been conducted by implementing
policy-based regulation rules on routers which is described in Section 3.5.2 and further
explained in [311]. The implementation also uses a central administration node for
configuring a set of routers with InFO regulations.

3.8. Summary

This chapter has presented InFO, a policy language for regulating information flow in
open and distributed networks such as the Internet. Regulations expressed with InFO
can be implemented on different types of enforcing systems such as routers, application-
level proxy servers, and name servers. Additionally, other types of enforcing systems
can also be supported due to InFO’s modular and extensible design. Each regulation

20See http://wuw. jugendschutzprogramm.de/faqg6 . php, last accessed: 01/21/16

78

Summary

policy consists of several rules which contain precise technical details for implement-
ing a particular regulation. Any conflicts between two or more rules are eliminated by
InFO’s conflict resolution mechanism. The purpose of a policy is described by attaching
human-readable background information such as a regulation’s legal foundation and the
organizational motivation. InFO achieves compliant availability and thus answers re-
search question RQ.4 by restricting the availability of information to authorized parties
only. Parties are considered to be authorized as long as they comply with the InFO
regulations.

79

Section 3.8

Chapter 4.

Siggi: A Framework for lterative Signing of
Graph Data

This chapter presents Siggi, a generic framework for iterative signing of Semantic Web
graph data. Signing graph data is a security mechanism for achieving integrity and
authenticity of the data [28]. Thus, the graph signing framework Siggi answers the
research questions RQ.2 and RQ.3. The framework is independent from any particular
algorithm or software implementation. It can be configured to achieve different features
such as minimum signature overhead or minimum runtime. The framework divides the
signing process into multiple steps, each of which can be implemented with different
algorithms. Due to its generic design, the framework also serves as a guideline for
creating new algorithms. It provides various features such as signing Named Graphs,
signing multiple graphs at once, and iterative signing of graph data. Iteratively signing
graph data is the process of signing already signed graph data again. This can be
used for provenance tracking which documents the data flow of the signed data. A
signature created with the graph signing framework Siggi is independent of the graph’s
encoding. The signature only covers the actual contents of the graph’s triples but not
their syntactical representation. This allows it to change the order of the triples within
a graph or rename the local identifiers of the graph’s blank nodes without invalidating
the signature. Prior versions of the graph signing framework were published in [168, 169,
170, 173]. This chapter is based on these publications but rephrases, consolidates, and
extends them with additional aspects.

The remainder of this chapter is organized as follows: The state of the art and related
work for achieving integrity and authenticity of graph data is summarized in Section 4.1.
Based on this section and on the scenarios introduced in Chapter 2, Section 4.2 defines
the functional and non-functional requirements for the graph signing framework Siggi.
The formal specification of Siggi is provided in Section 4.3. Section 4.4 presents four
example configurations of the signing framework. These configurations are further an-
alyzed in Sections 4.5 and 4.6 which conduct a detailed cryptanalysis and performance
analysis, respectively. Section 4.7 demonstrates how the graph signing framework is used
for signing different types of graph data. Section 4.8 assesses the state of the art and re-
lated work and compares it with the framework. Limitations and possible improvements
of Siggi are discussed in Section 4.9 before the chapter is concluded.

81

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

4.1. State of the Art and Related Work

The signature framework Siggi divides the process of signing graph data and verifying
their signatures into different steps as depicted in Figure 4.1. These steps are based on
the XML signature syntax and processing standard [20] for signing and verifying XML
documents. Each of these steps can be implemented by different algorithms making them
interchangeable with each other. Thus, the framework forms a basis for different graph
signing implementations. After having loaded the graph data into memory, a canonical-
ization function ky [193] normalizes the data to a unique form. Second, a serialization
function vy transforms the canonicalized data into a sequential representation. Third, a
hash function for graphs Ay computes a cryptographic hash value on the serialized data.
Fourth, a signature function ¢ combines the data’s hash value with a private signature
key [268]. The results of the first four functions are combined to the graph signing func-
tion on. Fifth, an assembly function ay creates a signature graph containing all data
for verifying the graph’s integrity and authenticity including the signature value and an
identifier of the signature verification key. The actual verification is conducted in the
last step by the wverification function oy .

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
L > i e
Import Canonicalization Serialization Hash Signature Assembly Verification
KN UN AN ¢ an oN
\ S \ S \ O\ S A\ J A\ J

Graph signing O v

Figure 4.1.: The general process of signing and verifying graph data (cf. [20]).

This section presents the state of the art and related work on signing graphs along
the individual graph signing sub-functions as depicted in Figure 4.1. For each sub-
function, its runtime complexity and space complexity is discussed as well. Subsequently,
existing assembly functions are presented. Verification functions operate similarly to
graph signing functions and use the same sub-functions or their inverse. Thus, they are
not discussed in more detail. This section concludes with a discussion of alternative
approaches for achieving integrity and authenticity of graph data. A formalization of all
functions is provided in Section 4.3. Table 4.1 summarizes the complexity of different
implementations of the four sub-functions. In the table, n refers to the number of triples
to be signed and b corresponds to the number of blank nodes in the graph. A detailed
comparison with the related work on graph signing functions and the signing framework
Siggi is given in Section 4.8.

4.1.1. Graph Signing Functions

Tummarello et al. [295] present a graph signing function for fragments of RDF graphs.
These fragments are minimum self-contained graphs (MSGs) and are defined over triples.
An MSG of a triple t is the smallest subgraph of the complete RDF graph that contains ¢

82

State of the Art and Related Work

and the triples of all blank nodes associated directly or recursively with ¢. Triples without
blank nodes are an MSG on their own. The graph signing function of Tummarello et
al. is based on Carroll’s canonicalization function and hash function [72] described in
Section 4.1.2. A signature is stored as six triples, which are linked to the signed MSG via
RDF statement reification [142] of one of the MSG'’s triples. The approach of Tummarello
et al. only supports signing one MSG at a time. Signing a full graph with multiple MSGs
requires multiple signatures. Thus, the graph signing process depicted in Figure 4.1 has
to be applied to each MSG in the graph. This creates a large overhead of six signature
triples per MSG. Furthermore, sining arbitrary sets of triples which do not correspond
to complete MSGs is not supported by the approach.

Signing a graph can also be accomplished by signing a document containing a par-
ticular serialization of the graph [262]. For example, a graph can be serialized using an
XML-based format such as RDF /XML [26] or OWL/XML [210]. This results in an XML
document which can be signed using the XML signature standard [20]. If the graph is
serialized using a plain text-based format such as the triple-based serialization formats
N-Triples [25] or Turtle [27], also standard text document signing approaches may be
used [268]. However, these approaches inextricably link the signature with a concrete
encoding of the graph [262]. Consequently, such a signature can only be verified as long
as the very specific serialization of the graph contained in the document is provided.

4.1.2. Canonicalization Functions for Graphs

A canonicalization function ky deterministically normalizes a graph in such a way that
its syntactical representation does not affect its hash value and its signature. A canon-
icalization function ensures that a graph’s signature only covers its semantics and not
its syntax [193]. As depicted in Figure 4.1, a cryptographic hash function is used for
computing a hash value of a serialized and canonicalized graph. Such a hash function
operates on string values and outputs different hash values for different input strings.
Blank node identifiers of a graph also influence the graph’s hash value and thus its signa-
ture as well. These blank node identifiers can be consistently renamed within the whole
graph without modifying the graph’s semantics. This means that a particular blank node
identifier can be renamed to another identifier without destroying the graph’s meaning
as long as this identifier is renamed in all its occurrences. However, renaming blank
node identifiers changes the graph’s syntactical representation and thus its hash value
and signature as well. A canonicalization function prohibits blank node renaming from
invalidating a graph’s signature. A formal specification for canonicalization functions is
provided in Section 4.3.3.

Hogan [148] canonicalizes an RDF graph by computing all its isomorphic graphs, sort-
ing them, and selecting the first graph as canonical graph. A single isomorphic graph is
computed by replacing all blank nodes in the graph with the same identifier, computing
the hash values of all triples in the graph, and computing the hash values of all blank
nodes by using the hash values of the triples in which they occur. If several blank nodes
share the same hash value, one of the blank nodes is replaced by a new identifier and
the hash values are computed again. This process is repeated until the hash values of

83

Section 4.1

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

Table 4.1.: Complexity of the sub-functions used by the graph signing function ox for
signing a single graph with n triples and b blank nodes.

Function Example Runtime Space
Hogan [148] O (b)) o)
Carroll [72] O(nlogn) O(n)
Canonicalization ky Fisteus et al. [110] O(nlogn) O(n)
Sayers and Karp [261] O(n) O(b)
Kuhn and Dumontier [184] O(n) O(b)
N-Triples [25] O(n) O(1)
Turtle [27] O(n) O(1)
N3 [34] O(n) 0(1)
Serialization vy TriG [38] O(n) o(1)
TriX [75] O(n) o(1)
RDF/XML [26] O(n) 0(1)
OWL/XML [210] O(n) O(1)
Melnik [200] O(nlogn) O(n)
Carroll [72] O(nlogn) O(n)
Hash
ash Aw Fisteus et al. [110] O(n) O(1)
Sayers and Karp [261] O(n) O(1)
ElGamal [97] O(1) O(1)
Signature ¢ RSA [251] O(1) O0(1)
DSA [214] O(1) 0(1)

all blank nodes are unique. All isomorphic graphs are computed by replacing different
blank nodes with a unique identifier in each run. Creating a single isomorphic graph
renames b blank nodes which is done in at most b — 1 iterations. This corresponds
to a runtime complexity of O(b?). Since there are b! different isomorphic graphs for a
graph with b blank nodes, the runtime complexity for computing all isomorphic graphs
is O(b?b!). Sorting all b! isomorphic graphs with a sorting algorithm such as merge
sort [241] results in a overall space complexity of O(b!). Carroll [72] presents a canoni-
calization function for RDF graphs that replaces all blank node identifiers with uniform
place holders, sorts all triples of the graph based on their N-Triples [25] representation,
and renames the blank nodes according to the order of their triples. If this results in
two blank nodes having the same identifier, additional triples are added for these blank
nodes. Carroll’s canonicalization function uses a sorting algorithm with a runtime com-
plexity of O(nlogn) and a space complexity of O(n) [72]. Fisteus et al. [110] perform a
canonicalization of blank node identifiers based on the hash values of a graph’s triples.
First, all blank nodes are associated with the same identifier. Second, a triple’s hash

84

State of the Art and Related Work

value is computed by multiplying the hash values of its subject, predicate, and object
with corresponding constants and combining all results with XOR modulo a large prime.
If two triples have the same hash value, new identifiers of the blank nodes are computed
by combining the hash values of the triples in which they occur either directly or tran-
sitively. This process is repeated until there are no collisions left. Colliding hash values
are detected by sorting them. Using merge sort as sorting algorithm leads to a runtime
complexity of O(nlogn) and a space complexity of O(n). Sayers and Karp [261] pro-
vide a canonicalization function for RDF graphs which stores the identifier of each blank
node in an additional triple. If the identifier is changed, the original one can be recreated
using this triple. Since this does not require sorting the triples, the runtime complexity
of the function is O(n). In order to detect already processed blank nodes, the function
maintains a list of additional triples created so far. This list contains at most b entries
with b being the total number of additional blank node triples. Thus, the space complex-
ity of the function is O(b). Finally, Kuhn and Dumontier [184] canonicalize an online
available RDF graph by transforming all its blank nodes to URIs. In order to prohibit
name clashes with similar URIs stored in other graphs, all created URIs are prefixed
with the same string based on the graph’s designated web address. As this renaming
process does not require sorting, it can be implemented with a runtime complexity of
O(n). To achieve a consistent renaming of blank nodes, the canonicalization function
requires a list of already transformed blank nodes and their respective URIs. This list
contains at most b entries, resulting in a space complexity of O(b).

4.1.3. Serialization Functions for Graphs

A serialization function vy transforms an RDF graph into a sequential representation
such as a set of bit strings. A formal definition of serialization functions is given in
Section 4.3.4. The sequential representation is encoded in a specific format such as triple-
based N-Triples [25] and Turtle [27] or XML-based RDF /XML [26] and OWL/XML [210].
TriX [75] and TriG [38] are formats for expressing Named Graphs. While TriX is based
on XML, TriG has a triple-based syntax built upon Turtle. Notation3 (N3) [34] is an-
other superset of Turtle for expressing RDF graphs as well as RDF rules. When signing
RDF graphs, triple-based formats are often preferred to XML-based notations due to
their simpler structure. If a serialization function processes each triple in the graph
individually, it can be implemented with a runtime complexity of O(n) and a space
complexity of O(1). Some canonicalization functions such as [72] directly operate on
a serialized graph. Such canonicalization functions also include a serialization function
and output a canonical serialization of the graph.

4.1.4. Hash Functions for Graphs

Applying a hash function for graphs Ay is often based on computing the hash values of
the graph’s triples and combining them into a single value. Computing a triple’s hash
value can be done by using a basic hash function A such as MD5 [250] or SHA-2 [218]. A
formalization of basic hash functions and hash functions for graphs functions is provided

85

Section 4.1

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

in Section 4.3.5. Melnik [200] uses a simple hash function for RDF graphs. A triple’s
hash value is computed by concatenating the hash value of its subject, predicate, and
object and hashing the result. The hash values of all triples are sorted, concatenated,
and hashed again to form the hash value of the entire RDF graph. Using a sorting
algorithm like merge sort, the function’s runtime complexity is O(nlogn) and its space
complexity is O(n). Carroll [72] uses a graph-hashing function which sorts all triples,
concatenates the result, and hashes the resulting bit string using a basic hash function
such as SHA-2 [218]. As the function uses a sorting algorithm with a runtime complexity
of O(nlogn) and a space complexity of O(n), the runtime complexity and the space
complexity of the canonicalization function are the same. Fisteus et al. [110] suggest
a hash function for N3 [34] datasets. The triples’ hash values are computed with the
canonicalization function of the same authors described in Section 4.1.2. The hash value
of a graph is computed by incrementally multiplying the hash values of its triples modulo
a large prime. Since this operation is commutative, sorting the triples’ hash values is
not required. Thus, the runtime complexity of the hash function is O(n). Due to the
incremental multiplication, the space complexity is O(1). Finally, Sayers and Karp [261]
compute a hash value of an RDF graph similar to the approach of Fisteus et al. First,
the triples are serialized as single bit string and then hashed. Second, the incremental
multiplication is conducted. Thus, the runtime complexity of this approach is O(n) and
the space complexity is O(1).

4.1.5. Signature Functions

A signature function @ computes the actual graph signature by combining the graph’s
hash value with a secret signature key. Signature functions are formalized in Sec-
tion 4.3.7. Examples of existing signature functions are DSA [214], RSA [251], and
ElGamal [97]. Since the graph’s hash value is independent from the number of triples,
the signature is as well. Thus, the runtime complexity and the space complexity of all
signature functions are O(1).

4.1.6. Assembly Function

An assembly function apn creates a detailed description of how a graph’s signature can
be verified. This description may then be added to the signed graph data or be stored
at a separate location. Section 4.3.8 provides a formal definition of assembly functions.
Tummarello et al. [295] present a simple assembly function which adds additional triples
to each signed MSG containing the signature value and a URL to the public key used
for verifying the signature value. Information about the graph signing function and
its sub-functions is not provided. Once the URL to the signature verification key is
broken, i.e., the key is not available anymore at this URL, the signature can no longer
be verified. Even if a copy of the verification key is still available at a different location,
the verifier has no proof that this copy is really a legitimate copy of the original public
key. Since the issuer and other identifying metadata of the signature verification key are
not provided by the triples of the assembly function, the verifier cannot check the true

86

State of the Art and Related Work

authenticity of the copied key. The assembly function described in the XML signature
standard [20] provides an XML schema for covering all information about the signature’s
creation and verification. This includes the names of the used canonicalization function,
the hash function, and the signature function used for computing the signature value.
The XML schema also provides a unique identifier of the signature key issuer, the key’s
serial number, and further information.

4.1.7. Alternative Approaches for Achieving Integrity of Graph Data

RDF graph data is usually stored at a data provider located in the web [39]. In order to
access the graph data, a recipient has to first download it from such a provider. Thus,
ensuring integrity of RDF graph data can also be accomplished by securing this down-
load process. The Transport Layer Security (TLS) protocol [92] and its predecessor, the
Secure Sockets Layer (SSL) protocol [113], can be used to create a secure communication
channel between a recipient and a data provider. Such a secure communication channel
can be used for achieving both integrity and authenticity of the transmitted graph data.
When the recipient downloads the graph from the data provider, the communication
channel is digitally signed by the data provider. Any unauthorized modification of the
data during its transmission can be identified by the recipient. Furthermore, the dig-
ital signature also associates the transmitted graph with the data provider, achieving
authenticity of the graph data. However, secure communication channels based on TLS
or SSL only protect the transmitted data during the transmission process. They cannot
be used for permanently achieving integrity and authenticity of the data. Once a secure
communication channel is closed after the graph data has been transmitted, the recip-
ient cannot verify the graph data again without retrieving it once more from the data
provider. Additional verifications might be necessary if the data is stored on untrusted
devices such as cloud storage services or when it is transmitted further to other parties
which need to verify the graph data themselves. Furthermore, secure communication
channels require the data provider to be completely trusted. If the data provider is
different from the graph’s original creator, it may not be considered as completely trust-
worthy. In this case, the data provider can modify the graph at any time and therefore
violate the graph’s integrity. The recipient of the graph cannot notice such modifications
as the secure communication channel originates from the data provider and not from
the graph’s creator.

Kuhn and Dumontier [184] present trusty URISs, an approach for achieving integrity of
RDF graphs without digitally signing them. A trusty URI is a web address of an RDF
graph which contains the graph’s cryptographic hash value. After having downloaded a
graph, the recipient computes the graph’s hash value again and compares it with the hash
value encoded into the trusty URI. If both hash values are identical, the graph’s integrity
is confirmed. Publishing a graph on the web requires the data provider to first compute
the graph’s hash value. In order to remove the influence of the graph’s blank nodes
on the computed hash value, all blank nodes are transformed into preliminary URIs by
using the canonicalization function of the same authors described in Section 4.1.2. In
this case, the prefix used for the preliminary URIs is the graph’s designated web address

87

Section 4.1

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

without its hash value. After having transformed the blank nodes, the graph’s hash
value is computed by using the hash function of Carroll [72] as described in Section 4.1.4.
Finally, the computed hash value is used for creating the trusty URI of the graph. The
security of trusty URIs is based on the connection between a graph’s hash value and
its web address. Any modifications of a graph can be identified as the hash value of
the modified graph differs from the hash value encoded into the graph’s web address.
However, trusty URIs are only capable of protecting the integrity of a graph if the
graph is downloaded from the web. After this process has been completed, verifying
the graph’s integrity is no longer possible without having to download the graph again.
Furthermore, trusty URIs do not create a connection between a data provider and the
provided graph data. Thus, trusty URIs are not able to protect a graph’s authenticity
and are vulnerable to spoofing attacks in which an attacker masquerades as the data
owner. An attacker may fake a trusty URI for a self-created graph which contains the
web address of the data owner, thereby claiming that this data owner has published the
graph. The attacker then publishes the trusty URI on the web. If a recipient wants to
download the graph from the data owner, the attacker uses a spoofing attack such as I[P
spoofing [291] or ARP cache poisoning [1] to redirect and intercept the communication.
The attacker then sends the self-created graph to the recipient, pretending that the
recipient is actually communicating with the data provider. As trusty URIs do not use
any mechanisms for achieving the graph’s authenticity, a recipient cannot verify the
identity of the respective communication partner and thus cannot distinguish between
an attacker and a legitimate data owner. Such attacks can be prohibited by establishing
a secure communication channel based on a protocol such as TLS or SSL. However, as
such connections also achieve integrity of the transmitted data, the use of trusty URIs
would become obsolete in this case.

4.2. Requirements for a Graph Signing Framework

The graph signing framework Siggi formally defines a process for signing arbitrary graph
data. Due to the framework’s flexible design, each step in this process can be imple-
mented by a different algorithm. Based on these general objectives, this section defines
the functional (RI.F.*) and non-functional (RI.N.*) requirements for the graph signing
framework Siggi. As defined in Section 3.2, functional requirements define the services
and functions that a system must provide [282]. On the other hand, non-functional re-
quirements define the overall design of a system and describe how functional requirements
are implemented. The following requirements are based on the scenario for regulating In-
ternet communication presented in Section 2.1 and on the related work for signing graph
data summarized in Section 4.1. The graph signing framework Siggi must support the
following functional requirements:

RL.F.1: Signing different types of graph data
The graph signing framework must allow a party to sign different types of graph
data such as RDF(S) graphs (RI.F.1.1), OWL graphs (RI.F.1.2), and Named

88

Requirements for a Graph Signing Framework Section 4.2

Graphs (RI.F.1.3). This allows the framework to be used in heterogeneous envi-
ronments such as Linked Open Data [39]. In the workflow for exchanging regulation
policies introduced in the scenario in Section 2.1.2, the BKA provides OWL ontol-
ogy design patterns, ContentWatch provides Named Graphs, and JusProg provides
its regulation data as RDF graphs.

RI.F.2: Signing at different levels of granularity
The graph signing framework must support signing graph data at different levels of
granularity including single triples (RI.F.2.1), arbitrary sets of triples (RI.F.2.2),
MSGs (RI.F.2.3), and entire graphs (RI.F.2.4). This results in a most flexible
use of the framework. In the scenario, the BKA signs ontology design patterns
and the German Telecom signs its entire regulation graph.

RI.F.3: Signing T-box and A-box knowledge

The graph signing framework must allow a party to sign both assertional (A-box)
knowledge (RI.F.3.2) and terminological (T-box) knowledge (RI.F.3.1). A-box
knowledge corresponds to factual knowledge whereas T-box knowledge represents
the knowledge encoded in the ontological model, i. e., the schema knowledge [152].
This enables the framework to be used for signing vocabularies issued by, e.g.,
standardization bodies. In addition, parties publishing their own instance data us-
ing those vocabularies can sign their assertional knowledge as well. In the scenario,
the BKA signs both its ontologies and its technical regulation details.

RI.F.4: Signing graph data iteratively

The graph signing framework must support signing graph data which is already
signed, i. e., iterative signing of graph data. An iterative signature may cover signed
graph data from a previous signing step as well as newly added graph data. Signing
already signed graph data again without adding any additional triples can be used
for countersigning the data. Other applications of iterative signing are provenance
tracking where each party receives signed data from a party, sings the data again,
and sends the result to another party. This allows it to re-create the flow of the
signed data. In the scenario, the German Telecom receives signed graph data from
the BKA and signs it again in order to track the provenance of the exchanged
regulation details.

RI.F.5: Signing multiple and distributed graphs
The graph signing framework must allow a party to sign multiple graphs at the
same time which are distributed over different locations. In the scenario, the Ger-
man comprehensive school retrieves two different graphs from the ContentWatch
and JusProg and signs both graphs at once.

In addition to these functional requirements, the graph signing framework Siggi must
also support the following non-functional requirements:

RI.N.1: Creating encoding-independent signatures
The signatures created with the graph signing framework must not rely on a par-
ticular encoding or serialization of the graph. It must be possible to modify the

89

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

graph’s syntactical representation after having signed the graph without invalidat-
ing the created signature. For example, it must be possible to transform a signed
graph stored as an RDF/XML document into an N-Triples file while still being
able to verify the graph’s signature. Changing the order of the triples of a signed
graph or renaming its blank node identifiers must also be possible without destroy-
ing the graph’s signature. As these two modifications do not influence the graph’s
semantics, they are also considered to be plain syntactical modifications and are
subsumed by this requirement as well.

RI.N.2: Supporting flexible configurability
The graph signing framework must support different configurations for signing
graph data. A configuration implements each step of the general signing process
depicted in Figure 4.1 with a particular algorithm. Possible configurations of the
framework must at least cover already existing approaches for signing graph data
as discussed in the related work in Section 4.1. Furthermore, the design of the
framework should also support future configurations.

RI.N.3: Supporting a modular design
The graph signing framework must have a modular design which allows to combine
different sub-functions for signing graphs as one framework configuration. The
framework must support interchangeable implementations for each sub-function
and allow the creation of new configurations by using these sub-functions as build-
ing blocks. For example, it must be possible to use the canonicalization function
of one author and combine it with a hash function for graphs from another author.

RI.N.4: Separating the signing process from software implementations
The graph signing framework must not rely on a particular software implementa-
tion or programming language. Instead, it must be possible to sign a graph with a
particular software implementation and verify the created signature with another
implementation.

Integrity and authenticity of graph data are not listed as specific requirements for the
graph signing framework Siggi. Instead, integrity and authenticity of graph data corre-
spond to the research questions RQ.2 and RQ.3, respectively, which are answered by
the graph signing framework Siggi. The fulfillment of all functional and non-functional
requirements by the the graph signing framework Siggi is summarized in Section 4.3.10
and a comparison with the related work is given in Section 4.8.

4.3. Formalization of the Graph Signing Framework Siggi

Based on the state of the art and the related work discussed in Section 4.1 as well as on
the requirements defined in Section 4.2, this section provides a formal specification of
the graph signing framework Siggi. This specification covers the input and output of all
functions which are part of the graph signing process as depicted in Figure 4.1. The spec-
ification can be used as a guideline to create new functions for each step in the process.

90

Formalization of the Graph Signing Framework Siggi

As the formal specification is independent from any particular software implementation,
the created signatures can be verified using any available implementation.

4.3.1. Definition of Graphs

An RDF graph G is an unordered, finite set of RDF triples t. The set of all RDF triples
is defined as follows with the pairwise disjoint sets of resource URIs R, blank nodes B,
and literals I

T:=(RUB)xRx (RUBUL) (4.1)

It ist = (s,p, 0) with s € RUB being the subject of the triple, p € R being the predicate,
and 0 € RUB UL being the object [13]. An OWL graph can be mapped to an RDF
graph [230]. Thus, in the following only RDF graphs are denoted while OWL graphs
are included by mapping them to RDF graphs. The set of all possible RDF graphs is
defined as follows:

G :=P(T)=P(RUB)x R x (RUBUL)) (4.2)

A Named Graph extends the notion of RDF graphs and associates a unique name in
form of a URI to a single RDF graph [73] or set of RDF graphs. This URI can be
described by further triples, which form the so-called annotation graph. Consequently,
the original RDF graph is also called the content graph. A Named Graph NG € Gy is
defined as NG = (a, A, {C1,Cs,...,C;}) with a € RU {e} being the name of the graph,
A € G being the annotation graph, and C; € Gy being content graphs with ¢ = 1...1
and [€ N. If a Named Graph does not explicitly specify an identifier, ¢ is used as
its name. This corresponds to associating a blank node with the graph. In this case,
the annotation graph A is empty, i.e., A = (). Any RDF graph G € G can be defined
as Named Graph C using the notation above as C' = (¢,0,G). The set of all Named
Graphs Gy is recursively defined as follows:

Gy =R xGxP(Gn))U ({e} x {0} x G) (4.3)

4.3.2. Graph Signing Function oy

The graph signing function oy consists of several sub-functions and creates a signature
value s of a set of Named Graphs. These sub-functions are the canonicalization func-
tion kK, the serialization function vy, the hash function for graphs Ay, the combining
function for graphs op, and the signature function ¢, which are formally defined be-
low. The combining function for graphs gy allows the graph signing function to sign
multiple graphs at once. The assembly function ay and the verification function vy
are not part of the graph signing function oy and are applied afterwards. The graph
signing function oy requires a secret key ks € K, as input with K being the set of
all secret keys. Additionally, the function requires a set of m Named Graphs NG with

1Please note that this thesis uses the symbol R for representing resources and not real numbers. The
set of real numbers is not used at all in this work.

91

Section 4.3

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

NG; = (a;, 4, {C1,,...,CL}),i=1,...,m, and m € N. The resulting signature value s
is a bit string of length d' € N, i.e., s € {0, 1}d’. The graph signing function oy is
defined as follows:

on : Kg x P(Gy) = {0,137, on(ks, {NG1,...,NGp}) :=s (4.4)

s = p(ks, on (AN (VN (EN(NG1))), -, AN (vN (N (NG))))) (4.5)

The graph signing function o first canonicalizes all Named Graphs using the canonical-
ization function k. Each canonicalized graph is then serialized using the serialization
function vy and transformed into a bit string using the hash function for graphs Ay.
The combining function for graphs gy is applied to these bit strings in order to create
a single bit string which can then be signed with the signature function (.

4.3.3. Canonicalization Function for Graphs xy

The canonicalization function k transforms a graph G € G into its canonical form G € G
with G C G being the set of all canonical graphs. Example implementations of the
function k are discussed in Section 4.1.2. The function is defined as follows:

~

kGG, kG =G (4.6)

For Named Graphs, the canonicalization function xy is recursively defined. It computes
a canonical representation of a Named Graph NG = (a,4,{C1,...,Ci}) by comput-
ing the canonical representations A and C; of its annotation graph A and its content
graphs C; with i = 1,...,l and [€ N. The result is a canonical representation NG € Gy
with Gy € Gn being the set of all canonical Named Graphs. Using the function x, the
canonicalization function kp is defined as follows:

RN :GN%@N, /ﬁ:N(NG) = NG (4.7)
- (e0,k(G)) if NG = (¢,0,G), Ge G
NG = { K(A), {kn(CL),- .. wn(C))) if NG = (a, A, {Ch,....C1}) (4.8)

4.3.4. Serialization Function vy

The serialization function v transforms a graph G € G into a set G of bit strings b €
{0,1}* with G € P({0,1}*). A single bit string usually represents a triple in the graph G.
The concrete characteristics of the bit strings in G depend on the used serialization
format. Example formats of the serialization function v are discussed in Section 4.3.4.
The serialization function v is defined as follows:

v:G— P01}, v(G):=G (4.9)

The serialization function v can be extended to the serialization function vy for Named
Graphs NG € Gp. The result of the function vy is a set NG of o bit strings b; € {0,1}*
with NG = {b1,b2,...,b,}, i =1,...,0, and 0 € N. The particular value of o depends

92

Formalization of the Graph Signing Framework Siggi

on the used implementation of the serialization function vy and on the serialized Named
Graph NG. Using the function v, the serialization function vy is recursively defined as
follows:

vy : Gy = P({0,1}), vN(NG) := NG (4.10)
—— v(Q) if NG =(¢,0,G), Ge G
NG = {{G}UV(A)UVN(Cl)UUZ/N(Cl) if NG = (CL,A,{Cl,,Cl}) (411)

4.3.5. Hash Function for Graphs)y

The basic hash function X\ computes a hash value h of an arbitrary bit string b € {0, 1}*.
The resulting hash value h has a fixed length d € N, i.e., h € {0,1}¢. The function X is
defined as follows:

A:{0,1} = {0,1}4, (b)) :=h (4.12)

The hash function for graphs Ay computes a hash value hy € {0,1}% of a set of bit
strings b € {0,1}*. It is built upon the basic hash function A. The function Ay directly
operates on bit strings and can be used for computing hash values of graphs G € G and
hash values of Named Graps NG € Gy. Example implementations of the basic hash
function A and the hash function for graphs Ay are presented in Section 4.3.5. The hash
function for graphs Ay is defined as follows:

v PH0,1}) = {0,1}, An(NG) := hy (4.13)

4.3.6. Combining Function for Graphs oy

The combining function for graphs on combines a set of hash values h € {0,1}¢ of equal
length d € N into a single hash value hys € {0,1}%. The function oy allows the graph
signing function oy to sign multiple graphs at once. Example combining functions of
graphs gy are discussed in [261]. The combining function for graphs gy is defined as
follows:

on : P({0, 1}d) — {0, l}d, on({h1,ha,...}) :=hpy (4.14)

4.3.7. Signature Function ¢

A signature function @ computes the signature value of a set of graphs based on the
set’s hash value hy € {0, 1}d and a cryptographic key. The keyspace, i.e., the set
of all asymmetric, cryptographic keys is defined as K, = K, x K, with K, as the
set of public keys and K, as the set of secret keys. For computing signatures, a secret
key ks € KK, is used. Possible implementations for the signature function ¢ are presented
in Section 4.1.5. Using s € {0,1}% as identifier for the resulting bit string, the signature
function is defined as follows:

¢ Ky x {0,139 = {0,1}%, @(ks,b) :=s (4.15)

93

Section 4.3

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

4.3.8. Assembly Function ay

The assembly function ap is applied after the graph signing function oy. It creates a
signature graph S € G and includes it in a new Named Graph NGg € Gpy. The content
and structure of S depend on the implementation of the assembly function ap. The
graph S provides information about how to verify the signature of a set of a graphs.
This includes all sub-functions of the graph signing function oy, the public key &, of
the used secret key ks, the identifiers a; of the signed Named Graphs, and the signature
value s. A possible structure of a signature graph is shown in the examples in Section 4.7.
Additional examples of an assembly function are presented in Section 4.1.6. The Named
Graph NGg contains the signature graph S as its annotation graph and the signed
graphs NG; with ¢ = 1,...,m and m € N as its content graphs. In order to support
iterative signing of Named Graphs, the result of the assembly function ay is also a
Named Graph. The function is defined as follows:

an : K, x {0,1} x P(Gx) = Cn, an(ky,s,{NGi,...,NGn}) = NGs (4.16)

NGs := (as, S, {NG1,...,NGp}) (4.17)

4.3.9. Verification Function vy

The verification of a signature is similar to its creation. A werification function ~n
requires a canonicalization function kp, a serialization function vy, and a hash func-
tion Ay for graphs. It also requires a signature verification function §y as inverse of the
signature function . The function dy requires a bit string s € {0, l}d/ and a public
key k, € K, as input. It is defined as follows with b € {0,1}% being the resulting bit
string. If a secret key ks € K, is inverse to the public key k,, it holds dn (kp, p(ks, b)) = b
for all b € {0, 1}

oy Ky x {0,137 = {0,1}, 6n(kp,s) :=b (4.18)

The verification function vy checks whether or not a given signature is a valid signature
of a set of Named Graphs. The function requires a public key k, and a signature value s
which can be taken from the signature graph S. Additionally, the function requires a
set of signed Named Graphs {NG1,..., NGy} with m € N. The key k, is the public
counterpart of the secret key ks, which was used for creating the signature value s.
The verification function 7y combines the signature value s with the public key k,
and computes the hash value h’ of the Named Graphs NG; with ¢ = 1,...,m. The
signature is valid iff both computed values are equal. Using b’ = Ay (vn(kn(NG1)) U
...Uvn(kN(NGp))), the verification function vy is defined as follows:

w1 K, x P(Gy) x {0,1}* — {TRUE, FALSE} (4.19)

TRUE it 6x(ky,s) = I

_ (4.20)
FALSE otherwise

N (kp, {NG1,...,NGp},s) := {

94

Formalization of the Graph Signing Framework Siggi

4.3.10. Fulfillment of the Requirements

This section outlines how the functional and non-functional requirements defined in Sec-
tion 4.2 are fulfilled by the graph signing framework Siggi. A further discussion and
comparison with the related work is provided in Section 4.8. The requirement of signing
different types of graph data (RI.F.1) is supported via the definition of Named Graphs
given in Equation 4.3. This definition allows to map RDF(S) graphs (RI.F.1.1) and
OWL graphs (RI.F.1.2) to Named Graphs by using a representation like (g,0, G). In
this case, ¢ is used as the graph’s name, () is used as the annotation graph, and G € G
corresponds to the original graph. Signing Named Graphs (RI.F.1.3) is directly sup-
ported by the graph signing function oy as defined in Equation 4.4. Thus, this function
can also be used to sign RDF(S) graphs and OWL graphs. The fulfillment of the require-
ment of signing graph data at different levels of granularity (RI.F.2) depends on the
particular granularity level. Signing a complete graph (RI.F.2.4) is directly supported
by the graph signing function oy. Signing individual triples (RI.F.2.1), arbitrary sets
of triples (RI.F.2.2), or MSGs (RI.F.2.3) is achieved by first creating a new graph
which contains all triples to be signed. The resulting graph can then be transformed
into a Named Graph by applying Equation 4.3 and signed using the graph signing func-
tion ¢. T-box knowledge and A-box knowledge (RI.F.3) share the same syntactical
representation which consists of a set of triples. A Named Graph can contain any type
of triples and does not distinguish between schema knowledge and factual knowledge.
Thus, signing T-box knowledge (RI.F.3.1) and A-box knowledge (RI.F.3.2) is equally
supported by the graph signing function on. The requirement of iterative signing of
graph data (RI.F.4) is fulfilled by the design of the assembly function ay defined in
Equation 4.16. The output of the function is a Named Graph which can be signed again
using the graph signing function oy. Signing multiple graphs at once (RI.F.5) is sup-
ported by the combining function for graphs on defined in Equation 4.14. The function
combines the hash values of multiple graphs into a single hash value. Singing this hash
value corresponds to signing these graphs at the same time. As the function does not
distinguish between local graphs and remote graphs, it equally supports both types of
graphs.

The requirement of an encoding-independent signature (RI.N.1) is collectively ful-
filled by the canonicalization function for graphs s, the hash function for graphs Ay,
and the design of the framework’s formal specification. The canonicalization function
for graphs Ky ensures that renaming a graph’s blank node identifiers does not invalidate
the graph’s signature. The hash function for graphs Ay normalizes the order of the
graph’s triples in such a way that changing this order does not influence the signature.
The framework’s formal specification does not rely on a particular encoding of the graph
and interprets the graph as an abstract data structure which is processed as such. As
the encoding format used by the assembly function ap is independent of the signing
process, it can be changed without invalidating the graph’s signature. The requirement
of different configurations of the graph signing framework (RI.N.2) is supported by the
generic design of the framework’s formal specification. The specification only defines the
basic characteristics of the signing process and focuses on the input and output data of

95

Section 4.3

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

each signing step. As it does not rely on a particular algorithm, it can be configured with
different algorithms from different authors. Distinguishing between the different steps of
the signing process also fulfills the requirement of a modular design (RI.N.3). Finally,
the formal specification is independent from any particular software implementation
and thus fulfills requirement RI.N.4. Signing a graph and verifying a graph’s signature
can be done using different software implementations as long as both implementations
comply with the framework’s formal specification.

4.4. Four Configurations of the Signing Framework

This section discusses four possible configurations A, B, C, and D of the graph signing
framework Siggi. The example configurations are extracted from the related work de-
scribed in Section 4.1 and are referred to by the names of their respective authors. New
configurations can also be created by combining different algorithms from different au-
thors or by creating new algorithms from scratch. Each configuration of the graph signing
framework must define the particular implementation of the assembly function oy and
of all sub-functions of the graph signing function ox. However, the formal specification
provided in Section 4.3 already defines the concrete operation of the canonicalization
function ky for Named Graphs, the serialization function vy for Named Graphs, and
the graph signing function oy. Thus, a particular configuration of the framework must
only define those functions of the signing process whose implementation details are not
covered by the formal specification. These functions are the canonicalization function &,
the serialization function v, the basic hash function A, the hash function for graphs Ay,
the combining function for graphs gy, and the assembly function ay.

Table 4.2.: Basic implementation of the four example configurations of the the graph
signing framework. To ease comparability, the four configurations mostly
use the same sub-functions and only differ in the canonicalization func-
tion k, the hash function for graphs Ay, and in the assembly function ay.

Function Implementation

Graph signing function oy as defined in Equation 4.4
Canonicalization function depending on the configuration
Canonicalization function x5 for Named Graphs as defined in Equation 4.7
Serialization function v N-Triples [25]

Serialization function vy for Named Graphs as defined in Equation 4.10
Basic hash function A SHA-2 [218]

Hash function for graphs Ay depending on the configuration
Combining function for graphs gn as defined in Equation 4.21
Signature function ¢ RSA [251]

Assembly function ay depending on the configuration

96

Four Configurations of the Signing Framework

In order to ease the comparability between the four example configurations, the config-
urations only differ in their used canonicalization function x, hash function for graphs Ay,
and assembly function ay. All configurations use N-Triples [25] for the serialization func-
tion v, SHA-2 [218] as basic hash function A\, and RSA [251] as signature function ¢. As
for the combining function for graphs oy, all four configurations use a function based
on the hash function for graphs of Carroll [72]. The used function combines the hash
values of all graphs to be signed by sorting them, concatenating them, and hashing the
resulting string using a basic hash function A. SHA-2 is also used as the basic hash
function A in the combining function gp. Using sort as sorting function and concat as
concatenation function, the definition of the combining function for graphs oy provided
in Equation 4.14 is refined as follows:

on : P({0,1}9) = {0,134, on({h1,ho,...}) == hun (4.14)
on({h1,ho,...}) := A(concat(sort({h1, ha,...}))) (4.21)

Table 4.2 summarizes the similarities and differences of the four example configurations.
FEach of the four configurations is further analyzed regarding its runtime complexity,
space complexity, and signature overhead when signing a single graph. The runtime
complexity and space complexity depend on the characteristics of the graph to be signed
as well as on the graph signing function oy and its sub-functions. The signature overhead
depends on the additional triples created by these sub-functions and on the size of the
signature graph S created by the assembly function «p. Table 4.3 summarizes the
complexity and signature overhead of the example configurations for signing a single
graph.

Table 4.3.: Configurations A—D of the graph signing framework with runtime complex-
ity, space complexity, and signature overhead for singing a single graph. n
is the number of triples in the graph, b is the number of blank nodes, by
is the number of blank nodes which require special treatment, and r is the
number of disjoint MSGs in the graph.

Complexity of oy Signature overhead

Configuration ;
runtime space of oy and ay
A) Carroll [72] O(nlogn) O(n) by, + 25 triples, by, < b
by, + 6r triples,
B) T llo et al. [295] O(nl @)
) Tummarello et al. [295] (nlogn) (n) by < b <n
C) Fisteus et al. [110] O(nlogn) O(n) 0 + 25 triples
D) Sayers & Karp [261] O(n) O(n) b+ 25 triples

4.4.1. Configuration A: Carroll

Configuration A is based on the canonicalization function x and the hash function for
graphs Ay of Carroll [72]. Due to their use of a sorting operation, both functions have

97

Section 4.4

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

a runtime complexity of O(nlogn) and a space complexity of O(n) with n being the
number of triples in the processed graph. The resulting graph signing function oy
built upon these functions shares the same complexity. The canonicalization function s
handles blank node identifiers by sorting all of a graph’s triples and creating additional
triples for blank nodes sharing the same identifier. With b as the total number of
blank nodes in the graph and b, < b as the number of blank nodes which require
an additional triple, the canonicalized graph contains b;, more triples than the original
graph. Configuration A uses an assembly function oy which creates a signature graph .S
based on the signature ontology provided in Appendix C. This signature graph contains
25 triples which results in a total signature overhead consisting of by, + 25 triples.

4.4.2. Configuration B: Tummarello et al.

Configuration B corresponds to the approach by Tummarello et al. [295] and is based
on the canonicalization function x and hash function for graphs Ay of Carroll [72].
Although both functions are also used in configuration A, configuration B only allows
to sign individual MSGs. Signing a complete graph with n triples and r disjoint MSGs
requires the graph to be split into its MSGs first. Splitting the graph can be done with a
runtime complexity of O(n) and a space complexity of O(n) by using an implementation
based on bucket sort [83] where each MSG corresponds to one bucket. Each MSG is
then signed individually using Carroll’s functions. Signing a complete graph results in
a runtime complexity of O (3., n;logn;) and a space complexity of O (>°._; n;) with
n; being the number of triples in MSG 4. Since all MSGs are disjoint, it is Y ;_; n; = n.
Thus, the total runtime complexity of configuration B’s graph signing function oy is
O(nlogn) and its space complexity is O(n). The assembly function ay of Tummarello
et al. stores a signature using six additional triples. Since each MSG of the graph is
signed individually, the assembly function creates a separate set of signature triples for
each MSG. Thus, the overhead created by the assembly function oy for a graph with
r MSGs is 67 triples. Combining these triples with the by triples created by Carroll’s
canonicalization function k results in a total overhead of by, + 6r triples.

4.4.3. Configuration C: Fisteus et al.

Configuration C uses the canonicalization function x and hash function for graphs An
of Fisteus et al. [110]. Combining these two functions results in a configuration with
minimum signature overhead. Due to its use of a sorting algorithm, the canonicalization
function k has a runtime complexity of O(nlogn) and a space complexity of O(n) when
canonicalizing a graph with n triples. Since the hash function for graphs Ay operates
incrementally on the triples of the graph and does not require sorting, its has a runtime
complexity of O(n) and a space complexity of O(1). This results in a runtime complexity
of the graph signing function on of O(nlogn) and a space complexity of O(n). As the
functions of Fisteus et al. do not create any additional triples, the signature overhead is
independent of the signed graph and only depends on the signature graph S. Using the

98

Cryptanalysis of the Four Configurations

same assembly function ay as configuration A which creates a signature graph S with
25 triples results in a total signature overhead of 25 triples.

4.4.4. Configuration D: Sayers and Karp

Configuration D is based on the canonicalization function x and hash function for
graphs Ay by Sayers and Karp [261]. Signing a graph with n triples and b blank nodes
using this configuration results in a minimum runtime complexity of O(n) of the graph
signing function opn. The canonicalization function s creates an additional triple for
each blank node in the graph. In order to detect already handled blank nodes, this
function maintains a list of additional triples created so far. This list contains at most
b entries with b being the total number of additional triples. Blank nodes can only occur
on subject and/or object position in a triple. Thus, each triple of a graph contains no,
one, or two blank nodes. Assuming that each blank node is part of at least one triple,
a graph can contain at most twice as many blank nodes as triples, i.e., b < 2n. This
results in a space complexity of O(n) of the graph signing function oy. Using the same
assembly function as configuration A and C, the signature overhead of configuration D
consists of b triples added by the canonicalization function x and 25 triples created by
the assembly function ay.

4.5. Cryptanalysis of the Four Configurations

The cryptographic security of a particular configuration of the graph signing framework
Siggi depends on the cryptographic security of the graph signing function on and its
used sub-functions. A comprehensive cryptanalysis of a graph signing function oy must
therefore cover all algorithms used for implementing these sub-functions. This section
first introduces an attack model which covers different attacks on signing graph data.
This attack model is then used as a foundation for analyzing the cryptographic security
of the four example configurations A, B, C, and D presented in Section 4.4 for signing a
set of Named Graphs. The analysis first covers the common security aspects of all four
example configurations and then discusses the particular security of each configuration
in more detail. As the four example configurations mainly differ in their used canoni-
calization function x and hash function for graphs Ay, the specific cryptanalysis of each
configuration focuses on these two functions.

4.5.1. Attack Model

The graph signing framework Siggi implements the two security requirements authen-
ticity and integrity of a set of Named Graphs. Authenticity means that the party who
claims to have signed the set of graphs is actually the signature’s creator. Integrity
means that the signed graph data was not modified by an unauthorized party after the
signature had been created [28]. Modifications of the set of graphs are considered to
be unauthorized if they modify the semantics of at least one graph in the set. As re-
quirement RI.N.1 implies, purely syntactical modifications of a graph such as consistent

99

Section 4.5

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

renaming of blank nodes or re-ordering the triples in the graph do not modify the graph’s
semantics. Thus, such modifications are not considered to be unauthorized and are even
necessary for canonicalizing and hashing a graph as defined in the formal specification
in Section 4.3. All unauthorized modifications are summarized as the following attacks
on a set of signed Named Graphs. These attacks also form the basis of the cryptanalysis
provided in this section.

Al.1:

Al.2:

Al.3:

Al.4:

Al.5:

Al.6:

100

Removing triples from a signed graph

An attacker removes at least one triple from a graph in the set. The resulting
graph has fewer triples than the original graph. This violates the integrity of the
modified graph and thus the integrity of the set of graphs as well.

Inserting additional triples into a signed graph

An attacker inserts at least one new triple into a graph in the set. The resulting
graph has more triples than the original graph. Again, this violates the integrity
of the modified graph and thus the integrity of the set of graphs as well. Inserting
an already existing triple of a graph into the same graph again is not considered as
an attack. As RDF graphs do not contain any duplicate triples, inserting already
existing triples does not modify the graph’s semantics.

Modifying existing triples in a signed graph

An attacker modifies at least one existing triple in a graph or replaces an existing
triple in the graph with a new triple which is not part of the graph. Possible modi-
fications include the substitution of a subject URI with a different URI. Modifying
or replacing triples in a graph violate the graph’s integrity and thus the integrity
of the set as well.

Removing a signed graph from the set

An attacker removes at least one graph from the set of signed graphs. The resulting
set of graphs has fewer graphs than the original set. Thus, this attack violates the
integrity of the set of graphs.

Inserting a new graph into the set

An attacker inserts a new graph into the set of signed graphs. The resulting set of
graphs has more graphs than the original set. Inserting an already existing graph
into the set a second time is not considered as an attack as the set can contain a
graph at most once. Again, this attack violates the integrity of the set of graphs.

Forging signatures of a set of graphs

An attacker creates a signature for a set of graphs of own choice without having
access to the secret signing key k;. The forged signature is considered as valid by
the verification function yy as the function uses the corresponding public key £, of
the secret key kg for verification. In this attack, the real owner of the secret key ks
has not approved of the signed set of graphs. However, the verification function vy
cannot distinguish between a legitimate signature and a forged signature. Thus,
this attack violates the authenticity of the set of graphs.

Cryptanalysis of the Four Configurations

Removing a triple from the graph (AI.1) and inserting the triple again (AI.2) into
the same graph at another position is not considered as an attack. This corresponds
to simply re-ordering the graph’s triples which is not an unauthorized modification.
Modifying a signed graph is not listed as a separate attack since it is already covered
by the attacks AI.1, AI.2 and AI.3. All attacks violate the authenticity of the set of
signed graphs. Modifying a single graph in the set or changing the number of graphs
results in a new set of graphs which was not approved by the signing party. This
directly contradicts with the authenticity of the set. Forging signatures of a set of
graphs (AI.6) does not violate the integrity of this set as the attacker does not perform
any unauthorized modifications of already existing graph data. However, this attack
still violates the authenticity of the set of graphs.

4.5.2. Cryptanalysis of the Canonicalization Function xy

The canonicalization function s deterministically renames the blank nodes of a graph.
The cryptographic security of the canonicalization function x determines the difficulty
for an attacker to forge a signature of a graph (AI.6). If the canonicalization function &
works correctly, semantically equivalent graphs are mapped to an identical canonical
form and semantically different graphs are mapped to different canonical forms. How-
ever, if the canonicalization function k does not work correctly, semantically identical
graphs may be mapped to different canonical forms. Similarly, semantically different
graphs may be mapped to the same canonical representation. As this would allow an
attacker to replace a signed graph with another graph of identical canonical form (AI.6),
the cryptographic security of the canonicalization function for graphs s depends on the
function’s stability and correctness. The canonicalization function for Named Graphs
is built upon the function k. Thus, the cryptographic security of the function xy de-
pends solely on the function x. The particular security of the canonicalization function s
used in the four example configurations is further discussed for each of the four example
configurations below.

4.5.3. Cryptanalysis of the Serialization Function vy

The serialization function v transforms a canonical graph into a set of bit strings. The
cryptographic security of the serialization function v determines the difficulty for an
attacker to modify a triple of a signed graph without being noticed by the verification
function yx (AIL3). All four example configurations use N-Triples [25] as serialization
format. In this format, each bit string in the set corresponds to a syntactical represen-
tation of a single triple in the graph. As the serialization function v does not require
any cryptographic operations or secret information such as secret keys, its cryptographic
security is solely based on its stability. The output of the serialization function serves as
the input for the hash function for graphs Ay . In order to create the same hash value for
semantically identical graphs, the output of the serialization function v must be stable,
i. e., the serialization function must output identical sets of bit strings for identical input
graphs. Although N-Triples does not support any shortcuts such as compact URI repre-

101

Section 4.5

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

sentations, it still allows different syntactical notations for a single triple. For example,
the type and amount of whitespace characters between the subject, predicate, and object
of a triple is not restricted in the N-Triples format. However, using different whitespace
characters still affects the syntactical representation of a triple and therefore also the
output of the hash function for graphs Ay . In order to produce a stable serialization for
a canonicalized graph, each triple must be transformed to a canonical serialization. This
is achieved in all four example configurations by using a single space as delimiter between
all three triple parts and removing all other whitespace characters. This results in a sta-
ble serialization function v which outputs identical sets of bit strings for identical input
graphs, prohibiting an attacker from modifying any triple (AI.3) without being noticed
by the verification function v5. As the serialization function for Named Graphs vy is
built upon the serialization function v, its cryptographic security also depends on this
function and the used serialization format.

4.5.4. Cryptanalysis of the Hash Function for Graphs)y

The basic hash function A is used by the hash function for graphs Ax for computing the
hash value of a graph. The specific effects of the basic hash function on the cryptographic
security of the graph signing function oy depend on its particular usage within the hash
function for graphs Ay. Basic hash functions A used for signing graph data must be
resistant against pre-image attacks, second pre-image attacks, and collision attacks [56].
A basic hash function A is resistant against pre-image attacks if it is difficult to find
any input value that maps to a given hash value. Hash functions with this property
are called one-way functions. A basic hash function A is resistant against second pre-
image attacks if it is difficult to find another input value with the same hash value as a
given input value. Finally, a basic hash function A is resistant against collision attacks
if it is difficult to find any two different input values with the same hash value. All
collision resistant hash functions are also resistant against pre-image attacks and second
pre-image attacks [56].

All four example configurations use SHA-2 [218] as basic hash function A as recom-
mended by the National Institute for Standards and Technology (NIST) [217]. Comput-
ing a hash value with SHA-2 is done incrementally in several rounds. Each round uses
the output of the previous round as input. The total number of rounds depends on the
cryptographic strength of the resulting hash value. All four example configurations use
SHA-2 with an output length of 224 bits which corresponds to a cryptographic strength
of 112 bit [217]. This particular variant of SHA-2 uses 64 rounds for computing the hash
value. Although several attacks on SHA-2 have already been published [258, 158, 201],
all of them only use a reduced version of the hash function in which not all 64 rounds are
covered. These attacks focus on collision resistance which also includes resistance against
pre-image attacks and second pre-image attacks [56]. As there is no attack on complete
SHA-2 yet, this basic hash function A can still be considered as collision resistant.

The hash function for graphs Ay is built upon the basic hash function A and outputs
a hash value for each graph to be signed. The cryptographic security of this function
determines the difficulty for an attacker to remove triples from a signed graph (AIL1),

102

Cryptanalysis of the Four Configurations

insert new triples into a signed graph (AI.2), modify triples in a signed graph (AI.3),
and forge a signature of a graph (AI.6). In order to prohibit such attacks, the hash
function for graphs Ay must create different hash values for semantically different graphs.
Additionally, the function must create identical hash values for semantically identical
graphs. The cryptographic security of the hash function for graphs Ay depends on the
security of the used basic hash function A and on how the function X is particularly used
within the function A\y. As the four example configurations use different hash function
for graphs Ay, the cryptographic security of these functions is further discussed for each
of the configurations below.

4.5.5. Cryptanalysis of the Combining Function for Graphs oy

The combining function for graphs g combines the hash values of several graphs created
with the hash function for graphs Ay into a single hash value. The cryptographic security
of the combining function for graphs oy determines the difficulty for an attacker to
remove a graph from the set of signed graphs (AI.4) or insert a new graph into this
set (AIL5) without being noticed by the verification function yy. All four example
configurations use a combining function for graphs gx which operates similar as the
hash function for graphs Ay of Carroll [72]. As defined in Equation 4.14, the combining
function for graphs gy sorts the hash values of all graphs, concatenates them, and hashes
the resulting string using a basic hash function A. Using a stable sorting algorithm such
as merge sort [241], the sorting function produces identical output values for identical
input values. Similarly, the concatenation function also produces identical output values
for identical input values. As both functions do not influence the stability and security of
the combining function for graphs oy, the cryptographic security of this function solely
depends on the used basic hash function A. Using SHA-2 [218] as basic hash function, the
combining function for graphs g can be considered as secure. Modifying the processed
set of hash values by removing a hash value of a graph (AI.4) or inserting a hash value
of a new graph (AL5) results in a different output of the function gn. Unauthorized
modifications like these can therefore be identified by the verification function .

4.5.6. Cryptanalysis of the Signature Function ¢

The signature function ¢ digitally signs the hash value created with the combining func-
tion for graphs oy using the signing party’s secret key ks;. The cryptographic security of
the signature function ¢ determines the difficulty for an attacker to forge a signature for
a set of graphs (AIL.6). Signature functions ¢ can generally be used for digitally signing
arbitrary messages. In the graph signing framework Siggi, these messages correspond
to graph data. Signature functions ¢ must be resistant against key-only attacks and
message attacks [130]. In both types of attacks, an attacker forges a valid signature for
a message of own choice so that the resulting signature can be verified with the real
signing party’s public key k,. In a key-only attack, the attacker has only access to this
public key k, whereas a message attack provides the attacker with several messages and
their respective signature values. Message attacks can be further distinguished by the

103

Section 4.5

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

influence that the attacker has on the received messages [130]. The strongest message
attack is the adaptive chosen-message attack in which the attacker can requests a set
of messages to be directly signed by the real signing party with the secret key ks;. The
resulting pairs of messages and corresponding signatures can then be used by the at-
tacker to create valid signatures for new messages of own choice. In order to prohibit
an attacker from forging signatures (AI.6), a digital signature scheme must be resistant
against adaptive chosen-message attacks as these are the strongest attacks which include
all other weaker attacks.

All four example configurations use RSA [251] as signature function ¢ as recommended
by NIST [217]. An RSA key pair consists of a secret key ks = (d, N) and a public
key k, = (e, N) with d being a secret value, e being its public counterpart, and N being
the product of large primes p and q. The primes p and ¢ are only known to the owner
of the secret key ks. The cryptographic security of an RSA signature is based on the
factorization problem for large numbers which is considered to be hard to solve [174].
The larger the prime factors of a number are, the more difficult it is to find them. An
attacker who can factorize N can easily compute the value of d. Thus, the size of N and
its prime factors p and ¢ defines the cryptographic security of an RSA key pair. The
four example configurations use a value of N with a length of 2048 bit as recommended
by NIST [217]. This corresponds to a cryptographic strength of 112 bit. Although
factorizations of 512 bit and 768 bit numbers N have already been implemented in
reasonable time [77, 180], a factorization of a 2048 bit number has not been found yet.

However, factorizing IV is not necessary in order to forge signatures for a message when
using plain RSA which does not use any additional security operations. Plain RSA is not
secure against key-only attacks which allows an attacker to create a valid signature for a
message of own choice using only the public key (e, N) [175]. Furthermore, plain RSA is
also not secure against adaptive chosen-message attacks in which an attacker choses two
different messages to be signed by the signing party in order to create a valid signature
for any other message. However, such attacks can be made more difficult for an attacker
by signing a hash value of the message instead of signing the message directly [175]. All
four example configurations use the combining function for graphs on in order to create
a combined hash value of all graphs to be signed. This hash value is used as input for the
signature function ¢ which makes the attacks described above much harder to implement.
In summary, the signature function ¢ used in the four example configurations can be
considered as secure and resistant against signature forging attacks (AI.6).

4.5.7. Cryptanalysis of Configuration A

Configuration A uses the canonicalization function x and hash function for graphs Ay of
Carroll [72]. The canonicalization function « also includes a serialization function v and
outputs a canonical serialization of a graph. The canonicalization function x removes all
blank node identifiers from the graph, sorts the resulting triples based on their canonical
N-Triples representation, and renames the blank nodes based on the order of the triples.
If the order of the triples is not unique due to the removal of the blank node identifiers,
additional triples are added for these blank nodes in order to create a unique triple

104

Cryptanalysis of the Four Configurations

order. This ensures that the canonicalization function k of Carroll always produces a
stable output, prohibiting an attacker from finding two semantically different graphs with
the same canonical form (AI.6). As the canonicalization function x does not perform
any further cryptographic operations, it does not affect the cryptographic security of
configuration A.

The hash function for graphs Ay of Carroll sorts all bit strings of the canonicalized
and serialized graph, concatenates them, and computes a hash value of the resulting
string using a basic hash function A. Hash values of several graphs are combined with
the combining function gy into a single value which is then signed using the signature
functions ¢. Since the combining function for graphs gy also uses a basic hash func-
tion A, the cryptographic security of configuration A solely depends on the basic hash
function A and on the signature functions ¢. If an attacker removes a triple from a
signed graph (AI.1), its hash value changes which results in a different hash value of the
set of graphs and an invalid signature as well. Similarly, adding new triples to a single
graph (AI.2) or modifying existing triples (AI.3) changes the graph’s hash value and
thus invalidates the signature of the set as well. In order to prohibit an attacker from
forging graph signatures (AI.6), configuration A uses SHA-2 as collision resistant basic
hash function A and RSA as signature function ¢ which is resistant against adaptive
chosen-message attacks.

4.5.8. Cryptanalysis of Configuration B

Configuration B only differs from configuration A by using an additional split function
which partitions a graph into disjoint MSGs. As the MSGs of a graph are well-defined,
the split function operates deterministically and produces identical outputs for identi-
cal inputs. Thus, the split function does not influence the cryptographic security of
configuration B. The canonicalization function x and hash function for graphs Ay of
configuration B are identical to configuration A. Thus, the cryptographic security of
configuration B also depends on the basic hash function A and on the signature func-
tions .

4.5.9. Cryptanalysis of Configuration C

Configuration C uses the canonicalization function x and hash function for graphs Ax
of Fisteus et al. [110]. The canonicalization function s uses hash values as blank node
identifiers. The hash values are based on the structure of the graph and are computed
in several steps. First, the initial hash value of all blank nodes is set to a constant
value. Second, the hash value of each triple is computed with a hash function A;. The
function combines the hash values of a triple’s subject, predicate, and object using XOR
modulo a large prime p. Finally, the hash values of the blank nodes are computed
again using a hash function). The function combines the hash value of all triples
of a blank node using XOR modulo a large prime p. If this results in two or more
blank node identifiers being identical, the hash values of the blank nodes and triples are
computed again. This process is repeated until there are either no collisions left or if the

105

Section 4.5

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

remaining collisions cannot be resolved. In the latter case, the graph contains disjoint
subgraphs which are syntactically equivalent except for their blank node identifiers. As
these subgraphs are also isomorphic, they cannot be semantically distinguished from
each other. Thus, the semantics of the canonicalized graph is also not affected by these
subgraphs. The stability of the canonicalization function therefore only depends on the
two hash functions \; and A;. Both functions are based on XHash, which is proven to
be vulnerable to pre-image attacks and collision attacks [29]. This allows an attacker
to create colliding hash values with the function A; and replace an existing triple with
another triple of identical hash value. In a similar attack on the hash function A, an
attacker can replace blank nodes in the graph with other blank nodes sharing the same
hash value. Both attacks allow an attacker to modify a triple in a signed graph (AI.3)
without being noticed by the verification function .

The hash function for graphs Ay of Fisteus et al. also uses the hash function A; for
computing the hash value of each triple in the graph. The function Ay combines these
hash values by multiplying them modulo a large prime p. This operation is based on
MuHash [29] which is considered to be collision resistant as long as the hash function \;
is a one-way-function and the prime p is large enough. If both requirements are met, the
cryptographic security of MuHash can be reduced to the discrete logarithm problem [29]
which is considered to be hard to solve [197]. The hash function for graphs Ay uses a
prime p with a length of 1024 bit as recommended in the literature [285]. However, the
hash function); is not a one-way function as it is not resistant against pre-image attacks.
Since the hash function for graphs Ay is therefore vulnerable as well, it is possible to find
two different input graphs with the same hash value. This allows an attacker to replace
a graph in the set of signed graphs with another graph of identical hash value (AI.1,
AlL.2, AL3).

In order to improve the cryptographic security of configuration C, the two hash func-
tions Ay and A\, are modified as follows: The XOR operation used in the hash function)
is replaced with multiplication, resulting in a variant of MuHash. As prime p, the hash
function A\, also uses a value with a length of 1024 bit. The hash function \; is modi-
fied so that it computes the hash value of a triple by concatenating all of its parts and
hashing the resulting bit string using a basic hash function A. As basic hash function A,
SHA-2 is used with an output length of 224 bit. These modifications improve the cryp-
tographic security of the hash function for graphs Ay and thus the overall security of
configuration C as well.

4.5.10. Cryptanalysis of Configuration D

Configuration D uses the canonicalization function x and hash function for graphs Ay
of Sayers and Karp [261]. Instead of altering the blank node identifiers of a graph, the
canonicalization function k stores the current identifier of each blank node in an addi-
tional triple which is added to the original graph. The subject of such a triple corresponds
to the blank node and the object is a literal containing the blank node’s current label.
As the new triples are deterministically created, the canonicalization function x outputs
the same canonical graph for identical input graphs and different canonical graphs for

106

Performance of the Four Configurations

different input graphs. The additional triples can be used to re-create the original graph
by undoing any later modifications of the graph’s blank node identifiers. Thus, the
canonicalization function k of Sayers and Karp prohibits an attacker from finding two
semantically different graphs with the same canonical form (AI.6).

The hash function for graphs Ay of Sayers and Karp computes the hash value of each
serialized triple in the graph using a basic hash function A and multiplies the resulting
hash values modulo a large prime p. Similar to the hash function for graphs Ay of
Fisteus et al. [110], the hash function for graphs Ay of Sayers and Karp is also based on
MuHash [29]. Thus, the cryptographic security of hash function for graphs Ay of Sayers
and Karp is based on the collision resistance of the used basic hash function A and the
size of the prime p. The hash function for graphs A\n uses SHA-2 with an output length of
224 bit as basic hash function A and a prime p with a length of 1024 bit as recommended
in the literature [285]. As the used SHA-2 variant is collision resistant, an attacker cannot
replace an existing triple in the graph with another triple of identical hash value (AI.3)
without being noticed by the verification function yy. Since the resulting hash function
for graphs Ay is collision resistant as well, an attacker cannot insert new triples into
the graph (AI.2) or remove existing triples from the graph (AI.1) without changing
the hash value of the graph. Configuration D prohibits an attacker from forging graph
signatures (AI.6) by using SHA-2 as collision resistant basic hash function A and RSA
as signature function ¢ which is resistant against adaptive chosen-message attacks.

4.6. Performance of the Four Configurations

This section assesses the performance of the four example configurations A, B, C, and D
introduced in Section 4.4. Each configuration and its sub-functions are analyzed and
the experimental findings are compared with the theoretical analysis provided in Sec-
tion 4.4. In the experiments, the runtime and required memory for singing a single graph
and the number of additional triples created by the graph signing function oy and the
assembly function oy were measured. As datasets, synthetic RDF graphs ranging from
10,000 to 250,000 triples were used. The datasets were created with the Berlin SPARQL
benchmark (BSBM) [40] which provides a framework for comparing different RDF data
stores. In order to measure the influence of blank nodes in the graph on the graph sign-
ing function o and the assembly function a, different percentages of blank nodes were
introduced into the BSBM graph with 250,000 triples. This was done by mapping 1%,
5%, 10%, 25%, and 50% of the unique subject URIs [131] in the graph to corresponding
blank node identifiers. The graph signing framework is implemented in Java using Open-
JDK version 1.7. A detailed description of the implementation’s architecture is provided
in [263]. The evaluation was conducted using a system with 100 GB memory and an
Intel® Xeon® CPU with 2.00 GHz running Debian GNU/Linux version 7. In order to
avoid interference with statistical outliers, each operation was performed ten times and
the mean value was calculated. Additionally, three warm-up phases were performed to
reduce the influence of any initializations on the measured values.

107

Section 4.6

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

4.6.1. Runtime and Memory Usage of the Functions xy and \y

Figure 4.2 shows the effect on the canonicalization function ky and hash function for
graphs A when increasing the size of a signed graph without blank nodes. The functions
are taken from the four example configurations A, B, C, and D. As depicted, the run-
time and required memory of both functions increase as the size of the graph increases.
Since configurations A and B use the same canonicalization function kpy, the runtime
and required memory is also the same. As expected, the runtime of this function has

104

102

runtime (ms)

10t

Runtime of canonicalization

Ll

Ll

Ll

10> 5.10° 108 2.5.106

runtime (ms)

10t

102 |

no. of triples

Runtime of hash function

Lol

Ll

Ll

10> 5.10° 108 2.5.106

no. of triples

Memory of canonicalization

T T T T

=
(=)
w

Lo

=
o
]

UL UL

Ll

-
o

—
TTTT

=
(=]
=]

Lol gl

memory (mb)

o
[=}
|

[

LLILALLAL L LALLL

Ll

10~2

T
Ll

1073

L
10° 5.10° 106 2.5.10°

no. of triples

Memory of hash function

memory (mb)

=
o
3

10° 5.10° 106 2.5.10°

no. of triples

—=— A) Carroll —— B) Tummarello et al.

C) Fisteus et al. —— D) Sayers & Karp

Figure 4.2.: Runtime and required memory of the canonicalization functions xy and
hash functions for graphs Ay from the four example configurations A-D.

108

Performance of the Four Configurations

complexity of O(nlogn) and the required memory corresponds to O(n). Although con-
figurations A and B also use the same hash function for graphs Ay, the hash function
of configuration B requires more memory. This is due to the splitting function used
in configuration B that splits the graph into disjoint MSGs. The splitting function is
executed after the canonicalization function xn. As the hash function for graphs Ay of
configuration B is applied separately to all resulting MSGs, a slightly higher memory
usage is observed. Although the expected runtime of the hash function for graphs Ay
used in configurations A and B has a complexity of O(nlogn), the observed complexity
is only O(n). The theoretical complexity of the hash function for graphs Ay is based
on the complexity of the sorting algorithm used by this function. However, the canon-
icalization function xy used in configurations A and B already sorts the triples in the
graph. As consequence, this reduces the runtime of the sorting operation used in the
hash function for graphs ky since the triples are still sorted. Furthermore, this also
reduces the runtime of the hash function for graphs xy used in configurations A and B.

Regarding configurations C and D, both the runtime and the required memory of
the canonicalization function xy and the runtime of the hash function for graphs Ay
are as expected. Due to their incremental approach, the hash functions for graphs Ay
of these two configurations can be implemented with a memory complexity of O(1).
After having processed one triple, the temporarily allocated memory can be freed and
used again to process the next triple. However, Java does not support to explicitly free
memory which results in a permanent increase of memory usage. Thus, the observed
memory complexity of the hash functions for graphs Ay of configurations C and D is

O(n).

4.6.2. Accumulated Runtime of all Functions

Figure 4.3 shows the accumulated runtime of the four example configurations A-D for
signing the BSBM graphs with no blank nodes. As depicted, the total runtime increases
for all four configurations as the size of the signed graph increases. The signature
functions ¢ of configurations A, C, and D are called only once for the whole graph,
making their runtime independent from the graph size. On the other hand, the signature
function ¢ of configuration B signs each MSG in the graph individually. In a graph with
no blank nodes, each triple corresponds to one MSG. Thus, for such graphs, the number
of MSGs increases as the size of the graph increases. This results in a larger runtime
of configuration B’s signature function ¢. Although the runtime of the cryptographic
operations conducted by the signature function ¢ are usually insignificant compared to
other functions, executing a large amount of them highly influences the total runtime.

4.6.3. Influence of Blank Nodes

Figure 4.4 shows the influence of blank nodes on the four example configurations A—D
for signing the BSBM graph with 250,000 triples. The overall runtime of configuration A
increases and the required memory decreases as the signed graph contains more blank
nodes. The larger runtime is primarily caused by the configuration’s canonicalization

109

Section 4.6

Chapter 4 Siggi: A Framework for Iterative Signing of Graph Data

A) Carroll

runtime (ms)

10> 5.10° 108 2.5.10°

no. of triples

C) Fisteus et al.

107 T T
10°

10°

runtime (ms)

10> 5.10° 108 2.5.10°

no. of triples

runtime (ms)

runtime (ms)

B) Tummarello et al.

10° 5.10° 106 2.5.10°

no. of triples

D) Sayers & Karp

10° 5-.10° 106 2.5.10°

no. of triples

B Canonicalization xy [_1Split B Hash \y B Signature ¢ I Assembly an

Figure 4.3.: Accumulated runtime of the four example configurations A-D.

function xx which renames all blank node identifiers. Renaming more blank node iden-
tifiers also increases the function’s runtime. The memory required by configuration A’s
hash function for graphs Ay and assembly function a declines, resulting in less required
memory in total. Both functions operate on string representations of URIs and blank
node identifiers. Since blank node identifiers usually have shorter string representations
than URIs, processing them also requires less memory. Since all graphs used in the ex-
periments have no blank nodes by, which require special treatment by configuration A’s
canonicalization function (see Section 4.4.1), the signature overhead is constant.

110

Performance of the Four Configurations

107 g 100]
108 TK* 105 | 1
. r B Py r 1
<] [i e [i
g i i g i |
=2 =
qg) 105 | E z o104 [E
B E 1 o E B
= r] = 5]
= [B [} | 4 -4
Z | g / |
10t | = 103 E |
103 | | | | 102 | | | |
0 5 10 25 50 0 5 10 25 50
% of blank nodes in graph % of blank nodes in graph
107 §
108
@ 105
9 F
B H
B 10t E
= E
g N
o 10° E
= F
— =
g
o 10?
10!
100 L1 | |
0 5 10 25 50
% of blank nodes in graph
—=— A) Carroll —— B) Tummarello et al. C) Fisteus et al. —— D) Sayers & Karp

Figure 4.4.: Effect of blank nodes on the runtime, memory usage, and signature over-
head for signing a graph with 250,000 triples.

The runtime and required memory of configuration B is mostly affected by the split
function, the signature function ¢, and the assembly function ap. The runtime and
required memory of the split function increase as the graph contains more blank nodes.
At the same time, there are less MSGs to be signed which results in less signature
data. Thus, the runtime and required memory of both the signature function ¢ and the
assembly function oy decrease. Similarly, the signature overhead also decreases as the
assembly function ap creates fewer signature graphs.

The total runtime and required memory of configuration C mainly depends on the
canonicalization function sy and hash function for graphs Ay. The canonicalization
function ky renames blank nodes based on their hash values. Since the computation of
a blank node’s hash value requires more operations than the hash value of a URI or literal

111

Section 4.6

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

(see Section 4.5.9), the runtime of the canonicalization function ky increases as more
blank nodes are introduced into the graph. If the graph contains no blank nodes, only one
iteration for renaming blank node identifiers is performed. However, all signed graphs
with blank nodes result in two renaming iterations and thus double the memory required
by the canonicalization function xy. As the hash function for graphs An also requires
the computation of blank nodes’ hash values, its runtime increases with the number
of blank nodes in the graph. Thus, the total runtime of configuration C increases as
well. Configuration C does not create any additional triples which results in a constant
signature overhead.

The overall runtime and required memory of configuration D is mainly affected by
its hash function for graphs Ay. The runtime of this function depends on the number
of triples and the length of the strings to be hashed. The canonicalization function sy
of configuration D creates an additional triple for each blank node in the graph. These
additional triples are also processed by the hash function for graphs Ax. The more blank
nodes the graph contains, the more additional triples are hashed. However, blank node
identifiers are also shorter than URIs and their hash values can be computed faster.
Both aspects result in an almost constant runtime of the hash function for graphs Ay.
Although the memory required by the hash function for graphs Ay is also affected by
both aspects, its memory usage declines. Thus, the shorter string representations of
the blank node identifiers have a larger impact on the hash function’s memory usage
than on its runtime. The signature overhead rises in configuration D since the signed
graph contains additional triples for all blank nodes created by the canonicalization
function k.

4.6.4. Summary

All four example configurations A-D use RSA [251] with a key length of 2048 bit as
signature function . This corresponds to a cryptographic security of 112 bit [217]. If
a cryptographic security of 128 bit is desired, a key length of 3072 bit could be used
instead. However, this would increase the runtime of the signature function ¢ by a
factor of three. Although this hardly affects the overall runtime of configurations A, C,
and D as they only compute a single signature for the whole graph, a larger key length
highly increases the runtime of configuration B which signs all MSGs individually. As
alternative, Elliptic Curve DSA [219] with a key length of 256 bits could be used as the
signature function ¢. It has the same security as RSA with a key length of 3072 bit but
is about 76 times faster.

The experimental results show that the approach by Sayers and Karp (configuration D)
is best suited for signing graphs with few blank nodes. For such graphs, the overhead
created by the canonicalization function xx may be negligible. Signing RDF graphs with
many blank nodes should be done with the approach by Fisteus et al. (configuration C).
If indeed the approach by Tummarello et al. (configuration B) shall be used, e.g., for
signing MSGs individually, the faster Elliptic Curve DSA should be used instead of RSA
as signature function ¢.

112

Applications and Use Cases

4.7. Applications and Use Cases

This section describes how the graph signing framework Siggi is used for implementing
the scenarios introduced in Section 2. The first scenario described in Section 2.1 focuses
on the regulation of Internet communication and is covered in Sections 4.7.1 to 4.7.5.
The second scenario introduced in Section 2.2 covers the secure management of medical
data and is addressed in Section 4.7.6.

4.7.1. Signing Policies for Regulating Internet Communication

The scenario for regulating Internet communication defines a workflow for creating and
distributing regulation policies. The workflow is described in Section 2.1.2 and involves
several authorities. Each authority creates a specific part of a regulation policy, signs it,
and sends it to the next authority. This authority verifies the signature, adds its own
part of the policy, signs the result again, and sends it to the next authority. The process
is repeated until the policy is completed and contains all regulation details. The sub-
sequent examples are structured along the workflow of the German Telecom depicted
in Figure 2.2a and on the workflow of the German comprehensive school depicted in
Figure 2.2b. The regulation policies are modeled with the InFO policy language and
its domain-specific extensions as described in Chapter 3. The example graphs used in
this section correspond to the example policies provided in Section 3.4.1. Each example
is represented using an extension of the TriG syntax [38] that supports nested Named
Graphs and blank nodes as graph identifiers. Alternative formats for representing signed
graph data are also possible and are discussed in Section 4.9.6. Figure 4.5a and Fig-

gt:gt-sg-1

|_:gt-data-1 n | bka:bka-sg-1 f

L%

|_:bka-patterns-1 | _:bka-rules-1
Epws

(a) Resulting graph signed by the German Telecom

cs:cs-sg-1

| _:cs-data -1 | cwiow-sg-1 iPijp-sg-1
L cw:cw-rules-1 E Jp rules 1

(b) Resulting graph from the German comprehensive school

Figure 4.5.: Different examples of iteratively signed graphs which containing policies
for regulating Internet communication.

113

Section 4.7

Chapter 4

S

0 N o «

Siggi: A Framework for Iterative Signing of Graph Data

ure 4.5b show the resulting graphs after having completed the two workflows. Figure 4.5a
depicts the resulting graph signed by the German Telecom. The graph contains signed
graph data from the BKA which consists of a graph containing T-box knowledge and an-
other graph with A-box knowledge. Figure 4.5b depicts the graph signed by the German
comprehensive school. The graph contains a signed Named Graph from ContentWatch
and another signed graph from JusProg. All signed graphs are created by applying the
graph signing function oy and the assembly function a . In the following, the signing
process for each party is demonstrated. The examples are based on configuration C of
the graph signing framework as discussed in Section 4.4.3 and are presented along the
functional requirements RI.F.1 to RI.F.5 as described in Section 4.2.

4.7.2. Signing an OWL Graph

The first workflow covers the regulation of the Stormfront network by the German Tele-
com. The BKA creates the regulation details for prohibiting access to the network based
on the network’s domain name. To this end, the BKA provides corresponding ontology
design patterns (RI.F.2.2) which support the definition of name server-specific regula-
tion policies. These patterns correspond to the patterns of the Name Server Ontology
which is further described in Appendix A.3. The BKA uses these patterns in order to
create two particular flow control rules. The rules contain the domain name of the Storm-
front network and the BKA as their rule data provider. The complete rules are depicted
in the InFO chapter in Figure 3.19a and Figure 3.19b. After having compiled all data,
the BKA signs both the patterns of the Name Server Ontology and the two flow control
rules. A fragment of the resulting graph is depicted in Listing 4.1. The graph contains
the design patterns, the two flow control rules, and a signature graph. The patterns
contain T-box knowledge of the BKA (RI.F.3.1) and are modeled as a separate graph
shown in lines 30 to 37. The graph is identified by the blank node _:bka-patterns-1.
The two flow control rules are encoded as an OWL graph (RI.F.1.2) and provide A-
box knowledge (RI.F.3.2). They correspond to the graph _:bka-rules-1 which is also
identified by a blank node and shown in lines 40 to 51. Signing both _:bka-patterns-1
and _:bka-rules-1 results in the new Named Graph bka:bka-sg-1 and a signature
graph. The Named Graph bka:bka-sg-1 contains the graphs _:bka-patterns-1 and
_:bka-rules-1 as its content graphs and the signature graph as its annotation graph.
The graph bka:bka-sg-1 is shown in lines 11 to 52 and the triples of the signature
graph are shown in lines 14 to 27. The graph bka:bka-sg-1 and its two content graphs
_:bka-patterns-1 and _:bka-rules-1 are also shown in Figure 4.5 as part of the graph

gt:gt-sg-1.

@prefix bka: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/bka-graph.owl#> .

Oprefix dns:
<http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/name_server_flow_control.owl#> .

@prefix dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#> .

@prefix owl: <http://www.w3.o0rg/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix sig: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/signature.owl#> .

Oprefix tec:

114

Applications and Use Cases

9
10

<http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/technical_regulation.owl#> .

11 bka:bka-sg-1 {

12

13 # Signature graph of the BKA

14 {

15 bka:bka-sig-1 a sig:Signature ;

16 sig:hasGraphSigningMethod bka:bka-gsm-1 ;

17 sig:hasSignatureValue "TmV2ZXIgR29ubmEgR212ZSBZb3UgVXA=" ;
18 sig:hasVerificationCertificate bka:bka-pck-1

19 bka:bka-gsm-1 a sig:GraphSigningMethod ;

20 sig:hasGraphCanonicalizationMethod sig:gcm-fisteus-2010 ;
21 sig:hasGraphSerializationMethod sig:gsm-n-triples ;

22 sig:hasDigestMethod sig:dm-sha224 ;

23 sig:hasGraphDigestMethod sig:gdm-fisteus-2010 ;

24 sig:hasGraphCombiningMethod sig:cm-sort-concat ;

25 sig:hasSignatureMethod sig:sm-rsa .

26 .

27}

28

29 # T-box knowledge containing design patterns

30 _:bka-patterns-1 {

31 dns:DomainNameBlockingRuleMethod a owl:Class ;

32 rdfs:subClass0f tec:DenyingFlowControlRuleMethod , [

33 a owl:Restriction ; owl:onProperty dul:isSatisfiedBy ;
34 owl:allValuesFrom dns:DomainNameBlockingRuleSituation
35]

36 .

37}

38

39 # A-bozx knowledge containing flow control rules

40 _:bka-rules-1 {

41 bka:dnsr-1 a dns:DomainNameBlockingRuleMethod ; dul:defines bka:rdp-1 , bka:rt-1 ,
42 bka:sr-1 , bka:ss-1 , bka:rr-1 , bka:rs-1

43 bka:rr-1 a tec:ReceiverRole ; dul:classifies cn-1

44 bka:cn-1 a tec:ComputerNetwork ;

45 dul:hasQuality bka:dq-1 ; dul:hasSetting bka:dnsrs-1

46 bka:dg-1 a tec:DomainQuality ; dul:hasRegion bka:dnr-1

47 bka:dnr-1 a tec:DomainNameRegion ;

48 tec:hasDomainName "stormfront.org" ; dul:hasSetting bka:dnsrs-1
49 bka:dnsrs-1 a dns:DomainNameBlockingRuleSituation ; dul:satisfies bka:dnsr-1
50 .

51}

52 }

Listing 4.1: Example of a signed OWL graph.

The complete signature graph created by the assembly function ap is depicted in
Figure 4.6. The signature graph is modeled with the Signature Ontology which is pre-
sented in Appendix C and based on the XML signature standard [20]. The signature
graph stores the computed signature bka-sig-1, its signature value, and all parame-
ters of the graph signing function oy required for verifying this value. In the signature
graph, the function oy is identified as bka-gsm-1 and linked to all its subfunctions.

115

Section 4.7

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

bka-sig1 | Lype i

hasSignaturevalue *TmV2ZXIgR JR212ZSBZb3UgVXA="
hasVerificationCertificate Lbka-pck-1 type X509Certificate
Zpsteris Tanber > "12:E5:00:01:D8:13:C8" "C=DE, O=Zentrum fuer Informationsverarbeitung
hasGraphSigningMethod hasIssuer @ hasDistinguishedName ::‘ilzrl‘\f;:;"::al:'?'(;;:fg:::@?zl:::z:leb’
e
hasSubject @ hasDistinguishedName "C=DE, ST=Nordrhein-Westfalen, L=Bonn,

0O=Zentrum fuer Informationsverarbeitung und

type Informationstechnik, OU=Betrieb, CN=www.bka.de"
E@ GraphSigningMethod

hasGraphCanonicalizationMethod |=‘“—2010| type {GraphCnnu. o _,l
hasGraphSerializationMethod Iml type @I
hasDigestMethod W type @I
hasGraphDigestMethod W
hasGraphCombiningMethod Iml type @I

hasSignatureMethod type N
sm-rsa Method
| I—

Figure 4.6.: Example signature graph of the BKA. The graph consists of 25 triples
and is modeled using the Signature Ontology described in Appendix C.
The Signature Ontology is based on the XML signature standard [20] and
describes all details for verifying a graph signature.

This includes the canonicalization function for graphs gem-fisteus-2010, the serial-
ization function gsm-n-triples, the basic hash function (also called digest function)
dm-sha224, the hash function for graphs gdm-fisteus-2010, the combining function
for graphs cm-sort-concat, and the signature function sm-rsa. In order to verify the
signature value, the signature graph also covers a reference to the BKA’s public key
certificate. The certificate contains the corresponding public key of the BKA’s secret
key, which was used as the signature key. The certificate is represented as bka-pck-1
and corresponds to an X.509 certificate [82] issued by the German Center for Infor-
mation Processing and Information Technology (Zentrum fiir Informationsverarbeitung
und Informationstechnik; ZIVIT)?2. The certificate’s owner is identified as bka-1 and
its issuer is represented as zivit-1. X.509 certificates are uniquely identified by their
serial number and the distinguished name [317] of their issuer. A distinguished name is
an hierarchically structured identifier of an organization or natural person. In order to
precisely identify the certificate used for verifying the graph’s signature, the signature
graph contains the certificate’s serial number as well as the distinguished names of its
owner and issuer.

4.7.3. Iteratively Signing of Graphs

The German Telecom receives the signed Named Graph bka:bka-sg-1 from the BKA
and verifies its signature. Although this graph contains two flow control rules which
already provide some regulation details, it does not contain a complete flow control pol-

*http://wuw.zivit.de, last accessed: 01/21/16

116

1
2

Applications and Use Cases

icy with all necessary information for the regulation’s enforcement. For example, the
graph does not define the name server which shall be used as the regulation’s enforcing
system. Thus, the German Telecom completes the flow control policy by adding its own
RDF graph _:gt-data-1 with additional regulation details. These details include the IP
address 2.160.15.78 of the enforcing name server ns-2, the regulation’s legal authoriza-
tion la-1, and the German Telecom’s code of conduct om-1. The resulting flow control
policy corresponds to the example policy of the InFO chapter depicted in Figure 3.16¢.
Subsequently, the German Telecom signs its own graph _:gt-data-1 (RI.F.2.4) to-
gether with the received Named Graph bka:bka-sg-1. Thus, the access provider itera-
tively signs the graph bka:bka-sg-1 (RI.F.4) which results in the new Named Graph
gt:gt-sg-1 depicted in Listing 4.2. This graph contains the created signature graph
shown in lines 8 to 14, the graph _:gt-data-1 created by the German Telecom shown
in lines 17 to 27, and the BKA’s Named Graph bka:bka-sg-1 shown in lines 30 to
40. The signature graph covers the used graph signing function gt:gt-gsm-1 (line 10),
the resulting signature value (line 11), and the public key certificate gt:gt-pck-1 of
the German Telecom (line 12). The Named Graph gt:gt-sg-1 contains the signature
graph as its annotation graph and the two graphs _:gt-data-1 and bka:bka-sg-1 as
its content graphs.

@prefix bka: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/bka-graph.owl#> .
Q@prefix gt: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/gt-graph.rdf#> .

3 ...

4
5

© 0w N O3

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

gt:gt-sg-1 {

Signature Graph of the German Telecom
{
gt:gt-sig-1 a sig:Signature ;
sig:hasGraphSigningMethod gt:gt-gsm-1 ;
sig:hasSignatureValue "YXJ1IGJ1bGOuZyBObyBlcw==" ;
sig:hasVerificationCertificate gt:gt-pck-1 .

Flow regulation detatls of the German Telecom

:gt-data-1 {

gt:dnsp-1 a tec:FlowControlPolicyMethod ; dul:hasMember bka:dnsr-1 , bka:dnsr-2 ;
dul:defines gt:ro-1 , gt:es-1 , gt:la-1 , gt:om-1 .

gt:es-1 a tec:EnforcingSystem ; dul:classifies ns-2 .

gt:ns-2 a tec:NameServer ; dul:hasSetting gt:dnsps-1 ; dul:hasQuality gt:ipaq-2 .

gt:ipaq-2 a tec:IPAddressQuality ; dul:hasRegion gt:ipar-6 .

gt:ipar-6 a tec:IPv4AddressRegion ; dul:hasSetting gt:dnsps-1 ;
tec:hasIPAddress "2.160.15.78" .

gt:dnsps-1 a tec:FlowControlPolicySituation ; dul:satisfies gt:dnsp-1 .

Graph data received from the BKA
bka:bka-sg-1 {
{

117

Section 4.7

Chapter 4

32
33
34
35
36
37
38
39
40
41

1
2
3

Siggi: A Framework for Iterative Signing of Graph Data

bka:bka-gsm-1 a sig:Signature ;
sig:hasGraphSigningMethod bka:bka-gsm-1 ;
sig:hasSignatureValue "TmV2ZXIgR29ubmEgR212ZSBZb3UgVXA=" ;
sig:hasVerificationCertificate bka:bka-pck-1 .

}
_:bka-patterns-1 { ... }
_:bka-rules-1 { ... }
}
}

Listing 4.2: Example of iteratively signed graphs.

4.7.4. Signing a Named Graph

The second workflow describes how the German comprehensive school prohibits its stu-
dents from accessing pornographic web content. To this end, the school receives regula-
tion details from ContentWatch and JusProg. The regulation details contain the URLSs of
the websites to be blocked and are modeled with the Application-Level Proxy Ontology,
which is further described in Appendix A.4. ContentWatch provides its regulation details
as Named Graph (RI.F.1.3) while JusProg uses a regular RDF graph (RI.F.1.1). Due
to the design of the graph signing framework described in Section 4.3, signing a Named
Graph is similar to signing an RDF graph or OWL graph. Listing 4.3 depicts the Named
Graph cw:cw-sg-1 created by ContentWatch. The regulation details of ContentWatch
are modeled as the graph cw:cw-rules-1 which is shown in lines 18 to 24. They corre-
spond to the example flow control rules depicted in Figure 3.19a and Figure 3.19b. Sign-
ing the Named Graph cw:cw-rules-1 results in the signature graph shown in lines 9 to
15. The signature graph covers the used graph signing function cw:cw-gsm-1 (line 11),
the signature value (line 12), and ContentWatch’s public key certificate cw:cw-pck-1
(line 13). The signature graph and the Named Graph cw:cw-rules-1 are part of the
newly created Named Graph cw:cw-sg-1 (lines 6 to 25), which contains the signature
graph as its annotation graph and the graph cw:cw-rules-1 as its content graph.

@prefix cw: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/cw-graph.owl#> .
Oprefix prx:
<http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/proxy_flow_control.owl#> .

4 ...

5
6
7
8
9
10
11
12
13
14
15
16

cw:cw-sg-1 {

Signature graph of ContentWatch

{
cw:cw-sig-1 a sig:Signature ;
sig:hasGraphSigningMethod cw:cw-gsm-1 ;
sig:hasSignatureValue "SXQncyBibHV1IGxpZ2hO" ;
sig:hasVerificationCertificate cw:cw-pck-1 .
}

118

18
19
20
21
22
23
24
25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Applications and Use Cases

Flow control rules of ContentWatch
cw:cw-rules-1 {
cw:wst-1 a tec:WebSite ; dul:hasQuality cw:ug-1 ; dul:hasSetting cw:alprs-1
cw:uq-1 a tec:URLQuality ; dul:hasRegion cw:ur-1
cw:ur-1 a tec:URLRegion ;
tec:hasURL "http://www.porntube.com/" ; dul:hasSetting cw:alprs-1 .

Listing 4.3: Example of a signed Named Graph.

The Named Graph created by JusProg is depicted in Listing 4.4 and identified as
jp:jp-sg-1. Its structure is similar to that of the Named Graph cw:cw-rules-1
created by ContentWatch. JusProg provides its regulation details as the RDF graph
_:jp-rules-1 shown in line 15. This graph contains the flow control rule depicted in
Figure 3.19¢c. Signing the graph results in the signature graph shown in lines 7 to 12.
The Named Graph jp:jp-sg-1 contains the signature graph as its annotation graph
and the RDF graph _:jp-rules-1 as its content graph.

@prefix jp: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/jp-graph.rdf#> .

jp:jp-sg-1 {

Signature graph of JusProg
{
jp:jp—sig-1 a sig:Signature ;
sig:hasGraphSigningMethod jp:jp-gsm-1 ;
sig:hasSignatureValue "SSBsaWtlIHRyYWlucw==" ;

}

Flow control rule of JusProg
_:jp-rules-1 { ... }
}

Listing 4.4: Example of a signed RDF Graph.

4.7.5. Signing Multiple and Distributed Graphs

The German comprehensive school receives the graph cw:cw-sg-1 from ContentWatch
and the graph jp:jp-sg-1 from JusProg. As both graphs only provide flow control rules
and not a complete flow control policy, the school adds its own RDF graph _:cs-data-1
with additional regulation details. These details cover the flow control policy which
includes the flow control rules and associates them with their legal authorization and
organizational motivation as well as their enforcing proxy server. The policy corresponds
to the example flow control policy depicted in Figure 3.19d. The school signs the graph
_:cs-data-1 together with the two graphs cw:cw-sg-1 and jp: jp-sg-1, thereby signing
multiple and distributed graphs at once (RI.F.5). This results in the Named Graph

119

Section 4.7

Chapter 4

1

Siggi: A Framework for Iterative Signing of Graph Data

cs:cs-sg-1 shown in Listing 4.5. It contains the school’s graph _: cs-data-1 (lines 16 to
24), ContentWatch’ graph cw: cw-sg-1 (lines 27 to 30), and JusProg’s graph jp: jp-sg-1
(lines 33 to 36). The school’s signature graph contains the used graph signing function
cs:cs-gsm-1 (line 9), the created signature value (line 10), and the school’s public key
certificate cs:cs-pck-1 (line 11).

O@prefix cs: <http://icp.it-risk.iwvi.uni-koblenz.de/policies/cs-graph.owl#> .

2 ...

3
4

© 00 9 o«

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

cs:cs-sg-1 {

Signatue graph of the comprehensive school
{
cs:cs-sig-1 a sig:Signature ;
sig:hasGraphSigningMethod cs:cs-gsm-1 ;
sig:hasSignatureValue "QWxsIHlvdXIgYmFzZSBhcmU="
sig:hasVerificationCertificate cs:cs-pck-1 .

Flow regulation detatls of the comprehensive school
:cs-data-1 {
cs:alpp-1 a tec:FlowControlPolicyMethod ;
dul:hasMember cw:alpr-1 , cw:alpr-2 , jp:alpr-3 ;
dul:defines cs:ro-3 , cs:es-3 , cs:la-3 , cs:om-2 .
cs:es-3 a tec:EnforcingSystem ; dul:classifies cs:pr-1 .
cs:pr-1 a tec:ProxyServer ; dul:hasSetting cs:alpps-1 .
cs:alpps-1 a tec:FlowControlPolicySituation ; dul:satisfies cs:alpp-1 .

Graph data received from ContentWatch
cw:cw-sg-1 {

{ ...}

cw:cw-rules-1 { ... }

}

Graph data received from JusProg
jp:jp-sg-1 {

{...}

jp:jp-rules-1 { ... }

}

Listing 4.5: Example of multiple signed graphs.

4.7.6. Signing Medical Data

The scenario for securing medical data records introduced in Section 2.2 covers three
different CDOs which exchange medical data records with each other. The overall pro-
cess of these transmissions is depicted in Figure 2.5 and involves a GP, a radiographer,
and a hospital. Each CDO creates several records, compiles them into an EHR, signs

120

Applications and Use Cases

the EHR, and sends it to the next CDO. Figure 4.7 depicts the final EHR which is
created by the hospital and identified as hp:hp-ehr-1. This graph contains the EMR
hp:hp-emr-1, the EHR hp:hp-ehr-1, and the graph _:hp-rls-1 which are created
by the hospital as well as the EHR rg:rg-ehr-1 which is received from the radiogra-
pher. The EMR hp:hp-emr-1 stores the results of the hospitals examination, the EHR
hp:hp-ehr-1 contains several graphs describing the different steps of the performed
surgery, and the graph _:hp-rls-1 corresponds to the hospital’s discharge note. The
EHR rg:rg-ehr-1 created by the radiographer contains the EMR rg:rg-emr-1 which
covers the results of the radiographer’s examination and the graph _:rg-dia-1 which
compiles the associated diagnosis. In addition, the graph rg:rg-ehr-1 also contains
the EHR gp:gp-ehr-1 which is received from the GP. This graph contains the EMRs
gp:gp-emr-1 and gp:gp-emr-2 which provide the results of two different examinations
conducted by the GP. The EHR also contains the graph _:gp-prs-1 which covers the
GP’s prescription for iodine tablets. All three graphs are signed individually before
including them into the EHR gp:gp-ehr-1.

hp:hp-ehr-1 ~
|hp:hp—emr—1n | hp:hp-ehr-1 I _:hp-rls-1

= T | L

ra-ehr1 |
|_rg.rg ehr-1 N
| rg:rg-emr-1 n | gp:gp-ehr-1 I

L IA | gpigp-sg-2 | gpigp-sg-3

| gp:gp-emr-1 | _gp-prs-1 | gp:gp-emr-2
e |) ()] | L
\ J

A& J

gp:gp-sg-1

Figure 4.7.: Example graph signed by the hospital which contains medical data records
from different CDOs.

All EMRs and EHRs of the scenario are provided as Named Graphs while all other
graphs are associated with blank nodes as graph identifiers. EHRs are signed by their
respective creators and are basically a collection of several other graphs without adding
any additional triples. Thus, EHRs are directly used as output of the assembly func-
tion an and contain the other graphs as their content graphs. An additional signature
graph stores the actual signature value. Listing 4.6 shows how the EHR hp:hp-ehr-1
created by the hospital is encoded by using the extension of TriG for nested Named
Graphs and blank nodes as graph identifiers. The EHR provides an example of signing
multiple graphs at once (RI.F.5) as well as of iterative signing of graphs (RI.F.4). All

121

Section 4.7

Chapter 4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

34

Siggi: A Framework for Iterative Signing of Graph Data

depicted graphs are either RDF graphs (RI.F.1.1) or Named Graphs (RI.F.1.3) and
contain A-box knowledge (RI.F.3.2).

hp:hp-ehr-1 {
Signatue graph of the hospital
{...1%
EMR of the hospital containing the results of the scintigraphy
hp:hp-emr-1 { ... }
EHR of the hospital containing several graphs documenting the operation
hp:hp-ehr-1 {
{...}
_thp-op-1 { ... }
_thp-op-2 { ... }
_thp-op-1 { ... }
}
Graph containing the discharge note of the hospital
_thp-rls-1 { ... }
EHR of the radiographer including the EHR of the general practitioner
rg:rg-ehr-1 {
{...}
rg:rg-emr-1 { ... }
_:rg-dia-1 { ... }
EHR of the general practitioner including the EMRs of two ultrasonographies
gp:gp-ehr-1 {
{...}
gp:gp-sg-1 { { ... } gp:gp-emr-1 { ... } }
gp:gp-sg2{{ ...+ _:gpprs-1{ ...} 1%
gp:gp-sg-3 {{ ... } gp:gp-emr-2 { ... } }
X
}
}

Listing 4.6: Example of signed medical graphs.

4.8. Evaluation and Comparison with Existing Approaches

This section evaluates how the related work and state of the art discussed in Section 4.1
as well as the graph signing framework Siggi fulfill the requirements introduced in Sec-
tion 4.2. The results of this assessment are depicted in Table 4.4. Although the related
work presents different algorithms for signing graph data, only two approaches cover
the whole signing process. These approaches are Tummarello et al. [295] and the XML
signature standard [20]. Other approaches which focus on particular sub-functions of the
signing process such as canonicalization functions and hash functions are not discussed
as they cannot be directly used for achieving integrity and authenticity of graph data.

122

Evaluation and Comparison with Existing Approaches

Similarly, alternative approaches for achieving integrity of graph data as presented in
Section 4.1.7 are also not evaluated. These approaches include trusty URIs [184] and
transmitting the graphs over SSL connections. As these approaches are designed for a
different use case, they cannot be directly compared with the graph signing framework
Siggi. In the following, Tummarello et al. and the XML signature standard are compared
with Siggi along the functional requirements RI.F.1.1 to RI.F.5 and non-functional re-
quirements RI.N.1 to RI.N.4.

Table 4.4.: Comparison of the capabilities of different approaches for signing graph
data with the requirements introduced in Section 4.2. Rows correspond
to the different approaches and columns correspond to requirements. Re-
quirements RI.F.1.1 to RL.F.5 are functional, while RI.N.1 to RI.\N.4
are non-functional. The letter y corresponds to a complete fulfillment of
the requirement, 1 corresponds to a partial fulfillment, and n corresponds
to no fulfillment of the requirement.

n
a

£ = g
2 < o = o)
k= ® U = =
n o o 4T © g c
2]] = “5 ob 8O =] E ED e
< g & T B R & @ =
o w o o & nw 8 2 PR @
S S &’ + O = B B & B =2 =
HoOoQ a5 L ® & 56 & W wm O Q
e £ = g = g <
—~ B ER B2 &2 B T & =
n 0 g g I 9 ~ O =
=~ 5 g © = o W’ oK W L A =
= E 2290 5 8 8 %% E g
Qz 23T E£ B ESL S EEEE s
= S ! = g = <
x O zZ E 2 = &8 & <« 22 7 2 B o=
B0 &) &) B0 BD B BD 8D &P g o £ £ F
£ £ 8 £ 2 8 2 8 8 ¢ o8 2 8 ¢
8 2 4 '8 8 &8 8 d58 g8 3 8
o0 o0 B b BD oD Bh oD B T 5 9 B T 4
n MmN NN ;AN g o s o089 g
L s O T i B B T PR S
e B S B B B BB B - B B BB
e e e e e e e e T e = T = e
[af e e i« A A o = e e - N - A = = e i
Tummarelloetal. [295] v y n | n y y y y | n y n y
XML Signature Standard [20] v v vy y y y v vy y y y n 1 y
Siggli y y y ¥y VY Yy vy Yy y Yy y

4.8.1. Evaluating the Functional Requirements

Signing RDF(S) graphs and OWL graphs is natively supported by Tummarello et al.
The graph to be signed first must be split into disjoint MSGs which are then signed
individually. The XML signature standard can be used for signing RDF(S) graphs and
OWL graphs by first applying an XML-based serialization format to the graphs and

123

Section 4.8

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

then signing the resulting document. RDF(S) graphs can be transformed into XML
documents by using the serialization format RDF/XML [26] and OWL graphs can be
serialized using OWL/XML [210]. Thus, both approaches fulfill requirements RI.F.1.1
and RI.F.1.2. The graph signing framework Siggi supports these requirements by map-
ping RDF(S) graphs and OWL graphs to Named Graphs which can be directly signed
with the framework. A Named Graph is uniquely identified by its URI and associates
this URI with all its triples. Signing a Named Graph must therefore cover both the
graph’s triples as well as the link between these triples and the graph’s URI. In order to
sign a Named Graph with Tummarello et al., all MSGs of the graph must be associated
with the graph’s URI. As the approach does not natively support such a relation, it does
not fulfill requirement RI.F.1.3. The XML signature standard can be directly used for
signing Named Graphs by using TriX [75] as serialization format for the graph. TriX
is an XMIL-based format which supports Named Graphs. The graph signing framework
Siggi natively supports Named Graphs via the design of its formal specification.

The approach of Tummarello et al. is restricted to signing complete MSGs and can
generally not be used for signing individual triples. An MSG is defined over blank
nodes and contains one or more triples. Triples without blank nodes form an MSG on
their own. Signing a single triple with Tummarello et al. is therefore only possible if
the triple does not contain any blank nodes. This corresponds to a partial fulfillment
of requirement RI.F.2.1. The structure of a graph and the number of blank nodes
define how the graph is split into disjoint MSGs. As MSGs cannot flexibly be defined,
arbitrary sets of triples cannot be signed with Tummarello et al. (RI.F.2.2). Signing
an entire graph (RI.F.2.4) with multiple MSGs is possible by signing each of its MSGs
individually. The XML signature standard does not have any restrictions on the triples
to be signed. The standard can be used for signing single triples, arbitrary sets of triples,
MSGs, and entire graphs. Similarly, the graph signing framework Siggi also supports
signing different types of graph data. Triples which do not form a graph on their own,
can be mapped to a new graph which can then be processed by the framework. T-
box knowledge and A-box knowledge are syntactically represented as triples. These
triples can be signed with any of the discussed approaches. Thus, Tummarello et al.
and the XML signature standard as well as the graph signing framework Siggi fulfill
requirements RI.F.3.1 and RI.F.3.2.

Iterative signing allows to sign an already signed graph again which leads to a nested
structure of graph signatures. In each iteration, the signing party may choose to coun-
tersign the already signed data or to add additional triples to the signed graph in order
to sign them as well. Verifying a particular signature requires a clear distinction be-
tween signatures of different signing iterations. A signature created with Tummarello et
al. is stored in six triples which are linked to the signed MSG by reifying one of the its
triples. As these triples do not natively allow to distinguish between different signing
iterations, Tummarello et al. do not fulfill requirement RI.F.4. In contrast, the XML
signature standard can be directly used for iterative signing of graph data. A signature
is stored in a new XML element Signature which is added to the XML serialization of
the signed graph. This element precisely identifies the XML fragments which represent
the signed graph data. The element can also identify other Signature elements as well.

124

Evaluation and Comparison with Existing Approaches

This can be used for iteratively signing a graph together with additional triples. The
graph signing framework Siggi supports iterative signing of graph data via the design of
its assembly function ajy.

Tummarello et al. do not support signing multiple graphs at once (RI.F.5) as it focuses
on signing individual MSGs only. Due to its design, the approach neither supports
signing all MSGs of a single graphs at once nor signing all MSGs of multiple graphs
at the same time. On the other hand, the XML signature standard can be used for
signing multiple and distributed XML documents via the use of detached signatures.
Such signatures allow to refer to the signed XML documents by their remote URI. Each
XML document can contain one or more graphs, allowing the XML signature standard
to sign multiple and distributed graphs as well. The graph signing framework Siggi
fulfills requirement RI.F.5 via the design of its combining function for graphs gx.

4.8.2. Evaluating the Non-Functional Requirements

Tummarello et al. and the graph signing framework Siggi do not rely on a particular
serialization format of the graph data to be signed. Instead, they interpret the graph as
an abstract data structure and thus fulfill requirement RI.IN.1. In contrast, the XML
signature standard requires an XML serialization of the graph. Although a graph can
also be signed by signing a particular XML serialization of it, the resulting signature is
inextricably linked to the signed XML document. It is attached to the signed document
as a new Signature element which consists of plain XML data and does not contain any
triples. If the serialization of the graph is lost, e.g., by loading the graph into a triple
store, the signature can no longer be verified. Re-creating the particular serialization
requires the same blank node identifiers and the same order of triples as used in the
signed graph. Even if the serialization can be re-created, the Signature element may
still be lost as it does not contain any triples which can be processed as graph data.
Thus, the contents of this element cannot be stored with the graph when loading it
into a triple store. In order to create a stable signature for a graph using the XML
signature standard, a canonicalization function kp, a hash function for graphs Ay, and
an assembly function o must be used as defined in the graph signing framework Siggi.
The canonicalization function and the hash function ensure that renaming blank node
identifiers and re-ordering the triples does not invalidate the graph’s signature. The
assembly function ensures that the information for verifying the signature is provided as
graph data which can also be processed together with the signed graph. None of these
functions are natively supported by the XML signature standard and are only part of
the graph signing framework Siggi. Thus, the XML signature standard does not fulfill
requirement RI.N.1.

The graph signing framework Siggi provides a generic signature pipeline without rely-
ing on any particular algorithm. Instead, it can be configured with different algorithms
and thus fulfills requirement RI.N.2. As the signature pipeline of the framework also has
a modular design, it fulfills requirement RI.IN.3 as well. Similarly, the XML signature
standard also provides a generic signature pipeline which supports different algorithms.
However, in contrast to Siggi, the XML signature standard only supports one particular

125

Section 4.8

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

assembly function apn which stores all details for verifying the signature in an XML
element. Thus, the XML signature standard only partially fulfills requirement RI.IN.2.
As the signature pipeline of the XML signature standard has a modular design, the stan-
dard fulfills requirement RI.N.3 as well. In contrast, Tummarello et al. define specific
algorithms for the signing process to be used. Thus, the approach neither fulfills require-
ment RI.IN.2 nor requirement RI.IN.3. All three approaches focus on signing graph data
on a conceptual level. As they do not rely on any particular software implementation,
they all fulfill requirement RI.IN.4.

4.8.3. Summary

Tummarello et al. do not fulfill all functional and non-functional requirements defined
in Section 4.2. As the graph signing framework Siggi provides a generic framework
of the signing process, the approach of Tummarello et al. can be integrated into Siggi
and corresponds to configuration B of the framework as described in Section 4.4.2. In
contrast, the XML signature standard fulfills almost all of these requirements except
for requirement RI.IN.1 which corresponds to an encoding independent signature. The
XML signature standard only supports signing XML documents and cannot be directly
used for signing Semantic Web graphs. Even signing XML serializations of such graphs
still requires the steps defined in the signature pipeline of Siggi. However, the graph
signing framework Siggi reuses many of the concepts provided in the XML signature
standard such as its modular signature pipeline which can be configured with various
algorithms.

4.9. Limitations and Future Extensions

As demonstrated in the previous section, the graph signing framework Siggi fulfills all
functional and non-functional requirements defined in Section 4.2. However, the frame-
work only provides a formal specification of the signing process. In order to actually
use the framework for signing graph data, it must be implemented in software or hard-
ware. Furthermore, this implementation may be part of a particular environment or
application context which requires additional security considerations. This section first
describes the aspects that must be considered when using the graph signing framework
Siggi in practice. Afterwards, possible extensions to the framework are discussed.

4.9.1. Reasoning on Signed Graph Data

Reasoning is the process of inferring additional data from existing data [11]. A Semantic
Web reasoner uses T-box knowledge in order to interpret the provided A-box knowledge.
The interpretation results in additional triples which may be included in the original
A-box knowledge. Reasoning on signed data may invalidate the signature if it is no
longer possible to distinguish between the original data and the data created through the
reasoning process. In order to prohibit a reasoner from invalidating a graph’s signature,
it is necessary to store the inferred data separately from the original graph data. This

126

Limitations and Future Extensions

can be achieved by creating additional graphs for storing only the inferred triples. Triple
stores such as Sesame [54] and Jena [74] provide mechanisms for implementing such a
distinction. If it is also required to sign the inferred triples together with the original
triples, iterative signing can be used. In this case, the graph which stores the inferred
triples is signed together with the already signed graph that contains the original triples.

4.9.2. Security of the Graph Signing Framework

The main goal of the graph signing framework Siggi is to provide integrity and authen-
ticity of graph data. In order to achieve these main objectives, the framework must be
secure. The security of the graph signing framework Siggi depends on several aspects, in-
cluding the cryptographic security of the algorithms used for a particular configuration,
the security of the software implementation, and the security of the environment in which
the software implementation is applied. The cryptographic security of the algorithms
is discussed in Section 4.5. However, a cryptanalysis does not consider the context in
which the algorithms are applied. Even though the used algorithms may be secure, it is
still possible for a software implementation of the framework to contain implementation
errors which may lead to security vulnerabilities. In order to assess the security of a
particular software implementation, product-oriented methods such as [80, 66] can be
used. These methods provide a framework for assessing the security of various IT prod-
ucts including software and hardware. A particular implementation of the graph signing
framework may be part of a larger IT system. The security of such IT systems as well
as their environment also influences the security of the actual signing process. Thus, it
is necessary to evaluate the security of these systems and their respective environment
to ensure that the framework’s main objectives are fulfilled. The security of the environ-
ment can be evaluated by using holistic approaches such as [133, 59]. Important security
aspects of the environment such as trust models and key management are discussed in
Sections 4.9.4 and 4.9.3.

4.9.3. Key Management

The signature of a signed graph associates the graph with the owner of the secret signing
key. Key management defines different organizational tasks for protecting the signing
key as well as its corresponding public key from being compromised and misused by
unauthorized parties. The tasks of key management include the generation of the key
pair, its secure storage, its distribution, and its secure destruction [269, 217]. These
tasks ensure that a secret signature key is only known to and used by its actual owner
and that the corresponding public signature verification key can be related to this owner.
Creating a key pair and storing the private key in a secure environment ensures that
only authorized parties have access to the private key. Destroying old keys is necessary
to prohibit a usage beyond their intended lifetime. Keys which are too old may not be
secure anymore due to new attacks or greater computational power available to break
the keys. Compromised keys must be revoked to prevent any further usage of them. The
particular implementation of the individual key management tasks depends on the appli-

127

Section 4.9

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

cation and environment in which the graph signing framework Siggi is used. Professional
environments may have higher security requirements than private applications. Detailed
guidelines for key management in professional environments are provided in [216, 217].

4.9.4. Public Key Infrastructure and Trust Model

Digitally signing graph data is a security mechanism for implementing authenticity of
the signed data. The graph data is authentic if it is retrieved from an identified data
source and if the identity of this data source is proven to be correct [28]. In order to
prove the identity of the signing party, authenticity of graph data requires a connection
between the secret signing key and its owner. Such a connection is created via a public
key certificate which contains both the public key of the secret signing key and an
identifier of its owner [4, 317]. Example identifiers are e-mail addresses or distinguished
names [317]. Public key certificates are managed by public key infrastructures (PKIs)
which ensure that the mapping provided by a public key certificate is actually correct.
The management of public key certificates includes the creation and distribution of
the certificates as well as their revocation [5]. A PKI consists of several services which
include a certification authority (CA) and a registration authority (RA). The registration
authority verifies the identity of a party and the party’s ownership of a key pair [232, 4].
The verified mapping is then sent to the certification authority which issues the public
key certificate [269].

A PKI only provides an infrastructure for managing public keys. The organizational
processes for verifying the identities of certificate owners and issuing their certificates
depend on the certificate authority. A trust model defines the conditions under which an
entity trusts a public key certificate and its creation by a CA [6]. By signing a public key
certificate, a CA states that the party identified in the certificate is actually the owner of
the certificate’s public key. Thus, the trustworthiness of a public key certificate depends
on the trustworthiness of its issuing CA. Trust is basically a subjective assumption of a
PKI user [6] that the CA behaves in such a way the user expects it to [290]. Different
trust models provide different methods for managing trust between users and CAs of
a PKI. Two widely used trust models for public key certificates are PGP [320] and
X.509 [82]. X.509 organizes all CAs as a hierarchy with a few trusted root CAs which
issue public key certificates for other CAs. These CAs may issue public key certificates
to other CAs as well or provide public key certificates to end users. In the X.509 model,
the trust of the hierarchy depends on the trust of the root CAs which are usually pre-
configured as trust-worthy in most operating systems. In contrast, PGP has no hierarchy
and allows its participants to be end users and CAs at the same time, resulting in a
interconnected web of certificates. In the PGP model, trusting a CA is achieved by
issuing a certificate directly or by manually selecting a trust-worthy certification path.
Applying a particular trust model depends on the intended application. While X.509
may be used in professional environments, PGP is mostly sufficient for private use. An
overview of different trust models and their characteristics is provided in [232, 6].

128

Limitations and Future Extensions

4.9.5. Secure Time Stamps

The examples provided in Section 4.7 demonstrate how the graph signing framework
Siggi can be applied for signing graph data. The examples also include a possible sig-
nature graph providing the basic information about the signature verification process.
However, the examples do not contain any additional data which may be relevant for
the context in which the signature is used. Such data may include a time stamp that
specifies when the signature was created. This can be used for defining the topicality of
the signature and the data. A time stamp may be provided by a secure time stamping
service which provides signed time stamp information [7]. If the time stamp is provided
as graph data, it can be signed using the graph signing framework. The resulting graph
can then be signed together with the actual graph data using the framework’s iterative
signing feature.

4.9.6. Alternative Assembly Functions

The assembly function ay attaches a signature graph to a signed graph by embedding
both graphs into a new Named Graph. In the examples of Section 4.7, the assembly
function encodes this Named Graph by using an extended version of TriG [40] which sup-
ports nested Named Graphs and blank nodes as graph identifiers. However, the assembly
function can also be built upon alternative encodings which are directly compatible with
existing Semantic Web concepts such as RDF datasets [87]. An RDF dataset is similar
to a Named Graph except that it does not support nested structures or blank nodes as
graph identifiers. Thus, RDF datasets can be expressed with the regular TriG syntax.
In order to encode a Named Graph as an RDF dataset, its nested structure must be
mapped to a flat structure and blank nodes as graph identifiers must be eliminated.
Removing the nested structure can be achieved by storing all subgraphs in different
TriG documents so that the resulting documents contain only valid RDF datasets. The
nested structure of the original graphs can then be expressed by creating additional
triples which explicitly describe the graphs’ nested structures. This can be done by
using a property such as hasSubGraph to relate a graph to its corresponding subgraphs.
Blank nodes used as graph identifiers can be eliminated by replacing them with URIs.

Another alternative encoding of nested Named Graphs is the use of N-Quads [71].
N-Quads is an extension of N-Triples which adds an optional additional context URI
to each triple. The context URI corresponds to the URI of the graph containing the
triple and allows N-Quads to be used for encoding Named Graphs. Similar to TriG,
N-Quads does not support nested graphs or blank nodes as graph identifiers. In order
to use N-Quads for encoding Named Graphs as defined in Equation 4.3, blank nodes
first must be mapped to URIs and the nested structure must be transformed to a flat
structure. This can be achieved by storing all subgraphs in separate N-Quads documents
and introducing additional triples which describe the nested structure of the original
graphs. As the graph signing framework Siggi does not rely on any particular assembly
function ay, both alternative encodings are already compatible with the framework.

129

Section 4.9

Chapter 4

Siggi: A Framework for Iterative Signing of Graph Data

4.10. Summary

This chapter has presented the graph signing framework Siggi which supports iterative
signing of graph data. It allows to sign graphs at different levels of granularity, signing
Named Graphs, and signing multiple and distributed graphs at once. It is based on
a formal specification which divides the signing process into different steps. Each step
can be implemented with various algorithms, allowing the framework to be configured
for achieving different features such as minimum signature overhead or minimum run-
time. The framework processes a graph as abstract data structure and does not rely on
a particular encoding. Thus, a signature created with the graph signing framework is
independent from the order of the triples in the graph, the local identifiers of the graph’s
blank nodes, and the used serialization format. As signing a graph achieves integrity
and authenticity of the graph, the graph signing framework Siggi answers research ques-
tions RQ.2 and RQ.3.

130

Chapter 5.

T-Store:
Searching in Encrypted Graph Data

This chapter presents T-Store, an approach for searching in encrypted RDF graphs.
T-Store restricts access to particular triples of a plaintext graph to authorized parties,
i.e., only authorized parties are able to apply queries to the corresponding ciphertext
graph. Unauthorized parties are not able to access any plaintext triples and even autho-
rized parties can only retrieve triples which match a legitimate query. Thereby, T-Store
achieves confidentiality of the plaintext graph and answers research question RQ.1. A
fundamental design principle of T-Store is the distinction between a data owner and
several users. The data owner possesses the plaintext graph and manages its access. To
this end, the data owner encrypts the plaintext graph and sends the resulting ciphertext
graph to the users. Users are authorized by the data owner to apply queries to the
ciphertext graph. The design of T-Store requires only little communication between the
data owner and the users which covers the distribution of the ciphertext graph and the
exchange of query authorizations. Query processing is conducted offline by the users
on their local systems and does not involve the data owner or any third party. T-Store
supports a restricted set of SPARQL [292] queries of type ASK, CONSTRUCT, and SELECT.
The basic concept of T-Store was first published in [171]. This chapter extends this basic
concept with additional features, evaluates the performance of the extended approach,
and conducts a detailed analysis of its cryptographic security.

The remainder of this chapter is organized as follows: The state of the art and re-
lated work for searching in encrypted data is summarized in Section 5.1. Based on this
section and on the scenarios introduced in Chapter 2, the functional and non-functional
requirements for T-Store are defined in Section 5.2. Section 5.3 provides a short overview
of the concept for searching in encrypted graphs including a basic formalization. The
basic formalization is then used to describe the details of T-Store’s design in Section 5.5.
The performance of T-Store is evaluated in Section 5.6 and Section 5.7 analyses its
cryptographic security. Section 5.8 shows two different applications of the approach for
searching in encrypted graphs which are based on the scenarios of Chapter 2. Section 5.9
discusses the state of the art and related work and compares it with T-Store. Limitations
and possible improvements of T-Store are discussed in Section 5.10 before the chapter
is concluded.

131

Chapter 5

T-Store: Searching in Encrypted Graph Data

5.1. State of the Art and Related Work

The general process of searching in encrypted RDF graphs can be separated into five
different steps as depicted in Figure 5.1. The first two steps prepare the plaintext graph
for query processing. In the first step, the graph is encoded with a serialization format
that can be used for querying. Possible formats are RDF/XML [26] and relational
databases. RDF/XML transforms the graph into an XML document and a relational
database stores the graph’s triples in one or more database tables [99, 54]. In the second
step, the encoded plaintext graph is encrypted to create a ciphertext graph. In order to
apply a query to the ciphertext graph, each query is processed similarly to the plaintext
graph. The third step transforms a SPARQL query [292] so that it can be applied to the
encoded graph created in the first step. Possible encodings are XPath [252] for querying
XML documents and SQL [160] for querying relational databases. The encoded query is
encrypted in the fourth step so that it is compatible with the ciphertext graph created
in the second step. The last step conducts the actual query processing by applying the
ciphertext query to the ciphertext graph.

/Preparing the graph R
Step 1 Step 2
.]
Encode plaintext Encrypt encoded
Step 5
\kRDF graph) kRDF graph)/ p
Apply ciphertext
(D query to
Step 3 Step 4 ciphertext graph
— = "
Encode plaintext g Encrypt encoded
\SPARQL query) kSPARQL query)
Preparing the quel
C paring query)

Figure 5.1.: The general process of searching in encrypted RDF graphs.

This section summarizes the state of the art and related work of searching in encrypted
data. As far as the author knows, there is no approach yet which is specifically designed
for searching in encrypted RDF graphs. Therefore, this section presents such approaches
that operate on other data structures but can generally be used for RDF graphs as well
by mapping them to the process depicted in Figure 5.1. The approaches are distinguished
between the type of data on which they operate and support relational databases, XML
documents, and graph structures. A detailed analysis of each approach, its mapping
to the general process of Figure 5.1, and a comparison with T-Store is provided in
Section 5.9. This section focuses on such approaches that can be used for applying
generic SPARQL queries to encrypted RDF graphs. Approaches which only support
very specific queries such as range queries are not discussed as they cannot be used for
other types of queries as well. Examples of range queries are provided in [150, 188, 305].

132

State of the Art and Related Work

Approaches which focus on document collections are also not discussed as they only
retrieve complete documents and do not support searching within them. Examples of
such approaches are presented in [107, 68, 234].

5.1.1. Searching in Encrypted Relational Databases

A relational database stores data records in tables which consist of columns, rows, and
cells. A row contains a particular data record, a column represents an attribute, and
a cell stores a record’s value of a specific attribute. All approaches for searching in
encrypted relational databases store the encrypted data records at an untrusted server.
Depending on the approach, the records are encrypted row-wise or cell-wise. A row-wise
encryption maps the complete record to a single ciphertext and a cell-wise encryption
encrypts each attribute value separately. Many approaches focus on data outsourcing
in which a user stores encrypted data at a potentially untrusted server managed by a
third party [281]. The user is completely trusted and the server conducts most of the
query processing. Data outsourcing is often implemented with filtering and refining [296]
which processes queries in two steps. The user initiates a query by transforming it into
a ciphertext query and sending it to the server. The server conducts a filtering step in
which it applies the ciphertext query to the encrypted data. This leads to an encrypted
superset of the actual query result which is sent back to the user. In a refining step,
the user decrypts the preliminary query result and applies the plaintext query to the
resulting plaintext data to retrieve the final query result.

Filtering and refining is used by Haciglimiis et al. [137] as well as Wang et al. [309].
Both approaches allow to search for all ciphertext records which match a set of attribute
values. Hacigiimiig et al. use row-wise encryption and index all ciphertext records based
on their attribute values with bucketization. Bucketization splits the value space of each
attribute into disjoint buckets. The server stores a mapping from a ciphertext record
to the buckets of its attributes and the user associates each plaintext value with their
corresponding buckets. In order to search for particular attribute values, the user maps
the values to their respective bucket identifiers and sends them to the server. The server
returns all ciphertext records for the specified buckets which are then further processed
by the user in a refining step. Wang et al. use cell-wise encryption and associate each
ciphertext with a hash value. The hash value is used as an index and stored together
with the ciphertext at the server. In order to search for all data records with particular
attribute values, the user computes their hash values and sends them to the server which
returns all matching ciphertext records. As the used hash function produces collisions,
the received records form a superset of the actual query result which is further refined
by the user.

Exact query results without refining are returned by Z. Yang et al. [316], Elovici et
al. [98], and Evdokimov and Giinther [104]. All three approaches use probabilistic, cell-
wise encryption which maps identical plaintexts to different ciphertexts. Z. Yang et al.
and Elovici et al. support queries that retrieve all ciphertext records with a particu-
lar attribute value whereas Evdokimov and Giinther support keyword queries with an
arbitrary keyword. Z. Yang et al. use trapdoors [42] to check if a particular cipher-

133

Section 5.1

Chapter 5

T-Store: Searching in Encrypted Graph Data

text record matches a query. Each plaintext is mapped to a tuple of two ciphertexts
which are stored at the server. The first ciphertext encrypts the actual plaintext and
the second ciphertext encrypts the first ciphertext with the plaintext and the name of
its corresponding attribute. A user initiates a query by creating a trapdoor from the
queried value and the name of its attribute and sends it to the server. The server tries to
decrypt the second ciphertext of each tuple with the trapdoor. If the result is identical to
the tuple’s first ciphertext, the corresponding ciphertext record is returned to the user.
Evdokimov and Gilinther propose a similar approach which is also based on trapdoors
but supports keyword queries instead of attribute queries. Elovici et al. create an index
tree for each column and store it together with the encrypted cell values at the server.
A user applies an attribute query by iteratively traversing the index tree and sending
corresponding messages to the server. In each iteration, the user receives an encrypted
tree node, decrypts it, and requests the next node. This process is repeated until the
user has received all matching tree nodes which are then used to retrieve the desired
ciphertext records.

Exact queries and multiple users are supported by CryptDB [235], Probabilistic Ran-
domly Partitioned Encryption (Prob-RPE) [259], and Y. Yang et al. [315]. CryptDB
supports different types of queries, Y. Yang et al. support keyword queries, and Prob-
RPE supports range queries and attribute queries for a single attribute. CryptDB en-
crypts all cell values of a column individually with the same encryption key. Each
column is encrypted as multiple layers which provide different security and functional-
ity. Processing a query may require to permanently remove an encryption layer from a
queried column. A trusted proxy server authorizes querying users, maps their queries to
ciphertext queries, and sends them to the database server. The proxy server also stores
all encryption keys and can remove encryption layers. The database server executes
ciphertext queries and sends the encrypted results to the proxy server which are then
decrypted and forwarded to the querying user. Prob-RPE divides all values of a column
into random buckets and probabilistically encrypts all values of a bucket individually.
Identical plaintext values are mapped to different tuples consisting of a bucket identifier
and a ciphertext. This mapping is stored at a trusted proxy server which authorizes
all users, intercepts and transforms their queries, and stores all encryption keys. If a
plaintext value is mapped to multiple tuples, the proxy server requests all tuples from
the database server. Y. Yang et al. use a row-wise, probabilistic encryption. Each user
is authenticated with a public key pair which is registered at the database server. The
server associates ciphertext records with encrypted keywords. In order to apply a query,
a user digitally signs the requested keyword with her private key and sends it to the
server. The server verifies the signature and thereby removes any user-specific parts
from the keyword which is then used to retrieve all matching ciphertext records.

In summary, all presented approaches for searching in encrypted relational databases
can generally be used for searching in encrypted RDF graphs as well. This can be
accomplished by storing a graph in a single database table with three different columns.
The columns represent the subject, predicate, and object of the graph’s triples. The
presented approaches can then be directly applied to the resulting database.

134

State of the Art and Related Work

5.1.2. Searching in Encrypted XML Documents

XML documents [49] store data in a hierarchically organized tree of elements. The
tree has a single root element and can be divided into subtrees with their own root.
Each element has a name and can optionally have attributes and data values. The
set of all possible element names and attribute names are restricted by the document’s
schema [124]. A path is a sequence of connected elements in the tree, starting at the
root and ending at a particular element. Approaches for searching in encrypted XML
documents generally support path queries, element queries, and subtree queries. Path
queries match a path against the XML tree and return the elements at the end of
the path. Each element in the path may be further specified by its attribute values.
Element queries retrieve individual elements with particular attribute values and data
values. Subtree queries return individual subtrees based on the query parameters.

Approaches based on filtering and refining are Lin and Candan [191, 190], Jammala-
madaka and Mehrotra [165], and Order Preserving Encryption with Splitting and Scal-
ing (OPESS) [304]. Lin and Candan support path queries by traversing the XML tree.
Each element is stored in multiple buckets, encrypted individually, and stored at the
server together with two indexes. The first index lists all ciphertexts for each bucket
and the second index maps an element to its child elements and their buckets. A user
initiates a query by requesting all child elements of the root element and their buckets.
The user randomly selects one bucket for each child element, retrieves all its ciphertexts,
and selects the next element in the queried path. The process is repeated until the
user has retrieved all query results. Jammalamadaka and Mehrotra support element
queries which retrieve elements based on their attribute values. The approach is similar
to Hacigiimiig et al. and splits all attribute values into disjoint buckets. Each element
is encrypted together with its attribute values and indexed with their bucket identi-
fiers. Storage, index management, and query processing is identical to Hacigiimiis et al.
OPESS supports path queries based on the names and data values of the path’s elements.
All subtrees of an XML tree are encrypted individually and indexed with structural and
value-based information. The structural index maps all subtrees to their encrypted root
element and the value index maps all encrypted data values to the subtrees in which
they occur. The user prepares a query by encrypting its element names and data values
and sends it to the server. The server uses its indexes to retrieve all matching subtrees
and sends them to the user who conducts a refining step to extract the desired elements.

Exact query results without refining are provided by SemCrypt [274], Bouganim et
al. [46], and two approaches of Brinkman et al., which are referred to as Brinkman 1 [52]
and Brinkman 2 [53]. Bouganim et al. allow multiple users whereas the other approaches
focus on data outsourcing. Brinkman 1 supports subtree queries which retrieve all
subtrees with a particular element. The XML tree is encoded as hierarchically structured
polynomial by mapping all element names to integers. The polynomial is randomly split
into two parts which are stored at the user and the server, respectively. A user searches
for an element by sending its integer representation to the server. Starting at the root
element, the server iteratively computes the value of its polynomial and returns the
result. The user computes its own polynomial, combines it with the server’s value and

135

Section 5.1

Chapter 5

T-Store: Searching in Encrypted Graph Data

compares it with a predefined value. If both values are equal, the queried element is part
of the subtree whose polynomial was just calculated. Brinkman 2 supports path queries
which are based on trapdoors and consist of element names, attribute values, and data
values. Encryption and query processing is similar to Z. Yang et al. SemCrypt supports
path queries based on element names, attribute values, and data values. The user maps
each path in the XML tree to a unique identifier which is used in a structural index and
a value index stored at the server. The structural index maps a path identifier to an
encrypted data value and the value index associates a data value with all elements that
have the same data value. A user initiates a path query by transforming it into a sequence
of ciphertext queries for each step in the path. Each ciphertext query is sent to the server
and evaluated by applying the two indexes. Bouganim et al. support arbitrary queries
and require a secure processing unit for every user. The XML document is split into
subtrees which are encrypted with different encryption keys. An access policy is created
for each user and associated with several encryption keys. An authorized user receives
the encrypted document and her secure processing unit receives the access policy and
the encryption keys. The unit processes the user’s queries after having decided whether
a query is allowed or prohibited by evaluating the access policy.

In summary, many approaches for searching in encrypted XML documents focus on
queries which evaluate the document’s structure such as path queries and subtree queries.
These queries cannot be directly used for searching in encrypted RDF graphs. Although
such a graph can easily be encoded as XML document, the actual contents of a triple
are either stored as attribute values or data values. Storing the contents of a triple as
element names is not possible as the set of possible element names is restricted by the
document’s schema. However, element queries can be used for searching in RDF graphs
as they can contain data values like a URIs and literals as query parameters.

5.1.3. Searching in Encrypted Graph Structures

A graph is an abstract data structure which can be used for storing different types of
data such as text documents and RDF triples. A graph generally consists of nodes
which are connected via edges and can be split into subgraphs by removing some of the
nodes and edges. Depending on the type of graph, the graph may also have additional
characteristics. A labeled graph associates its nodes and/or edges with a name. In a
bipartite graph, the nodes are divided into two disjoint sets and the edges connect two
nodes from each set. This section summarizes three different approaches for searching in
encrypted graph data. All approaches store the encrypted graph and an encrypted index
at an untrusted server. The server processes queries from a single user by applying the
index to the ciphertext graph. Privacy-Preserving Graph Query (PPGQ) [69] supports
subgraph queries in encrypted graph collections which retrieve all graphs with a partic-
ular subgraph. Each graph is indexed with a feature vector which lists all its subgraphs.
The feature vector is encrypted and stored together with the encrypted graph at the
server. A user initiates a subgraph query by mapping it to a feature vector, encrypting
it, and sending it to the server. The server combines the received feature vector with the
feature vector of each encrypted graph. If the result matches a predefined comparison

136

State of the Art and Related Work

value, the encrypted graph is sent to the user. Chase and Kamara [78] provide a generic
indexing mechanism to support different queries on encrypted labeled graphs. The index
essentially maps one or two query parameters to an encrypted set of query results. A
user initiates a query by computing a query key from the query parameters and sending
it to the server. The server processes the query by applying the query key to the index.
Chase and Kamara apply their index to support neighbor queries, subgraph queries, and
queries that retrieve all edges between two nodes. CryptGraph [314] supports subgraph
queries on bipartite graphs. A graph is represented by its adjacency matrix which is
encrypted using probabilistic homomorphic encryption. Homomorphic encryption [111]
allows arithmetic operations on ciphertexts without decrypting them first. A subgraph
query combines several atomic queries which ask whether or not two nodes are directly
connected. An atomic query is a polynomial and is evaluated with the adjacency matrix.
A user initiates a subgraph query by creating the polynomials for all atomic queries and
sending them to the server. The server applies the polynomials to the adjacency matrix
and sends the resulting value to the user who decrypts it to retrieve the actual query
result.

In summary, some approaches for searching in encrypted graph structures focus on
subgraph queries and can only partially be used for searching in RDF graphs. Subgraph
queries basically correspond to SPARQL ASK queries and determine whether or not a
graph contains a set of triples. However, SPARQL also supports SELECT queries which
are used more often in practice than ASK queries [203, 14, 233].

5.1.4. SPARQL Query Language

SPARQL [292] is a W3C-standardized query language for RDF graphs and is supported
by several RDF triple stores such as Sesame [54] and Jena [74]. The syntax and design of
SPARQL is inspired by SQL [160]. A SPARQL query consists of a query form and a query
algebra and is applied to an RDF dataset. The query form defines the type of the query
and the format of the query result. Possible query types include SELECT, CONSTRUCT, and
ASK. A SELECT query returns a list of individual query results whereas a CONSTRUCT query
returns a new graph created from these results. An ASK query determines whether or
not the query algebra matches against the queried dataset and returns a boolean value.
The query algebra corresponds to the WHERE clause of a query. It defines the query’s
matching conditions and consists of several triple patterns. A triple pattern is similar
to a triple but may contain an unbound query variable at subject, predicate, and/or
object position. Considering that each position in a triple pattern can be either bound
or unbound results in eight different variants of the same pattern. Triple patterns of a
query algebra are combined into graph patterns. The simplest form of a graph pattern
is a basic graph pattern which is a collection of an arbitrary number of triple patterns.
More complex graph patterns such as unions of basic graph patterns or optional basic
graph patterns are also possible. Finally, an RDF dataset [87] is a collection of several
graphs. It is similar to a Named Graph as defined in Section 4.3.1 except that it does
not allow nested graphs and blank nodes as graph identifiers.

137

Section 5.1

Chapter 5

Ut s W N

T-Store: Searching in Encrypted Graph Data

A SPARQL query is evaluated by matching the query algebra against the queried RDF
dataset. This process replaces the query variables in the algebra’s triple patterns with
corresponding URIs, blank nodes, or literals. A mapping from a single query variable to
its corresponding value is referred to as a variable binding [292]. A solution mapping is a
set of variable bindings and corresponds to a single solution of a triple pattern or a basic
graph pattern. It is created by matching a pattern against a graph and replacing all
query variables in the pattern with corresponding URIs, blank nodes, or literals. Several
solution mappings are combined into a solution sequence which contains all solutions of
a triple pattern or a basic graph pattern. Solution sequences may either be returned
as the query result or only used during query processing. If the query algebra contains
multiple triple patterns sharing the same query variables, their solution sequences are
combined with a join operation. A join can only be conducted on two solution sequences
if they are compatible with each other. This is the case if their solution mappings share
identical variable bindings, i.e., if their query variables are mapped to identical values.
The result of a join on two solution sequences is a new solution sequence which contains
the combination of all compatible solution mappings.

An example SPARQL query of type SELECT is depicted in Listing 5.1. The query
returns the name of all persons with the e-mail address tdurden@example.com. The
namespace foaf corresponds to the FOAF vocabulary [50] for describing social networks.
The query contains a single basic graph pattern with two triple patterns. The solution
sequences of both triple patterns are joined using the variable bindings of the query
variable ?person. Line 2 states that the bindings of the variable 7name are returned as
the query result while the bindings of ?person are only used during query processing.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {

?person foaf:name 7name .

?person foaf:mbox "tdurden@example.com" .

}

Listing 5.1: Example SPARQL query.

5.2. Requirements for Searching in Encrypted Graphs

T-Store allows to apply different types of SPARQL queries to encrypted RDF graphs.
The queries are executed locally by authorized users without involving a server. Based
on these general objectives, this section defines the specific requirements for T-Store.
The requirements are distinguished between functional (RC.F.*) requirements and non-
functional (RC.N.*) requirements. As defined in Section 3.2, functional requirements
define the functions that a system must provide and non-functional requirements describe
how functional requirements are implemented [282]. The following requirements are
based on the scenario for regulating Internet communication presented in Section 2.1
and on the related work for searching in encrypted data summarized in Section 5.1.
T-Store must fulfill the following functional requirements:

138

Requirements for Searching in Encrypted Graphs Section 5.2

RC.F.1: Applying SPARQL triple patterns
T-Store must support queries which consist of a single SPARQL triple pattern with
none, one, two, or three query variables. Such queries are the most basic types of
queries and are the foundation for creating more complex queries.

RC.F.2: Applying SPARQL basic graph patterns
The approach must support queries which consist of a single SPARQL basic graph
pattern. A basic graph pattern contains an arbitrary number of triple patterns.
If the triple patterns share the same query variables, executing the basic graph
pattern requires the computation of a join operation. Thus, this requirement also
implies the support of join operations. In the scenario, the German comprehensive
school applies queries to the encrypted log files of its proxy server.

RC.F.3: Supporting SPARQL query forms
T-Store must support the three different SPARQL query forms SELECT, ASK, and
CONSTRUCT. The query forms define the format of the query result. Supporting the

three different query forms is necessary as they are most frequently used in many
SPARQL queries [14, 233].

RC.F.4: Supporting dynamic query authorizations
T-Store must support the authorization of particular queries after the plaintext
graph has been encrypted. This allows a more flexible query authorization than
predefining all supported queries when encrypting the plaintext graph. In the
scenario, an investigator is authorized to apply queries to the log file after it has
been encrypted by the proxy server.

RC.F.5: Separating the data owner from authorized users
The approach must distinguish between a data owner who encrypts the plaintext
graph and users who can apply queries to the encrypted graph. The data owner can
access the complete graph and possesses all encryption keys. In contrast, users are
explicitly authorized by the data owner to apply particular queries to the graph.
In the scenario, the school’s administration (SA) and the parents’ association (PA)
collectively authorize an investigator to apply particular queries.

RC.F.6: Supporting query templates
T-Store must support the authorization of specific queries and query templates.
A query template represents a group of similar queries. It corresponds to an
incomplete query which must be further refined by the querying user in order
to receive a complete query. Query templates reduce the communication overhead
between the data owner who encrypts the plaintext graph and the users who query
the ciphertext graph. Thus, this requirement implies requirement RC.F.5.

In addition to these functional requirements, T-Store must also support the following
non-functional requirements:

139

Chapter 5

T-Store: Searching in Encrypted Graph Data

RC.N.1: Processing queries offline

T-Store must not rely on a server which processes the queries, even if the server op-
erates only on encrypted data. Instead, users must be able to process all authorized
queries on their local systems after having received a corresponding query autho-
rization and the ciphertext graph. In the following, this type of query processing
is referred to as an offline approach. In the scenario, the authorized investigator
applies the queries locally at her own computer system after having received a copy
of the encrypted log files.

RC.N.2: Eliminating trusted systems

T-Store must not involve a trusted system which processes queries on behalf of
authorized users and which can access the query results or parts of them. Instead,
query results must only be accessible to the user who initiates a query. Examples
of trusted systems are secure processing units, which are located at the user side,
and proxy servers, which act as an intermediary between an authorized user and
a server.

RC.N.3: Providing exact query results

Conducting queries with T-Store must not reveal any triples of the plaintext graph
which are not part of the final query result. Thus, authorized users must receive
exactly those triples of the plaintext graph which satisfy their queries. This re-
quirement is necessary as otherwise an authorized user may receive more plaintext
triples than the authorization intends. In the scenario, the investigator must only
receive the graph data which is being investigated.

RC.N.4: Prohibiting data distinguishability

T-Store must encrypt the plaintext graph in such a way that the resulting cipher-
text graph does not reveal the amount of identical plaintext URIs, blank nodes, or
literals and their individual positions in the graph. More specifically, it must be
computationally hard to identify identical plaintext URIs, blank nodes, or literals
as such. This requirement is called data indistinguishability [167]. It is fulfilled if
there is no algorithm which decides in polynomial time whether or not two cipher-
texts represent the same plaintext value. Fulfilling this requirement is necessary
in order to prevent an attacker from analyzing the ciphertext graph and use it to
infer any information about the plaintext graph.

RC.N.5: Concealing graph characteristics

140

The ciphertext graph created by T-Store must not reveal any characteristics of
the corresponding plaintext graph. The characteristics of a graph can generally
be distinguished between local characteristics and global characteristics. Local
characteristics cover individual plaintext triples and their respective parts. Such
characteristics include the string length of all URIs, blank nodes, and literals in
the graph (RC.N.5.1). Global characteristics depend on the whole graph and not
on individual triples. Such characteristics include the density and the connectivity
of the plaintext graph (RC.N.5.2) as well as the number of different plaintext

Basic Terminology and Solution Overview

triples (RC.N.5.3). The density indicates how the individual triples of a graph
are connected with each other, i.e., how many independent subgraphs a graph
contains. Similar to requirement RC.N.4, fulfilling this requirement prevents an
attacker from analyzing the ciphertext graph and inferring any information about
the corresponding plaintext graph.

The non-functional requirements RC.N.3 to RC.N.5.3 cover the security of T-Store
and affect the confidentiality of the plaintext graph. If these requirements are not ful-
filled, information about the plaintext triples may be revealed to unauthorized parties.
Section 5.9 describes how T-Store fulfills the functional and non-functional requirements
and provides a comparison with the state of the art and related work.

5.3. Basic Terminology and Solution Overview

This section provides a general overview of the design and functions of T-Store. First,
a representation of SPARQL queries in T-Store as well as the used data structures and
cryptographic keys is given. A formalization of the terminology is provided in Section 5.4.
Subsequently, the different cryptographic operations of preparing and processing queries
in T-Store are introduced. T-Store allows to search in encrypted RDF graphs. An RDF
graph consists of several triples and is owned by a data owner. The data owner encrypts
a plaintext graph by encrypting all its triples individually and creates an additional
index for the resulting ciphertext graph. The ciphertext graph and its index are then
published on the web. Users are authorized by the data owner to apply queries to
the ciphertext graph. A query allows a user to specifically access those triples of the
plaintext graph which satisfy the query. Users are authorized by receiving authorization
keys from the data owner. They combine the authorization keys with self-defined user
patterns to create query keys. Query functions apply query keys to a ciphertext graph
and its index and search for all matching triples. The index allows it to quickly identify
all triples in the ciphertext graph that match a particular query key.

5.3.1. Representing SPARQL Queries in T-Store

T-Store supports the execution of SPARQL queries of type SELECT, CONSTRUCT, and ASK
on a ciphertext graph. The supported query algebra is restricted to a single basic graph
pattern which consists of an arbitrary number of triple patterns. Figure 5.2 depicts
how the supported SPARQL queries are represented in T-Store. The representation
distinguishes between a query form and a query algebra. The query form defines the type
and format of the query result and the query algebra defines the matching conditions.
When processing a particular query, the query algebra is first applied to the queried
ciphertext graph. This results in a single solution sequence which is further refined by
the query form in order to create the final query result. As depicted in Figure 5.2a, the
query algebra consists of several triple keys each of which represents a single SPARQL
triple pattern. A triple key contains all information for creating the solution sequence of
its corresponding triple pattern. In particular, a triple key associates a query key with

141

Section 5.3

Chapter 5

T-Store: Searching in Encrypted Graph Data

Triple Key Triple Key

Query Key Query Key
(Basic Key) (Query Pattern)] (Basic Key) (Query Pattern)J

(Query Variable) 000 (Query Variable) (Query Variable) D00 (Query Variable)

(a) Representing the query algebra in T-Store.

Query Variable) === (Query Variable

(b) Query form of SELECT queries.

Graph Template
(Template Pattern) nee (Template Pattem)

(c) Query form of CONSTRUCT queries.

Figure 5.2.: Representing a SPARQL query in T-Store. A query has a query form and
a query algebra. The query form distinguishes between SELECT queries,
CONSTRUCT queries, and ASK queries. The query form of SELECT queries
defines a list of query variables, CONSTRUCT queries require a graph tem-
plate with template patterns, and ASK queries do not need any additional
parameters. The query algebra is identical for all types of queries and con-
sists of multiple triple keys. A triple key associates a query key with several
query variables. A query key combines a basic key with a query pattern.

a respective number of query variables. The query key defines the matching condition
of the triple key and the query variables are used to create the variable bindings of
all successful matches. A query key is created from a query pattern and a basic key.
The query pattern consists of bound and unbound parts which determine the input and
output of a SPARQL triple pattern, respectively. I.e., the bound parts define the values
that are being matched when applying a query key to a ciphertext graph and the unbound
parts are returned for each successful match. Similar to a SPARQL triple pattern, there
are eight different variants of a query pattern in T-Store. A basic key defines the position
of the bound and unbound parts in the query pattern and determines its variant. T-
Store uses eight different basic keys to distinguish between the different variants of a
query pattern. The query variables of a triple key associate the unbound parts of the
query pattern with a name in order to support join operations. Join operations combine
compatible solution sequences of different triple keys of the same query algebra into a
single solution sequence.

142

Basic Terminology and Solution Overview

The refinement that is conducted by the query form depends on the type of the
query. The query form of SELECT queries is depicted in Figure 5.2b. It defines a list of
query variables whose variable bindings shall be returned as the final query result. The
variable bindings are taken from the solution sequence created by the query algebra.
Figure 5.2¢ shows the query form of CONSTRUCT queries, which return a new graph as
the query result. The query form defines a graph template which contains an arbitrary
number of template patterns. A template pattern is similar to a triple except that it may
contain a query variable at subject position, predicate position, or object position. When
processing a CONSTRUCT query, the query variables in the graph template are replaced by
corresponding variable bindings in order to create the new graph to be returned. Again,
the variable bindings are taken from the solution sequence of the query algebra. Finally,
ASK queries only return a boolean value. Thus, their query form does not define any
additional parameters for refining the solution sequence created by the query algebra.

5.3.2. Preparing and Applying Queries in T-Store

Preparing and processing a SPARQL query in T-Store requires different cryptographic
operations. These operations are essentially implemented by query keys whereas triple
keys are only used to support join operations. When applying the query algebra of
a SPARQL query to a ciphertext graph, all its triple keys are processed individually
and their individual solution sequences are combined with a join operation. A single
triple key is applied to the graph by processing its query key and associating the result
with its query variables. Query keys can directly be applied to ciphertext graphs. This
section provides an overview of the different cryptographic operations used by T-Store for
preparing and processing a query on a ciphertext graph. Figure 5.3 shows the different
operations for encrypting a plaintext graph and querying the resulting ciphertext graph
with a single query key. The operations must be conducted for all query keys in the
query algebra. As depicted, the operations are divided into three different phases.

The first phase is shown in Figure 5.3a. In this phase, the data owner chooses eight
different basic keys for each of the eight variants of a query pattern. The basic key as well
as the bound parts of a query pattern are combined into an encryption key. Encryption
keys are used for encrypting all triples in the plaintext graph individually for each of
the eight variants of a query pattern. The second phase is shown in Figure 5.3b and
covers the creation of an authorization key which combines a basic key and a restriction
pattern. The basic key defines the query pattern variant, i. e., the number and position of
the bound and unbound parts of a query pattern. The restriction pattern is created by
the data owner and further restricts the number of possible user patterns that a user can
define for querying the ciphertext graph. To this end, the data owner predefines some of
the bound parts of a query pattern in the restriction pattern. Thus, the resulting autho-
rization key already contains some of the required query parameters. The authorization
key is sent to the user via a secure communication channel. The third phase covers the
creation and application of a query key and is depicted in Figure 5.3c. The user creates
a query key based on the received authorization key by adding a user pattern which
contains additional query parameters. The resulting query key encodes all bound and

143

Section 5.3

Chapter 5

T-Store: Searching in Encrypted Graph Data

| Basic Key | | Bound Triple Parts | | Authorization Key | | User Pattern

| Basic Key | | Restriction Pattern |

Key Creation

| Encryption Key | | Plaintext Triple |

Key Creation

| Query Key | | Encrypted Triple

Key Creation
Authorization Key

(b) Creating authorization

Encryption Decryption

keys
(a) Encrypting triples (¢) Applying query keys

Figure 5.3.: Overview of the computations for searching in encrypted graphs. The
overview shows the different keys and cryptographic operations involved
in the process.

unbound parts of a particular SPARQL triple pattern. The bound parts are either taken
from the user pattern or from the data owner’s restriction pattern which is embedded
into the authorization key. The combination of the user pattern and the restriction pat-
tern corresponds to a query pattern. Thus, a query key combines a query pattern with
a corresponding basic key. If an encrypted triple can successfully be decrypted using
a query key, the triple matches the encoded query pattern. If the decryption fails, the
triple does not match the pattern. The decryption of an encrypted triple is successful iff
the query key is identical to the encryption key. This is the case if the combination of
the data owner’s restriction pattern and the user pattern correspond to the bound triple
parts of the encryption key. Section 5.4 formally defines the basic data structures and
cryptographic keys used by T-Store. A detailed description of the approach is given in
Section 5.5.

5.4. Basic Formalization

This section provides a basic mathematical formalization of the queries, data structures,
and cryptographic keys of T-Store as introduced in the previous section. This formal-
ization is used in Section 5.5 to describe the detailed process of querying encrypted
graphs.

5.4.1. Plaintext Graphs and Plaintext Triples

A plaintext RDF graph G is a finite set of triples t. As described in Section 4.3.1, the
set of all plaintext triples ¢ is defined as follows:

T:=(RUB)xRx (RUBUL) (4.1)

R corresponds to the set of all resource URIs, B is the set of blank nodes, and L is the
set of literals. It is t = (s,p,0) with s € R U B being the subject of the triple, p € R

144

Basic Formalization

being the predicate, and o € RUBUIL being the object. A plaintext graph consisting of
m triples is defined as G = {t1,t2,...,t,} with m € N. The set of all plaintext graphs
is defined as follows:

G :=P(T) =P(RUB) x R x (RUBUL)) (4.2)

5.4.2. Encrypted Graphs and Encrypted Triples

Encrypting a plaintext triple ¢ results in an encrypted triple c. An encrypted triple is a
tuple of eight bit strings. Each bit string is used for one of the eight variants of a query
pattern. Thus, an encrypted triple ¢ contains eight different ciphertexts of the same
plaintext triple ¢ for each of the eight query pattern variants. The set of all possible
encrypted triples is defined as follows:

Te = {0,1}* x {0,1}* x ... x {0,1}* (5.1)

8 times

It is ¢ = (Commy Commy Cotmy Cooiy Cotmy Camiy C—ity Co4). The indices + and - state if the cor-
responding part of the query pattern is bound or unbound. For example, the bit string
c-+- supports query patterns with a bound predicate that retrieve tuples of subjects and
objects for each matching triple. Encrypting a plaintext graph G results in an encrypted
graph G¢o = {c1,¢2,...,¢n}. The set of all encrypted graphs is defined as follows:

Ge :=P(T¢) = P({0,1}* x {0,1}* x ... x {0,1}*) (5.2)

8 times

5.4.3. Basic Keys

A basic key bk € Ky is a bit string of length d € N and is used for encrypting the
triples ¢ of a plaintext graph G for a particular query pattern variant. The data owner
choses eight different basic keys for each pattern variant which are identified as bk-__,
bki_, bk, bk__s, bkyso, bkiy, Dk_sv, and bki+s. Each of these keys is used for creating
a particular bit string of the encrypted triples ¢. For example, the basic key bk_.- is used
for creating the bit strings c_.-. The set of all basic keys is defined as K, C {0, 1}%.

5.4.4. Query Keys, Query Patterns, and Authorization Keys

A query key gk € K, is a bit string of length d € N which encodes the bound and
unbound parts of a query pattern. It is applied to an encrypted graph and may contain
an unbound subject, predicate, and/or object. The type of a query key is defined by
using the symbols + and - which mark the bound and unbound parts, respectively. For
example, a query key of type +++ encodes a bound subject, a bound predicate, and a
bound object. It can be used for SPARQL ASK queries and determines whether or not
the specified triple is part of the queried graph. Applying a query key returns a set of all
matching values. For example, applying a query key of type —++ returns a set of subject

145

Section 5.4

Chapter 5

T-Store: Searching in Encrypted Graph Data

URIs and requires a bound predicate and a bound object. The set of all query keys is
defined as K, c {0,1}%.

As described in Section 5.3.1, a query key is created from a basic key and a query
pattern. The basic key defines the type of the query key and the query pattern specifies
its bound and unbound parts. A query pattern consists of two different parts which are
a restriction pattern r and a user pattern u. A restriction pattern r € P, is defined
a-priori by the data owner and narrows down the possible queries that a user can apply.
A user pattern u € IP, represents the query parameters specified by the user. The set of
all query patterns IP, is defined as follows:

P, := (RUBU{?}) x (RU{?}) x (RUBULU {?}) (5.3)

The symbol ? identifies the unbound parts of a query pattern and corresponds to a
variable like ?x. A query key encodes a query pattern (s, pz,07) with s, € (RUBU{?})
as the queried subject, p» € (R U {?}) being the queried predicate, and 0, € (RUB U
L U {?}) as the queried object. An authorization key ak € K, is a bit string which
corresponds to a partially specified query key. It already encodes a basic key bk and
a data owner’s restriction pattern r. However, an authorization key does not encode
a user pattern u. Thus, a complete query key is created from an authorization key
by combining it with a user pattern u. The set of all authorization keys is defined as
K, C {0,1}*.

5.4.5. Index

An index I € I is a mapping from a query key gk € K, to a set of encrypted triples ¢ €
T¢. The index associates a query key with a set of all encrypted triples of a ciphertext
graph G¢o € G¢ that match the query pattern which is encoded in the query key. An
index is created by the data owner and applied by a user to speed up the querying
process. The set I of all indexes is defined as follows:

I:=K, — P(T¢) (5.4)

5.4.6. Query Functions

A query function f applies a single query key gk € K, to an encrypted graph G¢ € Ge
and its corresponding index I € I and returns a result set based on all matching triples ¢
of the plaintext graph G € G. A query function requires a query key ¢k, the encrypted
graph G, and its index I as input. Each query function supports one particular type of
query keys. Thus, there are eight different query functions which are identified as f--_,
foeey fosmy foouy foamy foce, fous, and fier. Again, the symbols + and - mark the bound
and unbound parts of the supported query keys, respectively. A + at the first position
requires a subject to be specified in the query key. At the second or the third position,
the symbol + requires a predicate or an object to be specified, respectively. The result
of a query function f also depends on the symbols + and -. The result can be a set
of triples, a set of tuples, a set of resources, a set of