
Fachbereich 4: Informatik

(Quasi-)Inconsistency Library for
Business Rule Management

Masterarbeit
zur Erlangung des Grades eines Master of Science

im Studiengang Wirtschaftsinformatik

vorgelegt von

Matthias Robert Deisen

Erstgutachter: Prof. Dr. Patrick Delfmann

Institut für Wirtschafts- und Verwaltungsinformatik

Zweitgutachter: M. Sc. Carl Corea

Institut für Wirtschafts- und Verwaltungsinformatik

Koblenz, im März 2019

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich ein-
verstanden.

� �

Der Veröffentlichung dieser Arbeit im Internet stimme ich
zu.

� �

. .
(Ort, Datum) (Matthias Robert Deisen)

Zusammenfassung

Geschäftsregeln sind zu einem wichtigen Instrument geworden, um die Einhal-

tung der Vorschriften in ihren Geschäftsprozessen zu gewährleisten. Aber die

Sammlung dieser Geschäftsregeln kann verschiedene widersprüchliche Elemente

haben. Dies kann zu einer Verletzung der zu erreichenden Compliance führen.

Diese widersprüchlichen Elemente sind daher eine Art Inkonsistenzen oder Quasi-

Inkonsistenzen in der Geschäftsregelbasis. Ziel dieser Arbeit ist es, zu unter-

suchen, wie diese Quasi-Inkonsistenzen in Geschäftsregeln erkannt und analysiert

werden können. Zu diesem Zweck entwickeln wir eine umfassende Bibliothek,

die es ermöglicht, Ergebnisse aus dem wissenschaftlichen Bereich der Inkonsis-

tenzmessung auf Geschäftsregel-Formalismen anzuwenden, die tatsächlich in der

Praxis verwendet werden.

Abstract

Business rules have become an important tool to warrant compliance at their

business processes. But the collection of these business rules can have various

conflicting elements. This can lead to a violation of the compliance to be achieved.

This conflicting elements are therefore a kind of inconsistencies, or quasi incon-

sistencies in the business rule base. The target for this thesis is to investigate how

those quasi inconsistencies in business rules can be detected and analyzed. To

this aim, we develop a comprehensive library which allows to apply results from

the scientific field of inconsistency measurement to business rule formalisms that

are actually used in practice.

Contents

1 Introduction 1
1.1 Research Questions . 2

1.2 Logic of Investigation . 2

1.3 Research Method . 3

2 Preliminaries 5
2.1 Business Rules . 5

2.1.1 Defeasible Logic . 5

2.1.2 Declarative Process Model . 7

2.1.3 Decision Model and Notation (DMN) 10

2.2 Business Process Model Notation . 12

2.3 Inconsistencies . 13

2.3.1 Minimal Inconsistent Subsets 13

2.3.2 Minimal Quasi Inconsistent Subsets 19

2.4 Inconsistency Measures . 25

3 Implementation 27
3.1 Used Libraries . 27

3.2 Finding Paths . 29

3.3 Business Rules . 30

3.3.1 Defeasible Logic . 30

3.3.2 Declarative Process Model . 36

3.3.3 DMN . 41

3.4 BPMN . 49

3.4.1 Graph . 51

3.4.2 Checking DECLARE Constraints in BPMN 51

i

CONTENTS ii

3.4.3 Limitations . 57

4 Evaluation 58
4.1 Business Rules . 58

4.1.1 Defeasible Logic . 58

4.1.2 Declarative Process Model . 61

4.1.3 DMN . 63

4.2 BPMN with DECLARE . 65

5 Conclusion 67

A Verification Capabilities 74

B Usage of Library 75

C BPMN 77

D Evaluation FCL Solver 79
D.1 Second Configuration . 79

D.2 Third Configuration . 81

D.3 Fourth Configuration . 83

List of Figures

1 The subsumption map of DECLARE templates.[DCMMM17] 15

2 Declare language class diagram . 36

3 Transformed C1 . 37

4 Number Line . 43

5 Example BPMN model . 55

6 Graph for example model . 56

7 Runtime statistics for the FCL solver 59

8 MI in FCL test data . 60

9 MQI in FCL test data . 60

10 Number of MQI in DMN evaluation data set 63

11 Runtime statistics for the DMN solver 64

12 BPMN Hohenheim . 78

13 Runtime statistics for the FCL solver (2) 80

14 MI in FCL test data 2 . 80

15 MQI in FCL test data 4 . 81

16 Runtime statistics for the FCL solver (3) 82

17 MI in FCL test data 3 . 82

18 MQI in FCL test data 3 . 83

19 Runtime statistics for the FCL solver (4) 84

20 MI in FCL test data 4 . 84

21 MQI in FCL test data 4 . 85

iii

Chapter 1

Introduction

Business processes describe a sequence of company activities. This sequence

along with the semantics of respective activities are mostly predefined by the

businesses using various process modelling methods, standards and notations.

Here, a central goal for businesses is that the sequence of execution of these busi-

ness activities has to be compliant with standards, internal policies and current

laws. To achieve this, companies can warrant compliance by describing con-

straints within the business, also known as business rules. These business rules

are defined as „compact, atomic, well-formed, declarative statement[s] about an

aspect of a business that can be expressed in terms that can be directly related

to the business [. . .]“ [Gra07]. Those „are part of fundamental business practices

and policies of the enterprises“ [CA16].

To organize those business rules they are mostly maintained in a central business

rule base. But with the complexity of the business and more regulating laws it

can be difficult to keep this rule base correct within itself [NPRS10] [Roh05].This

means with increasing complexity of a rule base it is more prone to become in-

consistent and therefore cannot be used for its intended purpose of governing

compliant processes[CD18a].

This risk of having inconsistencies in a central environment like a business rule

base can have significant impacts on the enterprise. Inconsistencies increases the

risk to violate policies and laws which can lead to legal affairs.

Thus, it is an important challenge to find those inconsistencies and resolve them

in order to reduce this risk for companies. This challenge has recently attracted

more interest in research [DCMM13, CD18a, GM18, CD18b].

1

1.1. RESEARCH QUESTIONS 2

Furthermore it is interesting how these business rules can be helpful to align the

sequence of activities known as business process to a compliant business rule

base. This can prevent errors as well as deadlocks in business processes which

can be also a high risk for enterprises and therefore can be a big cost factor. This

also has become increasing attention of current research [ALR15][GK07].

In this work, we therefore investigate how inconsistencies in business rules can be

detected and analyzed. To this aim, we develop a comprehensive library which

allows to apply results from the scientific field of inconsistency measurement to

business rule formalisms that are actually used in practice.

1.1 Research Questions

The main objective of this thesis is how to find inconsistencies in business rule

bases for three different specifications: Formal Contract Language (FCL or Defea-

sible Logic), DECLARE (or Declarative Process Modell) and Decision Model and

Notation (DMN). These three formalisms are common standards in business en-

vironments.

In the incremental and collaborative process of organizing business rules, incon-

sistencies can occur in all of the three business rule languages, for example due to

the size and complexity of rule bases, a lack of oversight, inexperienced modelers

or different views on the same domain of interest. Furthermore, logical contra-

dictions can occur, which are not an inconsistency per se but can potentially cause

inconsistencies. These are called quasi inconsistencies and also need to be found

in rule bases.

Another objective is how to check a business process model with business rules

given to check the process of its compliance to the business rule base. This is

examined on the example of process models in Business Model and Notation

(BPMN) specification with DECLARE constraints.

1.2 Logic of Investigation

In Chapter 2 we provide background information on what business rules are and

how they are used for different purposes Also it is outlined the possible inconsis-

tencies that can occur within a rule base of a specific implementation of business

1.3. RESEARCH METHOD 3

rules. Here is important how to find these inconsistencies and how to categorize

them.

Chapter 3 focuses on the implementation of finding those inconsistencies within

defeasible logic, DECLARE and Decision Tables in DMN (Decision Model and No-

tation). Furthermore a approach has been made to check the consistency Business

Process Models in BPMN (Business Process Model and Notation) with rule base

DECLARE.

In Chapter 4 an evaluation of the algorithms, by means of a runtime analysis for

different rule bases, is carried out.

Lastly in Chapter 5 the results of the implementation is recapitulated and dis-

cussed.

1.3 Research Method

This thesis was conducted by using the design science methodology. Design sci-

ence research is primarily a „problem solving process“ by implementing a „pur-

poseful artifact“ in a „specified problem domain“ [HMPR04]. In case of this thesis

the artifact is the Inconsistency Library with its resolving capabilities in the prob-

lem domain of business process modeling and business rule management.

The detection and analysis of inconsistencies in business rule bases in the context

of business rule management and business process modeling can be seen as moti-

vated in the introduction as „heretofore unsolved and business problem“ [HMPR04].

Therefore, it seems plausible to follow the approach of solving this problem by

applying the methodology of design science [HMPR04, HMPR08, VK04].

This work can be regarded as exaption research[GH13], since the library was

developed by adopting methods from one scientific field, namely inconsistency

measurement, to solve problems in another domain.

Various literature ([HMPR04, GH13, VK04]) describes the outcome of design-

scientific research as dualistic: to elaborate theories for design and action and

to develop usable artifacts. In order to align with this characterization, the thesis

was split into two parts.

First, the concepts, definitions and methods from the research on inconsistency

measurement were taken up and the plausibility of their application for busi-

ness rule management and the application of business rules in business process

modeling were examined. By adapting and extending the concepts and methods,

1.3. RESEARCH METHOD 4

this new environment of methods aimed at the detection and analysis of incon-

sistencies in business rules. Following the environment was used to design and

implement a inconsistency library as an applicable artifact. This environment is

intended to solve the problem of detecting inconsistencies in business rule man-

agement. For this purpose the library was developed by combining the previ-

ously adapted and extended concepts and methods.

As suggested in [PTRC07, VPHB16], the developed artifact must be able to demon-

strate the applicability of the artifact in order to solve the problem [PTRC07]. For

this reason the library was implemented as a prototype and also evaluated, as

Venable et al. [VPHB16] exacts for designed artifacts. For the evaluation on how

effectively the developed artifact provides a solution to the problem [PTRC07]

unit test were set in place to ensure the accuracy and plausibility of the results.

Additionally a runtime analysis was carried out to assess the feasibility.

Chapter 2

Preliminaries

In order to comprehend the actions taken to tackle the problem of inconsistency

in business rules, we provide background knowledge and definitions for a clear

understanding of the problem and parts used for the solution.

2.1 Business Rules

Business Rules are a construct which try to organize a business behaviour and/or

its way to how goals of the business are achieved [KEP00]. Business rules are de-

fined as „[. . .] statements about how the business is done, i.e., about guidelines

and restrictions with respect to states and processes in an organization“ [BBG+90].

In this thesis three fromalisms of business rules are considered: Defeasible logic,

the Declarative Process model and Decision Tables in Decision Model and Nota-

tion.

All three forms are conform to the definition by Bell et al.[BBG+90].

2.1.1 Defeasible Logic

The defeasible logic or Feasible Computational Logic (FCL) was developed by

Donald Nute [Nut03] to create a reasoning method that is not monotonic. He

proposed a approach which consisted of a closed defeasible theory. Theory in

this case means a rule base with FCL rules. He defined a theory as follows:

Definition 1. [Nut03, p.155]

Theory T = (F,R,C,≺) where

5

2.1. BUSINESS RULES 6

1. F is a set of formulas

2. R is a set of rules

3. C is a set of finite sets of formulas that for every formula φ,

• {φ,¬φ} ∈ C, and

• for every S ∈ C and A→ φ in R,if φ ∈ S,then A ∪ (S − {φ}) ∈ C

4. ≺ is an acyclic binary relation on the non-strict rules in R

Where formula is defined as a literal and a literal is an atomic expression or

its corresponding negation. For example φ defines a formula, then ¬φ denotes

the complement of φ.

Rules consists of formulas and three distinct symbols. Namely→ for strict rules,

⇒ for defeasible rules and for undercutting defeaters.

Definition 2 (Rule definition).

• Strict Rules A→ φ

• Defeasible rules A⇒ φ

• Undercutting defeaters A φ

All rules are constructed the same way: First a set of formulas A then the rule

identifier {→,⇒, } and finally the output formula φ. The set of formulas A is

called an antedecent which can not be empty in strict rules and defeaters. When

used in a defeasible rules the antedecent can be empty and the rule is then called

an presumption.

Every rule must not have an exception. Additionally contradicting defeasible

rules can have a acyclic relation ≺ following named superiority, which specifies

which rule is activated when both rules are initially activated. For example:

Example 1.

C1 =

R1 : a⇒ b

R2 : a⇒ ¬b

R3 : >> a

S1 : R1 � R2

2.1. BUSINESS RULES 7

In this Example 1 R1 and R2 contradicts each other, but S1 states, that in case

both R1 and R2 are activated only R1 should be activated, avoiding a situation

where an inconsistency can occur because of the contradicting outcome of the

rules.

2.1.2 Declarative Process Model

Business Process models are normally described in defined orderly structure in

which way a business has to behave, such as processes defined in BPMN 2.2.

Whereas the declarative language has a different approach to explain a process

via constraints which has to be fulfilled in an instance of the process and must

not be violated. In recent time the interest in the declarative process modelling

language has increased [CDD19a], [CDD19b], [DAPS09], [BMS16], [DCMMM17].

Definition 3 (Declarative Process Model). [CDD19a] A declarative process model

is a tuple M = (A,T,C), where A is a set of tasks, T is a set of constraint templates,

and C is the set of actual constraints, which instantiate the template elements in

T with tasks in A.

This definition is for the DECLARE [Pes08] formalism. Pesic et al. constructed

the notation upon Linear temporal logic (LTL). In Table 1 the used LTL syntax

and semantic is explained.

Operator Symbol Definition

always �p specifies that p holds at every position in the trace

eventually ♦p specifies that p will hold at least once in the trace

next ©p specifies that p holds in the next element of the
trace

until pUq specifies that there is a position where q holds
and p holds in all preceding positions in the trace

Table 1 LTL Formula[Pes08, p.122]

In Table 2 the existence relation templates are shown. These templates define

information regarding just one event.

2.1. BUSINESS RULES 8

Formula LTL Formula Graphical Representation

PARTICIPATION(A) ♦A A

1..*

ATMOSTONE(A) ¬A ∨ (♦A⇒ �(¬A)) A

0..1

INIT(A) A A

INIT

END(A) �♦A A

END

Table 2 Existence Templates[DCMMM17][CDCDGM18]

The information can be either, if a event occurs at least once (PARTICIPATION),

if a event is occurring up to once (ATMOSTONE), if a event starts a sequence (INIT)

or if a event ends a sequence (END).

Next up are the relation templates, which define information about two events.

They are shown in Table 3 with their LTL formula and graphical representation.

The graphical representation can be helpful to understand the individual con-

straints. The dot in the connection of each representation shows which event

activates the formula. If on both ends are dots both events can activate the con-

straint. For example the RESPONDEDEXISTENCE template is activated through

Event A whereas the COEXISTENCE Template can be activated through Event A

or Event B.

2.1. BUSINESS RULES 9

Formula LTL Formula Graphical Representation

RESPONDEDEXISTENCE(A,B) ♦A⇒ ♦B A B

COEXISTENCE(A,B) ♦A⇔ ♦B A B

RESPONSE(A,B) �(A⇒ ♦B) A B

PRECEDENCE(A,B) (¬BUA) ∨ �(¬B) A B

SUCCESSION(A,B) RESPONSE(A,B) ∧
PRECEDENCE(A,B)

A B

ALTERNATERESPONSE(A,B) �(A⇒©(¬AUB)) A B

ALTERNATEPRECEDENCE(A,B) PRECEDENCE(A,B) ∧ �(B ⇒
©(PRECEDENCE(A,B)))

A B

ALTERNATESUCCESSION(A,B) ALTERNATERESPONSE(A,B) ∧
ALTERNATEPRECEDENCE(A,B)

A B

CHAINRESPONSE(A,B) �(A⇒©B) A B

CHAINPRECEDENCE(A,B) �(©B ⇒ A) A B

CHAINSUCCESSION(A,B) �(A⇔©B) A B

Table 3 Relation Templates[MMv11][DCMMM17]

The arrow represents the direction within the template. So every relation tem-

plate is directed except the RESPONDEDEXISTENCE and COEXISTENCE templates.

The number of lines represents the type of relation, where the more lines the more

restrictive the template is. One line is for the base templates, the two lines restricts

that from the activating event the sequence must not contain the activating event

again. For example the sequence [A,A,B] checked against the constraint AL-

TERNATERESPONSE(A,B) shows that the constraint is not satisfied because in the

sequence is a sub sequence, where the activating event A occurs twice. Whereas

the constraint ALTERNATEPRECEDENCE(A,B) is satisfied because B does not oc-

cur twice before the event A is reached in the sequence.

Three lines denotes the CHAIN restriction, which says that the events must be

connected directly. For example the constraint CHAINRESPONSE(A,B) defines

2.1. BUSINESS RULES 10

that after every event A the next element must be B. If the next element is not B

the constraint would not be satisfied.

Formula LTL formula
Graphical

Representation

NOTCOEXISTENCE(A,B) ¬(♦A ∧ ♦B) A B

NOTSUCCESSION(A,B) �(A⇒ ¬(♦B)) A B

NOTCHAINSUCCESSION(A,B) �(A⇒©(¬B)) A B

Table 4 Negation Relation Templates[MMv11][DCMMM17]

Furthermore there are negation relation templates in DECLARE which are

shown in Table 4. These are the negating templates to their non negation rela-

tion templates:

NOTCOEXISTENCE(A,B) defines that if either A or B occurs the other one must

not occur in the same instance. NOTSUCCESSION(A,B) defines that if A occurs

B must not occur afterwards and if B occurs A must not precede B. For exam-

ple the instance [A,B] does not satisfy the constraint NOTSUCCESSION(A,B) but

[B,A] does, whereas the constraint NOTCOEXISTENCE(A,B) is not satisfied by

both instances.

Lastly there is the NOTCHAINSUCCESSION(A,B) constraint which is similar to

the NOTSUCCESSION(A,B) constraint with the additional restriction that the events

must not occur next to each other. For Example [A,C,B] does satisfy the

NOTCHAINSUCCESSION(A,B) constraint because the A and B are not connected

directly to each other.

2.1.3 Decision Model and Notation (DMN)

The „Decision Model and Notation“, is a specification proposed by the Object

Management Group (OMG) to„[creating] a standardized bridge for the gap be-

tween the business decision design and decision implementation“ [dmn18].

This thesis focuses only on a part of the DMN specification namely the Decision

Tables. Which represents all input and output variables in a table form.

2.1. BUSINESS RULES 11

Example 2 (Decision Table).

Input Output

A Persons Credit
Rating from
Bureau

Person Credit
Card Balance

Person Educa-
tion Loan Bal-
ance

Person Loan
Compliance

1 A < 10000 < 50000 Compliant

2 Not(A) - - Not Compliant

3 - >= 10000 - Not Compliant

4 - >= 50000 Not Compliant

Table 5 Decision Table example: Person Loan Compliance[dmn18]

Table 5 is an example for a well defined decision table. The first column rep-

resents the Hit Policy and the number of rows. The next three columns display

the input variable. Closing with the last column there is the output variable.

It has to be noted that the number of input and output variable can differ from

table to table.

As variable type are following allowed: Strings, numbers, dates and booleans.

2.1.3.1 Hit Policies

Decision tables must have one hit policy, which defines how rows are matched

against the input variables and how the output is constructed. There are follow-

ing Hit Policies:

• Unique: Only one row can be activated

• Any: Multiple rows can be activated, the output of each activated row must

be the same.

• First: Multiple rows can be activated, only the output of the first activated

row is returned

• Rule Order: Multiple rows can be activated, the output is returned in order

of the rows in the table.

2.2. BUSINESS PROCESS MODEL NOTATION 12

• Collect: Multiple rows can be activated, the output is returned as a set with

the outputs of each activated row

2.1.3.2 Datatypes

In decision tables there are a few datatypes available:

• Numbers

– < x Value has to be lower than x

– > x value has to be greater than x

– = x or x value has to be equal to x

– [x..y] value has to be between x and y

Additionally the numbers themselves can have a different type: integer,

long or double

• Dates with the same comparison functions as numbers

• Booleans, either true or false

• Strings which can represents just a string or boolean variable which can

also be negated with a not function

2.2 Business Process Model Notation

The Business Process Model and Notation (BPMN) is a notation which was pro-

posed by the Object Management Group1 and implemented as a ISO standard in

2013 [OMG13].

The standard defines a way to model business processes so that most business

users can understand its semantic and syntax [OMG13, p.1].

Because BPMN is to extensive to describe in detail and mostly common knowl-

edge in the business modelling domain it is in this thesis mostly omitted.

In this thesis only part of the notation is needed. Namely events, tasks, sequence

flows and message flows which are defined as follows:

1https://www.omg.org

https://www.omg.org

2.3. INCONSISTENCIES 13

Definition 4 (Vertex and Edge Definition in BPMN). [OMG13, p.26ff]

• Event: An Event is something that „happens“ during the course of a Pro-

cess. These Events affect the flow of the model and usually have a cause

(trigger) or an impact (result).

• Activity: An Activity is a generic term for work that company performs in

a Process. An Activity can be atomic or non-atomic (compound).

• Task: A Task is an atomic Activity that is included within a Process. A Task

is used when the work in the Process is not broken down to a finer level of

Process detail.

• Sequence Flow: A Sequence Flow is used to show the order that Activities

will be performed in a Process.

• Message Flow: A Message Flow is used to show the flow of Messages be-

tween two Participants that are prepared to send and receive them.

These vertices and edges are needed for building up sequences of activities

which can be executed by the enterprise which implemented the process model.

An example of a Business process model in BPMN is Figure 12.

2.3 Inconsistencies

Inconsistencies in the domain of business rules are business rule bases which con-

tains logical conclusions which contradict each other.

2.3.1 Minimal Inconsistent Subsets

Following the definition of a minimal inconsistent subset from Hunter:

Definition 5 (Minimal Inconsistent Subset [HK+08]).

MI(K) = {C ⊆ K|C ` ⊥ ∧ ∀C ′ ⊂ C,C ′ 6` ⊥}

This definition means that for every belief case K a minimal inconsistent sub-

set C is a subset of K where the MI is inconsistent and every genuine subset of

the MI is consistent.

2.3. INCONSISTENCIES 14

2.3.1.1 Inconsistencies in FCL

As outlined before the superiority in Example 1 is important to avoid an incon-

sistency. In this example without S1, R3 would enable both R1 and R2 but which

contradict each other. So the Example 1 without S1 is an MI because eliminating

every other rule would make it not inconsistent anymore.

Example 3 (MI example in FCL).

C1 =

R1 : a⇒ b

R2 : a⇒ ¬b

R3 : >> a

Example 3 shows a MI in defeasible logic derived from Example 1

2.3.1.2 Inconsistencies in DECLARE

As an example we have following constraint set as an belief case K according to

the definition in 2.3.1.

Example 4. MI in DECLARE

C1 = {SUCCESSION(a, b), NOTSUCCESSION(a, b), PARTICIPATION(a)}

The MI in this case would be K. That is because of the rules SUCCESSION(a,b)

and NOTSUCCESSION(a,b) are contradicting each other and are activated by the

rule PARTICIPATION(a). So every constraint in K is part in MI and deleting any

constraint would make it not inconsistent anymore.

2.3. INCONSISTENCIES 15

Cardinality templates

Position templates

Participation(x) AtMostOne(x)

Init(x) End(x)

(a) Existence templates

Backward-unidirectional
relation templates

Coupling templates
Forward-unidirectional

relation templates
Negative templates

RespondedExistence(x, y)RespondedExistence(y, x) CoExistence(x, y) NotCoExistence(x, y)

Response(x, y)

AlternateResponse(x, y)

ChainResponse(x, y)

Precedence(x, y)

AlternatePrecedence(x, y)

ChainPrecedence(x, y)

Succession(x, y)

AlternateSuccession(x, y)

ChainSuccession(x, y)

NotSuccession(x, y)

NotChainSuccession(x, y)

backward forward

negates

(b) Relation templates

Figure 1: The subsumption map of Declare templates. Templates are indicated by
solid boxes. The subsumption relation is depicted as a line starting from the subsumed
template and ending in the subsuming one, with an empty triangular arrow recalling the
UML IS-A graphical notation. The coupling constraint templates are linked to the related
forward-unidirectional relation constraint and backward-unidirectional relation constraint
templates by means of grey arcs. The negative constraint templates are graphically linked
to the corresponding coupling constraint templates by means of wavy grey arcs.

all traces. Therefore, they belong to the type of position constraints. Both
their templates are subsumed by Participation, because they imply that the
constrained task occurs in every trace in order to be the first or the last
one. Figure 1(a) illustrates the subsumption hierarchy of existence constraint
templates. Templates are indicated in solid boxes. The subsumption between
templates is drawn with a line starting from the subsumed template and
ending in the subsuming one, with an empty triangular arrow recalling the
UML IS-A graphical notation.

As Figure 1(b) illustrates, RespondedExistence(x, y) generates an o↵-
spring of related relation templates. Its directly subsumed templates (“chil-
dren”) are Response(x, y) and Precedence(y, x). Response(a, b) imposes that
eventually after an occurrence of a (the activation), b (the target) must occur.
Dually, Precedence(a, b) requires that before an occurrence of the activation
task b, target task a occurs. Both constraints strengthen the conditions

13

Figure 1 The subsumption map of DECLARE templates.[DCMMM17]

In Figure 1 every possible contradicting constraint is shown. This subsump-

tion map is in the style of an UML Class Diagram2, where the arrows show the

inheritance of properties as well as the unidirectional association of the coupling

templates.

For every NOT relation template are specific constraints that contradict them. For

example, the NOTCHAINSUCCESSION can only be contradicted by the CHAIN tem-

plates (in the figure in the same row). Whereas the NOTCOEXISTENCE template

can be contradicted by every over non negation relation template (in the figure

all columns to the left of the negation templates). This is because of inheritance

of properties within the various types of relation templates.

In addition to two contradicting constraints there has to be a existence template

which activates the constraints. All existence templates can be activate the con-

straint except the ATMOSTONEtemplate which does not specify if an event has to

be used.
2https://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF

https://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF

2.3. INCONSISTENCIES 16

2.3.1.3 Decision Tables

There can be multiple ways in decision tables to violate the consistency. Mainly

it can be said that any decision table is consistent in the term, that there is no

MI because the input for the tables must be given in order to determine which

rows are activated therefore if there are any contradicting rows which are a MI.

Hit Policies
Furthermore there is also a possibility to violate Hit Policies in Decision Tables.

Two of the hit policies listed in can be violated:

• Unique: If more than one row is activated

• Any: More rows are activated, but the outputs of the rows are not the same.

The other hit policies do not specify that the output values have to be the same.

For most they only define in which order the outputs must be returned, which

does not influence any possible MI.

One table
One decision table can be inconsistent if the input activates two rows within a

table which output is contradicting each other.

Example 5 (Inconsistent Decision Table). Note the following table with the input

set I :

• Credit Rating = A

• Credit Card Balance = 10000

• Loan Balance = 5000

2.3. INCONSISTENCIES 17

Input Output

C Credit Rating Credit Card
Balance

Loan Balance Loan Compli-
ance

1 A <= 10000 < 50000 Compliant

2 Not(A) - - Not Compliant

3 - >= 10000 - Not Compliant

4 - - >= 40000 Not Compliant

Table 6 Decision Table example: Person Loan Compliance [dmn18]

In Example 5 the given input variables activates multiple rows in the Table 6.

Namely Row 1 and Row 3. The output of those two rows contradicts each other.

Resulting in a MI, which consists of Row 1, Row 3 and the Input I .

Multiple tables
Inconsistencies can also occur with multiple decision tables involved. This is

mainly the case if a table is dependent on an other table.

Example 6 (Inconsistencies across two Decision Tables).
Consider those two decision tables, where Table 7 is dependent on Table 8. This

is because the output CreditRating of Table 8 refers to the input in Table 7.

Additionally consider the following Input set I for the decision tables:

• Credit History = False

• Condominium = True

• Credit Card Balance = 10000

• Loan Balance = 5000

2.3. INCONSISTENCIES 18

Input Output

C Credit Rating Credit Card
Balance

Loan Balance Loan Compli-
ance

1 A <= 10000 <= 50000 Compliant

2 B - - Not Compliant

3 C >= 10000 - Not Compliant

4 - - >= 50000 Not Compliant

Table 7 Decision Table example

Input Output

C Credit History Condominium Credit Rating

1 False True A

2 - True B

3 False False C

4 False - D

Table 8 Decision Table example

With the input I is each individual table not inconsistent. In Table 7 no row is

activated due to the fact that the variable CreditRating is not available. Whereas

in Table 8 Row 1 and Row 2 are activated with the input variables CreditHistory

and Condominium from the input I . But the output of the two rows are not

contradicting each other making the table per se not inconsistent.

Combining these two tables however, results in an inconsistency. That is due

to the fact that as outlined before in Table 8 two rows are activated (Row 1 and

Row 2) with the output CreditRating = {A,B}. This output as well as the input

2.3. INCONSISTENCIES 19

set I activates Row 1 and Row 2 in Table 7. These two rows have contradicting

outputs, resulting in an inconsistency with the corresponding MI.

MI =

I,

Row 1 @ Table 8,

Row 2 @ Table 8,

Row 1 @ Table 7,

Row 2 @ Table 7

2.3.2 Minimal Quasi Inconsistent Subsets

Corea et al. [CDD19a] introduces the new approach of minimal quasi inconsistent

subset, beginning with this assumption

Lemma 1. [CDD19a] With the current definition of minimal inconsistent subsets,

it is not possible to detect inconsistencies in [. . .] constraint sets C [. . .]. The proof

results from the definition[. . .] constraint sets C [. . .] and minimal inconsistent

subsets [. . .], as due to ex falso quodlibet, no reasoning about inconsistent subsets

is possible without knowledge of activations.

This lemma was applied to declarative constraint minimal inconsistent sub-

sets, but can be applied to every business rule formalism in this thesis.

First to introduce the concept of quasi inconsistencies, the activation of a con-

straint has to be defined:

Definition 6 (Individual Constraint Activation). [CDD19a] A set of activations

A activates an individual constraint c : a⇒ ϕ iff a ∈ A.

In this definition A stands for an activation set, which activates the constraint

c with the input a and the output ϕ. This means that the activation set „activates

“ a and through the constraint c, the outcome ϕ is also activated.

Definition 7 (Constraint Set activation). [CDD19a]

A set of activationsA activates a set of constraintsC iff ∀c ∈ C : A∪{out(c)|c ∈ C}
activates c.

2.3. INCONSISTENCIES 20

Minimal quasi inconsistent subset or MQI are an derivation of MI defined in

2.3.1. So every MI is also a MQI but every MQI must not be an MI. More general

the definition of quasi inconsistent subsets is the following

Definition 8 (Quasi Inconsistent Subset). [CDD19a]

For a constraint set C, the set of quasi inconsistent subsets QI is defined as a set

of pairs (A,C), s.t.

1. C ⊆ K

2. A activates C

3. A ∪ C |=⊥

But in order to have an minimal quasi inconsistent subset there must be ap-

plied further restrictions:

Definition 9 (Minimal Quasi Inconsistent Subset). [CDD19a]

For a constraint setC, the set of minimal quasi inconsistent subsets MQI is defined

as set of pairs t = (A,C), s.t.

1. t is a quasi inconsistent subset in K

2. ∀t′ ⊂ t 6|=⊥

This definition defines the MQI is basically similar to the definition of a QI with

the additional requirement that every real subset of the MQI is not inconsistent

anymore. That means that removing any element out of the MQI will result in the

subset of the MQI not being inconsistent anymore.

Corea et al. formulated the Minimal Quasi Inconsistent Subset definition to de-

scribe MQI in DECLARE, but it can be applied to every business rule form consid-

ered in this thesis.

Since the definition of MQI and MI both involve conflicting elements, a theorem

can be derived from them:

Theorem 1 (Inconsistency Inheritance).
Every MI is also a MQI if the MI does not contain a contradiction in form of two

facts contradicting each other

2.3. INCONSISTENCIES 21

2.3.2.1 Quasi Inconsistencies in FCL

Example 7 is modification of Example 3 which omits R3 which was the fact that

activates R1 and R2.

But R1 and R2 would still contradict each other but without the activation. Al-

though R1 and R2 share the same antedecent, so that it still can be said, that this

is a form of inconsistency. Due to the reason that it fails the requirements of an

MI described in 2.3.1 it is considered as an MQI.

Example 7 (MQI example in FCL).

C1 =

R1 : a⇒ b

R2 : a⇒ ¬b

Example 8 shows a more complex example of an MQI in FCL. The contra-

dicting rules R1 and R2 share most of their antedecent a and b, but R1 has an

additional literal as antecedent namely k which would make the R1 and R2 not

an MQI anymore. But due to the fact R6 this requirement for R1 is satisfied.

Example 8 (Quasi inconsistency in FCL).

R1 : a, f, k → c

R2 : h, d→ ¬ c

R3 : b→ d

R4 : b→ f

R5 : a⇒ h

R6 :>> k

Making R1 and R2 quasi inconsistent through the reason that they now have

the same activation set A = {a, b}

2.3.2.2 Quasi Inconsistencies in Declare

Quasi inconsistencies in DECLARE follows the definition of given in Definition 9

(Minimal Quasi Inconsistent Subset).

2.3. INCONSISTENCIES 22

The Example 9 is an abbreviation of Example 4 by eliminating the PARTICIPA-

TION(a) constraint. Leaving the constraint set with containing only two rules

which after Figure 1 contradict each other.

Example 9 (MQI in Declare).

C = {SUCCESSION(a, b), NOTSUCCESSION(a, b)}

But due to the reason that the constraints are only viewed in their constraint

set and this set does not contain a existence constraint which activates the rule it

is not an inconsistency in the original sense.

Nonetheless the two constraint when activated are still contradicting. Conse-

quential with an activation set the constraint set is considered a quasi inconsis-

tency. In this case the activation set can either be the constraint PARTICIPATION(a)

or the constraint PARTICIPATION(b).

2.3.2.3 Quasi Inconsistencies in Decision tables

MQI in decision tables can be found in contrast to MI without the input. Instead

the objective for MQI in Decision Tables is to find rows which contradict each

other and furthermore can be activated through one input set.

Hit Policies
MQI for the hit policies is the same as in 2.3.1.3. The Unique hit policy can be

violated if there is an input I , which activates more than one row. The MQI in this

case would be the two rows which are activated through I .

The Any hit policy can be violated if there is an input I , which activates at least

two rows which do not have the same output. The MQI in this case would be the

two rows which are activated through I .

One table
An MQI in an decision table is similar to an MI (2.3.1.3), with the exception that

no input is needed.

According to the definition of Minimal Quasi Inconsistent Subset, a subset t of

the belief case K is needed. In case of one decision table this subset t consists of

two rows of the decision table, which outputs are contradicting each other. The

2.3. INCONSISTENCIES 23

activation set A is an input for which the two rows in t are activated.

Given the Example 5 there are in total 3 contradicting output combinations. Row

1 has a contradicting output to Row 2-4. But after Minimal Quasi Inconsistent

Subset there must be an activation set, which activates both contradicting out-

puts.

In Example 5 only two out of three contradicting output combinations have indi-

vidual activation sets which activates them:

• Row 1 and Row 3:

– CreditRating = A

– CreditCardBalance = 10000

– CreditCardBalance = (< 50000)

• Row 1 and Row 4:

– CreditRating = A

– CreditCardBalance = (<= 10000)

– LoanBalance = (40000 <= x < 50000)

For the Row 1 and Row 2 do have contradicting output, but the CreditRating

input for the two rows does not overlap and therefore those rows can never be

activated through the same input.

Multiple tables
Minimal quasi inconsistencies can also occur in multiple tables. The correspond-

ing activation set is an input set such as in MQI for one table.

MQI can only occur in multiple decision tables if they are dependent on each

other. This means that there can not be an quasi inconsistency if the decision ta-

bles do not share information among themselves.

According to the definition of Minimal Quasi Inconsistent Subset, a subset t of the

belief caseK is needed. In case of multiple decision tables this subset t consists of

rows of different decision tables, the outputs of two rows are contradicting each

other. The activation set A is an input for which the rows in t are all activated.

Following is an example how a MQI in DMN is constructed over two decision

tables.

2.3. INCONSISTENCIES 24

Example 10 (MQI Example for two depending decision tables).
As shown in 2.3.1.3 the two individual tables do not have any inconsistency, but

also no quasi inconsistency. This is because for every input there are no two

activated rows with a contradicting output.

But Table 7 is dependent on Table 8 and when combined there are input sets

which cause inconsistencies:

• I1 =

– CreditHistory = False

– Condominium = True

– CreditCardBalance = (<= 10000)

– LoanBalance = (< 50000)

• I2 =

– CreditHistory = False

– Condominium = True

– CreditCardBalance = (<= 10000)

– LoanBalance = 50000

These inputs cause the following MQI:

MQI1 =

{I1,

Row 1 @ Table 8,

Row 2 @ Table 8,

Row 1 @ Table 7,

Row 2 @ Table 7}}

2.4. INCONSISTENCY MEASURES 25

MQI2 =

{I2,

{Row 1 @ Table 8,

Row 4 @ Table 8,

Row 1 @ Table 7,

Row 4 @ Table 7}}

2.4 Inconsistency Measures

For better overview of inconsistencies in business rule bases measures have been

developed[HK+08, Thi16, Thi18, GM18]. The measure will help analyzing and

rate a knowledge base[NCD19]. There are various measures which focus on dif-

ferent aspects of the inconsistencies in the rule bases.

Corea et al. [CDD19a] takes an approach of measures which are an abbreviation

of Hunter et al. [HK+08], but in the context of quasi inconsistencies.

Nonetheless the measures are applicable to both MI and MQI. It has to be noted

that the measures for MQI will mostly be higher than the for MI because of their

definition and Theorem 1.

All following definition are taken from Corea et al. [CDD19a].

Definition 10 (MQI-inconsistency measure).
Define the MQI-inconsistency measure via

IQMI(C) = |MQI(C)|

This measure counts the number of minimal quasi inconsistent subsets in C.

Definition 11 (MQIc-inconsistency measure). Define the MQIc-inconsistency mea-
sure via

IQ
MIC

(C) =
∑

M∈MQI(C)

1

|MC |

This measures aggregates the number of minimal quasi inconsistent subsets,

normalized by the respective size.

2.4. INCONSISTENCY MEASURES 26

Definition 12 (Quasi problematic-inconsistency measure).
Define the quasi problematic-inconsistency measure via

IQp (C) = |
⋃

M∈MQI(C)

MC |

This measure counts the distinct number of constraints participating in any

minimal quasi inconsistent subset.

Definition 13 (Quasi mv-inconsistency measure).
Define the quasi mv-inconsistency measure via

IQmv(C) =
|
⋃
M∈MQI(C)A(MC)|
|A(C)|

This measure expresses the ratio of tasks involved in any minimal quasi in-

consistent subsets.

Definition 14 (Cardinality-Based Culpability Measure). Define the cardinality
based culpability measure C# via

C#(C, α) = |M ∈ MQI(C)|α ∈MC |

This measure counts the number of minimal quasi-inconsistent subsets that a

constraint α appears in.

Definition 15 (Normalized Cardinality-Based Culpability Measure). Define the

normalized cardinality based culpability measure Cc via

Cc(C, α) =
∑

M∈MQI(C)s.t.α∈MC

1

|MC |
.

This measure counts the number of minimal quasi-inconsistent subsets that a

constraint α belongs to, normalized by the cardinalities of the respective subsets.

All the above measures helps to identify to which grade an belief case is inconsis-

tent.

Chapter 3

Implementation

For the implementation Java1 as the main programming language was used. That

is because Java is a widely supported platform2 with a wide variety of accessible

and free additional libraries.

3.1 Used Libraries

In addition to Java different open source libraries were used and are listed below.

• SPINdle: logic reasoner that can be used to compute the consequence of

defeasible logic theories in an efficient manner.3

• Google’s guava project: set of core libraries that includes new collection

types (such as multimap and multiset), immutable collections, a graph li-

brary, functional types, an in-memory cache, and APIs/utilities for concur-

rency, I/O, hashing, primitives, reflection, string processing, and more4

• Camunda bpmn model API:The camunda BPMN model API is a simple,

lightweight Java library for parsing, creating and editing BPMN 2.0 XML

files.5

1https://www.java.com/de/
2https://www.java.com/de/download/manual.jsp
3http://spindle.data61.csiro.au/spindle/index.html
4https://github.com/google/guava/
5https://github.com/camunda/camunda-bpmn-model

27

https://www.java.com/de/
https://www.java.com/de/download/manual.jsp
http://spindle.data61.csiro.au/spindle/index.html
https://github.com/google/guava/
https://github.com/camunda/camunda-bpmn-model

3.1. USED LIBRARIES 28

• Camunda dmn engine: Lightweight Execution Engine for DMN (Decision

Model and Notation).6

• Junit: serves as a foundation for launching testing frameworks on the Java

Virtual Machine (JVM)7

• dmn-generator8: Library to generate random DMNs and tests the perfor-

mance of the solving engine

• ANTLR: (ANother Tool for Language Recognition) is a powerful parser

generator for reading, processing, executing, or translating structured text

or binary files.9

• JAXB: The Java Architecture for XML Binding (JAXB) provides an API and

tools that automate the mapping between XML documents and Java ob-

jects.10

The usage for each of the libraries is documented in Table 9.

FCL DECLARE DMN BPMN

SPINdle X

Guava X X

BPMN API X

DMN Engine X

Junit X X X X

DMN generator X

ANTLR X

JAXB X X

Table 9 Usage of libraries

6https://github.com/camunda/camunda-engine-dmn
7https://junit.org/junit5/
8https://gitlab.uni-koblenz.de/fg-bks/dmn-fcl-converter/wikis/

Performance/Performance-tester
9https://www.antlr.org/

10https://github.com/eclipse-ee4j/jaxb-ri

https://github.com/camunda/camunda-engine-dmn
https://junit.org/junit5/
https://gitlab.uni-koblenz.de/fg-bks/dmn-fcl-converter/wikis/Performance/Performance-tester
https://gitlab.uni-koblenz.de/fg-bks/dmn-fcl-converter/wikis/Performance/Performance-tester
https://www.antlr.org/
https://github.com/eclipse-ee4j/jaxb-ri

3.2. FINDING PATHS 29

3.2 Finding Paths

For implementing the solver of the inconsistencies mainly a graph based ap-

proach was made. For most of the formalisms there is a logically transfer method

into a graph. As a graph datatype the Google guava project was used11.

The need was to compute paths within this graph, because the graph was im-

plemented generic, a generic algorithm can be implemented. This path finding

algorithm is based upon the Depth-first search [CLRS09, p.603ff]. Additionally

the paths found by the Depth-first search algorithm are stored and returned as an

output to the findPaths function, which is shown in Algorithm 1. The function

Algorithm 1: findPaths function
Given : Graph G = (N,E)
Input : Start node n ∈ N
Output: Paths P = {P1, . . . , Pn}

1 P ← ∅
2 pn ← {n}
3 succ← successors(n)
4 foreach s ∈ succ do
5 Ps ← ∅
6 psn ← pn ∪ s
7 foreach p ∈ findPaths(s) do
8 Ps ← Ps + {psn ∪ p}
9 P ← P + Ps

takes as input the start node n and queries the following nodes in the graph with

the successors() function. Now for each successor s a base path with the starting

node and the successors is created and stored in the variable psn (Line 6).

At this point a recursive function call is executed with the successor s as the new

starting node. For each of the returned path p the base path from the beginning

is added, so that in Ps all paths from the starting node n with its successor s are

stored. Finally all paths are combined and stored into the output variable P .

11https://github.com/google/guava/wiki

https://github.com/google/guava/wiki

3.3. BUSINESS RULES 30

3.3 Business Rules

The main objective of this thesis is to implement algorithms which find incon-

sistencies in form of MI (defined in Minimal Inconsistent Subsets) and all quasi

inconsistencies MQI (defined in Minimal Quasi Inconsistent Subset).

3.3.1 Defeasible Logic

The syntax and semantics of defeasible logic is already implemented in the SPIN-

dle library (3.1) which also has a working reasoning engine for FCL. But SPIN-

dle can not handle inconsistencies within theories. In order to identify those the

SPINdle library has to be extended.

3.3.1.1 Finding inconsistencies

The first step to find inconsistencies within a theory is to find all contradicting

rules. In other words the rule where negated outcome of an rule exists also as

an outcome, e.g. a and ¬a. If there are no contradicting rules there are also no

inconsistencies.

If their are rule pairs which are contracting, for each rule the corresponding paths

are computed with the help of the reasoner (Algorithm 2, Line 5). For finding the

paths the antecedents are stored and checked if there are any other rules with the

literal of the antecedents as outcome. This is recursively done until there are no

rules with the literal as outcome there or the rule found is an fact.

For each found path the reasoner was used to determine if the path is valid (the

first rule is activated).

If both rules have valid paths, all of the paths found are combined and stored as

an MI (Line 8-10).

3.3. BUSINESS RULES 31

Algorithm 2: Computation of Minimal Inconsistent Subsets
Output: MQI(C)
Input : Theory T = (K,L)

1 mis← ∅
2 for i from 1 to |K| do
3 Pi ← ∅
4 foreach α ∈ K do
5 Pα = {M1, . . . ,Mm|M ⊆ K ∧M ` α}
6 foreach α ∈ K do
7 if ∃αy s.t. βhαy == ¬βhα then
8 foreach P ′ ∈ Pα do
9 foreach P ′′ ∈ Pαy do

10 mis = mis+ {{P ′} ∪ {P ′′}}

Example 11 (Finding MI in a FCL Theory).
Consider following FCL theory T :

r1: >> person(John)

r2: >> creditEligible(John)

r3: person(X) ⇒ contractuallyCapable(X)

r4: >> mentalCondition(John)

r5: mentalCondition(X) ⇒ ¬ contractuallyCapable(X)

r6: mentalCondition(X) ⇒ ¬ creditEligible(X)

r7: ¬ creditEligible(X) ⇒ ¬ grantCredit(X)

r8: ¬ person(X) → ¬ grantCredit(X)

Now for each rule r in T the paths are computed:

r1 : [>>person(John)]

r2 : [>>creditEligible(John)]

r3: [r3: person⇒ contractuallyCapable, r1 : >>person(John)]

r4 : [>>mentalCondition(John)]

r5: [r5: mentalCondition⇒ ¬ contractuallyCapable, r4 :>>mentalCondition(John)]

3.3. BUSINESS RULES 32

r6: [r6: mentalCondition⇒ ¬ creditEligible, r4 : >>mentalCondition(John)]

r7: [r7: ¬ creditEligible⇒ ¬ grantCredit, r6: mentalCondition⇒ ¬ creditEligi-

ble, r4: >>mentalCondition(John)]

r8: []

After Line 7 we are only interested in rule which contradict each other. In case of

T that is r2 and r6 as well as r3 and r5. Since r2, r6, r3, r5 all have valid paths

which activates the rules we can consider those two pairs with their correspond-

ing paths as MI:

MI1 :

r2 :>> creditEligible(John),

r6 : mentalCondition ⇒ ¬creditEligible,

r4 :>> mentalCondition(John)

MI2 :

r3 : person ⇒ contractuallyCapable,

r1 :>> person(John),

r5 : mentalCondition ⇒ ¬contractuallyCapable,

r4 :>> mentalCondition(John)

3.3. BUSINESS RULES 33

3.3.1.2 Finding quasi inconsistencies

The Algorithm 3 describes how MQI can be found in a FCL theory. It is structural

similar to Algorithm 2.

Algorithm 3: Computation of minimal quasi inconsistent subsets in
fcl

Input : Theory T = (K,L)

Output: MQI(T)

1 mqis← ∅
2 for i from 1 to |K| do
3 Pi ← ∅

4 foreach α ∈ K do
5 Pα = {M1, . . . ,Mm|M ⊆ K}

6 foreach α ∈ K do
7 if ∃x s.t. βhx == ¬βhα then
8 foreach P ′ ∈ Pα do
9 foreach P ′′ ∈ Px do

10 BP ′ = {β1, . . . , βi|β ∈ P ′}
11 BP ′′ = {β1, . . . , βj |β ∈ P ′′}
12 activationSet← {{BP ′} ∩ {BP ′′}}
13 if {{P ′} ∪ {activationSet}} ` α∧
14 {{P ′′} ∪ {activationSet}} ` x then
15 mqis = mqis+ {{P ′} ∪ {P ′′}}

Like in finding MI for each contradicting pair of rules their paths are com-

puted (Line 5). But in contrast to Algorithm 2 the paths are not checked if they

activate their corresponding rule.

Each individual path of the rule is combined with every path from the contra-

dicting rule. Now the intersection of each literal in each antedecent which has

no further occurrence as the outcome of a rule is made. This intersection consists

only of literals. For all of these literals are facts generated and stored into a set

(Line 10-12). This set is considered as an activation set, when both rules are acti-

vated through the corresponding path and the activation set (Line 13 and 14).

3.3. BUSINESS RULES 34

When this requirement is met the two paths combined is an MQI and stored into

the output variable (Line 15).

Example 12 (Finding an MQI in FCL). Consider following FCL theory:

r1 : a, f → c

r2 : h, d→ ¬c

r3 : b→ d

r4 : b→ f

r5 : a⇒ h

Since we are only interested in checking if contradicting rules are a MQI in the

theory only the paths for r1 and r2 are checked resulting in the following paths.

r1 : [r1 : a, f → c; r4 : b→ f]

r2 : [r2 : h, d→ ¬c; r3 : b→ d; r5 : a⇒ h]

Now each antedecent from both paths which has no further occurrence as an

outcome occurrence is taken and the intersection of those two sets is build:

For r1: {a, b}
For r2: {a, b}
Resulting in the following intersection: L = {a, b} ∩ {a, b} = {a, b}
For each literal in L a fact is constructed (r6 and r7) and a new theory Tq is build

with the paths from the contradicting rules:

r1 : a, f → c

r2 : h, d→ ¬c

r3 : b→ d

r4 : b→ f

r5 : a⇒ h

r6 : >> a

r7 : >> b

This theory Tq is now checked with the normal MI solver in 3.3.1.1. If the re-

sults contains an inconsistency the combined paths is an quasi inconsistency due

to the reason that there is one activation set which activates two contradicting

rules. Otherwise the two paths are not quasi inconsistent because the activation

3.3. BUSINESS RULES 35

set build by the algorithm is not activating the two negating rules and therefore

not causing an inconsistency.

3.3.1.3 Limitations

The solver has a limitation which it has inherited from the SPINdle library. It is

not possible to assign variables to literals that means the solver can not distin-

guish between a(X) and a(Y).

Another restriction is that the computation of MQI does not consider literal vari-

ables. So if they occur in the theory MQI involving literal variable or literal

boolean functions will not be found. An exception to this limitation is that SPIN-

dle first sets the type of these function as normal literal. So the solver will prob-

ably find MI or MQI with literal boolean functions but only because they are con-

sidered as normal literals and not because of their meaning. An example for this

can be seen below.

Example 13 (MQI with Literal Boolean Functions).

r1 : $@val>0$ → x,

r2 : $@val>0$ → ¬ x,

Example 13 shows a MQI where a literal function is involved. This kind of

MQI will be found by the solver because the literal boolean function $@val>0$ is

seen as a normal literal and due to the reason that this „literal“ occurs in r1 and

r2 which have an contradicting output.

3.3. BUSINESS RULES 36

3.3.2 Declarative Process Model

In order to develop an algorithm to find MI or MQI in DECLARE a object model

with a parser for the language has to be implemented.

In Figure 2 the class diagram for the DECLARE language is shown.

1

1

«create»

«create»

«create»

1

1

1

1

*

1

1

1

1

1

«create»

1

1

*

1

*

1

*

1

«create»

*

1

«create»

1

1

Figure 2 Declare language class diagram

Basically the class ParserDeclareInput uses the package Parser to parse a De-
clare input file and transfers it into a DeclareRuleBase object. This object contains

DeclareRule objects which either can be DeclareRelationRule or DeclareExistenceRule
objects.

The DeclareExistenceRule class implements the DECLARE Existence templates de-

scribed in 2, whereas the DeclareRelationRule class the implementation of the DE-

CLARE Relation templates is, which has been defined in Table 3 and 4.

The Parser package was implemented by using ANTLR (3.1). The Parser is able

to parse the DECLARE language described in 2.1.2 with the restriction that every

event has to be enclosed with single or double quotes.

3.3. BUSINESS RULES 37

3.3.2.1 Transferring to Graph

As a first step to computing the inconsistencies within a DECLARE constraint set,

the set must be transformed into a graph on which the computation will be made.

In the following an example set is given.

Example 14.

C1 = {CHAINRESPONSE(a, b), RESPONSE(b, d),

CHAINSUCCESSION(b, c), ALTERNATERESPONSE(d, e),

CHAINRESPONSE(e, c), PRECEDENCE(d, c),

NOTSUCCESSION(a, c) }

In order to transform this every rule must be processed and stored within a

graph. For each relational rule the first and second event is stored as a node and

the type of the template is added as a edge between those two nodes with the

type as the edge weight. The edge weight is stored as a set of relation template

type because there can be multiple constraints with the same events but different

types.

Figure 3 Transformed C1

3.3. BUSINESS RULES 38

The negation relation rules are not stored within the graph, because those

are the main constraints that can cause an inconsistency within the set, addition-

ally these constraints state that between the nodes can not be an edge connecting

these.

For example the constraint CHAINRESPONSE(a,b) is stored in the graph (Figure

3) as node a and b with an edge that has CHAINRESPONSE as its weight. Whereas

the rule NOTSUCCESSION(a,c) is not stored because it is a negation relation tem-

plate and is therefore not added into the graph.

It has to be noted, that only forward templates can be stored in this way. For all

PRECEDENCE templates the directed edge will start at the second node and for all

SUCCESSION templates two directed edges are created due to the fact that both

events are a needed factor to satisfy the constraint.

Generally the creation of edges is based upon the circles at the events in the graph-

ical explanation of the relation templates in Table 3.

3.3.2.2 Algorithm MQIS in Declare

In order to compute all inconsistencies in the constraint set C1, the program loops

over every negation template (Algorithm 4, Line 3).

For every negation template the paths for event A are computed.

Algorithm 4: Computation of minimal quasi inconsistent sub-
sets [CDD19a]

Input : Set of constraints C
Output: MQI(C)

1 mqis← ∅;
2 compConstraints = findComplements();
3 foreach n:compConstraints do
4 α← n.activation;
5 ω ← n.reactionTask ;
6 P = findPaths(α, ω) ∪ findPaths(ω, α);
7 foreach P:P do
8 if α ∪ n ∪ PC |=⊥ then
9 mqis← mqis ∪ n ∪ PC ;

In C1 is only one negation template, namely NOTSUCCESSION(a, b). In this case

3.3. BUSINESS RULES 39

all paths from event a are computed using the Finding Paths algorithm. Resulting

in following paths:

1. {c = [{[CHAINRESPONSE(a, b)→ CHAINSUCCESSION(b, c)]}]}

2. {c = [{[CHAINRESPONSE(a, b)→ RESPONSE(b, d)→
ALTERNATERESPONSE(d, e)→ CHAINRESPONSE(e, c)]}]}

3. {d = [{[CHAINRESPONSE(a, b)→ RESPONSE(b, d)]}]}

4. {d = [{[CHAINRESPONSE(a, b)→ CHAINSUCCESSION(b, c)→
PRECEDENCE(d, c)]}]}

5. {e = [{[CHAINRESPONSE(a, b)→ RESPONSE(b, d)→
ALTERNATERESPONSE(d, e)]}]}

6. {e = [{[CHAINRESPONSE(a, b)→ CHAINSUCCESSION(b, c)→
PRECEDENCE(d, c)→ ALTERNATERESPONSE(d, e)]}]}

7. {b = [{[CHAINRESPONSE(a, b)]}]}

The first letter indicates which end event the path has, followed by the actual

path. After the negation constraint it is only interesting if there is a path between

a and c. Since Path 1 and 2 with c as the end event, they can be further checked if

they violate requirements of the negation constraint. Here both paths violate the

NOTSUCCESSION(a, b) constraint and therefore can be returned as a set of MQI:

MQI1 =

{CHAINRESPONSE(a, b), CHAINSUCCESSION(b, c),

NOTSUCCESSION(a, b)}

MQI2 =

{CHAINRESPONSE(a, b), RESPONSE(b, d),

ALTERNATERESPONSE(d, e), CHAINRESPONSE(e, c),

NOTSUCCESSION(a, b)}

3.3.2.3 MIS in Declare

When searching for MI a different approach was made (shown in Algorithm 5):

First there has to be an existence template with one event x. With this template it

3.3. BUSINESS RULES 40

can be assumed that this event has to be in the instance (or anything similar).

Now all paths from this event x are computed and stored with the Finding Paths

(Line 5). The next step is similar to 3.3.2.2, for all negation templates with events a

and b is checked if there are paths from x to a and x to b (Line 9-13). When for both

events paths exist it can be presumed that events a and bwill occur in the instance

and therefore violate the negation constraint and considered and MI (Line 14-17).

Algorithm 5: Computation of minimal inconsistent subsets
Input : Set of constraints C
Output: MI(C)

1 mis← ∅;
2 exConstraints = getExistenceConstraints();
3 negConstraints = getNegationConstraints();
4 foreach e:exConstraints do
5 Pe = findPaths(e);
6 foreach n:negConstraints do
7 firstPath← ∅;
8 sndPath← ∅;
9 foreach p : Pe do

10 if p.endEvent().equals(n.getF irstEvent()) then
11 firstPath = firstPath+ p

12 if p.endEvent().equals(n.getSecondEvent()) then
13 sndPath = sndPath+ p

14 if !firstPath.isEmpty() && !sndPath.isEmpty() then
15 foreach p1 : firstPath do
16 foreach p2 : sndPath do
17 mis = mis+ {p1 + p2}

Example 15 (MI in DECLARE). The following declarative process model is an

modification of the constraint set in 3.3.2.2. In addition C2 contains an existence

3.3. BUSINESS RULES 41

template which requires the event a to be present in an instance. The paths and

figures regarding C1 are identical for C2.

C2 = {CHAINRESPONSE(a, b), RESPONSE(b, d),

CHAINSUCCESSION(b, c), ALTERNATERESPONSE(d, e),

CHAINRESPONSE(e, c), PRECEDENCE(d, c),

NOTSUCCESSION(a, c) PARTICIPATION(a)}

After Algorithm 5 the paths for the event a in the PARTICIPATION constraint are

computed and stored (cf. 3.3.2.2).

Now for each negation constraint in C2 the reachability of the events contained

in the negation constraint is checked. Since there is only one negation constraint

(NOTSUCCESSION(a, c)) this is the only one to be checked. Since the event a is

reachable through the PARTICIPATION(a) constraint and there are paths which

have the event c as their end event, the algorithm will find the inconsistencies in

C2 resulting in the following MIs:

• MI1 = {PARTICIPATION(a), CHAINRESPONSE(a, b),

CHAINSUCCESSION(b, c)}

• MI2 = {PARTICIPATION(a), CHAINRESPONSE(a, b), RESPONSE(b, d),

ALTERNATERESPONSE(d, e), CHAINRESPONSE(e, c)}

3.3.3 DMN

3.3.3.1 Finding Overlaps

In order to be able to determine if rows are overlapping we have to check for each

column if there are overlapping rows. This means it has to be identified if there

is a specific input for which two or more rows can be activated. In this thesis

a similar approach to Calvanese et al. [CDL+16] was made. Calvanese made a

similar approach to find overlapping rows in decision tables. But in contrast this

approach focuses of finding overlapping rows not overlapping sets in decision

tables which is more reasonable attempt to find MI due to the reason that only

two rows can contradict each other either in an MI or MQI.

3.3. BUSINESS RULES 42

Boolean
Finding contradicting or overlapping boolean values is realized with the basic

boolean operators:

a b (a ∧ b) ∨ ¬(a ∨ b)

False False True

True False False

False True False

True True True

Table 10 Truth Table

Basically the term evaluates if the two boolean values a and b are the same. In

Java this term was implemented through the equals function which checks if two

values are the same.

Furthermore booleans can cause inconsistency within decision tables, when they

contradict each other. In other words when the terms evaluates for two output

values to False values contradict each other and can cause an inconsistency.

Number Comparison
In case the type of the current input column is a numeric type, each value of a

row for this column has to be compared to each other value in the column. The

following table show each boolean functions to compare the possible numeric

values in decision tables.

3.3. BUSINESS RULES 43

A\B < = > [A1..A2]

< (A < B) ∨
(B < A)

A < B (A 6= B) ∧
((A < B) ∨
(B > A))

A1 < B

= B < A A == B B > A (A1 <= B) ∧
(A2 >= B)

> (B 6= A) ∧
((B < A) ∨
(A > B))

A > B (A > B) ∨
(B > A)

A2 > B

[B1..B2] B1 < A (B1 <= A)

∧
(B2 >= A)

B2 > A ((A1 >= B1)∧
(A1 <= B2))∨
((A2 >= B1)∧
(A2 <= B2))∨
((B1 >= A1)∧
(B1 <= A2))∨
((B2 >= A1)∧
(B2 <= A2))

Table 11 Comparison of Numbers in DMN Tables

But to compare each value with each other value in the column is inefficient

due to the reason that the complexity rises factorial. The complexity in this case

would be O(x) =
∏x
i=1 i where x is the number of rows in the decision table.

To decrease the complexity another approach was made. All values of a numeric

type column were ordered and transferred to number line.

Example 16. Numeric values: {> 11, < 9, [−6..1]}
Corresponding number line:

<9 <9[-6..1] [-6..1]>-11 >-11

Figure 4 Number Line

Now to find all overlaps, there is an iterator through the number line which

adds all corresponding matches to an set and stores the values. For example for

3.3. BUSINESS RULES 44

the value > −11 all remaining values on the number line are added to the set, or

for the value < 9 all values iterated over before are added to the set.

The only time a value has to be compared the way described in Table 11 is, when

to values are attached to the same number on the number line. Leaving the op-

timal complexity around O(x) = x where x is the number of rows we have. The

worst case would be the same complexity as before, but for it to happen all base

values must be the same, which would be unlikely.

Dates
For finding the overlapping rows in a column with a date type a much simpler

approach was made. Similar to Table 11 every value has to be compared to each

other value in the column.

It has to be noted, that a similar approach to Example 16 can be made where each

date variable is added to a line and to find each overlap the same approach as

before is made.

Strings
Comparing strings is relatively simple, when they are equal there is an overlap

otherwise not.

But one additional property of strings in DMN is that they can be variables which

can also be negated. When a simple string is stored the characters must be sur-

rounded by quotes, otherwise it is considered a variable.

The negation of variables is realized through the not() function. In order to check

if there are output string variables which contradict each other it has to be checked

if there is for each non negated variable a negated version. When there are this

can lead to inconsistency within the decision table.

3.3.3.2 Algorithm for one Table

Algorithm 6 shows how the finding of MI for one decision table is implemented.

As input the algorithm takes a decision table with I as all input columns and O

as all output column.

The first step is to find all contradicting output values for the row r for each

3.3. BUSINESS RULES 45

output column Oi in O.

Algorithm 6: Computation of minimal quasi inconsistent subsets in
one decision table

Input : DMN Decision Table T = (I,O)

Output: MI(T)

1 mi← ∅
2 pairs← ∅
3 foreach Oi ∈ O do
4 foreach r ∈ Oi do
5 foreach r′ ∈ Oi|r ∧ r′ |= ⊥ do
6 pairs = pairs+ {r + r′}

7 foreach Ii ∈ I do
8 tmpPairs← ∅
9 foreach r ∈ Ii do

10 foreach r′ ∈ Ii|r.isOverlapping(r′) == true ∧ {r + r′} ∈ pairs do
11 tmpPairs = tmpPairs+ {r + r′}

12 pairs = tmpPairs

13 mi← pairs

Followed by going through each input column and their corresponding row

values to check if there are input values that will activate a pair of rows. This

realized through isOverlapping function which is implemented for each type of

value occurring in DMN. The details on how it works for each type is outlined in

the Finding Overlaps section.

Additionally it is checked if the overlaps occur in the pairs set to filter out all

negligible pairs of rows.

After each iteration over an input column the pairs set is replaced with the tmpPairs

set. This is because we want do eradicate all not overlapping rows because those

are not able to be contradicting each other caused by the reason that there can not

be a input value set which will activate those rows. This replacement of the pairs

value will most likely to decrease the row pairs to check.

When all input columns have been checked the pairs variable will contain all

MI in the decision table. The result is then returned in the mi variable.

3.3. BUSINESS RULES 46

Example 17 (Inconsistent Decision Table). Consider Table 6 as our input table

for the algorithm.

First each output column is checked for contradicting outputs. In this case three

row pairs are stored into the variable:

pairs ={p1 = [Row1, Row2],

p2 = [Row1, Row3],

p3 = [Row1, Row4]}

Now for each of the pairs it is checked if the corresponding input values are over-

lapping. The pair p1 is deleted right after the first input column „Credit Rat-

ing“ because the values contradict each other so that the rows could never be

activated at the same time. The other two pairs are not deleted as their input val-

ues for this columns are empty.

In the next column „Credit Card Balance“ both row pairs still overlap p2 with the

input value 10000 and p3 for the reason that the input value for Row 4 is empty.

Last the „Loan Balance“ is checked and still both pairs overlap p3 with the input

value range of [40000..49999] and p2 for the reason that the input value for Row 3

is empty.

Now that all input columns have been iterated, the pairs remaining in the vari-

able can be regarded as quasi inconsistent, since there is at least one input set for

each pair that activates the rows contained therein.

3.3.3.3 Limitations

Currently the solver for decision tables is not capable of finding quasi inconsis-

tencies in multiple depending decision tables. This is a complex problem which

requires future work.

One of the problems with depending tables is shown in Example 18.

Example 18 (Depending Decision Tables). Consider Table 12 the first table to be

evaluated. Since the input value overlaps for each row, each row can be activated

at the same time resulting in the fact that the Input1 and Input2 variable have

multiple values. (Input1 = b,c and Input2 = d,e).

3.3. BUSINESS RULES 47

Input Output

C Input Input1 Input2

1 a b -

2 a c -

3 a - d

4 a - e

Table 12 First table

As Table 13 input columns are depending on the output variables of Table

12 and the output variables have multiple values the two rows are activated too.

This results in a contradiction in this table (f and not(f)).

Input Output

C Input1 Input2 Output

1 b d f

2 c e not(f)

Table 13 Dependent Quasi Inconsistent Table

Which would then be a quasi inconsistency:

MQI = {

A = {Input = a},

C = {Row 1 @ Table 13,

Row 2 @ Table 13,

Row 1 @ Table 12,

Row 2 @ Table 12,

Row 3 @ Table 12,

Row 4 @ Table 12}}

3.3. BUSINESS RULES 48

The problem with finding with quasi inconsistencies in multiple decision ta-

bles like in Example 18 is that the rows where the contradicting values occur is

dependent on various other tables. This case would require the solver to replace

the dependent input columns with the lines of the original table that have the

desired output values. But this would require additional merging steps to ensure

that the rows stays semantically the same. This would result in swapping out the

values for the corresponding rows:

Input Output

C Input1 Input2 Output

1 Row 1 @ Table 12 Row 3 @ Table 12 f

2 Row 2 @ Table 12 Row 4 @ Table 12 not(f)

Table 14 Dependent Quasi Inconsistent Table

The problem is revealed here where both rows refers to the same table where

they have the same input columns. In case of the example this would be no prob-

lem but when the input values for the two rows that where inserted would not be

the same this would be an issue due to the reason that DMN does not allow you

to have multiple values for one input value.

Another way would be to evaluate each table first which is not dependent and

step-wise evaluate the other tables in order to assess the dependent tables cor-

rectly. So the evaluation would compute sets of rows which can occur together as

well as the set of their corresponding output values. This is much like the conduct

of Example 18.

3.4. BPMN 49

3.4 BPMN

The main objective for BPMN in this thesis is to check models against DECLARE

constraints. A similar concept was also developed by Mishra et al. for Semantic

of Business Vocabulary and Business Rules (SBVR)[MS15] .

In order to do that is has to be specified how each template is checked against a

BPMN model. First the Existence templates has to be defined

• PARTICIPATION(A): A vertex with the label A occurs in the model.

• ATMOSTONE(A): When a vertex with the label A occurs in the model there

is no path from A to A

• INIT(A): A start event with the label A occurs in the model.

• END(A): An end event with the label A occurs in the model.

Additionally the Relation templates are defined:

• RESPONDEDEXISTENCE(A,B): When a vertex with the labelA occurs in the

model there must be a path from A to B

• COEXISTENCE(A,B): When a vertex with the label A occurs in the model

there must be a path from A to B, when a vertex with the label B occurs in

the model there must be a preceding path from B to A

• RESPONSE(A,B): When a vertex with the label A occurs in the model there

must be a sequence path from A to B

• PRECEDENCE(A,B):When a vertex with the label B occurs in the model

there must be a preceding sequence path from B to A

• SUCCESSION(A,B): When a vertex with the label A or B occurs in the

model there must be a sequence path from A to B additionally there must

be a preceding sequence path from B to A.

• ALTERNATERESPONSE(A,B): When a vertex with the label A occurs in the

model there must be a sequence path from A to B and their must not be a

sequence path from A to A

3.4. BPMN 50

• ALTERNATEPRECEDENCE(A,B): When a vertex with the label B occurs in

the model there must be a preceding sequence path from B to A and their

must not be a sequence path from B to B

• ALTERNATESUCCESSION(A,B): When a vertex with the labelA orB occurs

in the model there must be a sequence path from A to B and there must be

a preceding sequence path from B to A. Additionally there must not be a

sequence path from A to A and B to B

• CHAINRESPONSE(A,B): When a vertex with the labelA occurs in the model

one of the next vertices must be B

• CHAINPRECEDENCE(A,B): When a vertex with the label B occurs in the

model one of the preceding vertices must be A

• CHAINSUCCESSION(A,B): When a vertex with the label A occurs in the

model one of the next vertices must be B and when a vertex with the label

B occurs in the model one of the preceding vertices must be A.

Not all SUCCESSION and COEXISTENCE constraints restrictions are checked ex-

actly like described because when one restriction is met the other is inherited. For

example with the template SUCCESSION(A,B) if there is an vertex in the model

with the label A and there is a sequence path from A to B there must be also a

preceding path from B to A. This is inherited from the existence of a path from A

to B.

Lastly there are negation relation templates:

• NOTCOEXISTENCE(A,B): When a vertex with the label A occurs in the

model there must not be a path from A to B and when a vertex with the

label B occurs in the model there must not be a preceding path from B to

A

• NOTSUCCESSION(A,B): When a vertex with the label A or B occurs in the

model there must not be a sequence path from A to B additionally there

must not be a preceding sequence path from B to A.

• NOTCHAINSUCCESSION(A,B): When a vertex with the label A occurs in

the model all of the next vertices must not B and when a vertex with the

label B occurs in the model all of the preceding vertices must not be A.

3.4. BPMN 51

3.4.1 Graph

Like the solver for DECLARE a graph based approach was made for BPMN.

Definition 16 (Graph for BPMN). Given a Business Process Model M = (V, F),

where V is the set of elements and F is the set of flows within the model. Flows

are defined as f = (N, t) where N = v1 × v2 and t the type of flow (e.g. sequence

or message flow).

Since this is basically aligned with the definition of a graph it can easily trans-

formed into one: Graph G=(A,E) where A = {v|v ∈ V } and E ⊆ A × A. In

addition ∀e ∈ E exists a type t which is taken from the the original flow f .

A example for the transformation of a BPMN model to a graph is shown in Ex-

ample 19.

In the Definition 16 is defined, that for each element in a BPMN a node is cre-

ated and that these nodes are connected through edges which have a type t. This

type is corresponding to the flow type in the business process model (sequence

flow or message flow).

3.4.2 Checking DECLARE Constraints in BPMN

When there is a BPMN model to check against DECLARE constraints, first the

BPMN ModelM is transformed into a graph (line 2). The function generateGraph

creates the graph according to the definition Graph for BPMN.

After the graph is created each constraint t in the set C is checked if the require-

ments are met within the model M with the help of the graph generated from M

(line 3-12).

The check of requirements of the constraints are according to the specification

listed in 3.4.

Additionally further information about the inconsistency is gathered depending

on the type of the inconsistency. Following types are considered in the implemen-

tation:

3.4. BPMN 52

Algorithm 7: Computation of minimal quasi inconsistent subsets in
fcl

Input : Theory I = (M, C)
Output: MI(I)

1 mi← ∅
2 G = generateGraph(M)
3 foreach t ∈ C do
4 if t is existence template then
5 if !checkExistenceRequirements(t, G) then
6 mi = mi + t

7 else if t is relation template then
8 if !checkRelationRequirements(t, G) then
9 mi = mi + t

10 else if t is negation relation template then
11 if !checkNegationRelationRequirements(t, G) then
12 mi = mi + t

Inconsistency Type Description

MissingA Event A is missing

MissingB Event B is missing

LoopA Loop at event A

LoopB Loop at event B

Precedence Event B has no Event A as predecessor

Response Event A has no Event B as Response

NoChainPredecessor Event A is not a direct predecessor of Event B

ChainPredecessor Event A is a direct predecessor of Event B

ChainSuccessor Event B is a direct successor of Event A

PathsAB There are paths between A and B

NoChain There is no direct connection between Event A
and B

Table 15 Description of Inconsistency Types

3.4. BPMN 53

Not each inconsistency type occurs for each DECLARE template. This is be-

cause of the definition of the templates and the types. For example for the con-

straint PRECEDENCE(A,B) the inconsistency type MissingB can never occur since

for the constraint to be activated there has to be an vertex with the label B.

So in Table 16 for each constraint DECLARE template the possible inconsistency

types are listed. In addition to the inconsistency types a path is added to the MI.
Which kind of path for each inconsistency type is listed in Table 17.

It has to be noted that all inconsistency types listed in Table 15 are mostly for

relation templates.

Inconsistency Type Inconsistency Path

MissingA All Paths from B

MissingB All Paths from A

LoopA The loop path at A

LoopB The loop path at B

Precedence All preceding paths from B

Response All Paths from A

NoChainPredecessor All direct predecessors from B

ChainPredecessor The direct predecessor Event A

ChainSuccessor The direct successor Event B

PathsAB The paths between A and B

NoChain The direct successor B

Table 17 Description of Paths with their Inconsistency Types

There are only two inconsistency types which can also occur for existence

templates: MissingA and LoopA. Where MissingA can occur for PARTICIPATION,

INIT, END, LoopA can only occur for ATMOSTONE. That comes from the reason

that when there is a loop at A the event A can occur more than once and therefore

violating the ATMOSTONE constraint.

Furthermore two more inconsistency types were added in order to point out the

3.4. BPMN 54

Inconsistency types

DECLARE templates M
is

si
ng

A

M
is

si
ng

B

Lo
op

A

Lo
op

B

Pr
ec

ed
en

ce

R
es

po
ns

e

N
oC

ha
in

N
oC

ha
in

Pr
ed

ec
es

so
r

C
ha

in
Pr

ed
ec

es
so

r

C
ha

in
Su

cc
es

so
r

Pa
th

sA
B

RESPONDEDEXISTENCE 3

COEXISTENCE 3 3

RESPONSE 3

PRECEDENCE 3

SUCCESSION 3 3

ALTERNATERESPONSE 3 3

ALTERNATEPRECEDENCE 3 3

ALTERNATESUCCESSION 3 3 3 3

CHAINRESPONSE 3

CHAINPRECEDENCE 3

CHAINSUCCESSION 3 3

NOTCOEXISTENCE 3

NOTSUCCESSION 3

NOTCHAINSUCCESSION 3 3

Table 16 Inconsistency types for DECLARE relation templates

3.4. BPMN 55

requirement of the type for the INIT and END templates. These are named NotInit

and NotEnd aligning with their corresponding template. These types can only

occur when the event is in the process model but the type does not meet the

constraint (for INIT start event and for END end event).

Example 19 (BPMN checked with DECLARE).
Consider the following business process model in BPMN:

Task B

Task A Task D

Task C

Figure 5 Example BPMN model

In combination with the following DECLARE constraint set.

C =

{ALTERNATEPRECEDENCE(Task A,Task B),

NOTCOEXISTENCE(Task C, Task B),

NOTCHAINSUCCESSION(Task C,Task D),

ALTERNATERESPONSE(Task A,Task D),

CHAINRESPONSE(Task A,Task C)}

From the model in Figure 5 a graph is generated after the Definition 16. The corre-

sponding graph is shown in Figure 6. This graph looks much like the model, but

the gateways have been renamed and the edges have the flow type has a weight

(the edge weight in the figure is omitted due to the reason that only sequence

flows occur in the model).

3.4. BPMN 56

Figure 6 Graph for example model

When the graph is created, each constraint is checked to see if it is met in the

graph. In order to see if the requirements of the constraint is met the Finding

Paths algorithm is needed. For each constraint the activating entity (or entities)

is taken and all paths from the event are computed. Each path is now checked

if it aligns with the constraint or violates it. For example the for the constraint

CHAINRESPONSE(Task A, Task B) it takes the Task A and computes the following

paths:

• p1 = [Task A, G1, G2, Task B, G3, G2, Task B]12

• p2 = [Task A, G1, G2, Task B, G3, G4, Task D, End]

• p3 = [Task A, G1, Task C, G4, Task D, End]

Now the paths are checked and since p3 satisfies the constraint it is not violated

within the process model.

This is done for each constraint resulting in the model violating some of the con-

straints:

• MI1 =
NOTCHAINSUCCESSION(Task C, Task D),

Reason: ChainSuccessor,

Path=[Task A, G1, Task C]

• MI2 =
ALTERNATEPRECEDENCE(Task A, Task B),

Reason: LoopB,

Path=[Task A, G1, G2, Task B, G3, G2, Task B]

12The algorithm stops when a task node occurs the second time

3.4. BPMN 57

The MI1 consists of the NOTCHAINSUCCESSION(Task C, Task D) and the path

violating it. The path is a violation f the constraint although there is a gateway G1

between Task C and Task D. Because the gateway will never occur in a sequence

of tasks, so task D is the direct successor of task C in a sequence.

The ALTERNATEPRECEDENCE(Task A, Task B) constraint in MI2 on the other hand

is violated because of loop at Task B which contradicts the requirement of the

ALTERNATEPRECEDENCEtemplate that the entity B can not occur twice before

entity A occurs.

3.4.3 Limitations

Currently the nodes in the graph generated from the BPMN are based on the

labels of the corresponding tasks. This can lead to a drawback when there are

multiple tasks with the same label. This can cause problems when checking DE-

CLARE constraints with labels that are occurring multiple times in the BPMN.

Also a limitation of the current implementation is that it is not possible to check

constraints which involve normal tasks in combination with tasks which are in an

expanded sub process. In the graph were the constraints are checked on there is

no connection between the „normal“ vertices and the vertices located in the sub

process. This is because the start event of the sub process is not connected via a

sequence or message flow which causes the transformation algorithm to make no

connection an considering the sub process as its own entity.

Chapter 4

Evaluation

For evaluation the aspects of finding MI, MQI and checking DECLARE constraints

against BPMN models is done with one system configuration (CPU: Intel Xeon

E3-1230v5 @ 3.40 GHz1, RAM: 32GB DDR4 ECC @ 2133MHz, OS: Windows 10

Version 1803).

4.1 Business Rules

For the evaluation of the business rule solvers the runtime for each is collected as

well as the regarding MI and MQI count for the test data sets.

4.1.1 Defeasible Logic

For FCL a random theory generator was implemented. This generator creates a

FCL theory from different parameters:

• ruleCount: Number of rules

• literalCount: Number of literals

• maxBodyLiteral: Number of maximal body literals in strict and defeasible

rules

• pStrict: Percentage of strict rules

1https://ark.intel.com/de/products/88182/Intel-Xeon-Processor-
E3-1230-v5-8M-Cache-3-40-GHz-/

58

https://ark.intel.com/de/products/88182/Intel-Xeon-Processor-E3-1230-v5-8M-Cache-3-40-GHz-/
https://ark.intel.com/de/products/88182/Intel-Xeon-Processor-E3-1230-v5-8M-Cache-3-40-GHz-/

4.1. BUSINESS RULES 59

• pDefeasible: Percentage of defeasible rules

• pFacts: Percentage of facts

• pSuperiority: Percentage of superiorities for contradicting defeasible rules

For the evaluation following parameters were fixed:

• maxBodyLiteral = 2

• pStrict = 30%

• pDefeasible = 50%

• pFact = 20%

• pSuperiority = 5%

The only things that were changed throughout the runs are the number of rules

and the number of literals.

In Figure 7 the compute time for the generated theories is shown. It stands out

that the computation time mostly is negligible, but the fewer the number of liter-

als and the greater the number of rules the greater the computation time.

200
300

400
200

300
400

101

103

105

Number of rules Number of literals

R
un

ti
m

e
in

m
s

Figure 7 Runtime statistics for the FCL solver

This observation can also be made in Figure 8 and Figure 9. The fewer the

number of literals and the greater the number of rules the greater the number of

MI or MQI in the test data.

4.1. BUSINESS RULES 60

200
300

400
200

300
400

0

50

Number of rules Number of literals

M
IC

ou
nt

Figure 8 MI in FCL test data

This can be explained because the lower the amount of literals in a theory

the higher the dependability of rules within the theory. This results from the fact

that literals will occur more often in rules as well as their contradicting literal the

lower the amount of available literals and the higher the amount of generated

rules are.

200
300

400
200

300
400

10−1

101

103

Number of rules Number of literals

M
Q

IC
ou

nt

Figure 9 MQI in FCL test data

4.1. BUSINESS RULES 61

A connection can be made between the computational time and the amount

of MI/MQI.
But this applies only to the FCL theory generator, which generates the rules in a

randomly manner. Therefore the figures show only the results for this particular

data set.

In addition to this configuration of the theory generator, three further test con-

figuration runs were performed. The corresponding graphics are listed in the

Appendix D. From these a few observations can be made:

• The higher the amount of facts, the lower the runtime (cf. Figure 16)

• The higher the amount of facts, the lower the amount of MQI (cf. Figure 18)

• The higher the max amount of body literals, the higher the runtime (cf.

Figure 19)

• The higher the max amount of body literals, the lower the amount of MI (cf.

Figure 20)

• The higher the max amount of body literals, the higher the amount of

MQI (cf. Figure 21)

• Swapping the share of defeasible rules to the strict rules have no big impact

on performance and amount of MI/MQI (cf. Appendix D.1)

These are observations that can be made, only if the data is randomly generated.

In not generated theories the correlations can be similar to the shown one but do

not have to.

4.1.2 Declarative Process Model

For the evaluation of the DECLARE solver the same dataset as in [CDD19a] was

used:

• BPI challenge 20172. This data set contains an event log of a loan applica-

tion process of a Dutch financial institute. The log is constituted of 1,202,267

events corresponding to 31,509 loan application cases.

2https://www.win.tue.nl/bpi/doku.php?id=2017:challenge

https://www.win.tue.nl/bpi/doku.php?id=2017:challenge

4.1. BUSINESS RULES 62

• BPI challenge 20183. This data set contains an event log of a process at the

level of German federal ministries of agriculture and local departments.

The log comprises 2,514,266 events corresponding to 43,809 application

cases.

• Sepsis 20164. This data set contains an event log of a hospital process

concerning sepsis, which is a life threatening condition. The log contains

around 1000 cases with 15,000 events.

While it is the same dataset the outcome of found MQI is the same as in [CDD19a]

as well as every other measure computed by the solver.

However the runtime is about 40% faster than in Corea et al.5

Log BPI Challenge ’17 BPI Challenge ’18 Sepsis ’16

Constraints 305 70 207

IQMI
6 28954 25303 7736

IQ
MIC

2573.54 1763.43 848.70

IQp 87 62 53

IQmv 0.84 0.92 0.81

Runtime 15601ms 6959ms 2532ms

Table 18 Results of runtime experiments for the analyzed data-sets

This can be due to the reason of the hardware or software configuration dif-

ference between the test runs. The basic algorithm has not changed between the

test runs which could have also impacted the performance.

Considering the runtime results it is possible with the algorithm developed in this

thesis to find MQI in DECLARE data sets which are not only simple contradicting

constrains as in [DCMMM17] by extending the scope to constraint chains which

also can lead to inconsistencies.
3https://www.win.tue.nl/bpi/doku.php?id=2018:challenge
4https://data.4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-

dc35f063a460
5BPI17: 43%, BPI18: 36%, Sepsis16: 42,18%

https://www.win.tue.nl/bpi/doku.php?id=2018:challenge
https://data.4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://data.4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

4.1. BUSINESS RULES 63

4.1.3 DMN

The evaluation for DMN was made with the dmn-generator implemented from

Ramberger[Ram18].

The generator produces one kind of a decision table which consists of a variable

number of rows and columns as well as one output column.

The input columns all are integer range inputs and the output type is strings act-

ing as boolean variables.

Figure 10 shows the number of MQI depending on the number of input columns

and the number of rows. Unlike the MQI count for the FCL generator the DMN

generator produces decision tables with linear increasing MQI count for increas-

ing number of rows. The different number of columns seems to have towards

zero effect on the number of MQI in a decision table.

5

10
200

400

0

5,000

Number of columns Number of rows

N
um

be
r

of
M

Q
I

Figure 10 Number of MQI in DMN evaluation data set

Taking a deeper look in the algorithm of the dmn-generator it was evident that

the integer variable creation is the cause of this behaviour. The integer ranges

generated have an lower bound is between 0 and 15 and the upper bound is

a number between 15 and 45. This results in that nearly all the generated rows

overlap which causes the high amount of MQI shown in Figure 10. The amount of

MQI would be higher if the output column would had more contradicting boolean

variables.

4.1. BUSINESS RULES 64

This circumstance produces a sub optimal test data set which hurts the perfor-

mance of the algorithm significantly. This leads to the runtime in Figure 11.

5

10
200

400

102

103

104

Number of columns Number of rows

R
un

ti
m

e
in

m
s

Figure 11 Runtime statistics for the DMN solver

With either the lowest amount of columns (1) or the lowest amount of rows

(50) the runtime is relatively low with a maximum of 2.7s for 9 columns with 50

rows. With the increasing amount of rows and columns the runtime rises expo-

nentially to a maximum of 26.5s for 10 columns with 450 rows.

Nonetheless the results of the test data set can be regarded positive due to the fact

that the test data is highly sub optimal as explained before. It can be presumed

that real data would behave different because normally decision trees do not have

that high amount of overlapping rows which can lead to inconsistencies.

4.2. BPMN WITH DECLARE 65

4.2 BPMN with DECLARE

For evaluating applying DECLARE constraints to business process models in BPMN

an own approach was made, due to the lack of specific DECLARE constraints in

combination with the corresponding business process model.

The business process model in Appendix C was used in combination with 28 DE-

CLARE constraints which have been fabricated to test the solver. Each template

type has occurred twice. One time were it is satisfied and one time were it is

violated in the process model.

Part Time (ms)

Initialization Time 62 ms

Solver Time 5576 ms

Table 19 Runtime for BPMN with DECLARE implementation

In Table 19 the runtime for the specific dataset in combination with the BPMN

in Appendix C is shown. The initialization time includes the time needed to

parse the BPMN and DECLARE file and the creation of a graph from the BPMN.

The solver time stands for the time needed to check each of the constraints in

the DECLARE file if they are satisfied in the BPMN. In Table 20 the amount of

paths for the corresponding non satisfied constraints is shown. Here it is notable

that the non satisfied RESPONDEDEXISTENCE and COEXISTENCE constraints have

the highest amount of paths paired with their inconsistency type. This is due to

the reason that for those two relation templates the corresponding inconsistency

types will normally have the highest number of possible paths conflicting with

the templates. This is because, unlike the other templates, these templates will

also consider the message flows in BPMNs. Which results in the higher compu-

tation time needed by those templates. Whereas the NOTCOEXISTENCE template

also considers message flows, but when this type of template is not satisfied there

are most likely fewer amount of paths as the only paths conflicting will be be-

tween the events in the constraint.

4.2. BPMN WITH DECLARE 66

DECLARE templates Path count

RESPONDEDEXISTENCE 229

COEXISTENCE 1217

RESPONSE 3

PRECEDENCE 2

SUCCESSION 6

ALTERNATERESPONSE 6

ALTERNATEPRECEDENCE 2

ALTERNATESUCCESSION 8

CHAINRESPONSE 1

CHAINPRECEDENCE 1

CHAINSUCCESSION 1

NOTCOEXISTENCE 6

NOTSUCCESSION 6

NOTCHAINSUCCESSION 1

Table 20 Paths for each inconsistency

Chapter 5

Conclusion

This thesis documents the implementation of a library for finding inconsistencies

and quasi inconsistencies in different business rule languages. Because these in-

consistencies and quasi inconsistencies make business rule bases not usable this is

important to detect those in knowledge bases. To solve the problem the prototype

library contains an approach to find those inconsistencies and their origins. The

library offers the possibility to check the rule bases at design time to find the con-

tradictory elements within and their corresponding overlap conditions, as well as

a quantitative analysis of the found inconsistencies through inconsistency mea-

sures. The individual error types in business rules defined by Smit et al. [SZB17]

and the ability of the library for finding those errors is listed in Appendix A.

Yet there are still some limitations to the library regarding the ability to consider

literal boolean functions properly as well as SPINdle restrictions such as the literal

variables for the FCL solver. But the main impairment for the library is its inabil-

ity to find quasi inconsistencies in multiple dependent decision tables. There has

been a theoretical approach as discussed in 3.3.3.3, but has not yet been imple-

mented. For future work this is the main objective to focus on. Furthermore the

performance of the library can be optimized through parallel execution where

applicable as well as minor improvements such as the implementation of differ-

entiation of tasks with the same label in BPMN (cf. 3.4.3).

To the best of our knowledge, this is the first library to compute quasi inconsisten-

cies in different formalisms, other researches have proposed different approaches

to find basic inconsistencies such as Di Ciccio et al.[DCMMM17] for DECLARE,

but no quasi inconsistencies which can also lead to serious problems within busi-

67

68

ness rule bases which can result in unusable declarative process models.

This is also yet the first implementation of a library which provides through ad-

ditional information, such as different rule base measures, insights of the quality

of a given rule base or model based on formalisms which are used in praxis. In

addition, elemental measurements and inconsistency types can help characterize

the culpability of certain elements and thus provide a helpful hand in resolving

the inconsistencies in which they are involved.

Another feature is the ability to check DECLARE constraints against business pro-

cess models in BPMN which is, as far as we know, also a first implementation and

application for declarative process models.

Bibliography

[ALR15] AA, Han van d. ; LEOPOLD, Henrik ; REIJERS, Hajo A.: Detect-

ing Inconsistencies Between Process Models and Textual Descrip-

tions. In: MOTAHARI-NEZHAD, Hamid R. (Hrsg.) ; RECKER, Jan

(Hrsg.) ; WEIDLICH, Matthias (Hrsg.): Business Process Manage-
ment. Cham : Springer International Publishing, 2015. – ISBN

978–3–319–23063–4, S. 90–105

[BBG+90] BELL, J ; BROOKS, D ; GOLDBLOOM, E ; SARRO, R ; WOOD, J: Re-

engineering case study analysis of business rules and recommen-

dations for treatment of rules in a relational database environ-

ment. In: Bellevue Golden: US West Information Technologies Group
(1990)

[BMS16] BURATTIN, Andrea ; MAGGI, Fabrizio M. ; SPERDUTI, Alessan-

dro: Conformance checking based on multi-perspective declara-

tive process models. In: Expert Systems with Applications 65 (2016)

[CA16] CHITTIMALLI, Pavan K. ; ANAND, Kritika: Domain-independent

Method of Detecting Inconsistencies in SBVR-based Business

Rules. In: Proceedings of the International Workshop on Formal Meth-
ods for Analysis of Business Systems. New York, NY, USA : ACM,

2016 (ForMABS 2016). – ISBN 978–1–4503–4214–8, 9–16

[CD18a] COREA, Carl ; DELFMANN, Patrick: Supporting Business Rule

Management with Inconsistency Analysis. In: Proceedings of the
BPM 2018 Industry Track co-located with the 16th International Con-
ference on Business Process Management (BPM 2018), Sydney, Aus-
tralia, September 09-14, 2018., 2018

69

BIBLIOGRAPHY 70

[CD18b] COREA, Carl ; DELFMANN, Patrick: A Tool to Monitor Consistent

Decision-Making in Business Process Execution. In: Proceedings of
the Dissertation Award, Demonstration, and Industrial Track at BPM
2018 co-located with 16th International Conference on Business Process
Management (BPM 2018), Sydney, Australia, September 9-14, 2018.,
2018, 76–80

[CDCDGM18] CECCONI, Alessio ; DI CICCIO, Claudio ; DE GIACOMO, Giuseppe

; MENDLING, Jan: Interestingness of traces in declarative process

mining: The Janus LTLpf approach. In: BPM, 2018, S. 121–138

[CDD19a] COREA, Carl ; DEISEN, Matthias ; DELFMANN, Patrick: Quasi-

Inconsistency in Declarative Process Models. In: Submitted to 17th
Int. Conference on Business Process Management, BPM 2019, 2019

[CDD19b] COREA, Carl ; DEISEN, Matthias ; DELFMANN, Patrick: Resolv-

ing Inconsistencies in Declarative Process Models based on Cul-

pability Measurement. In: 15. Internationale Tagung Wirtschaftsin-
formatik, WI 2019, 2019

[CDL+16] CALVANESE, Diego ; DUMAS, Marlon ; LAURSON, Ülari ; MAGGI,

Fabrizio M. ; MONTALI, Marco ; TEINEMAA, Irene: Semantics and

Analysis of DMN Decision Tables. In: LA ROSA, Marcello (Hrsg.)

; LOOS, Peter (Hrsg.) ; PASTOR, Oscar (Hrsg.): Business Process
Management. Cham : Springer International Publishing, 2016. –

ISBN 978–3–319–45348–4, S. 217–233

[CLRS09] CORMEN, T.H. ; LEISERSON, C.E. ; RIVEST, R.L. ; STEIN,

C.: Introduction to Algorithms. MIT Press, 2009 (Com-

puter science). https://books.google.de/books?id=i-

bUBQAAQBAJ. – ISBN 9780262033848

[DAPS09] DER AALST, Wil M. ; PESIC, Maja ; SCHONENBERG, Helen:

Declarative workflows: Balancing between flexibility and sup-

port. In: Computer Science-Research and Development 23 (2009), Nr.

2, S. 99–113

[DCMM13] DI CICCIO, Claudio ; MECELLA, Massimo ; MENDLING, Jan: The

effect of noise on mined declarative constraints. In: International

https://books.google.de/books?id=i-bUBQAAQBAJ
https://books.google.de/books?id=i-bUBQAAQBAJ

BIBLIOGRAPHY 71

Symposium on Data-Driven Process Discovery and Analysis Springer,

2013, S. 1–24

[DCMMM17] DI CICCIO, Claudio ; MAGGI, Fabrizio M. ; MONTALI, Marco ;

MENDLING, Jan: Resolving inconsistencies and redundancies in

declarative process models. In: Information Systems 64 (2017)

[dmn18] ; Object Management Group (Veranst.): Decision Model and Nota-
tion. https://www.omg.org/spec/DMN. Version: 2018

[GH13] GREGOR, Shirley ; HEVNER, Alan R.: Positioning and presenting

design science research for maximum impact. In: MIS quarterly 37

(2013), Nr. 2

[GK07] GHOSE, Aditya ; KOLIADIS, George: Auditing Business Process

Compliance. In: KRÄMER, Bernd J. (Hrsg.) ; LIN, Kwei-Jay (Hrsg.)

; NARASIMHAN, Priya (Hrsg.): Service-Oriented Computing – IC-
SOC 2007. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.

– ISBN 978–3–540–74974–5, S. 169–180

[GM18] GRANT, John ; MARTINEZ, Maria V.: Measuring Inconsistency in
Information. College Publications, 2018

[Gra07] GRAHAM, Ian: Business rules management and service oriented archi-
tecture: a pattern language. John wiley & sons, 2007

[HK+08] HUNTER, Anthony ; KONIECZNY, Sébastien u. a.: Measuring In-

consistency through Minimal Inconsistent Sets. In: KR 8 (2008)

[HMPR04] HEVNER, Alan R. ; MARCH, Salvatore T. ; PARK, Jinsoo ; RAM,

Sudha: Design science in information systems research. In: Man-
agement Information Systems Quarterly 28 (2004), Nr. 1, S. 6

[HMPR08] HEVNER, Alan R. ; MARCH, Salvatore T. ; PARK, Jinsoo ; RAM,

Sudha: Design science in information systems research. In: Man-
agement Information Systems Quarterly 28 (2008), Nr. 1, S. 6

[KEP00] In: KNOLMAYER, Gerhard ; ENDL, Rainer ; PFAHRER, Marcel:

Modeling Processes and Workflows by Business Rules. Berlin, Hei-

delberg : Springer Berlin Heidelberg, 2000. – ISBN 978–3–540–

45594–3, 16–29

https://www.omg.org/spec/DMN

BIBLIOGRAPHY 72

[MMv11] MAGGI, F.M. ; MOOIJ, A.J. ; VAN DER AALST, W.M.P.: User-

Guided Discovery of Declarative Process Models. In: 2011 IEEE
Symposium on Computational Intelligence and Data Mining. 2011

[MS15] MISHRA, Akanksha ; SUREKA, Ashish: A Graph Processing Based

Approach for Automatic Detection of Semantic Inconsistency Be-

tween BPMN Process Model and SBVR Rules. In: PRASATH, Ra-

jendra (Hrsg.) ; VUPPALA, Anil K. (Hrsg.) ; KATHIRVALAVAKU-

MAR, T. (Hrsg.): Mining Intelligence and Knowledge Exploration.

Cham : Springer International Publishing, 2015. – ISBN 978–3–

319–26832–3, S. 115–129

[NCD19] NAGEL, Sabine ; COREA, Carl ; DELFMANN, Patrick: Effects of

Quantitative Measures on Understanding Inconsistencies in Busi-

ness Rules. In: The 52nd Hawaii International Conference on System
Sciences, Hawaii, USA, Januara 08-11, 2019., 2019

[NPRS10] NELSON, Matthew L. ; PETERSON, John ; RARIDEN, Robert L. ;

SEN, Ravi: Transitioning to a business rule management service

model: Case studies from the property and casualty insurance

industry. In: Information & management 47 (2010), Nr. 1, S. 30–41

[Nut03] NUTE, Donald: Defeasible Logic. In: BARTENSTEIN, Oskar

(Hrsg.) ; GESKE, Ulrich (Hrsg.) ; HANNEBAUER, Markus (Hrsg.) ;

YOSHIE, Osamu (Hrsg.): Web Knowledge Management and Decision
Support. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. –

ISBN 978–3–540–36524–2, S. 151–169

[OMG13] OMG: Information technology — Object Management Group Business
Process Model and Notation. Version: 2013. https://www.iso.

org/standard/62652.html

[Pes08] PESIC, Maja: Constraint-based workflow management systems:

shifting control to users. (2008)

[PTRC07] PEFFERS, Ken ; TUUNANEN, Tuure ; ROTHENBERGER, Marcus A. ;

CHATTERJEE, Samir: A design science research methodology for

information systems research. In: Journal of management informa-
tion systems 24 (2007), Nr. 3, S. 45–77

https://www.iso.org/standard/62652.html
https://www.iso.org/standard/62652.html

BIBLIOGRAPHY 73

[Ram18] RAMBERGER, Henning: Converting Decision Model and Notation
Decision Tables to Formal Contract Language. 2018

[Roh05] ROHDE, Frank: Little decisions add up. In: Harvard Business Re-
view 83 (6) 83 (2005), S. 24––26

[SZB17] SMIT, K. ; ZOET, M. ; BERKHOUT, M.: Verification capabilities

for business rules management in the Dutch governmental con-

text. In: 2017 International Conference on Research and Innovation in
Information Systems (ICRIIS), 2017. – ISSN 2324–8157, S. 1–6

[Thi16] THIMM, Matthias: On the Compliance of Rationality Postulates

for Inconsistency Measures: A More or Less Complete Picture. In:

Künstliche Intelligenz (2016), August

[Thi18] THIMM, Matthias: On the Evaluation of Inconsistency Measures.

In: GRANT, John (Hrsg.) ; MARTINEZ, Maria V. (Hrsg.): Measuring
Inconsistency in Information Bd. 73. College Publications, February

2018

[VK04] VAISHNAVI, V. ; KUECHLER, W.: Design Research in Information

Systems. (2004), Januar

[VPHB16] VENABLE, John ; PRIES-HEJE, Jan ; BASKERVILLE, Richard: FEDS:

a Framework for Evaluation in Design Science Research. In:

European Journal of Information Systems 25 (2016), Jan, Nr. 1, 77–

89. http://dx.doi.org/10.1057/ejis.2014.36. – DOI

10.1057/ejis.2014.36. – ISSN 1476–9344

http://dx.doi.org/10.1057/ejis.2014.36

Appendix A

Verification Capabilities

Detection abilities

Duplicated
Rules

Equivalent
Rules

Subsumed
Rules

Unnecessary
Facts

Contradicting
Conclu-
sions

Overlapping
Conclu-
sions

Missing
Rules

X X

Table 21 Verification capability of library [SZB17]

74

Appendix B

Usage of Library

To be able to use the library only a Java runtime environment has to be installed,

no other prerequisites are needed.

The library along with the source code is available at https://gitlab.uni-

koblenz.de/mdeisen/inconsistency-lib or inconsistency.matrode.

de The inconsistency library comes as a executable jar which can be executed via

the java -jar command:

C:\Users\User\code\>java -jar inconLib.jar

Usage:

Defeasible Logic:

java -jar inconLib.jar fcl <Filename>

Declare:

java -jar inconLib.jar declare <Filename>

DMN:

java -jar inconLib.jar dmn <Filename>

BPMN-Declare:

java -jar inconLib.jar _

bpmn-declare <BPMN-Filename> <Declare-Filename>

When the inconLib is used this way it returns all of the minimal inconsistent

subsets as well as the minimal quasi inconsistent subset when applicable.

Furthermore the library can be integrated into other java projects to use extended

features of the library, e.g. the measures computed by the library. The classes to

do this are listed below:

75

https://gitlab.uni-koblenz.de/mdeisen/inconsistency-lib
https://gitlab.uni-koblenz.de/mdeisen/inconsistency-lib
inconsistency.matrode.de
inconsistency.matrode.de

76

• Defeasible Logic: MISCompute(<FCL Theory>, <boolean computeQMIS>)

– getResult(): Returns the MI

– getQMIS(): Returns the MQI

– getMIVdMeasure(): Returns the MI measure

– getMIVcMeasure(): Returns the MI measure

– getCMsharpMeasure(): Returns the MImeasure

• DECLARE: DeclareSolver(<Declare rule base>)

– getResult(): Returns the MI

– getQMISResult(): Returns the MQI

– measures(): Returns the MI measures

– getQmisMeasures(): Returns the MQI measures

• DMN: TestDMN(<DMN File>)

Methods:

– getInconsistencies(): Returns the MI for each table with row

numbers

– getExecTime(): Returns the execution time for computing the MI

• BPMN-DECLARE:

CheckBpmnDeclare(<BPMN Model>, <Declare rule base>)

Methods:

– getIncons(): Returns the MI with IDs

– getInconsNames(): Returns the MI with Labels

Appendix C

BPMN

This Business Process model is taken from the Process Model Matching Contest

20151 and describes the enrollment process at the University of Hohenheim.

1https://ai.wu.ac.at/emisa2015/contest.php

77

https://ai.wu.ac.at/emisa2015/contest.php

78

Secreterial office for students

R
ec

ei
vi

n
g
 t

h
e

w
ri
tt

en
ap

p
lic

at
io

n
s

C
h
ec

ki
n
g
 i
f

co
m

p
le

te

M
ar

k
as

 n
ot

co
m

p
le

te
R
ej

ec
ti
on

M
ar

k
as

 c
om

p
le

te
S
en

d
 d

oc
u
m

en
ts

to
 s

el
ec

ti
on

co
m

m
it
te

e

Pu
b
lis

h
in

g
 t

h
e

le
tt

er
s

U
p
d
at

e
th

e
ap

p
lic

an
t

st
at

u
s

Application System

A
llo

ca
te

 a
n

ap
p
lic

at
io

n
n
u
m

b
er

 a
n
d

p
as

sw
or

d
to

ea
ch

ap
p
lic

an
t

D
oc

u
m

en
t

o
n
lin

e
ap

p
lic

at
io

n
s

Admission Committee

R
ec

ei
ve

ap
p
lic

at
io

n

R
an

k
ap

p
lic

at
io

n
on

 s
ca

le
 f

ro
m

 1
 t

o
1
0

A
ss

es
sm

en
t

o
f

ap
p
lic

at
io

n

p
ro

of
 o

f
u
n
i

d
eg

re
e

p
ro

vi
d
ed

re
q
u
ir

em
en

ts
 a

re
n
ot

 m
et

 o
r

lo
w

ra
n
ki

n
g

h
ig

h
 r

an
ki

n
g

re
q
u
ir

em
en

ts
 a

re
m

et

p
ro

p
os

ed
 a

s
ac

ce
p
te

d

p
ro

p
os

ed
 a

s
re

se
rv

ed

p
ro

p
os

ed
 a

s
re

je
ct

ed

Fi
n
al

 c
on

fi
rm

at
io

n
b
y

h
ea

d
 o

f
th

e
u
n
iv

er
si

ty

Hohenheim

Applicant

C
h
oo

se
 m

as
te

r
p
ro

g
ra

m

C
om

p
le

te
 a

n
d

se
n
d
 a

p
p
lic

at
io

n
fo

rm
 o

n
lin

e

R
ec

ei
ve

ap
p
lic

at
io

n
n
u
m

b
er

 a
n
d

p
as

sw
or

t

Pr
in

t
ou

t
th

e
on

lin
e

ap
p
lic

at
io

n
fo

rm
 (

G
E
R
)

Pr
in

t
ou

t
th

e
on

lin
e

ap
p
lic

at
io

n
fo

rm
 (

IN
T
)

S
en

d
 a

ll
th

e
re

q
u
ir

em
en

ts
 t

o
th

e
se

cr
et

ar
ia

l
of

fi
ce

 f
or

 s
tu

d
en

ts

W
ai

ti
n
g
 f

or
 t

h
e

re
sp

on
se

R
ec

ei
vi

n
g

ac
ce

p
ta

n
ce

 l
et

te
r

R
es

er
va

ti
on

 p
la

ce

R
ej

ec
ti
on

Pr
ov

id
in

g
 t

h
e

m
is

si
n
g

d
oc

u
m

en
ts

E
n
ro

llm
en

t

Figure 12 BPMN Hohenheim

Appendix D

Evaluation FCL Solver

This addition contains further evaluation data gathered to assess the FCL Solver.

The conduct is described in 4.1.1.

D.1 Second Configuration

Configuration:

• maxBodyLiteral = 2

• pStrict = 50%

• pDefeasible = 20%

• pFact = 30%

• pSuperiority = 5%

79

D.1. SECOND CONFIGURATION 80

200
300

400
200

300
400

102

103

104

Number of rules Number of literals

R
un

ti
m

e
in

m
ill

is
ec

on
ds

Figure 13 Runtime statistics for the FCL solver (2)

200
300

400
200

300
400

100

101

102

Number of rules Number of literals

M
IC

ou
nt

Figure 14 MI in FCL test data 2

D.2. THIRD CONFIGURATION 81

200
300

400
200

300
400

100

101

102

Number of rules Number of literals

M
Q

IC
ou

nt

Figure 15 MQI in FCL test data 4

D.2 Third Configuration

Configuration:

• maxBodyLiteral = 2

• pStrict = 20%

• pDefeasible = 30%

• pFact = 50%

• pSuperiority = 5%

D.2. THIRD CONFIGURATION 82

200
300

400
200

300
400

102

103

Number of rules Number of literals

R
un

ti
m

e
in

m
ill

is
ec

on
ds

Figure 16 Runtime statistics for the FCL solver (3)

200
300

400
200

300
400

101

102

Number of rules Number of literals

M
IC

ou
nt

Figure 17 MI in FCL test data 3

D.3. FOURTH CONFIGURATION 83

200
300

400
200

300
400

101

102

Number of rules Number of literals

M
Q

IC
ou

nt

Figure 18 MQI in FCL test data 3

D.3 Fourth Configuration

Configuration:

• maxBodyLiteral = 3

• pStrict = 30%

• pDefeasible = 50%

• pFact = 20%

• pSuperiority = 5%

D.3. FOURTH CONFIGURATION 84

200
300

400
200

300
400

102

104

Number of rules Number of literals

R
un

ti
m

e
in

m
ill

is
ec

on
ds

Figure 19 Runtime statistics for the FCL solver (4)

200
300

400
200

300
400

0

20

Number of rules Number of literals

M
IC

ou
nt

Figure 20 MI in FCL test data 4

D.3. FOURTH CONFIGURATION 85

200
300

400
200

300
400

10−1

101

103

Number of rules Number of literals

M
Q

IC
ou

nt

Figure 21 MQI in FCL test data 4

	Introduction
	Research Questions
	Logic of Investigation
	Research Method

	Preliminaries
	Business Rules
	Defeasible Logic
	Declarative Process Model
	Decision Model and Notation (DMN)

	Business Process Model Notation
	Inconsistencies
	Minimal Inconsistent Subsets
	Minimal Quasi Inconsistent Subsets

	Inconsistency Measures

	Implementation
	Used Libraries
	Finding Paths
	Business Rules
	Defeasible Logic
	Declarative Process Model
	DMN

	BPMN
	Graph
	Checking Declare Constraints in BPMN
	Limitations

	Evaluation
	Business Rules
	Defeasible Logic
	Declarative Process Model
	DMN

	BPMN with Declare

	Conclusion
	Verification Capabilities
	Usage of Library
	BPMN
	Evaluation FCL Solver
	Second Configuration
	Third Configuration
	Fourth Configuration

