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Abstract

The development of a game engine is considered a non-trivial problem. [3] The
architecture of such simulation software must be able to manage large amounts
of simulation objects in real-time while dealing with “crosscutting concerns” |3,
p. 36] between subsystems.

The use of object oriented paradigms to model simulation objects in class hierar-
chies has been reported as incompatible with constantly changing demands dur-
ing game development [2, p. 9], resulting in anti-patterns and eventual, messy
re-factoring. [13] Alternative architectures using data oriented paradigms re-
volving around object composition and aggregation have been proposed as a
result. [13, 9, 1, 11]

This thesis describes the development of such an architecture with the explicit
goals to be simple, inherently compatible with data oriented design, and to
make reasoning about performance characteristics possible. Concepts are for-
mally defined to help analyze the problem and evaluate results. A functional
implementation of the architecture is presented together with use cases common
to simulation software.

Zusammenfassung

Die Entwicklung einer Spiele-Engine wird als nichttriviales Problem betrach-
tet. [3] Die Architektur einer solchen Simulationssoftware muss in der Lage sein
eine grofe Ansammlung von Simulationsobjekten in Echtzeit zu verwalten und
dabei Subsysteme mit horizontalen Abhéngigkeiten (“crosscutting concerns” [3,
p. 36]) zu koordinieren.

Simulationsobjekte mittels objektorienterter Modellierung in Klassenhierarchi-
en einzuordnen ist als inkompatibler Ansatz fiir sich stdndig im Wandel befin-
dende Spiele-Software beschrieben worden [2, p. 9]. Das Auftauchen von Anti-
Pattern und kompliziertes Code-Refactoring werden als Folgen genannt. [13] Als
Mafnahme wurden Architekturen vorgeschlagen, die Objektkomposition mit da-
tenorientierten Paradigmen verkniipfen. [13, 9, 1, 11|

Diese Arbeit beschreibt die Entwicklung einer solchen Architektur mit dem er-
klarten Ziel simpel und inhdrent kompatibel mit einer datenorientierten Per-
spektive zu sein und Schlussfolgerungen iiber Performance-Charakteristiken
iiberschaubar zu gestalten. Die Konzepte der Architektur werden formal de-
finiert, um bei der Analyse der Aufgabe und der Bewertung der Ergebnisse zu
helfen. Eine lauffahige Implementation dieser Architektur sowie typische An-
wendungsbeispiele von Simulationen werden présentiert.
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1 Introduction

This section gives an overview of the problem domain of simulation software,
introduces general concepts, defines terminology and briefly discusses known
solutions for a selection of problems. Section 2 examines different concepts for
the architecture of simulation software described by papers and articles. Based
on these a novel architecture is proposed by this thesis and defined in section 3.
As proof of concept this architecture is implemented. Section 4 describes the
implementation including several use cases common to simulation software. The
architecture is then evaluated in section 5 based on the insight gained from the
implementation and the analysis of the problem domain in this section. Finally,
the results are summarized for the conclusion and an outlook for future direction
is given in section 7.

1.1 Simulation Software

A game engine is a piece of software that can be described as a soft real-time in-
teractive agent-based computer simulation|7, p. 11]. Soft real-time, in the sense
that clear time constraints exist, but a violation is not considered catastrophic.
Interactive means that user input is reflected by the produced output. The rela-
tion between this input and output must be recognizeable, just as the behaviour
of the agents must follow clear rules to make it a simulation. This bachelors
thesis will consider all such simulation software, but will focus its examples on
game engines for illustrative purposes.

1.2 Problem Domain

The task of simulation software is to compute changes in the state of simulation
objects e € E over time. A simulation starts with an initial set Fy of simulation
objects and a set of rules S. The state of the simulation is changed by apply-
ing the rules s;..s, € S to the current set ej..e, € E; of simulation objects,
producing the next iteration of the state F;;.

Ei+1 = {El D s ‘ Vs € S} (11)

The set of rules S is fixed for the duration of the simulation. A simulation
objects behaviour is defined by its transitions from one state to another. Some
simulations require determinism of state transitions, others impose requirements
on the resolution of the temporal axis. Game engines commonly compromise
both for the benefit of runtime performance. The number of simulation objects
and their ability to interact with each other affects the amount of computation
required. The interaction between simulation objects can influence their state
and cause the removal or addition of objects to or from the simulation.

1.2.1 Complexity of Interactions

For the purpose of this thesis an interaction is defined as the application of a
rule s € S to a pair of simulation objects E; := {e;,ex} C E

s(E)) = E.|E . CE (1.2)



where the result is a set of simulation objects. Note that the elements of the pair
might be the same j =k = e; = e, = E; = {¢;} and that the resulting set
may be the empty set ). While the majority of objects do not interact with each
other most of the time, the simulation has to test for the occurrence of possible
interactions. When every simulation object can interact with every other the
complexity of the simulation grows with the number n := |E| of simulation
objects and the number m := | S| of rules. The rate of this growth depends on
the type of interactions with the upper bound generally being factorial for each
interaction.

p<nlsm (1.3)

Where p is the number of possible object interactions for n simulation ob-
jects and m := | S| different types of interaction. Complexity can vary greatly
between different types of interaction, however. Collision tests can generally
be implemented as commutative operation a &b =b® a | Va,b € E such that
any two simulation objects a,b only need to be tested against each other once.
For these types of interaction p is a weak upper bound. In contrast, visibility
testing with directed vision is not commutative. a,b might be connected by a
direct line of sight, but due to limited vision cones (eg. of cameras) the spatial
orientation of a determines whether a has vision of b without affecting if b has
vision of a. Thus, both interactions a ® b and b & a have to be tested and only
the interaction a @ a of a simulation object with itself can be omitted. Sim-
pler interactions such as applying gravity as a static velocity to each simulation
object have linear complexity O(n).

The order in which the interactions are resolved can affect the behaviour of
the simulation objects and may be seen as an additional source for complexity.
However, since the set of rules S is fixed for the runtime of the simulation,
this order can be predetermined and will generally not be decided at runtime.
In conclusion, no strong statement about the complexity of a simulation can
be made without knowing the set of rules, which change considerably between
different simulations.

1.2.2 Common Solutions

A common approach to these problems is to divide the set of simulation objects
into smaller subsets based on suitable features and then limit interactions to
objects within the same subset. This technique will be referred to as grouping
throughout this thesis. Which features are suitable for grouping depends on the
types of interaction. Spatial proximity works well for interactions with a limited
range like the collision of bounding boxes. A variant of this commonly used in
video games is to section the simulation world into levels.

On a finer grained scale the space may be subdivided using algorithms such as
binary space partitioning [6, p. 337] or structures like octrees |7, p. 516]. These
also prove suitable for spatially directed interactions such as ray tracing.[12]

In a simulation with different types of simulation objects some interactions
only apply to objects of a certain type or with a specific aspect. This is true
for simplified approximations of reality such as video games where some objects
aren’t affected by physics or suddenly become invisible due to gameplay condi-
tions. Such aspects can be used to subdivide the set of simulation objects and



optimize the layout of data for the computation of certain interactions. However,
the choice of aspects to group by is not as straight forward as the division by
spatial proximity. Separating objects with a bounding box from those without
may be beneficial for collision detection but detrimental to graphics rendering
where grouping of objects with a visual representation is more important.

Table 1 gives an example of how simulation objects may be grouped based
on their aspects. Equation 1.4 compares the complexity of computing a collision
interaction with and without this grouping.

Subset | Moving | Collidable | Count | Example

A v v 2 Player characters
B v - 2 Cameras

C - v 5 Floors & walls

D - - 1 Particle effects

Table 1: A set E of 10 simulation objects grouped into 4 subsets based on two of
their aspects.

To test for collisions in the scenario given by table 1, only simulation objects
from subset E; := A need to be tested against those from subset Ey := {AUC}.
Equation 1.4 shows that the number of tests can be reduced when simulation
objects can be grouped into subsets based on their aspects. Figure 2 illustrates
the difference for the example given by table 1.

Let F1,Ey C E # 0 and n:= ||EL|,m := || E2||
= n<|E[|Am<|E|
— ¢ =nxm<||E|}=c (1.4)

Figure 1: Where c1, ce are the number of collision tests necessary for a set of entities
E with and without grouping respectively.

Whether or not such optimizations can be implemented depends on the
architecture of the simulation software. Specifically, the part of the architecture
responsible for the management of simulation objects. A definition for this
part has been proposed by Doherty [4] under the term object system: “The
object system is responsible for maintaining the state information describing
all objects in the game world.” It is clearly separated from other parts of the
architecture. Bilas [2] presents a definition in two parts: A “Game Object (Go)”
is a “piece of logical interactive content” that performs “tasks like rendering,
path finding, path following, speaking, animating, persisting”. Then, a “Game
Object System” “constructs and manages Go’s”, “maps ID’s to object pointers”,
“routes messages” and is built “from many things” including a “Go database”
and “static content database”.



n=m=10 = ¢2 =100

n=2m=7 — cl=14

Figure 2: Illustation of how interactions are reduced by grouping simulation objects
into categories based on the example in table 1. Equation 1.4 was used to
derive exact numbers.

1.3 Core Concerns

From the above description we can derive a few abstract operations that are core
concerns of any architecture meant to manage simulation objects and simulate
their behaviour.

Con- & Destruction of simulation objects.
This operation adds or removes at least one element from the set of sim-
ulation objects.

Iteration over simulation objects.
This operation is a form of access to the set or a subset of the simulation
objects such that each simulation object is visited once.

Addressing of simulation objects.
This operation is a form of access where a specific simulation object is
selected from the set based on a unique address.

Grouping of simulation objects.
This operation divides the set of simulation objects into subsets based on
some feature. The main purpose is to limit the range of elements that are
operated on and thus improve performance.

Table 2: Core concerns for the design of the architecture of simulation software.

These operations can not be treated as independant from each other. For ex-
ample, grouping is required to allow iteration over subsets of simulation objects.
Addressing requires that construction includes the generation of some form of
address, which is tied to the same simulation object until the destruction of that



simulation object.

It must also be noted that these operations may overlap. An access operation
such as iteration might be able to destroy a simulation object if it has write-
access. Similarly, addressing may be implemented with implicit construction of
a simulation object if the specified address is unused. This is a common strategy
for dictionary structures such as the “unordered map”! from the C++ Standard
Template Library, or the “dictionary”? in the Python programming language.

When designing an architecture for managing simulation objects, it is not
enough to have established abstract operations. The architecture must also
consider which operations to prioritize. If two operations pose conflicting goals
for data organization, a balance must be found. For example, iteration is fastest
on sequential data but searching profits from hierarchical organization.

1.4 Terminology

Term \ Meaning

Simulation software A software framework for

Simulation engine implementing computer simulations.

Game engine A specific type of simulation software.

%lgili?tlon object An object being simulated.

Simulation rule A behaviour being simulated.

Interaction Resolving operations between entities.

Con-/Destruction The addition or removal of a simulation object
to or from the simulation.

Iteration Accessing a set of simulation objects sequen-
tially.

Addressing Regarding simulation objects, the access of a
specific simulation object.

Grouping Building subsets of simulation objects with a
common trait.

Table 3: Recap of the terminology introduced in this section.

Ihttp://www.cplusplus.com/reference/unordered_map/unordered_map/operator[]/
?https://docs.python.org/3/tutorial/datastructures.html#dictionaries
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2 Established Paradigms

This section discusses architectural paradigms for real time simulation software.
Based on papers and articles a transition is described from a traditional - object
oriented - paradigm of inheritance modeling towards a composition oriented
paradigm based on entity-component relations.

2.1 Object Orientation with Inheritance

A traditional approach to implementing simulation objects in game engines is
to construct an inheritance tree for an “object oriented decomposition of the
set of entities” [13]. As noted by Bilas [2], there is more than one possible
decomposition of the set of “game objects” into classes. It is pointed out that
the class hierarchy can be considered a hard coded database [2, 12] but the
“games constantly change” [2, 9] - meaning the hard coded database has to be
adjusted by hand to fit the needs of evolving content. The static nature of a
hard coded class hierarchy limits the interaction of simulation objects based on
where a class is placed in the inheritance tree and what methods it has.

Mick West points out in [13] that “the traditional game object hierarchy
ends up creating the type of object known as "the blob". The blob is a classic
"anti-pattern" which manifests as a huge single class [...] with a large amount
of complex interwoven functionality.”® A similar observation from [8] also high-
lights the conflict of this anti-pattern with principles of object oriented design:
“At the end, programmers often came up with gigantic classes that could handle
every possible situation. This works but does not make good usage of program-
ming patterns whose purpose is to save time and ease code management.”*

2.2 Evolution: Composition Over Inheritance

To counter the problems described above, alternative architectures for struc-
turing simulation object data have been explored. The solutions presented
by [2, 9, 13, 8] can be categorized as composition based architectures in which
simulation objects are represented as collection of components. In these ar-
chitectures inheritance hierarchies are either flat or non-existent. The “is-a”
relationship between simulation objects in an inheritance hierarchy is replaced
by a “has-a” relationship between a single simulation object and multiple com-
ponents. A simulation object is still an object in the context of the object
oriented paradigm but is referred to as entity. Other object oriented practices
such as polymorphism may be used for collecting components of sub-classed
types. Composition and inheritance are not mutually exclusive and are com-
monly described alongside each other as tools for modeling relationships between
simulation objects. Gregory introduces both as complementary practices in |7,
pp.98-103].

One significant difference in the solutions presented here to a traditional
approach is how the behavior of these entities is implemented. Instead of class

Shttps://web.archive.org/web/20190116045950/http://cowboyprogramming . com/2007/
01/05/evolve-your-heirachy/ (accessed Aug. 11, 2019)

4https://web.archive.org/web/20180914193022/http: //www.thepulsar.be/article/
entities--components-and-message-handling-in-games (accessed Aug. 11, 2019)
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methods that modify member variables when called on an object, these enti-
ties do not define behavior themselves and the set of methods is reduced to
constructors, destructors and data access such as iteration of the components
held by the entity. It is the components that define behavior, either directly
by providing methods or indirectly through mere presence. An entity with a
physics component will be treated differently from an entity without it, thus
having different behavior within the simulation.

[9] describes components as representing “aspects” of an entity: “Every in-
game item has multiple facets, or aspects, that explain what it is and how it
interacts with the world. [...] The Component does one really important thing:
Labels the Entity as possessing this particular aspect”.’?

In [2] the components are derived from a single base class “GoComponent”
and entities are instances of the “Go” class. Each “owning” a set of “GoCompo-
nents” in a “has-a” relationship.

[8] describes an architecture without hierarchy and where simulation objects
“are described as collections of behaviors which are implemented into compo-
nents.” Here, communication between simulation objects is solved by passing
message objects between components, which must implement the interface for
message classes.

In [13] West describes an architecture where entities are pure aggregations of
components and there is no class or instantiated object to represent the entity
itself. All components are derived from a base class and share a common inter-
face. A “component manager”’ exists to resolve access to component references,
though other means to access components directly were later added due to per-
formance concerns: “Ideally, components should not know about each other. [...]
Initially we had all component references going through the component man-
ager, however when this started using up over 5% of our CPU time, we allowed
the components to store pointers to one another, and call member functions
in other components directly.”® No details are given on how components are
associated as belonging to the same entity.

2.3 Entities, Components and Systems

The solutions discussed in section 2.2 can be considered half-way towards a pure
Entity Component System. It was briefly mentioned that in some architectures
the components do not implement behavior themselves, but their presence de-
termines the behavior. The notion of components as “aspects” of an entity was
introduced, but details about the implementation of behavior in these cases were
left out. This section will focus on architectures of this kind, as described by
Martin [9].

Here, behavior is implemented by “systems” - code that is well separated
from the definition of entities or components. As Martin points out: “A Sys-
tem essentially provides the method-implementation for Components of a given
aspect, but it does it back-to-front compared to OOP. OOP style would be for
each Component to have zero or more methods, that some external thing has to

Shttps://web.archive.org/web/20180617155000/http://t-machine.org/index.php/
2007/11/11/entity-systems-are-the-future-of -mmog-development-part-2/ (accessed
Aug. 12, 2019)

Shttps://web.archive.org/web/20190116045950/http://cowboyprogramming . com/2007/
01/05/evolve-your-heirachy/ (accessed Aug. 12, 2019)
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invoke at some point. ES style is for each Component to have no methods but
instead for the continuously running system to run it’s own internal methods
against different Components one at a time.””

A system generally selects a subset of components based on type and pro-
cesses their data. Changes made to this system can only affect components
of that type. Conversely, adding a new type of component won’t affect the
simulation unless there is also at least one system processing it.

In this architecture the components may still be instantiated objects of a
class definition with constructor and destructor, but they are no longer respon-
sible for updating their member variables. The separation of data and logic
allows for an implementation of components without classes or other common
object oriented practices. Martin goes as far as stating that “If you think of
Entities/Component’s in OOP terms, you will never understand the ES, and
you will screw up any attempt to program with it.”®

He goes on to state that the “Entity System” in this form is a different
paradigm than “Object Oriented Programming” and that “It’s fundamentally
different and incompatible.”?

"https://web.archive.org/web/20180617155000/http://t-machine.org/index.php/
2007/11/11/entity-systems-are-the-future-of-mmog-development-part-2/ (accessed
Aug. 12, 2019)

8https://web.archive.org/web/20180617155000/http://t-machine.org/index.php/
2007/11/11/entity-systems-are-the-future-of -mmog-development-part-2/ (accessed
Aug. 13, 2019)

9https://web.archive.org/web/20180617155000/http://t-machine.org/index.php/
2007/11/11/entity-systems-are-the-future-of-mmog-development-part-2/ (accessed
Aug. 13, 2019)
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3 The Entity Component System Architecture

This section introduces the architecture proposed by this thesis. First, the con-
cept is described informally to convey the idea while choices are put in context
of the discussion in section 2. Then, a precise definition of the architecture is
given using the terminology from section 1.

3.1 Concepts

At the core the Entity Component System Architecture has three concepts that
are very simple on their own.

Components are simple structs of plain old data [7, p. 336].
Entities identify sets of components to represent simulation objects.
Systems are algorithms that process the data stored in components.

The concept of how these are combined, including all arising implications, is the
architecture.

0123...

component
arrays

Magnification of
entity at index i:

% 5 components of
. . > different types
A system iterating over = 8 . .
" 1& 2 = from index %
component-arrays , SR of their array

currently at index 5

Figure 3: Schematic illustration of the architecture. Components and entities are
presented in a matrix where rows are component-arrays and columns are
entities. Systems march through the arrays, one column (entity) at a time
to process data stored in components.

Figure 3 illustrates the general concept of the architecture. Components are
stored in “parallel arrays’'?, henceforth referred to as component-arrays. A
simulation object is represented by an entity, which is just a set of components
that label the entity as having certain aspects, similar to the design described
in [9]. Arrangement of data in these arrays follows the SoA!! principle with com-
ponents of the same type packed together in memory. The behavior of entities
is implemented by systems that iterate over these arrays sequentially to process
the components, similar to the description in [9]. Each system has a narrow fo-
cus on a few aspects of behavior and iterates over the relevant component-arrays
only.

There is no “Entity”-class that points to the components or stores them in a
list. This is similar to the architectures described by [8, 13]. However, unlike the

Ohttps://en.wikipedia.org/wiki/Parallel_array (accessed Aug. 13, 2019)
Mhttps://en.wikipedia.org/wiki/AoS_and_SoA (accessed Aug. 13, 2019)
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approach from [8], no message objects are passed between components and they
aren’t classes implementing a common interface. A central manager resolving
all component references is described by [13] as too slow, their workaround is to
allow direct pointers between components.

For implementing entities in the Entity Component System Architecture a
simpler solution was chosen: plain integers. Components found at the same
index across all arrays belong to the same entity, as can be seen in figure 3
with the “Entity at index ¢”. Any system can associate multiple components by
accessing different component-arrays at the same index. This approach allows
for any system to access only the data it requires by selecting which arrays to
iterate over.

This simplicity comes at the cost of unsolved problems:

1. How can indices be re-used after entities are destroyed?

2. How can entities have different aspects when every component-array has
an index for every entity?

3. All component-arrays must have the same length (index range).

4. Therefore, adding a new component type would grow the matrix shown
in figure 3 by an entire row, even if only a single entity needs that aspect.

Table 4: Problems arising from to the simplicity of parallel arrays.

The first problem in table 4 is equivalent to the question of how an entity
can be identified if not by array index alone. Simplicity suggests to use the con-
cepts already available: A type of component with the sole purpose to uniquely
identify an entity. Thus it becomes possible to move all components at index
to index j of their respective component-array and still be able to identify them
as the same entity by reading the value of the unique entity id-component.
Section 3.2.4 defines the details and surrounding issues.

poico: [ | | |
coiy S | |

collision ‘ ‘ ‘ ‘ ‘

event ‘ ‘ ‘ ‘

timer

Figure 4: Illustration of component arrays with gaps caused by different types of
entities with different aspects.

Solving the second problem is more nuanced than simply adding a new com-
ponent. The architecture provides multiple, different ways to solve this and

11



they will be described in detail in section 3.2.5. Until then the quick answer is:
component-arrays are sparse, as depicted in figure 4.

Problems three and four are different expressions of the same issue that is
directly related to problem two. The cost of building relations between data
records has not magically vanished, it was traded for the cost of memory. The
concept so far could be called a trivial data base addressing scheme. All data
of all entities can be found by choosing the right row and column of the entity-
component-matrix. But the rows of the matrix are sparse and unless all entities
have the same set of component types at least some space will be wasted. An
increased number of component types decreases the chances of tightly packed
component-arrays. This effect is referred to as fragmentation of component-
arrays. To mitigate this the entity-component-matrix is partitioned into sectors
in which entities with similar features are grouped. A sector is a logical partition
of the simulation world that addresses multiple issues:

e Reducing the length and number of component-arrays.
e Providing meta data for a set of component-arrays.
e Grouping entities.

e Coordinating access to entities.

Sector A Sector B

Figure 5: Illustration of how the component arrays shown in figure 4 can be dis-
tributed to multiple sectors, resulting in more densely packed arrays. Type
names omitted, compare colors.

Compared to figure 4, figure 5 shows how the number of gaps in component-
arrays can be reduced by allocating entities to sectors with different sets of
component-arrays. In the first image, there are 24 gaps in the arrays combined.
The entities with ids 1..5 don’t share any component types except the obligatory
“ueid” with the entities with ids 6..8. In the second image, the entities with ids
1..5 are in sector A, the others in sector B. Sector A doesn’t need arrays for
“timer” and “event” components while sector B doesn’t need arrays for “posi-
tion”, “velocity” and “collision” components while none of the entities has lost
components. There are only 5 unused slots in the component arrays of both
sectors combined, 19 less than in figure 4.

The reasons to chose simple arrays as main structure and associating com-
ponents by integer indices rather than structures with indirections are related
to performance. Mainly the discrepancy in cost between fetching data from
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memory and processing the data. [10, 1] Reducing the number of cache misses
has a substantial impact on performance. [1] Sequential reading of data is vastly
more cache efficient than random reads following pointer indirections. [5, p. 24,
table 3.1] But the premise for cache efficiency of sequential reading is that the
arrays contain the data to be read without other data in btween. Therein lies the
reason to split the arrays based on the type of component. A system that needs
to apply acceleration to velocity can access the two arrays containing only com-
ponents of these types. This adheres to the “principle of locality”!?, a pattern
from data oriented design. As mentioned earlier, however, the component-arrays
are sparse. Specifically, they contain “gaps” elements that can be ignored when
read. This means the component-arrays will on average be less cache-efficient
than plain arrays. To determine how much less efficient they are is to find out
how many gaps there are. Exact results depend on size of cache-lines, number
and size of CPU cache layers, associativity and other details of the hardware. [5,
section 3.3] The content of the simulation also imposes limits on the optimiza-
tions possible.

3.2 Definitions

In general the definition of the Entity Component System Architecture does not
include specific implementation details. Rather, guarantees are given that have
to be met and algorithms are described that are to be used by any implementa-
tion trying to be compliant with the architecture. The definition tries to make
as few assumptions as possible about the programming language being used;
the minimum common denominator is that data structures and functions exist.

3.2.1 The Core

It is assumed that there is a central data structure for organizational purpose
which will be referred to as the core in this definition. The following paragraphs
define the required elements of the core structure.

Data A pool of memory that is allocated during initialization and used to store
component-arrays and related meta data. The size of this pool is determined
by two arguments given to the initialization function of the core:

int core_init(const sect_t num_sectors, const size_t sector_size_kb);

Listing 1: Initialization function of the core

k:=mnx(by + by) +n 2% (3.1)
ta dat

Equation 3.1 defines the number of bytes k& that must be allocated for the
“Data” memory pool. Where n is the number of sectors, s the sector size in
kibibytes '? given as argument and by, by are the sizes of the “sect t” and “sector”
types, which are defined in sections 3.2.3 and 3.2.5. The meta data is located at
the beginning of the pool and will be used to describe the layout of sectors: An
array for “sect t” handles and one for “sector” structs, both the length of n. The
remaining space of the “Data” pool is used for the data of component-arrays.

2https://en.wikipedia.org/wiki/Locality_of _reference
3https://en.wikipedia.org/wiki/Kibibyte
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Sectors A structure with information about the partitioning of the “Data”
memory pool. More precisely it describes the meta data at the beginning of
the “Data” pool. It defines the size and count of sectors, which are simply
the arguments given to “core init” seen in listing 1, followed by a counter of
currently active sectors and a pointer to the beginning of the “Data” pool where
an array is maintained with the handles of all currently active sectors. Lastly,
a pointer to the second array of the meta data, containing an array of “sector”
structs, is given. How sectors are used is defined in section 3.2.5.

Counters Three integers used to generate “unique entity ids” and handles for
“component types”’ and “entity types”. The policy for generating these is to
simply increase the counter when a new id or handle is needed.

Maps Five dictionary-like structures used to keep track of handles, types and
paths. They may be implemented as trees or hash tables. Implementations

Name Key | Value reads writes
comp map | comp_t, string | comp info rare none
sect _map sect t, string | sector pointer | regular rare
ent map ueid c | ent path frequently | many
comp _deps comp_t | comp dep rare none
ent types string | type c frequently | regular

Table 5: Definition of the cores key-value stores. Keys and values are data types
defined within this section. Columns “reads” and “writes” are hints about
the frequency of read and write operations per frame.

are free to chose any number of maps to record the same set of associations
described here.

The “comp _map” stores the information about all component types that
are known to the core. Entries are only added during the init phase and read
occasionally when component type handles or names need to be resolved, eg.
when a new sector is created or during initialization of systems. There are two
keys for each value, the component type handle and the string name given when
registering the component type (see section 3.2.3).

The “sect _map” is used to accelerate finding sectors based on their handle
or name. It’s only updated when sectors are created or destroyed, but read every
time a sector is opened for access or filtered based on the component types it
stores. Like with the comp map there are two keys for each value, a sector
handle and the name of the sector.

The “ent map” keeps track of the sector and array index of every entity
in the simulation. It is modified only during the cores maintenance phase (see
“frame boundary” in section 3.2.2) but the number of updates can be significant
and must complete in constant time. Systems implementing entity hierarchies
that need traversal (such as the use case described in 4.5.2) are responsible for
most access to the entity map. This access will occur every frame but likely
only for a small subset of entities.

“comp _deps” records dependencies between component types. These are
required by some types of component that rely on the presence of other types in
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the same sector. This map is updated only during the init phase and accessed
only during the creation of new sectors.

“ent types” serves both as a cache for computed hashes and as a look-up
table for known entity types. See section 3.2.4 for the definition of entity types.

3.2.2 Sequence of Events

Phase ‘ Order ‘ Time frame

Init 1 The initialization phase begins with a call to the cores
“Init”-function (listing 9) and ends with the first call to its
“update”function (listing 11).

Loop 2 Most of the runtime will be spent in the loop phase. It’s
entered as soon as the init phase ends and continues as long
as the main event loop is running and the cores “update’-
function is called.

Close 3 The close phase begins when the loop phase ends and
is complete with a call to the cores “close”™function (list-
ing 10).

Table 6: Definition of the three execution phases of the Entity Component System
Architecture.

Phases of execution To provide some guarantees about the order of events
the runtime is split into the three phases shown in table 6. Implementations are
not required to enforce them, they are a guide line to help define the architecture.
The main purpose of the phases is to limit the time frame during which certain
events can occur. For example, the registration of new component types should
only be possible during the init phase and the construction of entities only be
completed during the loop phase.

Throughout the definition of the Entity Component System Architecture
these phases are referenced to define the context of events. The following is a
quick summary that is by no means exhaustive:

Init should be used to complete one-time tasks such as runtime configuration
or acquiring handles for later use.

Loop is where the simulation transitions between states - one frame at a time
- this is the main stage where systems process the data of components to
model the behavior of entities.

Close is the clean-up phase in which finalization steps should happen to ensure
consistency of written data like logs, saves etc.

Frames are discrete steps along the simulations temporal axis, approximating
equidistant steps in real-time. The progress of the simulation is measured in
these frames. Every system must update exactly once every frame. There
are three time zones within one frame, as defined by table 7 and illustrated by
figure 6. To allow frame rate independent simulation the time must be measured
at the beginning of each frame and a delta time describing the real time duration
of the previous frame must be passed to the update function of each system.
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Figure 6: Timeline of a frame with the zones defined in table 7. The different colored
blocks in the pipeline represent different systems being run.

Zone ‘ Order ‘ Event
Sleep 1 Buffer to approximate equidistant time steps.
Pipeline 2 Update of all systems except core.
Boundary 3 Update of core.

Table 7: Definition of time zones within a frame.

For the approximation of equidistant steps in real time a frames “Boundary” is
followed by the next frames “Sleep” to create an artificial buffer if needed.

3.2.3 Handles and Types

Wherever possible the Entity Component System Architecture tries to replace
more complex types with integer handles that are faster to process. To accom-
plish this, the interface provides several functions for registering information
during the init phase that is then associated with a handle. For the rest of the
runtime this information can then be referred to by this handle. Some of these
handles are used as component types such as the “type ¢’ component described
in section 3.2.4. Not all types are handles, notable exceptions are the ent path
and the sector _access, both of which are composite types (or structs).

The most common case for handles are the component types. During the
init phase systems will call the function shown in listing 2 to register the size
of a component struct with an identifier-string and acquire a component handle
in return. During the loop phase they use this handle to tell the core which
component array they want to access.

comp_t core_register_comp(const_bstring identifier, const uint16_t bytes);

Listing 2: Core interface for registering component types

3.2.4 Entities and Components

Components represent aspects of an entity and define all its state. An entity
with a position-component is an entity that has a position. Which component
types exist depends on the systems implementing the behavior that is simulated.
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Name \ Definition \ Purpose

enti_t uint32_t | Type for indices in component-arrays.

sect_t uintl6_t | Handle to uniquely identify sectors.

comp_t uintl6_t | Handle to uniquely identify component types.

type ¢ uintl6_t | Component to uniquely identify entity types.

ueid ¢ uint64 t | Component to uniquely identify an entity.

ent path see 3.2.4 Composite type describing path to an entity
as sector+index.

sector _access | see 3.2.5 Access token granting read/write privileges to
the component-arrays of a sector.

Table 8: Definition of all types required to interface with the Entity Component
System Architecture.

If the simulation objects should be able to collide with each other then a collision
system needs to be implemented and it will have to define the component types
that make an entity collidable (eg. bounding boxes).

There are only three component types that are defined by the Entity Com-
ponent System Architecture itself:

ueid c to uniquely identify an entity.
flag c to signal certain states of the entity.
type c to define the type of an entity.

Every entity has these automatically as they are silently added when an entity
is created. Two of them have already been defined in section 3.2.3 as part of
the types exposed by the cores interface. The “flag ¢’ component is defined
as an enum with values “ENT _OK” “ENT REMOVE” and “ENT _CREATE".
Its purpose is to trigger a delayed action during the cores update function (see
section 3.2.2). These three component types are needed by the core to manage
entities, they may not be modified by any other system.

Entities are created with a call to the function shown in listing 19 from sec-
tion 4.3.4. The creation happens in two steps. First, the three core components
shown above are added to the component arrays of the specified sector. For
the “ueid ¢” component a new id is generated (see 3.2.1), “flag ¢’ is set to
“ENT_ CREATE” and “type c” is given by the parameter. At this point the
entity exists in the component-arrays but can not yet be searched for and will
be outside the index range defined by the sectors access token. Only the system
that created the entity will know it’s there; it knows the index and can initialize
the values of other components.

Since component-arrays are sorted between frames (see 3.2.5 and 3.2.2) the
entity may be moved to a different index. To find it again the value of the
“ueid _¢” component must be remembered. The function shown in listing 22
will return the sector and array index of an entity with a given “ueid c¢”. It’s
utilizing the “ent _map” defined in 3.2.1.
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The “ueid _¢” value of 0 is reserved for the neutral entity, which is disregarded
by all operations. It’s named for being akin to the “neutral element” in algebraic
structures.!4

The entity type denoted by the “type c¢” component is just a handle. It is
mainly used for defragmenting sectors (see 3.2.5) and encodes which aspects the
entity has. Listing 3 defines the signature of the function.

type_c core_get_ent_type(const comp_t *const array);

Listing 3: Core interface to computing an entity type handle based on the entities
aspects

Internally, the given array of component type handles is sorted (they are inte-
gers) and used as key (interpreted as string) for the “ent types” map defined
in 3.2.1. If no entry for this key exists, a new handle is generated from the cores
entity types counter (see 3.2.1) and added to the map before being returned.
Implementations may use a different hashing algorithm to accomplish the same.

3.2.5 Sectors and Arrays

Component-arrays are implemented as a simple data structure “comp _array”
(see listing 8) describing an array of component structs. All components in the
array are of the same type. The only information stored in the “comp array”
is the type of the components as “comp info” struct, the length of the array in
bytes and a pointer to the beginning of the data. A “comp info” combines a
component type handle (“comp t”) and size in bytes as registered with the func-
tion shown in listing 2. The address pointed to is somewhere within the cores
“Data” pool that has been allocated during the cores initialization, as described
in paragraph “Sectors”. Creation, initialization and destruction of component
arrays is always managed by the sectors they are embedded in.

In section 3.1 component-arrays were described as sparse. This has no im-
plications for the arrays themselves, only for the interpretation of their content.
Elements of component-arrays are defined to be either valid components of the
type declared by the component-arrays “comp info”-member, or gaps. Gaps
manifest as uninitialized components, which are equal to memory filled with
zeroes. For some component types this is equivalent to a valid component, an
example of this is described in section 4.5.1 for the movement physics system.
The cores “Data” pool is initially allocated as zero-filled memory and sectors
are required to overwrite their memory block as such when destroyed. When
entities are moved within their sector, all component-arrays at their index are
affected - including gaps - to guarantee that components from different entities
don’t get mixed and that gaps remain gaps.

Sectors Each sector is described by a header located in the meta data region at
the beginning of the cores “Data” pool. A header stores the handle and name of
the sector together with a flag to indicate actions scheduled for the next update
of the core. The number of component-arrays and length thereof is stored in
the integers “rows” and “cols”’, resembling the image of rows and columns in
the entity-component matrix of figure 3. There is an array of “comp_array”
structs accompanied by a table “comp lut” that resolves “comp t” keys to the
right index of that array. As with the associative structures of the core (defined

Mhttps://en.wikipedia.org/wiki/Neutral_element
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in 3.2.1) implementations are free to chose a suitable data structure for this
table.

The sector struct also has a mutex and an access token, as defined in para-
graph “Access” of this section.

Finally, the sector has an unsigned 64-bit integer defining a byte offset into
the cores “Data” pool. The space of the pool after the section reserved for meta
data is evenly divided into chunks and each sectors offset denotes the 16-byte-
aligned start of its chunk. This layout does not change during runtime, which
is why the sector structs are already set up when the core is initialized.

For this reason creating a new sector with the function shown in listing 4
does not involve the initialization of a new sector struct. Instead, the first
unused sector in the cores “sectors” struct is chosen (see section 3.2.1). Where
“unused” means that the sectors handle is set to 0. For the new sector, a handle
is generated and assigned to the sector struct together with the name. The main
work when creating a sector is to initialize its component-arrays.

sect_t core_mksector(bstring name, set *components);
Listing 4: Core interface for creating sectors

As listing 4 shows, the only arguments to the creation of a sector are a name
and a set of component types. If dependencies for any of the component types
in this set were registered (see “comp deps” in 3.2.1) these are resolved and
the set is expanded accordingly. The three core components (“ueid ¢”, “flag_¢”
and “type ¢”) are implicit (as defined in 3.2.4) and will be added to the set if
missing. To compute the “cols” (length of component arrays) of the sector, the
size of the sector is divided by the size of all component types accumulated.
The number of “rows” is simply the size of the set of component types. Now
the array of component-arrays and the “comp_lut” can be initialized, one entry
for each entry in the set of component types received as argument. The order
is not important except for the first three, which are always assigned the core
components in the order given in 3.2.4. Finally, the sectors mutex and access
token are initialized.

Access is only provided to the data of component-arrays, but not the sector
itself. An access token is given out to a caller of the function shown in listing 15.
Under the protection of the sectors mutex only one such token is handed out
and only after it has been returned to the function shown in listing 16 can it
be granted again. Thus, no more than one system can gain read-write access at
a time. The access token itself provides all the information required to iterate
any component-array of the sector: The indices of the first and last non-neutral
entity in the sector as well as the total length of the arrays. To get the pointer
to a component-array, the access token has to be passed to the function shown
in listing 18.

3.2.6 Core Maintenance

Table 7 of section 3.2.2 defines the “Boundary” of a frame as “Update of core”.
This means the time spent during a call to the cores update function shown in
listing 11. The reason why this can not overlap with the time in which other
systems access the sectors and component arrays is that the guarantees listed in
table 9 are not upheld while the core does maintenance of it’s data structures.

19



Systems are able to create or destroy entities as defined in section 3.2.4 but this

No. ‘ Guarantee

1 | No entities are added or removed during a frame.
Entities remain at the same index during a frame.

3 | All entities are within the index range reported by a
sectors access token.

4 | Sectors are not fragmented.

Table 9: Guarantees made about the simulation state while systems can access com-
ponent data.

process is not finalized until the next call to “core_update”. These changes are
not reflected by the cores data structures used to find and access components.
Even though one system has created new entities, no other system will know
about it until the next frame. The same goes for the creation and destruction
of sectors.

During its update, the core will iterate over all sector headers (see sec-
tion 3.2.1) and update the register of active sectors. For all sectors that have
a sector handle # 0 the core will first check if the sectors flag signals sched-
uled destruction. If so, all entities from the sector are removed from the cores
“ent __map”, the sectors entries are removed from the cores “sect _map” and the
sector header itself is cleared by resetting its “comp lut”, “handle”, “name”,
“flag”, “rows”, “cols” and “access” members.

Otherwise, the normal procedure for sector maintenance is to first update
the cores “ent _map” for any entities that were created or destroyed during the
frame and then defragment the sectors component-arrays.

Defragmenting Sectors is the process of sorting the entities based on their
“type_c” component while filling any gaps left by recently removed entities.
Implementations are free to chose a suitable sorting algorithm that fulfills the
criteria listed in table 10. By which metric the entity types are ordered is not

1 | No entity gaps All non-neutral entities (ueid # 0) must come
before the first neutral entity (ueid = 0).

2 | No type fragmentation | No two entities with equal type may be sepa-
rated by an entity of different type.

3 | Stable sort If guarantees 1 and 2 are fulfilled, no entities
may be moved.

Table 10: Guarantees defined for defragmentation of component-arrays

defined and subject of future research. When entities are moved during the
sorting process this needs to be reflected by an update of the cores “ent map”.

Note that the third guarantee in table 10 has an interesting implication
for sectors in which no entities were created or destroyed during the frame:
Their data won’t be changed during the frame “Boundary” at all. The use case
presented in section 4.5.4 makes use of this.
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3.2.7 Systems

“The purpose of all programs, and all parts of those programs, is to transform
data from one form to another.”[1]

In the Entity Component System Architecture the transformation of data is
carried out by the systems. The architecture provides two main ways of access-
ing the data of simulation objects: Iteration of component arrays (defined in
section 3.2.5) and searching for entities by address (defined in section 3.2.4). For
example, a system responsible for updating the count-down timers of all trigger
entities would iterate all component-arrays for timer-components and change
their data to reflect the new time. This transformation of data is equivalent to
the concept of rules being applied to simulation objects as defined in section 1.2
as “interactions”. The systems fulfill the role of “rules” here.

Before systems can be run (during the “loop” phase) they will generally
need to initialize their state, which has to be done during the “init” phase (see
definition of phases in section 3.2.2). If a system needs to perform clean-up
work such as writing remaining log entries to a file this must be done during the
“close” phase. These three steps make up the required interface for all systems
and section 4.4 describes them in detail.

To prevent heisenbugs '® between systems accessing data of the same entities
concurrently, the architecture defines access to be protected by mutual exclusion
on a per sector basis (see section 3.2.5). This should not be confused with
support for concurrency between systems, it’s a safety measure only. Running
systems concurrently can lead to deadlocks'® if any system tries to open two
sectors at once. A simulation engine wanting to run systems concurrently would
have to resolve dependencies between systems that could try to access the same
data in order to prevent such deadlocks.

https://en.wikipedia.org/wiki/Heisenbug
6https://en.wikipedia.org/wiki/Deadlock
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4 Implementation

This section first presents an overview of the code base, then introduces some
essential data structures and the interface of the implemented library. The basic
concepts of implementing systems are introduced before the implementation of
several different systems is described. Each of these covers an illustrative use
case for working with the Entity Component System Architecture.

4.1 Code Base

The implementation is written in the C' programming language (standard re-
vision C11). It is organized in two parts: A shared library and surrounding
code. The library implements the core part of the Entity Component System
Architecture as defined in section 3 and is called the core library or core for
short. The surrounding code builds a simulation engine using this library. Unit
tests are included with the library. The decision what is part of the core library
is guided by the question which parts will remain the same when implementing
different simulations with the architecture. This distinction is simple and clear
and resulted in moving all systems that implement entity behavior from the
library to the surrounding code. Tables 11 and 12 give a brief overview of the
code bases.

Module ‘ sloc ‘ fn ‘ Brief outline

core 656 | 17 | Implementation of the core Entity Component
System Architecture.

structs 58 | 24 | External data structures used by the library.
systems | 61 4 | Light wrapper functions to encapsulate init, up-
date and close functions of systems with error

checks.

utils 24 6 | Miscellaneous utility functions, eg. to get the
time, put a thread to sleep or align pointers.

headers | 113 | - | Structs, macros and signatures from the headers
of all modules combined.

tests 582 | 26 | Unit test for the core interface.

total 912 | 61 | Accumulated stats (not including tests).

Table 11: Overview of the code base implementing the core library. Each row lists
the lines of code and number of functions for one module, together with a
short description of that module. (SLOC counted with sloccount(1))

4.2 Essential data structures

As discussed in section 3.1, all state and data of a simulation object is repre-
sented by its components. Component types are implemented as primitive- or
composite data types and are identified by their size in bytes and their associated
handle.

Section 3.2.4 mentions three component types that are essential to the func-
tionality of the core: 1. ueid 2. flag and 3. type. It is mandatory for every sector
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Module \ sloc \ Description

main 113 | Main loop, see section 4.4.1.

sys_physics 78 | Movement physics system (section 4.5.1)
sys_transform | 76 | Transform hierarchy system (section 4.5.2)
sys_renderer 294 | Renderer system (section 4.5.3)

sys__input 189 | Input system (section 4.5.4)

sys_ collision 97 | Collision system (section 4.5.5)

total 1798 | Entire code base excluding external libraries.

Table 12: Overview of the surrounding code implementing the simulation engine on-
top of the core library. Only the systems described in section 4.4 are listed
explicitly. (SLOC counted with sloccount(1), headers and modules are
combined)

to have component arrays for these types and they are always in the order of
the above enumeration.

typedef uint64_t ueid_c;
Listing 5: Unique Entity Identifier Component

The Unique Entity Identifier shown in listing 5 is the first component type
registered and subsequently always has the handle 1. The value 0 is reserved
for the neutral entity described in section 3.2.4.
typedef uintl6_t type_c;
Listing 6: Entity type component

Listing 6 shows the component identifying the type of an entity as defined
in section 3.2.4. It’s needed for sorting sectors (see section 3.2.5), constructing
new entities as well as by some systems that rely on the entity type for building
subsets to operate on. Since it is the second component type registered it always
has the handle 2.
typedef enum {

ENT_0K=0, ENT_REMOVE, ENT_CREATE
} flag_c;

Listing 7: Entity meta flag component

The third essential component type is a flag to mark entities for deferred
operation during the next frame boundary. It always has the handle 3. Its
value is set by the interface functions for creating and removing entities shown
in listing 19 and 20.

typedef struct {
comp_t handle;
uintl6_t size;
} comp_info;

typedef struct {
comp_info type;
uint32_t mlen;
void *start;

} comp_array;

Listing 8: Struct for component-arrays
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Listing 8 shows that component-arrays are deliberately kept simple with a
pointer to the data, the length of the array and information about the type of
components stored in the array.

4.3 Interface of the Core

This section will describe the interface of the core library. It provides functions
to access entities and components, register data types, provide handles, create
and destroy entities and sectors and to initialize and manage the core itself.

4.3.1 Init, Update and Close

int core_init(const sect_t num_sectors, const size_t sector_size_kb);
Listing 9: Interface for initializing the core library

Upon initialization the core allocates memory, sets up its data structures, cre-
ates sectors and distributes the allocated memory between them, as defined by
section 3.2.1.

int core_close();
Listing 10: Interface for closing the core library

Its complement is the close function shown in listing 10. While it does free the
main chunk of memory, it does not clean-up any of the data structures unless
built in debug-mode. The core itself does not do any work that needs to be
completed before shutdown and all remaining memory will be collected by the
operating systems kernel anyway. Things like writing remaining data to open
files are handled by the systems responsible for them during their own “close”-
function. When compiled in debug mode however, the core will do the clean-up
of all its structures which was verified with valgrind ' during development.

int core_update(const double dt)

{
if (!CORE.initialized) return ECSA_NOT_INITIALIZED;

CORE.sectors.active = 0;
for (sect_t i = 0; i < CORE.sectors.count; i++) {
sector *s = &CORE.sectors.array[il;
if (!s->handle) continue;
if (s->flag == SEC_REMOVE) {
update_entmap(s) ;
clear_sector(s);
continue;
}
const sector_access *const sa = core_open_sector(s—>hand1e);
update_entmap(s) ;
defrag_sector(s);
core_close_sector(sa);
CORE.sectors.idx [CORE.sectors.active++] = s->handle;

}

return ECSA_SUCCESS;

Listing 11: Update function of the core library

http://www.valgrind.org/
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As defined in section 3.2.6 the cores update function shown in listing 11 does
maintenance of internal data structures. The loop from lines 6 to 19 marches
over all sectors. First it clears all sectors that are scheduled for removal in lines
9 to 12. For the remaining sectors, the creation and destruction of entities is
handled in line 15, followed by sorting the component arrays in line 16. Internal
data structures such as the “ent map” defined in section 3.2.1 are updated to
reflect the new state of the sector.

4.3.2 Registering Components

The core library is agnostic towards different types of simulation and tries to be
minimal. It only implements the component types defined in section 3.2.4 for
internal operations. All other component types need to be registered with the
core during the init phase (see table 6). During their initialization all systems
are expected to register all component types they need to access later.

1 comp_t core_register_comp(const_bstring id, const uintl6_t bytes)
2 {
3 if (!CORE.initialized) return ECSA_NOT_INITIALIZED;

5 // If the identifier is already registered, check if the size matches.
6 // A missmatch is an error because overwriting isn’t allowed.

7 void *ptr = tree_search(&CORE.comp_map, id->data, id->slen);

8 if (anycast(ptr, comp_info).handle) {

9 if (anycast(ptr, comp_info).size == bytes)

10 return anycast(ptr, comp_info).handle;

1 else

12 return ECSA_ERROR;

}

// Get a new handle and add an entry to the registry.
comp_info i = {atomic_fetch_add(&CORE.comp_handle_counter, 1), bytes};

18 // The entry is added twice, using two different keys: The received

19 // string as well as the handle.

20 ptr = anycast(i, void*);

21 tree_insert (&CORE.comp_map, id->data, id->slen, ptr);

22 tree_insert (4¥CORE.comp_map, (uint8_t *)&i.handle, sizeof(comp_t), ptr);

return i.handle;

Listing 12: Interface for registering component types

Listing 12 shows the implementation of registering component types defined
in section 3.2.3. The second argument is the size of the component type struct,
which is used internally for memory management and pointer alignment by
the core when constructing component-arrays. For the same combination of
identifier string and size, the same component handle will be returned without
performing another registration. An identifier string cannot be re-used with a
different size, the association of a component type handle is fixed for the entire
runtime.

1 comp_t core_get_comp_handle(const_bstring id)

2 {
3 void *p = get_comp_info(id);
comp_info inf = anycast(p, comp_info);
5 return inf.handle 7 inf.handle : ECSA_ERROR;
5 }

Listing 13: Interface for acquiring component type handles
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There is also a function to query the component type handle for a given
identifier string without performing a registration (listing 13). It can be used
when certain that a component type has already been registered.

4.3.3

Accessing Components

The main access pattern is to iterate over the component arrays of all sectors
that contain a specified subset of component types. The following function of the
core interface returns a list of sectors that contain all of the specified component
types. To avoid complex data structures and those that require dynamically
allocated memory, a simple zero-terminated array is used as argument.

sect_t *core_get_sectors(const comp_t *const c)

size_t n = 0;
sect_t *handles = calloc(CORE.sectors.count + 1, sizeof(sect_t));
for (sect_t i = 0; i < CORE.sectors.active; i++) {
const sect_t handle = CORE.sectors.idx[i];
if (sector_has(handle, c)) handles[n++] = handle;
}

return handles;

Listing 14: Interface for retrieving a filtered list of sectors

The next step is to iterate the returned list of sector handles and use them to
open the associated sectors.

const sector_access *const core_open_sector(const sect_t s)

sector *sec;

if (!(sec = get_sector(s))) return NULL;
pthread_mutex_lock(&sec->rw) ;

return &sec->access;

Listing 15: Interface for opening a sector with read-write access

Listing 15 and 16 show how sectors are opened and closed as defined in
section 3.2.5. The sector access token shown in listing 17 is granted when
opening a sector and is returned when closing it to yield exclusive access to the

sector.

int core_close_sector(const sector_access *const sa)

typedef

if (!sa || !(sa->s)) return ECSA_ERROR;

sector *s;

if (!(s = get_sector(sa->handle))) return ECSA_ERROR;
pthread_mutex_unlock (&s->rw) ;

return ECSA_SUCCESS;

Listing 16: Interface for returning a sectors access token

struct {

const void *const s;

const sect_t handle;

const enti_t length;

enti_t first; // index of first ent. (as of last core_update)
enti_t last; // index of last ent. (as of last core_update)

7 } sector_access;

Listing 17: Struct for handling restricted access to a sector

26



> {

{

To access the component arrays, the token must be given to the function
shown in listing 18.

void *core_access_array(const sector_access *const sa, const comp_t t)

const sector *const s = sa->s;
map_entry *e = map_search(s->comp_lut, voidcast(t));
return e 7 ((comp_array *)e->data)->start : NULL;

Listing 18: Interface for accessing component arrays

4.3.4 Working with Entities

While the main access pattern is to iterate over component arrays, it is also
possible to search for a specific entity across all sectors. This access pattern
becomes important when dealing with references between entities such as the
hierarchical transformations demonstrated in section 4.5.2. Besides searching,
the only other direct interactions with entities are the constructor and destructor
functions shown in listing 19 and 20.

enti_t core_mkent(const sector_access *const sa, const uint32_t n, type_c type)

// We don’t need to test if n < sector.cols, the below algorithm
// accounts for that and the corner case should not slow down the
// common case with additional branching.
const sector *const s = sa->s;
ueid_c *c = core_access_array(sa, CORE.handle.ueid);
flag_c *f = core_access_array(sa, CORE.handle.flag);
type_c *t = core_access_array(sa, CORE.handle.type);
// Find the first empty entity slot that is followed by n free slots
enti_t i = 1;
3 find:
while (c[i] && i < s->cols - n) i++;
if (i >= s->cols - n) return ECSA_ERROR; // == 0 aka invalid
enti_t streak = 1;
while (!c[i + streak] && streak < n) streak++;
if (streak != n) goto find;
// Create new entities by setting the ueid component
for (enti_t j = i; j < i + nj; j++) {
c[j] = atomic_fetch_add(&CORE.ueid_counter, 1);
f£[j] = ENT_CREATE;
t[j] = type;
}
return ij;
}

Listing 19: Interface for constructing a new entity (error handling omitted)

Listing 19 shows the implementation of the function for entity construction.
It schedules construction of n entities of the type given by handle ¢ in the
sector referenced by the received sector access struct. No memory allocation
or other system calls are involved in the construction. The algorithm to find n
consecutive free entity slots (lines 15 to 21) only tests values in the component
array of entity ids. Unless entities have been removed this is equal to an append
operation. Lines 24 to 28 show that the construction of entities is limited to
setting the three first components: weid, flag and type. Note that the ueid is
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retrieved with an atomic fetch-add operation, allowing multiple threads to call
the constructor concurrently. The returned value indicates the index of the first
constructed entity such that the caller can already set values to the components
even though the entity is not yet visible to the search or included in the index
range of the sectors access token that is used to iterate arrays. These changes
are committed during the next call to core update.

enti_t core_rment(const sector_access *const sa, enti_t i, enti_t j)
{
#ifdef DEBUG
if (!'sa || !'sa->s) return ECSA_ERROR;
#endif
if (j >= sa->length) return ECSA_ERROR;

flag_c *f = core_access_array(sa, CORE.handle.flag);
enti_t e;
for (e = i; e < j; e++) {
f[e] = ENT_REMOVE;
}

return e - i;

Listing 20: Interface for destroying an entity

The implementation of the entity destructor function shown in listing 20 op-
erates similar to the constructor in that it only modifies the meta data. Entities
in the range [¢, j[ are marked for removal during the next core_update. They
can still be found by core search entity and will be seen when iterating the
component arrays based on the sectors access boundaries until the end of the
current frame. The destructor is much simpler than the constructor since only
the flag components are set and no search for indices is required. Note that since
no other component types are touched, there is no automatic clean-up of data.
This operation is meant to be as fast as possible and the caller is responsible
for performing clean-ups should they be necessary. A guideline of the Entity
Component System Architecture is that components should include all the data
while also being light. Larger data such as loaded textures or meshes are only
referenced by handle within the components. In this case the systems loading
such data are responsible for tracking the handles (or pointers) and cleaning
up this data after calling core_ rment themselves or by periodically searching
for entities they are keeping track of and reacting when they can no longer be
found. Since the entities can still be seen by other systems until the end of
frame, care must be taken when cleaning up data.

typedef struct {
sect_t sec;
enti_t idx;
} ent_path;

Listing 21: Implementation of an entity path as returned by the search operation

ent_path core_search_entity(const ueid_c id)

{
uint8_t *key = (uint8_t *)&id;
void *p = tree_search(&CORE.ent_map, key, sizeof (ueid_c));
ent_path loc = anycast(p, ent_path);
return loc;
I

Listing 22: Interface for locating an entity based on ueid
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Part \ Lst. \ Brief description

System state 23 | Static struct for storing current state of the system
as well as caching data such as handles to avoid
repeated work.

Init function 24 | Sets up the systems state and does all groundwork
such as registering components, starting threads or
creating sectors. Called during engines init phase.
Update function | 25 | Central part of each system. Updates state of
system, iterates entities, works on components.
Called once per frame during loop phase.

Close function 26 | De-initializes state and does clean-up work such as
freeing memory, closing file descriptors or joining
threads. Called once during close phase.

Table 13: Basic structure of a system in the Entity Component System Architecture,
see table 6 for information about the execution phases referenced here.

Lastly, entities can be searched based on their ueid component. As shown
in listing 22 this is merely a look-up which must complete in constant time
according to the definition in section 3.2.1. Since it is guaranteed by table 9
that entities are not moved during a frame, it is safe for multiple systems to
query the search concurrently and use the result for the remainder of the current
frame.

4.4 Implementing Systems

All systems of the Entity Component System Architecture have essentially the
same structure. Table 13 presents a brief overview before each part is described
in more detail below.
static struct {

int initialized;

struct { comp_t pos, ueid; } handle;

} SYs;
Listing 23: Prototype system state

The purpose of the state struct is to keep track of information between calls
to the various functions as well as to cache results and avoid repeated work. It is
static to make it local to file scope and to place it in statically allocated memory,
which is initialized to 0 at compile time. Thus, testing whether a system has
been properly initialized is as simple as checking the value of SYS.initialized,
which is guaranteed to be 0 until explicitly changed. This happens at the end
of the initialization function to signal that all relevant steps of the initialization
have completed successfully.
int sys_init()

{
if (SYS.initialized) return ECSA_ALREADY_INITIALIZED;

comp_t h = core_register_comp("pos", sizeof(pos_c));

if (h == (comp_t)ECSA_ERROR) return ECSA_ERROR;
SYS.handle.pos = h;
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8 SYS.handle.ueid = core_register_comp("ueid", sizeof (ueid_c));

10 SYS.initialized = 1;
11 return ECSA_SUCCESS;

Listing 24: Prototype system init function

The init function is called during the init phase. In it, the state of the system
is set up, component types are registered and handles are retrieved. Some
systems will perform more specific set ups such as creating a sector, initializing
data structures or starting threads.

int sys_update(const double dt)

2 {

3 if (!SYS.initialized) return ECSA_NOT_INITIALIZED;

1

5 comp_t components[] = {SYS.handle.ueid, SYS.handle.pos, 0};

6 sect_t *s = core_get_sectors(components) ;

7 sect_t it;

8 for (int i = 0; (it = s[i]); i++) {

9 const sector_access *const sa = core_open_sector(it);
10 ueid_c *u = core_access_array(sa, SYS.handle.ueid);

1 pos_c *p = core_access_array(sa, SYS.handle.pos);

2 for (enti_t j = 1; j <= sa->count; j++) {

3 /* Do something with ueid and pos components */
14 ¥

5 core_close_sector(sa);
16 }
17 free(s);
18 return ECSA_SUCCESS;

) }

Listing 25: Prototype system update function

The update function is called once per frame during the loop phase and receives
the delta time since the last frame as argument. This is where access to the sim-
ulation objects happens. Usually, all sectors with a specified set of component
types are opened and their component arrays iterated.

int sys_close()

2 {

3 if (!SYS.initialized) return ECSA_NOT_INITIALIZED;

1 /* Free memory, close file descriptors, unlock mutexes, etc */
5 SYS.initialized = 0;

6 return ECSA_SUCCESS;

7 }

Listing 26: Prototype system close function

Finally, the close function is called during close phase and covers finalizing
steps, if there are any. Some systems might need to free data, others close files
or flush streams.

4.4.1 Running Systems

How the systems are called is not actually part of the core library but the
implementation built around it.

1 int QUIT;

2 void fn_quit(int pressed) { QUIT = 1; }

3

 int main(const int argc, const char **const argv)
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if (core_init(32, 2048) != ECSA_SUCCESS) return 1;
if (!sys_init(input_init, "input")) return 1;

QUIT = 0;
input_register_fn("quit", fn_quit);
input_map(’Q’, 0, "quit");

double dt = 0.0, fps = 60.0;
core_update (dt) ;
double tlast = util_get_time();
for (5;) {
sys_reset_frame() ;
double now = util_get_time(); dt = now - tlast; tlast = now;

sys_run(input_update, dt, "input");
sys_run(core_update, dt, "core");
if (QUIT) break;

double elapsed = util_get_time() - tlast, desired = 1.0 / fps;
if (elapsed < desired) {
util_musleep((uint32_t) ((desired - elapsed) * 1E6));
}
}
sys_close(input_close, "input");
if (core_close() !'= ECSA_SUCCESS) return 1;
return O0;

Listing 27: Example main loop (includes omitted)

Listing 27 shows a minimal example to put the previous description of sys-
tems into context. It starts a simulation and waits for the press of a button to
quit. The only system running besides the core is the input system documented
in section 4.5.4.

Lines 1 and 2 show the definition of a global variable “QUIT” and a callback
function to change its state. This callback is registered with the input system
in line 10; a key mapping for that function follows in the next line and in line
22 the global variable is checked to see if its state was set and the loop should
be exited. As described in section 4.5.4 the input system can record incoming
input events asynchronously, but will handle the execution of callbacks in order
when its update function is called (line 20).

But before any of that can happen, the core must be initialized as shown
in line 6. Initializing the core marks the beginning of the init phase during
which other systems may be initialized. This phase ends when “core update”
is called for the first time in line 14 and the loop phase begins. Behind the
scenes, the input system has created a sector and requested the creation of
entities during its “init”-function, as described in in section 4.5.4 and shown in
listing 42. Section 3.2.6 defines that the creation of entities is only completed
for the next frame.

To make the example code more intuitive to read, the loop from line 16 to
28 represents the order of a frame defined in table 7, which required moving the
first call to “core_update” outside the loop.

In accordance with the definition of the frame zones in table 7, the loop
from line 16 to 28 runs the “core update” after all other systems (eg. the input
system) and before the sleep. In an example with more systems, their update
would be run between the input system and the core. The beginning of each
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execution phase and frame zone is marked with comments in the respective

lines.

4.5 Prototype Use Cases

To demonstrate concrete usage of the Entity Component System Architecture
a few prototype use cases have been implemented and will be described in the
following section. The focus of these use cases is not to implement sophisticated
simulation techniques but to showcase the architecture in operation. As such
all systems described here are greatly simplified. Table 14 briefly compares the

use cases.

Use case Access \ Specific trait

Movement physics producer & | Presents a simple base case for iter-

consumer ating component arrays.

Transform hierarchy | producer & | Demonstrates how entities can ref-

consumer erence other entities to build hierar-
chic structures.

Graphics rendering consumer Constructs in internal representa-
tion of data read from component-
arrays.

User input producer Receives input from asynchronous
callbacks, delays execution of
events.

Collision system producer & | Implements interaction between en-

consumer tities and filters for different subsets

of components.

Table 14: Use cases with their access patterns and specific traits.

4.5.1 Movement physics

A concise and simple algorithm was chosen for computing the movement physics.
It is complete enough to produce fluid movement based on user input but still
simple enough to be described by the following formula:

v =T+ (@), (4.1a)
moif || > m

r=2 VI , (4.1b)
1 otherwise

0" =0 %% (1 —min(f *t,1)), (4.1c)

Where @, 7,9 € R? are the acceleration, velocity and position, t € R : ¢ > 0
is the delta time (since the last frame), f € R : f > 1 the base friction and
m € R :m > 1 the maximum speed. The resulting p’ € R? is the new position.
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The focus is not on the capabilities of this simulation but on demonstrating
the usage of the Entity Component System Architecture. The same structure
could be used to implement more complex physics simulations such as the im-
pulse based physics models seen in the movement mechanics of many games.
Similarly, ignoring rotation allows for a straight forward implementation based
on R3-vectors that is easy to comprehend at a glance and can even be verified
by hand.

static struct {
int initialized;

float max_speed;
float base_fric;

struct { comp_t vel, pos, acc; } handle;
I 12¢

Listing 28: State struct of movement physics system

Listing 28 shows the state struct of the movement physics system. The
initialized flag and the anonymous struct holding component handles is a re-
peated pattern throughout all systems. In contrast, the variables max_speed
and base_fric are contrived examples. They are used here to show that any
kind of information could be part of the state struct to influence the execution
of the systems update function with values initialized by the systems initializa-
tion function.

Listing 29 shows the initialization function of the movement physics system.
The component types are registered with the core and the returned handles are
cached in the state struct. Once complete, the initialization flag is set, allowing
other functions of this system to proceed when called. Error handling has been
omitted for clarity.

int physics_init()

{
if (P.initialized) return ECSA_ALREADY_INITIALIZED;
struct tagbstring vel_s = bsStatic("vel"), pos_s = bsStatic("pos"),

acc_s = bsStatic("accel");

P.handle.vel = core_register_comp(&vel_s, sizeof(vel_c));
P.handle.pos = core_register_comp(&pos_s, sizeof (pos_c));
P.handle.acc = core_register_comp(&acc_s, sizeof(acc_c));
P.max_speed = 64.f;
P.base_fric = 0.96f;
P.initialized = 1;
return ECSA_SUCCESS;

i

Listing 29: Init function of physics movement system

The update function seen in listing 30 resembles the structure of the pro-
totype example in listing 25. It deviates only in the content of the inner loop,
which implements the algorithm described in equation 4.1, as well as the set of
component types used. The latter being dictated by the former. Inputs to the
algorithm are supplied from three sources:
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Delta time is given as argument to the update function.

Friction and maximum speed are defined in the systems state struct (list-
ing 28) and were set during initialization (listing 29).

Position, velocity and acceleration are components.

Delta time, friction and maximum speed don’t change during execution of
the update function while the components differ for each entity. At the same
time, the set of component types defines the filter for matching sectors. Line 5
and 6 of listing 30 show how this is accomplished using the function shown in
listing 14. A list of all sectors containing the required set of component types
is returned. It is not guaranteed that any of these sectors have entities with all
of the required components at every frame. The returned sectors merely have
component arrays for the required set of component types. A newly created
sector may be empty or all components of a certain type might have been
removed from the sector during the previous frame. The set of valid entities is
a subset of the set of entities within the matched sectors. Further filtering may
be required and the approach to this varies between different systems.

The movement physics system presents a simple and elegant case: The unini-
tialized state of all relevant component types is equal to the neutral element
of the computation performed. In other words: Processing has no effect on
uninitialized components. For example, an entity without an acceleration and
velocity component will have zero-initialized data at its index of the component
arrays for these component types. This is equivalent to the neutral element of
addition for both acceleration and velocity components: (0,0,0) € R3. Using
equation 4.1 it can be verified that the position component will not be modified
by the calculation in this case.

G=T=0€R® = v/ =0
— =
— P =7 (4.2)

Neither will the velocity be modified if the entity has no acceleration component
(eg. acceleration is uninitialized):

i=0€R? = v/ =7 (4.3)

An entity with acceleration and position components but no velocity will spon-
taneously gain a velocity component as its uninitialized state is identical to a
velocity of 0 € R, which in turn is valid input to equation 4.1:

T=0eR® = v/ =axt (4.4)

It should be pointed out that it is semantically questionable for an entity to
have an acceleration but no velocity. Due to filtering the list of sectors it is
guaranteed that the component array for velocity components is present in all
sectors processed by the system. Sectors with acceleration components but no
velocity components will simply be ignored. However, the core also provides
a facility to guarantee the presence of a velocity component array for all sec-
tors with acceleration components by registering a component dependency (see
section 3.2.1, “Maps”).
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Another method of dealing with gaps in component arrays is shown by the
renderer system in section 4.5.3, listing 39.

1 int physics_update(const double dt)
2 {
3 if (!P.initialized) return ECSA_NOT_INITIALIZED;

const comp_t comps[] = {P.handle.vel, P.handle.pos, P.handle.acc, 0};
6 sect_t *sectors = core_get_sectors(comps) ;

7 sect_t it;

8 for (int j = 0; (it = sectors[jl); j++) {

9 const sector_access *const sa = core_open_sector(it);

10 pos_c *p = core_access_array(sa, P.handle.pos);

11 vel_c *v = core_access_array(sa, P.handle.vel);

12 acc_c *a = core_access_array(sa, P.handle.acc);

14 for (enti_t i = sa->first; i <= sa->last; i++) {

15 // Apply acceleration to velocity

16 vec3 accel;

17 glm_vec3_scale(ali], dt, accel);

18 glm_vec3_add(v[i], accel, v[il);

19 const float speed = glm_vec3_norm(v[il);

20 if (speed > P.max_speed) {

1 const float factor = P.max_speed / speed;
22 glm_vec3_scale(v[i], factor, v[il);

}

// Apply friction to velocity

6 const float fric = fabsf(P.base_fric);

7 const float m = 1.f - fminf(dt * fric, 1.f);
8 glm_vec3_scale(v[il, m, v[il);

30 // Apply velocity to position
31 glm_vec3_add(pl[il, v[il, pl[il);
32 }

34 core_close_sector(sa);

35 }

36 free(sectors);

37 return ECSA_SUCCESS;

Listing 30: Update function of physics movement system

The outer loop of the update function iterates the list of sectors. Each is
opened for read-write access (line 9) and access to the component arrays is
gained (lines 10-12). In the inner loop all entities within the sector are iterated
and the change of position is computed based on the algorithm from equa-
tion 4.1. The acceleration components are purely read while the velocity and
position components are read and written. Once the inner loop has completed,
the sector is closed again to yield exclusive access (line 34) before opening an-
other sector in the next iteration of the outer loop.

Finally, the close function resets the initialized-flag of the state.

1 int physics_close()

3 i if (P.initialized) P.initialized = 0;
| return ECSA_SUCCESS;

5 F

Listing 31: Close function of physics movement system
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4.5.2 Transform hierarchy

This system was chosen to demonstrate how hierarchies can be established be-
tween entities. Just like the system for movement physics described in sec-
tion 4.5.1, the system for transform hierarchies iterates component arrays to
read and write data. However, this system additionally uses a second method
of accessing components: Searching based on unique entity identifiers (see list-
ing 22).

1 static struct {

2 int initialized;

| struct { comp_t ueid, pos, par, off; } handle;
5 } X;
Listing 32: State struct of transform system

The state of the transform system shown in listing 32 has no new concepts.
The new component types represent spatial offset (listing 33) to the position of
another entity and a reference to another entity as a parent (listing 34).

1 typedef vec3 off_c;

Listing 33: Position offset component

typedef ueid_c par_c;
Listing 34: Parent entity component

The initialization- and close-functions of the transform system don’t intro-
duce anything new and are omitted here.

int xform_update(const double dt)
2 {

comp_t comps[] = {X.handle.pos, X.handle.par, X.handle.off, 0};
sect_t *sectors = core_get_sectors(comps) ;

sect_t s;

6 for (int i = 0; (s = sectors[i]); i++) {

7 const sector_access *const sa = core_open_sector(s);
8 pos_c *pos = core_access_array(sa, X.handle.pos);

9 par_c *par = core_access_array(sa, X.handle.par);

10 off_c *off = core_access_array(sa, X.handle.off);

11 for (enti_t j = sa->first; j <= sa->last; j++) {

12 par_c parent = par[j];

13 if (!parent) continue;

15 ent_path path = core_search_entity(parent);
16 pos_c ppos = GLM_VEC3_ZERO_INIT;

17 if (path.sec == s) {

18 glm_vec3_copy(pos[path.idx], ppos);
19 } else {

20 parent_pos_copy (path, ppos);

21 }

22 glm_vec3_add(ppos, off[jl, pos[jl);

23 ¥

24 core_close_sector(sa);

25 ¥

26 free(sectors);

27 return ECSA_SUCCESS;

Listing 35: Update function of the transform system

For the most part this is a pattern previously shown. Line 13 shows usage of
the new component type par_c. The parent component holds the id of another
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entity to signal a parent-child relationship. The uninitialized form equals the
neutral entity and is interpreted as having no parent. Otherwise the parent
entity is searched as defined in section 3.2.4 using the function shown in listing 22
(line 15). The returned path is used to acquire the parents position component.
Here, a distinction is made based on the sector found in the path. In the simple
case, the parent entity is located in the same sector already opened, otherwise
the sector of the parent entity must first be opened and access to its component
arrays must be acquired. The latter case is wrapped in an extra function to
avoid cluttering up the main update function. Finally, the offset is added to the
parents position to compute the new position (line 24).

Just like the movement physics described in section 4.5.1 the transform hi-
erarchy system can treat all entities the same, whether they define a parent and
offset or not.

In this implementation only one parent is resolved per child per frame. This
means a hierarchy with a depth of 2 will be resolved over the course of two
frames. This is intentional as the implemented demonstration is meant to have
a delay, but other hierarchical systems may have different requirements. If
transform hierarchies are meant to be resolved without delay, the system could
easily be changed to not resolve one layer of parents each update, but instead
build a tree modeling the hierarchy. Section 4.5.3 describes a system that builds
its own ordered representation of data while iterating the component arrays.

4.5.3 Graphics rendering

Like the other systems presented here, the renderer is kept relatively simple.
It features only one shader program, no material system and no optimization
to speak of. Due to the nature of the OpenGL API the renderer is still much
more complex than any other system. This section will therefore not explain
the entire renderer system but only those parts relevant to this use case of the
core library. Specifically, how the renderer constructs an internal representation
of the data it gathers while iterating component arrays.
Two component types are defined by the renderer system to represent meshes

(listing 36) and materials (listing 37).
typedef struct {

GLuint vao;

uint32_t elem_count;

uint32_t elem_type;

} mesh_c;
#define MESH_INIT {GL_INVALID_VALUE, 0, O}

Listing 36: Mesh component type

typedef struct {
vec4d color;
GLuint shd;
GLuint dif;
} mat_c;
#define MAT_INIT {{1, 1, 1, 1}, GL_INVALID_VALUE, GL_INVALID_VALUE}

Listing 37: Material component type

Internally, the renderer system defines another struct to combine information
gathered from multiple different component types. This drawable struct shown
in listing 38 stores all members of the mesh ¢ component as well as the color
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from the mat ¢ component and a model matrix derived from position- and scale
components.
typedef struct {

GLuint vao;

uint32_t elem_count, elem_type;

mat4 model;

vec4d color;
} drawable;

Listing 38: Renderer internal drawable struct

Note that at least two pieces are missing for drawing objects: The shader-
and texture handle from the material component. These are not included in the
drawable struct but encoded in the internal representation of the scene that is
built during the update function shown in listing 39.

int r_update(const double dt)

{
tree_destroy(&R.scene); // Reset scene
tree_init (&R.scene) ;
R.drawables.len = 0;
comp_t components[] = {
R.handle.mesh, R.handle.mat, R.handle.pos, R.handle.scale, O
e
sect_t *s = core_get_sectors(components) ;
sect_t *it = s;
while (*it) {
/¥ [...] =/
mesh_c *m = core_access_array(sa, R.handle.mesh);
mat_c *a = core_access_array(sa, R.handle.mat) ;
pos_c *p = core_access_array(sa, R.handle.pos);
scale_c *z = core_access_array(sa, R.handle.scale);
for (enti_t i = sa->first; i <= sa->last; i++) {
if (!'m[i].vao || m[i].vao == GL_INVALID_VALUE)
continue;
// shader/diffuse/sector/entity
uint8_t key[14];
*((GLuint *)&key[0]) = ali].shd;
*((GLuint *)&key[4]) = al[il.dif;
*((sect_t *)&key[8]) = *it;
*((enti_t *)&key[10]) = 1i;
drawable *d = &(R.drawables.data[R.drawables.len++]);
d->vao = m[i].vao;
d->elem_count = m[i].elem_count;
d->elem_type = m[i].elem_type;
glm_mat4_identity(d->model);
glm_translate(d->model, p[il);
glm_scale(d->model, z[i]);
glm_vec4_copy(a[i] .color, d->color);
tree_insert(&R.scene, (uint8_t *)&key, 14, d);
¥
core_close_sector(sa);
it++;
}
free(s);
return ECSA_SUCCESS;
I

Listing 39: Update function of the renderer system (several parts omitted)

The inner loop in lines 18 to 35 of presents three differences to previously
shown systems:
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1. Entities without a mesh component are detected and skipped.

2. Data is read from component arrays but no data is written to component
arrays, making the renderer system a pure consumer.

3. An alternate representation of the data is constructed and kept internally
for later processing.

The first point is illustrated in lines 19 and 20. Unlike the movement physics
system described in section 4.5.1 the renderer system can not treat all entities as
valid candidates. The array of mesh components is tested for specific values that
signal either uninitialized data or data explicitly marked as invalid for rendering
and skips these to avoid faulty draw calls.

The component arrays are treated as read-only because the renderer is not
supposed to change the simulation, merely present the current state. To do that
the renderer gathers all information from the components necessary to construct
a draw call and collects it in a tree. This tree is sorted to minimize the number
of context switches between draw calls. Lines 22 to 26 show the method of
sorting: Handles and indices are concatenated to form a path in which the
shader is closest to the root and thus least frequently changed when iterating
the tree. The leaves of the tree then point to the drawable structs constructed
from the component data in lines 27 to 34. As previously mentioned, these
drawable structs (listing 38) are missing shader- and texture handles needed by
draw calls. Both are encoded in the first 8 bytes of the path to the leaves (lines
32, 33). How this tree is iterated to issue draw calls has little relevance to this
use case and is omitted.

4.5.4 User input

Table 14 lists the input system with the access pattern “producer”, suggesting
it writes without ever reading data from component arrays. This is only true
conceptually from the perspective of information exchange between systems. In
practice the input system needs to keep track of input received asynchronously
through its callback function until the next call to its update function. To do
so it creates its own sector for buffering input events as components. Once per
frame it will iterate over these components and handle the events in order, thus
effectively reading data like a consumer. The input system only reads data it
wrote itself, therefore not consuming information produced by other systems
which makes it a pure producer in the context of information exchange between
systems. This particular way to use a sector and its component arrays is the
focus of this section as it highlights the importance of some guarantees made
by the definition of the Entity Component System Architecture.

Just like the other systems documented here, the input system only covers
a minimal set of features required to demonstrate its use case. Input events are
limited to keyboard actions and consist of three integers as shown in listing 40.
typedef struct {

int key, action, mod;
} input_c;
Listing 40: Input event component with three integers encoding that a specific key
was pressed or released
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The state struct of the input system (listing 41) is more complex than those of
the transform (listing 32) and movement (listing 28) systems previously shown.

static struct {
int initialized;

struct {
comp_t input;
sect_t sect;
type_c ent_type;

} handle;

map *fnreg; // mapping id to function pointer
map *keyreg; // mapping id to int

map *keymap; // mapping int to function pointer

_Atomic(uint64_t) seq; // current input event sequence number

uint64_t handled; // seq. number of last handled input event
enti_t sector_length; // num. entities in the event sector
input_c *input; // pointer to component array in event sector

mtx_t mapping_lock;
1 I

Listing 41: State struct of the input system

The first difference is the anonymous struct holding handles in lines 4 to 8.
Where the other systems have only stored component handles, the input system
also keeps a handle for the sector it created in line 6 of listing 42 and the type
of entities representing input events (line 7). Lines 10 to 12 of listing 41 show
three hash maps, which are initialized in the input systems init function in line
20. With these the input system can map associations between keys received as
input events and registered callback functions.

int input_init()

{

/* ... %/

set *comps = set_str();

set_insert (comps, &input_s);

I.handle.sect = core_mksector(bfromcstr("input events"), comps);

set_destroy(comps, NULL);

comp_t type_set[] = {I.handle.input, 0};

I.handle.ent_type = core_get_ent_type(type_set);

const sector_access *const sa = core_open_sector(I.handle.sect);

if (!core_mkent(sa, sa->length - 2, I.handle.ent_type)) {
core_close_sector(sa);
return ECSA_ERROR;

}

I.input = core_access_array(sa, I.handle.input);

I.sector_length = sa->length;

core_close_sector(sa);

I.fnreg = map_str(); I.keyreg = map_str(); I.keymap = map_int();

atomic_init(&I.seq, 0);

if (mtx_init(&I.mapping_lock, mtx_plain) != thrd_success)
return ECSA_ERROR;

/* ... %/

}

Listing 42: Initialization function of the input system (trivial parts omitted)
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The remaining members are all related to the special usage of the input
systems own sector for input events. By filling this sector with entities of the
same type (line 12) it meets the guarantees from table 9. As a result, the
component arrays of this sector won’t be modified by the core. Since this sector
is not accessed by any other system, the input system can forego safety measures
such as opening and closing the sector through the core interface. Access to the
array of input event components is simply stored in the state struct (listing 41,
line 18) next to the length of the sector. To orchestrate access between the
asynchronous callback adding new input events and the update function that
sequentially processes input events, only two indices are needed. One to record
the progress of processing events, seen in line 15. The other to mark the index of
the most recently added input event component (line 14). Since new components
are added through an asynchronous callback, this marker needs to be an atomic
type and changes to it must be atomic operations as shown in listing 43, line 4
and listing 44, line 7.

void input_parse(const int key, const int action, const int mod)
i
uint64_t seq;
seq = atomic_fetch_add_explicit(&I.seq, 1, memory_order_seq_cst);
// compute index in range [1..n[
const enti_t ix = (seq % ((uint64_t)I.sector_length - 1)) + 1;
I.input[ix].key = key;
I.input[ix].action = action;
I.input[ix].mod = mod;

Listing 43: Callback function to receive input events

int input_update(const double dt)

{
if (!I.initialized) return ECSA_NOT_INITIALIZED;
mtx_lock(&I.mapping_lock) ;
const uint64_t sector_length = (uint64_t)I.sector_length;
uint64_t seq = atomic_load(&I.seq);
while (I.handled != seq) {
enti_t ix = (I.handled++ % (sector_length - 1)) + 1;
input_c *in = &I.input[ix];
map_entry *e = NULL;
if ((e = map_search(I.keymap, voidcast(in->key))) == NULL)
continue;
void (*fn) (int) = (void (%) (int))e->data;
switch (in->action) {
case GLFW_PRESS:
case GLFW_RELEASE:
fn(in->action);
break;
default:
break;
}
}
mtx_unlock(&I.mapping_lock);
return ECSA_SUCCESS;
Iy

Listing 44: Update function of the input system
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Due to the guarantees made by the architecture this orchestration of re-
ceiving input events and processing them requires no mutex to be locked. In
contrast, the mapping of input events to callback functions shown in needs to be
protected by a lock (listing 41, line 20) while the update function is processing
events (listing 44 line 5).

4.5.5 Collision system

Section 1.2 discusses the computational complexity that arises in systems that
model interactions between simulation objects. Among the solutions mentioned
to avoid the worst case complexity defined by equation 1.3 was the division of
simulation objects into subsets. The Entity Component System Architecture
supports multiple methods of dividing entities into subsets, most prominently
the concept of sectors described in section 3.2.5 and demonstrated in all use
cases so far. Another method that has been shown already is the filtering of
entities based on component types (see listing 14 in section 4.3.3). The collision
system is used to demonstrate how these methods can be utilized to reduce the
complexity of solving interactions between pairs of entities.

The algorithm to solve collisions was chosen for being as simple as possi-
ble while still being useful for the task at hand. It’s based on the separating
axis theorem in two dimensions and handles no other shape than axis aligned
bounding boxes (listing 45).
typedef struct {

float w, h;
} aabb_c;

Listing 45: Axis aligned bounding box component

The update function shown in listing 46 is a wrapper to separate the code
for collision solving from the surrounding logic for opening and closing sectors.

int coll_update(const double dt)
{
if (!'C.initialized) return ECSA_NOT_INITIALIZED;

const comp_t c_static[] = {C.handle.pos, C.handle.aabb, 0};
const comp_t c_moving[] = {C.handle.pos, C.handle.aabb, C.handle.vel, O};
sect_t *s_static = core_get_sectors(c_static);
sect_t *s_moving = core_get_sectors(c_moving);
sect_t a, b;
for (int i = 0; (a = s_moving[il); i++) {
const sector_access *const sa = core_open_sector(a);
for (int j = 0; (b = s_static[jl); j++) {
iter(sa, a == b ? sa : core_open_sector(b));
}
core_close_sector(sa);
}
free(s_moving) ;
free(s_static);

return ECSA_SUCCESS;

Listing 46: Update function of the collision system

In total there are four nested loops, two in the update function and two in a
special iterator function called inside the inner loop of the update function. In
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lines 5 and 6 we see two different sets of components defined that are used in the
following lines to get two filtered lists of sectors. In previous use cases the sys-
tems only ever acquired one such list with all sectors containing entities relevant
to them. For the collision system all entities with a position and bounding box
are relevant. But the collision system implements an interaction between two
entities and this list would contain entities that don’t need to be tested against
each other. Two entities that don’t move also don’t need to be tested for collision
interactions against each other. Therefore the collision system acquires a second
list of sectors with the additional requirement to contain velocity components.
With these two lists it’s possible to test all entities with a bounding box that
are able to move against all entities with a bounding box. The two nested loops
starting in line 11 of the update function (listing 46) implement this logic with
the granularity of sectors. Within the inner loop, each pair of sectors is passed
to the iterator function shown in listing 47 that implements the iteration over
component arrays and solves collision between pairs of entities.

1 int iter(const sector_access *const a, const sector_access *const b)
2 {
3 pos_c *posl = core_access_array(a, C.handle.pos);
pos_c *pos2 = core_access_array(b, C.handle.pos);

5 aabb_c *boxl = core_access_array(a, C.handle.aabb);
6 aabb_c *box2 = core_access_array(b, C.handle.aabb);
7 ueid_c *ul = core_access_array(a, C.handle.ueid);

8 ueid_c *u2 = core_access_array(b, C.handle.ueid);

9 vel_c *v = core_access_array(a, C.handle.vel);

10 if (v == NULL) return ECSA_ERROR;

2 int count = 0;
3 for (enti_t i = a->first; i <= a->last; i++) {
14 const float x1 = pos1[i][0], y1 = posi[i][1];
5 const float hwl = box1[i].w * 0.5f, hhl = box1[i].h * 0.5f;
16 if (hwl * hhl == 0.0f) continue;
17 const ueid_c ueidl = ull[il;
18 for (enti_t j = b->first; j <= b->last; j++) {
19 float hw2 = box2[j].w * 0.5f, hh2 = box2[j].h * 0.5f;
20 if (hw2 * hh2 == 0.0f || u2[j] == ueidl) continue;
21 float x2 = pos2[j1[0], y2 = pos2[jl[1];
22 float dx = x1 < x2 7 x2 - x1 : x1 - x2;
: float dy = y1 < y2 7 y2 - y1 : y1 - y2;
24 float gapx = dx - hwl - hw2;
float gapy = dy - hhl - hh2;
6 if (gapx >= 0 || gapy >= 0) continue;
7 if (gapx > gapy) {
28 pos1[i][0] = x1 < x2 ? x1 + gapx : x1 - gapx;
9 v[i] [0] = v[i][0] * -0.125f;
30 } else {
31 posi[il[1] = y1 < y2 ? y1 + gapy : yl - gapy;
32 v[i][1] = v[i][1] * -0.125f;
22 }

count++;

36 i

38 if (a->handle != b->handle) core_close_sector(b);
39 return count;

40 }

Listing 47: Implementation of collision solving between entity pairs found by iterat-
ing sectors
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The collision system is the first one shown that opens two sectors at the same
time. The definition in section 3.2.7 notes that this could cause deadlocks if
systems would run concurrently. Even without concurrency the collision system
could cause a deadlock in the special case of trying to open the same sector
in the inner loop that was already opened in the outer loop. To prevent this,
the update function compares the sector handles and omits opening in case of
a match (listing 46, line 14). The iterator function does the same for closing
sectors at the end (listing 47, line 38).

The first thing of note in this iterator is that it acquires access to two com-
ponent arrays per component type for position, bounding box and ueid, as well
as to a single array of velocity components. This reflects the filtering for two dif-
ferent subsets of sectors and that the iterator solves interactions between pairs
of components of which only one has a velocity.

The algorithm combines X- and Y-coordinates of the position component
with the width and height of the bounding box component to compute the four
corners of the axis aligned bounding boxes. These are then used according to the
separating axis theorem to detect overlapping regions. To resolve the collision a
vector is computed - based on this overlap - by which one of the entities needs
to be moved. This vector is applied to the position of the first entity, which is
always movable due to having a velocity component. Additionally, the velocity
component is scaled by a factor of —0.125 to simulate a bounce effect. Line 16
and 20 of listing 47 implement checks for opportunities to abort computation
early. The first skips the inner loop entirely for the current entity if the bounding
box has an area of 0. This also catches entities without a bounding box since
the uninitialized value of the “aabb _¢” component produces the same result.
The second check does the same for the bounding box of the other entity as
well as comparing the ueids of both entities to avoid collision checks of entities
against themselves.
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5 Evaluation

This section is dedicated to evaluating the Entity Component System Architec-
ture defined by this thesis. The ability to implement a realtime simulation with
this architecture is concluded. Insights into the subject of simulation software
architecture are presented and limits and capabilities of the architecture are
discussed based on the use cases implemented and described in section 4.

Implementing the Entity Component System Architecture The archi-
tecture defined in section 3 was implemented in a library in less than 1000 lines
of C code (see section 4.1, table 11). With this library a simulation engine was
developed that covers a variety of use cases common to game engines including,
but not limited to, user input, collision detection, graphics rendering, movement
physics and hierarchical transformations. As a result a working example simu-
lation has been produced within the time frame of this bachelors thesis, proving
that the architecture is indeed functional and sufficiently simple.

It has been shown that simulation objects can be represented by entities that
associate multiple components by an index into parallel arrays. This SoA design
adheres to the principle of locality known from data oriented design, making
the architecture inherently compatible with this paradigm. These arrays can
be iterated efficiently as described in section 3.1 and shown in all use cases
(eg. listing 30). It was necessary to complement these arrays with associative
structures that support the arrays by providing fast searching for addressed
entities (see section 3.2.1, “Maps”). Among the five described use cases the
hierarchical transform system was the only one to make use of this, all others
were implemented using iteration of component-arrays as sole access method.

The systems could be implemented independently from each other and exist-
ing functionality did not suffer from the introduction of new component types
or systems. Neither was it necessary to re-factor existing systems or compo-
nent types at any point during development. This shows that (at least for the
use cases presented) it is possible to reduce the effects of crosscutting concerns
between systems.

Furthermore, all of the core concerns for simulation software defined in sec-
tion 1.3 have been modeled with this architecture and the implementation de-
scribed in section 4 was able to demonstrate that the majority of data access in
common simulation use cases could be achieved with just these structures.

Grouping with Sectors To combat the complexity of simulation object in-
teractions described in section 1.2.1 a method for grouping objects was needed.
Section 3.2.5 has defined the concept of sectors to achieve this. In the use case
of the collision system described in section 4.5.5 this has been demonstrated
successfully. The input system described in section 4.5.4 has demonstrated how
the efficiency of sectors can be maximized by reserving an entire sector for en-
tities of the same type, resulting in component-arrays with 0 gaps and reduced
maintenance cost for the core.

The notion of grouping entities based on segmentation of the simulation
world (eg. levels) has been mentioned in section 1.2.2. Directly mapping levels
to sectors would restrict the entity count in the level since the memory available
to each sector is fixed for the runtime (see section 3.2.5). How efficiently this
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memory is used depends on the component types of the entities. A more appro-
priate approach would be to analyze the set of entities in a world-segment for
optimal distribution to multiple sectors. This optimization could even be done
offline using algorithms not suited for realtime computation.

Sectors also provide access control to prevent race conditions when multiple
systems try to access overlapping subsets of entities.

System min max ‘ mean stddev

core 0.000570 | 0.017615 | 0.001387 | 0.001056
physics 0.000002 | 0.000017 | 0.000004 | 0.000001
transform | 0.000002 | 0.000021 | 0.000004 | 0.000001
renderer 0.000008 | 0.000039 | 0.000015 | 0.000002
input 0.000000 | 0.000015 | 0.000001 | 0.000001
collision 0.000002 | 0.000028 | 0.000005 | 0.000001

Table 15: Runtime of system update functions in seconds. Measurements from 632
frames over 3 executions. In a pool with 32 sectors of 2048KiB, 4 sectors
were created. 11 regular entities were split (7+4) between two sectors for
static and dynamic geometry. A sector for input events was filled with
80654 entities and one for log messages with 17182 entities. In all 3 runs
the only spike was the update of core after all entities (97847) were added.
(Hardware used: Intel(R) Core(TM) i5-3570K CPU @ 3.40GHz)

Performance Characteristics The formal definition of the Entity Compo-
nent System Architecture in section 3 has allowed identifying performance char-
acteristics. Runtime performance can be separated between the execution of
systems simulating entity behavior and the maintenance of the core.

Implementation of the use cases suggests that systems following the design
described in section 4.4 run with predictable efficiency. No performance bot-
tlenecks could be identified in the design of the architecture for systems. The
mean and standard deviation of the measured execution times shown in ta-
ble 15 suggest highly predictable performance for their update functions. For
the performance of the cores maintenance a bottleneck could be identified in the
number of modifications made to the cores “ent map” described in section 3.2.1.
Creation or destruction of a large number of entities is limited by the single-
threaded modification of this map. The data structure used here is an Adaptive
Radix Tree!® from an external library!®. As table 15 shows, adding roughly
100.000 entities in a single frame causes the cores update to take approximately
18 Milliseconds on the testing hardware. On average over 632 frames (including
the spike) the cores maintenance took 0.001387 seconds. In that time the core
has iterated the component-arrays of “type ¢” and “flag_¢” components across
4 sectors with 17182, 80654, 19054 and 15646 columns respectively, suggesting
efficient use of the CPU’s cache.

The measurements shown here support the premise of defining iteration of
parallel arrays as main method to access data and relying on more complex
structures only as optimization for some use cases. It is possible to reason about

Bhttp://www-db.in.tum.de/~leis/papers/ART.pdf
https://github.com/armon/libart
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the performance characteristics of the implementation based on the definition
of the architecture.

Limits of the Architecture The efficiency of iterating component arrays
depends on the distribution of entities with different sets of components within
these arrays. For the simple use cases described in section 4.5 the distribution
of entities between sectors could be chosen by hand. But how an efficient distri-
bution of entities to sectors can be accomplished for complex simulation worlds
such as those of entire video games has not been explored.

While the implementation of the input system described in section 4.5.4
shows that systems can operate asynchronously and the architecture provides
some protection from race conditions through sector access tokens (section 3.2.5),
there is no explicit support for concurrent execution of systems.
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6 Conclusion

The analysis of the problem domain and definition of core concerns in section 1
has provided valuable insight that has lead to a clear definition of a simple but
capable architecture.

The Entity Component System Architecture has been defined in section 3
and successfully implemented in code. Working examples of common use cases
for simulation software have been demonstrated in sections 4.5.1 to 4.5.5. Im-
plementing the architecture is possible within a short time frame, making the
effort manageable. Doing so can be justified with the performance characteris-
tics shown in section 5 as well as the ability to reason about performance and
bottlenecks reliably.

7 Outlook

Optimization of Sector Sorting The reason for sorting component-arrays
within a sector is improved cache efficiency for sequential iteration. Currently,
the sorting is defined to cluster entities with the same set of component types
and leave no gaps (see table 10). What is not defined is the order of these
clusters. But the similarity of entity types based on their set of components
could prove a useful metric for ordering the clusters to reduce the number of
gaps further. Since the “type c¢” component already encodes an entities set of
components as string, algorithms for string matching based on distance metrics
should be a good starting point.

Concurrency and Access Control The Entity Component System Archi-
tecture does not provide a solution for running systems concurrently. How the
definition of the architecture could be extended to take care of - or help with -
the concurrent execution of systems is an interesting subject for future research.
In particular, solving dependencies between systems accessing the same data to
avoid dead-locks.

A related subject for future research would be more sophisticated schemes
of access control. Simply differentiating between read-only and read-write has
the potential to simplify concurrent access to data.
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