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Zusammenfassung

Aktuelle politische Angelegenheiten spiegeln sich oft in Diskussionen in den sozialen Me-
dien wider, wo Politiker and Wahler auf gemeinsamen Plattformen zusammentreffen.
Da diese auch die allgemeine 6ffentliche Wahrnehmung der Politik beeinflussen kénnen,
besteht ein grokes wissenschaftliches Interesse an den Funktionsweisen und Hintergriin-
den solcher Debatten. Diese Masterarbeit befasst sich mit Nutzerbeitrigen aus einem
aktuellen und relevanten Datensatz in Form von Zeitreihen, die dann auf thematische
Inspiration und Themensetzung hin analysiert werden. Das Institute for Web Science
and Technologies der Universitdt Koblenz-Landau hat Daten auf Twitter gesammelt, die
im Vorfeld der Europawahl 2019 von den Kandidaten generiert wurden. In dieser Arbeit
werden die Daten aufbereitet und auf unterschiedliche Eigenschaften hin untersucht, wo-
bei der Fokus auf dem Einfluss von Politikern und Medien auf Online-Debatten liegt.
Es wird ein Algorithmus vorgestellt, der Tweets in Themenstringe einteilt. Anschliefend
werden sequentielle Assoziationsregeln erstellt, die ein breites Spektrum an méglichen
Einflussverhéltnissen hervorbringen, sowohl zwischen Akteuren als auch zwischen The-
men. Die erarbeitete Methodik kann mit verschiedenen Parametern angepasst werden
und ist gut erweiterbar, was die Funktionalitit und den Anwendungsbereich betrifft.

Abstract

Current political issues are often reflected in social media discussions, gathering politi-
cians and voters on common platforms. As these can affect the public perception of
politics, the inner dynamics and backgrounds of such debates are of great scientific inter-
est. This thesis takes user generated messages from an up-to-date dataset of considerable
relevance as Time Series, and applies a topic-based analysis of inspiration and agenda
setting to it. The Institute for Web Science and Technologies of the University Koblenz-
Landau has collected Twitter data generated beforehand by candidates of the European
Parliament Election 2019. This work processes and analyzes the dataset for various prop-
erties, while focusing on the influence of politicians and media on online debates. An
algorithm to cluster tweets into topical threads is introduced. Subsequently, Sequential
Association Rules are mined, yielding wide array of potential influence relations between
both actors and topics. The elaborated methodology can be configured with different
parameters and is extensible in functionality and scope of application.
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1. Introduction

Online communication and digital media have become more and more important over
the past decades, even in politics [1]. Many politicians have realized by now that social
media activity can be helpful not only for campaigning, but also in order to make their
own political goals part of the public discussion and thus more relevant. As a byproduct,
thereby generated digital data has opened up new opportunities for political and social
research. [2]

The online platform Twitter is well suited for surveys about these phenomena, as it fea-
tures high political activity and relatively easy access to data via API [3]. However, online
debates based on short text messages can quickly get complex due to a high number of
actors and interwoven messages, and analyzing them requires a well designed approach.
In the field of Computational Social Science, efforts have been made to find the structure
of these kinds of discussion on Twitter. Jungherr compared political communication on
Twitter to the one on traditional media, but he found out that the logic and temporal
dynamics are generally different [4]. Jackson and Lilleker analyzed the role and usage
of Twitter in political communication and its actors [5]. However, both studies used
datasets from 2009, and considering the rapid changes in social media usage, their find-
ings might not apply today in the same way.

1.1. Motivation

This thesis aims to figure out who influences the topic and course of online debates, and
how and when this is done. Those aims include Agenda Setting as a form of power in
political discussion, which has recently been investigated in [6]. Rossiter’s work focuses
on traditional, structured debates, which are usually different from the Twittersphere, as
they have a limited number of participants and a clear course of debate. Social media
discussions on the other hand assemble multiple topic threads, where anyone can join or
leave the conversation at any time.

To start further analysis, a large dataset of tweets is automatically reviewed for topics,
authors and time frames of political Twitter messages. Connections between political
tweets and temporally successive events and debates are key for this research. Therefore
methods known from Information Retrieval and Data Mining are applied to a analyze
a large number of political tweets, viewed as a time series, in order to look for potential
Temporal Association Rules. By linking authors who repeatedly tweet about the same
topics, association rules can tell which politicians tend to address similar topics, while
the temporal aspect shows who was first and therefore likely to have brought an issue to
public attention.

The found association rules and other observations are evaluated and processed. The
elaborated methodology is supposed to be reproducible and adaptable for a variety of



political datasets.

1.2. Research Questions

As a guide to what to look for, I have defined the following research questions:
a Which politicians have the highest influence on online debates?

b Which politicians are able to cause response in common media?

¢ Do certain media sources preferably react to specific politicians or parties?
d Which topics are addressed and discussed by which political parties?

e What are the effects of upcoming elections on Twitter interaction, regarding frequency
and order of tweets?

f Are there media outlets that work tightly together, e. g. influence each other?

While aiming to answer these questions, I look for the effects of various possible actors
and factors, as follows:

politicians (a, b)
media (c, f)
topics (d)
external events (e)

2. Data

The study uses a dataset of political tweets that has been collected by the Institute for
Web Science and Technologies of the University Koblenz-Landau [7]. The data has been
live streamed from Twitter for an extended period of time, using Tweepy and Twitter4J,
and is stored in a MongoDB database. Any program code that is part of this thesis is
specifically designed to access this database as source.

2.1. Source

A MongoDB collection called "deatpol" contains the core data. It has been assembled
using the accounts of all candidates for the Furopean Parliamentary Election 2019 as
handles. All tweets from these accounts, as well as such that mention the account (for
example in requests or answers) have been streamed into this collection from 2019-03-13
onwards.



In addition, there is another collection called "german" available that contains all tweets
in German language posted within the same time frame.

A composed dataset containing only the relevant data - author, timestamp, content in-
cluding hashtags and references - is analyzed in this thesis.

The composed dataset consists of:
e tweets contained in the deatpol collection
e tweets that have been referenced there and can be found in the german collection
e tweets from a list of media accounts [8] that can be found in the german collection

Referenced tweets are an important addition to the dataset for this research, as they
often are part or even the origin of discussion topic chains.

Large parts of the analysis only concern the election phase, using tweets from 2019-03-13
through 2019-06-02 (one week after the election on 2019-05-26). This decision is further
explained in the following sections.

The first and for this thesis later abandoned (see 3.2) and dataset contains tweets posted
in a timeframe around the German Parliamentary FElection ("Bundestagswahl”) 2017,
specifically 2017-07-05 to 2017-09-30. Tweets have been collected from a list of observed
accounts, which contains politicians, political parties and other involved organizations.
The politician list is compiled of candidates for all parties that made it into the German
Bundestag (CDU/CSU, SPD, AfD, FDP, Die Linke and Biindnis 90/Die Griinen). The
organization list contains party and faction accounts, as well as important media for
political coverage. Media accounts can be seen as indicators for public interest in specific
topics and events.

2.2. Temporal Distribution

Gathering profound knowledge of the dataset is key to plan and later interpret its anal-
ysis. The temporal distribution and density of data points is a core feature to look out
for. In this case, I have counted the number of tweets in the composed dataset for each
day. There are a total of 1.708.994 tweets in the focus timeframe of the election, going
from 2019-03-13 to 2019-06-02.

Figure 1 shows the daily activity for these roughly 12 weeks of observation. The num-
bers appear relatively consistent over large parts of the time frame, averaging at 20.841
tweets per day. However, a major spike in late March is clearly visible. This is assumedly
due to the discussion about the EU Copyright Reform |9] and its controversial article
13 (later article 17). This discussion was especially vivid on YouTube and Twitter, with
the two highest peaks in activity being on March 23rd, the day when EU wide rallies
regarding this issue were scheduled [10], and March 26th, the day when the official vote



120000

100000

80000

60000

40000

20000

Figure 1: Daily Activity in Tweet Database

within the European Parliament took place [9]. This context is substantiated by the
most used hashtags for the first two weeks of the data streaming being #artikel13 and
# Uploadfilter, both heavily related to criticism on the Copyright Reform.

Another visible, but much smaller peak is building up towards the actual election day
on May 26th. The week before, there is a consistent increase of activity in the dataset,
with the exception of May 23rd, which is most likely caused by technical issues and
trouble with the university server’s power supply. Overall activity drops quickly after
the election, stabilizing at an average below 10.000 daily for the next two months. Taking
into account that even more severe technical issues in streaming corrupted the available
data of June and July, most of the analysis in this thesis will focus on the previously
mentioned time period from March through May.

2.3. Trends

Knowing the most discussed topics in a time period helps to understand the context of
the underlying data analysis. For this reason, I have extracted the most used hashtags
of each calendar week fully covered within the focus timeframe. Table 1 shows the top
20 entries per week, starting with calendar week 12 (from 2019-03-18) and ending with
calendar week 22 (till 2019-06-02).

Most of the hashtags found here can be assigned to at least one the following categories.



1) Hashtags can represent a party (e. g. #CDU) or an attitude towards a party (e.
g. #NieMehrCDU). These are found in abundance and are usually not helpful as topic
indicators. However, the frequency of a party or attitude hashtag can be affected by
ongoing events and discussions, making them worth considering in the analysis. An
interesting observation is the prominent ranking of #AfD in multiple weeks, which ex-
ceeds the relative presence and size of the party. Investigations within the database on
the most frequent users of party hashtags have shown that the majority of the tweets
with an #AfD hashtag are posted by accounts of the party themselves or their members,
assumedly to boost its perceived relevance. Other parties show this tendencies as well,
but to a far lesser degree. Interestingly, for #SPD the most common hashtag users are
primarily not party members, but media accounts.

2) Hashtags can represent a person of public interest, like #Merkel. This either concerns
a recent issue related to that person (see category 5) or is a comment to a statement
made by them, likely outside of Twitter, hence the direct reply function can not be used.

3) Multiple trending hashtags in the observed timeframe directly refer to the upcoming
European Parliamentary Elections (such as ZEUWahl2019 or #gehtwdihlen). While the
election is clearly not only a relevant discussion topic, but arguably the most important
one in this time, its omnipresence distorts its value for topic based analysis.

4) Hashtags can stand for a discussed topic of long term importance. These are partic-
ularly interesting, as they cover extensive discussions and can be brought back up by
specific actors after losing relevance. Examples of this kind are #Brexit and the overall
number one hashtag #Artikel13 along with others related to the Copyright Directive.
Only a few other abstract issues are represented in the top list by hashtags, such as Cli-
mate Change with #FridaysForFuture or Privacy with #DSGVO. However, when cover-
ing the full dataset, there are, of course, a lot more of this type (e. g. #Mietpreisbremse).

5) Some hashtags mark a very current event or affair which caused a burst of related
tweets. Examples here are #NotreDame and #Rezovideo. As they have an impactful
external event as common influence, agenda setting is not relevant here. Nevertheless
it is very interesting to see which politicians post about the topic, acknowledging its
relevance to them. A noteworthy information about this kind of hashtag is that names
of locations (primarily cities) or even persons can stand as a proxy for a recent event.

2.4. Quality

While the dataset is very viable and represents not only important political topics, but
many actors from different parties, there are several observable issues that reduce the
overall suitability for further analysis.

Dealing with retweets is a major concern when examining Twitter data, especially in an
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Table 1: Trending Hashtags per Calendar Week

Rank | Week 12 ‘Week 13 ‘Week 14 ‘Week 15 ‘Week 16 ‘Week 17

i FArtikel13 Fartikel13 Fartikel13 FAD FUploadfilter #AD

2 #Uploadfilter Uploadfilter #Uploadfilter #Uploadfilter #AfD #7iB2

3 #Artikel13Demo NieMehrCDU #NieMehrCDU #Cumex #SPD #FEuropawahl2019
4 #Demosold #Uploadfillter #NieMehrSPD #urheberechtsreform | #NotreDame #Vilimsky

5 #EP #CopyrightDirective | #EU #EU #Artikell3 #Strasbourg

) #NieMehrCDU #EP #NoPePP #Lanz #Europawahl #Europawahl
7 #SaveYourInternet | #Articlel3 #Brexit #Europa #NieMehrSPD #EU

8 #artikel17 #Uploadfilters #Europawahl #SPD #NieMehrCDU #EUWahl2019
9 #bots #GehtWihlen #AfD #Europawahl #CDU #puls4

10 #CDU #Bots #SaveYourlInternet | #Brexit #EU #NordStream?2
11 #Memes J #eprivacy #FCKArt13 #Europawahl2019 #Uploadfilter
12 #axelsurft #NieWiederCDU #copyright # Artikel13 #Artikel17 #CSU

13 #copyright ##saveyourinternet # Artikel13Demo #FPO #Europa #Europa

14 #EU #Berlin #dsgvo #Europawahl2019 # CopyrightDirective #Klimawandel
15 #brexit #SPD #SPD #europadelbuonsenso | #Seehofer #FDP

16 # Articlel3 #CDU #Europa #EAPN #Urheberrechtsreform | #Klimaschutz
17 #Demogeld #Briissel #niemehrcsu #Enteignung #FridaysforFuture #EVP

18 #orban #copyright #Berlin # OffenerBrief #GroKo #FPO

19 #yes2copyright #Brexit #Germany #NieMehrCDU #CSU #CDU

20 #Fidesz #gehtwaehlen #FarmVille #CDU #Essen #Weber
Rank | Week 18 ‘Week 19 Week 20 Week 21 Week 22

1 #AfD #Europa #AfD #AfD #Uploadfilter

2 #JEC #wahlarena #tvDuell #Europawahl2019 | #Mussolini

3 #SPD #EU #TellEurope #EP2019 #SPD

4 #Europawahl2019 #AfD #europawahl2019 #EU #ep2019

5 #Europawahl #Europawahl2019 | #Europa #SPD #AfD

6 #Europa #SPD #EU #GreenWave #Zensur

7 #1Mai #Orban #StracheVideo #Europa #Europawahl2019
8 #FlorenceDebate #Europawahl #EurovisionDebate | #Rezo #Nahles

9 #EU #Nazi #AnneWill #Europawahl #CDU

10 #TagderArbeit #germany #strache #Klimaschutz #rezo

11 #Pressefreiheit #terror #FPO #Rezovideo #SPANIEN

12 #EU2019 #war #Mailand #CDU #GreenWave

13 #EUWahl2019 #CDU #Europawahl #NieMehrCDU #hartaberfair
1 #europaistdieantwort | #Bremen #Vilimsky #annewill #Merkel

15 #Pforzheim #Uploadfilter #euwahl #Kurz #EU

16 #Artikel13 #Barley #SPD #Meuthen #Union

17 #CDU #Merkel #Schlagabtausch #FridaysForFuture | #Brandenburg
18 #EP2019 #Weber #EP2019 #EUWahl #greta

19 #Orban #EP2019 #euwahl2019 #FPO #Europawahl
20 #Kiihnert #Artikel13 #21G #EUelections2019 | #Artikel13
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environment of political communication. 47,6% of all tweets in the database (1094318 out
of 2297593), and 52,3% of the tweets within the focus timeframe (859045 out of 1708994)
are retweets. On one hand, retweets display a political opinion or message that should
not be left out. On the other hand, retweets emerge as unproportionally predominant in
analysis based on topics and time series, despite containing no original content. Retweets
have the same assigned topics as their source and are often posted within a short time
period, both of which favor not only prevalence, but also evaluation within temporal
association rules of the involved topics and authors.

One extreme example of the impact of retweets is the hashtag ranked 20th on week 14
in table 1: #FarmVille. An unaware observer might assume some kind of hype around
the Facebook game of that name, but in reality it was a single skit by parliamentarian
Tiemo Wolken (@uwoelken). His post criticized the arrangement to let the agriculture
department decide about copyright affairs and happened to be retweeted over 300 times.

However, retweet behavior and favorite sources are, although rather trivial, part of my
analysis, so completely discarding them could not be justified. Instead, multiple runs
with different parameters can help tackle the issue.

Another common problem when dealing with user generated content is flooding, where
authors post in an unnecessary high quantity in an attempt to make their content more
visible. Often combined with excessive overuse of hashtags, flooding can significantly
skew the results of a study like this if it is not properly dealt with. A prime example
is the user @Crypto_ Schurke, who repeatedly posted tweets full of the same hashtags,
addressed to different observed politicians. As a result, these hashtags are overrepresented
in certain calculations, like association rules to find out which hashtags are often used
together.

3. Methodology

In this section, the general approach as planned is described, as well as the detailed
procedure during the Data Processing and Analysis part.

3.1. Approach

The work on this thesis is separated into two main tasks. Both of them need program
code to process the large amount of data involved. As primary programming language,
I use Python (v3.7).

My first goal is to assign certain topics to each of the tweets. Therefore I transfer them
from the eDemocracy database into a local database, using only the information I need,
which are author, timestamp, topics and retweet or reply information. Since topics have
to be mined from the tweet content text (which also includes hashtags and links), this is
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also important to extract, but does not need to be directly stored any more once topic
discovery is done.

The most basic way of assigning topics is using the hashtags. This can act as a simple
solution to Topic Discovery in order to get started with the second and more important
step. However, hashtags usually do not offer a very precise topic description, and many
of the collected tweets do not contain any hashtags at all.

Once the tweets have been assigned topics, they can be combined into topic chains. These
may include discussions using the response and retweet functions of Twitter, but more
importantly new tweets that share the topic and are close in terms of time. Within a
topic chain, Temporal Association Rules [11] are to be generated to see which politicians
interact with or are inspired by each other. Each topic chain can also be seen as a Time
Series |12|, giving insight to the general activity and the frequency in which certain
politicians and media are covering the topic.

For the generation of association rules, a suitable algorithm has to be found. Topics can
be treated as transactions and authors as items. A simple example for an association
rule of this kind is "if author A talks about topic X, then author B does so as well". To
involve the time aspect, an important restriction is that the antecedent has to be earlier
than the consequence in a transactions in order to support the rule.

In the reverse way, association rules can also be generated to see what topics are similar,
since the same people talk about them. In this case, authors are transactions and topics
are items. "Authors who tweet about topic A also like to tweet about topic B" would
be an example of such a rule. While this does not directly serve to learn about agenda
setting, it can help to refine the topic discovery by extrapolating similarity of topics from
the politicians who put emphasis on them.

A secondary goal is to detect Topic Drifts [13] within discussion chains, and to deter-
mine who is responsible for these [6]. As a very recent example, the topic can drift from
"copyright reform" to "freedom of speech", depending on the course of the debate and
protests. Overlaps and reply activity involving two or more topic chains are indicators
that a topic drift may have happened. Once a topic drift has been found, further inves-
tigation of a compiled time series can identify timeframe and responsible authors of the
drift.

The last step is to process the results of the analysis and draw conclusions from com-
paring the effects of various factors and actors. This includes answering the research
questions and backing up the answers with results, while considering possible sources
that affect the development of Twitter conversations in the specific setting that this the-
sis examines. These sources are politicians, media, topics and external events. Their
relative effect sizes can be compared by observing quantified topic chains and drifts.
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In addition, I discuss any other findings that can be considered relevant to political and
social research.

3.2. Data Processing

To handle more than one million tweets efficiently, the data is first processed and trans-
mitted into a more convenient database. To accomplish this, I wrote a script, using
Python 8.7 as programming language and Anaconda with Spyder as IDE. The script uti-
lizes modules for database connections, more specifically pymongo for the source database
and mysql for the workspace database. To maintain a server connection via SSH, ssh-
tunnel is employed, while the bgtunnel module helps to keep the connection between the
two involved servers alive.

A Python class (dbconnect.py) handles connection and authorization for both databases.
It has two ways to access the workspace database, remotely via SSH or locally when run
directly on the server. The former allows easier testing on a personal machine, but the
latter is a lot faster due to fewer remote connections. Therefore productive data transfer
is done by running the script directly on the server.

In the data handler (datahandler.py) the tweets are read from the MongoDB source,
processed when necessary, and written into a slimmer mySQL database. The processing
includes the conversion of data formats such as timestamps, and the protection of key
characters that otherwise would cause trouble within SQL statements. For each entry, a
query is generated to insert the tweet into the workspace database.

The following columns are kept in the Tweets table:

id: The ID of the tweet as used in the Twitter API [3].

time: The date and time the tweet has been posted.

author: The screen name of the user who posted the tweet.

text: The actual content of the tweet, including hashtags, links and all text; for

tweets that are marked as truncated, the full text is loaded.

o retweet: If the tweet is a retweet, the ID of the original tweet is saved here; value
0 means it is not a retweet.

o reply: If the tweet is posted in reply to another tweet, the ID of that tweet is saved
here; value 0 means that the tweet is not posted as a reply.

e quote: If the tweet contains a quote and is posted as retweet with comment, the
ID of the quoted tweet is saved here; value 0 means that there is no quoted tweet.

o flags: An extra value for internal use during the analyzing process.

An issue worth mentioning is that the dataset from the 2017 German Federal Election,
which was the original object of study, was assembled during the time where Twitter
started to loosen the 140 character limit [14]. After some investigation, I found out that
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this has resulted in a significant number of tweets being truncated without having the
full text stored in the database (see D). This made the dataset unusable for the purpose
of this thesis, and the consequent decision was to focus on only the new dataset instead,
based on the 2019 European Parliament Election.

The data structure of the new dataset in the MongoDB source is different from the old
one, as it is directly based on the Twitter API [3]. This required a few adaptations within
the data handler script, making it now incompatible with the old and for this purpose
obsolete dataset.

In addition to the transfer, the script parses the text of all tweets and extracts hashtags
from them. While the source database has hashtags available as a separate field, I found
out that the data provided there is incomplete. Specifically, hashtags appear to not be
detected whenever they are in the second part of a truncated text. For this reason, di-
rect parsing from the full text is the best option, although it comes with further efforts.
The found hashtags are stored as hashtag-based topics in a specific table ( Topics), and
linked to the tweets that contain them in another one (Links). Hashtag-based topics are
optimized by removal of noise characters.

In the next step, referenced tweets are added to the database. To achieve this, the script
takes all retweet and reply IDs from available political tweets and subtracts the the IDs
already in the database from this list. The remaining entries represent original tweets
that have been replied to or retweeted from by observed politicians, but have not been
transferred to the database yet. The MongoDB server contains a collection with all Ger-
man language tweets from the relevant time frame. By iterating through that collection,
some of the missing entries can be retrieved and transferred to the database.

However, a missing tweet might not be in the collection for the following reasons, listed in
order of the predicted number of cases: a) the original tweet is not in German language;
retweeting of English language content is not uncommon in German political discussion;
b) the original tweet is too old and has been posted before the collection timeframe; c)
the collection of German tweets missed out on that particular entry.

To include tweets from relevant media outlets, as it has been done in the original dataset, I
requested the list of account handles from the corresponding project [7]. All tweets posted
by these accounts that could be found in the above mentioned full German collection are
also copied into the workspace database.

Due to optimization or corruption of relevant data, multiple iterations have been run to

create a suitable database excerpt. Details and numbers regarding these iterations are
briefly described in the appendix (E).
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3.3. Analysis

Definition 1 A Tweet (or Post) p in the database has an author a(p), a timestamp
t(p) and a set of Topics (or Hashtags) H(p) = {h1(p), ha(p), ...hn(p)}.

As a basis for the analysis, I created a Python class (analysis.py) with different functions
for extracting useful information.

The first step is to find all topics a specific author is involved in and how often he is
tweeting about each, and to find out which authors have talked about a given topic and
when. Both can be achieved by relatively simple SQL queries.

One use of association rules on the dataset is an attempt to find similar topics. It im-
plements the Frequent Pattern Growth algorithm and employs the pyfpgrowth Python
module. With tweets as transactions and topics as items, some meaningful association
rules can be found, depending on required support and confidence. Pure retweets are
ignored for this measure to prevent support and confidence from becoming skewed.

However, the focus of this research and more complex endeavor is to find out which
authors are influenced by each other. This requires at first for each topic a list of all
discussing authors, including time stamp of their tweets. These lists are here defined as
Topic Chains and can be seen as sequential transactions in an effort to find association
rules.

Definition 2 A Topic Chain C is a sequence of Tweets p1,pa2, ..., pn, where (¥p; Ih €

N YA (t(pi) < t(piv1)).

H(pl)’H(p2>7“"H(pn)

There has been plenty of research on terms of Temporal Association Rules, but none of
the methods I found is optimal for the purpose of this master thesis. Worth considering
was the classic approach by Rainsford and Roddick [15] and the extending ARMADA
algorithm [16], however it is heavily focused on interval-based data, while the Twitter
database only provides point-based items. I made deliberations for constructing intervals
by linking tweets of the same author and topic in close temporal proximity, but decided
that this process could quickly get too inconsistent and arbitrary.

As a result, I opted for an efficient way to determine influences, by employing Sequential
Association Rules [17] and using the full time stamp only to determine topic chains.
As gathered from the database, the discussions on the most viral hashtag-based topics
contain thousands of tweets, which is far from an optimal size of a sequential transaction
in association rule mining. This issue is tackled by the introduction of a time delta.
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Definition 3 A maximum interval At splits a Topic Chain C into a set of Sub-
chains Cs = {S51,95%,...,S,}. A split between two Tweets p; and p;+1 happens iff
t(pi) + At < t(pit1).-

Vice versa, a Subchain S; fulfills the requirement t(p;) + At > t(p;+1) as well as the
definition of a Topic Chain.

Topic chains can be split into subchains in different ways, depending on the time delta.
For this reason, my function for creating sequences works with a flexible parameter that
defines the time delta in multiples of 1 hour. All subchains are treated equally after the
splitup, in the same way normal topic chains are, regardless of the underlying topics.
To learn sequential association rules from the generated chains, an external tool called
SPMF [18] is employed. SPMF is published and kept up to date by Fournier-Viger, one
of the developers of the CMRules algorithm [17] used here. As it only works with integer
numbers as items, authors are translated into an ID for the calculation and reverted
later. When calling SPMF, a minimum support and confidence can be chosen, whereas
the support is interpreted as a fraction relative to the whole dataset and therefore must
be lower than the confidence.

In total, there are four variable parameters to the process that can influence the resulting
association rules.

1. The Selector Mode determines which tweets are considered for the calculation
of association rules - either all tweets, all original tweets (no retweets), all tweets
except those from the media and organization handle, or all original tweets except
those from that handle.

2. The Time Delta in hours sets the maximum time interval between any two tweets
in a chain, as described above.

3. The Minimum Support tells SPMF which percentile of Topic Chains is required
to support a rule in order to be considered.

4. The Minimum Confidence tells SPMF which percentile of Topic Chains where
the antecedent occurs also have to contain the consequent in order to be considered.

Depending on these parameters, various results can be observed (see 4.2).

4. Results

This section covers and discusses all findings arising from the analysis.

4.1. Association Rules for Topics

The first and most simple application for association rules are the topics themselves.
Especially for hashtag-based topics it is interesting to see which are commonly assigned
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jointly to a tweet.

Using a standard FPGrowth algorithm with a minimum support of 100 and a required
confidence of 0.5, a total of 57 associations appear. Some link the numerous hashtags
about the EU Copyright Directive, for example (#SaveYourInternet, #Uploadfilter) -
> (#Artikel13). Many of the rules are nevertheless different combinations around a
#cannabis hashtag, which are attributable to a single user, a flooding issue already
described in the Data section (2.4). These rules are overshadowing the ones that are
actually meaningful, like (#May) -> (#Brexit) or (#NieMehrSPD, #NiemalsAfD) ->
(#NieMehrCDU).

The impact of flooding can be reduced by basing the association rule mining on authors,
rather than single tweets. This is very similar to a typical recommender algorithm, as
in "authors who posted about topic A, also posted about topic B". In this case, the
previous settings for minimum support and confidence yield too many rules, so more re-
strictive values are applicable to cut their quantity in favor of quality, thus stronger, more
meaningful association rules. With 500 for support and 0.8 for confidence as minimal
requirement, 189 rules emerge. The results can provide more insight into hashtag-based
topics, showing which ones are possibly related, for example (#eprivacy) -> (#DSGVO),
(#Campact) -> (#Attac) and (#Germany, #terror, #war) -> ((#Nazi).

All association rules for topics can be found in the appendix (A.1).

4.2. Sequential Association Rules for Authors

Sequential association rules to establish who might influence whom are the primary focus
of this thesis.

The minimum support is set to 0.05%, meaning that for every 2000 transactions, at least
one must contain the observed items. This appears low on first glance, but given the
diversity and vast amount of actors in Twitter discussions, test runs have proven that
higher numbers are insufficient to get any results. The minimum confidence is 50%, pro-
viding the latitude for rules while keeping a "more often than not" level of validity.

The full tables of mined association rules can be found in the appendix (?7).

With a standard selector mode and a time delta of 24 hours, a total of 2422 rules have
been found. Authors in both the antecedent and the consequent repeat a lot, indicating
networks of people and organizations who share interest in topics. However, on a closer
look to some of the most common accounts found in the consequents, it appears that
the vast majority of their posts are retweets. While this grants an interesting insight on
who favors which party based on retweets, figuring this out could be done with a lot less
effort by directly using twitter mechanics.
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Reducing the time delta to 3 hours significantly lowers the number of output rules, to
a total of 108. The reason for this is that a smaller time delta means an increase in
the number of topic chains, which also increases the minimum support required, as it is
relative to the total number of transactions. Meanwhile, topic chains are shorter, many
of them reduced to a single entry and therefore impractical for rule mining.

When ignoring retweets while going back to a 24 hour time delta, there are still 807
rules. All of the earlier observed common accounts have been eliminated, proving that
these networks are in fact primarily based on retweets. Nevertheless, within this setting
media accounts predominate the generated association rules. Since media strive to post
as early as possible about current topics, a relation based on discussed topics within a
close time window is not surprising. Association rules between different media outlets
are found with a time delta as low as 3 hours, but their number then drops significantly,
down to a mere 9 rules.

Running the script while excluding both retweets and media handle accounts does not
result in any rules found, for time deltas of both 24 hours and 3 hours.

A lower minimum support might provide better results here, but unfortunately SPMF
freezes when using these settings, which occurred consistently and reproducibly at my
system. In the Performance section of the SPMF homepage [18], author Fournier-Viger
presented some test runs, and the plots show that the CMRules algorithm indeed can stop
working if the minimum support is too low. He also suggests that an algorithm called
RuleGrowth "is much more efficient" [18] in these cases. RuleGrowth has been elabo-
rated by Fournier-Viger et al [19] and is based on a pattern-growth approach, specifically
aimed at improving performance for large scale datasets with relatively low minimum
support requirements.

Repeating the mining with exclusion of both retweets and media handle accounts with
RuleGrowth and a minimum support of 0.02% results in 1370 sequential association rules
for a 24 hour time delta (see A.2, Run 8). Within these, there are still media accounts
left (since they are not only collected by the separate handle, but also when answered to
or retweeted from within the original parliamentarian candidate handle), but they are no
longer predominating. Many names show up repeatedly in both the antecedent and the
consequent, but it is important to consider that the absolute numbers for rule support
in this run can be as low as 10.

4.3. Agenda Setting and Inspiration Phenomenon

To get an overview on who is most likely to set the topic of discussion, a function in my
script shows, for each author in the antecedent, all distinct other authors that appear
in a corresponding consequent in any rule. The result is a set of everyone who repeat-
edly talked about the same topics as the respective author shortly after. A very basic
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measurement of agenda-setting power as described by Rossiter [6] can be obtained by
counting the number of elements in the set of authors who follow the same topics. This
can be seen as a measurement of how many others an author has potentially inspired.
Table 2 shows these numbers for the previously discussed run with a 24 hours time delta
and exclusion of both retweets and accounts from the media handle, which I found to be
the most interesting.

Of course, these results have to be taken with caution. The exact confidence and sup-
port of individual association rules are not considered, and flooding can, though not being
as impactful as in other calculations, skew the rankings. Author @JfVec! for example
shows tendencies towards flooding, while also participating normally in discussions on
the other side. In general the ranking is predominated by the discussion about the copy-
right directive, which has by far the highest involvement within the observed timeframe,
as established in the Data section (2.2).

That being said as a disclaimer, the ranking indeed points out active and dedicated
politicians who one can give credit for steering the online conversations. Top ranked
author Sven Giegold (@sven_ giegold) of the Green party has posted an average of 2.75
tweets per day with only 9% of them being retweets. He also used hashtags appropriately,
allowing for an extensive assignment of relevant topics to his tweets.

The full ranking lists can be found in the appendix (A). Looking at the general distribu-
tion of inspired peers per author, a similarity can be observed between the aforementioned
ranking and that of an unfiltered selection (including retweets). In spite of individual
entities being ranked completely different, both plots pictured in Figure 2 share charac-
teristics with a typical Zipf distribution, featuring only a few leading elements and a long
tail. The numbers here are not of a sufficient magnitude to prove or further investigate
this hypothesis, but considering the Zipf distribution is a pattern observed frequently in
the area of user generated content and network dynamics, it is both notable and plausible
nonetheless.

4.4. Summary

Table 3 shows a summary of all recorded mining runs, including parameters, number of
generated rules and reference to the appended table.

4.5. Caveats

While the two observed main sources of rules - retweets and media - had to be expected
and only provide limited information, they prove that the general method works as in-
tended. However, without explicitly eliminating these sources, there is a significant lack
of rules that reveal agenda setting and inspiration dynamics. The possible reasons for
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Table 2: Number of Inspired People per Author (Top 30)
Author Inspired
sven_ giegold 23
Lars9596 20
ZDFheute 20
OggoleMurx 16
drjdvalentin 16
woelken 13
JfVecl 12
KrahMax 12
BytePirat 11
PhilHackemann 10
FritzFizz 10
JuttaPaulusRLP
Typo87
dneuerer

—_
o

schdrahlemann

jan_buehlbecker
michabl

guidoV4
nicolabeerfdp

AfD

watch union
Gruene Austria
Tagesspiegel
2GRIMREAPERS3
Langhaar Andy

nichtvermietbar
RicoTVT
SCHIEDER
faznet

bueti

QU O O O O O O O OY| O 1| ~J| ~J| Co| Co| Co| Co| Co

21



Selector: all -> no exclusions; original -> no retweets; base -> no extra media handle

—8— original —e— all

Figure 2: Agenda Setting Power Distribution

Table 3: Summary of Recorded Sequential Association Rules Mining Runs

Selector At | minSup | # Rules | Table Ref

all 24 | 0.05% 2422 A2 Run1

all 3 0.05% 108 A2, Run 2

original 24 | 0.05% 807 A2, Run 3

original 3 0.05% 9 A2, Run 4

original, base | 24 | 0.05% 0 -

original, base | 3 0.05% 0 -

original, base | 168 | 0.05% 7 A2, Run 7

original, base | 24 | 0.02% 1370 A2, Run 8

original, base | 3 0.02% 4 A2, Run 9

all 12 ] 0.05% 466 A2, Run 10
original, base | 12 | 0.02% 54 A.2, Run 11
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this are the following:
a) Topic Discovery

One problem is the simple topic discovery method based on hashtags, resulting in 44.075
different topics for the observed timeframe. Having a large number of different topics
helps to generate different topic chains without restrictive time deltas, but also impairs
the meaning of these chains, as tweets related to a topic might be left out because they
do not feature the exact same hashtag. It also favors the predominance of retweet-based
topic chains, as in these cases the hashtags are directly copied and thus the same.

More importantly, 72% (1.231.933 out of 1.708.994) of the tweets do not have a topic
assigned as they do not feature any hashtags. This effectively reduces the sample data to
almost one quarter of the original size, leaving only 477.061 tweets usable for topic-based
analysis.

While the methodology of this thesis and the implementation of the corresponding script
is specifically designed in a way that makes it easy to improve topic discovery, an effective
way that works on short messages has yet to be found. This issue is discussed in more
detail in the Discussion section (5.1).

b) Data composition and density

In addition to the problems pointed out in the Data section (2.4), there is another caveat
when it comes to association rule mining. Within the timeframe of investigation, there
are 1.708.994 coming from 221.526 different author accounts. Ignoring tweets without an
assigned topic, these numbers are reduced 477.061 to and 188.511. The problem here is
that there are only 2.5 tweets per author on average. Topic Chains are assembled with
tweets and need at least two of them to be meaningful, and although tweets can possibly
have multiple topics assigned and therefore be part of multiple Topic Chains, this is not
common. That leaves a very small number of transactions relative to the number of
items, resulting in a more difficult association rule mining.

5. Discussion

This section covers possible improvements, including reasons why they have not been
incorporated and ideas on how to approach them.

5.1. Topic Discovery

The major point of possible improvement in my methodology is the assignment of mean-
ingful topics to tweets. Hashtags are a solid base for that, since they are purposefully
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used by authors to indicate that their tweet is about a certain topic. This is much more
precise and reliable than an algorithm could be for short messages. However, as men-
tioned earlier, many tweets do not contain hashtags and therefore lack any option to get
a topic assigned based on them. In addition, several popular hashtags are not expressive
when it comes to pinpoint a topic, which is discussed in detail in the Data section (2.3).

There has been a lot of research on topic discovery for texts, but general statistical topic
models do not work well on short messages as seen in Twitter. For this reason, I have
looked into multiple research papers specifically aimed at short texts in prospect to find
a suitable method for advanced topic discovery within the database of political tweets.

The processing of the TweetsKB project by Fafalios et al [20] stores tweets in an RDF
database and uses DBpedia to classify semantics. When considering the use of this
method, two major problems occur. First, the data processed in this study is mostly
German, and while there is a German version of DBpedia, it is not on the same level as
the English one. Considering we are dealing with local politicians and up-to-date topics,
some information is expected to be missing. Second, the effort for entity linking and
triple generation exceed the scope of a master thesis, as for the creation of TweetsKB, a
"Hadoop cluster [...] of 40 computer nodes" [20] has been used.

Other approaches for topic discovery in Twitter have been elaborated by Zhao et al [21]
and Ramage et al [22]. Both of these are, as I concluded, too complex for my desired re-
sults, as they focus on advanced things like multi-category labeling or content summary.
While these features might definitely be interesting for further investigations, my goal
was a simple topic classification.

More promising was the work of Rosa et al [23]. While they do not provide a direct
instruction or algorithm, they explain the methods they used and the quality of their
results. They also tackle issues that are relevant for my work, such as temporal topic
drift and linked documents. However, important was in particular "fine grained (hash-
tag) classification" [23], which they claim is not performing as well as the "coarse" one
using just a few general categories. In the last part, they also summarize clusters into
stories, which would fit my purpose very well. The problem here was that they defined
stories manually as they were "not interested in the task of cluster decomposition" [23],
and they hired workers on Amazon Mechanical Turk for the relevance judgments. Both
of these steps were too extensive and not feasible for my thesis.

Lastly, Xun et al [24] discuss topic discovery via Word Embeddings. Briefly summarized,
they employ vector space models, but instead of traditional word types, they use word
embeddings, which are vector representations themselves. They use Wikipedia to learn
these word embeddings before applying them to the words in messages. Additionally,
they strive to identify "background" words with no relevant topic semantics. An im-
portant constraint of this method is that it is only able to assign one single topic per
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message. This restriction by itself would be, although not favorable, acceptable for my
research.

More of a problem is the fact that the clustering process is hardly compatible with my
topic assignments. The algorithm needs a fixed number of topics to assign messages to,
but without providing the option to set what topics are to be excepted. This might be
sufficient when it comes to the simple sorting of messages, but here, topics not only need
to be aligned with the hashtag-based topics, but are also used as a basis for rule mining.
Additionally, the document support for training German language word embeddings is
not as sophisticated as that for English ones, especially considering that many of the
expected topic buzzwords are novel or trending terms. While these word embeddings
would have been the most promising approach for topic discovery if hashtags or similar
mechanisms did not exist, the expected improvement of employing them as an additional
indicator for topics was not worth the effort.

Concluding this section, the field of topic discovery emerges as vastly difficult and im-
precise, due to the length and nature of the observed tweets. Therefore, based on the
above aspects, hashtag based topics seem to be most efficient in order to focus on the
core subject of this thesis.

5.2. Filtering

One way to improve the validity of the results is to clean up the dataset itself. Obvious
spam messages have been found significantly less in samples of the effective 2019 dataset,
compared to those of the old dataset from the German Federal Election 2017. However,
flooding (see 2.4) is still an issue, as it causes messages with low meaning in terms of
content and popularity to have a relatively large impact on analysis techniques.

A straight-forward way to tackle this is to find tweets that are very similar and posted by
the same author, and mark them as "clones". Other methods can be employed directly
during the analysis. When looking which authors have posted how many tweets about a
certain topics, a threshold (e. g. 50%) can be fixed for the tweets fraction from a single
author. If this threshold is exceeded, it is then very likely that the topic is not as relevant
for discussion as raw numbers suggest, because a large part of the related tweets come
from a single person.

However, while both methods would be capable of eliminating certain cases of observed
flooding, they require additional processing and might produce false positives and false
negatives, depending on their parameters. In addition, they only work for single account
sources, which impact just the direct tweet-based association rules for topics.
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5.3. Communication Structure

Twitter as a platform features three possible options how a tweet can be directly related
to another tweet. A Response connects a tweet to the one it refers to, creating a dis-
cussion thread. A Retweet copies the exact content of another tweet while also linking
to the original. A Retweet with Comment or Quote is basically a compound of response
and retweet. Accompanied by a new message, the content of the original tweet is linked
and displayed, but technically not part of the new tweet.

All information about this structure is carried over during data processing (see 3.2),
storing the ID of the original tweet if applicable. It is used mainly to retrieve tweets
that are referred but not found in the base dataset, and to filter out retweets for certain
applications. Furthermore, another primary reason for this data to be preserved is its
meaningfulness for communication analysis. This thesis focuses on finding implicit con-
nections via assigned topics and association rules, but these can be enriched or matched
with the explicit links in the Twitter communication structure.

The explicit connections are not incorporated into the analysis however, since they could
possibly overshadow or distort insights gained by topic- and time-based association rule
mining. The most viable way to include explicit connections would be supplementing
topic chains with authors who took part in a discussion without their tweets being rec-
ognized as regarding the topic. For this, finding a well balanced way to establish such
hybrid topic chains is an extensive, but essential task.

6. Conclusion

The final section summarizes the research in this thesis.

6.1. Answers to Research Questions

At this point, it can be evaluated which of the guiding research questions have been
answered and where.

a) Which politicians have the highest influence on online debates?
The most applicable measurement to answer this questions is the inspiration ranking
discussed in 4.3, according to which Sven Giegold has the highest influence.

b) Which politicians are able to cause response in common media?

To answer this question, an association rules table that includes media accounts can be
consulted. Interestingly, there are a lot of association rules with media accounts in the
consequent, but they almost exclusively contain other media accounts in the antecedent.
When reviewing rules from a table without tweets from the additional media handle (4.2
and Table 3, Run 8), media tweets remain only if they have interacted with those of the
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observed politicians. @ZDFheute in particular is a consequent for multiple politicians
listed in the inspiration rankings (Table 2), amplifying its validity.

¢) Do certain media sources preferably react to specific politicians or parties?
As mentioned above, media accounts mostly react to other media accounts, as they are
presumably all animated by outside events. Within the generated association rule tables,
this question can unfortunately not be answered.

d) Which topics are addressed and discussed by which political parties?

The research focus of this thesis goes towards connections between either different au-
thors or different topics. General statements about favorite topics of an author can be
confirmed by database queries, however authors in the underlying source data are not
technically assigned to a party.

e) What are the effects of upcoming elections on Twitter interaction, regard-
ing frequency and order of tweets?

Daily activity increases close to the election date and decreases significantly after that,
as established in 2.2. This is also the main reason why the research is focused on the
timeframe before the elections. In addition, many tweets are tagged with references to
the then upcoming elections, resulting in multiple trending hashtags, which are closer
described in 2.3.

f) Are there media outlets that work tightly together, e. g. influence each
other?

When mining association rules with excluded retweets and 0.05% minimum support,
connections between media accounts are the only rules remaining (4.2 and Table 3, Run
3). This indeed suggest that they post about the same topics while also using the same
hashtags. In the third column of the full inspiration power rankings (A.3), the most
influential media accounts are led by @faznet, @tagesschau, @zeitonline and @ZDFheute.
Unlike the two others, this ranking does not resemble a Zipf distribution, but an al-
most linear one, indicating that there is no direct inspiration phenomenon, but simply a
consensus on what topics - including their hashtags - are relevant.

6.2. Summary

Although not all concerns could be resolved, the hereby concluded research brought
profound insight into the German political twittersphere beforehand the European Par-
liament Election 2019. Findings are of contentual, structural and technical nature.

Contentual findings include everything learned about topics and authors in this par-
ticular timeframe of political discussion. The prevalence of the copyright debate runs
like a common thread through all research steps, from temporal peaks in tweet numbers
and trending hashtags to well supported topic association rules. Influential politicians
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emerged from both author association rule tables and inspiration power rankings.

Structural findings teach about the general setup of a political environment on Twitter.
Similarities between media and their distinction from other accounts have been observed,
as well as rates of retweets and the usage of hashtags. Potential problems like flooding
and the importance of considering the general communication structure, specifically the
impact of retweets, came to attention.

Technical findings consist in the application of different methods and their outcomes.
Although efforts have been made, automated topic discovery could not be refined to an
adequate level. Existing models are overall evaluated as not precise enough to use them
for the sensitive clustering of very short texts into transactions. The generation of topic
chains and the application of association rules to both topics and authors worked overall
as intended, but there is still potential for improvement.
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A. Association Rule Tables

A.1. Association Rules for Topics

Based on tweets:

{(’# Cannabissteuer ') : (('#cannabis’, ’#jugendschutz >, '#
legalisieren ’), 1.0),

("#ca3mrdEuro’ ;) : (('# Cannabissteuer ', '#cannabis’, '#
jugendschutz ’>, ’#legalisieren '), 1.0),

("#jugendschutz ’,): ((’#cannabis’, ’#legalisieren '),
0.9826086956521739) ,

("#legalisieren ’,): (('#cannabis’,), 0.9743589743589743) ,

("#cannabis’,): (("#legalisieren ’,), 0.912),

("# Cannabissteuer ’, '#ca3mrdEuro’): ((’#cannabis’, '#
jugendschutz >, ’#legalisieren '), 1.0),

("#Cannabissteuer ', ’#jugendschutz ') : (('#cannabis’, '#
legalisieren '), 1.0),

("#ca3mrdEuro’, '#jugendschutz ’): ((’# Cannabissteuer’, '#
cannabis ', '#legalisieren ’), 1.0),

("#Cannabissteuer ', '#legalisieren '): (('#cannabis’, '#
jugendschutz 7)), 1.0),

("#ca3mrdEuro’, '#legalisieren ’): ((’# Cannabissteuer’, '#
cannabis ', '#jugendschutz '), 1.0),

("# Cannabissteuer ’ | ’#cannabis’): ((’#jugendschutz’, '#
legalisieren ’), 1.0),

("#ca3mrdEuro’, ’#cannabis’): (('# Cannabissteuer’, '#
jugendschutz >, ’#legalisieren '), 1.0),

("#jugendschutz ', '#legalisieren ’): ((’#cannabis’ ),

("#cannabis’, ’#jugendschutz ') : "#legalisieren '),

("#cannabis’, '#legalisieren ’): "#jugendschutz 7 ,) |
0.9912280701754386) ,

("# Cannabissteuer ', '#ca3mrdEuro’, ’#jugendschutz ') : (('#
cannabis’, '#legalisieren ’), 1.0),

("# Cannabissteuer ', '#ca3mrdEuro’, ’#legalisieren ') : (('#
cannabis ', ’#jugendschutz ), 1.0),

("#Cannabissteuer ’, '#jugendschutz ', '#legalisieren ') : (('#
cannabis’ ), 1.0),

("#ca3mrdEuro’, '#jugendschutz’, '#legalisieren ’): (('#
Cannabissteuer ', ’'#cannabis’), 1.0),

('# Cannabissteuer ', '#ca3mrdEuro’, ’#cannabis’): ((’#
jugendschutz >, ’#legalisieren '), 1.0),

("#Cannabissteuer ', ’#cannabis’, '#jugendschutz ’): ((’#
legalisieren '), 1.0),

?

)

(
(

—_— =
o O
SN’

)
)
(
(

)

?
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("#ca3mrdEuro’, '#cannabis’, ’#jugendschutz ') : (('#
Cannabissteuer ', '#legalisieren ), 1.0),

("#Cannabissteuer ', ’#cannabis’, '#legalisieren ’): ((’#
jugendschutz ’,), 1.0),

("#ca3mrdEuro’, ’#cannabis’, '#legalisieren ') : (('#
Cannabissteuer ', '#jugendschutz ), 1.0),

("#cannabis’, ’#jugendschutz ', '#legalisieren ') : (('#
Cannabissteuer '), 1.0),

("#Cannabissteuer ', ’#ca3mrdEuro’, ’#cannabis’, ’#jugendschutz ’)

(("#legalisieren ',), 1.0),
("#Cannabissteuer ', ’#ca3mrdEuro’, ’#cannabis’, ’#legalisieren 7)
(("#jugendschutz '), 1.0),

("# Cannabissteuer ', '#ca3mrdEuro’, ’#jugendschutz ’, '#
legalisieren ') : ((’#cannabis’,), 1.0),

("# Cannabissteuer ’, ’#cannabis’, ’#jugendschutz ’, ’#legalisieren
") (("#ca3mrdEuro’,), 0.9734513274336283) ,

("#ca3mrdEuro’, ’#cannabis’, ’#jugendschutz’, '#legalisieren ’):
((’# Cannabissteuer ’,), 1.0),

("#SaveYourlnternet 7, '#StopACTA2’): (('# Uploadfilter ’,), 0.81),

("#SaveYourInternet ’, ’# Terrorfilter ') : ((’# Uploadfilter ’,) ,
0.988950276243094) ,

("#StopACTA2’ , "#Terrorfilter ’): ((’#SaveYourInternet’, '#
Uploadfilter 7), 1.0),

("#StopACTA2’ | '#Uploadfilter ') : ((’#SaveYourInternet’,) ,
0.9878048780487805) ,

("#Terrorfilter ', "#Uploadfilter ) : ((’#SaveYourlnternet’,) ,
0.9728260869565217) ,

("#SaveYourlnternet ’, ’#StopACTA2’ | ’#Terrorfilter ") : (('#
Uploadfilter ’,), 1.0),

("#SaveYourlnternet >, ’#StopACTA2’ | ’#Uploadfilter ") : (('#
Terrorfilter 7)), 0.9814814814814815) ,

("#SaveYourlnternet >, '#Terrorfilter ', '#Uploadfilter ) : ((’#
StopACTA2’ ,) , 0.888268156424581) ,

("#StopACTA2’, '#Terrorfilter ', '#Uploadfilter ) : (("#
SaveYourInternet ’,), 1.0),

("#26MaiCDU’ | ) : ((’#unserEuropa’,), 0.6206896551724138) ,

("#Innenpolitik ') : (("# Weltpolitik 7)), 0.9962962962962963) ,

("#Weltpolitik ) : (("#Innenpolitik *,), 0.9962962962962963) ,

(

(

?

"#May’ ,): (("#Brexit’,), 0.5198675496688742) ,

"#Artikelll ? ) "H#Artikell2 ) (("# Artikell3 7)),
0.7422222222222222) ,

("#Artikell2’ | "#Artikell3 ") : (("#Artikelll’ ),
0.8608247422680413) ,
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(’#NieMehrSPD ', '#NiemalsAfD ’) : ((’#NieMehrCDU’ ) ,
0.7819548872180451) ,

(’#NieMehrCSU’ , '#NiemalsAfD 7)) : ((’#NieMehrCDU’ ) ,
0.9343065693430657) ,

(4 Artikelll ") : (("#Artikell3 '), 0.7150837988826816),

("#GehtWéhlen ', '#NieMehrCSU’) : ((’#NieMehrCDU’ ) |
0.9590163934426229) ,

("#Artikell3Demo ', '#SaveYourlnternet ') : ((’# Artikell3 ),
0.5363636363636364) ,

("#Artikell7’ | '#SaveYourlnternet ') : (('# Artikell3’)),
0.8689655172413793) ,

("#Artikell7’, '#Uploadfilter *): (("# Artikell3 '),
0.812206572769953) ,

(’#CSU’ | "#SPD’) - ((#CDU’,), 0.8731343283582089),

(# Artikell3 ', '#NieMehrCSU’) : ((’#NieMehrCDU" ) |
0.838150289017341) ,

(?#NieMehrCSU’ , ’#NieMehrSPD ) : ((’#NieMehrCDU" ) |
0.9379310344827586) ,

("#SaveYourlnternet 7, '#Uploadfilter ") : (('# Artikell3 ),
0.6268041237113402) ,

("#NieMehrCDU’ |, '# Uploadfilter ') : ((’# Artikell3 ")),
0.5906735751295337) }

Based on authors:

C#AD’, "#Artikell3 ', #Europawahl2019’): (("#EU’ ),
0.8071135430916553) ,

("#AfD’ | '#Brexit ', #Europawahl2019’): (("#EU’ ),
0.8647260273972602) ,

("#AfD’, '#CDU’, "#EU’, '#Europawahl’): ((’# Europawahl2019’ ),
0.8144927536231884) ,

("#AfD’, '#CDU’, '#Europawahl’, '#Europawahl2019’): (("#EU’,),
0.8554033485540334) ,

(C#AD’, "#CDU’, '#Europawahl’, '#SPD’): ((’#EU",),
0.8457792207792207) ,

(C#AfD’, "#CDU, '#Europawahl2019°, '#SPD’): (("#EU’,),
0.8709175738724728) ,

("#AMD’ | "#CSU’, "#Europa’): (("#EU’,), 0.8596774193548387),

("#AfD’ | '#CSU’, '#Europawahl20197): (('#EU’,),
0.8288288288288288) ,

("#AID’, '#CSU’, "#Weber’): (("#EU’,), 0.8771626297577855) ,

C#AfD’, "#Deutschland ') : ((#EU’,), 0.8006379585326954)

C#AD’, "#EP2019°, '#Europawahl20197): (("#EU’,) ,
0.8367346938775511) ,

("#AfD’ | '#FEU’, '#Europa’, '#Europawahl’): ((’#Europawahl2019

35



")), 0.8227665706051873) ,

("#AfD’ | '#Europa’, ’#Europawahl’, ’#FEuropawahl2019’): ((’#EU
")), 0.8704268292682927) ,

("#AfD’ | '#Europa’, ’#Europawahl’ ’'#SPD’): (("#EU’,),
0.8811188811188811),

("#AfD’ | '#Europa’, ’#Europawahl2019’): (("#EU’ ),
0.8254665203073546) ,

("#AfD’ |, '#Europa’, #Europawahl2019’, '#SPD’): (("#EU’,) ,
0.8986013986013986) ,

("#AfD’, '#Europawahl’, '#Europawahl2019’, '#SPD’): (('#EU’,),
0.8599397590361446) ,

("#AfD’, '#Europawahl2019’, ’#Merkel ") : (("#EU’ ),
0.8646362098138748) ,

("#AfD’, '#Europawahl2019’, ’#Sachsen’): (("#EU’,),
0.8386023294509152) ,

C#AMD’, "#Weber’): (C#EU’,), 0.8258766626360339),

("#Antifa’, "H#EU’): ((C#AD’ ), 0.8368495077355836) ,

("# Antifa’, >#Europawahl2019’): (("#AfD’,), 0.8777589134125636)

("#Articlel3 ’, '#Artikell3Demo ’) : ((’# Artikell3 ),
0.8456692913385827) ,

("# Articlel3 "’ #Artikell7 ) (('# Artikell3’ ),
0.847972972972973) ,

("# Articlel3’, "#EP’): (("#Artikell3’ ), 0.8509803921568627) ,

('# Articlel3’, '#NieMehrCDU’) : ((’# Artikell3 ),
0.8031591737545565) ,

("#Articlel3’, '#Uploadfilter ') : (("# Artikell3’ ),
0.8113948919449901) ,

("#Artikell3 7, '#Artikell3Demo’, #CopyrightDirective ) : (('#EP
")), 0.8180645161290323)

("#Artikell3 ’, "#Artikell13Demo’, '#Demosold’): (("#EP’,),
0.8832731648616126) ,

("#Artikell3 7, '#Artikell3Demo’, '#uploadfilters ’): (("#EP’ ),
0.9365671641791045) ,

("#Artikell3 7, #Artikell7’, ’#Demosold’): (("#EP’ ),
0.9128856624319419) ,

("# Artikell3 7, ’#Artikell7’, "#EU’): (('# Uploadfilter '),
0.8436657681940701) ,

(# Artikel13’, '#Briissel ') : (("#Berlin’,), 0.8782051282051282) ,

("#Artikell3 7, '#Briissel ’, "#EP’): ((’#Berlin’ ),
0.9014778325123153) ,

("#Artikell3 7, #Briissel ’, '#Uploadfilter ') : (("#Berlin’ ),
0.8510971786833855) ,
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("#Artikell3 7, '#CSU’, '#SPD’): (("#CDU’,), 0.802731411229135),

("#Artikell3 7, '#CopyrightDirective ') : (("#EP’ ,) ,
0.8374384236453202) ,

("# Artikell3 7, ’'#CopyrightDirective ’, '#Demosold’): (("#EP’,) ,
0.9490196078431372) ,

("#Artikell3 ’, '#CopyrightDirective ’, '#Demosold’, '#
uploadfilters ) : (C#EP’,), 0.9923371647509579)

("#Artikell3 7, '#CopyrightDirective ', "#EP’): (("#uploadfilters
")), 0.9006920415224914) ,

("#Artikell3 ’, '#CopyrightDirective ', '#Uploadfilter ', '#
uploadfilters ) : (C#EP’,), 0.9689608636977058) ,

("#Artikell3 7, '#CopyrightDirective ', '#uploadfillter ’): (('#EP
* ), 0.8573692551505546)

("#Artikell3 7, '#CopyrightDirective ’, '#uploadfilters ) : (('#EP
")), 0.9871065604854001) ,

(4 Artikel13 ', "#Demosold’): (("#EP’,), 0.855475763016158) ,

("#Artikell3 ’, ’#Demosold’, "#EP’, ’#uploadfilters ') : (('#
CopyrightDirective ’,), 0.9736842105263158) ,

(4 Artikell3 ', '#Demosold’, '#NieMehrCDU’): (('#EP’ ),
0.8761776581426649) ,

("#Artikell3 7, ’#Demosold’, '#Uploadfilter ") : (("#EP’,),
0.8649350649350649) ,

("#Artikell3 7, ’#Demosold’, '#uploadfillter ") : (("#EP’,),
0.8664688427299704) ,

("#Artikell3 7, '#EP’, ’#Uploadfilter ', '#uploadfilters ) : ((’#
CopyrightDirective ’,), 0.9702702702702702) ,

("#Artikell3 ’, '#EP’, #uploadfilters ’): ((’#CopyrightDirective
")), 0.9874810318664643) ,

("#Artikell3 ’, #Furopa’, '#Europawahl2019’): (("#EU’ ),
0.8297546012269938) ,

("#Artikell3 ’, '#NieMehrCDU’ |, ’#bots’): (('# Uploadfilter ’,) ,
0.8295589988081049) ,

("#Artikell3 7, '#NieMehrCSU’) : ((’#NieMehrCDU’ |) ,
0.847041847041847) ,

(4 Artikell3 ', "#NieWiederCDU’, "#WirSindKeineBots ') : ((*#
gehtwaehlen '), 0.9944320712694877) ,

("# Artikell3 7, '#NieWiederCDU’, '#WirSindKeineBots ', '#bots ) :
((’# gehtwaehlen ’ ), 0.9987437185929648) ,

("# Artikell3 7, '#NieWiederCDU’, '"#WirSindKeineBots ', '#
gehtwaehlen ') : (("#bots’,), 0.8902575587905935) ,

("#Artikell3 7, '#NieWiederCDU’ | '#bots’): ((’#gehtwaehlen’,) ,
0.944640753828033) ,

("#Artikell3 7, '#NieWiederCDU’, '#bots’, '#gehtwaehlen ’): (("#
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WirSindKeineBots 7 ,) , 0.9912718204488778) ,

("#Artikell3 7, '#NieWiederCDU’ | '#gehtwaehlen’): ((’#bots’,),
0.8595927116827439) ,

("# Artikell3 7, #WirSindKeineBots ’) : ((’#gehtwaehlen’ ) ,
0.9205702647657841) ,

("#Artikell3 7, '#WirSindKeineBots >, ’#bots’, '#gehtwaehlen ) :
((’#NieWiederCDU’ ) , 0.9875776397515528) ,

("#Artikell3 7, '#WirSindKeineBots >, ’#gehtwaehlen ') : (('#
NieWiederCDU’ ,) , 0.9878318584070797) ,

("#Artikell3 |, ’#bots’, '#gehtwaehlen’): ((’#NieWiederCDU"’,) ,
0.9744835965978129) ,

("#Artikell3’, '#gehtwaehlen’): ((’#NieWiederCDU’ ) ,
0.8662952646239555) ,

("#Artikell3Demo ', '#Artikell7 ', '#Uploadfilter 7): (("#
Artikell3 ), 0.8078740157480315)

("# Artikel13Demo ', '#Berlin ) : (('# Artikell3 ),
0.8059701492537313) ,

("#Artikel13Demo ', '#CopyrightDirective ’, "#EP’): ((’# Artikell3
"), 0.8720770288858322) ,

("#Artikel13Demo’, '#CopyrightDirective ’, #uploadfilters ’):
((’#EP’ ), 0.975),

("# Artikell3Demo ', "#EP’, '#NieMehrCDU’) : ((’# Artikell3 ’ ),
0.8573825503355704) ,

("# Artikell3Demo ', "#EP’, '#Uploadfilter 7): (('# Artikell3’ ),
0.8197879858657244) ,

("# Artikell3Demo ', "#EP’, '#uploadfilters ') : (('#
CopyrightDirective ’,), 0.9663716814159292) ,

("# Artikell3Demo ', '#NieMehrCDU’ |, ’# Uploadfilter ') : (('#
Artikell3 ), 0.8346560846560847) ,

("# Artikell3Demo ', '#SaveYourlInternet ', '# Uploadfilter 7): (('#
Artikell3 ), 0.9048223350253807) ,

("#Artikell3Demo’, '#Urheberrechtsreform ") : ((’# Artikell3’,),
0.8302945301542777) ,

("# Artikell13Demo ', '#uploadfillter ") : ((’# Artikell3’ ),
0.9231905465288035) ,

("#Artikell7 7, '#CDU") : (("# Artikell3 7)), 0.864957264957265) ,

("# Artikell7’ | "#EU’, ’#Uploadfilter ") : (('# Artikell3’ ),
0.9112081513828238) ,

("# Artikell7 7, ’#NieMehrCDU’, '#Uploadfilter ") : ((’# Artikell3
")), 0.8426470588235294) ,

("#Artikell7’ | '#SaveYourlnternet ') : ((’# Artikell3’ ),
0.8842443729903537) ,

("#Artikell7 | #Urheberrechtsreform ") : (('# Artikell3 ),
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0.8811410459587956) ,

("#Artikell7 ’ | ’#copyright 7): (("# Artikell3’ ),
0.9170305676855895) ,

("#Attac’ ) ((’#Campact’,), 0.9803328290468987) ,

("#Berlin >, ’#Briissel ', "#EP’): (("# Artikell3’ ),
0.8243243243243243) ,

("#Berlin ', '#NieMehrCDU”) : ((’# Artikell3’ ),
0.8289902280130294) ,

("#Brexit ', >#Europa’, '#Europawahl’): (("#EU’ ,),
0.8650927487352446) ,

("#Brexit ', #Europa’, '#Europawahl2019’): ((’#EU’ ),
0.879045996592845) ,

("#Brexit ', ’#Europawahl’ | ’#FEuropawahl2019’): ((#EU’,) ,
0.8528481012658228) ,

("#CDU’ , "#CSU’, "#Europa’): (("#EU’,), 0.8185975609756098) ,

("#CDU’ , '#CopyrightDirective ') : (("# Artikell3’ ),
0.8327814569536424) ,

(’#CDU" , "#Demosold’) : (("#EP’,), 0.8539898132427843) ,

("#CDU’ , '#EP’, '#Uploadfilter ') : ((’# Artikell3 "’ ),
0.8038277511961722) ,

("#CDU’ , '#EU’, '#Europa’, '#Europawahl’): ((’# Europawahl2019
’ ), 0.8281733746130031),

("#CDU’ , '#EU’, '#FEuropa’, '#Europawahl2019’): ((’# Europawahl
» ), 0.8057228915662651)

("#CDU’ , '#Europa’, ’#Europawahl’, ’#Europawahl2019’): ((’#EU
")), 0.8656957928802589) ,

("#CDU’ |, '#Europa’, ’#Europawahl2019’): (("#EU’ ,),
0.8310387984981227) ,

("#CDU’ |, '#Europa’, ’#FEuropawahl2019’, "#SPD’): ((’#EU’,),
0.8771929824561403) ,

("#CDU’ , '#Europawahl’, '#FEuropawahl2019’): (("#EU’ ),
0.8032967032967033) ,

("#CDU’ |, '#Europawahl’, '"#Europawahl2019’, ’#SPD’): (("#EU’ ),
0.8560371517027864) ,

(#CDU’ , "#Meuthen’) : (("#AfD’,), 0.873015873015873),

("#CDU’ , '#NieMehrCDU’ , '# Uploadfilter ") : ((’# Artikell3 '),
0.8368) ,

("#CDU’ , '#Sachsen’): (("#AfD’,), 0.8748019017432647) ,

("#CDU’ | "#Weber’): (("#EU’ ), 0.8402457757296466) ,

("#CSU’ |, "#FU’, '#Uploadfilter ’): ((’#CDU’ ),
0.8166144200626959) ,

("#CSU’ , '#Europa’, ’#Europawahl’): (("#EU’ ) ,
0.8660130718954249) ,
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("#CSU’, '#Europa’, ’#Europawahl2019’): (("#EU’ ),
0.8626543209876543) ,

("#CSU’, "#Europa’, #SPD’): (("#EU’,), 0.848780487804878),

("#CSU’, '#SPD’, '#Uploadfilter ') : ((’#CDU ,) ,
0.8276972624798712) ,

("#Campact’ ) : (("#Attac’,), 0.9908256880733946) ,

("#CopyrightDirective ', '#Demosold’, "#EP’): (("# Artikell3’ ),
0.8789346246973365) ,

("#CopyrightDirective ’, '#Demosold’, '#EP’, '#uploadfilters ’):
(("# Artikell3 7,), 0.9071803852889667)

("#CopyrightDirective ’, '#Demosold’, '#uploadfilters ’): ((’#EP
")), 0.9930434782608696) ,

("#CopyrightDirective ', "#EP’): ((’# Artikell3’ ),
0.9328599096191091) ,

("# CopyrightDirective ', "#EP’, "#NieMehrCDU") : ((’# Artikell3’ )
, 0.8875739644970414) ,

("#CopyrightDirective ', "#EP’, '"#Uploadfilter ) : ((’# Artikell3
")), 0.8694418164616841) ,

("#CopyrightDirective ', "#EP’, '#Uploadfilter ’, #uploadfilters
Vo ((C# Artikell3 7)), 0.8820638820638821)

("#CopyrightDirective ', "#EP’, '#uploadfillter 7): ((’# Artikell3
’ ), 0.9327586206896552)

("#CopyrightDirective ', "#EP’, '#uploadfilters 7): ((’# Artikell3
"), 0.9517367458866545)

("#CopyrightDirective 7, '#NieMehrCDU’, '#Uploadfilter ") : ((’#
Artikell3 7 ,), 0.8639344262295082) ,

("#CopyrightDirective ', '#Uploadfilter ’, #uploadfilters ’):
((’#EP’ ), 0.961038961038961) ,

("#CopyrightDirective ', "#Urheberrechtsreform ’): ((’# Artikell3
")), 0.8509984639016898) ,

("#CopyrightDirective ', '#uploadfilters ’): (("#EP’)),
0.9802867383512545) ,

("#DSGVO’ ) : (("#eprivacy’,), 0.8),

(*#Demosold’, "#EP’, '#NieMehrCDU’) : ((’# Artikel13 '),
0.8188679245283019) ,

("#Demosold’, "#EP’, '#uploadfillter "): ((’# Artikell3’ ),
0.9211356466876972) ,

("#Demosold’, '#EP’, ’#uploadfilters ') : (("# CopyrightDirective
")), 0.9710884353741497) ,

("#Demosold’, #Urheberrechtsreform ') : (("#EP’ ),
0.8719723183391004) ,

C4EP’, '#GehtWiahlen ) : (("# Artikell3 ’,), 0.8644338118022329) ,

("#EP’, '#NieMehrCDU’, '# Uploadfilter ') : ((’# Artikell3 ),
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0.8264840182648402) ,

("#EP’ | #Uploadfilter ', '#bots’): ((# Artikell3 ),
0.8209677419354838) ,

("#EP’, '#Uploadfilter >, ’#uploadfilters ’): (("#
CopyrightDirective ’,), 0.9678953626634959) ,

("#EP’ | '#Urheberechtsreform ') : (('# Artikell3 ),
0.8477157360406091) ,

("#EP’, 'tcopyright 7): (("# Artikell3 '), 0.8644628099173554) ,

("#EP’ , #uploadfilters ’): ((’# CopyrightDirective ’,) ,
0.9859408795962509) ,

(#EP2019°, "#EU’, "#Europa’): (('#Europawahl2019’ ),
0.817741935483871) ,

(C#EP2019°, "#EU’, '#Europawahl’): ((’#Europawahl2019’ ),
0.8367346938775511) ,

("#EP2019°, ’#Europa’, '#Europawahl2019’): (("#EU’,) ,
0.8190630048465266) ,

("#EP2019’, ’#Europawahl’ | ’#Europawahl2019’): (("#EU’,) ,
0.8289269051321928) ,

("#EU’ | "#EUWahl’) : (("#AfD’ ), 0.8349633251833741)

("#FEU’ , #Furopa’, '#Europawahl’ ’#SPD’): ((’#Europawahl2019
")), 0.8045977011494253)

("#EU’ , '#Europawahl2019’ , "#Merkel ') : (("#AfD’ ),
0.8111111111111111),

("#EU’ , '#Europawahl2019’ , ’#Meuthen’): (("#AfD’ ),
0.9190140845070423) ,

("#EU’ | '#Europawahl2019’, ’#Sachsen’): (("#AfD’ ),
0.9081081081081082) ,

("H#EU’ | "#Greta’): ((C#AD’ ), 0.8476190476190476) ,

(C#4EU’, "#Meuthen’) : (("#AfD’,), 0.8739977090492554)

("#EU’ | '#Sachsen’): (("#AfD’ ), 0.880722891566265) ,

("#FEuropa’, ’#Europawahl’ | ’#Furopawahl2019’, "#SPD’): ((’#EU
")), 0.8628659476117103),

("#FEuropa’, ’#Europawahl2019’, "#SPD’): (("#EU’ ,),
0.8236658932714617) ,

("#Europa’, '#Merkel ") : ((#EU’,), 0.8118518518518518),

("#Europa’, ’#Meuthen’): (("#AfD’,), 0.8774509803921569) ,

("#FEuropa’, #Weber’): (("#EU’,), 0.859375),

C#FCKArt13’,) : (("# Uploadfilter ’,), 0.9501385041551247) ,

("#GehtWihlen ' | '#Uploadfilter 7): ((’# Artikell3 ),
0.804185351270553) ,

("#Germany’ ,): (("#Nazi’,), 0.805247225025227) ,

("#Germany’ |, ’#Nazi’): (("#war’,), 0.993734335839599) ,

("#Germany’, '#Nazi’, '#terror ') : (("#war’,),
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0.9987341772151899) ,

("#Germany’ |, '#Nazi’, '#war’): (('#terror’ ),
0.9949558638083228) ,

("#Germany’ |, '#terror ') : (("#Nazi’, '#war’)
0.9987341772151899) ,

("#Germany’, '#terror ', '#war’): (("#Nazi’,), 1.0),

("#Germany’, '#war’): (("#Nazi’,), 1.0),

("#Meinungsfreiheit 7, '#Uploadfilter ") : (('# Artikell3 ),
0.8255451713395638) ,

("#Meuthen’ |, "#SPD’): (("#AfD’,), 0.8643533123028391),

("#Nazi’,): (("#Germany’,), 0.8571428571428571),

("#Nazi’, '#terror ’): (('#Germany’, '#war’)
0.9987341772151899) ,

("#Nazi’, "#terror’, '#war’): (('#Germany’,), 1.0),

("#Nazi’, "#war’): (("#Germany’,), 1.0),

("#NieMehrCDU’, '#SaveYourlnternet ', '#Uploadfilter ') : (('#
Artikell3 7 ,), 0.8654485049833887) ,

("#NieMehrCDU’ , '#uploadfillter 7): ((’# Artikell3 ),
0.9237057220708447) ,

(’#NieMehrCDU’ , '#uploadfilters ’): (("#EP’)),
0.9473684210526315) ,

("#NieMehrSPD’, '#Uploadfilter ’): ((’# Artikell3’,), 0.81),

("#NieWiederCDU ', "#Uploadfilter ) : ((’# Artikell3 ’ ),
0.8421787709497207) ,

("#NieWiederCDU '’ , "#WirSindKeineBots ', '#bots’): ((’#
gehtwaehlen’ ), 0.998812351543943) ,

("#NieWiederCDU’ , "#WirSindKeineBots’, '#bots’, ’#gehtwaehlen ”)

(("# Artikell3 7)), 0.9453032104637337) ,

("#NieWiederCDU’ , "#WirSindKeineBots ', '#gehtwaehlen ') : ((’#
Artikell3 7)), 0.9390115667718192) ,

("#NieWiederCDU’, "#bots’): ((’# Artikell3 ),
0.9370860927152318) ,

("#NieWiederCDU’ |, '#bots’, '#gehtwaehlen ’): (('# Artikell3’ ),
0.944640753828033) ,

("#NieWiederCDU’ |, ’'#gehtwaehlen’): ((’# Artikell3 ’ ),
0.9302093718843469) ,

("#SaveYourInternet >, ’# Uploadfilter ") : (('# Artikell3’ ),
0.8353741496598639) ,

("#SaveYourInternet >, '#Urheberrechtsreform ") : ((’# Artikell3’ )
, 0.8474320241691843) ,

("#Uploadfilter ', "#axelsurft ') : (("# Artikell3 ),
0.8778280542986425) ,

("#Uploadfilter ', '#copyright ") : (("# Artikell3 ),
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0.8586251621271076) ,
("#Uploadfilter ', '#uploadfillter ") : (("# Artikell3’ ),
0.9078189300411522) ,
("#WirSindKeineBots ’, '#bots’, '#gehtwaehlen’): ((’#
NieWiederCDU’ ), 0.9859320046893317) ,
("#WirSindKeineBots ’, ’#gehtwaehlen ') : (('# Artikell3’ ),
0.9348500517063082) ,
("#bota’,): (("#GehtWahlen’ ), 0.9791666666666666)
("#ep2019’ ) : (("#GreenWave’ ), 0.8600891861761427) ,
(#eprivacy 7,): (('#DSGVO’,), 0.8704663212435233) ,
("#terror ') : (("#Germany’ , ’#Nazi’, '#war’)
0.9962121212121212),
("#terror ', ’H#war’): (("#Germany’ , '#Nazi’), 1.0),
C#war’,): (('#Germany’, '#Nazi’), 0.993734335839599)

A.2. Association Rules for Authors

These tables are too big to be directly appended here. They can be found in a separate
spreadsheet file, RulesTables.ods or RulesTables.zls. The files contain 9 tabs, summarized
in Table 3.

A.3. Inspiration Power Rankings

Table 4: Inspiration Power Rankings

original all original with media

sven giegold 23 | AfD 20 | faznet 7
Lars9596 20 | Joerg Meuthen 13 | tagesschau 7
ZDFheute 20 | ZDFheute 12 | zeitonline 7
OggoleMurx 16 | EchoPRN 11 | ZDFheute 7
drjdvalentin 16 | SilviaHerrmann 11 | zeitonline pol 7
woelken 13 | zeitonline 10 | FAZ NET 7
JfVecl 12 | Gruene Austria 9 | BR24 6
KrahMax 12 | tagesschau 9 | phoenix_de 6
BytePirat 11 | IN_ROL_ 0815 9 | weserkurier 6
PhilHackemann 10 | HansLak 8 | HAZ 6
FritzFizz 10 | roman51110 8 | teleherzog 6
JuttaPaulusRLP 10 | zeitonline pol 8 | MDRAktuell )
Typo87 8 | WKogler 8 | RT_Deutsch 5
dneuerer 8 | AfDKompakt 7 | DLFNachrichten 4
schdrahlemann 8 | BR24 7 | rbbinforadio 4
jan_ buehlbecker 8 | faznet 7 | rpo_ politik 4
michabl 8 | peterrogerl? 7 | SPIEGELONLINE 4
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B. Source Code

B.1. dbconnect.py

#!/usr/bin/env python3

herbert mentzer
heutejournal
heuteplus
IchBinRene

k edtstadler
MMArmbruster
mysteryjes
LandauDaniel
NN_ Oaline
proBorderNation
saltedges
THOR200375
WatchPolitik
UdoHemmelgarn
ZelleTTY
1210gruen
AlternativeNRW
Rumsucher
GuidoReil
Schneider  AfD
hackenstad
GBAlph4
Raidoncosplay
EVP DE

fr

shz de
Leonardodawien
guidoV4

spdde
KpropcRoy
raphstar
SPOE_at

Glesi6

= = e e el e e e e el e e el e e el e e el e el e e el e e el e et el e

# —x— coding: utf—8 —x—

mnn

Created on Thu Sep 13 15:830:36 2018
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@Qauthor: Tobias Thesing

based on the E-Democracy connection script by Omar K. Aly

i

from pymongo import MongoClient
import sshtunnel

import mysql.connector

import bgtunnel

#import tweepy as tp
#import json
#import subprocess
#import MySQLdb
#import datetime
#import time

720

connects to database wvia SSH (requires keyfile) and returns a
MongoDB database link to the eDemocracy project

def connectsource () :
print ("Trying_to_connect_to_source_database ... ")
server = sshtunnel.SSHTunnelForwarder (
"141.26.208.33 7,
ssh username="ubuntu",

ssh pkey="new serverkey",
remote bind address=(’127.0.0.17, 27017))

server.start ()

client = MongoClient(’127.0.0.1", server.local bind port)
db = client .twtest001

print ("Connected!")

return db
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AR

As connectsource (), but can run in background if started by

remote access.
YA

def connectsourcebg():

server = bgtunnel.open(
ssh address=7141.26.208.33 "7,
ssh user="ubuntu’,
identity file="new serverkey’,
host address=’127.0.0.1"7,
host port=27017,
strict _host key checking=False)

client = MongoClient(’127.0.0.17, server.bind_ port)
db = client .twtest001

print ("Connected!")

return db

i

Connects to the mySQL database.
mir
def connecttarget ():
print ("Trying_to_connect_to_target_database...™)

tunnel = sshtunnel.SSHTunnelForwarder (

"141.26.208.88 7,

ssh username="tobias",

ssh pkey="new serverkey",
remote bind address=(’127.0.0.1", 3306)
#local _bind_address=(70.0.0.0", 52875)

)

tunnel . start ()

print ("Using_port_"+str (tunnel.local bind_ port))
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mydb = mysql.connector.connect (
host="localhost",
user="python",
passwd="ba2014" ,
database="thtweets",
port=tunnel.local bind port

)

print ("Connected!")

return mydb

"

Connects to local mySQL database.

i

def connectlocaltarget ():

mydb = mysql.connector.connect (
host="localhost",
user="python",
passwd="ba2014" |
database="thtweets",
port=3306

)

print ("Connected_to_local _database.")

return mydb

B.2. datahandler.py

#!/usr/bin/env python3
# —x— coding: utf—8 —x—

mimn

Created on Mon Jan 28 02:48:07 2019

@author: Tobias Thesing

mmnn

import dbconnect
import time
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import pandas
import re
#import pymongo

mimnn

Creates tables in a local mySQL database to be filled with tweet

i

def

i

data .

setupTables(target):

cursor = target.cursor ()

cursor . execute ("CREATE_TABLE_IF NOT_EXISTS_Tweets_(id _BIGINT
_PRIMARY_KEY, _time _DATETIME(0) ,_author _VARCHAR(255) ,_
text [ TEXT(300) ,_retweet _BIGINT, _reply _BIGINT, _quote_
BIGINT, _flags _INT) ;")

cursor . execute ("CREATE_TABLE_IF NOT_EXISTS_Topics_(
descriptor _VARCHAR(255) _PRIMARY_KEY, _type _VARCHAR(255) ) ;
"

)

cursor . execute ("CREATE_TABLE_IF NOT_EXISTS_Links_(tweetid_
BIGINT, _topicdescriptor 'VARCHAR(255) , FOREIGN_KEY_ (
tweetid ) _REFERENCES_ Tweets (id ) .ON_DELETE_CASCADE, _
FOREIGN_KEY_ (topicdescriptor ) REFERENCES_ Topics (
descriptor ) _ON_DELETE_CASCADE_ON_UPDATE_CASCADE, _
CONSTRAINT_pk _PRIMARY_KEY_ (tweetid ,_topicdescriptor));")

cursor . execute ("ALTER_TABLE_Tweets _MODIFY_COLUMN_text _text _
CHARACTER_SET _utf16 _COLLATE_utfl6 general ci_NULL;")

print ("Tables_created:_Tweets,_Topics,_Links")
return

Replaces key characters in a string to insert it into a database

i

without trouble.

def charchop(string):

cstring = string.replace("\\", "\\b")

cstring = cstring.replace("\’", "\\\'")
cstring = cstring.replace ("%", "\\%")
cstring = cstring.replace(" ", "\\_")

return cstring
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mnn

Ezxtracts all Hashtags used in a text and returns them as a list.
1

def extractHashtags(text):

cleantext — re.sub(’["A-Za—2z0-9# a6GRAOUI+ ', '_’, text)

#check
words = cleantext.split ()
htags = []

for word in words:
if word|0] = '#’:
htags.append(word)

return htags

mirn
Finds out if a text has been truncated.

If so, a link to the original text is returned.
If it’s truncated as a retweet, the ID of the original tweetl is

returned .
If it’s not truncated, the string "COMPLETE" is returned.

mnnn

def analyzeTruncation(text, truncated, retweet):
words = text.split ()
if (truncated):
link = words|[—1]

return link

elif (words[0] = "RT") and ".." in text:
return "https://twitter.com/i/web/status/"+str(retweet)

elif ".." not in text:
return "COMPLETE"
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else:
return "ERROR"

"

Transfers a Tweet selected into a local mySQL database.
Tweet entry has to be in a compatible MongoDB or Twitter API
format.

Hashtag—based topics are generated and assigned for all
transferred tweets.

A flag number can be assigned to the saved Tweet.
mnin

def transferTweet (entry, target, flags):

t _id = entry["id"]
t_time = time.strftime ( "%Y—Y%m-%d _JH:AM:%S’ , time.strptime (
entry [ "created _at"], %a_%b_%d_YH:%M: %S _+0000_%Y "))

t _author = entry|["user"]|["screen name"|
t truncated = entry|["truncated"]

if t truncated:
t _text = entry|"extended tweet"||["full text"|.replace(’\
n’, '_’7).replace(’'\r’, )
else:
t_text = entry|["text"|.replace(’\n’, '_’).replace(’\r’,

")

if "retweeted status" in entry:

t _retweetid = entry|["retweeted status"|["id"]
else:

t_retweetid = 0

t replyid = entry|"in_ reply to status id"|
if not isinstance(t_ replyid, int):
t _replyid = 0

if "quoted status id" in entry:

t _quoteid = entry|["quoted status id"|]
else:

t _quoteid = 0
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if t retweetid =— 0:
t _hashtags = extractHashtags(entry|"text"])

else:
t _hashtags = []

cursor = target.cursor ()

e query = "INSERT_IGNORE_INTO_Tweets VALUES_ ("+str(t_id)+",_
"Mistr(t_time)+" 7, "+t _author+"’,_’""4charchop (t_text)+"
o "str (b retweetid )", J"str (6t replyid )+, " str(
t _quoteid )+",_"+str(flags)+");"

#print ("Ezecuting Query: "+e_ query)

print ("Tweet_Transfer:_"+str(t_id))

cursor . execute (e_query)

for hashtag in t_ hashtags:

e _query = "INSERT_IGNORE_INTO_Topics -VALUES_ (' "+charchop
(hashtag)+"’,_ "hashtag ’) ;"

#print ("Ezecuting Query: "+e_ query)

cursor .execute (e query)

e _query = "INSERT_IGNORE_INTO_Links _VALUES_ ("+str (t_id)+
" _’"+charchop (hashtag)+"’);"

#print ("Ezecuting Query: "+e_ query)

cursor .execute (e query)

target .commit ()

return

mnn

Transfers all Tweets from a MongoDB collection into a local

mySQL database .
Requires a source collection (MongoDB format) and a target

database (mySQL) .
All Tweets are transferred without flags.

mmnn

def transferAllTweets(sourcedb, target):
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for entry in sourcedb.find():

if all(values in entry for values in ["id", "created at"

, "user"|):
transferTweet (entry , target, 0)

else:
print ("Invalid_entry_skipped!")

return

i

Searches the mySQL database for retweet and reply references
where the original

tweet can not be found. Locates these tweets in a MongoDB
collection and adds

them to the mySQL database.

Tweets collected this way are flagged as 1.

mmnn

def addReferenceTweets(sourcedb, target):

cursor = target.cursor ()

cursor . execute ("SELECT_retweet , _reply FROM_Tweets WHERE_
flags _=_0;")
resultset = cursor.fetchall ()

idlist = set (]
resultset |)
idlist .remove(

i[0] for i in resultset| + [j[1l] for j in
0)
print ("List _of_referenced_Tweets_generated.")

cursor . execute ("SELECT_id _FROM_ Tweets ;")
resultset = cursor.fetchall ()

tweetlist = set ([i[0] for i in resultset])
print ("List _of_available_Tweets_loaded.")

fetchlist = i1dlist — tweetlist
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print ("List _of_"+str(len(fetchlist))+"_Tweets_to_fetch_
generated.")
#print (fetchlist)
z =0
for entry in sourcedb.find ():
if "id" in entry:
tid = entry["id"]
if tid in fetchlist:
print (str(z)+"_irrelevant_Tweets_skipped.")
print ("Referenced _Tweet_found:_"+str(tid))
transferTweet (entry , target, 1)
z =0
fetchlist .remove(tid)
else:
z +=1
else:
print ("Invalid_entry_skipped!")
print (str(len(fetchlist))+"_Tweets_could_not_be_found_in_

source_database.")
print (fetchlist)

return

i

Reads a list of entries from a file.
i

def readListFromFile(filename):

56



table = pandas.read csv(filename)

1 = table| screenname’|. tolist ()

#print (1)

return 1

i

Transfers Tweets from a MongoDB collection to the target mySQL

database .
Tweets are selected by a list of authors given by the ’“handles’

argument .

Tweets collected this way are flagged with 2.

i

def addTweets(sourcedb, target, handles):

z = 0
=0
print ("Searching _for_Tweets...")

for entry in sourcedb.find():

if "user" in entry:
if "screen name" in entry|["user"|:

author = "@"+entry["user"|["screen name" |
if author in handles:
print (str(z)+"_irrelevant _Tweets_skipped.")
print ("Tweet_found.")
transferTweet (entry , target, 2)
z =0
n4+=1

else:

z +=1
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else:
print ("Invalid _entry_skipped!")

else:
print ("Invalid_entry_skipped!")

print (str(n)+"_Tweets_found_and_transferred.")

return

i
Makes retweets ’inherit’ the topics of the original tweets, if

they 're found

in the database.
min

def inheritTopics(target):
cursor = target.cursor ()

cursor . execute ("SELECT_id , _retweet FROM_Tweets WHERE_retweet

~>_0;")
resultset = cursor.fetchall ()

for entry in resultset:

cursor . execute ("SELECT_topicdescriptor FROM_ Links WHERE_
tweetid _=_"+str(entry[1])+";")
topicset = cursor.fetchall ()

for topic in topicset:
cursor . execute ("INSERT_IGNORE_INTO_Links VALUES_ ( "+
str(entry [0])+",_. " "+topic[0]+");") #problem?
print ("Added_topic_"+topic[0]+"_to_Tweet ID_"+str (

entry [0]))
target .commit ()

return

sourcedb = dbconnect.connectsource ()
pol = sourcedb|["deatpols"]
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full = sourcedb|["german" |

targetdb = dbconnect.connectlocaltarget ()

def fullTransfer ():
setupTables (targetdb)

transferAllTweets (pol, targetdb)
print ("Transfer_of_original_politician_Tweets_completed.")

addReferenceTweets (full , targetdb)
print (" Transfer_of_reference_Tweets_completed.")

addTweets(full , targetdb, readListFromFile("organizations.
txt"))
print (" Transfer_of_media/organization_Tweets_completed.")

inheritTopics(targetdb)
print ("Topics_copied_to_retweets.")

print ("—_End_of_Script_—")

return

fullTransfer ()

# Code Sources:

# https://stackoverflow.com/questions/7703865/going—from—twitter
—date—to—python—datetime—date

# https://github.com/jmagnusson/bgtunnel

B.3. analysis.py
#1/usr/bin/env python3
# —x— coding: utf—8 —x—

"

Created on Fri Jul 19 17:84:21 2019

@author: Tobias Thesing

i
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import dbconnect

import pyfpgrowth

import pickle

import datetime

from requests.structures import CaselnsensitiveDict
import subprocess

from tabulate import tabulate

import pprint

#import pandas
#import numpy
#import datahandler

db = dbconnect.connecttarget ()

i

Searches for all topics talked about by a given author, returns
for each topic

the number of mentions by that author.
i

def getTopicsperAuthor(author):
cursor = db.cursor ()
new = "AND_t.time_<_’2019—-06—03_00:00:00"_"

query = "SELECT_1.topicdescriptor , _COUNT(1.tweetid)_c _FROM,
Tweets_t,_Links_1 _WHERE_t .id _—=_1.tweetid _AND_t .author_
LIKE_ ""+author+"’ _"+new+"GROUP_BY_1 . topicdescriptor_
ORDER_BY_c _DESC; "

cursor . execute ( query )
resultset = cursor.fetchall ()

return resultset

mimnn

Searches for all authors talking about a given topic, returns
author name and

timestamp for each entry. FErecution can be modified with the
mode variable.
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standard

include text (01)

only original tweets (10)

include text, only original tweets (11)

exclude media accounts (100)

exclude media accounts, only original tweets (110)

P W N

i

def getAuthorsperTopic(topic, mode):
cursor = db.cursor ()

if (mode = 1) or (mode — 3):

gsl = ",_t.text"
else:
gsl = "
if (mode == 2) or (mode — 3) or (mode — 6):
gs2 = "AND_t.retweet _=_0_"
else:
qs2 = "
if (mode == 4) or (mode — 6):
qs3 = "AND_t . flags_<=_1_"
else:
qs3 = ""

new = "AND_t.time_<_’2019—-06—03_00:00:00"_"

query = "SELECT_t.author,_t.time"4+qsl1+" _FROM_Tweets_t,_Links
I WHERE_t .id _=_1.tweetid _AND_I1. topicdescriptor _LIKE_ "+
topic+" "’ _"+qs2+qs3+new+"ORDER_BY _t . time _ASC;"

cursor .execute (query)
resultset = cursor.fetchall ()

return resultset

mmnn

Uses the getAuthorsperTopic function to provide a list of
sequences representing
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authors discussing a topic.

The argument delta defines how many hours have to pass without

any registered tweet

on the topic to consider the next tweet a seperate sequence.
mirn

def getAuthorSequencesperTopic(topic, mode, delta):
tweetlist = getAuthorsperTopic(topic, mode)

sequencelist = []
last = datetime.datetime (2019, 3, 1)

for entry in tweetlist:

if last + datetime.timedelta(hours=delta) < entry[1]:
sequencelist .append ([entry [0]])

else:
sequencelist [ —1].append(entry[0])

last = entry|[1]

return sequencelist

"
Creates sequential transactions for all topics, split by a time

delta (see

getAuthorSequencesperTopic) and saves them as a list.
1

def createSequentialTransactions (mode, delta):

transactions = |]

cursor = db.cursor ()

cursor . execute ("SELECT_descriptor .-FROM_Topics;")
topics = [entry[0] for entry in cursor.fetchall ()]

for topic in topics:

newseq = getAuthorSequencesperTopic(topic, mode, delta)
transactions = transactions + newseq
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print (topic + "_added_with_" + str(len(newseq)) + "_

sequences.")
print ("Total:_"+str(len(transactions)))

#print (transactions)
with open(’transactionsS.pickle’, ’wb’) as f:
pickle .dump(transactions , f)

return transactions

i
Creates a file with author sequences that i1s readable by the

SPMF tool.
"
def createSequenceDBFile(filename , sequences=|]):
if (len(sequences) =— 0):
with open(’transactionsS.pickle’, ’rb’) as fl:

sequences = pickle.load(fl)

with open(’authormapl.pickle’, 'rb’) as f2:

authormap = pickle.load (f2)

csvfile = open(filename , "a+")

for sequence in sequences:

line = ""
for item in sequence:

line + str(authormap|item]) + ","

line =
csvfiile.write(line[:—1]+"\1")

return

"

Function for processing tool results, might be obsolete.
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mnnn

def replacelDs(source, target):

with open(’authormap2.pickle’, 'rb’) as fl:
id_to_author = pickle.load (f1)

with open(source, "rt") as sourcefile:
with open(target , "wt") as targetfile:

idlist = |[]

for authid in id to author:
idlist .append(authid)

idlist .sort (reverse=True)

for line in sourcefile:
for authid in idlist:
line = line.replace(str(authid),
id _to_author|[authid])

targetfile . write(line)

return

"

Calls the SPMF rule miner to use the CMRules algorithm for
sequential rule mining.

Needs a properly formatted source file (CSV, only positive
integers), a target file

and minimal support and confidence in percent.

i

def callRuleMiner (source, target, minsup, minconf, algorithm="

CMRules") :
lines = sum(1 for line in open(source))
subprocess. call (["java", "—jar", "spmf.jar", "run" K6 "
Convert _a_ sequence database to SPMF format", source, "

tempoutput . txt", "CSV_INTEGER", str(lines)])

subprocess. call (["java™, "—jar", "spmf.jar",6 "
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algorithm , "tempoutput.txt", target , str(minsup)+"%",
str (minconf)+"%"])

return

i

Reads the sequential association rules from an output file.
Returns a list of rules where each rule is a list containing
antecedent , consequent, support and confidence in that order.
i

def parseRules(source):

Y

with open(’authormap2.pickle’, 'rb’) as fl:
id_to_author = pickle.load (f1)

rules = []
with open(source, "rt") as sourcefile:
for line in sourcefile:
fragline = line.split("_")
ante id = fragline [0].split (",")

cons_id = fragline[2].split(",")
sup = int(fragline[4])

conf = float(fragline [6].replace("\n", ""))
ante = |[]
cons = |]

for entry in ante id:
ante.append(id to_ author|[int (entry)])

for entry in cons id:
cons.append (id_to_ author|int (entry)|)

rules.append ([ ante, cons, sup, conf])

return rules
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mnnn

Full process.

selector mode:

defines tweet filter (see getAuthorsperTopic())

time delta: the mazimum time interval tweels can have to be
part of the same sequence

MINSuUpP : minimum support for calculating rules

minconf: minimum confidence for calculating rules

filename : naming of the produced files

algo : can change the wused algorithm for SPMF

i

def runSequenceMining(selector mode, time delta, minsup, minconf

, filename="default", algo="CMRules"):

sequences — createSequentialTransactions (selector mode ,
time delta)

dbfile = filename+" db.csv"
rulesfile = filename+" rules.txt"

createSequenceDBFile (dbfile , sequences)

callRuleMiner (dbfile , rulesfile , minsup, minconf, algorithm=

algo)
rules = parseRules(rulesfile)

return rules

1
Partial Process, skips time—consuming generation of sequences by

reading from

a prepared database file.

i
def continueSequenceMining (filename , minsup, minconf, algo="

CMRules") :

dbfile = filename+" db.csv"
rulesfile = filename+" rules.txt"

callRuleMiner (dbfile , rulesfile , minsup, minconf, algorithm=

algo)
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rules = parseRules(rulesfile)
return rules
i

Uses the getAuthorsperTopic function to provide a dictionary

with all authors
discussing a topic and for each one a list of timestamps they

posted .
mnin
def getDiscussionActivityperTopic(topic):
tweetlist = getAuthorsperTopic(topic, 0)
topicdict = {}
for entry in tweetlist:
if entry[0] in topicdict:

topicdict [entry [0]]. append(entry[1])

else:
topicdict [entry [0]] = [entry[1]]

#print (topicdict)
return topicdict
i

Returns a list of all distinct authors that have posted Tweets
in the database.

mnn
def getListofAuthors():
cursor = db.cursor ()

query = "SELECT_DISTINCT_author FROM_Tweets;"

cursor . execute ( query )
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resultset = cursor.fetchall ()
authorlist = [i[0] for i in resultset ]

return authorlist

i

Creates dictionaries that assign an integer ID to each author
and saves them.

i
def constructAuthorMappings():
list = getListofAuthors()

author to_id = CaselnsensitiveDict ()
id _to_author = {}

current id =0

for author in list:
current id 4= 1

author to_ id[author| = current id

id_to_ author|[current id]| = author

#print (author + " —— " + str(current_id))
with open(’authormapl.pickle’, 'wb’) as fl:

pickle .dump(author to id, f1)

with open(’authormap2.pickle’, 'wb’) as f2:
pickle .dump(id to author, f2)

return

mnn

Generates a list of "Transactions” to analyze for Association
Rules. FEach Tweet

represents a Transaction and each Topic represents an Item.
Empty Transactions

( Tweets with no assigned Topics) are skipped.

The list of tramsactions is also stored in a file for quick
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access.
i

def createTopicTransactionTable():

cursor = db.cursor ()
new = "_AND_time_<_"2019—-06—-03_00:00:00""

query = "SELECT_id _FROM_Tweets WHERE_retweet _=_0"4new+";"

cursor . execute ( query )
resultset = cursor.fetchall ()

idlist = [1][0] for i in resultset]
transactions = []
for tweetid in idlist:
query = "SELECT_topicdescriptor FROM_ Links WHERE_tweetid
= "+str(tweetid)+";";
cursor . execute (query )
resultset = cursor.fetchall ()
# author filter?

if resultset:

topics = [i[0] for i in resultset |
transactions.append(topics)

print (tweetid)

print (" Generated_List_of_Transactions.")

with open(’transactions.pickle’, 'wb’) as f:
pickle .dump(transactions , f)

return transactions

"

Generates a list of "Transactions” to analyze for Association
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Rules. FEach Topic
represents a Transaction and each Author who posted about it
represents an Item.

The list of transactions is also stored in a file for quick
access.

i
def createAuthorTransactionTable():
cursor = db.cursor ()

query = "SELECT_DISTINCT_descriptor FROM_ Topics;"

cursor . execute ( query )
resultset = cursor.fetchall ()

topiclist = set ([i[0] for i in resultset])
transactions = []
for topic in topiclist:
rawauthors = getAuthorsperTopic(topic, 4) #ezcludes
media
authors = set (|i]|0] for i in rawauthors])
if authors:
print ("Authors_for_"+topic+":")
print (authors)
transactions.append(authors);
else:
print ("No_authors_for_"+topic+"_registered.")
print (" Generated_List_of_Transactions.")
with open(’transactionsA .pickle’, ’wb’) as f:

pickle .dump(transactions , f)

return transactions
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mnin

Loads a stored transactions file.
1

def restoreTransactions (filename):

with open(filename, ’rb’) as f:
transactions = pickle.load(f)

return transactions

mnn

Preliminary function to
1
def calculateAssociationRules(transactions , minsup, minconf):

calculate association rules.

patterns = pyfpgrowth. find frequent patterns(transactions ,
minsup )

rules = pyfpgrowth. generate association rules(patterns,
minconf)

print(rules)

return rules

mnnn
Creates a transaction table with authors as transactions and

topics as ilems.
mirn

def calculateTopicRelations():

transactions = ||

authors = getListofAuthors ()
for author in authors:
= getTopicsperAuthor (author)

rawtopics =

if rawtopics:
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topics = [i][0] for i in rawtopics|
print (author)

print (topics)

print(”—")
transactions.append(topics)

with open(’transactionsT .pickle’, ’wh’) as f:
pickle .dump(transactions , f)

return transactions

i

Internal generator function.
mir

def daterange(start date, end date):
for n in range(int ((end date — start date).days)):
yield start date + datetime.timedelta(n)

mmnn

Counts the number of tweets in the database per day in the given

interval .
mmnn

def calculateDailyActivity (start, end):

activity = {}
cursor = db.cursor ()

for day in daterange(start, end):

datestrl = day.strftime ("%Y-—%m-%d")
datestr2 = (day + datetime.timedelta (days=1)).strftime ("

TY—Yar-7d" )

query = "SELECT_COUNT(x) _FROM_Tweets WHERE_time _>=_""+
datestr1+"_00:00:00’ _AND_time_<_ "+datestr2+"_
00:00:00°"

cursor .execute (query)
result = cursor.fetchone()[0]

print (result)
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activity [day| = result

return activity

i

Returns a list of all active accounts of the organizations

handle .

i

def getOrganizations():

cursor = db.cursor ()

cursor . execute ("SELECT_DISTINCT _author FROM_ Tweets WHERE_
flags _—=_2;")

resultset = [entry[0] for entry in cursor.fetchall ()]

return resultset

mmnn

Ezperimental

mnnn

def filterforOrganizations (rules):

orglist = getOrganizations ()

#with open(rulesfile+ . pickle’, ’rb’) as fI1:
# rules = pickle.load(f1)

newrules = |[]
for rule in rules:
if rule[1][0] in orglist:
newrules.append(rule)

return newrules

"

Calculates popularity for each author bei looking how many
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different others

talk about the same topics. Takes a list of rules as generated
by the

parseRules () function.
"

def getFollowings(rules):

poplist =

{

for entry in rules:
for ante in entry|[0]:
if ante in poplist:

poplist [ante] = set(list (poplist[ante]) + entry

[1])

else:

poplist [ante] = set(entry[1])
return poplist

"

Runs getFollowings () for a saved file with rules and prints a
console output

of all inspired accounts per author and their total number.
1

def printFollowings(file):

with open(file+’.pickle’, 'rb’) as fl:

rules = pickle.load(f1)
follow getFollowings (rules)

for key in follow:
print (key)
print (follow [key])
print("——”)

for key in follow:
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print (key +":_"+str(len(follow key])))

return

Guides:

https://medium.com/@pcm1312/implementing—fp—growth—in—python
—170f3dc64d78

https://www. jessicayung .com/how—to—use—pickle —to—save—and—load
—variables—in—python/

https://stackoverflow.com/questions/1060279/iterating—through—
a—range—of—dates—in—python

https://github.com/psf/requests/blob/vl.2.3/requests/
structures . py#L37

# https://wuww. tablesgenerator.com/

oW R W

C. Database Queries

For statements in this thesis that are directly based on the dataset, the following SQL
queries have been used.

SELECT COUNT(%) FROM Tweets WHERE time < ’2019-06—03 00:00:007;
SELECT COUNT(%) FROM Tweets WHERE retweet <> 0 AND time <
'2019-06—-03 00:00:00;

SELECT COUNT(%) FROM Tweets;
SELECT COUNT(%) FROM Tweets WHERE retweet <> 0;

SELECT DISTINCT t.author FROM Tweets t WHERE t.time <
’2019—-06—-03 00:00:00";

SELECT DISTINCT 1.topicdescriptor FROM Tweets t, Links 1 WHERE t
.id = 1.tweetid AND t.time < ’2019—-06—03 00:00:00 ’;

SELECT DISTINCT t.id FROM Tweets t WHERE NOT EXISTS (SELECT x
FROM Links 1| WHERE t.id = 1.tweetid) AND t.time <
'2019—-06—-03 00:00:00;

SELECT DISTINCT t.id FROM Tweets t, Links 1 WHERE t.id = 1.
tweetid AND t.time < ’2019—-06—03 00:00:00;

SELECT DISTINCT t.author FROM Tweets t WHERE t.time <
’2019—-06—03 00:00:00’ AND NOT EXISTS (SELECT % FROM Links 1
WHERE t.id = 1.tweetid);

SELECT t.author, COUNT(t.id) ¢ FROM Tweets t, Links 1 WHERE t.id
= l.tweetid AND 1.topicdescriptor LIKE ’[party hashtag]’
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AND t.retweet = 0 AND time < '2019—-06—-03 00:00:00’ GROUP BY
t.author ORDER BY c¢ DESC;

SELECT t.author, t.time, t.text FROM Tweets t, Links | WHERE t.
id = 1l.tweetid AND 1.topicdescriptor LIKE ’#FarmVille’ ORDER
BY t.time ASC;

SELECT % FROM Tweets WHERE author LIKE ’Crypto Schurke’ AND ¢t.
time < ’2019-06—03 00:00:00";

SELECT % FROM Tweets WHERE author LIKE ’'JfVecl’ AND time <
'2019—-06—-03 00:00:00’;

SELECT % FROM Tweets WHERE author LIKE ’'sven giegold’ AND time <
’2019—-06—-03 00:00:007;

Additionally, these queries can be used to gather specific information and are applied
within the Python classes:

Most used hashtags:
SELECT topicdescriptor, COUNT (tweetid)AS ntw FROM Links GROUP BY topicdescriptor
ORDER BY ntw DESC;

Topics used by specified Politician:

SELECT l.topicdescriptor, COUNT(L.tweetid)AS ¢ FROM Tweets t, Links | WHERE t.
id = L.tweetid AND t.author LIKE ’[author]” GROUP BY l.topicdescriptor ORDER BY
¢ DESC;

Politicians talking about specified topic (sequence):
SELECT t.author, t.time, t.text FROM Tweets t, Links ]| WHERE t.id = l.tweetid AND
L.topicdescriptor LIKE ’[hashtag]” ORDER BY t.time ASC;

Politicians talking about specified topic (numbers):
SELECT t.author, COUNT(t.id)c FROM Tweets t, Links | WHERE t.id = l.tweetid AND
L.topicdescriptor LIKE ’[hashtag]” GROUP BY t.author ORDER BY ¢ DESC;

D. Original Dataset Issues

While working on the clustering of tweets, this is what I found out about the old eDemoc-
racy database (2017) issues.
e the "isRetweet"-flag is not used, it is "false" by default for all checked data samples
e retweets are instead marked with "RT @username:" in the text box, followed by
the actual content
e this seems to be a secondary source of tweets being chopped off
e the "truncated" flag is used in some, but not all of the truncated tweets
e [F the flag is used, there is a link in the end of the text box that leads to the tweet,
80 it can be reconstructed if it has not been deleted meanwhile
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e if the flag is NOT used, there is either no link or the link itself is incomplete and
therefore unusable
It seems like the truncated flag is used for original tweets that are truncated due to the
increase of the character limit. Tweets that are retweets do not have the truncated flag
even if they are incomplete. As mentioned before, this might be because the in-text
retweet flag uses up character space.

Other interesting findings, gathered by using my truncation analysis function on a sample:
e 59% of the tweets are flagged as "COMPLETE" and are not truncated at all
e another 29% are truncated retweets, leaving only about 12% of the tweets that are
truncated originals
e however, 60% are retweets anyways

E. Iterations

The first completely transferred dataset contains 1.450.448 tweets, in which 37.717 hashtag-
based topics and 741.981 links have been found. This results in an average of 20 uses for
each unprocessed hashtag. This is an increase to sample runs with the old and partially
truncated dataset, where a sample of 10.000 tweets only had an average of 4 uses per
hashtag.

For the first run of adding references, 45.878 entries remained. In total, 22.122 tweets
from the fetch list have not been found in the source collection, which corresponds to
roughly half of the entries.

This results in a total count of 1.715.704 tweets to work with in the first iteration.

The second full run has cleaner processing, which was still experimental in the first one,
and slightly optimized hastag parsing.

In the third run, so called "quoted" tweets are marked as a distinct mechanic, in addition
to retweets and replies. Hashtags parsing is refined further, and retweets do not have
their hashtags directly parsed any more due to truncation issues, but instead get them
assigned from their original tweets, as long as they can be found in the database.

Numbers for all iterations:
1. 2019-03-13 through 2019-06-03, 1.450.448 tweets, 37.717 topics, 741.981 links
2. 2019-03-13 through 2019-06-03, 1.712.324 tweets, 65.674 topics, 915.385 links

3. 2019-03-13 through 2019-06-03, 1.922.163 tweets, 52.013 topics, 900.030 links -
455.964 of the tweets (number includes duplicates) up to 2019-08-22 taken from
the media handle
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4. 2019-03-13 through 2019-08-22, 2.297.593 tweets, 60.246 topics, 1.016.124 links
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