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1888 

„Zur Laichzeit findet eine derartige Ansammlung in dem 
Weiher daselbst statt, dass das Unkenkonzert den Bewohnern 

überaus lästig wird. Herr Böcking teilte mir mit, dass man sie 

dann in Menge fange und ganze Eimer voll mit Kalk begiesse, 

um sich ihrer zu erwehren.“ 

aus: Wirbeltierfauna von Kreuznach (Ludwig Geisenheyner) 

 

2018 

„Sie sterben, die Frösche, werden still und leise ausgerottet, 
ohne dass es die Welt kümmert, ein Drittel aller Arten sind 

ernsthaft bedroht, aber niemand denkt an ihn, den Frosch, 

der sich durch die Sumpfgebiete unserer Erde bewegt, 

immer im Kontakt mit dem Wasser, schleimig und 

unansehnlich, nicht eklig genug, um hässlich zu sein, nicht 

seltsam genug, um lustig zu sein, nur etwas wunderlich, mit 

seinem Quaken und seinen Sprüngen, auf der Flucht vor den 

Menschen.“  

aus: Die Geschichte des Wassers (Maja Lunde) 
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General introduction 

Amphibians are among the most endangered taxa worldwide with about one third of the 

known species threatened by extinction and more than 40% of the populations considered as 

declining (IUCN 2019; Stuart et al. 2004). Anthropogenic pressure leading to habitat 

destruction and fragmentation is a major cause for this trend (e.g., Becker et al. 2007; Gallant 

et al. 2007). Global warming, pollution, invasive species, UVB radiation and disease pose 

additional and interacting threats to amphibians (e.g., Blaustein et al. 2011; Collins 2010; 

Collins & Storfer 2003; Stuart et al. 2004; Wake & Vredenburg 2008). This ongoing worldwide 

decline has been observed for several decades and mirrors a global biodiversity loss (e.g., 

Collins 2010; Houlahan et al. 2000).  

The yellow-bellied toad (Bombina variegata): a European amphibian in decline 

An example for a European amphibian species with declining populations is the yellow-bellied 

toad Bombina variegata (Linnaeus, 1758). The range of yellow-bellied toads extends from 

France in the West and Germany in the North to Greece in the South-East, including great 

parts of Central Europe and the Balkan region (Gollmann & Gollmann 2012). According to the 

IUCN Red List of Threatened Species, it is still classified as Least Concern (LC) in Europe (Kuzmin 

et al. 2009). As the population trend is decreasing, however, it is listed in Annexes II and IV of 

the Natural Habitats Directive and protected by national law in much of its range (Kuzmin et 

al. 2009). Bombina variegata is still abundant in the eastern and south eastern parts of its 

range, even though local declines or extinctions were observed (Gollmann & Gollmann 2012). 

At the northern and western range margin, however, there seems to be serious decline 

(Gollmann et al. 2012). In northern Italy, the number of B. variegata populations is considered 

stable, while abundance is decreasing in some regions (Barbieri et al. 2004; D'Amen & Bombi 

2009). In France, the decline of B. variegata dates back to the 19th century and has 

exacerbated since the 1970ies (Lescure et al. 2011). Yellow-bellied toads underwent a rapid 

decline in Switzerland as well (Abbühl & Durrer 1993). The main causes are degradation or 

destruction of habitats, particularly of reproduction ponds (Gollmann & Gollmann 2012). 

Modified land use led to the fragmentation of former comprehensive B. variegata habitats 

and thus connected populations became isolated (Schlüpmann 1996).  
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Status of Bombina variegata in Germany 

About one of third of the world’s yellow-bellied toads is found in Germany, thus making the 

country highly responsible for its conservation (Kühnel et al. 2009). Likewise, B. variegata is at 

its northern range margin in Germany, where its primary habitats, particularly holms of 

streams and rivers, were destroyed in favour of urbanisation and agriculture. Today, it mainly 

inhabits secondary, anthropogenic habitats like quarries or military training areas which 

provide the landscape dynamics that are required for reproduction (Nöllert & Günther 1996). 

As a sharp decline has been observed over the last decades, B. variegata is listed as 

endangered in the latest national red list and even as extinct (category 0 for Saxony) or as 

critically endangered in some federal states (category 1 for Lower Saxony, Thuringia and North 

Rhine-Westphalia) (Kühnel et al. 2009). In Rhineland-Palatinate, B. variegata is highly 

endangered (category 2), as extant populations are often fragmented (Kühnel et al. 2009; 

Veith 1996a). It is unclear, however, if this red list still mirrors the recent status of B. variegata 

populations in Rhineland-Palatinate, as the latest country-wide assessment dates back to the 

1990s (Bitz & Simon 1996; Kühnel et al. 2009). Anthropogenic threats in this region are 

recultivation of former mining areas, drainage and destruction of wetland, intensification of 

agriculture and thoroughfares (Bitz 1992). The loss of ponds in and near forests led to the 

extinction of numerous populations (Veith 1996a). Furthermore, succession poses a serious 

threat to remaining B. variegata populations in Rhineland-Palatinate (Veith 1996a). 

A northern distribution centre: the Westerwald region 

The low mountain range Westerwald was considered as one of the key areas in Rhineland-

Palatinate and one of the northernmost regions extensively inhabited by yellow-bellied toads 

(Nöllert & Günther 1996). As road and rail networks expanded in the 19th century, this region 

became an internationally important clay mining area (Schenk 1993). Emerging mines 

provided secondary habitats for yellow-bellied toads, but the expansion of transport networks 

certainly contributed to landscape and thus habitat fragmentation. Population declines have 

been observed in the Westerwald region for more than 40 years (Gruschwitz 1981). However, 

this region may still function as a basis for (re)distribution and therefore, remaining 

populations are of great conservation interest. Further research is needed to determine the 

status quo of extant populations and to develop adequate conservation measures for the 

persistence of yellow-bellied toads at the northern range margin. 



General introduction 

9 

 

Carry-over effects of larval environment on life history 

The conservation of threatened species demands the investigation of their life histories 

(Atkins et al. 2020). Life-history theory addresses the question how reproductive success of 

organisms is achieved by evolutionary mechanisms (Stearns 2000). Bombina variegata is an 

excellent model organism to study complex life-history strategies. It spawns in a broad range 

of breeding ponds and produces metamorphs of high plasticity (e.g., Barandun & Reyer 1997a; 

Barandun & Reyer 1997b; Di Cerbo & Biancardi 2010; Dittrich et al. 2016; Hantzschmann & 

Sinsch 2019; Hartel et al. 2007; Kapfberger 1984; Schäfer et al. 2018). According to the life-

history theory, amphibians adjust their developmental rate depending on environmental 

conditions in the larval habitats (Wilbur & Collins 1973). Thus, species inhabiting uncertain 

environments produce highly plastic offspring (Wilbur & Collins 1973). Environmental 

conditions experienced in the aquatic habitat may influence the timing of metamorphosis as 

well as morphological and behavioural features of the terrestrial metamorph, causing 

variation in adult phenotypic expression of several life-history traits (Alford & Harris 1988; 

Boes & Benard 2013; Moore & Martin 2019; Warne et al. 2013; Yagi & Green 2018). Therefore, 

conditions in the breeding ponds may deeply affect population dynamics: at local scales 

through effects on adult phenotypes and fitness and at regional scales through effects on 

dispersal ability (e.g., Beck & Congdon 2000; Beckerman et al. 2002; Benard & Fordyce 2003; 

Benard & McCauley 2008; Relyea 2001). Consequently, exploring latent effects of larval 

conditions on subsequent developmental stages is a key factor to understand population 

dynamics (Pechenik 2006). Phenotypic plasticity in developmental rate and metamorph size 

of B. variegata were investigated by Böll (2002), however with ambiguous results. Yet, no 

research has been reported on potential carry-over effects from larval history to the 

performance of B. variegata metamorph phenotypes and associated consequences for the 

survival of terrestrial stages. As anuran metamorphs are prone to invertebrate predator 

attacks when leaving the larval habitat (Toledo 2005), carry-over effects may contribute to the 

toads’ vulnerability to invertebrates, such as spiders or carabids. The questions remain, 

however, if the observed plasticity in metamorph traits is caused by environmental factor 

combinations experienced during aquatic development and if carry-over effects affect survival 

probability of terrestrial stages.  
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The fast-slow continuum of the life-history trait longevity 

Environmental variability as well as trade-offs between constraints of an organism shape the 

evolution of life-history traits (Stearns 2000). Most trait variation among species is observed 

in characteristic combinations that fall on a fast-slow continuum (Ricklefs & Wikelski 2002; 

Stearns 1983). At the two opposite ends of this continuum, there are for one part organisms 

of slow life histories (i.e. slow development, longevity and low fecundity) and for the other 

part those of fast life histories (i.e. rapid development, short lifespan, high fecundity) (Ricklefs 

& Wikelski 2002; Stearns 2000). Research is required to disentangle natural geographic 

variation and effects caused by habitat loss or climate change on demographic life-history 

traits of amphibian populations (Becker et al. 2018; Sinsch 2015). Yellow-bellied toads exhibit 

an extraordinary wide among-population variation of adult survival rates and longevity. In 

fact, some populations have a maximum lifespan of more than 20 years in the field, i.e. similar 

to individuals in captivity, while others feature a longevity of less than 10 years (e.g., Abbühl 

& Durrer 1998; Bülbül et al. 2018; Cayuela et al. 2019a; Di Cerbo et al. 2011; Hantzschmann et 

al. 2019; Mertens 1964; Mertens 1970; Seidel 1993). This broad fast-slow continuum makes 

B. variegata an excellent model organism for the study of intraspecific differences in 

demographic life-history traits. Yet, the causes for this broad continuum of longevity remain, 

to date, largely unknown.  

Aspects of population structure and dynamics  

The understanding of amphibian decline and of environmental factors defining the status of 

species requires research on population dynamics at local and metapopulation scales (Alford 

& Richards 1999; Beebee & Griffiths 2005; Hecnar & McLoskey 1996). The structure and 

dynamics among yellow-bellied toad populations vary profoundly, probably due to differing 

mortality risk across habitats (Gollmann & Gollmann 2012). As a pioneer species, B. variegata 

benefits from human-induced disturbances that create heterogeneous early successional 

habitats (Cayuela et al. 2018). However, habitat stochasticity seems to be a major factor 

linking dispersal and life-history traits, i.e. fecundity and lifespan, in yellow-bellied toads and 

thus affects population structure and dynamics  (Cayuela et al. 2018; Cayuela et al. 2016c). 

Although a profound knowledge of local population dynamics is required to assess 

vulnerability to threats and to implement informed conservation management (Denoël & 

Lehmann 2006; Lambert et al. 2016; Muths et al. 2011), the current structure and dynamics 
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of one of the presumably largest remnant B. variegata populations in Rhineland-Palatinate is 

still unexplored. 

Conservation genetics  

In most species, geographic variation in morphology and gene frequency depends on genetic 

differentiation of local populations through mutation, genetic drift and natural selection on 

one side and genetic homogeneity through opposing gene flow on the other (Slatkin 1987). A 

consequence of habitat fragmentation is isolation of amphibian populations, especially of less 

mobile species, which affects genetic variation (Andersen et al. 2004; Ficetola & De Bernardi 

2004). As reduced genetic variation is considered to decrease fitness and adaptability in 

amphibian populations, it may increase the vulnerability to threats and thus contribute to the 

worldwide decline (Allentoft & O’Brien 2010; Rowe et al. 1999). According to the central-

marginal hypothesis, peripheral populations are supposed to be small and geographically 

isolated with lower genetic diversity and greater differentiation compared to geographically 

central populations (Eckert et al. 2008). To implement adequate conservation measures for 

key species, a profound knowledge of the underlying genetic patterns of populations is 

required (Balloux & Lugon-Moulin 2002; Holderegger et al. 2019). Molecular studies on 

yellow-bellied toads focussed on regions in France (Cayuela et al. 2017b; Vacher & 

Ursenbacher 2014), Italy (Cornetti 2013; Cornetti et al. 2016), Switzerland (Tournier 2017) and 

Germany (Guicking et al. 2017; Weihmann et al. 2009 ; Weihmann et al. 2019). Yet, parts of 

the northern range margin, i.e. northern Rhineland-Palatinate with its numerous populations 

inhabiting the Westerwald region, are still unexplored. Thus, it remains unclear, if the 

Westerwald populations are affected by isolation and associated negative effects on genetic 

diversity. Another question is whether the populations at the northern range margin are 

genetically less diverse than their southern counterparts. 

Design and aims of the present study 

In this thesis, I applied a combination of long-established and modern scientific methods to 

approach these open questions. Experiments to reveal carry-over effects from larval to 

metamorphic stage were performed using laboratory and mesocosm approaches. In 

amphibian ecology studies, outdoor mesocosm experiments are artificial, self-sustaining 

systems used to mimic natural habitats (James & Boone 2005; Wilbur 1997). Mesocosms 

outperform laboratory studies in environmental realism, while cause-effect relationships are 
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best detected under laboratory control (Semlitsch & Boone 2009). For the demographic study 

of yellow-bellied toads, I used a combination of indirect age assessment through non-invasive 

capture-mark-recapture and direct age assessment through invasive skeletochronology. 

These long-established methods are based on individual identification by the toads’ unique 

ventral patterns on one side and on counting the number of hematoxylinophilic growth marks 

in phalange bones on the other side. Capture-mark-recapture (CMR) is a reliable method to 

study population demography and dynamics including survival, population growth rate, 

abundance and recruitment (Pradel 1996; Schmidt 2004). CMR requires accurate 

identification of individuals that can be achieved by invasive (e.g. toe-clipping) and non-

invasive methods (e.g. using natural markings for photo-identification) (Mettouris et al. 2016). 

In the context of amphibian decline non-invasive marking is considered beneficial, especially 

when investigating rare species, as invasive methods may have negative impacts on 

individuals (Davis & Ovaska 2001; Sannolo et al. 2016; Shu et al. 2018). Nonetheless, invasive 

methods may be advantageous. Skeletochronology, for example, allows for solid estimates of 

adult survival and individual longevity of up to 8 years as well as the reconstruction of age 

structure (Sinsch 2015). Therefore, this invasive method is particularly suitable for short-term 

studies and was used to investigate the demographic structure of yellow-bellied toads at the 

local and regional scale. Informed conservation management furthermore requires the 

investigation of intraspecific genetic variation at local, regional and global scales, especially to 

understand population dynamics and evolutionary potential at the range margin of a species 

(Lesbarrères et al. 2014; Mimura et al. 2017). Molecular ecology provides useful tools to 

address these issues, including within-population processes, spatial population structure, i.e. 

landscape genetics, and the identification of genes for local adaptation (McCartney-Melstad 

& Shaffer 2015). Among these tools, microsatellites are popular and versatile marker types 

used for ecological applications (Selkoe & Toonen 2006). Thus, I complemented this study by 

using 10 microsatellite markers at the local and regional scale and put these data in a 

continental context.  

In this thesis, life-history traits and genetics of yellow-bellied toads are explored to 

identify the threats B. variegata is facing at the range margin and to develop adequate 

conservation measures. The study is performed on different geographical scales. The local 

scale is defined by the range of members of a (single) population (i.e. the former military 

training area Schmidtenhöhe, see chapters 2-5). The regional scale represents a (former) 
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metapopulation system (i.e. the Westerwald region, see chapters 3-5). The continental scale 

is defined by the geographical range of (all) B. variegata populations (data supplemented with 

previously published information, see chapters 3, 5).  

To test predictions of life-history theory, I focussed on several developmental stages, 

from the early larval period to metamorphosis and adulthood. Furthermore, I addressed 

developmental, demographic and genetic issues of Bombina variegata as a model organism. 

In order to fill current gaps in knowledge, this study aims at answering the following research 

questions: 

(1) Are there interactions among the conditions experienced in the aquatic habitat during 

larval development and the variation of metamorph features and fitness, suggesting carry-

over effects from larval to terrestrial stages in B. variegata (chapter I)? 

(2) Does plasticity of metamorph traits affect the vulnerability of juvenile yellow-bellied toads 

to predators (chapter II)? 

(3) What are the intrinsic and extrinsic drivers of interspecific and interannual variation of the 

slow-fast continuum of longevity in B. variegata (chapter III)? 

(4) How do interannual recruitment, dispersal ability and longevity affect population 

dynamics and which inferences can be drawn for population persistence, connectivity and 

resilience of yellow-bellied toads (chapter IV)? 

(5) Are there effects of habitat fragmentation on isolation and gene drift in B. variegata 

populations and differences in genetic variation among central and marginal populations 

(chapter V)? 

The thesis is based on five studies, each presented in an individual chapter containing abstract, 

introduction, material and methods including a thorough description of the study area, results 

and a discussion, respectively. The resulting manuscripts are either submitted, accepted or 

already published in peer-reviewed journals. 
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Chapter I  

The larval stage: Carry-over effects of larval environment 
 

 

This article is accepted by the Herpetological Journal and will be published as: 

 

Ulrich Sinsch1, Fabienne Leus1, Marlene Sonntag1 & Alena Marcella Hantzschmann1 (2020): 

Carry-over effects of the larval environment on the post-metamorphic performance of 

Bombina variegata (Amphibia, Anura). Herpetological Journal 30: 125-133 

 

1Institute for Integrated Natural Sciences, Department of Biology, University of Koblenz-

Landau, Universitätsstr. 1, D-56070 Koblenz, Germany 

 

 

 

 

 

 

 

 

 

 

Note by the author: 

For copyright reasons, the text of this chapter is replaced by the reference information. The 

full article version will be available at:  

https://www.thebhs.org/publications/the-herpetological-journal 

 

https://www.thebhs.org/publications/the-herpetological-journal
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Abstract. Metamorphs of the yellow-bellied toad Bombina variegata vary widely in size at 

metamorphosis in the field. We performed a replicated outdoor mesocosm study to simulate 

the environmental factor combinations in permanent and ephemeral breeding sites and to 

quantify their effects on tadpole development (duration of the larval period, metamorph size 

and body condition). Looking for potential carry-over effects of the larval environment, we 

quantified locomotor performance of all metamorph phenotypes originating from the 

mesocosms immediately after metamorphosis under controlled conditions. In contrast to the 

prediction of life-history theory, tadpoles were unable to adjust developmental rate to water 

availability, but metamorphs originating from the ephemeral pond treatment were smaller 

and had a lower body condition than those from the permanent pond treatment. Size-

dependent carry-over effects included the length of the first jump following tactile 

stimulation, burst performance (total length of spontaneous jumps) and endurance (total 

distance covered in 10 forced jumps). A size-independent effect of larval environment was the 

prolonged locomotor effort to escape (5.7 consecutive jumps following initial stimulus) of 

metamorphs from the ephemeral pond treatment compared to same-sized ones (3.7 jumps) 

from the permanent pond treatment. Thus, we demonstrate that carry-over effects of larval 

environment on metamorph phenotype and behaviour cause a considerable variation in 

fitness in the early terrestrial stage of B. variegata. Informed conservation management of 

endangered populations in the northern range should therefore include the provision of small 

permanent breeding ponds promoting larger and fitter metamorphs. 

 

Key words. Complex life cycles, Mesocosm, Plasticity of metamorph phenotype, Post-

metamorphic jumping performance, Delayed density dependence, Delayed life history effects  
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Chapter II 

The metamorph stage: Carabid predation  
 

 

This article is published as: 

 

Alena Marcella Schäfer1, Francesca Schäfer1, Thomas Wagner1 & Ulrich Sinsch1 (2018): Carabid 

predation on Bombina variegata metamorphs: size at and timing of metamorphosis matter. 

Salamandra 54 (3): 222-228 

 

1Institute for Integrated Natural Sciences, Department of Biology, University of Koblenz-

Landau, Universitätsstr. 1, D-56070 Koblenz, Germany 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note by the author: 

For copyright reasons, the text of this chapter is replaced by the reference information. The 

full article version is available at:  

http://www.salamandra-journal.com/index.php/home/contents/2018-vol-54/1912-

schaefer-a-m-f-schaefer-t-wagner-u-sinsch 

http://www.salamandra-journal.com/index.php/home/contents/2018-vol-54/1912-schaefer-a-m-f-schaefer-t-wagner-u-sinsch
http://www.salamandra-journal.com/index.php/home/contents/2018-vol-54/1912-schaefer-a-m-f-schaefer-t-wagner-u-sinsch
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Abstract. The potential impact of carabid predation on dispersing Bombina variegata 

metamorphs was studied in the field at the Schmidtenhöhe (Rhineland-Palatinate, Germany) 

and performing experimental trials in the laboratory. At least four carabid species were 

demonstrated to feed on metamorphs, with Carabus violaceus and Pterostichus niger mainly 

preying on the smallest individuals, and Abax parallelepipedus and Harpalus rufipes 

indiscriminately attacking smaller and larger individuals. Predation rates were mostly low (5-

15% of metamorphs) despite of high prey densities (83 metamorphs per m²), but hungry 

beetles consumed up to 60% within five days. Plasticity in the timing of metamorphosis (about 

two months) and in the size at metamorphosis (11-19mm) observed in the field seemed to 

reflect mainly the variability in the spawning date and of aquatic environment during the 

tadpole development. Still, the tendency of metamorphs to be become larger on average 

towards the end of the metamorphosis period reduced their risk of being predated because 

the abundance of potential carabid predators did neither vary among habitat types crossed 

by dispersing metamorphs nor during the period of metamorphosis. Consequently, informed 

conservation management of endangered B. variegata populations should focus on larval 

habitats producing large-sized metamorphs to reduce loss of metamorphs by size-assortative 

carabid predation. 

 

Key words. Abax parallelepipedus, Carabus violaceus, Pterostichus niger, Harpalus rufipes, 

Size-assortative mortality  
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Chapter III 

The adult stage: the fast-slow continuum of longevity 
 

 

This article is published as: 

 

Alena Marcella Hantzschmann1, Birgit Gollmann2, Günter Gollmann3 & Ulrich Sinsch1 (2019): 

The fast - slow continuum of longevity among yellow-bellied toad populations (Bombina 

variegata): intrinsic and extrinsic drivers of variation.  

PeerJ 7:e8233; DOI 10.7717/peerj.8233 

 

1University of Koblenz-Landau, Department of Biology, Koblenz, Germany 

2University of Vienna, Department of Limnology and Bio-Oceanography, Wien, Austria 

3University of Vienna, Department of Theoretical Biology, Wien, Austria 

 

 

 

 

 

 

 

 

 

Note by the author: 

For copyright reasons, the text of this chapter is replaced by the reference information. The 

full article version is available at:  

https://peerj.com/articles/8233/?utm_source=TrendMD&utm_campaign=PeerJ_TrendMD_

0&utm_medium=TrendMD 

https://peerj.com/articles/8233/?utm_source=TrendMD&utm_campaign=PeerJ_TrendMD_0&utm_medium=TrendMD
https://peerj.com/articles/8233/?utm_source=TrendMD&utm_campaign=PeerJ_TrendMD_0&utm_medium=TrendMD
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Abstract. Yellow-bellied toad populations (Bombina variegata) show a wide fast–slow 

continuum of the life-history trait longevity ranging from 5 to 23 years. We investigated 

populations in Germany (n=8) and Austria (n=1) to determine their position within the 

continuum of longevity and the potential drivers of adult survival at the local and the 

continental scale. Intrinsic and extrinsic factors considered were local weather, nutritional 

state, allocation of ingested energy to somatic growth, pathogen prevalence, and geographical 

clines (latitude, altitude, and longitude). Capture-mark-recapture (CMR) monitoring and direct 

age assessment by skeletochronology allowed for reliable estimates of longevity and adult 

survival. Raw and corrected recapture rates as well as a probabilistic estimate of the lifespan 

of the eldest 1% adults of a cohort (CMR data) were used as surrogates for adult survival and 

thus longevity in a population. Additionally, survival rates were calculated from static life 

tables based on the age structure (skeletochronological data) of eight populations. 

Populations in Germany were short-lived with a maximum lifespan of annual cohorts varying 

from 5 to 8 years, whereas the population in Austria was long-lived with a cohort longevity of 

13 to 23 years. We provide evidence that annual survival rates and longevity differ among 

years and between short- and long-lived populations, but there was no decrease of survival in 

older toads (i.e. absence of senescence). Variation of weather among years accounted for 

90.7% of variance in annual survival rates of short-lived populations, whereas the sources of 

variation in the long-lived population remained unidentified. At the continental scale, 

longevity variation among B. variegata populations studied so far did not correspond to 

geographical clines or climate variation. Therefore, we propose that a population´s position 

within the fast-slow continuum integrates the response to local environmental stochasticity 

(extrinsic source of variation) and the efficiency of chemical antipredator protection 

determining the magnitude of longevity (intrinsic source of variation). 

 

Key words. Fast-slow continuum, Life history, Demography, Longevity, Adult mortality, 

Skeletochronology, Climate, Growth pattern, Palatability 
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Chapter IV 

The adult stage: regional population dynamics and implication for 

conservation management 
 

 

This article is published as: 

 

Alena Marcella Hantzschmann1 & Ulrich Sinsch1 (2019): Struktur und Dynamik von 

Gelbbauchunken-Populationen (Bombina variegata) im Westerwald – Konsequenzen für das 

regionale Artenschutz-Management. Zeitschrift für Feldherpetologie 26: 218-235 

 

1Institute for Integrated Natural Sciences, Department of Biology, University of Koblenz-

Landau, Universitätsstr. 1, D-56070 Koblenz, Germany 

 

 

Note by the author: 

For copyright reasons, the text of this chapter is replaced by the reference information. The 

full article version is available at:  

https://shop.laurenti.de/product_info.php?products_id=1084 

 

 

Zusammenfassung. Die demographische und genetische Struktur von fünf Gelbbauchunken-

Populationen im nördlichen Rheinland-Pfalz wurde in dieser Fallstudie untersucht, um lokale 

naturschutzfachliche Maßnahmen zu optimieren und überregionale Handlungsempfehlungen 

zu entwickeln. Dabei lag der Fokus in den untersuchten Populationen auf (1) der jährlichen 

Rekrutierung von Jungtieren (als Maß für die Persistenz der Population), (2) dem 

Ausbreitungspotential (als Maß für die Vernetzung benachbarter Populationen) und (3) der 

Langlebigkeit Adulter (als Maß für Resilienz, wechselnden Reproduktionserfolg zu 

überdauern). Die von 2016 - 2018 auf einem ehemaligen militärischen Übungsgelände bei 

Koblenz durchgeführte Fang-Markierung-Wiederfang-Studie (CMR) sowie eine 

Mikrosatelliten-Analyse auf genetische Substrukturierung deuten auf eine Fragmentierung 

https://shop.laurenti.de/product_info.php?products_id=1084
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sowie niedriges Ausbreitungspotential der Population hin. Eine skelettochronologische 

Altersbestimmung weist in Kombination mit den Ergebnissen der CMR-Analyse eine niedrige 

Lebenserwartung dieser potenziell langlebigen Art im nördlichen Rheinland-Pfalz nach. Wir 

empfehlen daher zum Erhalt isolierter und kurzlebiger Populationen: (1) neben temporären 

auch permanente, sowie neben besonnten auch teils beschattete Gewässer als Laichhabitate 

anzubieten, (2) Trittsteingewässer zur Vernetzung fragmentierter Populationen anzulegen 

und (3) Artenschutzmaßnahmen in regelmäßigen, kurzen Abständen durchzuführen. 

 

Stichworte.  Amphibien, Anuren, Naturschutzmanagement, Bombina variegata, 

Skelettochronologie, Langlebigkeit, Mikrosatelliten-Marker, Populationsgenetik, 

Habitatfragmentierung 

 

 

Abstract. The demographic and genetic structure of Bombina variegata populations was 

studied in northern Rhineland-Palatinate, Germany, to optimise local conservation measures 

and to develop transregional recommendations for action. This case study focussed on 

estimating (1) annual recruitment of metamorphs (as a measure for population persistence), 

(2) dispersal (as a measure for connectivity among populations) and (3) longevity (as a 

measure for resilience at varying reproductive success) of yellow-bellied toad populations. A 

capture-mark-recapture (CMR) study from 2016 to 2018 and a microsatellite analysis of 

genetic substructuring revealed fragmentation due to low dispersal capacity in populations 

inhabiting a former military training area near Koblenz. CMR and skeletochronology 

demonstrated that this potentially long-lived species has a very short lifespan in northern 

Rhineland-Palatinate. The conservation of fragmented and short-lived B. variegata 

populations requires (1) the construction of temporary and permanent ponds for 

reproduction, (2) stepping stone ponds for the connectivity of fragmented populations and (3) 

habitat management measures at regular, short intervals. 

 

Key words. Amphibians, Anurans, Conservation management, Bombina variegata, 

Skeletochronology, Longevity, Microsatellite markers, Population genetics, Habitat 

fragmentation 
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Chapter V 

The adult stage: population genetics 
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Abstract. The yellow-bellied toad Bombina variegata is a threatened and strictly protected 

amphibian species in the marginal regions of distribution. We studied the genetic structure 

and diversity of populations at three geographical scales to detect potential sources of threat 

for the persistence of populations. At the local scale, we sampled four neighbouring localities 

at 1 – 2.6 km distance and five additional localities at the regional scale at up to 50.1 km 

distance within the low mountain range of the Westerwald (200 – 480 m a.s.l., Rhineland-

Palatinate, Germany). Population connectivity and genetic diversity of 182 specimens were 

investigated using ten microsatellite markers. At the continental scale, we completed the data 

obtained in the Westerwald region with data published in studies on the Hesse and Lower 

Saxony regions (Germany), Alsace (France), Geneva (Switzerland), and Trentino (Italy) to 

evaluate variation of landscape genetics among marginal and more central populations. Short-

term fragmentation of populations with low dispersal capacity caused significant genetic 

differentiation between populations only 1.4 km distant from each other, but did not affect 

local genetic diversity. Long-term isolation of populations was associated with a steep increase 

of genetic distance at the regional scale and the local loss of genetic diversity. At the 
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continental scale, we identified Alsace and Trentino as regions with low genetic structuring 

and high allelic richness, and the marginal or strongly urbanized remaining regions as deeply 

structured with reduced allelic richness. Our study suggests that informed conservation 

management of B. variegata should focus on measures maintaining or improving connectivity 

among neighbouring populations. 

 

Key words. Species conservation, Geographical scale, Microsatellites, Genetic diversity, 

Isolation by distance, Habitat fragmentation, Conservation management   

 

 

Introduction 

Worldwide declines of amphibians affect increasing numbers of species (IUCN 2019; Stuart et 

al. 2004). Besides habitat loss identified as main cause, environmental contaminants, UV-B 

irradiation, diseases, invasive species, exploitation and climate change contribute to the 

observed declines (Beebee & Griffiths 2005; Hof et al. 2011). Reduced genetic variation may 

further increase vulnerability of amphibian populations to decline (Allentoft & O’Brien 2010; 

Chen et al. 2012). Genetic diversity can vary greatly among conspecific amphibian populations 

in response to effective population sizes, isolation of populations and bottleneck effects (Funk 

et al. 2005; Monsen & Blouin 2004; Razpet et al. 2016). Therefore, molecular tools (e.g., 

microsatellite analyses) are commonly used to assess genetic diversity in target species and 

to reveal fragmentation and connectivity among populations for conversation purposes 

(Balloux & Lugon-Moulin 2002; Holderegger et al. 2019). For example, a continental scale 

study on the declining Australian frog Litoria aurea emphasized that connectivity among 

neighbouring populations is crucial to counteract genetic structuring (Burns et al. 2004).  

The central-marginal hypothesis predicts that populations at the margin of the 

geographical range are usually small and geographically isolated, with low genetic diversity 

and high genetic divergence (Eckert et al. 2008; Peterman et al. 2013). The phylogeographies 

of the European tree frog Hyla arborea and the natterjack toad Epidalea calamita support this 

prediction because northernmost populations established during the postglacial 

recolonization are genetically less diverse than southern populations in the glacial refuge 

areas and more prone to local extinction (Allentoft et al. 2009; Dufresnes et al. 2013; Rowe et 

al. 1998; Rowe et al. 2006). The European yellow-bellied toad Bombina variegata shares a 
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similar postglacial recolonization history (Gollmann & Gollmann 2012). At continental scale, 

this species is currently listed “least concern”; but protected under the EU Habitats Directive 

92/43/EE and considered endangered in many European countries (IUCN 2019; Kühnel et al. 

2009). At its northern range limit in Germany, many yellow-bellied toad populations have gone 

extinct mainly due to habitat loss, while others are declining during the past decades 

(Gollmann & Gollmann 2012; Veith 1996a). As extant populations are often fragmented 

because of a low dispersal capacity and habitat fragmentation, B. variegata is presently 

considered “critically endangered” in Germany (e.g., Gollmann & Gollmann 2012; Jehle & 

Sinsch 2007; Kühnel et al. 2009; Schlüpmann et al. 2011; Veith 1996a). 

We chose yellow-bellied toads as a model organism to explore genetic diversity and 

isolation by distance patterns among populations at the local, regional, and continental scale. 

Using microsatellite analyses, we aimed to test for the effects of habitat fragmentation on 

isolation and gene drift in central and marginal populations and to evaluate implications for 

conservation. We hypothesise that connectivity among marginal populations is lower than 

among central populations, resulting in lower local genetic diversity and stronger regional 

genetic structuring. 

(1) At the local scale, we used a system of four neighbouring populations (1.0 - 2.5 km 

distant from each other; Schmidtenhöhe, Rhineland-Palatinate, Germany; Hantzschmann & 

Sinsch 2019) originating from a single panmictic population and separated by dispersal 

barriers for about 30 - 40 years. We quantified the effects of short-term habitat fragmentation 

on genetic structure. We predict that the interruption of gene flow caused a detectable 

genetic structuring of the populations; but did not yet affect the level of genetic diversity.  

(2) At the regional scale, we complemented the small-scale population system with 

another five populations (4 - 50 km distant from each other; Westerwald, Rhineland-

Palatinate, Germany) among which exchange of individuals has been interrupted for at least 

a century. We quantified the long-term impact of dispersal barriers on the genetic diversity. 

We predict that the actual genetic structuring of Westerwald populations reflects the 

common origin from an initially large-scale meta-population with interacting local populations 

and gene drift in the isolated extant populations. We expect a detectable decrease of local 

genetic diversity and a strong genetic structuring within this marginal region. 

(3) At the continental scale, we performed a meta-analysis on genetic diversity in marginal 

and central populations. We complemented our data on the Westerwald region with 
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published data on regions in France (Vacher & Ursenbacher 2014), Italy (Cornetti 2013; 

Cornetti et al. 2016), Switzerland (Tournier 2017), and Germany (Hesse: Guicking et al. 2017; 

Lower Saxony: Weihmann et al. 2009; Weihmann et al. 2019). We predict that local and 

regional genetic diversity increases from north to south and that the isolation by distance 

pattern is more pronounced in the marginal regions (e.g., Germany) than in the more central 

regions (e.g., Italy). 

 

Material and Methods 

Study area and sampling procedure 

We sampled yellow-bellied toads Bombina variegata from nine populations in Rhineland-

Palatinate, Germany (Fig. 1, Tab. 1). At the local scale (approx. 2.5 km² survey area; Fig. 1A), 

we sampled four neighbouring populations (1-4, Tab. 1) located at the former military training 

area Schmidtenhöhe near Koblenz (Hantzschmann et al. 2019; Hantzschmann & Sinsch 2019). 

About 40 years ago, these populations formed a single panmictic population considered as 

the largest B. variegata population in Rhineland-Palatinate (Veith 1996a). At the regional scale 

(approx. 1,000 km² survey area; Fig. 1B), we sampled another five populations (5-9, Tab. 1) 

inhabiting clay and loamy sand pits in the Westerwald region of Rhineland-Palatinate. 

Geographical distances between localities are given as line-of-sight distance between the 

centres of breeding pond groups. The pairwise geographical distances range from 1.0 to      

50.1 km (Tab. 5).  

We hand-captured and toe-clipped 16-30 individuals per population, obtaining 182 

samples for microsatellite-analyses (Tab. 1). We sampled populations 1-4 in May and July 

2017, populations 5-8 in July 2018 and population 9 in June 2019. We avoided replicate 

sampling by checking individuals for clipped toes and comparing the unique ventral pattern 

with the photographs of previously collected toads. For the continental-scale meta-analysis 

(Fig. 1C), we retrieved published data throughout the western range of B. variegata. 

Populations included are at the northern range margin in Germany (Lower Saxony: Weihmann 

et al. 2009; Weihmann et al. 2019; Hesse: Guicking et al. 2017), in Switzerland (Tournier 2017), 

in France (Vacher & Ursenbacher 2014) and in Italy representing the southernmost region in 

this dataset (Cornetti 2013). 
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Figure 1: Geographical distribution of study sites. Local scale (A): Former military training area 
Schmidtenhöhe. Regional scale (B): Northern Rhineland-Palatinate (populations 1 - 4: 
Schmidtenhöhe; 5: Mogendorf; 6: Ruppach-Goldhausen; 7: Elkenroth; 8: Galgenkopf; 9: Bad 
Hönningen). Continental scale (C): populations in Lower Saxony (green); Hesse (blue); 
Rhineland-Palatinate (yellow); Alsace (red); Geneva (purple); Trentino (turquoise). See Table 
1 for coordinates. Maps  created using data by the Naturschutzverwaltung Rheinland-Pfalz; 
Geobasisdata: Kataster- und Vermessungsverwaltung Rheinland-Pfalz and GADM online 
online platform (https://gadm.org/data.html). 
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Table 1: Sampling localities in northern Rhineland-Palatinate with corresponding population 
code, land use at each site and number of individuals sampled. Local scale (Schmidtenhöhe) 
is indicated by light grey; regional scale white. 
 

Sampling 

localities 

Pop. 

code 

Latitude 

[°N] 

Longitude 

[°E] 

Altitude 

[m asl] 

Indiv. 

[n] 
Actual land use 

Schmidtenhöhe 1 50.348920 7.678354 339 20 Succession 

Schmidtenhöhe 2 50.345374 7.668822 333 25 Pasture 

Schmidtenhöhe 3 50.346560 7.644067 275 25 Pioneer area 

Schmidtenhöhe 4 50.335656 7.655866 301 30 Clay pit (extensive) 

Mogendorf 5 50.487802 7.758493 308 16 Clay pit (intensive) 

Ruppach 6 50.462444 7.885331 276 16 Clay pit (intensive) 

Elkenroth 7 50.727676 7.906109 480 16 Former                

loamy sand pit 

Galgenkopf 8 50.723098 7.954793 451 18 Former                

loamy sand pit 

Bad Hönningen 9 50.530513 7.314777 200 16 Clay pit (extensive) 

 

DNA extraction and genotyping 

We genotyped the toads using 10 colour-labelled microsatellite markers originally developed 

for Bombina bombina (Hauswaldt et al. 2007; Stuckas & Tiedemann 2006). DNA was extracted 

from phalange tissue (toe clips) using the blood and tissue DNA extraction kit (Qiagen). DNA 

was then amplified in a locus-specific polymerase chain reaction (PCR) on a MultiGene 

OptiMax (Labnet International) in 10 µl volumes containing 4.55–5.55 µl dH2O, 1 µl Buffer 

(Bioline), 5 pmol (1.0 µl) Primer, 0.3–0.4 µl My-Taq-Polymerase (Bioline) and 1–2 µl undiluted 

DNA. PCR conditions followed the protocol of Weihmann et al. (2009) using reduced 

elongation (3 min) and adapted annealing temperatures. For the B13 locus, we used a 

different procedure: 10 µl volume containing 3.45–6.45 µl dH2O, 2 µl HF-Buffer (Thermo 

Fisher), 0.2 µl dNTPs, 0.5 µl MgCl2, 0.1 µl Phusion High Fidelity-Polymerase (Thermo Fisher), 

5 pmol (1.0 µl) per primer and 1.0– .0 µl undiluted DNA denaturated at 98 °C, followed by 35 

cycles at 98 °C (10 s), 41 °C (30 s), 72 °C (30 s) and a final elongation at 72 °C (8 min). Fragment 

lengths were analysed by Eurofins Genomics, Germany, at an ABI 3130 XL sequencing 

machine, allele sizes were determined using the software GeneMapper 5. 
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Population genetic analyses 

We checked the resulting fragment lengths using the software Microchecker 2.2.3 for null 

alleles (Van Oosterhout et al. 2004). We calculated allele number and private alleles with 

corresponding frequencies and genetic isolation by geographic distance (IBD) using a Mantel 

test in GeneAlEx (Peakall & Smouse 2012). Allelic richness (AR), deviations from Hardy-

Weinberg equilibrium using Fisher’s exact test, and inbreeding coefficients (FIS) with 

corresponding confidence intervals were calculated using the package diveRsity 1.9.9 in R 

(Keenan et al. 2013). Linkage disequilibrium between loci (10000 permutations), an analysis 

of molecular variance (AMOVA); observed (Ho) and expected (He) heterozygosity with 

corresponding standard deviation, and pairwise genetic difference between populations 

(weighed FST -statistics according to Weir & Cockerham 1984; Michalakis & Excoffier 1996) 

were calculated using the software Arlequin 3.5.2.2 (Excoffier & Lischer 2010). We 

transformed the raw FST values using the formula FST/(1-FST) for the IBD analysis (Vacher & 

Ursenbacher 2014). Genetic bottlenecks were detected using three different methods: 

Wilcoxon’s sign rank test for (1) stepwise mutation model (SMM), (2) two-phase model (TPM), 

and (3) mode shift test using the software bottleneck 1.2.02 (Piry et al. 1999). We performed 

a Discriminant Analysis of Principal Components (DAPC) to describe diversity between 

populations using the package adegenet in R (Jombart 2008). The most probable number of 

genetic clusters was estimated in Structure 2.3 (Pritchard et al. 2009) using the admixture 

model without prior information on sample population. The evaluated number of clusters (k) 

was set from 1 to 10 with 20 runs per k after a burn-in period of 100000 followed by 500000 

iterations. We used the Evanno method (∆k; Evanno et al. 2005) in Structure Harvester (Earl 

& Vonholdt 2012) to evaluate the most appropriate number of genetic clusters. 

Corresponding charts were obtained using CLUMPAK (Kopelman et al. 2015).  

 

Statistical analyses for continental scale comparisons 

We used an analysis of variance (ANOVA) to compare the data sets on the six regions studied 

with respect to AR and He, i.e. genetic diversity. If ANOVA detected significant differences 

among the regions, we applied a multiple regression analysis to test for the impact of latitude, 

longitude and altitude on the target variables. Within each region, the isolation by distance 

pattern was modelled by calculating the linear relationship between geographical distance 

and transformed FST-value (FST/[1-FST]). Slopes of regression lines as a measure of intensity of 
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isolation among regional populations were compared using the 95 % confidence intervals. 

Statistical procedures were performed using the program package Statgraphics Centurion 

version 18.1.01. The significance level was set at alpha = 0.05. 

 

Results 

Eight of the ten loci studied were polymorphic in the Westerwald region (Tab. 2). The 

MicroChecker analysis did not provide evidence for null alleles or large allelic dropout in any 

of the populations. Consequently, all sampled individuals were included in the analyses. We 

detected 40 alleles including eight private alleles (Tab. 2, Tab. 3). The average number of 

alleles per locus was 4.2 (range: 1 - 8; Tab. 2). Linkage disequilibrium was found in six out of 

nine populations (sites 1, 5 - 9), but there was no evidence for a general linkage disequilibrium 

between particular loci. We did not detect deviations from Hardy-Weinberg equilibrium 

(Fisher’s exact test; P > 0.05) or evidence for significant inbreeding in any of the investigated 

populations (Tab. 3). 

 



 

 
 

Table 2: Continental scale: Fragment lengths of microsatellite loci in B. variegata populations of five European regions. Data are given as number of 
individuals (n), number of alleles (A), size range of alleles, and observed heterozygosity (Ho) per locus, if available.  
 

Country 

Germany 

(Rhineland-

Palatinate) 

Germany 

(Hesse) 

Germany 

(Lower Saxony) 

Italy 

(Trentino) 

France 

(Alsace) 

n 182 281 150 200 290 

Reference This study Guicking et al. (2017) Weihmann et al. (2019) Cornetti (2013) 
Vacher and Ursenbacher 

(2014) 

Locus A Size range Ho A Size range Ho A Size range A Size range A Size range Ho 

F22 2 138-140 0.05 1 143 - 6 137-169 2 142-148 5 134-146 0.77 

B14 3 163-169 0.48 6 160-172 0.4 6 138-200 5 164-172 - - - 

B13 3 112-120 0.19 1 115 - 13 95-161 3 114-134 5 114-124 0.24 

5F 7 112-148 0.51 9 115-163 0.54 10 91-163 3 116-148 11 110-166 0.76 

9H 3 148-156 0.17 4 151-163 0.32 9 119-203 6 156-176 11 131-183 0.57 

F2 1 485 - 1 468 - 10 270-378 - - - - - 

1A 1 320 - 1 323 - 8 323-383 2 322-326 - - - 

8A 6 313-333 0.60 10 283-339 0.53 11 291-363 6 291-331 9 288-332 0.57 

10F 8 192-228 0.57 5 209-225 0.58 7 193-229 7 206-230 11 197-233 0.59 

12F 6 209-233 0.47 4 143-163 0.37 6 213-233 8 219-247 - - - 



 

 
 

Table 3: Local and regional scale: Genetic features of the populations in northern Rhineland-Palatinate.  Abbreviations: allele number (A), number 
and frequency of private alleles (PA), expected (He) and observed (Ho) heterozygosity with corresponding standard deviation (SD), allelic richness 
(AR), inbreeding coefficient (FIS) with corresponding 95 % confidence interval (CI). Significance levels (P] of tests for genetic bottlenecks are given as 
well. Abbreviations: one-tailed Wilcoxon’s test TPM (BN WTPM), one-tailed Wilcoxon’s test SMM (BN WSMM), mode shift test (BN MS).  
 
 

Pop. 

code 

A 

[n] 

PA 

[n] 

PA 

[freq] 
He (±SD) Ho (±SD) AR FIS (CI) 

BN 

WTPM 

BN 

WSMM 

BN 

MS 

1 21 1 0.03 0.45 (±0.21) 0.45 (±0.2) 2.51 -0.01 (-0.16-0.14) 0.23 0.47 - 

2 25 0 0 0.44 (±0.23) 0.46 (±0.26) 2.68 -0.06 (-0.17-0.04) 0.77 0.95 - 

3 17 0 0 0.43 (±0.23) 0.45 (±0.26) 2.11 -0.09 (-0.24-0.08) 0.04 0.05 shifted 

4 20 0 0 0.45 (±0.11) 0.45 (±0.12) 2.25 -0.01 (-0.13-0.11) 0.08 0.72 - 

5 22 0 0 0.41 (±0.18) 0.42 (±0.22) 2.61 -0.06 (-0.19-0.07) 0.32 0.73 - 

6 25 3 0.16 0.48 (±0.22) 0.46 (±0.21) 2.94 0.01 (-0.13-0.17) 0.04 0.27 - 

7 20 0 0 0.37 (±0.21) 0.37 (±0.24) 2.38 -0.03 (-0.20-0.14) 0.27 0.58 - 

8 21 3 0.16 0.48 (±0.23) 0.51 (±0.22) 2.43 -0.09 (-0.24-0.05) 0.08 0.34 - 

9 17 1 0.19 0.45 (±0.15) 0.47 (±0.12) 2.11 -0.08 (-0.21-0.05) 0.08 0.22 shifted 
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Genetic diversity 

Local scale (Schmidtenhöhe) 

The expected heterozygosity He of the Schmidtenhöhe populations was similar at the four 

localities (range: 0.43 - 0.45; Tab. 3). Population 3 had the lowest number of alleles and lowest 

AR and showed evidence for a bottleneck event (one-tailed Wilcoxon’s test for two-phase 

model: P < 0.05, positive mode shift test; Tab. 3).  Population 2 had the highest number of 

alleles and the highest AR (Tab. 3). Private alleles were found in low frequency in population 

1 (Tab. 3). 

 

Regional scale (Westerwald) 

He of nine Westerwald populations varied in a broader range than that at the local scale 

(range: 0.37 - 0.48; Tab. 3). Population 7 had the lowest He, populations 6 and 8 the highest. 

Population 6 showed the highest AR (Tab. 3). Private alleles were found in populations 6, 8, 

and 9 in high frequencies (range: 0.16 - 0.19; Tab. 3). As only one of the three bottleneck tests 

was significant in populations 6 and 9, we did not find unambiguous evidence for a recent 

bottleneck event in the investigated populations.  

 

Continental scale (Europe) 

Allelic richness of B. variegata populations differed significantly among populations in 

Germany, France and Italy (ANOVA: F4,52 = 13.99, P < 0.0001; Tab. 4). Specifically, AR was 

significantly lower in the three marginal regions in Germany than that in the more central 

regions of France and Italy (Multiple group comparison: P < 0.05). Variation of latitude, 

longitude, and altitude of localities studied accounted for 41.8 % of variance in AR (Multiple 

regression model: AR = 15.04–0.22*Latitude-0.11*Longitude–0.00069*Altitude; F3,52 = 13.48, 

P < 0.0001). Specifically, AR decreased significantly from south to north and from east to west. 

In contrast, He was similar in five out of six regions studied (ANOVA: F5,64 = 3.32, P = 0.0104; 

Tab. 4). The only significant deviation was detected between the Geneva and Alsace regions 

(Multiple group comparison: P < 0.05). Latitude, longitude, and altitude of localities did not 

account for a significant amount of variance in He (Multiple regression analysis: F3,64 = 1.62,     

P = 0.1937). 
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Table 4: Continental scale: Average allelic richness (AR), expected heterozygosity (He) and 
corresponding 95 % confidence intervals. Hyphenated letters refer to groups differing at             
P < 0.05. n.a. means unspecified. 
 

Geographic region 
AR 

95 % CI 

He 

95 % CI 
Reference 

Rhineland-Palatinate, 

Germany 

2.45 a 

2.27-2.63 

0.44 a,b 

0.42-0.46 
This study 

Lower Saxony, 

Germany 

2.41 a 

2.15-2.69 

0.43 a,b 

0.38-0.48 
Weihmann et al. (2019)  

Northern Hesse, 

Germany 

2.53 a 

2.36-2.71 

0.48 a,b 

0.44-0.51 
Guicking et al. (2017) 

Alsace, France 
3.59 b 

3.18-3.99 

0.51 b 

0.45-0.56 
Vacher and Ursenbacher (2014) 

Trentino, Alto Adige, 

Italy 

3.14 b 

2.86-3.43 

0.47 a,b 

0.43-0.51 
Cornetti (2013) 

Geneva,  

Switzerland 

n.a. 0.41 a 

0.38-0.44 
Tournier (2017) 

 

 

Landscape genetics 

Local scale (Schmidtenhöhe) 

At the local scale, 96 % of genetic variation was explained by variation within populations, only 

4 % were attributable to variation among populations (AMOVA with weighted FST statistics 

over all loci:  < 0.001). Populations that were at least 1.4 km distant from each other showed 

a corresponding genetic differentiation at the Schmidtenhöhe (AMOVA with weighted FST 

statistics over all loci: P < 0.05; Tab. 5). Populations 1 and 2 at about 1 km distance did not 

show a significant genetic differentiation.  
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Table 5: Local and regional scale: Matrix of pairwise genetic (FST- values; lower triangle) and 
geographic distance (km; upper triangle) among the Westerwald populations. Local scale 
(Schmidtenhöhe) is shown in grey. Significant genetic distances (P < 0.05) are given in bold. 
 

Pop. 

Code 

1 2 3 4 5 6 7 8 9 

1 - 1.0 2.6 2.3 16.3 19.3 45.1 46.0 32.7 

2 0.01 - 1.6 1.4 17.0 20.3 45.8 46.7 32.2 

3 0.08 0.05 - 1.6 17.6 21.5 46.3 47.4 30.9 

4 0.03 0.04 0.04 - 18.4 21.6 47.2 48.1 32.4 

5 0.03 0.07 0.08 0.04 - 9.5 28.8 29.8 31.6 

6 0.16 0.19 0.28 0.2 0.14 - 29.6 29.5 41.1 

7 0.09 0.15 0.23 0.16 0.11 0.13 - 3.6 47.1 

8 0.19 0.2 0.28 0.27 0.24 0.23 0.14 - 50.1 

9 0.2 0.25 0.29 0.28 0.15 0.27 0.21 0.35 - 

 

 

Regional scale (Westerwald) 

At the regional scale, 83.9 % of genetic variation was explained by variation within 

populations, whereas 16.1 % of the variation was attributable to variation among populations 

(AMOVA with weighted FST statistics over all loci: P < 0.001). We found significant genetic 

differentiation between population pairs covering a distance range of 1.4 – 50.1 km (Tab. 5) 

with a significant global FST value of 0.16 (AMOVA with weighted FST statistics over all loci:          

P < 0.001; Tab. 6). The analysis of IBD showed a significant positive correlation between 

genetic and geographic distance (Mantel test: P < 0.05, R2 = 0.45; IBD = 

0.06+0.0055*Geographical distance [km]; Fig. 2). The most likely population structure using 

the Evanno method suggested three different genetic cluster of B. variegata in northern 

Rhineland-Palatinate (Fig. 3A). Populations 1–4 are assigned to cluster 1, populations 6 and 9 

to cluster 2 and populations 7 and 8 to cluster 3 (Fig. 3B). Population 5 has an intermediate 

position between clusters 1 and 2 (Fig. 3B). In contrast, the Discriminant Analysis of Principal 

Components yielded a differentiated pattern of the genetic structure of B. variegata with 

population 9 being the most distinct population (Fig. 4). 

 



 

 

Table 6: Continental scale: Average genetic differentiation of B. variegata populations inhabiting six European regions. IBD is modelled by linear 
regression analyses. Slopes and intercepts of the regression models are given as least square means and corresponding 95 % confidence intervals. 
Hyphenated letters refer to groups differing at P < 0.05; * means significantly distinct from zero at P < 0.05; ns means not significantly distinct from 
zero (P > 0.05). 

 

 

 

Geographic region Global FST 
R² 

[%] 

Slope 

95 % CI 

Intercept 

95 % CI 
Reference 

Rhineland-Palatinate, 

Germany 

0.16 41.7 % * 0.00531 a 

0.00310-0.00750 * 

0.0687 a 

0.0007-0.1367 * 
This study 

Lower Saxony, 

Germany 

0.19 10.9 % * 0.00172 a,b 

0.00034-0.00310 * 

0.1709 a 

0.1050-0.2368 * 
Weihmann et al. (2019) 

Northern Hesse,  

Germany 

0.21 8.8 % * 0.00220 a,b 

0.00071-0.00382 * 

0.2207 a 

-0.1525-0.2889 ns 
Guicking et al. (2017) 

Alsace, 

France 

0.13 0.2 % ns 0.00008 b 

-0.00198-0.00214 ns 

0.1384 a 

0.0684-0.2784 * 
Vacher and Ursenbacher (2014) 

Trentino, Alto Adige,  

Italy 

0.11 0.1 % ns 0.00018 b 

-0.00093-0.00129 ns 

0.1637 a 

0.0877-0.2397 * 
Cornetti (2013) 

Geneva, 

Switzerland 

0.12 1.1 % ns 0.00096 a,b 

-0.00124-0.00223 ns 

0.1306 a 

0.0879-0.1736 * 
Tournier (2017) 
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Fig. 2. Isolation by distance: regression of genetic distance (FST/(1-FST)) on geographic distance 
in the Westerwald region. 

 

 

 

Fig. 3. A Delta K plot representing the most probable number (K = 3) of genetic groups in the 
Westerwald region using the Evanno method. B. Results of the structure analysis of 
populations in the Westerwald region representing three (K = 3) genetic clusters. 

A 

B 
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Fig. 4. Results of the DAPC (discriminant analysis of principal components) on populations in 
the Westerwald region. 

 

Continental scale (Europe) 

The genetic differentiation between pairs of populations within the six regions studied 

differed considerably between the southern and the northern regions (Tab. 6, Fig. 5). Isolation 

by distances up to 150 km was low in Trentino (Italy) and Alsace (France), whereas it was up 

to four times larger in a distance range of 20 - 70 km in the German and Swiss regions. There 

were exceptions from the rule in all regions, but the greatest genetic differentiation between 

population pairs was detected in the neighbouring regions Hesse and Rhineland-Palatinate at 

the northern range limit of B. variegata. Despite of the regional scatter of pairwise genetic 

differentiation, IBD regression models differed significantly with respect to slopes between 

Rhineland-Palatinate on one side and Alsace and Trentino on the other (Tab. 6).  
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Fig. 5. Plot of geographical and genetic distances in population pairs of B. variegata in six 
European regions. Broken lines indicate the range of variation of populations with restricted 
(blue) and strong gene flow (black). Abbreviations: D: RP = Westerwald, Rhineland-Palatinate, 
Germany (this study); D: LS = Lower Saxony, Germany (Weihmann et al. 2019); D:                            
HE = northern Hesse, Germany (Guicking et al. 2017); F: Alsace = Alsace, France (Vacher and 
Ursenbacher 2014); I: Trentino = Trentino, Alto Adige, Italy (Cornetti 2013); CH: Geneva = 
Geneva, Switzerland (Tournier 2017). 

 

 

Discussion 

The landscape genetics of anuran species and the subsequent genetic structuring of 

populations in their geographical range are shaped by gene flow, i.e. connectivity, among 

neighbouring populations (Frei et al. 2016; Waraniak et al. 2019; Zancolli et al. 2014). The 

ability of individuals to reach a neighbouring conspecific population, i.e. movement capacity, 

depends on density-dependent motivation to disperse, landscape resistance, and life 

expectancy (Cayuela et al. 2016c; Hantzschmann et al. 2019; Sinsch 2014; Stevens et al. 2006). 

Capture-mark-recapture (CMR) studies suggest that the annual migratory range of B. 

variegata is 20 - 732 m (Abbühl & Durrer 1996; Beshkov & Jameson 1980; Hantzschmann & 

Sinsch 2019; Hartel 2008; Jacob et al. 2009; Jordan 2012), whereas lifetime dispersal distance 

in long-lived populations may amount 1.2 - 4.5 km (Gollmann & Gollmann 2005; Jehle & Sinsch 

2007; Plytycz & Bigaj 1984). Thus, exchange of individuals between neighbouring B. variegata 

populations seems to be limited to less than 5 km. As Hantzschmann et al. (2019) showed that 

B. variegata populations inhabiting the northern range margin in the Westerwald region are 
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short-lived, migration is probably limited to much shorter distances than in long-lived 

populations. We discuss the observed landscape genetics of yellow-bellied toads in the 

context of local, regional and continental scale and evaluate the predictions on genetic 

structuring in view of the short-term and long-term isolation of populations in the Westerwald 

region. 

 

Local scale 

As predicted, the small-scale population system studied at the Schmidtenhöhe mirroring a 30 

to 40-years history of habitat fragmentation was already genetically structured indicating the 

impact of gene drift on small-sized local populations. This is in agreement with a similar 

genetic structuring in populations inhabiting the Geneva region in which structuring was 

attributed to habitat fragmentation by urbanisation (Tournier 2017). Dry open grasslands 

without water bodies pose a high landscape resistance for movements of Bufo bufo, Rana 

dalmatina and Lissotriton vulgaris (Jeliazkov et al. 2019). CMR surveys at the Schmidtenhöhe 

did not provide evidence for among-patch migrations of yellow-bellied toads suggesting that 

these landscape elements may constitute effective dispersal barriers for these toads as well 

(Hantzschmann & Sinsch 2019). As the number of individuals reaching neighbouring breeding 

sites decreases with increasing distance between ponds (Hartel 2008), dispersal in the 

Schmidtenhöhe populations seems to be limited by the absence of ponds that serve as 

stepping stones. Genetic diversity of local populations remained unaffected by short-term 

isolation as predicted suggesting that a notable loss of alleles due to genetic drift is a long-

term process in this species. We conclude that in small-sized yellow-bellied toad populations 

random variation of local allele frequencies is a process leading to genetic structuring within 

a few decades. 

 

Regional scale 

Modelling genetic structure of the Westerwald region yielded different results depending on 

the statistical approach applied. The Evanno method (STRUCTURE: Bayesian iterative 

algorithm; Porras-Hurtado et al. 2013) suggests the presence of three population clusters. One 

cluster included the geographically most distant populations (6 and 9; Tab. 1), an assignment 

exclusively compatible with unauthorized translocation of individuals between the sites. In 

contrast, the DAPC method (multivariate approach; Jombart et al. 2010) yielded a finer scaled 
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pattern in which the grouping of populations to clusters was consistent with their spatial 

arrangement, origin from a common gene pool, and subsequent isolation by distance. As 

independent evidence for massive translocations among extant populations in the 

Westerwald is absent, we conclude that the modelled genetic structure by DAPC is probably 

more reliable than that obtained by the Evanno method. 

As the geographical distribution of a species always exceeds an individual´s dispersal 

capacity, IBD patterns are commonly observed among conspecific populations (Balloux & 

Lugon-Moulin 2002). The pronounced IBD in the Westerwald populations (steep regression 

line, Tab. 6) emphasizes the interrupted exchange of individuals in this region as predicted for 

marginal regions. The high frequency of private alleles indicates gene drift effects due to the 

isolation of populations. Drift effects are probably reinforced by the small population size and 

the short reproductive lifespan in the investigated populations that decreases an individual´s 

chance to contribute to the local gene pool (Cayuela et al. 2019a; Hantzschmann & Sinsch 

2019).  

Amphibians are strongly affected by habitat fragmentation and subsequent isolation 

of local populations because bottlenecks and high inbreeding levels often reduce fitness 

(Andersen et al. 2004; Angelone 2010; Apodaca et al. 2012; Ficetola & De Bernardi 2004). 

Landscape fragmentation in Hesse is considered the main cause of isolation among B. 

variegata populations (Guicking et al. 2017). This is probably true for the Westerwald region 

as well because during the 19th century the road and rail network expanded parallel to 

increased clay mining (Schenk 1993). Clay mines provided secondary habitats for yellow-

bellied toads, but the expansion of transport network contributed to landscape fragmentation 

promoting the isolation of these populations. Furthermore, many stepping stone populations 

between the extant populations have disappeared during the past decades (Veith 1996b). In 

conclusion, we consider the deep genetic structuring of Westerwald populations as the result 

of long-term habitat fragmentation and isolation.  

 

Continental scale 

The landscape genetics of some European amphibians (e.g., Hyla arborea, Epidalea calamita; 

Allentoft et al. 2009; Dufresnes et al. 2013; Rowe et al. 1998; Rowe et al. 2006) are widely 

compatible with the central-marginal hypothesis, those of others are not (e.g., Rana latastei, 

Pelobates syriacus; Garner et al. 2004; Munwes et al. 2010). Putting genetic diversity 
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estimates (He) of marginal B. variegata populations into an European amphibian context He is 

similar to that of marginal H. arborea populations (Andersen et al. 2004), greater than that of 

E. calamita populations (Allentoft et al. 2009; Rowe et al. 1998), and less than those of Rana 

temporaria (Palo et al. 2003), Salamandra salamandra (Najbar et al. 2015), and Triturus 

alpestris populations (Pabijan & Babik 2006). As geographical variables explain only about        

40 % of the large-scale variation of AR in B. variegata populations, the central-marginal 

hypothesis does not explain alone the landscape genetics of B. variegata. We rather consider 

demographic processes following the postglacial dispersal to account for a lower genetic 

diversity at the range margin as also observed in other European amphibians (Beebee & Rowe 

2000; Fijarczyk et al. 2011; Garner et al. 2004; Knopp & Merila 2009; Palo et al. 2004; Rowe et 

al. 2006). Reduced genetic diversity may additionally be a consequence of small effective 

population size resulting from habitat fragmentation (Arens et al. 2006; Hitchings & Beebee 

1997; Marsh et al. 2008; Noël et al. 2006; Reh & Seitz 1990; Tournier 2017; Willi et al. 2006; 

Zancolli et al. 2014). Consequently, we attribute the marked IBD pattern among populations 

in the German regions to reduced gene flow caused by landscape fragmentation and 

demographic processes, whereas the low genetic structuring in Alsace and Trentino suggests 

a still intact connectivity among populations at the regional scale.  

 

Implications for conservation management 

Our study suggests that fragmentation and subsequent isolation of B. variegata populations 

in German regions are the main causes of pronounced genetic structuring and reduced AR. As 

a reestablishment of connectivity between currently isolated populations over distances 

larger than 5 km is visionary because of land use and low dispersal capacity of this species, 

conservation measures should focus on the preservation of remaining populations by 

improving habitats. (Re)introduction or translocation of specimens, even to populations 

following a bottleneck, should be considered with caution, as local populations may be 

adapted to distinct habitat features and pathogens may be spread unintentionally (Orizaola 

et al. 2010; Taft & Roff 2012; Verhoeven et al. 2010). Improve connectivity between local 

populations seems to be the crucial factor to mitigate genetic structuring and to increase 

resilience towards the variation of environmental factors (Frankham et al. 1999; Schön et al. 

2011). Small-scale groups of isolated populations (example: the Schmidtenhöhe populations) 

should be transformed to an interacting meta-population system by stepping stone ponds, 
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which enable movements of some individuals between neighbouring populations. Thus, 

informed conservation management of B. variegata populations at local scale could consist in 

the creation of small-scale meta-populations by offering satellite habitats around isolated 

extant populations, which can be colonized from these nuclei. These meta-population systems 

would still be isolated from each other, but more resilient to local extinction. On a regional 

scale, the still existing connectivity among populations such as those in Alsace and Trentino 

should be conserved to avoid the negative effects of habitat fragmentation currently present 

in the three German and in the Geneva regions and threatening the persistence of yellow-

bellied toads. 
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General discussion 

This study reveals the complex interactions among breeding site choice, larval environment, 

metamorph size, body condition and locomotor performance in yellow-bellied toads (see 

Chapter I). As B. variegata shows a remarkable philopatry (Barandun & Reyer 1998; 

Hantzschmann & Sinsch 2019; Kapfberger 1984), the variety of water bodies used for 

spawning seems to be a by-product of seasonally differing water levels in breeding ponds. This 

indicates that B. variegata uses a temporal rather than a spatial bet-hedging strategy in order 

to maximise reproductive success in unpredictable habitats (e.g., Barandun & Reyer 1998). 

Neither aquatic predators, nor competing anuran tadpoles seem to determine breeding site 

choice, while pond duration is a crucial factor for tadpole survival (Barandun & Reyer 1997a; 

Hartel et al. 2007). The mesocosm experiments revealed that rather desiccation than predator 

presence negatively affected larval development and thus are in line with the previous 

observations. In contrast to predictions of the Wilbur-Collins model and to observations of 

amphibian species in ephemeral habitats (e.g., Alford & Harris 1988; Denver et al. 1998;  

Márquez-García et al. 2010; Márquez-García et al. 2009; Merilä et al. 2000; Rudolf & Rödel 

2007; Wilbur & Collins 1973), phenotypic plasticity in developmental time and an adaptive 

trade-off between size at and timing of metamorphosis was absent in B. variegata. Thus, the 

variability in timing of metamorphosis observed in the field is rather a by-product of the 

temporal bet-hedging strategy than an adaptive timing of metamorphosis in response to pond 

drying. This is in agreement with previous observations on the effects of water volume, 

crowding and temperature on the larval developmental rate in B. variegata (Böll 2002; 

Kapfberger 1984).  

Carry-over effects of larval environment on life history 

The conditions experienced during larval development affected predictably the phenotype of 

B. variegata metamorphs, as size and performance, i.e. the quality of most metamorphs, 

depended on pond treatment. These carry-over effects from larval to terrestrial stages 

indicate additional costs for development in ephemeral ponds, potentially increased stress 

through crowding effects mediated by the corticotropin-releasing hormone (CRH) (Denver 

1997; Kapfberger 1984). Similar effects of desiccation on developmental rate and metamorph 

size of Epidalea calamita were ascribed to low genetic variability and counteracting diurnal 

temperature fluctuations in desiccating ponds (Brady & Griffiths 2000). This study provides 
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evidence that in B. variegata, locomotor performance is directly related to the conditions 

experienced during larval development, morphology and behaviour of metamorphs. This is in 

agreement with observations in other anuran species that suggest a relation between 

breeding pond conditions, metamorph phenotype and dispersal ability (e.g., Bredeweg et al. 

2019; Charbonnier & Vonesh 2015; Goater et al. 1993; John-Alder & Morin 1990; Márquez-

García et al. 2009; Tejedo et al. 2000; Yagi & Green 2018). These delayed life-history effects of 

aquatic stressors thus determine physiological functions and the vulnerability of metamorphs 

to terrestrial predators and consequently affect survival and fitness in later life stages (e.g., 

Altwegg & Reyer 2003; Beck & Congdon 2000; Bredeweg et al. 2019; Chelgren et al. 2006; 

Crespi & Warne 2013; Relyea 2001; Schäfer et al. 2018; Semlitsch et al. 1988; Van Allen et al. 

2010). Consequently, conditions experienced during larval development may have strong 

indirect effects on population dynamics in yellow-bellied toads.  

This study presents the first record of carabids preying on B. variegata metamorphs (see 

Chapter II). These observations emphasize the high predation risk posed by invertebrates 

during the crucial period of life cycle when metamorphs are dispersing from the breeding 

pond to terrestrial habitats (Toledo 2005). Furthermore, this study provides evidence that 

timing of and size at metamorphosis determines survival probability of metamorphs, because 

small individuals were particularly prone to predator attacks by carabids. These observations 

are in agreement with reports for juvenile anurans and urodeles (e.g., Cabrera-Guzmán et al. 

2013; Ovaska & Smith 1988). This role-reversal, i.e. frog and beetle exchange their position as 

predator and prey, was previously reported for different life stages among carabid and 

amphibian interactions (e.g., Burbano-Yandi et al. 2018; Carvalho et al. 2012; Elron et al. 2007; 

Escoriza et al. 2017; Robertson 1989 ; Scholtz & Ralston 2017; Toledo 2005; Wizen & Gasith 

2011a; Wizen & Gasith 2011b). In the area studied, carabids large enough to be potential 

predators were present during the entire reproduction period of B. variegata (Taupp et al. 

2015). As carabid abundance was also stable during the study, the plasticity of metamorphosis 

timing seems to be a by-product of the prolonged breeding period rather than an adaptive 

predator avoidance strategy. In contrast to active hunting reported for some carabid species 

(e.g., Robertson 1989), predation events during the study were probably the result of random 

encounters promoted through the experimental design. In the field, however, the risk of B. 

variegata metamorphs to be preyed upon by carabid beetles seems to be rather low. The 

potential impact of metamorph mortality caused by foraging carabids on local population 
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dynamics is determined by carry-over effects from larval environment to metamorph 

phenotype on one side and by predator species composition and abundance in terrestrial 

habitats on the other side. 

The fast-slow continuum of the life-history trait longevity 

The range of longevity among B. variegata populations differed notably among the local and 

the continental scale with the variation among cohorts within a population being considerably 

lower than the entire fast-slow continuum (see chapter III). In contrast to previous 

assumptions (e.g., Abbühl & Durrer 1998, Di Cerbo et al. 2011, Seidel 1993), extreme longevity 

seems to be an exception in B. variegata. This study provides evidence for the existence of 

short- and long-lived populations, suggesting that longevity variation in B. variegata 

populations at the continental scale integrates two components. The first component is 

intrinsic and defines the magnitude of longevity, i.e. a fixed attribute of a population. The 

second component is extrinsic and determines local variation among cohorts, i.e. 

environmental stochasticity that affects survival rates. The following discussion will focus on 

the identification of factors that potentially determine the variability of longevity among 

yellow-bellied toad populations. 

  In contrast to current theories of aging, senescence, i.e. age-specific mortality and the 

timing of its increase (Kirkwood 1977; Kirkwood & Austad 2000; Williams 1957), was absent 

in B. variegata and thus negligible in the variation of local survival rates. In the short-lived B. 

variegata populations, this variation correlated with the among-years variability of local 

weather, indicating that duration of the activity period and temperature-modulated intensity 

of activity are crucial factors for survival (e.g., Becker et al. 2018). In contrast, considerably 

higher survival rates in long-lived B. variegata populations were unrelated to local weather 

variability. A trend to decreasing longevity in the study populations during the past 20 years 

indicates that climate change may be another source of variation. As the condition index did 

neither change during the activity period, nor correlate with annual survival rates, either this 

index may not reflect correctly the nutritional state in B. variegata, or the nutritional state of 

toads is not a major source of mortality and longevity variation. In contrast to predictions of 

the disposable soma theory of aging and life-history theory (Kirkwood & Austad 2000; 

Kirkwood & Holliday 1979), growth patterns and age at sexual maturity were stable among 

short-lived and long-lived populations throughout the range of B. variegata. High local 

pathogen prevalence affects host fitness and survival, truncates age structure in amphibian 
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populations and may culminate in local extinction events (Adams et al. 2017; Campbell et al. 

2018; Finnerty et al. 2018), thus may also determine longevity variation. On a global scale, 

Batrachochytrium dendrobatidis (Bd) and Ranaviruses are among the most detrimental 

diseases for amphibian populations (e.g., Campbell et al. 2018; Kärvemo et al. 2018; Robinson 

et al. 2018; Spitzen-van der Sluijs et al. 2017; Spitzen-van der Sluijs et al. 2016; Thorpe et al. 

2018; Valenzuela-Sánchez et al. 2018; Watters et al. 2018; Youker-Smith et al. 2018). Though 

the data obtained in this study is insufficient to exclude substantial disease-driven mortality, 

pathogens still seem to be a negligible factor affecting longevity, as prevalence of these 

diseases was low in the investigated short-lived populations. In conclusion, local weather 

variability was the only extrinsic factor affecting survival and thus longevity in the short-lived 

populations of B. variegata, whereas none of the investigated factors was identified as a 

source of variation in the long-lived population. In contrast to many amphibian species 

(Morrison & Hero 2003; Morrison et al. 2004), geographic clines in demographic life-history 

traits and climate features hence seem to be negligible for the variability of the fast-slow 

longevity continuum in B. variegata. 

A new approach to the fast-slow continuum: The palatability hypothesis 

Longevity in the field (i.e. 23 years, Hantzschmann et al. 2019) almost reaches the life 

expectancy of toads in captivity (i.e. 27 years, Mertens 1964; Mertens 1970), indicating that 

predation is low in long-lived populations. This extraordinary lifespan of more than 20 years 

in the field is associated with low predation due to camouflage and toxicity (Abbühl & Durrer 

1998). In populations exposed to similar predator abundances, improved antipredator 

protection may reduce extrinsic mortality and thus increase longevity. In many amphibian 

species, protection is given through chemical defences such as skin toxins that cause 

unpalatability, decrease predation and increase survival (e.g., Darst et al. 2006; Hettyey et al. 

2019; Kowalski et al. 2018). Antipredator protection in B. variegata is attributed to bioactive 

skin secretions that affect the hormonal system, metabolism and the mucosa of predators  

(Gonzalez et al. 2008; Marenah et al. 2004; Simmaco et al. 2009; Xu & Lai 2015). There is 

evidence that concentrations of skin toxins can vary considerably among conspecific 

amphibian populations due to multiple factors such as anthropogenic habitat alteration, 

geographical clines and nutrition (e.g., Bokony et al. 2019; Coppari et al. 2019; Yotsu-

Yamashita et al. 2012; Zhang et al. 2005). So far, variation in skin secretions has not been 

investigated in B. variegata. However, as none of the investigated extrinsic factors seem to 
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determine longevity among populations at the continental scale, the position in the fast-slow 

continuum of longevity may be defined by varying antipredator protection and associated 

vulnerability to predators. Future research should focus on measurements of skin peptide 

profiles of B. variegata and their biological activity to detect differences among individuals of 

short-lived and long-lived populations. 

Aspects of population structure and dynamics  

Hydroregime and precipitation are crucial drivers of reproductive success of amphibians 

breeding in ephemeral wetlands (Greenberg et al. 2017). At the local scale, reproductive 

success, recruitment and estimated population size of B. variegata were associated with 

weather variability and varied considerably among years (see chapter IV). This is in agreement 

with previous studies on B. variegata population dynamics (e.g., Marchand 1993, Cayuela et 

al. 2016b). The study underlines the unpredictable conditions in B. variegata habitats, as the 

characteristics and dynamics of spawning ponds are mainly determined by climatic conditions 

(Barandun & Reyer 1997a). Drought periods caused high mortality among B. variegata larvae 

in desiccating ponds and negatively affected juvenile recruitment, as previously observed by 

Barandun & Reyer (1997b). Consequently, population dynamics were affected with a temporal 

delay. Furthermore, reproduction depended on rainfall and was prolonged after drought 

periods. This is in accordance with previous observations on the spawning behaviour of B. 

variegata (Barandun & Reyer 1997b). Indeed, timing of precipitation seems to play a major 

role for the body size of metamorphs about to hibernate and thus may affect survival rates of 

juveniles. Irrespective of interannual population dynamics, population size remained stable 

for several years. Hence, populations are likely to persist, as long as adequate reproductive 

possibilities exist in the spawning habitats (Hartel 2008).  

A high site fidelity of individuals was observed in this study. This is in agreement with 

previous findings on B. variegata (Barandun & Reyer 1998; Jacob et al. 2009; Kapfberger 1984; 

Plytycz & Bigaj 1984). The annual migratory range reported for B. variegata individuals is 20 - 

732 m (Abbühl & Durrer 1996; Beshkov & Jameson 1980; Hartel 2008; Jacob et al. 2009; Jordan 

2012), whereas lifetime dispersal distance covered in long-lived populations is up to 1.2 - 4.5 

km (Gollmann & Gollmann 2005; Jehle & Sinsch 2007; Plytycz & Bigaj 1984). In contrast, 

dispersal distances in the investigated local populations were considerably lower, as distances 

longer than 500 m seemed impermeable for dispersing toads. Movement capacity in 

amphibians is associated with density-dependent motivation to disperse, landscape 
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resistance, the quality of terrestrial habitat, precipitation (moisture) and life expectancy 

(Abbühl & Durrer 1996; Cayuela et al. 2016c; Gollmann & Gollmann 2005; Hantzschmann et 

al. 2019; Hartel 2008; Sinsch 2014; Stevens et al. 2006). Differences among these parameters 

may explain the broad range of reported dispersal distances for B. variegata populations. As 

migration decreases with increasing distance between ponds (Hartel 2008), the isolation 

observed in the local populations probably occurs due to a lack of stepping stone ponds. In 

conclusion, population connectivity at the local scale is strongly affected through reduced 

dispersal ability and results in the isolation of local populations. Dispersal ability may further 

be limited due to a reduced longevity. As most of the toads reached a maximum longevity of 

5 years and maturity in the third year of life, they are likely to reproduce only over a period of 

3 years. The reported reproductive strategy of yellow-bellied toads, i.e. long-lived individuals 

that skip reproduction under harsh conditions (Barandun et al. 1997), hence seems to be 

absent in the investigated populations. This study suggests that resilience towards changing 

environments is low in short-lived populations, as multiple unfavourable reproductive periods 

are not buffered by longevity and may severely affect population persistence.  

Conservation genetics  

Landscape genetics are applied to assess inter-patch movement and associated connectivity 

among anuran populations, i.e. gene flow, to unveil genetic structuring of populations in their 

geographical range and to understand the long-term persistence of species in changing 

environments (Frei et al. 2016; Waraniak et al. 2019; Zancolli et al. 2014). The investigated 

landscape genetics of yellow-bellied toads will be discussed in the context of local, regional 

and continental scale and the predictions on genetic structuring will be evaluated regarding 

the short-term and long-term isolation of populations (see chapter V). In agreement with a 

study on populations inhabiting urbanised regions (Tournier 2017), genetic population 

structure at the local scale mirrored a short-term, i.e. 30 to 40 years, habitat fragmentation, 

emphasizing the impact of gene drift on small-sized isolated populations. Dry open grasslands 

without water bodies may present high landscape resistance for yellow-bellied toads at the 

local scale and thus cause isolation of local populations (Hantzschmann & Sinsch 2019). Similar 

observations were made for other amphibian species  (Jeliazkov et al. 2019). However, distinct 

loss of alleles due to genetic drift seems to be a long-term process in B. variegata, as genetic 

diversity of local populations was unaffected by the short-term isolation. In conclusion, 
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random variation of local allele frequencies in small-sized isolated yellow-bellied toad 

populations leads to genetic structuring within a few decades. 

As expected for conspecific populations (Balloux & Lugon-Moulin 2002), an isolation by 

distance (IBD) pattern was observed at the regional scale. In consistence with the central-

marginal hypothesis and as predicted for populations inhabiting marginal regions, the 

exchange of individuals between populations was limited or interrupted at the regional scale 

(e.g., Peterman et al. 2013; Gassert et al. 2013). Gene drift effects are probably intensified by 

the small population size (Cortázar-Chinarro et al. 2017; Luqman et al. 2018). The short 

reproductive lifespan in the investigated populations may further increase gene drift as the 

individual´s contribution to the local gene pool decreases (Hantzschmann & Sinsch 2019). 

Habitat fragmentation and associated isolation of local populations strongly affect 

amphibians, as reinforced bottlenecks and inbreeding levels may reduce fitness (Andersen et 

al. 2004; Angelone 2010; Apodaca et al. 2012; Broquet et al. 2010). Besides recent land-use 

patterns, historic landscape characteristics determine the distribution of amphibian species 

(Piha et al. 2007a). Therefore, long-term landscape fragmentation is considered as the main 

cause of the observed isolation and subsequent genetic structuring among B. variegata 

populations at the regional scale. Road networks negatively affect the presence of B. variegata 

populations (Cayuela et al. 2015b). Thus, the expansion of road and rail network in the 19th 

century in the Westerwald region (Schenk 1993) was probably a major factor contributing to 

habitat fragmentation and isolation of populations. In addition, many habitats and hence 

stepping stone populations between the extant populations disappeared during the past 

decades (Veith 1996a).  

The landscape genetics of B. variegata at the continental scale are not explained 

completely by the central-marginal hypothesis, as geographical variables determine only 

about 40 % of the large-scale variation of allelic richness. In fact, demographic processes 

following the postglacial expansion seem to account for a lower genetic diversity at the range 

margin, as observed in other European amphibians (e.g., Beebee & Rowe 2000; Fijarczyk et al. 

2011; Garner et al. 2004; Knopp & Merila 2009; Palo et al. 2004; Rowe et al. 2006). In addition, 

the observed reduced genetic diversity may be a consequence of small effective population 

size associated with habitat fragmentation (e.g., Arens et al. 2006; Hitchings & Beebee 1997; 

Marsh et al. 2008; Noël et al. 2006; Reh & Seitz 1990; Tournier 2017; Willi et al. 2006; Zancolli 

et al. 2014). In conclusion, the isolation by distance pattern among B. variegata populations 
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in Germany (Guicking et al. 2017; Hantzschmann et al. 2020; Weihmann et al. 2019), i.e. at 

the northern range margin, seems to be a consequence of reduced gene flow due to landscape 

fragmentation and demographic processes. In contrast, the low genetic structuring in France 

(Alsace; Vacher & Ursenbacher 2014) and Italy (Trentino; Cornetti 2013) indicates connectivity 

among populations at the regional scale.  

Threats to Bombina variegata 

This study highlights the ecological consequences of threats such as climate change and 

habitat fragmentation to which B. variegata is exposed. Amphibians may be less capable of 

adaptation and thus resilient to intense, rapidly emerging threats, especially when combined 

with environmental changes (Blaustein & Bancroft 2007). Regarding climate change, 

amphibians are considered to be vulnerable to decreases in water availability associated with 

global warming (Araujo et al. 2006). Amphibians breeding in ephemeral wetlands are 

particularly affected, as precipitation is crucial for the onset of breeding and suitable 

hydroregimes for reproductive success (Greenberg et al. 2017). Bombina variegata underwent 

local extinctions and population declines in western and north-western parts of its range 

(Kuzmin et al. 2009). Thus, understanding the ecological consequences underlying breeding 

habitat design is crucial for adequate conservation management (e.g., Cayuela et al. 2011). 

Population dynamics of B. variegata are strongly affected by weather variation which 

determines survival of metamorphs, breeding probability and dispersal (Cayuela et al. 2016b; 

Hartel 2008). The life-history strategy of B. variegata predicts that long-lived toads 

compensate loss of spawn within the same season by several spawning occasions and over 

years through longevity with skipping of reproduction under unfavourable conditions (Abbühl 

& Durrer 1998; Barandun et al. 1997). Major risks for tadpole survival are high temperatures 

and desiccation in open habitats (Dittrich et al. 2016). Consequently, climate change and 

associated prolonged droughts may negatively affect B. variegata populations due to reduced 

reproductive success. In fact, longevity may buffer populations against an increase in climatic 

variability (Morris et al. 2008). For short-lived B. variegata populations, however, 

compensation of unfavourable breeding conditions through skipping of reproduction seems 

hardly possible due to reduced reproductive lifespan. Thus, populations with a low longevity 

may be particularly vulnerable to climate change. In addition, the detrimental effects of 

habitat fragmentation on B. variegata may be reinforced by climate change, as a 

recolonization after local extinction events is hardly possible in isolated populations.  
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Implications for conservation management 

Conservation measures should thus focus on the preservation of high-quality habitats, e.g. 

forests, that may mitigate increased temperatures (Dittrich et al. 2016; Scheele et al. 2014). 

However, as mining areas and quarries are substitute habitats of high conservation value for 

pioneer species and among the few extant habitats for yellow-bellied toads (Faucher et al. 

2017; Flavenot et al. 2015; Veith 1996a), optimising terrestrial and breeding habitats in these 

areas is crucial for the persistence of B. variegata populations. As breeding pond duration is a 

key factor for recruitment (Barandun & Reyer 1997a; Sinsch et al. 2020), optimisation of 

breeding habitats should be achieved through the construction of shallow waterbodies with a 

hydroperiod long enough to enable tadpole development. In short-lived populations, 

measures should be carried out regularly, i.e. at least on a 3-year-cycle, to reinforce 

reproductive success. Isolated and genetically less diverse populations, e.g. at the northern 

range margin, may have a lower evolutionary potential and viability when facing 

environmental changes (Cortázar-Chinarro et al. 2017; Cushman 2006; Frankham et al. 1999; 

Zhang et al. 2015). Thus, informed conservation management of B. variegata populations at 

the local scale should improve the connectivity between extant populations to mitigate 

genetic structuring and to increase resilience towards environmental variation. This may be 

achieved by offering satellite habitats around isolated extant populations, which can be 

colonized from these nuclei and may thus establish a small-scale metapopulation system. 

However, reestablishing the connectivity among isolated B. variegata populations at the 

regional scale is unlikely due to anthropogenic pressure and low dispersal capacity. 

Conservation measures should instead focus on preserving remaining populations by 

improving habitats and maintaining still existing connectivity among populations to mitigate 

the negative effects of habitat fragmentation that threaten the persistence of yellow-bellied 

toads. 
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Summary 

Amphibian populations are declining worldwide for multiple reasons such as habitat 

destruction and climate change. An example for an endangered European amphibian is the 

yellow-bellied toad Bombina variegata. Populations have been declining for decades, 

particularly at the northern and western range margin. One of the extant northern range 

centres is the Westerwald region in Rhineland-Palatinate, Germany. To implement informed 

conservation activities on this threatened species, knowledge of its life-history strategy is 

crucial. This study therefore focused on different developmental stages to test predictions of 

life-history theory. It addressed (1) developmental, (2) demographic and (3) genetic issues of 

Bombina variegata as a model organism: (1) Carry-over effects from larval environment to 

terrestrial stages and associated vulnerability to predators were investigated using mesocosm 

approaches, fitness tests and predation trials. (2) The dynamics and demography of B. 

variegata populations were studied applying a capture-mark-recapture analysis and 

skeletochronology. The study was complemented through (3) an analysis of genetic diversity 

and structuring of B. variegata populations using 10 microsatellite loci. In order to reveal 

general patterns and characteristics among B. variegata populations, the study focused on 

three geographical scales: local (i.e. a former military training area), regional (i.e. the 

Westerwald region) and continental scale (i.e. the geographical range of B. variegata). The 

study revealed carry-over effects of larval environment on metamorph phenotype and 

behaviour causing variation in fitness in the early terrestrial stage of B. variegata. Metamorph 

size and condition are crucial factors for survival, as small-sized individuals were particularly 

prone to predator attacks. Yellow-bellied toads show a remarkable fast-slow continuum of the 

life-history trait longevity. A populations’ position within this continuum may be determined 

by local environmental stochasticity, i.e. an extrinsic source of variation, and the efficiency of 

chemical antipredator protection, i.e. an intrinsic source of variation. Extreme longevity seems 

to be an exception in B. variegata. Senescence was absent in this study. Weather variability 

affected reproductive success and thus population dynamics. The dispersal potential was low 

and short-term fragmentation of populations caused significant genetic differentiation at the 

local scale. Long-term isolation resulted in increased genetic distance at the regional scale. At 

the continental scale, populations inhabiting the marginal regions were deeply structured with 

reduced allelic richness. As consequence of environmental changes, short-lived and isolated 

B. variegata populations at the range margin may face an increased risk of extinction. 

Conservation measures should thus improve the connectivity among local populations and 

reinforce annual reproductive success. Further research on the intraspecific variation in B. 

variegata skin toxins is required to reveal potential effects on palatability and thus longevity. 
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Zusammenfassung 

Weltweit sind die Amphibienbestände rückläufig. Habitatzerstörung und Klimawandel zählen 

dabei zu den Hauptgefährdungsursachen. Auch die Populationen der europäischen 

Gelbbauchunke Bombina variegata nehmen seit Jahrzenten insbesondere an den westlichen 

und nördlichen Verbreitungsrändern ab. Ein rezentes nördliches Verbreitungszentrum ist der 

Westerwald in Rheinland-Pfalz, Deutschland. Zur Optimierung von Schutzmaßnahmen ist die 

Erforschung der Lebenszyklusstrategie dieser gefährdeten Art essenziell. Diese Studie 

untersuchte daher die (1) Entwicklung, (2) Demographie und (3) Genetik von B. variegata als 

Modellorganismus: (1) Carry-Over-Effekte der Larvalbedingungen auf spätere Lebensstadien 

und damit verbundene Anfälligkeit gegenüber Prädatoren wurden mithilfe von Mesokosmen, 

Fitnesstests und Prädationsversuchen untersucht. (2) Die Dynamik und Altersstruktur von 

Populationen wurden durch eine Fang-Wiederfang-Analyse und Skelettchronologie ermittelt. 

Abschließend erfolgte (3) eine Analyse der genetischen Diversität und Populationsstruktur 

unter Anwendung von 10 Mikrosatelliten-Markern. Diese Studie betrachtete drei 

geographische Ebenen, um allgemeine Muster und Besonderheiten von Populationen 

aufzuzeigen: lokale (i.e. ein ehemaliges militärisches Übungsgelände), regionale (i.e. der 

Westerwald) und kontinentale Ebene (i.e. das Verbreitungsgebiet von B. variegata). Die 

Ergebnisse zeigen einen Effekt des larvalen Umfelds auf Phänotyp sowie Verhalten und 

folglich auf die Fitness der Metamorphlinge. Dabei sind Größe und Kondition entscheidende 

Überlebensfaktoren, da kleine Individuen eine vergleichsweise hohe prädationsbedingte 

Mortalität aufwiesen. Die Lebenserwartung der Gelbbauchunken ist sehr variabel und scheint 

von extrinsischen Ursachen wie Umweltstochastizität und intrinsischen Faktoren wie der 

Effektivität des chemischen Prädationsschutzes abhängig zu sein. Extreme Langlebigkeit 

scheint dabei eine Ausnahme zu sein; Seneszenz wurde nicht nachgewiesen. In den 

untersuchten Populationen war der Fortpflanzungserfolg und damit auch die 

Populationsdynamik wetterabhängig und das Ausbreitungspotential gering. Dabei führte 

kurzfristige Fragmentierung zu signifikanten genetischen Unterschieden zwischen lokalen 

Populationen und langfristige Isolation zu verstärkter genetischer Distanz auf regionaler 

Ebene. Im kontinentalen Vergleich waren die Populationen am Rand des Verbreitungsgebietes 

stark genetisch strukturiert und verarmt. Kurzlebige und isolierte Populationen unterliegen 

bei veränderten Umweltbedingungen wahrscheinlich einem erhöhten Aussterberisiko. Daher 

sollten sich Schutzmaßnahmen auf die Verbesserung der Konnektivität lokaler Populationen 

konzentrieren und einen jährlichen Reproduktionserfolg ermöglichen. Weitere Forschung ist 

notwendig, um innerartliche Variation der Hautsekrete sowie mögliche Effekte auf 

Schmackhaftigkeit und damit verbundene Langlebigkeit zu ermitteln. 
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