
Fachbereich 4: Informatik

Multi-material simulation with the
Material Point Method

Masterarbeit
zur Erlangung des Grades Master of Science (M.Sc.)

im Studiengang Computervisualistik

vorgelegt von
Alexander Maximilian Nilles

Erstgutachter: Prof. Dr.-Ing. Stefan Müller
(Institut für Computervisualistik, AG Computergraphik)

Zweitgutachter: Bastian Krayer, M.Sc.
(Institut für Computervisualistik, AG Computergraphik)

Koblenz, im Mai 2020

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

Polch, 11.05.2020
. .
(Ort, Datum) (Unterschrift)

Zusammenfassung

Die Material Point Method (MPM) hat sich in der Computergrafik als äußerst
fähige Simulationsmethode erwiesen, die in der Lage ist ansonsten schwierig
zu animierende Materialien zu modellieren [1, 2]. Abgesehen von der Simu-
lation einzelner Materialien stellt die Simulation mehrerer Materialien und
ihrer Interaktion weitere Herausforderungen bereit. Dies ist Thema dieser
Arbeit. Es wird gezeigt, dass die MPM durch die Fähigkeit Eigenkollisio-
nen implizit handzuhaben ebenfalls in der Lage ist Kollisionen zwischen
Objekten verschiedenster Materialien zu beschreiben, selbst, wenn verschie-
dene Materialmodelle eingesetzt werden. Dies wird dann um die Interaktion
poröser Materialien wie in [3] erweitert, was ebenfalls gut mit der MPM
integriert. Außerdem wird gezeigt das MPM auf Basis eines einzelnen Gitters
als Untermenge dieses Mehrgitterverfahrens betrachtet werden kann, sodass
man das gleiche Verhalten auch mit mehreren Gittern modellieren kann. Die
poröse Interaktion wird auf beliebige Materialien erweitert, einschließlich
eines frei formulierbaren Materialinteraktionsterms. Das Resultat ist ein fle-
xibles, benutzersteuerbares Framework das unabhängig vom Materialmodell
ist. Zusätzlich wird eine einfache GPU-Implementation der MPM vorgestellt,
die die Rasterisierungspipeline benutzt um Schreibkonflikte aufzulösen. An-
ders als andere Implementationen wie [4] ist die vorgestellte Implementation
kompatibel mit einer Breite an Hardware.

Abstract

TheMaterial Point Method (MPM) has proven to be a very capable simulation
method in computer graphics that is able to model materials that were
previously very challenging to animate [1, 2]. Apart from simulating singular
materials, the simulation of multiple materials that interact with each other
introduces new challenges. This is the focus of this thesis. It will be shown
that the self-collision capabilities of the MPM can naturally handle multiple
materials interacting in the same scene on a collision basis, even if the
materials use distinct constitutive models. This is then extended by porous
interaction of materials as in [3], which also integrates easily with MPM. It will
furthermore be shown that regular single-grid MPM can be viewed as a subset
of this multi-grid approach, meaning that its behavior can also be achieved if
multiple grids are used. The porous interaction is generalized to arbitrary
materials and freely changeable material interaction terms, yielding a flexible,
user-controllable framework that is independent of specific constitutive models.
The framework is implemented on the GPU in a straightforward and simple
way and takes advantage of the rasterization pipeline to resolve write-conflicts,
resulting in a portable implementation with wide hardware support, unlike
other approaches such as [4].

Contents

I Introduction 1

1 Motivation 1

2 Related Work 1

II Basics 4

3 Continuum Mechanics 4

4 Material Point Method 11
4.1 Procedure . 11
4.2 Particle-Grid Transfers . 15

4.2.1 Grid Basis Functions 15
4.2.2 Particle-In-Cell Method 18
4.2.3 Fluid Implicit Particle Method 18
4.2.4 Affine Particle-In-Cell Method (APIC) 18

5 Constitutive Models 19
5.1 Hyperelasticity . 20

5.1.1 Saint Venant-Kirchhoff 20
5.1.2 Hencky Strain . 20
5.1.3 Neo-Hookean . 20
5.1.4 Fixed Corotated . 21
5.1.5 Fluids . 21

5.2 Plasticity . 22
5.2.1 Snow . 22
5.2.2 Sand . 23

III Method and Implementation 27

6 Method 27
6.1 Multiple Materials . 27

6.1.1 Single Constitutive Model 27
6.1.2 Multiple Constitutive Models 28
6.1.3 Porous Materials . 29

6.2 MPM Details . 32
6.2.1 Particle-Grid Transfer 32
6.2.2 Moving Least Squares Material Point Method 32
6.2.3 Kernels . 34

ii

7 Implementation 34
7.1 Overview . 34
7.2 Libraries and Technologies . 36
7.3 Buffers and Textures . 37

7.3.1 Particle State . 37
7.3.2 Materials . 39
7.3.3 Grid . 41

7.4 Shader . 43
7.4.1 P2G Shader . 44
7.4.2 Grid Shader . 47
7.4.3 G2P Shader . 49

7.5 Particle Initialization . 49
7.5.1 Sampling Strategies 51
7.5.2 Object Types . 52

7.6 Visualization . 54
7.6.1 Grid Visualization . 54
7.6.2 Particle Visualization 54

7.7 User Interface . 57

IV Evaluation 60

8 Sampling Methods 60

9 Basis Functions 61

10 Single Constitutive Model 63

11 Multiple Constitutive Models 66

12 Porous Materials 69

13 Particle Collisions 73

V Conclusion and Future Work 75

iii

Part I

Introduction

1 Motivation

Capturing and reproducing the behavior of real-world materials is a chal-
lenging task in computer graphics. Many materials are quite complex and
especially phenomena such as fracturing or granular flow can be hard to
reproduce in simulations. While graphics does not necessarily need physically
plausible behavior of materials, failure to do so can mean that the behavior
also looks implausible to a human viewer.

While materials such as water have already been researched extensively
in the past, with fluid solvers being commonplace in VFX [3], many other
types of materials lacked good solutions. In recent years, the Material Point
Method (MPM) has gained a lot of momentum in the graphics community,
starting with its usage for snow simulation in Disney’s Frozen [1]. Their model
can simulate many different types of snow, which has previously been very
difficult to model [1]. MPM further proved very effective in the simulation of
granular materials, i.e. for sand animation [2, 5], as well as viscoelastic fluids,
foams and sponges [6, 7]. There even exist more advanced formulations of
MPM that can be used for cloth simulations [8].

A lot of the research typically focuses on specific materials that are then
simulated on their own with one-way coupling to rigid body collision objects.
The MPM is however also very capable in multi-material simulations that are
fully coupled, which is the topic of this thesis. Some of the related research
is introduced in the following section. Section 3 provides an introduction
into the field of continuum mechanics, followed by a description of the MPM
in Section 4. A selection of constitutive models that were implemented in this
thesis is detailed in Section 5. The multi-material framework is then intro-
duced in Section 6, starting with material variety based on single constitutive
models, then expanding this to multiple models and finally extending it with
porous material interaction based on [3]. The rasterization based implemen-
tation is then described in Section 7, followed by the evaluation (Part IV)
and conclusion (Part V).

2 Related Work

A lot of research has been published on the Material Point Method (MPM)
in the graphics community in recent years. It has also benefitted greatly
from advances to Particle-in-Cell (PIC) fluid simulations, which is outlined
later in Section 4.2. Recent research has addressed many of the shortcomings
and limitations of the method, enabling greater material variety as well as

1

coupling with different simulation frameworks.
Stomakhin et al. [9] developed an augmented MPM that can handle phase-

change, i.e. melting and solidifying. The approach is capable of simulating a
wide range of materials in the same scene. A heat-equation solver that was
adapted to MPM is used to handle temperature changes, with each material
point additionally carrying temperature and phase state. The former is used
to vary the Lamé parameters of the material, while phase only determines
whether deviatoric stresses exist (solid phase) or not (fluid phase). This
required a splitting of the constitutive model into deviatoric and dilational
parts, which they achieve with a modification of the fixed corotated energy
density function from [10]. Their method also treats latent heat, which is
heat that is needed for a phase change that does not trigger a change in
temperature. They achieve this with temperature buffers on material points.
In order to support a larger variety of materials, they furthermore extend
the method to be able to handle incompressible and nearly incompressible
materials without locking. This allows incompressible fluids and highly rigid
solids to be simulated with MPM. Like typical incompressible fluid solvers,
they use staggered marker and cell grids for this and adapt MPM accordingly.
The dilational stress is used to derive pressure needed for their generalized
Chorin-style projection approach that facilitates incompressibility. Deviatoric
stress is handled by MPM as usual.

Jiang et al. [11] describe a method that couples mesh-based Lagrangian
simulations with MPM. In order to do this, the forces fp on meshed particles
are first calculated as usual with the given Lagrangian force model, for example
mass-spring systems or finite elements. These forces are then transformed
into forces fi on the Eulerian grid used in MPM, which allows to consider
them during the velocity update on the grid. Masses and velocities of the
meshed particles are also transferred to the grid, which is done exactly
as for MPM particles. This enables the MPM particles to be affected by
the meshed particles. In order to achieve two-way coupling, the velocity
of meshed particles is also subjected to the MPM transfers, meaning that
velocity is transferred back from the grid onto them as well. A side-effect of
this treatment is that the Lagrangian simulation can now benefit from the
automatic collision handling provided by Eulerian grids, while still keeping
its precise surface tracking capability. With this two-way coupling, materials
such as cloth that are a bad fit for standard MPM and are instead simulated
with mesh-based approaches can be introduced into MPM simulations and
interact with materials that instead are harder to simulate mesh-based.

Hu et al. [12] developed the Moving Least Squares Material Point Method,
which is a new discretization scheme that is described in detail in Section 6.2.2.
This served as a basis for their Compatible Particle-In-Cell (CPIC) algorithm.
CPIC adds the possibility of material point discontinuities which is not
possible in regular MPM. Discontinuities make infinitely thin boundaries
possible by preventing material points on either side to affect each other.

2

The authors achieve this with the usage of colored distance fields and a
compatibility condition that specifies whether a given material point and
grid node are allowed to affect each other. With CPIC, thin-shell dynamic
rigid bodies achieve the desired effects of material separation and cutting
of objects is made possible. Cutting previously required either very thick
objects, or techniques such as deletion of material points or plastic softening
that introduce artifacts. The authors furthermore developed two-way rigid
body coupling, allowing proper interaction between rigid bodies and MPM.
Among other things, they used this to successfully predict movement of a
robot through sand.

3

Part II

Basics

3 Continuum Mechanics

This section will briefly introduce the basics of continuum mechanics. If not
otherwise stated, the information in this section was taken from continuum-
mechanics.org. For an in-depth overview on the topic, similar information
can be found in literature such as [13, 14].

As the name implies, objects are considered to be a continuous lump of
mass in this field of physics. The fact that they are actually made up of a
discrete set of particles such as atoms is thus abstracted away, meaning that
behavior of materials is described using models. A core task in continuum
mechanics is to describe the deformations or strains in a continuum and
derive stresses from them.

Stress is force divided by area. It describes the internal burden of an object
based on outside forces. Force perpendicular to the surface results in normal
stress (σ), while force parallel to the surface yields shear stress (τ). Figure 1
illustrates the concept on an imaginary cut through the object along the
y-axis. The stresses

σxx =
Fx
Ax

and τxy =
Fy
Ax

(1)

can be defined here, where Ax is the area of the cut surface. The normal
stresses in this example are positive because the object is under tension. In
the case of compression, the force would point inwards, resulting in negative
normal stresses.

The stresses that can be defined like this can be summarized in a stress
tensor σ. In 3D, this is

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 . (2)

Stress tensors are symmetric, i.e. τxy = τyx.
The eigenvalues of a stress tensor are the principal stresses σ1, σ2 and σ3.

They correspond to the normal stresses if the coordinate system is oriented
according to principal stress space, i.e. towards the eigenvectors of σ. In this
case, there are no shear stresses, meaning that the stress tensor only contains
the eigenvalues on its diagonal and is zero anywhere else. The eigenvalues
also contain the maximum and minimum possible normal stresses. Even
though the stress tensor changes depending on the coordinate system used

4

https://continuummechanics.org
https://continuummechanics.org

x
x

y
y

F

F

F

F

F

F

Figure 1: An imaginary cut through an object resulting in a surface. The force F
is split into a normal and tangential component, resulting in normal and
shear stresses. Source: continuummechanics.org 1

to describe it, there are many invariants that do not change if the coordinate
system is changed:

I1(σ) = tr(σ) = σ1 + σ2 + σ3 (3)

I2(σ) =
1

2

(
tr(σ2)− tr (σ)2

)
= −(σ1σ2 + σ2σ3 + σ3σ1) (4)

I3(σ) = det(σ) = σ1 · σ2 · σ3 (5)

This also means that the hydrostatic stress

σHyd =
tr(σ)

3
(6)

is invariant as well.

Strain describes an objects deformation. There are normal strains (ε)
and shear strains (γ). Given a displacement field u(X) on the undeformed
positions X, the normal stresses are defined as

εxx =
∂ux
∂Xx

, εyy =
∂uy
∂Xy

and εzz =
∂uz
∂Xz

. (7)

An object stretched by 2% along the x-axis would mean εxx = 0.02, while
compression would yield a negative number. The shear strains can be defined
as

γyx =
∂ux
∂Xy

+
∂uy
∂Xx

= γxy (8)

and analogously for the other axis combinations. Figure 2 illustrates what
these definitions mean using finite differences instead of derivatives.

1https://www.continuummechanics.org/stress.html Last accessed on 08.04.2020

5

https://continuummechanics.org
https://www.continuummechanics.org/stress.html

x

y

Lo L

Lf

x

y

T

y

x

Figure 2: Normal strains (left) and shear strains (right) in terms of finite differences.
The dashed red outline represents the reference configuration and the
blue outline the deformed configuration. Here, ε = ∆L

L0
and γ = ∆x+∆y

T .
These definitions are also called engineering strain. Source: continuum-
mechanics.org 2

The strains can be summarized in a small strain tensor ε which is defined
as

ε =

 εxx γxy/2 γxz/2
γyx/2 εyy γyz/2
γzx/2 γzy/2 εzz

 =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 . (9)

According to Eq. (8), this tensor is also symmetric. The problem of this strain
tensor is that rigid body rotations will result in strains, even though they
should not, meaning that this tensor is only applicable for small rotations.
This problem will be addressed later.

The eigenvalues of a strain tensor are the principal strains ε1, ε2 and ε3.
They contain the maximum and minimum possible normal strains and corre-
spond to the normal strains if the coordinate system is oriented such that
there are no shear strains. This orientation is given by the eigenvectors.
Strain tensors have the same invariants as stress tensors:

I1(ε) = tr(ε) = ε1 + ε2 + ε3 (10)

I2(ε) =
1

2

(
tr(ε2)− tr (ε)2

)
= −(ε1ε2 + ε2ε3 + ε3ε1) (11)

I3(ε) = det(ε) = ε1 · ε2 · ε3 (12)

The first invariant corresponds to the volumetric strain which describes the
volume change that has occurred as

εVol =
∆V

V
≈ tr(ε). (13)

This is only approximate, but the error is small as long as the strains are
small.

2https://www.continuummechanics.org/strain.html Last accessed on 08.04.2020

6

https://continuummechanics.org
https://continuummechanics.org
https://www.continuummechanics.org/strain.html

Hooke’s Law describes how strain and stress are related for isotropic
hyperelastic materials. It is a first order linearization, but it can still be used
for nonlinear material laws as an approximation as long as the strains are
small.

The model uses two parameters. The first is Young’s modulus (E), also
called tensile modulus. It describes the stiffness of a material. Higher values
mean that higher stress is needed to achieve the same strain. E has to be
positive. The second parameter is Poisson’s ratio ν. It describes how much
the material expands or shrinks in the direction perpendicular to compression
or stretching. Positive values mean that the material reacts in opposition, i.e.
that it expands in the direction perpendicular to compression and shrinks
in the direction perpendicular to stretching. ν = 0 means that neither
lateral expansion nor lateral contraction happens, while ν = 0.5 describes
incompressible materials. Negative values are possible and result in a material
exhibiting lateral expansion if it is stretched and vice-versa.

Hooke’s Law is defined as

ε =
1

E

(
(1 + ν)σ − νI tr(σ)

)
(14)

and it can be inverted to relate strain to stress instead

σ =
E

(1 + ν)

(
ε+

ν

(1− 2ν)
I tr(ε)

)
. (15)

Based on Hooke’s Law, other material properties can be defined and related
to E and ν. Rearranging Eq. (15) yields

σ = 2 · E

2(1 + ν)
ε+

Eν

(1 + ν)(1− 2ν)
I tr(ε)

= 2µε+ λI tr(ε).

(16)

µ and λ are called the first and second Lamé parameters, respectively. They
are used in place of E and ν in many constitutive models as they greatly
simplify the formulae. µ is always positive and is also called shear modulus (G).
In fluid dynamics it is instead named dynamic viscosity. λ is usually positive
but is allowed to be negative.

Fluids are often described using the bulk modulus

K = −V dp

dV
, (17)

where p is pressure and V is volume. Pressure is the negative of hydrostatic
stress, which means that the bulk modulus can be defined in terms of
hydrostatic stress and volumetric strain. This allows to define K in terms
of E and ν using Hooke’s Law, resulting in

K =
σHyd
εV ol

=
E

3(1− 2ν)
(18)

7

Deformation gradients are used to solve the problems of rigid body
translations and rotations by separating them from the actual deformations.
Instead of directly computing the small strain tensor, a strain tensor is instead
computed from a deformation gradient F . Given the reference vector X and
the deformed vector x = X + u, it is calculated as

F =
∂x

∂X
=


∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 = I +
∂u

∂X
. (19)

The deformation gradient is a linear transformation. This means that J =
det(F) describes the volume change, leading to the following relation

1 + εVol =
V + ∆V

V
=
JV

V
= J. (20)

This measure is exact, unlike Eq. (13).
The small scale strain from Eq. (9) can be calculated from F as

ε =
1

2

(
F + F T

)
− I. (21)

This suffers from the previously mentioned problem of rigid body rotations,
which is why strain is defined differently in practice. One possible definition
uses the polar decomposition F = R · U . This separates the rotation R,
leaving a symmetric matrix U . A strain tensor can be defined from this as

ε′ = U − I (22)

which is equivalent to the small scale strain in the absence of rotation.
U can be computed using the singular value decomposition F = V ΣW T

and setting
R = VW T , U = WΣW T . (23)

This is an expensive operation. An alternative uses the fact that

F T · F = (R ·U)T · (R ·U) = UT ·RT ·R ·U = UT ·U , (24)

which also eliminates rotation. This is called the right Cauchy-Green defor-
mation tensor. The left Cauchy-Green deformation tensor is instead defined
as F · F T , which also eliminates rotation. Based on this, strains can be
defined. A common choice is the Green-Lagrangian strain tensor

E =
1

2
(F TF − I). (25)

This strain tensor is not equivalent to the small strain tensor, but it is a
reasonable approximation for small strains.

8

Another strain tensor is the true strain which was introduced by Hencky
[15]. It is also called logarithmic strain or Hencky strain, calculated as
1
2 ln(FF T) or 1

2 ln(F TF) [16]. The true strain is often the preferred measure
of strain because it is a more physical measure of strain and has better
properties in large deformation scenarios compared to the Green-Lagrangian
strain [16].

In conjunction with Hooke’s Law, different strains give rise to different
stresses. The Green-Lagrangian strain results in the second Piola–Kirchhoff
stress σPK2, while true strain gives rise to Cauchy stress σ [16]. They are
related as

σPK2 = JF−1σF−T . (26)

A key difference between them is that σPK2 is force over area in the reference
configuration X, while σ is given in the deformed configuration x.

Another definition of stress is the first Piola-Kirchhoff stress, which is
related to the Cauchy stress as

σPK1 = JσF−T . (27)

In contrast to the other stresses, σPK1 is not symmetric.
So far, only hyperelastic materials are accounted for. For elasto-plastic

materials, F is separated into an elastic part FE and a plastic part FP such
that

F = FEFP , (28)

which is called multiplicative plasticity theory [1]. Exactly how F is split
depends on the material’s yield criterion. Only FE is used to calculate
stresses and the corresponding elastic response of the material, while FP is
„forgotten“, but may still have an impact on the material’s behavior, i.e. by
changing its stiffness [1].

Material derivatives describe the rate at which a property of a piece
of material that moves with a velocity v changes over time. Given a func-
tion φ(x), its material derivative is

dφ

dt
=
∂φ

∂t
+ v · ∇φ. (29)

The material derivative of position is simply the velocity, while the material
derivative of velocity is acceleration. For the deformation gradient, it is

dF

dt
=

d

dt

(
∂x

∂X

)
=

∂

∂X

(
dx

dt

)
=

∂v

∂X
. (30)

This is the partial derivative of velocity with respect to the reference configu-
ration, which can be computed using the chain rule:

∂v

∂X
=
∂v

∂x
· ∂x
∂X

= (∇v)F =
dF

dt
. (31)

9

This means that deformation gradients can be evolved using only the current
deformation gradient and the velocity gradient.

Conservation laws are a core concept in continuum mechanics. Conser-
vation of mass is necessary for an Eulerian analysis that defines density ρ
and velocity v at fixed points in space that do not move with the material
flow. Lagrangian analysis greatly simplifies conservation of mass, as it uses
particles that are advected with the flow and have their mass associated with
them. Conservation of mass ensures that the rate at which mass is flowing
in and out of a volume matches the rate at which mass changes within the
volume. It is expressed using the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (32)

By applying the product rule to the divergence term, the continuity equation
can be reformulated:

∂ρ

∂t
+ v · ∇ρ+ ρ(∇ · v) = 0

⇐⇒ dρ

dt
+ ρ(∇ · v) = 0.

(33)

This can be further simplified for incompressible materials, as they require
that the material derivative of density is 0:

dρ

dt
+ ρ(∇ · v) = 0

⇐⇒ ρ(∇ · v) = 0

⇐⇒ ∇ · v = 0.

(34)

The Lagrangian form is simply

ρ0 = ρJ, (35)

meaning that the initial density in reference configuration has to equal the
current density in the deformed configuration multiplied by the determinant
of the deformation gradient.

Conservation of momentum ensures that the sum of all forces acting on an
element is equal to its mass multiplied by its acceleration. This is expressed
using the equilibrium equation:

ρ
dv

dt
= ∇ · σ + ρf . (36)

Here, f is the acceleration due to external forces such as gravity, while ∇ · σ
is the acceleration due to internal stresses (multiplied by density). The

10

equilibrium equation is very similar to the Navier-Stokes equation for fluid
flow,

ρ
dv

dt
= −∇p+ µ∇2v + ρf . (37)

The only difference is that ∇ · σ is instead replaced with its definition in
terms of pressure p and viscosity µ. The continuity equation is also used in
the process, meaning that the Navier-Stokes equation can be considered a
combination of both.

4 Material Point Method

The Material Point Method is a continuum based hybrid method. It com-
bines Lagrangian particles (the material points) with an Eulerian Cartesian
background grid. Unlike some Lagrangian methods, the material points do
not need to be connected by a mesh, just like in Smoothed Particle Hydrody-
namics (SPH). MPM was proposed by Sulsky et al. [17] as an extension of
the Particle-In-Cell Method to solid mechanics, meaning that it shares the
same hybrid approach. Thus, improvements of PIC such as the Fluid Implicit
Particle Method (FLIP) can be applied to MPM as well. The Lagrangian
nature of MPM simplifies conservation of mass as well as the discretization
of the equilibrium equation’s left-hand side (Eq. (36)), while the Eulerian
grid ensures proper self-collision as well as fracturing in an implicit way.
Because there is no mesh connecting the material points, the discretization
of stress derivatives is complicated. These are necessary in order to compute
forces. The Eulerian grid addresses this problem. It is used along with basis
functions to discretize ∇ · σ, similar to the finite element method (FEM) [1].

According to Stomakhin et al. [1], MPM was not used in graphics before
their publication. They used MPM to simulate snow, which was utilized in
the movie Frozen by Disney. Since then, MPM has been intensively used for
graphics applications such as sand animation [2], multi-species simulations [3]
or phase-change and nearly incompressible solids and fluids [9]. The method
was also topic of SIGGRAPH courses [18, 19] and it was implemented using
the GPU [4]. This thesis will focus on MPM from a graphics viewpoint
instead of an engineering one.

4.1 Procedure

In order to differ between quantities associated with particles and those
associated with grid nodes, subscripts will be used in the following. For
example, mn

i would be the mass associated with node i at timestep n and mp

the mass associated with particle p. The grid nodes are equally spaced and
typically store all quantities at cell centers, although other grids such as
marker and cell (MAC) grids that store information at centers and faces are
possible too [9].

11

Figure 3: Overview of the 10 steps of the MPM according to Stomakhin et al. [1].
Image source: [1].

Many variations of MPM exist. Figure 3 shows the basic procedure
according to Stomakhin et al. [1], which is divided into 10 steps:

1. Rasterize particle data to the grid. This step transfers mass and
velocity from particles to grid nodes. Mass is transferred as

mn
i =

∑
p

mpω
n
ip. (38)

Here, ωnip is the weight between grid node and particle, dictated by
the chosen grid basis function (see Section 4.2.1). There are numerous
options for velocity transfer, three of which are detailed in Sections 4.2.2
to 4.2.4.

2. Compute particle volumes and densities. This is only necessary
for particle initialization and is thus only done at the first timestep.
Grid cell density is estimated as ρ0

i = m0
i/h

3, where h is the grid
spacing. Particle density can be estimated from this as ρ0

p =
∑

i ρ
0
iω

0
ip,

and volume is V 0
p = mp/ρ

0
p.

3. Compute grid forces. This step requires computing the Cauchy
stress σp, which in turn depends upon the deformation gradient F n

p and
the chosen constitutive model. Deformation gradients can be initialized
as F 0

p = I and are evolved in a later step. Constitutive models are often
expressed using an elasto-plastic energy density function Ψ(FEp,FPp).
The derivative of this with respect to the deformation gradient is the
first Piola-Kirchhoff stress,

σPK1
p =

∂Ψ

∂Fp
. (39)

12

This means that

σp =
1

det(F n
Ep)

∂Ψ

∂FE
(F n

Ep)
T =

1

JEp

∂Ψ

∂FE
(F n

Ep)
T (40)

The forces can now be calculated as

fi = −
∑
p

V n
p σp∇ωnip. (41)

Because V n
p = JEpV

0
p , this can also be written as

fni = −
∑
p

V 0
p σ

PK1
p (F n

Ep)
T∇ωnip = −

∑
p

V 0
p

∂Ψ

∂FE
(F n

Ep)
T∇ωnip. (42)

Other external forces such as gravity can then be added to fi.

4. Update velocities on grid as

v?i = vni +
∆t

mn
i

fni (43)

5. Grid-based body collisions. Velocities v?i are updated based on
collisions. This update is one-way in basic MPM, but two-way coupling
is possible to implement [12].

Stomakhin et al. [1] implement collision based on level sets φ. Level
sets are negative inside objects, positive outside objects and 0 on the
surface of an object. This means that a position is colliding if φ(x) ≤ 0.
In this case, the surface normal n = ∇φ(x)

‖∇φ(x)‖ and collision object
velocity vco are computed. Based on the relative velocity vrel = v−vco
it is determined if the objects are already moving away from each
other (vn = vrel · n ≥ 0), in which case nothing has to be done.
Otherwise, the relative tangential velocity vt = vrel − nvn is computed.
Given the coefficient of friction µfr, if ‖vt‖ ≤ −µfrvn or if the surface
is flagged as sticky, the relative velocity is updated as v′rel = 0. In the
other cases, dynamic friction is applied as v′rel = vt + µfrvn

vt
‖vt‖ . Lastly,

the velocity is updated as v′ = v′rel + vco.

This procedure is used on grid node velocities v?i given their position xi.
In Step 9, the same algorithm is used to collide and update particle
velocities vn+1

p based on positions xp.

Level sets are not limited to rigid bodies. Stomakhin et al. [1] use them
for stationary and dynamic rigid bodies as well as deforming objects.
They implemented the latter by defining level sets for key frames and
interpolating between them.

13

6. Solve the linear system. Stomakhin et al. [1] proposed semi-implicit
integration. This involves solving a system of linear equations to
get v̂n+1

i from v?i , which requires the Hessian ∂2Ψ
∂FE∂FE

, a fourth-rank
tensor. The system can be solved using iterative methods such as GM-
RES [3]. This approach allows for timesteps that are one to three
magnitudes smaller compared to explicit integration [1, 3]. How-
ever, Tampubolon et al. [3] note that it introduces severe artificial
cohesion in their use-case.

Semi-implicit or implicit integration approaches are not explored further
in the following because they would introduce a lot of complexity
and potential problems for the multi-material approach introduced
in Part III. In an explicit scheme the velocity is updated as

v̂n+1
i = v?i . (44)

Note that v̂n+1
i differs from vn+1

i which is the velocity transferred from
particles in the next timestep.

7. Update deformation gradient. This step updates the elastic and
plastic portions of the deformation gradient. All additional deformations
that happened in this timestep are first attributed to FE using Eq. (31):

F̂ n+1
Ep = (I + ∆t∇vn+1

p)F n
Ep (45)

The plastic portion is set as F̂ n+1
Pp = F n

Pp. Together, they combine to
the full deformation gradient as

F n+1
p = F̂ n+1

Ep F̂
n+1
Pp . (46)

A grid transfer is used to evaluate the velocity gradient as

∇vn+1
p =

∑
i

v̂n+1
i (∇ωnip)

T . (47)

If the constitutive model is purely elastic, then there is no plastic
deformation, i.e. the plastic portion of the deformation gradient is
always the identity. This means that the deformation gradient update
is already done and F̂ n+1

Ep = F n+1
Ep = F n+1

p . Otherwise, F̂ n+1
Ep is

subjected to the yield criterion of the constitutive model and split into
an elastic and plastic portion:

F̂ n+1
Ep = F n+1

Ep F
?
Pp. (48)

The plastic portion that was split off is then attributed to the total
plastic deformation gradient

F n+1
Pp = F ?

PpF̂
n+1
Pp . (49)

14

8. Update particle velocities. Grid velocities are transferred back onto
the particles as vn+1

p . This depends on the chosen grid transfer scheme,
just like the opposite direction in Step 1 does. The different options
are described in Sections 4.2.2 to 4.2.4.

9. Particle-based body collisions. This step optionally applies collision
on vn+1

p . The same procedure from Step 5 is used. If this step is skipped,
particles can slightly penetrate into collision bodies. The problem is
reduced at higher grid resolutions. However, Klár et al. [2] note that
applying collisions on particles directly can cause their positions to
become out of sync with deformation gradients, which is a reason to
skip this step. The artifacts caused by this can range from barely
noticeable to major differences in simulations (see Section 13).

10. Update particle positions as

xn+1
p = xnp + ∆tvn+1

p . (50)

4.2 Particle-Grid Transfers

Transferring quantities from particles onto grid nodes and back is a core
task in MPM. It is used to estimate grid mass (Eq. (38)) and grid velocities,
during the stress-based force evaluation (Eq. (41)), to update deformation
gradients (Eqs. (45) and (47)) and to transfer velocities back onto particles.

This section will describe the grid basis functions used in the process and
what choices exist, as well as different approaches as to how velocities are
transferred.

4.2.1 Grid Basis Functions

An arbitrary 1D basis function N(x) centered on 0 can be used to form 3D
grid basis functions using the tensor product as

Nh
i (x) = N(

1

h
(x− xi))N(

1

h
(y − yi))N(

1

h
(z − zi)) [18] (51)

where x = (x, y, z)T , h is the grid spacing and xi = (xi, yi, zi)
T is the position

of node i. Based on this, the weights between nodes and particles are defined
as

ωnip = Nh
i (xnp) [1] (52)

for particle positions xnp = (xnp , y
n
p , z

n
p)T at timestep n. The gradient is

defined as

∇ωnip =

 1
h∇N(1

h(xnp − xi)) ·N(1
h(ynp − yi)) ·N(1

h(znp − zi))
N(1

h(xnp − xi)) · 1
h∇N(1

h(ynp − yi)) ·N(1
h(znp − zi))

N(1
h(xnp − xi)) ·N(1

h(ynp − yi)) · 1
h∇N(1

h(znp − zi))

 [18] (53)

15

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.25
0.5

0.75
1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

Figure 4: Plots of the piecewise linear (green), quadratic (blue) and cubic (red)
basis functions (top) and their derivatives (bottom).

In order for the mass transfer in Eq. (38) to be correct, the total particle
mass has to be equivalent to the total node mass:∑

i

mi =
∑
p

mp. (54)

This is true if the basis functions have the partition of unity property [18]

∀x :
∑
i

Nh
i (x) = 1. (55)

Using this, Eq. (54) holds because∑
i

mi =
∑
i

∑
p

mpω
n
ip =

∑
p

mp

∑
i

ωnip =
∑
p

mp. (56)

Piecewise linear basis functions are a common choice in FEM because they
are cheap to compute and have a compact support [20]. They can be defined
using

N(x) = max(1− |x|, 0) and (57)

∇N(x) =


1 −1 ≤ x < 0

−1 0 ≤ x ≤ 1

0 otherwise
. (58)

This is only C0 continuous. While these basis functions work for FEM, they
are considered unstable with respect to MPM [18]. The reason for this is that

16

the integration points in MPM are particles which are not fixed. Instead, they
move across discontinuities in the derivative of the basis functions due to being
advected, causing large errors. This is known as cell-crossing instability [20].

C1-continuity can be achieved using quadratic B-splines defined by

N(x) =


3
4 − x

2 0 ≤ |x| < 1
2

1
2(3

2 − |x|)
2 1

2 ≤ |x| <
3
2

0 otherwise
and (59)

∇N(x) =


−2x 0 ≤ |x| < 1

2

x+ 3
2 −1

2 ≥ x > −
3
2

x− 3
2

1
2 ≤ x <

3
2

0 otherwise

. (60)

Given the particle spacing ∆x, this leads to errors in O(∆x2) compared
to O(∆x) for linear basis functions [20]. If C2-continuity is desired, cubic
B-splines can be defined using

N(x) =


1
2 |x|

3 − x2 + 2
3 0 ≤ |x| < 1

1
6(2− |x|)3 1 ≤ |x| < 2

0 otherwise
and (61)

∇N(x) =



−3
2x

2 − 2x 0 ≥ x > −1
3
2x

2 − 2x 0 ≤ x < 1
1
2(2 + x)2 −1 ≥ x > −2

−1
2(2− x)2 1 ≤ x < 2

0 otherwise

. (62)

Figure 4 shows plots of all three basis functions as well as their derivatives.
Cubic B-splines reduce errors to O(∆x3) if the particles are spaced globally

uniform. In less ideal particle distributions they instead behave as O(∆x2)
just like quadratic B-splines [20].

Quadratic and cubic B-splines are the most popular choices for MPM.
The former are more efficient to compute and have a smaller support which
increases efficiency further, but lead to higher numerical errors. Cubic B-
splines make sense for engineering applications that need low numerical error,
while graphic applications may prefer the performance benefit of quadratic
B-splines as long as the visual result is not impacted too much [18].

It is possible to use different basis functions for different transfer operations.
For example, Stomakhin et al. [9] use cubic B-splines when transferring to
the grid and quadratic B-splines when updating particle velocities.

17

4.2.2 Particle-In-Cell Method

PIC has been used as a solver for hydrodynamics and other problems since
1955 [21]. If PIC is used to resolve transfers between particles and grid,
velocities are calculated in Step 1 as

mn
i v

n
i =

∑
p

mpω
n
ipv

n
p [1] (63)

and then normalized by mass. After force application and collision on the
grid, velocities are transferred back to particles in Step 8 using

vn+1
PICp =

∑
i

ωnipv̂
n+1
i [11]. (64)

This approach is stable, but leads to severe dampening, especially for angular
momentum. The reason for this is that the transfer causes information loss,
as the particles have more degrees of freedom than the cells [11]. Additionally,
there are usually multiple particles per each cell. This causes aliasing and is
the reason for the ringing instability described by Brackbill [22], resulting in
artifacts on particle positions.

4.2.3 Fluid Implicit Particle Method

FLIP was developed by Brackbill et al. [23] in order to address the strong
dissipative properties of PIC. The method later became the norm for fluid
simulations in graphics [11]. Transferring velocities from particles to the grid
is done in FLIP the same way it is done in PIC using Eq. (63). The other
direction is defined as

vn+1
FLIPp = vnp +

∑
i

ωnip(v̂
n+1
i − vni) [1]. (65)

This preserves the particle velocities and only applies the velocity change of
the grid on top of them. FLIP is however very noisy as a result of this change
and the ringing instability is amplified, which is why FLIP is considered
unstable [11, 24].

In order to increase FLIP stability while not introducing too much damp-
ening, FLIP and PIC are often combined as

vn+1
p = αvn+1

FLIPp + (1− α)vn+1
PICp. (66)

Stomakhin et al. [1] use α = 0.95.

4.2.4 Affine Particle-In-Cell Method (APIC)

Jiang et al. [11] developed APIC in order to alleviate the problems FLIP
has. They initially developed the Rigid Particle-In-Cell Method (RPIC)

18

which preserved angular momentum of particles. This was insufficient and
they subsequently extended it to preserve shearing modes as well. APIC
describes the velocity as locally affine and stores this information on particles
in addition to their velocity in a matrix Cn

p . The grid velocity in Step 1 is
then calculated using both:

mn
i v

n
i =

∑
p

mpω
n
ip(v

n
p +Cn

p (xi − xnp)) (67)

The affine matrix is defined as Cn
p = Bn

p (Dn
p)−1. B0

p is initialized to I
and Dn

p is defined as

Dn
p =

∑
i

ωnip(xi − xnp)(xi − xnp)T , (68)

which is similar to an inertia tensor. If quadratic or cubic B-spline basis
functions are used, Dn

p is a constant, namely 1
4h

2I and 1
3h

2I, respectively.
Bn
p is evolved in Step 8 using

Bn+1
p =

∑
i

ωnipv̂
n+1
i (xi − xnp)T . (69)

Velocities are transferred from grid to particle the same way they are in PIC
using Eq. (64).

APIC preserves angular momentum far better than PIC and FLIP and
does not suffer from noise like FLIP does. It also does not suffer from the
ringing instability, unlike FLIP and FLIP/PIC blends. FLIP preserves more
momentum in the general case, with the exception being the aforementioned
angular momentum. Experiments by Jiang et al. [11] show APIC’s energy
conservation roughly around the FLIP/PIC blends with α = 0.95 and α =
0.99, with APIC ahead of PIC, FLIP, RPIC and the FLIP/PIC blends for
pure rotational scenarios. The improvements of APIC come at the cost of
increased computational complexity and memory.

5 Constitutive Models

Material behavior is described based on constitutive models. Purely hypere-
lastic models attribute all deformations to stresses. Elasto-plastic constitutive
models on the other hand define a yield criterion, which means that stresses
that exceed the criterion result in plastic deformation that cannot be recov-
ered from. The plastic deformation can further be used to modify how the
material behaves elastically, i.e. by hardening via increased stiffness. This
section will introduce a few common hyperelastic constitutive models as well
as elasto-plastic models for snow and sand.

19

5.1 Hyperelasticity

Idealized elastic materials can be described using an energy density func-
tion Ψ, or alternatively by directly defining a notion of stress because of the
relation σPK1 = ∂Ψ

∂F .

5.1.1 Saint Venant-Kirchhoff

The Saint Venant-Kirchoff model is one of the simplest constitutive models.
It can be formed by using the Green-Lagrangian strain tensor E (Eq. (25))
inside Hooke’s Law (Eq. (16)):

σPK2 = 2µE + λ tr(E)I (70)

This model is typically not used for large deformation scenarios because the
Green-Lagrangian strain tensor is unsuitable for these cases [16].

5.1.2 Hencky Strain

An alternative to Saint Venant-Kirchhoff for large deformation scenarios can
be derived from the Hencky strain:

σ = µ ln(FF T) +
1

2
λ tr

(
ln(FF T)

)
I. (71)

The corresponding energy density function is usually written using the
SVD F = UΣV T :

Ψ(F) = µ tr
(
ln(Σ)2)+

1

2
λtr
(

ln(Σ)
)2 [2]. (72)

As Σ is a diagonal matrix, ln(Σ) refers to applying the logarithm to each
element. The derivative is

σPK1 =
∂Ψ

∂F
(F) = U

(
2µΣ−1 ln(Σ) + λ tr

(
ln(Σ)

)
Σ−1

)
V T [2]. (73)

5.1.3 Neo-Hookean

The Neo-Hookean constitutive model is commonly used in large deformation
scenarios [18], and it is the simplest one for this use case [25]. Just like the
other models introduced so far, it is nonlinear. The energy density function is

Ψ(F) =
µ

2

(
tr(F TF)− d

)
− µ ln(J) +

λ

2

(
ln(J)

)2 (74)

where d is the spatial dimension. The derivative is

σPK1 =
∂Ψ

∂F
(F) = µ(F − F−T) + λ ln(J)F−T . (75)

20

5.1.4 Fixed Corotated

While J = det(F) can never be zero or negative in reality, it can happen in
simulations. In these circumstances, ln(J) becomes problematic. Stomakhin
et al. [10] proposed the fixed corotated model as a solution that still behaves
valid if configurations are inverted. The energy density is defined as

Ψ(F) = µ‖F −R‖2F +
λ

2
(J − 1)2. (76)

Here, F = RU is the polar decomposition and ‖·‖F is the Frobenius matrix
norm. An alternative but equivalent definition uses the SVD,

Ψ̂(Σ(F)) = µ tr
(
(Σ− I)2)+

λ

2
(J − 1)2. (77)

The derivate is

σPK1 =
∂Ψ

∂F
(F) = 2µ(F −R) + λ(J − 1)JF−T . (78)

5.1.5 Fluids

A simple constitutive model for fluids based on deformation gradients can be
derived from the Navier-Stokes equation. According to Eqs. (36) and (37)

∇ · σ = −∇p+ µ∇2v. (79)

If viscosity is set to 0, this simplifies to ∇ · σ = −∇p. The solution to this
equation is σ = −pI which is also the definition used by [3]. Using the
definition of bulk modulus (Eq. (17)) and Eq. (20),

p = −σHyd = −K · εVol = −K · (J − 1) = K · (1− J). (80)

This definition is similar to the ideal gas law but results in high compressibil-
ity [26]. An alternative is Tait’s equation

p = K

((
ρ

ρ0

)γ
− 1

)
= K

(
1

Jγ
− 1

)
, (81)

where γ is used to punish large deviations from incompressibility more [3,
26]. Accordingly,

σPK1 =
∂Ψ

∂F
(F) = JσF−T . (82)

Due to Eq. (41), this model depends only on the determinant of the defor-
mation gradient when used in MPM. This simplifies some steps. Instead
of Eq. (42), Eq. (41) can be used directly. No deformation gradient has to be
stored, instead, the determinant is evolved as

Jn+1
p =

(
1 + ∆t tr(∇vn+1

p)
)
Jnp [3]. (83)

21

5.2 Plasticity

Hyperelastic materials alone only provide a limited variety of material be-
havior. Real materials cannot be stretched or compressed infinitely. They
instead yield at some point, resulting in irreversible plastic deformations,
which can also mean fracturing. In multiplicative plasticity theory, the de-
formation gradient is split into two parts according to Eq. (28) based on its
yield criterion. The models described in the following also undergo hardening
based on the degree of plastic deformation, which further changes material
behavior.

5.2.1 Snow

Stomakhin et al. [1] proposed an elasto-plastic model for snow simulation. It
successfully captures fracturing as well as the sticky behavior of snow that
results in the packing snow effect. Compression of snow is also handled and
the model allows to change the characteristics of the material enough to
model a wide variety of snow types.

The yield criterion is defined in terms of a critical compression θc and
critical stretch θs. Using the SVD F̂ n+1

Ep = UΣ̂V T , the singular values are
clamped to the range [1 − θc, 1 + θs]. In other words, the portion of the
singular values exceeding these thresholds is attributed to plastic deformation.
The corrected elastic deformation gradient is then defined using the clamped
singular values Σ:

F n+1
Ep = UΣV T (84)

and the plastic portion is updated as

F n+1
Pp =

(
F n+1
Ep

)−1
F n+1
p = V Σ−1UTF n+1

p . (85)

Furthermore, the model implements hardening. Plastic compression
thus hardens the material, while plastic stretch would soften it. This is
implemented by defining the Lamé parameters as a function of the plastic
deformation:

µ(FP) = µ0e
ξ(1−JP) and λ(Fp) = λ0e

ξ(1−JP), (86)

which corresponds to a change of Young’s modulus. µ0 and λ0 are the Lamé
parameters in the absence of plastic deformation. ξ controls the strength of
the hardening effect and JP = det(FP).

It is worth noting that the model does not actually require FP to be com-
puted, as only the determinant is ever required [18]. Because the determinants
multiply, Eqs. (48) and (49) can be written in terms of the determinants:

Ĵn+1
Ep = Jn+1

Ep J?Pp and Jn+1
Pp = J?PpĴ

n+1
Pp . (87)

22

Figure 5: The Drucker-Prager yield surface in 2D principal stress space. Green
points correspond to Case I. Blue points belong to Case II and are pro-
jected to the yield surface (purple points). Lastly, Case III is represented
by the red points which are projected to the tip of the cone. Image
source: [2].

This means that the determinant can be evolved as

Jn+1
Pp =

Ĵn+1
Ep

Jn+1
Ep

Ĵn+1
Pp =

Ĵn+1
Ep

Jn+1
Ep

JnPp =
det(Σ̂)

det(Σ)
JnPp. (88)

Because Σ and Σ̂ are diagonal, their determinants can be computed by
multiplying the singular values.

Stomakhin et al. [1] used the fixed corotated constitutive model to handle
elasticity. Their approach to plasticity is however independent of that and
could be used with other hyperelastic models, although this might produce
different results.

5.2.2 Sand

Klár et al. [2] implemented an elasto-plastic model based on the Drucker-
Prager model for plastic flow [27]. Just like Mast [28], they use the constitutive
model based on Hencky strain (Section 5.1.2) to describe the elastic behavior.

The elastic portion of the deformation gradient is updated as

F n+1
Ep = Z(F̂ n+1

Ep , αnp). (89)

Here, Z(·, ·) is the operator that projects to the yield surface and αnp is the
current hardening state of the particle which describes the friction between
grains and affects the yield surface.

23

The Drucker-Prager yield condition is defined as

αnp tr(σ) + ‖σ − tr(σ)

d
I‖F ≤ 0 [3]. (90)

In their technical document, Klár et al. [2] derive that this imposes a constraint
on the principal stresses if the Hencky strain is used. The result is that the
yield surface is a cone in principal stress space. They define three cases (see
also Fig. 5)

I) The stress is in the yield surface and thus responds elastically with
static friction between grains.

II) The sand is expanding, so the grains can move freely without friction.
The deformation gradient is projected to the tip of the cone.

III) The sand is under compression but the shear stress is too high for
friction to compensate. This means dynamic friction and projection to
the side of the cone.

The deformation gradient is first decomposed using the SVD F̂ n+1
Ep = UΣV T .

Using

ε̂ = ε− tr(ε)

d
I and δγ = ‖ε̂‖F +

dλ+ 2µ

2µ
tr(ε)αnp (91)

where ε = ln(Σ), the cases can be resolved. If δγ ≤ 0, nothing has to be done
(Case I). Otherwise, if tr(ε) > 0 or ‖ε̂‖F = 0, the deformation gradient has to
be projected to the tip (Case II). This is done as F n+1

Ep = UV T , i.e. all stress
is removed. All other situations map to Case III. This requires projecting by
computing

H = ε− δγ ε̂

‖ε̂‖F
. (92)

The deformation gradient is then formed as F n+1
Ep = UeHV T .H is a diagonal

matrix so eH means to apply the operation to each entry. An important
property for Case III is that the determinant of the deformation gradient
does not change due to the projection, i.e. Ĵn+1

Ep = Jn+1
Ep , which means that

undesired volume loss is prevented. This is however not true in Case II which
is the expanding case. This means that volume gain is not prevented. The
result is that the volume can expand drastically over time in some scenarios.
Tampubolon et al. [3] developed a modification of the model that fixes volume
gain. They add another particle property vncp which is the logarithm of the
plastic deformation gradient’s determinant, in other words the logarithmic
volume change due to plasticity. It can be evolved as

vn+1
cp = vncp + ln(Jn+1

Ep)− ln(Ĵn+1
Ep) (93)

with v0
cp = 0. They then replace ε in the previous equations with ε+

vncp
d I.

This greatly reduces the volume gain artifacts, as can be seen in Fig. 6.

24

Figure 6: Sand is poured from a spout without the volume gain fix (top) and with
it (bottom).

Hardening is based on the model of Mast et al. [29]. It is dependent on
the amount of plasticity, meaning that no hardening occurs for Case I. The
hardening state is accumulated in a new particle property qnp and it is evolved
by adding δqp to it every timestep. For Case II, δqp = ‖ε‖F because all stress
is taken away. In Case III, δqp = δγ. The change in hardening δqp is always
positive. Based on this hardening state, the friction angle is defined as

φnFp = h0 + (h1q
n
p − h3)e−h2q

n
p . (94)

h0 through h3 are material parameters. They should follow the condition
that h0 > h3 ≥ 0 and h1, h2 ≥ 0. If h1 = h2 = 0, then no hardening takes
place and the friction angle is instead fixed to h0 − h3. If h1 = 0 and h2 > 0,
then the friction angle starts at h0 − h3 and eventually increases to h0. If
h1 is also greater than zero, then the function will start at h0 − h3, rise to
a maximum and then fall back to h3. The friction angle should be in the
interval [0, π2), i.e. between 0 and 90 degrees (exclusive). A friction angle of 0
means that the sand behaves like a fluid. Finally, αnp is defined as

αnp =

√
2

3

2 sin(φnFp)

3− sin(φnFp)
. (95)

So far, the model can only describe dry sand. Tampubolon et al. [3] further
extend it to wet sand by adding cohesion to the model. The yield condition
is modified to

αnp tr(σ) + ‖σ − tr(σ)

d
I‖F ≤ cC [3]. (96)

with cC ≥ 0 being the cohesion. The projection procedure described previ-
ously is however actually defined in terms of the Kirchhoff stress τ = Jσ.

25

This did not matter while the right-hand side of the yield condition was zero,
but it is relevant now. The condition in terms of Kirchhoff stress can be
derived by dividing through J :

αnp tr(τ) + ‖τ − tr(τ)

d
I‖F ≤

cC
J
. (97)

The projection procedure can now be modified to support cohesion by re-
defining δγ:

δγ = ‖ε̂‖F +
dλ+ 2µ

2µ
tr(ε)αnp −

cC
J
. (98)

Similar to snow plasticity, the plastic deformation gradient does not have
to be stored and evolved. It is replaced by the hardening state qnp as well as
the logarithm of its determinant vncp if the volume fix is used.

The model as presented works well with explicit time stepping. Semi-
implicit time stepping however introduces strong artificial cohesion. Tam-
pubolon et al. [3] thus developed a unilateral modification to the energy
density function that removes this effect. This however introduced additional
spreading and non-physical behavior during column collapse. Gao et al. [4]
thus proposed yet another modification that also solves these issues. None of
these modifications are necessary if explicit time stepping is used.

26

Part III

Method and Implementation

6 Method

This section will introduce different approaches to achieve material variety
that are solely based on the MPM and not achieved through coupling MPM
with different solvers (Section 6.1). After that, Section 6.2 will discuss the
different choices that exist with respect to the MPM itself, such as choosing
between PIC, FLIP or APIC and explain the decisions that were made in
context with the requirements that Section 6.1 imposes.

6.1 Multiple Materials

The MPM described in Section 4 so far assumed the usage of a single
constitutive model with fixed material parameters. This is perfectly reasonable
for many scenarios. For example, simulating how an object made of a specific
material behaves under stress does not need any variety and is still a common
task in engineering. Many graphics applications would also only need a single
material to be simulated. Thus, research is often focused on how to solve
a specific problem in an optimal way. This section will instead propose a
general MPM framework that can integrate arbitrary constitutive models
with different, user-controllable interactions in between them.

6.1.1 Single Constitutive Model

The first step at introducing material variety would be varying the initial
particle state, which is already possible in the MPM framework from Section 4.
The quantities stored on particles are position, mass, velocity, initial volume
and elastic deformation gradient. Out of these, only varying mass would
make sense to vary material behavior. Portions of an object with higher mass
would receive less acceleration due to stresses and vice-versa, which would
lead to non-uniform behavior across an object. Positions and velocities are
set based on where objects are and in which direction they should initially
move, while a deformation gradient initialized to something other than I
simply describes a pre-deformed object.

In case of constitutive models with plasticity, there are additional proper-
ties on particles. Both the snow and sand model add a hardening state, while
the sand model can also add a scalar for the volume fix. Initializing the latter
one to a value different from 0 would counteract its purpose. Varying the
initial hardening state however can be used to create non-uniform material
behavior. In case of the snow model, varying hardening state would translate
to a spatially varying Young’s modulus, which is the material’s stiffness.

27

Based on this observation, there is no reason to restrict the other material
parameters to be constant. Instead, all the parameters of the constitutive
model can become properties of the particles itself. This approach was also
chosen by Stomakhin et al. [1] in order to achieve more realistic results
with their snow model. They spatially vary both mass as well as material
parameters, which can create more interesting fracture amongst other things.

It is more general to define the elasto-plastic energy density function as

Ψ(FEp,FPp, λp, µp) (99)

where λp and µp are now particle properties. The parameters are further
extended depending on the constitutive model, i.e. with ξp for snow hardening.
Additionally, the different parameters for plasticity such as θc can also be
defined on a per-particle basis.

So far this section concentrated on introducing non-uniform material
behavior for single objects. The approach can however also be used by
introducing drastically varying parameters across multiple objects, as was
shown in [9]. Some constitutive models are capable of expressing distinctly
different materials. For example, if µ = 0 for the fixed corotated model,
then it depends only on the determinant. This is similar to the model for
fluids (Section 5.1.5) and is also how the model behaves in this case [9]. The
snow model is based on the fixed corotated model and it is possible to opt-out
of the plasticity by setting θc = 1 and θs to some very large value. This means
that the same model can be used to simulate fluids, hyperelastic materials
as well as snow and many other elasto-plastic materials at the same time in
the same scene. This is demonstrated by Stomakhin et al. [9], although their
work uses a variation of the original model and further augments MPM to be
able to handle a wider range of stiffness and degrees of incompressibility. A
similar case can be made for the sand model. If hardening is not used and
the friction angle is set to zero, it can be used to model a fluid. Varying levels
of cohesion can be used to model dry or wet sand, while very high cohesion
levels behave less and less like sand and eventually become hyperelastic.

6.1.2 Multiple Constitutive Models

The previous section concluded that a single constitutive model can already
introduce a wide variety of materials. This does however come with limitations.
While fluids can be simulated with the fixed corotated model, the model for
fluids from Section 5.1.5 was specifically designed for this and uses Tait’s
equation to achieve less compressible fluids. On the other hand, the snow
model cannot be used to model sand and vice-versa. This is not surprising
as each model was designed for that specific purpose. Thus, the approach
is not yet flexible enough, as the choice of constitutive model restricts the
possibilities.

28

The solution is to make the constitutive model itself a property of each
particle. All models that were introduced in this thesis can be combined into

Ψp(FE ,FP , λp, µp, ξp,hp) (100)

where hp = (h0p, h1p, h2p, h3p). This includes all parameters needed for
the elastic portion of the different models. The calculation of forces in
MPM (Eq. (42)) can then be redefined as

fni = −
∑
p

V 0
p

∂Ψp

∂FE
(F n

Ep)
T∇ωnip. (101)

Additionally, the plasticity treatment in Step 7 of the algorithm is also selected
depending on the constitutive model of each particle, and parameters such
as θc, θs and cC become particle properties as well.

The reason that this approach works without any further changes is due
to the Eulerian grid. Just as the grid automates self-collision if only a single
constitutive model is used [1], it acts the same way if multiple constitutive
models are used, as all interaction is still done through first transferring onto
the grid and then back. The grid stays oblivious of the actual materials that
are being used. Thus, collision between objects of varying materials based on
any constitutive model is possible.

6.1.3 Porous Materials

Due to the automatic self-collision handling of the MPM, the current approach
is not capable of simulating porous material interactions. In order to simulate
a fluid entering into a porous material, particles of both species would have to
be able to occupy the same space which is prevented by the method. This can
be resolved if two grids are used, one for each of the species. The interaction
between them then has to be resolved on the grids.

One such approach was published by Tampubolon et al. [3] for sand and
water mixtures. They simulate water using the model from Section 5.1.5
and developed the volume fixed sand model with cohesion from Section 5.2.2.
Each of them are simulated separately using the MPM with their own grid.
Quantities belonging to the water species are denoted by a superscript w
while the ones belonging to the sand species are denoted with a superscript s.
The interaction between the two species is resolved using the momentum
exchange terms ps and pw from [30] defined as

ps = cE(vw − vs) + pw∇φw, pw = −ps. (102)

Here, cE is the drag coefficient. It is defined based on the sand porosity n, the
fluid density ρw, gravitational acceleration g and sand permeability k̂ as cE =
n2ρwg

k̂
. On the right side, pw is the pressure of the fluid and φw = ρw

ρw+ρs is

29

the volume fraction of the fluid. The left part of the term
(
cE(vw − vs)

)
is dissipative and results in something similar to Coulomb-friction [31]. It
models viscous forces due to sand particles that move through the fluid. The
corresponding discretized forces that are applied to the grid are

f si = cEm
s,n
i mw,n

i (vw,ni − vs,ni), fwi = −f si . (103)

The right part is the buoyancy term. This term is not dissipative, which is
why it is not used in [31]. Tampubolon et al. [3] did implement it for one
example in their paper but otherwise omitted it. They discretize it by adding

ms,n
i mw,n

i

∑
p

−pw,np ∇ωnip
mw,n

i

ms,n
i +mw,n

i

(104)

to the grid force fwi and subtracting it from f si .
In addition to the momentum exchange term, Tampubolon et al. [3] vary

material behavior based on the water volume fraction. They assumed sand
to be initially wet to the degree that gives it its maximum cohesion cs,0Cp.
Any further addition of fluid then decreases cohesion, so they define it as a
function of the volume fraction:

cs,n+1
Cp = cs,0Cp(1− φ

n+1
p). (105)

They discretize the volume fraction as

φn+1
i =

{
1 mw,n+1

i > 0 and ms,n+1
i > 0

0 otherwise
(106)

φn+1
p =

∑
i

ωnipφ
n+1
i . (107)

This definition is however different from how φw is defined, as it is independent
of the actual densities and thus symmetric for both sand and water.

Due to the stiff terms in the momentum exchange, Tampubolon et al.
[3] used a semi-implicit approach to keep time steps small, which required
them to adapt the constitutive model to deal with artificial cohesion (see
Section 5.2.2). In this thesis, semi-implicit time stepping is not used. This
required a closer look at the drag forces in Eq. (103). If cE is too large for
a given time step, the force would result in both grid velocities becoming
further apart instead of slowly being equalized. Thus, in order to keep the
simulation stable, a reasonable condition is that both velocities should at
most become equal during a single timestep. This leads to the following
equations:

vsi + ∆t · cEmw
i (vwi − vsi) = vwi −∆t · cEms

i(v
w
i − vsi)

⇐⇒ vsi − vwi + 2∆t · cE(mw
i +ms

i)(v
w
i − vsi) = 0

⇐⇒ (vsi − vwi)− 2∆t · cE(mw
i +ms

i)(v
s
i − vwi) = 0

⇐⇒
(
1− 2∆t · cE(mw

i +ms
i)
)
(vsi − vwi) = 0

⇐⇒ 2∆t · cE(mw
i +ms

i) = 1 or vsi − vwi = 0.

(108)

30

Using this, the maximum possible drag coefficient can be derived given the
time step and vice-versa:

cE,max,i =
1

2∆t(mw
i +ms

i)
, (109)

∆tmax,i =
1

2cE(mw
i +ms

i)
. (110)

Both of these are dependent on the masses and thus dependent on the scale
of the scene as well as the grid resolutions. This also means that these
limits vary throughout grid cells and time. In practice, the actual timestep
should be even smaller because an immediate equalizing of the velocities
results in collision behavior instead of drag. However, an implementation
could use these formulae to limit the drag in cases where it gets too large,
thus preventing a catastrophic failure in favor of a less accurate simulation.
Alternatively it could be clamped to a value that is smaller than the maximum,
which would not result in collision behavior.

An interesting side result of these derivations is that if the drag coefficient
is always set to its maximum allowed value for each individual node, single
grid behavior is reconstructed as this amounts to a collision response in any
case.

In summary, the core ideas of the approach in [3] are:

1. Split the porous solid and the fluid into two species simulated separately
with MPM.

2. Resolve species interaction between both grids with a drag-based mo-
mentum exchange term.

3. Decrease sand cohesion based on how much fluid is present locally.

Only (3) is dependent on the actual materials that are used. This idea can be
generalized to arbitrary materials by defining all parameters of a constitutive
model as functions of the volume fraction. This can apply to both species.
Thus, Eq. (100) is extended to

Ψp(FE ,FP , λp(φp), µp(φp), ξp(φp),hp(φp)). (111)

And consequently, the parameters for plasticity can also be varied based
on the volume fraction. The actual functions can be defined arbitrarily
depending on the use case. For example, a simulation with snow and water
could have the snow become fluid itself if water is present, similar to how
water melts snow in reality. It is also possible to have both sand and snow
interacting with water at the same time in one scene, each reacting differently.
Columns of sand could be made to collapse faster than in [3] by additionally
reducing the friction angle based on the water volume fraction. A hyperelastic

31

material could be modeled as porous and become softer if filled with water,
similar to a sponge. These terms can be specified by the user and adjusted
to fine-tune the behavior of the simulation.

The approach is still limited in the range of porous phenomena that it
can simulate the same way it is in [3]. This includes effects such as capillary
action, which would require a more advanced grid interaction.

6.2 MPM Details

The approach introduced in the previous section is general enough to allow
any combination of constitutive models to be used. This means the choice
of details of the MPM, such as the kernel and the transfer scheme, have to
be general enough to support this variety. Choosing these on a per-material
basis would greatly complicate the approach and could mean that even more
grids have to be used, even if the interaction is just collision.

6.2.1 Particle-Grid Transfer

While PIC is stable, it is also highly dissipative, which is why recent MPM
publications do not use PIC. Stomakhin et al. [1] instead use a FLIP/PIC
blend with α = 0.95 for their snow model. Klár et al. [2] and Tampubolon
et al. [3] on the other hand use APIC for their sand models because they
proved unstable with FLIP. Both APIC as well as FLIP/PIC blends can
be considered reasonable choices for a general, multiple constitutive model
framework. As described in Section 4.2.4, APIC can compete with FLIP/PIC
blends with respect to dissipative properties, but is significantly better at
preserving rotational momentum. It is both stable and non-dissipative [11].
For these reasons, APIC was chosen for the grid transfers in this thesis. This
does however come with a performance penalty, which will be alleviated
using a different discretization approach known as the Moving Least Squares
Material Point Method, which is introduced in Section 6.2.2.

6.2.2 Moving Least Squares Material Point Method

The Moving Least Squares Material Point Method (MLS-MPM) is a new
spatial discretization proposed by Hu et al. [12]. It is derived from Moving
Least Squares (MLS) [32] which is a local fitting scheme based on polynomial
least-squares fits. MLS is used in many meshless methods, i.e. the element-
free Galerkin (EFG) method [33]. The authors naturally derived APIC [11]
as well as its generalization PolyPIC [34] from the MLS point of view and
define new transfers that are more efficient than MPM based on APIC.

MLS-MPM can be formulated using either APIC or PolyPIC. Most steps
are equivalent to traditional MPM using the respective transfer technique.
The only differences are:

32

1. Velocity gradient approximation (Step 7, Eq. (47))

2. Force calculation (Step 3, Eq. (42))

In traditional MPM the velocity gradient ∇vn+1
p was estimated using a

grid-to-particle transfer operation with the gradient of the weighting function.
The MLS approximation is instead defined as

∇vn+1
p = Cn+1

p , (112)

where Cn+1
p is exactly the affine matrix from APIC (Section 4.2.4). This

means that the deformation gradient is updated as

F̂ n+1
Ep = (I + ∆tCn+1

p)F n
Ep. (113)

The affine matrix is already computed for APIC, which means that this
approximation only reuses it and can skip a grid-to-particle transfer as well
as the evaluation of gradients of the weighting function.

Force calculation in MPM is based on a particle-to-grid transfer using the
gradient of the weighting function. MLS-MPM approximates this gradient as

∇ωnip ≈M−1
p ωnip(x

n
i − xnp). (114)

where M−1
p depends on whether quadratic or cubic B-splines are used and is

equivalent to D−1
p from APIC in this case. The force evaluation is now

fni = −
∑
p

V 0
p

∂Ψ

∂FE
(F n

Ep)
TM−1

p ωnip(x
n
i − xnp). (115)

This approximation means that the gradient of the weighting function is not
needed anymore in the method, which can provide performance benefits.

Another significant optimization is made possible by these changes. This
is accomplished by fusing the transfer of momentum (Eq. (67)) with the force
computation. It is achieved by computing the matrix

Qp = ∆tV 0
p

∂Ψ

∂FE
(F n

Ep)
TM−1

p +mpC
n
p . (116)

With this, the grid velocity update in Step 4 (Eq. (43)) is replaced with

mn
i v

?
i =

∑
p

ωnip
(
mpv

n
p +Qp(x

n
i − xnp)

)
(117)

which reduces the amount of matrix-vector multiplications.
The MLS-MPM approximation can also be applied to the buoyancy term

from Eq. (104). It changes to

ms,n
i mw,n

i

∑
p

−pw,np M−1
p ωnip(x

n
i − xnp)

mw,n
i

ms,n
i +mw,n

i

(118)

33

MLS-MPM based on APIC is significantly faster than traditional APIC
MPM, which addresses the performance impact of using APIC over FLIP or
PIC. Results from Gao et al. [4] show that APIC MLS-MPM can be faster
than FLIP in their highly optimized GPU implementation, although this was
not the case with the slower GVDB GPU implementation from Wu et al. [35].

6.2.3 Kernels

Quadratic and cubic B-splines are common choices in MPM. Stomakhin et
al. [1] use cubic B-splines for their snow model. Klár et al. [2] make the same
choice for their sand model, but mention that quadratic kernels work well too
and subsequent work based on their sand model made this choice instead [3,
4]. Both kernels harmonize well with APIC as they reduce Dp to a constant,
a property which is also integral to MLS-MPM. In this thesis, quadratic
kernels are used when nothing else is specified due to their smaller support
which results in faster execution. Cubic kernels are however supported as
well, and their differences are explored in Section 9.

7 Implementation

7.1 Overview

The MPM framework introduced in the previous section was implemented us-
ing the GPU. A highly optimized implementation was recently published by [4]
using CUDA. The authors made use of modern additions to the GPU instruc-
tions such as the shuffle instruction. They note that particle-to-grid (P2G)
transfers are the most time-consuming step for GPU implementations, and
that they take up about 90% of time in other solvers. In contrast to [35]
which used a gathering approach for P2G, they used scattering and managed
to make P2G 15 times faster in comparison. As a result, P2G amounts to only
40% of time in their solver and is nearly as fast as the grid-to-particle (G2P)
transfer.

In this context, gathering means that, given a grid node, the nearby
particles are gathered and their state is then transferred onto the node. This
could be implemented using spatial data structures. In scattering on the other
hand, a given particle scatters its state to all affected grid nodes, leading to
write-conflicts due to the parallel nature of the GPU. A naive implementation
could resolve these write-conflicts using atomic operations, which is however
many times slower than the optimized approach in [4]. As an alternative
to their approach, Gao et al. [4] mention the use of the GPU rasterization
pipeline. According to them, a scattering approach based on this can not be
easily extended to 3D Eulerian simulations. In this thesis, P2G transfer is
implemented using the rasterization pipeline for both 2D and 3D simulations.
The implementation is a proof-of-concept and does not focus on achieving

34

maximum speed. As is mentioned in [4], an approach like this would require a
lot of complexity in order to map between sparse grids and the GPU textures
needed for rasterization. For this reason, no sparse grids are used in this
thesis. Instead, every simulation happens inside a bounded volume containing
a fully allocated grid.

The general steps of a MPM framework (Section 4) as well as the exten-
sions for MLS-MPM (Section 6.2.2) and porous material interaction (Sec-
tion 6.1.3) can be grouped into 3 big steps based on which data is modified
and the direction of data flow:

1. P2G transfer: This involves all steps that transfer information from
particles to the grid, which can be identified in the equations as sums
over particles. These are:

• transfer of particle mass

• velocity transfer using particle velocities and affine velocity matrix

• transfer of particle stresses using deformation gradients and mate-
rial state, resulting in grid forces

• transfer of particle pressure if the buoyancy term is used

2. Grid operations: These are all the steps that only involve grid nodes
and no particles. These are:

• apply the drag term if it is used

• apply the buoyancy term if it is used

• apply collision on grid nodes

3. G2P transfer: This involves all steps that transfer information from
the grid onto particles, which can be identified in the equations as sums
over grid nodes. These are:

• accumulate new particle velocities

• accumulate affine particle velocity matrices

• accumulate particle volume fractions if it is a two-grid simulation

Furthermore, this step includes all steps that involve only particles:

• evolve deformation gradients

• treat evolved deformation gradients for plasticity

• apply collision on particles if desired

• advect particle positions

35

P2G is implemented using a program built from vertex, geometry and fragment
shaders and thus uses the rasterization pipeline (Section 7.4.1). The grid
operations are implemented using a compute shader executing one thread for
each grid node (Section 7.4.2) and G2P is also implemented with the compute
pipeline using one thread for each particle (Section 7.4.3). These three steps
are executed sequentially in this order, once for each time step.

Before anything can be simulated, the state has to be initialized. For GPU
implementations, this involves creating and filling buffers and textures (Sec-
tion 7.3). The particles that are initialized are sample points of the actual
objects that are simulated and there are multiple ways how this sampling can
be implemented (Section 7.5). Computation of particle volumes is another
G2P transfer and is thus implemented by executing the three steps with a
modified G2P shader that only calculates particle volume.

The implementation includes a user interface that allows the creation of
scenes, modification of parameters, loading and saving of scenes as well as
visualization and video recording (Section 7.7).

7.2 Libraries and Technologies

The implementation is written in C++17 with OpenGL 4.63 as graphics
API. As OpenGL extensions, NV_depth_buffer_float4 was used for exponen-
tial shadow maps [36], which is only needed for visualization. The second
extension used is ARB_shading_language_include5 in order to support #include

-directives in GLSL shaders. This could be replaced by using an external
preprocessor instead.

The following is a list of all external libraries and code used with a brief
explanation what they are used for:

svd_glsl.glsl 6A GLSL implementation of the minimal branching SVD for
3 × 3 matrices from [37], written by Alexander Scheid-Rehder. The
SVD is needed for many of the supported constitutive models.

glbinding 7 Provides the OpenGL API bindings while leveraging the C++
type system.

GLFW 8 Used to create an OpenGL context as well as a window and
provides input handling.

3https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf Last ac-
cessed on 22.04.2020

4https://www.khronos.org/registry/OpenGL/extensions/NV/NV_depth_buffer_
float.txt Last accessed on 22.04.2020

5https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shading_
language_include.txt Accessed on 22.04.2020

6https://gist.github.com/alexsr/5065f0189a7af13b2f3bc43d22aff62f Last ac-
cessed on 22.04.2020

7https://github.com/cginternals/glbinding Last accessed on 22.04.2020
8https://www.glfw.org/ Last accessed on 22.04.2020

36

https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_depth_buffer_float.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_depth_buffer_float.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shading_language_include.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shading_language_include.txt
https://gist.github.com/alexsr/5065f0189a7af13b2f3bc43d22aff62f
https://github.com/cginternals/glbinding
https://www.glfw.org/

thinks/poisson-disk-sampling 9 Implements the algorithm from [38]. Pois-
son disk sampling is one of the methods used for sampling particles
from objects in this thesis.

glm 10 Provides the mathematical capabilities of GLSL shaders as C++
implementations, as well as convenience functions for creating transfor-
mations and more.

Assimp 11 Used to import 3D models, which can be used as objects in
simulations.

stb_image(_write) 12 Used to load image files and save screenshots. Im-
ages can be used to define objects in the simulation.

ImGui 13 Used to implement the graphical user interface.

nlohmann/JSON 14 Used to (de-)serialize scenes and MPM parameters as
JSON files.

readerwriterqueue 15 A single-consumer, single-producer lock-free queue.
It is used in order to write benchmarks to files.

tiny file dialogs 16 Used to add OS dialogs for loading and saving files to
the user interface, as well as for displaying error messages.

NvPipe 17 A wrapper around Nvidia NVENC, allowing to record OpenGL
framebuffers as videos directly on the GPU. Uses CUDA internally.

spdlog 18 Provides logging capabilities.

7.3 Buffers and Textures

7.3.1 Particle State

Particle properties are spread among 7 Shader Storage Buffer Objects (SS-
BOs) in order to achieve better cache coherency. OpenGL guarantees 16
storage blocks per shader, which means that some of the buffers could still
be split further without problems. With the exception of one buffer, the
implementation allocates all buffers for all particles, even if some properties

9https://github.com/thinks/poisson-disk-sampling Last accessed on 22.04.2020
10https://glm.g-truc.net/0.9.9/index.html Last accessed on 22.04.2020
11https://www.assimp.org/ Last accessed on 22.04.2020
12https://github.com/nothings/stb Last accessed on 22.04.2020
13https://github.com/ocornut/imgui Last accessed on 22.04.2020
14https://github.com/nlohmann/json Last accessed on 22.04.2020
15https://github.com/cameron314/readerwriterqueue Last accessed on 22.04.2020
16https://sourceforge.net/projects/tinyfiledialogs/ Last accessed on 22.04.2020
17https://github.com/NVIDIA/NvPipe Last accessed on 22.04.2020
18https://github.com/gabime/spdlog Last accessed on 22.04.2020

37

https://github.com/thinks/poisson-disk-sampling
https://glm.g-truc.net/0.9.9/index.html
https://www.assimp.org/
https://github.com/nothings/stb
https://github.com/ocornut/imgui
https://github.com/nlohmann/json
https://github.com/cameron314/readerwriterqueue
https://sourceforge.net/projects/tinyfiledialogs/
https://github.com/NVIDIA/NvPipe
https://github.com/gabime/spdlog

1 layout(std430 , binding = 0) buffer PositionMass { vec4[]
position_mass; };

2 layout(std430 , binding = 1) buffer VelocityVolume { vec4[]
velocity_volume; };

3 layout(std430 , binding = 2) buffer AffineVelocity { mat3[]
affine_velocity; };

4 layout(std430 , binding = 3) buffer Determinant { float []
determinants; };

5 layout(std430 , binding = 4) buffer DeformationGradient { mat3[]
deformation_gradient; };

6 layout(std430 , binding = 5) buffer AddInfo { uvec4 []
additional_info; };

7 layout(std430 , binding = 6) buffer Fractions { float []
fractions; };

Figure 7: GLSL declarations of the SSBOs containing particle properties. In the
respective shaders readonly and writeonly are added depending on the
usage.

are not needed by the respective constitutive model. For example, the water
model does not need a deformation gradient. Memory usage could thus be
reduced by introducing indexing tables. These tables would however require
memory as well and additional buffer read operations would be required at
runtime. In this implementation, unnecessary properties are allocated but
never read at runtime, which sacrifices memory for efficiency and simplicity.

Figure 7 shows the GLSL storage blocks for the particle SSBOs. All
buffers use the std430 layout. In this layout, a vec3 is stored exactly like
a vec4 in arrays. For this reason, particle positions are grouped with their
mass in a single vector and velocities are grouped with the initial particle
volume. Affine velocity and deformation gradient are both 3 × 3 matrices.
They are treated similar to three consecutive vec3, which means that the
actual memory is padded to 3 × 4 matrices, which has to be considered
during buffer allocation and if data is set on the CPU side. The Determinant

buffer stores the determinant of the deformation gradient for the water model,
the plastic deformation gradient’s determinant for the snow model and the
hardening state qnp for the sand model, while the DeformationGradient buffer
always stores the elastic deformation gradient, but is not used for water.
Fractions stores the volume fractions in two-grid simulations. This buffer is
not allocated in one-grid simulations.

AddInfo is used to store multiple properties of varying data types. The
first two components of the uvec4 store the particle normal at 16-bit floating
point precision. The normal is estimated during the G2P step and only
used for visualization purposes. Storing the normal is done using the GLSL
function packHalf2x16 and unpackHalf2x16 retrieves it, where two calls of each

38

are necessary. The third component stores 8 bit per channel RGB colors
in the upper 24 bits, which is also used in visualization. Material indices
are stored in the lower 8 bits, which means that 256 different materials are
possible in this implementation. If more are needed, the material index would
have to be moved to a separate buffer with full 32 bit indices. Retrieval of the
individual color channels and the material index is done using bitwise AND as
well as bit shifting, which is supported in GLSL. Finally, the last component
of the uvec4 is used to store the logarithm of the plastic deformation gradient’s
determinant (vncp) if the volume corrected sand model is used. It is stored
using floatBitsToUint and read with uintBitsToFloat.

The particles sampled from a single object are stored next to each other.
In two-grid simulations, all objects that belong to the first species store their
particles in the first part of the buffer, followed by the particles belonging to
objects of the second species. Compile time constants are defined in shaders
in order to provide starting offsets of each species as well as particle count.
As each species has its own shader, no branches are necessary. The respective
offset and particle count is provided through generated shader includes.

7.3.2 Materials

Materials are defined using a unified struct that contains all parameters of
the implemented constitutive models (Fig. 8). These structs are stored as
an array in an SSBO. As mentioned in the previous section, this is currently
limited to 256 materials because the index is stored as an 8 bit unsigned
integer on particles. A global instance of a material is defined in shaders and
initialized from the SSBO to the respective particle’s material at runtime.
This material is then available throughout the functions that implement the
constitutive model. The global instance can be modified based on the volume
fraction before the constitutive models are evaluated. This only affects the
global instance, which is a copy of a material in the SSBO. The modifications
are not written back. Thus, the functions that modify materials only use
the initial material and the current volume fraction as parameters. In order
to implement functions that use the already modified material instead, per-
particle materials would be required, which would mean that the material
SSBO has one entry per each particle and no material index has to be stored.
This was not implemented, but it would require only minor modifications to
the implementation.

The implementation allows for either a single constitutive model per grid,
or alternatively varying constitutive models across materials. In the first case,
the shaders for each species have the model selected at shader compile time
via includes and preprocessor directives. In the second case, the constitutive
model is stored in the type field of each material. This is an integer that is
used in a switch statement to select the correct functions and data needed for
each model. It would be possible to implement this without any branches by

39

1 struct Material
2 {
3 // Lamé Parameters
4 float mu_0; // µ/µ0

5 float lambda_0; // λ/λ0

6
7 // Snow plasticity parameters
8 float hardening; // ξ
9 float theta_c; // θc

10 float theta_s; // θs
11
12 // JP (snow model) and JE (water model)
13 // are clamped to [det_min , det_max] for stability
14 float det_min;
15 float det_max;
16
17 // Sand parameters
18 // φF , overrides hardening formula if >= 0
19 float friction_angle;
20 vec4 hardening_vec; // h0, h1, h2, h3

21 float cohesion; // cC
22
23 // water parameters
24 float k; // bulk modulus
25 float gamma; // γ
26
27 int type; // specifies constitutive model
28 };
29
30 // Global instance that is set from SSBO
31 // Can be modified based on volume fraction
32 Material material;
33
34 layout(std430 , binding = 8) readonly buffer MaterialBlock {

Material materials []; };

Figure 8: Declaration of the material struct and storage block in GLSL, as well
as a global material instance that can be modified before it is used in
constitutive models.

40

creating separate shaders for each constitutive model and grouping particles
respectively. In this implementation, particles are already grouped by objects
without any reordering and each object always has only one material, which
means that most particles that are close to each other in the buffers already
use the exact same branch. Thus, branch divergence is minimal and it was
deemed unnecessary to do this additional step.

7.3.3 Grid

1 layout(std140 , binding = 0) uniform GridBlock
2 {
3 ivec3 g_res; // Resolution
4 vec3 g_ll; // Lower left corner
5 vec3 g_mid; // Midpoint
6 vec3 g_ur; // Upper right corner
7 vec3 g_half; // g_mid - g_ll
8 mat4 g_proj; // Orthographic projection
9 float g_h; // Grid spacing

10 float g_i_h; // Inverse grid spacing
11 };
12
13 // Transforms from world to grid coordinates
14 vec3 toGridCoords(vec3 p) { return (p - g_ll) * g_i_h - vec3

(0.5f); }
15 // Transforms a grid index to a world coordinate
16 vec3 indexToPos(ivec3 idx) { return g_ll + g_h * (vec3 (0.5) +

vec3(idx)); }
17 // Minimum indices affected by a particle at grid coordinates p
18 ivec3 getMinCoords(vec3 p) { return max(ivec3(ceil(p - vec3(

kernel_support))), ivec3 (0)); }
19 // Maximum indices affected by a particle at grid coordinates p
20 ivec3 getMaxCoords(vec3 p) { return min(ivec3(floor(p + vec3(

kernel_support))), g_res - ivec3 (1)); }

Figure 9: The uniform block containing the grid information in GLSL, as well
as the core functions that transform to and from grid coordinates and
calculate the grid indices affected by a particle. The kernel_support is
provided as a compile time constant.

Spatial grid information is provided in shaders using a Uniform Buffer Object
(UBO) (Fig. 9). The buffer contains some redundant information in order to
avoid additional calculations to derive properties, i.e. both the grid spacing h
and 1

h are provided. An orthographic projection g_proj is provided that
transforms particles into grid space such that the corresponding fragments
are generated in a way that exactly match the cell centers in the XY planes
of the grid if rendered using the same XY resolution. It is calculated using

41

1 uniform layout(binding = 0, rgba32f) image3D vel_mass_img_1;
2 uniform layout(binding = 1, rgba32f) image3D vel_mass_img_2;
3 uniform layout(binding = 4, rgba32f) readonly image3D

pressure_img;
4 uniform layout(binding = 0) sampler3D vel_mass_tex_1;
5 uniform layout(binding = 1) sampler3D vel_mass_tex_2;
6 uniform layout(binding = 4) sampler3D pressure_tex;

Figure 10: The GLSL declarations of the textures representing grid data as both
images and samplers. Only the textures that are actually needed are
allocated and used in shaders.

glm as

1 g_proj = glm:: ortho(g_ll.x, g_ur.x, g_ll.y, g_ur.y, g_ll.z,
g_ur.z) * view;

where view performs the necessary z-flip as

view =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 . (119)

Unlike SSBOs, UBOs cannot use the std430 layout, so std140 is used instead.
This means that all properties in the grid definition are aligned as vec4,
including g_h and g_i_h even though they are only a single float each. This
has to be considered when filling the UBO in C++, but it can be done easily
by defining a struct with the same properties as the UBO in the same order.
The matching types are provided by glm and the alignment can be specified
in C++ as alignas(sizeof(glm::vec4)) in front of each property.

The grid is always defined in alignment with the world axis as it simplifies
all calculations. In a multi-species simulation both grids are defined equal,
which is why only one grid definition is needed.

Velocity and mass of grid nodes are stored in 3D RGBA textures with
full floating point precision. Simulations with porous media need two such
textures, one for each grid, as well as a third texture that stores the pressure
gradient (Eq. (102)) if the buoyancy term is used. While this last texture
only needs 3 channels, OpenGL would allocate it as RGBA anyway to get
the right alignment. Textures can be created as RGB using GL_RGB, however,
there is no rgb32f layout declaration for images in shaders because they do
not exist internally.

Figure 10 shows how the 3D textures are declared as image3D and sampler3D

in GLSL. The images are used for direct write access in shaders using image

42

1 #ifndef WEIGHT_GLSL // Include Guard
2 #define WEIGHT_GLSL
3 #include "/dimension.glsl"
4 #include "/kernel.glsl"
5
6 // Inputs:
7 // p: position in grid coordinates
8 // coords: grid index
9 // Result is 1

h
· (xi − xp)

10 vec3 dPos(vec3 p, ivec3 coords) { return vec3(coords) - p; }
11
12 // Input: return value of dPos
13 float weight(vec3 d_pos)
14 {
15 #ifdef MPM_3D
16 return N(d_pos.x) * N(d_pos.y) * N(d_pos.z);
17 #else
18 return N(d_pos.x) * N(d_pos.y);
19 #endif
20 }
21 #endif

Figure 11: The shader code that contains the definition of the weighting function.
It depends on both the dimension of the simulation as well as the
chosen kernel, which are provided through shader includes.

load/store operations. The samplers on the other hand can be used if only
read access is required. Usage of the texelFetch function allows to use indices
instead of texture coordinates and avoids any interpolation. A texture can
be bound to an image unit with glBindImageTexture, where the unit is simply
set the same as the specified binding in the GLSL declaration. This function
corresponds to glBindTextureUnit for samplers.

In a 2D simulation, the textures are still 3D but they only have a z-
resolution of 1. A 3D texture can be attached to a framebuffer the same
way as a 2D texture, which means that they can be rendered to using the
rasterization pipeline. This does require either binding only one of the 2D
layers in the texture to the framebuffer or alternatively binding the full
texture and selecting the layer that a primitive is rendered to inside the
shader. Rasterization is thus always 2D, there is no built-in support to
rasterize as 3D fragments.

7.4 Shader

The implementation makes heavy use of shader includes to reduce code
duplication and to put generated code fragments into shaders. This is

43

also used to set user-defined constants and to add preprocessor defines for
conditional code compilation, reducing the need for branches at runtime as
well as the overall size of the compiled shader programs.

Shader includes are possible using the ARB_shading_language_include exten-
sion, or alternatively using an external preprocessor. Only the former was
implemented. It has to be enabled in each shader before it can be used via

1 #extension GL_ARB_shading_language_include : enable

which then allows to include code as #include "/named-string". Includes are
provided in C++ by calling glNamedStringARB with the name of the include as
well as the shader code, which could come from a file or be generated. Names
have to start with /.

An example of this technique can be seen in Fig. 11. This code is
available through includes as /weight.glsl, and it uses other includes in
its implementation. /dimension.glsl contains defines that vary depending
on whether the simulation is 2D or 3D, which is used here to vary the
definition of the weighting function. That function itself relies on kernel

.glsl, which contains either the cubic B-spline definition (Fig. 12) or the
quadratic one (Fig. 13). Both of these kernels include further definitions
needed throughout shaders.

7.4.1 P2G Shader

The P2G transfer is implemented using a scattering approach based on the
rasterization pipeline. In 2D, this can be done by rendering particles as points
with a size that is dictated by the kernel support. Accumulation happens by
using additive blending. This automatically takes care of write-conflicts. No
depth buffer is needed. The corresponding OpenGL functions that set up
this state are

1 glEnable(GL_BLEND);
2 glBlendFunc(GL_ONE , GL_ONE);
3 glDisable(GL_DEPTH_TEST);
4 glPointSize(kernel_point_size);

where kernel_point_size is 3 for the quadratic B-spline and 4 for the cubic
one. Particle positions are already available in a SSBO, which is why no
Vertex Buffer Object (VBO) is generated. Instead, only a Vertex Array Object
(VAO) is generated without any additional setup, as a VAO has to be bound
to perform any draw calls. Rendering is initiated as

1 glDrawArrays(GL_POINTS , 0, num_particles_species_a);

44

1 #ifndef KERNEL_GLSL
2 #define KERNEL_GLSL
3
4 float N(float x)
5 {
6 x = abs(x);
7 return x >= 0 ?
8 (x < 2 ?
9 (x < 1 ?

10 (0.5f * x * x * x - x * x + (2.f / 3.f)) :
11 (-(1.f / 6.f) * x * x * x + x * x - 2 * x + (4.f / 3.f))
12) :
13 0.f
14) :
15 0.f;
16 }
17
18 // Definitions used for geometry shader
19 #define MAX_VERTICES 5
20 #define LAYER_DIFF 2
21
22 const float kernel_support = 2.f;
23 // M−1

p = 3
h2 = apic_factor * g_i_h * g_i_h

24 const float apic_factor = 3.f;
25
26 #endif

Figure 12: The one-dimensional cubic B-spline kernel, as well as further definitions
related to its support and its usage in APIC MLS-MPM.

for the first particle species. This happens while a framebuffer object (FBO)
is bound that has the grid texture attached as color attachment. The second
species is rendered while a different FBO is bound that has the second grid
texture attached to it. A second shader program is used for this. Rendering
is initiated as

1 glDrawArrays(GL_POINTS , num_particles_species_a ,
num_particles_species_b);

which means that the specified offset affects gl_VertexID in this call, so that
particle properties can be accessed in both vertex shaders by accessing the
SSBOs with gl_VertexID as index.

If the buoyancy term is used, a third grid texture exists that stores the
pressure gradient. This texture is bound as the second color attachment
to the FBO for the species that represents water. The respective shader
program will have MPM_PRESSURE defined through an include, which triggers

45

1 #ifndef KERNEL_GLSL
2 #define KERNEL_GLSL
3
4 float N(float x)
5 {
6 x = abs(x);
7 return x >= 0 ?
8 (x <= 1.5f ?
9 (x <= 0.5f ?

10 (-x * x + 0.75f) :
11 (0.5f * x * x - 1.5f * x + 1.125f)
12) :
13 0.f
14) :
15 0.f;
16 }
17
18 // Definitions used for geometry shader
19 #define MAX_VERTICES 3
20 #define LAYER_DIFF 1
21
22 const float kernel_support = 1.5f;
23 // M−1

p = 4
h2 = apic_factor * g_i_h * g_i_h

24 const float apic_factor = 4.f;
25
26 #endif

Figure 13: The one-dimensional quadratic B-spline kernel, as well as further defi-
nitions related to its support and its usage in APIC MLS-MPM.

the additional calculation of Eq. (118). This is also accumulated via additive
blending by means of a second output variable in the fragment shader.

Most of the work happens in the vertex shader, which calculates the
matrix Qp from Eq. (116) depending on the constitutive model and the
material parameters, which are potentially modified based on the volume
fraction. This matrix is passed on as a vertex shader output along with
particle mass, velocity, initial volume, the position in grid coordinates as well
as the pressure if it is needed for the buoyancy term. All of these outputs
are declared as flat because no interpolation happens. This means they are
copied as-is to the generated fragments based on the point size. Thus, all
calculations that relate to the actual grid nodes happen in the fragment shader.
The vertex shader sets gl_Position by transforming particle positions with
the orthographic projection g_proj that matches the grid. Thus, fragments
are generated exactly at grid centers.

The fragment shader calculates weights as well as xni − xnp using the
functions from Fig. 11 and outputs velocity weighted by mass according to

46

the inner part of the sum in Eq. (117). Weighted mass (Eq. (38)) is written to
the fourth component of the output vector. The sums in the formulae are then
automatically evaluated due to additive blending. For the buoyancy term,
the fragment shader of the fluid species additionally outputs the pressure
gradient. Normalization of velocity by mass happens in a later step, as this
requires the grid mass to be fully accumulated first.

The approach is extended to 3D by means of a geometry shader (Fig. 14).
This shader duplicates each particle for every affected grid cell along the
z-dimension and then sets gl_Layer accordingly. The generated fragments
will then write into the 2D layer of the bound 3D texture at the z-index
corresponding to gl_Layer. This variable is also available inside the fragment
shader and is used to identify the actual node that is being written to, as
this affects all calculations. The geometry shader additionally has to pass all
of the vertex shader outputs through to the fragment shader for each copy of
the original vertex.

7.4.2 Grid Shader

The grid shader implementation is a simple compute shader that executes
one thread for each grid node. In a multi-grid simulation, the same thread
handles the nodes with same index in both grids.

Execution happens with a work group that matches the dimension of the
simulation. In 3D, the work group size is (8, 8, 8), resulting in 512 threads per
work group. 2D simulations use a work group size of (16, 16, 1), meaning 256
threads per group. This scheme ensures spatial coherence during execution
which can help with branch divergence as well as cache usage.

Each thread is responsible for the nodes with index gl_GlobalInvocationID.
Due to the nature of work groups, this index can exceed the dimensions of
the grid texture, in which case the thread simply returns.

In single grid simulations the thread first reads the value of the grid at its
assigned index using imageLoad. If the mass, which is contained in the fourth
component, is zero, no work has to be done and the thread returns. Otherwise,
the velocity is first normalized by mass. Afterwards, collision is applied as
described in Section 4 Step 5. Level sets as well as friction coefficients and
sticky flags are provided through shader includes. Both friction as well sticky
flag can vary spatially. The level sets are build by concatenation of primitive
signed distance fields that can additionally be animated based on time. Lastly,
the normalized and collided velocity is written back using imageStore.

Multi-grid simulations first check the masses of both grids. If only one
of them is zero, the algorithm proceeds with the remaining one as described
in the previous paragraph. If both are zero, the thread returns. Otherwise,
both grid velocities have to be normalized and the momentum exchange is
applied using drag term (Eq. (103)) and optionally pressure term (Eq. (118))
which can be read from the third grid texture. The drag term can optionally

47

1 layout(points) in;
2 layout(points , max_vertices = MAX_VERTICES) out;
3
4 // Position is already in grid coordinates
5 layout(location = 0) flat in vec4 in_pos_mass [];
6 layout(location = 1) flat in vec4 in_vel_vol [];
7 layout(location = 2) flat in mat3 in_Q_p [];
8 #if defined(MPM_PRESSURE)
9 layout(location = 6) flat in float in_pressure [];

10 #endif
11
12 layout(location = 0) flat out vec4 pos_mass;
13 layout(location = 1) flat out vec4 vel_vol;
14 layout(location = 2) flat out mat3 Q_p;
15 #if defined(MPM_PRESSURE)
16 layout(location = 6) flat out float pressure;
17 #endif
18
19 void main()
20 {
21 const int p_z = int(in_pos_mass [0].z + 0.5);
22 const int min_coords = max(int(p_z - LAYER_DIFF), 0);
23 const int max_coords = min(int(p_z + LAYER_DIFF), g_res.z -

1);
24
25 for(int i = min_coords; i <= max_coords; ++i)
26 {
27 pos_mass = in_pos_mass [0];
28 vel_vol = in_vel_vol [0];
29 Q_p = in_Q_p [0];
30 #if defined(MPM_PRESSURE)
31 pressure = in_pressure [0];
32 #endif
33 gl_Position = gl_in [0]. gl_Position;
34 gl_Layer = i;
35 EmitVertex ();
36 EndPrimitive ();
37 }
38 }

Figure 14: The geometry shader that copies particles onto the affected layers.
LAYER_DIFF and MAX_VERTICES depend on the kernel support (see Figs. 12
and 13). MPM_PRESSURE is only defined if the buoyancy term is used and
only in the geometry shader corresponding to the fluid species.

48

be clamped according to Eq. (109) or fixed to be constant based on the same
derivation, which adds the possibility of reverting to collision behavior instead
of porous interaction. Collision is applied after the momentum exchange.

7.4.3 G2P Shader

G2P transfer is also implemented with a compute shader. It uses a one-
dimensional work group size of (512, 1, 1), executing one thread for each
particle. Similar to the P2G shader, there are two distinct shaders, one for
the first species and another one for the second species if it exists.

Each shader first checks whether gl_GlobalInvocationID.x is larger or equal
to PARTICLE_COUNT, which is a constant defined based on the number of par-
ticles in the respective species. This is used to check for overflow, in which
case the thread returns. The actual particle index is retrieved by adding
PARTICLE_OFFSET, a constant which is 0 for the first species and equivalent to
the number of particles in it for the second species, as this is the index where
those particles start.

The shader continues by accumulating grid properties with a gathering
approach. Using the functions getMinCoords and getMaxCoords from Fig. 9, the
grid nodes that affect the particle are determined and subsequently iterated.
This accumulates velocity (Eq. (64)), affine velocity matrix (Eq. (69)) as
well as volume fraction (Eq. (107)) in two-grid simulations. For visualization
purposes, surface normals are additionally estimated based on the normalized
mass gradient, which is discretized as

n̂n+1
p =

∑
i

ωnipm
n
i (xi − xnp), nn+1

p = −
n̂n+1
p

‖n̂n+1
p ‖

. (120)

M−1
p is left out here as it is constant and thus irrelevant due to normalization.
After estimating the particle properties using the grid, the shader con-

tinues by loading the particle material and modifying it given the volume
fraction as well as the material interaction functions assigned to this species,
just like in the P2G shader. If the material is water, the determinant is
evolved (Eq. (83), where ∇vn+1

p = Cn+1
p due to MLS-MPM). Otherwise the

deformation gradient is evolved according to Eq. (113) and subsequently
treated for plasticity depending on the constitutive model, which additionally
updates hardening state and determinants of the plastic deformation gradient.

If desired, particle velocities are subsequently changed based on the same
collision algorithm used in the grid shader as explained in Section 4 Step 9.
Lastly, particles are advected using explicit time stepping (Eq. (50)).

7.5 Particle Initialization

Particles are initialized by sampling the objects that they are supposed to
represent. The sampled positions are generated in C++ using the CPU and

49

subsequently uploaded to the GPU buffer. Each particle is initially assigned
the same mass based on the volume and density of the object:

mp =
ρobjVobj

#particles
. (121)

which is uploaded alongside positions as the fourth component of the vector.
After positions and mass for every object are uploaded to the GPU, a P2G

transfer is executed, followed by a modified G2P shader. The P2G transfer
is only necessary in order to accumulate grid masses, which are subsequently
used in the G2P shader to estimate the initial volume V 0

p for each particle
according to Section 4 Step 2. Just like the regular G2P shader it also
calculates the initial volume fraction and particle normals for visualization.
The volume estimation can alternatively be skipped, in which case the volume
is set as

V 0
p =

mp

ρobj
=

Vobj

#particles
. (122)

In this case, the volume is constant. Variations in volume mostly occur at
borders or if the sampling is not globally uniform, which means that the
difference between proper initialization and constant initialization is relatively
small.

After the volume is initialized, the G2P shader continues with the remain-
ing particle properties. The initialization code is built based on the objects
and provided through shader includes. Each particle determines which object
it belongs to based on its index and then executes the initialization code that
was generated for this object.

The properties that are initialized this way are:

• The contents of the fourth SSBO (see Fig. 7), i.e. JEp for water, JPp
for snow and hardening state qnp for sand.

• particle velocity

• material index

• particle mass

• color

Velocity, determinant and mass can either be constant across all particles of
an object, or alternatively initialized with a user-defined GLSL expression
that spatially varies the assigned value. Material index is the same for every
particle of an object. Color is assigned by first generating a pseudorandom
number ξc ∈ [0, 1), which is then used to select from a set of user-defined
colors with assigned probabilities. This can for example be used for sand
which is often made up of grains of varying color.

50

Figure 15: The four different sampling techniques implemented in this thesis.
From left to right: grid, random, stratified and poisson disk sampling.
The 2D examples in the top row are 256 particles each, except for
the poisson disk one which is 280 particles. For 3D the numbers are
4096 and 4297. Sample density is set artificially low for visualization
purposes.

If the mass is changed in this step, the volume that was determined
beforehand is not correct anymore. Thus, another P2G transfer followed by
a new volume calculation using the modified G2P shader are executed after
this step.

All remaining properties are initialized using their default values. Those
are C0

p = 0, F 0
Ep = I and v0

cp = 0.

7.5.1 Sampling Strategies

Particles are always first sampled from the whole axis-aligned bounding box
(AABB) of the object. They are subsequently filtered depending on the actual
object so that all particles that are not part of it are removed.

Sampling density is controlled by the particle spacing parameter Ps, which
is defined as a portion of the grid spacing h. This means that the actual
spacing is Ps · h. The particle spacing translates to the number of particles
per grid cell as

#PpC =
1

P ds
, (123)

where d is the dimension. For example, a particle spacing of 0.5 means that
4 particles are spawned per cell on average in 2D and 8 in 3D. This is also
the default value, as it worked well in most cases.

Four different sampling strategies are implemented (see Fig. 15):

Grid sampling. Particles are placed as cell-centers of a grid with spacing Ps·
h.

51

Random sampling. The same number of particles that would be generated
via grid sampling is instead drawn from a uniform random distribution.

Stratified sampling. Like grid sampling, but the position inside each cell
is drawn from a uniform random distribution.

Poisson disk sampling. Samples a random set of particles that addition-
ally fulfills the property that no two particles are closer than a specified
minimum distance. This distance is set to Ps·h

1.71/d
. The value was chosen

empirically as it generated similar amounts of particles as the other
methods with thinks::poisson_disk_sampling and a maximum number
of sample attempts of 30.

Poisson disk sampling is the best sampling strategy out of the four, as it
generates globally uniform spaced sets of particles. Grid sampling has similar
properties but the regular pattern can lead to artifacts in the simulation.
Accurate simulations with random sampling would require higher particle
numbers in order to avoid some areas ending up under-sampled. The typical
clusters of higher and lower density in random sampling may however produce
visually interesting results in some circumstances. Lastly, stratified sampling
is the closest approach to poisson disk sampling of the four. While it does
not guarantee a minimum distance between sample points, it does guarantee
a maximum distance as well as an upper bound on how many particles can
clump together because each particle is constrained to positions inside its
assigned cell. Stratified sampling is roughly as fast as grid sampling and
random sampling, which is in the order of milliseconds. In comparison,
poisson disk sampling can take seconds or minutes depending on particle
counts.

7.5.2 Object Types

The primitive object types are cuboids (rectangles in 2D) and spheres (circles),
the implementation of which is straightforward. In both cases, total volume
can be calculated directly. More complex shapes can be created using either
meshes or bitmaps. In these cases the total volume is estimated using the
fraction of initial to remaining sample positions:

Vobj = VAABB ·
#points_remaining
#points_initial

. (124)

Once the actual sample positions that represent the object have been de-
termined, the object is positioned in space by rotating and translating the
generated particles.

Meshes. The AABB of a mesh can be directly calculated by determining
the minimal and maximal coordinates of the vertices on each axis. To simplify

52

positioning of objects, the mesh is then translated such that the midpoint of
its AABB is the origin. Given the particles spawned in the AABB, all particles
that are outside of the mesh have to be removed. This could for example
be implemented using raytracing or by determining the signed distances to
the closest point on the mesh using the angle weighted pseudonormal [39].
Instead of these, a fast approximate solution was chosen in this thesis.

The inputs for the algorithm are a set of directions, the mesh and a buffer
containing the sampled positions. These are stored as 4-component vectors,
where the fourth component is initially set to 1. For each direction, the
following steps are repeated:

1. Create an orthographic projection from the given direction. This
projection is used during rasterization in the subsequent steps.

2. Enable depth testing with glEnable(GL_DEPTH_TEST) and writing to the
depth buffer with glDepthMask(GL_TRUE).

3. Clear the depth buffer and rasterize the mesh into a FBO with only a
depth buffer attached.

4. Set the depth buffer to read only via glDepthMask(GL_FALSE).

5. Rasterize the sampled positions as points of size 1. The fragment shader
has early depth test enabled via layout(early_fragment_tests)in;. This
means that the body of the shader does not execute for points that
are behind the mesh from this direction. If the fragment shader does
execute, it sets the fourth component of its respective sample position
to 0.

The set of directions used for all examples in this thesis are the three main
axes as well as their respective negatives. Once the algorithm is done for
each direction, the sample position buffer is downloaded from GPU memory.
All positions that have the fourth component set to 0 are discarded.

It is obvious that this algorithm cannot handle hollow objects as well
as certain types of cavities and holes. However it is still sufficient for many
objects, such as the Stanford Bunny (if its holes are filled) or the Armadillo19.
More complex objects could be supported by extending this approximate
algorithm with depth peeling [40] and then checking intervals of depth values
to determine whether a position is inside or outside.

Bitmaps. A grayscale image alongside a user-defined threshold can be used
as a mask to define which particles are part of the object. This is done by
mapping the coordinates of the sampled positions to texture coordinates.
Using these, the bitmap is sampled with either nearest neighbor or bilinear

19http://graphics.stanford.edu/data/3Dscanrep/ Last Accessed on 27.04.2020

53

http://graphics.stanford.edu/data/3Dscanrep/

interpolation. If the value exceeds the threshold, the position is discarded.
Alternatively, the criterion can be to discard if the value is lower than the
threshold. A second image (which can be the same one) can optionally be
sampled to initialize the colors of each particle.

The implementation is straightforward in 2D. 3D objects can use the
exact same procedure by mapping only the x and y coordinates to texture
coordinates. In this case, the object defined by the mask is simply elongated
in the z-direction. Alternatively, texture coordinates can be mapped in a solid
of revolution scheme. The distance of a given position to the midpoint of the
AABB in the XZ plane is then mapped to the x-coordinates of the texture
and the y-coordinates of each position are mapped to the y-coordinates of
the texture as before.

7.6 Visualization

Because all data is already available on the GPU, visualization with OpenGL
can be easily done during simulation. The user can visualize grid textures
and particles.

7.6.1 Grid Visualization

The grid is visualized by rendering a screen filling triangle that is textured
with the user-selected layer of the 3D texture, which is either one of the two
velocity/mass textures or the pressure gradient texture.

Mass and velocity are visualized separately. As all properties are full
floating point values, the user selects the beginning and end values of a range
that is then mapped to displayable colors. For velocity and pressure gradient
it is also possible to display the per-component absolute values or the vector
length.

Collision objects can optionally be visualized as well. This is done by
evaluating the level-set at each pixel. If it is less than or equal to zero, the
pixel is drawn with a user-selected color instead of the contents of the texture.

7.6.2 Particle Visualization

Each spawned object can be assigned its own shader and settings, which will
then be used to render all particles of that given object. Objects are rendered
one after the other in the order that the user specifies.

Geometry types. Particles can be rendered as points of a specified size
in pixels, spheres or icosahedra (see Fig. 16). For the latter two, size is
calculated based on particle volume by assuming each particle to be a sphere
(or circle in 2D) in both cases. While spheres look the same no matter how
they are rotated, icosahedra do not. The rotation matrix is estimated from
the deformation gradient by computing the polar decomposition.

54

Figure 16: A pile of sand rendered as points with estimated normals (left), spheres
(middle) and icosahedra (right).

If points are rendered, there is no actual 3D geometry that can be shaded.
If shading is desired, each point is assigned the estimated normal of its
respective particle. This successfully captures the shape of the object without
having to render proper geometry.

Spheres are rendered as quads instead of actual sphere geometry. In the
vertex shader, each quad is aligned to face the camera and its position is set
to the front-most point of the sphere that shall be rendered. The quad’s sides
are the length of the sphere diameter. This setup ensures that the generated
fragments cover the area that would have been generated for a real sphere.
The fragment shader then resolves the actual sphere with raytracing. This
yields the actual intersection point of the camera ray and the sphere. If the
ray misses the sphere, the fragment is discarded. Otherwise the normal is
calculated using the sphere center and intersection point and gl_FragDepth is
reassigned based on the actual depth of the fragment, which ensures proper
depth tests.

Collision objects. If the user wants to visualize collision objects, they
are rendered using sphere tracing [41] because they are defined with signed
distance fields. A problem with this is that the camera is usually positioned
inside a collision object. This happens because all scenes occur in a bounded
volume which means that there is always a collision object surrounding the
whole volume in order to prevent particles from escaping the simulation. To
solve this, any negative values during sphere tracing are treated as if they
were positive until the first positive value is encountered. After this, sphere
tracing continues as usual.

Shadows. In 3D visualizations, shadows are an important part for depth
and shape perception. A single directional light source is used in this imple-
mentation. Shadows are implemented with exponential shadow maps [36].
The implementation is kept simple and does not contain the more advanced
failure classification with fallback described in the original paper. Filtering
of the shadow maps is done by generating a few layers of mipmaps. A lower

55

resolution level of the mipmap is then used to resolve shadows, which yields
slightly soft shadows.

It is possible to independently decide whether an object casts shadows,
as well as whether it receives shadows. The geometry used during rendering
of the shadow map can also be either points, spheres or icosahedra and can
be selected independently of the geometry used for actual rendering.

If desired, the collision objects can also cast shadows. This is implemented
by sphere tracing from the light source the same way as is done in order to
display the collision objects themselves.

Colors. Each object can be rendered using either the assigned particle colors
or alternatively with colors based on particle properties. The properties that
can be visualized are:

• particle mass mp

• particle velocity vnp

• particle volume V 0
p

• particle determinant/hardening state JnEp/J
n
Pp/q

n
p

• logarithm of particle determinant vncp

Properties can be mapped to colors the same way as is possible when visual-
izing grid properties.

Shading. All objects are rendered with diffuse shading. Every object can
additionally be assigned an opacity. Transparency is implemented on a
per-object basis with two passes:

1. Enable depth testing and blending.

2. Set the depth test to glDepthFunc(GL_LESS) and the blending to
glBlendFuncSeparate(GL_ZERO, GL_ONE, GL_ZERO, GL_ONE)

which will prevent any writes to the color buffer.

3. Draw all particles with the selected geometry type.

4. Change the depth test to glDepthFunc(GL_LEQUAL) and the blending to
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA,

GL_SRC_ALPHA_SATURATE, GL_ONE).

5. Draw all particles again. Only the front-most fragments will write to
the color buffer and be blended with whatever was rendered before this
object.

56

This algorithm is not order-independent and not designed with multiple
transparent objects in mind. It works best when displaying solid objects
alongside a transparent fluid in order to allow to see inside. It is possible
to change the order in which the objects are drawn to achieve the desired
results, but the order is still only on a per-object basis, meaning that it is
not always possible to produce correct results.

7.7 User Interface

A user interface is provided to create and configure scenes, select visualization
options, start and pause simulations and benchmarks as well as record videos
and screenshots. The functionality is organized into multiple tabs.

Scene tab. The scene tab is used to save, load and create scenes. This
includes:

• selection of collision scene

• Defining friction and sticky flags for collisions, either as constant values
or using a GLSL expression for spatially varying values. These can be
set separately for each species (and thus grid).

• Setting the gravity, which can also vary spatially if a GLSL expression
is used.

• Adding, deleting, duplicating and reordering objects, which includes
selecting the properties of the object:

– type of object (cuboid, sphere, mesh or bitmap) and their respec-
tive settings

– size, position and rotation of the object (using euler angles or
angle axis representations)

– material index
– the species in multi-grid simulations
– the shader that is used to render this object
– density
– whether to properly initialize volume or set it as constant
– whether to use constant mass or spatially varying mass by speci-

fying a GLSL expression
– the sampling strategy, including random seed used during sampling
– the sample spacing
– initial velocity as either a constant or GLSL expression
– initial determinant as either a constant or GLSL expression
– a list of colors with their respective probabilities

57

Shader tab. This tab contains all settings related to visualization:

• background color and opacity

• selection of render mode as either grid visualization or particle visual-
ization

• whether to render collision objects before or after grid and particles or
not render them at all

• color of the collision objects

• whether to use shadow mapping as well as the resolution of the shadow
map

• light direction and color as well as ambient light color

• grid visualization settings, i.e. which property and range of values shall
be visualized

• adding, deleting and duplicating shaders, including their respective
settings

Camera tab. The camera tab can be used to reset the view and change
camera movement sensitivity and speed. It is also possible to save the current
view to a list so that the same view can later be restored.

Simulation tab. This tab is used to configure the simulation. The simula-
tion can be paused and reset here, where resetting applies newly configured
settings. It is possible to limit how many simulation steps are allowed to
happen in one frame, which can be used to increase responsiveness of the
application. Further settings include:

• timestep

• grid resolution and spacing

• whether to additionally apply collision to particles

• whether to use the quadratic or cubic B-splines

• whether to use a single or multiple constitutive models per grid

• adding, deleting and duplicating materials along with specifying their
settings and selecting the constitutive model

• whether to perform a single or multi-grid simulation

• the drag coefficient and whether to clamp it or always set it to the limit

58

• whether to use the buoyancy term and if so, which species is treated as
the fluid that contributes its pressure to the term

• GLSL code that defines the material interaction of each species by
modifying the material properties based on the volume fraction

Benchmark tab. This tab is used to measure how long the P2G, grid and
G2P shaders take. The measurements can be written to file and it is also
possible to select a number of scenes and then start a batch benchmark for
all of them.

Recording tab. The recording tab is used to save a screenshot or record
the simulation to a video. Videos can be recorded using either the h264
or HEVC (also known as h265) codecs because these are the codecs that
NVENC supports. The user can choose bitrate and how many frames are
recorded per second, at what time to start and stop recording and what the
playback speed of the resulting video should be. It is also possible to record
videos at higher or lower resolutions than the window.

59

Part IV

Evaluation

8 Sampling Methods

Figure 17: Two frames of a snow sphere dropping on the floor and shattering.
From left to right the sphere was sampled using grid, random, stratified
and poisson disk sampling.

The impact that the initial particle configuration can have on a simulation is
shown in Fig. 17. In all four cases a sphere of the same size is simulated as it
falls on the ground. The material is set to the base snow material from [1],
namely E = 140000, ν = 0.2, ξ = 10, θc = 0.025, θs = 0.0075 and a density
of 400. Grid sampling results in a very unnatural perfect symmetry of the four
quadrants in the XZ-plane. Random sampling on the other hand produces a
very unpredictable and noisy result, which is partially alleviated by stratified
sampling. Poisson disk sampling however clearly shows the smoothest result
and behaves uniformly without introducing unnatural symmetry or patterns.
It also produces more clearly pronounced chunky fracturing which is desirable
in snow simulation.

While the visual differences of the sampling techniques are immediately
apparent, the problems can reach much further and result in severe numerical
errors. To illustrate this, a purely hyperelastic sphere is simulated with a
single particle per cell. This is typically insufficient for complex materials
such as sand or snow, but can be enough for hyperelasticity as can be seen
in Fig. 18. Poisson disk sampling leads to no issues in this simulation. Grid
sampling on the other hand suffers from severe numerical fracture, resulting
in the sphere being shattered to pieces even though no fracturing was desired.
Random sampling manages to keep the sphere intact, but large cracks form
on the outside. Lastly, stratified sampling only shows very minor numerical
fracturing on the outside that is mostly only visible in motion.

60

Figure 18: Numerical fracture on a hyperelastic (Neo Hookean) sphere sampled at
one particle per cell. From left to right: grid, random, stratified and
poisson disk sampling.

The tests clearly show that grid sampling and random sampling are
unsuitable for simulations. Poisson disk sampling has the best properties
across the board, however, stratified sampling is a close contender and might
be preferable in some circumstances such as test-runs as samples are generated
many times faster with it.

9 Basis Functions

In order to illustrate the possible benefits of cubic B-splines over quadratic
ones, the simulation from Fig. 18 is run again with grid sampling. While
a sample rate of one particle per cell still resulted in numerical fracture for
both basis functions, a particle spacing of 0.9 (1.37 particles per cell) changes
this. The result is shown in Fig. 19. The small increase in sample rate was
insufficient in the quadratic case, while the cubic B-spline fully removes any
numerical fracture in this situation. This shows that cubic B-splines can
handle larger deformations, which is a direct result of their larger support.

Cubic B-splines can also have large benefits if the sample rate is sufficiently
high. This is shown in Fig. 20 using a fluid simulation. The constitutive model
for fluids (Section 5.1.5) suffers a large volume loss of 38% with the quadratic
B-spline. This is reduced to only 8% using cubic B-splines. Note that these
numbers are specific to this example, as they depend on many factors such as
grid spacing, density, time step, constitutive model and material parameters,
meaning that the gap can be much smaller in other circumstances. For
example, the volume loss changed to only 22% using the volume corrected

Figure 19: The sphere from Fig. 18 with grid sampling using a spacing of 0.9. The
left simulation used quadratic B-splines while the right one used the
cubic ones.

61

Figure 20: Volume loss in a fluid using quadratic (left) and cubic (right) B-splines.
The top row uses the constitutive model for fluids, resulting in 38%
and 8% volume loss. The volume corrected sand model (bottom row)
shows a smaller gap with 22% and 9% if used to model a fluid.

Figure 21: The snow simulation from Fig. 17 with quadratic (left) and cubic (right)
B-splines. The latter behaves less noisy and energetic.

sand constitutive model (Section 5.2.2) in the quadratic case, while increasing
slightly to 9% for the cubic one.

Lastly, Fig. 21 shows the impact of using the cubic basis function in a snow
simulation. The result is much smoother and appears to be less energetic
and noisy. While it could be argued that a less energetic result means worse
energy conservation, the increased spray radius in the quadratic case is likely
a numerical artifact and related to the aforementioned volume artifacts. In
this case however the problem is volume gain, resulting in less dense snow
that sprays further. Volume is gained when critical stretch is exceeded. This
is attributed to JP , which can grow indefinitely. More advanced constitutive
models thus attempt to ensure that JP = 1, preventing volume gain due to
plasticity [9]. Volume gain additionally results in less particles per cell which
in turn decreases the accuracy of the simulation.

The benefits of cubic B-splines come at the cost of performance. Figure 22a
shows time measurements of the scene from Fig. 19 with poisson disk sampling.
These benchmarks were executed on a laptop with a GTX 1060 6GB mobile

62

Total P2G Grid G2P

0

2

4

6
5.3

3.99

0.19

1.05

3.02

2.19

0.18
0.63

m
ill
is
ec
on

ds

cubic quadratic

(a) 3D / 0.9 / 184605

Total P2G Grid G2P

0

10

20

30 27.58

21.82

0.29

5.48

14.73
11.29

0.23
3.33

cubic quadratic

(b) 3D / 0.5 / 1075466

Total P2G Grid G2P

0

0.5

1

1.1

0.8

0.02

0.28

0.77

0.5

0.02

0.25

cubic quadratic

(c) 2D / 0.5 / 137977

Figure 22: Time measurements of a single simulation step of the scene from Fig. 18
with poisson disk sampling and both basis functions. The plots use a
different dimension and particle spacing and thus different numbers of
particles. These three quantities are listed in the respective subcaption.

GPU and an i7–8750H CPU20. Cubic B-splines result in a 1.75× longer
simulation. This affects the P2G and G2P steps, while the grid shader is
unaffected. The grid shader is mostly irrelevant to performance as it takes
only a very small portion of the total time. Computation time thus scales
linearly with the number of particles. Figure 22b illustrates this with a
reduced particle spacing. In this case, cubic B-splines took 1.87× as long.
Based on the basis functions support, computation time would be estimated
to be 43

33
≈ 2.37× longer. This is much larger than the actual values. In 2D,

this would instead be 42

32
≈ 1.78, which is also larger than the experimental

result of 1.43 (Fig. 22c). However, computation times of 2D simulations
compared to 3D do adhere to the predicted theoretical values of three and
four times longer simulation times with the same number of particles using
quadratic and cubic B-splines, respectively.

10 Single Constitutive Model

This section explores the possibilities of simulations that use a single consti-
tutive model on a single grid. The first step to material variety is to vary
particle properties such as mass or determinant during initialization. This is
very useful with the snow constitutive model and was also employed in [1] to
achieve more realistic behavior. Figure 23 illustrates this with snowballs that
are thrown against a wall. Uniform initialization of particle properties results
in a fine spray of particles, while most of the snowball simply sticks to the
wall. Chunky fracture is achieved by initializing portions of the snow to be
more dense and stiff. This can produce drastically different results based on
how these dense areas are distributed.

Most constitutive models can be used to model fluids. Figure 24 compares
fluid behavior using the volume corrected sand model, the snow model and

20Due to the coronavirus pandemic access to the lab with more powerful hardware was
restricted.

63

Figure 23: Snowballs are shattered on a wall with sticky collision. Each snowball
is initialized differently. Darker particles use JP = 1, while bright
particles have 1.5 times the mass and JP = 2

3 . They are spatially
varied with a noise texture (second column) and with a dense outer
shell (last column).

the purely hyperelastic Neo Hookean model to the model that is specifically
created for weakly compressible fluids. The sand model manages to reproduce
the thin fluid sprays, but fluid that rushes up along the collision surfaces
looks very jagged and behavior during free-fall is different. Free-fall using the
snow model is also different, however, the fluid along the walls behaves more
smoothly compared to the sand model. The fluid spray is however much
thicker. Lastly, the Neo Hookean model behaves closest to the fluid model
at µ = 0. This is however not shown in Fig. 24 because it quickly turned
unstable and subsequently exploded. Using small values for µ stabilizes the
results, but causes chunky fracturing.

Apart from the ability to model fluids, the constitutive models for sand
and snow are able to represent a wide range of material behavior (Fig. 25).
Both can be reverted to behave purely hyperelastic and they are also capable
of modeling materials that do not fracture, but compress due to plastic
deformations. The snow model can also be used to mimic a granular material
like sand. This is however accompanied by volume gain.

Figure 26 illustrates the possibilities of a simulation that uses only the
volume corrected sand model. It is used to model sand, fluid and hyperelastic
solids in the same scene. Regular sand is modeled with a density of 2200, E =

64

Figure 24: Fluids simulated using the fluid constitutive model (left), volume
corrected sand (middle left), snow with µ = 0, ξ = 5, θc = θs = 0.4
(middle right) and Neo Hookean with µ = 0.1 (right).

Figure 25: Spheres with varying material parameters. The top row uses the volume
corrected sand model with cohesion 0, 0.004, 0.025 and 1 from left to
right. On the bottom row, the snow model is used. The blue sphere has
higher Young’s modulus, poisson ratio, critical compression and critical
stretch compared to regular snow. The orange sphere has θs = 0,
while the green one uses ξ = 1. Lastly, the red sphere is reverted to
hyperelasticity with θc = 1 and θs = 100.

340000, ν = 0.3, h0 = 35, h1 = 0, h2 = 0.2, h3 = 10 and cC = 0, where h0, h1

and h3 are given in degrees. For the fluid, the friction angle is set to zero and
hyperelasticity is achieved by setting the cohesion to a very large number.

65

Figure 26: The volume corrected sand model is used to simulate hydrophobic sand,
fluid (ρ = 1000) as well as hyperelastic circles (ρ = 1600, ρ = 400)
interacting in one scene. Sand is stabilized by fluid pressure, preventing
it from flowing freely. The less dense circle correctly stays buoyant
while the other one sinks.

As this is a single-grid simulation, behavior between objects is collision. The
result of this is that the sand acts similar to hydrophobic „magic sand“.
Instead of flowing freely into a pile, the sand forms stable shapes under
water. This is possible because the pressure of the fluid stabilizes the sand.
The simulation also properly handles buoyancy. Note that all of this is
handled implicitly by the method. No boundary handling is necessary and
the individual materials retain their properties even if they are surrounded by
particles of drastically different material properties. However, the submerged
objects are surrounded by a thin film of fluid instead of touching each other
and the floor directly. These are resolution artifacts. Thin portions of material
cannot retain their properties as they only fill a small area or volume of the
transfer function. This means that their mass is underrepresented on the
corresponding grid nodes and thus their behavior is dictated by the different
objects that surround it. Low resolution furthermore can give objects more
thickness than they seem to have in their particle representation [8].

11 Multiple Constitutive Models

While a single constitutive model can already offer many possibilities, each
model was designed for a specific purpose and is generally less suitable for
other types of materials compared to a model that was designed for them.
For example, the fluid model is better suited for fluids compared to the other
models, but it cannot model anything else. The snow model on the other
hand cannot represent granular materials like sand well, while the sand model
cannot be used for snow. In order to integrate these types of materials in the
same simulation, multiple constitutive models have to be used.

Figure 27 shows multiple hyperelastic objects dropping into moving fluid.
The materials are modeled with separate constitutive models. Just like in
a simulation that only uses one model, buoyancy is correctly handled in
the simulation. The hyperelastic objects remain stable at their boundaries

66

Figure 27: Multiple low-density hyperelastic (fixed corotated) objects falling into
water. They are swept away by the current and stay afloat. The thin
film of water covering the objects is a numerical artifact and not due
to adhesive forces, but it could be exploited in rendering to make the
objects look wet.

Figure 28: The scene from Fig. 26 with separate constitutive models for each
material, resulting in a performance benefit and increased plausibility
of sand flow inside the water.

without any fracturing. However, the simulation suffers from the same
resolution problem that was previously described. This time it is expressed
by individual fluid particles that remain stuck to the hyperelastic objects.

The scene from Fig. 26 is recreated using separate constitutive models
in Fig. 28. This simulation only took 70% of the time of the one with a single
constitutive model. The reason for this is that the fluid model and the fixed
corotated model are much simpler to evaluate in comparison to the complex
sand model, which incurs unnecessary calculations when used to describe
these materials. Furthermore, the sand that is poured into the fluid forms a
much more plausible shape in this simulation because the fluid behavior is
different.

Buoyancy is further explored in Fig. 29 using cubes of lower, higher and
the same density as the fluid. The lower the density (and thus mass) of the
object, the easier it is pushed by the fluid. Same density objects still rise to
the surface, although only a small part of the object rises above the surface.
This happens because the fluid is slightly compressible, meaning that the
fluid density increases with depth instead of being uniform. The behavior is
thus correct and expected.

67

Figure 29: Hyperelastic cubes with densities 400, 1000 and 2600 are swept away
by water (ρ = 1000). The cube with same density floats barely under
the water surface, while the other ones either sink or stay afloat.

The usage of multiple constitutive models enables simulations that contain
both sand and snow. Figure 31 shows two such simulations. Apart from the
aforementioned resolution artifacts, this works as intended. Both materials
retain their respective properties at their boundaries. However, it is possible
to circumvent this by finely mixing two materials together. In this case, the
properties are a mixture of both constitutive models. Figure 30 shows the
results of first mixing different materials together with a fast rotating and
moving cross-shaped collision object and subsequently compressing them to
the right side of the scene. The compressive force is then quickly released,
resulting in the mixture being flung to the left. For comparison, the same
process is repeated with pure materials as well. In a snow-sand mixture, the
strong sticky properties of snow are largely lost and only small chunks are
formed. The behavior is more granular and overall gives the impression of
a dry material. A snow-water mixture on the other hand forms a jelly-like
material that quickly absorbs momentum. Sand-water mixtures act like a
fluid during fast movement, but then quickly solidify and revert to more
granular behavior as momentum is lost. This is similar to quicksand, which
is a suspension of water and sand in the real world.

Figure 30: From left to right: Mixtures of sand and snow, water and sand, water
and snow as well as pure snow, water and sand. Snow, water and sand
use densities of 400, 1000 and 2200, respectively.

68

Figure 31: Sand and snow interacting in the same scene. Top row: A sand
armadillo is dropped on a snow bunny. Bottom row: A snowball is
dropped on sand and then hit by a fast moving rigid body sphere.

12 Porous Materials

In single-grid simulations, materials such as sand always act hydrophobic,
because the MPM implicitly prevents objects from penetrating each other and
occupying the same space. The multi-species approach for porous materials
thus significantly expands possibilities. Figure 32 shows a sand column
collapse which is made possible due to the porous interaction. Water can seep
into sand and reduce its cohesion, allowing sand particles to be carried away
by water via drag and decreasing the stability of the column until it collapses
and is eventually fully submerged in water. The optional buoyancy term
yields very similar results, but produces slightly more energetic water spray.
It also slightly changes the speed at which water seeps into sand and results
in a more pronounced directional flow. Overall, it results in more forces being
applied to the sand that push towards the right. As the term adds a lot

Figure 32: Porous material interaction without (top) and with the buoyancy term
(bottom). If the buoyancy term is included, water seeps into the sand
at a different rate and with a more directional flow. The difference
is however small and comes at the cost of a 30% longer calculation,
practically solely contributed by the P2G step.

69

Figure 33: Two frames of a sand bunny being hit with water. The first and third
column use a drag coefficient of 106, while the others use 107. Sand
cohesion is reduced by the water volume fraction as in [3]. The last
two columns additionally reduce the friction angle with rising volume
fraction.

of computational complexity compared to the small changes caused by it,
the remaining examples do not use it. It is however possible to construct
examples in which these small changes result in a big difference, such as the
column collapsing in a different direction.

The driving parameter in these simulations is the drag coefficient. Fig-
ure 33 shows how it affects the simulation. Lower drag coefficients mean that
the fluid can more easily enter the porous species, which means that the sand
loses cohesion faster. It also means that both species can move more freely as
the momentum is exchanged slower. Both factors together cause the sand to
collapse faster and end up fully submerged in this example. The simulation
with high drag coefficient on the other hand keeps portions of the sand intact
for longer and an island of sand remains after the collapse. High drag also
causes sand to be washed away with the water flow, which typically looks
more convincing.

Tampubolon et al. [3] only use the water volume fraction to reduce the
sand cohesion. Changing this material interaction opens up new possibilities.
For example, Fig. 33 contains simulations with the original term as well as an
extended interaction that additionally reduces the friction angle according to

φs,n+1
Fp = φs,0Fp(1− 0.9φn+1

p). (125)

With the hardening model the formula is instead applied individually to h0, h1

and h3. The modified interaction makes it possible to couple high drag with a
full collapse. As the implementation allows the user to easily specify custom
material interaction terms from inside the graphical user interface, simulations
can be fine-tuned very fast. This also means that the framework can be

70

Figure 34: The simulation from Fig. 33 with a snow bunny instead. Both simula-
tions use cE = 107. The left one is run without any material interaction
term, resulting in the bunny mostly being swept away and shredded due
to its low mass. In the second simulation, the water volume fraction
reduces µ which makes the snow behave more like a fluid.

used for more than just column collapse, as a different interaction term that
instead increases cohesion can be used too.

The framework is not limited to porous sand and water mixtures. Figure 34
shows the previous simulation with a bunny made from snow instead of sand.
Due to its low density, the snow is pushed against the wall as a result of
water drag. Without any material interaction term these forces are already
sufficient to fully fracture the bunny. In the real world, snow would however
become mushy and eventually turn into water itself. This cannot be simulated
exactly in this framework as the modeling of snow as porous means that it
shares the same space with the fluid. It can however be approximated with a
material interaction that modifies µ:

µn+1
p = µ0

p(1− φn+1
p). (126)

With this term the snow quickly dissolves and subsequently acts like a liquid.
However, this liquid occupies the same space as the water species and thus
sinks to the bottom. It could be possible to improve this interaction by
changing which species a particle belongs to as it becomes liquid, which
would prevent those particles from further porous interaction with the fluid
species and thus correctly increase fluid volume. This is not implemented in
this thesis and thus left to future work.

Section 6.1.3 derived a limit for the drag coefficient that depends on the
time step and the masses of each grid node. This limit can be different for
each cell. If it is exceeded, the result is that both species start repelling each
other strongly, which adds energy into the system and typically causes a
chain reaction of continuously increasing velocities. Clamping to the limit
prevents this and instead causes simple collision if the drag coefficient is too
large. However, drag coefficients of up to 108 resulted in stable simulations
with time steps of 10−4. This is in contrast to [3], where the authors report

71

Figure 35: The simulation from Fig. 29 is run on a single grid (left) and in a
multi-grid simulation where cE = cE,max,i for every node. Both images
are exactly equivalent, which means that the derived limit for the drag
coefficient exactly reproduces single-grid behavior.

Figure 36: A multi-species simulation where one species consists of multiple con-
stitutive models (snow and sand). Sand uses the extended material
interaction term from Fig. 33, i.e. both cohesion and friction angle are
reduced. The material interaction for snow reduces both µ and λ this
time without letting them reach zero. Note how snow manages to stay
afloat for some time until water has seeped in enough, which is due to
its low density.

that they required time steps in the order of 10−5 and 10−6, which is why
they used implicit time stepping. The reason for this difference is most likely
the scale of the scenes, as a higher mass per grid cell results in a lower limit
for the drag coefficient. An interesting side result of the derived limit is
that it can be exploited to revert a multi-grid simulation to behave like a
single-grid simulation. This is done by always setting the drag coefficient to
the limit for every cell. The result can be seen in Fig. 35. Single-grid behavior
is reconstructed exactly. In theory, it would be possible to use more than
two grids and achieve the same results. Potentially this could mean usage of
one grid for each particle. While this may not have a practical application,
it helps in understanding why multi-material simulations work so well in
regular single-grid MPM. Every particle only ever considers itself and its
own material and is coupled to other particles via an implicit momentum
exchange due to the grid transfers.

Figure 36 combines the porous multi-species simulation with multiple
constitutive models in the solid species, namely snow and sand. The material

72

interaction can be defined separately for each constitutive model in these cases.
While not shown here, it is also possible to change the constitutive model
as part of the material interaction. This works, but as stress is calculated
differently depending on the model, it can result in a discontinuity which
can be visible in the behavior of the material. The object might suddenly
contract or expand from one time step to the next and this is also a potential
source of errors. Future work could expand on this by introducing linear
interpolation between constitutive models.

13 Particle Collisions

Figure 37: The simulation from Fig. 32 with particle collisions enabled. The left
one was run without the buoyancy term and the right one with it.
Particle collisions produce artifacts where the fluid flows along collision
boundaries, which is strongly amplified where the water initially hits
the sand. The result are severe volume artifacts which are visible as
the dark blue areas in the images. This in turn amplifies the differences
due to the buoyancy term, resulting in entirely different simulation
behavior.

As mentioned in Section 4, Stomakhin et al. [1] used particle collisions in
addition to grid collisions. This did not produce noticeable problems with
their snow model. Particle collisions start being problematic when there is a
lot of particle movement along collision surfaces, most notably in the case
of fluids. This results in many particles occupying the same space. The
problems proved to be even worse in multi-species simulations, where these
artifacts are generated a lot at the interface where water initially hits the
porous solid just above a collision object. As this results in high mass in a
small volume, forces exerted by the fluid are artificially enhanced, leading to
wildly different results. This is shown in Fig. 37, which shows the simulation
from Fig. 32, this time with particle collisions. Artifacts are visible as dark
blue spots. Many particles overlap here, which causes them to be rendered
opaque despite transparency. The result of the simulation is very different
from the previous example, and this time, the buoyancy term completely
changes results, causing the column to collapse to the right instead of the left.
This example is an extreme case. While artifacts are also generated at these
spots in single-grid simulations, those do not use the momentum exchange

73

terms which heavily depend on the grid cell masses and subsequently are not
affected as much. Simulations without fluids do not generate nearly as much
artifacts and usage of particle collisions is fine for them.

74

Part V

Conclusion and Future Work
The MPM proved to be very effective for multi-material simulations. Not
only does it implicitly handle self-collision and fracture, but also collisions
between separate objects without the need for additional boundary handling.
These properties apply even if drastically different material parameters are
used. This work shows that this also applies to the usage of multiple con-
stitutive models, which greatly expands the material variety that can be
simulated in a single scene. While only weakly compressible fluids, snow,
sand and hyperelastic materials have been used during evaluation, the general
framework is independent of the selected constitutive model and can thus
easily be extended with new materials.

Furthermore, the extension of the method for porous material interaction
is straightforward. The proposed generalization of the original approach
by Tampubolon et al. [3] is very flexible and opens up many possibilities to
adjust how materials interact. This does not necessarily have to be physically
motivated and can instead be used to generate the desired visual result, which
is very useful for computer graphics applications. Multi-species simulations
naturally combine with the usage of multiple constitutive models. Future
work could try to build on this and research how transitioning between species
as well as constitutive models can be introduced to the framework. This
could build upon work such as [9] that can simulate melting, i.e. transitions
from solid state to fluid state.

A general weakness of MPM are incompressible and nearly incompressible
materials. Stomakhin et al. [9] developed an extended MPM that alleviates
this. However, their approach is tied to a specific constitutive model. Future
work could research a generalization that is independent of the constitutive
model.

This thesis additionally introduced a simple GPU implementation of the
MPM that uses the rasterization pipeline to resolve write conflicts during
particle-to-grid transfers for both 2D and 3D. As the implementation uses
OpenGL, it is general enough to work across different hardware. No vendor-
specific or non-standard extensions to the instruction set are necessary,
meaning that the implementation works across common consumer hardware.
The algorithm can also be implemented with other graphics APIs such as
Vulkan or Direct3D. As this thesis did not focus on performance, there is
still a lot of potential for optimization. For example, some of the ideas
used in [4] such as spatial sorting of particles could be integrated. It would
also be interesting to extend the implementation to handle sparse grids as
this can conserve memory and removes the need to specify the bounds of
the simulation. This is however non-trivial to achieve with the proposed
rasterization-based implementation.

75

References

[1] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle, „A material
point method for snow simulation“, ACM Transactions on Graphics
(TOG), vol. 32, no. 4, pp. 1–10, 2013.

[2] G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and
J. Teran, „Drucker-prager elastoplasticity for sand animation“, ACM
Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1–12, 2016.

[3] A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K.
Museth, „Multi-species simulation of porous sand and water mixtures“,
ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1–11, 2017.

[4] M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, and
C. Jiang, „GPU optimization of material point methods“, ACM Trans-
actions on Graphics (TOG), vol. 37, no. 6, pp. 1–12, 2018.

[5] G. Daviet and F. Bertails-Descoubes, „A semi-implicit material point
method for the continuum simulation of granular materials“, ACM
Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1–13, 2016.

[6] D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P.
Kavehpour, „A material point method for viscoelastic fluids, foams and
sponges“, in Proceedings of the 14th ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2015, pp. 157–163.

[7] Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun, „Contin-
uum foam: A material point method for shear-dependent flows“, ACM
Transactions on Graphics (TOG), vol. 34, no. 5, pp. 1–20, 2015.

[8] C. Jiang, T. Gast, and J. Teran, „Anisotropic elastoplasticity for cloth,
knit and hair frictional contact“, ACM Transactions on Graphics (TOG),
vol. 36, no. 4, pp. 1–14, 2017.

[9] A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle,
„Augmented MPM for phase-change and varied materials“, ACM Trans-
actions on Graphics (TOG), vol. 33, no. 4, pp. 1–11, 2014.

[10] A. Stomakhin, R. Howes, C. Schroeder, and J. M. Teran, „Energeti-
cally consistent invertible elasticity“, in Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, Eurograph-
ics Association, 2012, pp. 25–32.

[11] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin, „The
affine particle-in-cell method“, ACM Transactions on Graphics (TOG),
vol. 34, no. 4, pp. 1–10, 2015.

[12] Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang,
„A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling“, ACM Transactions on
Graphics (TOG), vol. 37, no. 4, pp. 1–14, 2018.

76

[13] J. Wittenburg, Festigkeitslehre - Ein Lehr- und Arbeitsbuch, 3. Auflage.
Berlin Heidelberg New York: Springer-Verlag, 2011, isbn: 978-3-642-
56457-4. doi: 10.1007/978-3-642-56457-4.

[14] F. Irgens, Continuum Mechanics. Berlin Heidelberg: Springer Science
& Business Media, 2008, isbn: 978-3-540-74298-2. doi: 10.1007/978-
3-540-74298-2.

[15] H. Hencky, „Uber die Form des Elastizitatsgesetzes bei ideal elastischen
Stoffen“, Zeit. Tech. Phys., vol. 9, pp. 215–220, 1928.

[16] J. Arghavani, F. Auricchio, and R. Naghdabadi, „A finite strain kine-
matic hardening constitutive model based on Hencky strain: general
framework, solution algorithm and application to shape memory alloys“,
International Journal of Plasticity, vol. 27, no. 6, pp. 940–961, 2011.

[17] D. Sulsky, S.-J. Zhou, and H. L. Schreyer, „Application of a particle-
in-cell method to solid mechanics“, Computer physics communications,
vol. 87, no. 1-2, pp. 236–252, 1995.

[18] C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle, „The
material point method for simulating continuum materials“, in ACM
SIGGRAPH 2016 Courses, 2016, pp. 1–52.

[19] Y. Hu, X. Zhang, M. Gao, and C. Jiang, „On hybrid lagrangian-eulerian
simulation methods: practical notes and high-performance aspects“, in
ACM SIGGRAPH 2019 Courses, 2019, pp. 1–246.

[20] M. Steffen, R. M. Kirby, and M. Berzins, „Analysis and reduction of
quadrature errors in the material point method (MPM)“, International
journal for numerical methods in engineering, vol. 76, no. 6, pp. 922–
948, 2008.

[21] F. H. Harlow and M. Evans, „A machine calculation method for hydro-
dynamic problems“, LAMS-1956, p. 32, 1955.

[22] J. Brackbill, „The ringing instability in particle-in-cell calculations
of low-speed flow“, Journal of Computational Physics, vol. 75, no. 2,
pp. 469–492, 1988.

[23] J. U. Brackbill, D. B. Kothe, and H. M. Ruppel, „FLIP: a low-dissipation,
particle-in-cell method for fluid flow“, Computer Physics Communica-
tions, vol. 48, no. 1, pp. 25–38, 1988.

[24] E. Love and D. L. Sulsky, „An unconditionally stable, energy–momentum
consistent implementation of the material-point method“, Computer
Methods in Applied Mechanics and Engineering, vol. 195, no. 33-36,
pp. 3903–3925, 2006.

[25] C. Jiang, The material point method for the physics-based simulation
of solids and fluids. University of California, Los Angeles, 2015.

77

https://doi.org/10.1007/978-3-642-56457-4
https://doi.org/10.1007/978-3-540-74298-2
https://doi.org/10.1007/978-3-540-74298-2

[26] M. Becker and M. Teschner, „Weakly compressible SPH for free surface
flows“, in Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation, Eurographics Association, 2007,
pp. 209–217.

[27] D. Drucker and W. Prager, „Soil mechanics and plasticity analysis of
limit design, Q“, Appl. Math, vol. 10, 1952.

[28] C. M. Mast, „Modeling landslide-induced flow interactions with struc-
tures using the material point method“, PhD thesis, 2013.

[29] C. M. Mast, P. Arduino, P. Mackenzie-Helnwein, and G. R. Miller,
„Simulating granular column collapse using the material point method“,
Acta Geotechnica, vol. 10, no. 1, pp. 101–116, 2015.

[30] S. Bandara, A. Ferrari, and L. Laloui, „Modelling landslides in un-
saturated slopes subjected to rainfall infiltration using material point
method“, International Journal for Numerical and Analytical Methods
in Geomechanics, vol. 40, no. 9, pp. 1358–1380, 2016.

[31] P. Mackenzie-Helnwein, P. Arduino, W. Shin, J. Moore, and G. Miller,
„Modeling strategies for multiphase drag interactions using the ma-
terial point method“, International journal for numerical methods in
engineering, vol. 83, no. 3, pp. 295–322, 2010.

[32] D. Levin, „The approximation power of moving least-squares“, Mathe-
matics of computation, vol. 67, no. 224, pp. 1517–1531, 1998.

[33] T. Belytschko, Y. Y. Lu, and L. Gu, „Element-free Galerkin methods“,
International journal for numerical methods in engineering, vol. 37,
no. 2, pp. 229–256, 1994.

[34] C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran, „A polynomial particle-
in-cell method“, ACM Transactions on Graphics (TOG), vol. 36, no. 6,
pp. 1–12, 2017.

[35] K. Wu, N. Truong, C. Yuksel, and R. Hoetzlein, „Fast fluid simulations
with sparse volumes on the GPU“, in Computer Graphics Forum, Wiley
Online Library, vol. 37, 2018, pp. 157–167.

[36] T. Annen, T. Mertens, H.-P. Seidel, E. Flerackers, and J. Kautz, „Ex-
ponential shadow maps.“, in Graphics Interface, ACM Press, 2008,
pp. 155–161.

[37] A. McAdams, A. Selle, R. Tamstorf, J. Teran, and E. Sifakis, „Com-
puting the singular value decomposition of 3x3 matrices with minimal
branching and elementary floating point operations“, University of
Wisconsin-Madison Department of Computer Sciences, Tech. Rep.,
2011.

[38] R. Bridson, „Fast Poisson disk sampling in arbitrary dimensions.“,
SIGGRAPH sketches, vol. 10, pp. 1 278 780–1 278 807, 2007.

78

[39] J. A. Bærentzen and H. Aanaes, „Signed distance computation using
the angle weighted pseudonormal“, IEEE Transactions on Visualization
and Computer Graphics, vol. 11, no. 3, pp. 243–253, 2005.

[40] L. Bavoil and K. Myers, „Order independent transparency with dual
depth peeling“, NVIDIA OpenGL SDK, vol. 1, p. 12, 2008.

[41] J. C. Hart, „Sphere tracing: A geometric method for the antialiased
ray tracing of implicit surfaces“, The Visual Computer, vol. 12, no. 10,
pp. 527–545, 1996.

79

	I Introduction
	Motivation
	Related Work

	II Basics
	Continuum Mechanics
	Material Point Method
	Procedure
	Particle-Grid Transfers
	Grid Basis Functions
	Particle-In-Cell Method
	Fluid Implicit Particle Method
	Affine Particle-In-Cell Method (APIC)

	Constitutive Models
	Hyperelasticity
	Saint Venant-Kirchhoff
	Hencky Strain
	Neo-Hookean
	Fixed Corotated
	Fluids

	Plasticity
	Snow
	Sand

	III Method and Implementation
	Method
	Multiple Materials
	Single Constitutive Model
	Multiple Constitutive Models
	Porous Materials

	MPM Details
	Particle-Grid Transfer
	Moving Least Squares Material Point Method
	Kernels

	Implementation
	Overview
	Libraries and Technologies
	Buffers and Textures
	Particle State
	Materials
	Grid

	Shader
	P2G Shader
	Grid Shader
	G2P Shader

	Particle Initialization
	Sampling Strategies
	Object Types

	Visualization
	Grid Visualization
	Particle Visualization

	User Interface

	IV Evaluation
	Sampling Methods
	Basis Functions
	Single Constitutive Model
	Multiple Constitutive Models
	Porous Materials
	Particle Collisions

	V Conclusion and Future Work

