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Zusammenfassung

Künstliche neuronale Netze sind ein beliebtes Forschungsgebiet der künst-
lichen Intelligenz. Die zunehmende Größe und Komplexität der riesigen
Modelle bringt gewisse Probleme mit sich. Die mangelnde Transparenz
der inneren Abläufe eines neuronalen Netzes macht es schwierig, effiziente
Architekturen für verschiedene Aufgaben auszuwählen. Es erweist sich als
herausfordernd, diese Probleme zu lösen. Mit einem Mangel an aufschluss-
reichen Darstellungen neuronaler Netze verfestigt sich dieser Zustand. Vor
dem Hintergrund dieser Schwierigkeiten wird eine neuartige Visualisie-
rungstechnik in 3D vorgestellt. Eigenschaften für trainierte neuronale Net-
ze werden unter Verwendung etablierter Methoden aus dem Bereich der
Optimierung neuronaler Netze berechnet. Die Batch-Normalisierung wird
mit Fine-tuning und Feature Extraction verwendet, um den Einfluss der Be-
standteile eines neuronalen Netzes abzuschätzen. Eine Kombination dieser
Einflussgrößen mit verschiedenen Methoden wie Edge-bundling, Raytra-
cing, 3D-Impostor und einer speziellen Transparenztechnik führt zu einem
3D-Modell, das ein neuronales Netz darstellt. Die Validität der ermittelten
Einflusswerte wird demonstriert und das Potential der entwickelten Visua-
lisierung untersucht.



Abstract

Artificial neural networks is a popular field of research in artificial intelli-
gence. The increasing size and complexity of huge models entail certain
problems. The lack of transparency of the inner workings of a neural net-
work makes it difficult to choose efficient architectures for different tasks.
It proves to be challenging to solve these problems, and with a lack of in-
sightful representations of neural networks, this state of affairs becomes
entrenched. With these difficulties in mind a novel 3D visualization tech-
nique is introduced. Attributes for trained neural networks are estimated
by utilizing established methods from the area of neural network optimiza-
tion. Batch normalization is used with fine-tuning and feature extraction to
estimate the importance of different parts of the neural network. A combi-
nation of the importance values with various methods like edge bundling,
ray tracing, 3D impostor and a special transparency technique results in a
3D model representing a neural network. The validity of the extracted im-
portance estimations is demonstrated and the potential of the developed
visualization is explored.
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1 Introduction

1.1 Motivation

Neural networks are not a new technology, but have been gaining renewed
interest with improving hardware and computational power and became a
large field of research. With the recent developments regarding the grow-
ing complexity and size of neural networks, new problems are emerging.
Two key factors are the growing size and the incomprehensible inner work-
ings of complex networks.

1.1.1 Model Size

With performance gains particularly in natural language processing and
computer vision, neural networks are being used for an expanding range
of tasks with increasingly large models. The technological advances in GPU
and specialized neural processing units open the door for models with bil-
lions of parameter [4][23].
For image classification challenges the winning models growing from ar-
chitectures using 8 to more than 100 layers [23]. With ResNet for example
having 152 layer, 60 million parameters and requiring 20 giga floating point
operations for the use on a single 224× 224 image [23]. The trend for these
tasks still seems to lead to a growth in model size, as indicated by recent
developments [27].
But with these huge neural networks problems are emerging. The increas-
ingly costly computations and memory consumption are not always read-
ily available and the training of these neural networks is expensive in hard-
ware and/or computation time. On smaller devices even the application
becomes impossible due to the size alone. Following [24] there are three
major constraints of neural networks:

• memory footprint

• computational cost

• power consumption

Coupled with the fact that “Over-parameterization is a widely recognized
property of deep neural networks” [24], these problems lead to research
that focuses on effectively reducing model sizes while maintaining perfor-
mance. The problem with creating more efficient models can be tackled by
identifying and reducing unnecessary parameters.
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1.1.2 Black Box Problem

Advanced AI has the disadvantage that it becomes too complex to com-
pletely comprehend, which limits the understanding of the inner workings.
The lack of transparency in Deep Learning methods makes it hard to an-
alyze. Neural networks in particular are difficult to design and the main
method for creating high-performance models is the use of empirically
proven architectures, that are used for similar tasks. The black box prob-
lematic is also described as the main reason of compression approaches are
not seeing wide adoption for reducing model sizes [4].
The black box problem seems to be a major obstacle for more intricate vi-
sualization techniques as well. The most common visualizations regarding
architecture often contain information that describe the structure of a net-
work but ignore trained parameters. The sheer quantity of these parame-
ters needs filtering or abstraction to be digestible. Some research is done
regarding the processing of inputs throughout the network, but these do
not directly address the architecture of the model and are often still too
complex to follow. The lack of existing 3D representations is therefore ex-
plored and an own novel method will be introduced in this thesis.

2 Fundamentals

This section provides a brief overview of basic knowledge on the topics
covered in this thesis. First the basics of neural networks are explained,
followed by some more specific topics in this area of research. The next
part introduces a commonly used statistics technique Kernel Density Esti-
mation, which plays a key part in some more intricate methods explored in
this thesis. Lastly a rendering technique is presented, which is adopted for
visualizing neural networks.

2.1 Neural Networks

Neural networks play a big part in machine learning and deep learning. A
neural network can be described as a graph consisting of linked neurons.
A neuron can be described as a function f : Rn → R from [15]:

f(~x) = a (w1x1 + ...+ wnxn+ b) (1)

Where a is the activation function a : R→ R. There is a variety of functions,
that can be chosen. From a simple linear function to a more complex func-
tion like the sigmoid function. The choice is often influenced by empirical
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data. ~w are the weights for incoming data to the neuron, which are multi-
plied component wise with the input vector ~x. Every input dimension is
associated with a weight and can be seen as an incoming edge. b is the bias
and is added to the combination of weights and inputs and fed together
into the activation function. A visualization of the equation is presented in
1.

By combining multiple neurons we get a simple neural network as pre-

Figure 1: A single neuron

Figure 2: A simple fully-connected neural network

sented in 2. A network is generally divided into layers consisting of neu-
rons. There is usually one input layer, where the data flows into a network
and one output layer, which can also have a various number of nodes. As
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an example a neural network model can use the pixel data of an image as
its input with one node for every pixel. When using this network for recog-
nizing animals shown in the picture, the output nodes can be one for every
animal the network should recognize.
A neural network can be constructed with any number of hidden layers
between input and output. These layers are often described as the black
box part, because in most cases no direct interaction with these layers is re-
quired when using a neural network. These inner workings are especially
difficult to comprehend with more complex networks.
Figure 2 shows a simple type of network only consisting of fully connected
layers, which are the main focus of this thesis. Nodes of fully connected
layer have one edge for each node of the following layer. Another type are
convolutional neural networks (CNN) consisting of convolutional layers
paired with fully connected ones. These are the most simple and common
types of layer.
The parameters of a network are usually randomly initialized and are changed
through backpropagation [15]. This process is referred to as training.
The final output can be seen as a prediction, which is compared to an ex-
pected value corresponding to the input data. The measurement of how
far the prediction deviates is called the loss function, which can be cho-
sen, as desired similar to the activation function in (1). For example the
well known calculation of the mean squared error (MSE) can be used over
multiple losses and in the backpropagation method. This loss is calculated
through every layer from output to input in an effort of reducing this value.
Different optimization methods can be paired with backpropagation to it-
eratively reduce the loss and in turn improve the predictions of a neural
network, by changing the parameters (like the weights or bias mentioned
in (1)). For the sake of simplicity the optimization methods are not further
explained.
The training process uses a set of labelled data, which consists of input
data samples paired with labels or expected/true output data for the cor-
responding input. [15] provides a more detailed description. This thesis
focuses on neural networks used for classification tasks, which uses data
labelled at least as one of multiple potential classes. Through training the
parameter, the neural network learns to predict the labels for given data.
When a neural network finished training, it can be used to predict these
labels for any suitable data, which is called inference.

2.1.1 Fine-tuning & Feature Extraction

Fine-tuning for neural networks is a valid technique for updating already
trained models [14]. This technique can be seen as a continuation of the
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learning process of a neural network model.
Usually a pre-trained model is restructured to fit a new task in fine-tuning,
for instance by replacing the last layer with a new one matching similar but
new classification. The parameters of the modified network are then opti-
mized on a set of data for the new task. With this method it is possible to
train multiple networks each with their own specialization as described in
[22].
This can be highly beneficial when using large data sets and long training
times. By using more general data, a model can be trained and general fea-
tures can be learned. Afterwards the same model can be used repetitively
for a new task focusing on different and more specialized data, without re-
training a completely new model on the initial large data. The specialized
data is usually much smaller and the modified models are therefore trained
much faster.
A prominent example in natural language processing is the pre-trained
model BERT [7] freely available for any language processing task. This
model is amongst other data pre-trained on 2,500 million words as con-
tiguous sequences of sentences from English Wikipedia. The base version
of BERT has 110 million parameters and the large version 340 million. The
complete training from scratch on such a large model is very resource in-
tensive, therefore using a pre-trained model and fine-tuning it with much
less data is very convenient.

In feature extraction a pre-trained model similar to fine-tuning is used. The
outputs of one or more layers are used as inputs for new layers. In this case
while training a new model, the parameter of the old layers stay fixed [22].
The identification of complex features learned in the pre-trained model re-
main preserved and the newly added layers learn to utilize it on the new
task.
These techniques are also used in combination and are compromising be-
tween fine-tuning and feature extraction [22]. A combination of both is
applied for this thesis and explained later in 4.1.

2.1.2 Regularization techniques

Sparsity regularizations have been explored in an effort to combat the com-
putational costs and memory intensity of neural networks [29]. The focus
for this work lies on regularization enforced by simply changing the loss
function during training. These methods are easy to implement and do not
need changes in the architecture of a model.
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L1 is called Lasso Regression and adds the absolute value of the parame-
ter as a penalty to the loss function. The following equation is taken from
[25]:

L1 = λ

p∑
j=1

|βj | (2)

β is the parameter, which should be regularized and λ defines the scale at
which this term should be applied. This term lets the parameters tend to-
wards 0, if they don’t have a great impact while training and is therefore
useful for feature extraction [25].
As suggested by [4] L1 is often used in optimization because it leads to a
wanted sparsity.

L2 is called Ridge Regression and works similar to the Lasso Regression.
The following equation is taken from [25]:

L2 = λ

p∑
j=1

w2
j (3)

Instead of using the absolute value of a parameter, the squared value is
added to the loss function, resulting in a heavy penalty for large values.
This is less desirable for feature extraction and leads to an increased gener-
alization.

L1,2 is the combination of both and adds simply both terms to the loss
during training.

2.1.3 MNIST

MNIST [19] is a openly available database for handwritten digit images
and is an established standard in testing machine learning algorithms [6].
Some sample images are presented in 3.
An image consist of 28×28 = 784 grayscale pixels where each is labelled as
one of the 10 possible digits and the whole database contains 70k labelled
images. These images are split into 60k training samples and 10k test sam-
ples.
Using this already revised data saves time that is otherwise needed for
preparing real world data. Results for machine learning methods applied
to MNIST can conveniently be compared with many other methods already
providing evaluation data for this exact task. Especially neural network
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Figure 3: MNIST example images

classifier, which are used for this thesis, are prominently applied on MNIST
and achieve high performances [6].

2.1.4 Batch Normalization

Batch Normalization [13] is a method used to normalize layer inputs of
neural networks and is compatible with any type of activation function in
a network. Special batch normalization layers can easily be added between
layers of an existing model and trained through backpropagation without
any additional overhead to the models training process. The distribution
of layer inputs usually changes during the training, which leads to a con-
stant readjustment of the following layers to the dynamic distributions. At
this point, batch normalization intervenes to improve the stability of these
distributions, proven to enhance the overall training process.
A batch normalizaion Layer uses batches of data to compute mean and
variance of the activation values for each batch during training. Using
batches of data is already common in training neural network models,
therefore adding no additional overhead to the regular training process.
The average of the mean and variance of all batches is used as estimates
for the overall mean and variance assumed for all data, which is used in
inference. The equation for calculating the output values of a batch nor-
malization layer is defined as following:

y = γ · x̂+ β (4)

The parameter γ and β are also learned through backpropagation. γ scales
the modified input and determines the strength of the inputs influence in
subsequent layers. x̂ is the normalized input and is calculated with es-
timates for E[x] and V ar[x] and ε is a small value added for numerical
stability:

x̂ =
x− E[x]√
V ar[x] + ε

(5)
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This method effectively speeds up the training process and stability. In
fact it also serves as a regularizer (2.1.2) for the model and in some cases
improves the performance [13]. Batch normalization layers are also com-
monly used after convolution layers to increase performance [23]. The γ
value from (4) is also proven to be useful for identifying unimportant parts
of a neural network model [23]. The technique of processing the γ value to
extract an importance measure is applied in this thesis to filter and visual-
ize important parts of a network.

2.2 Kernel Density Estimation

Kernel Density Estimation (KDE) is “the most well-known approaches to
estimate the underlying probability density function of a dataset” [3]. The
estimator requires minimum input and is very flexible to apply to various
types of data.
KDE is basically smoothing single data points in small bumps ranging over
a certain area depending on the bandwidth h. The accumulation of these
stretched bumps can be seen as the probability of samples being at certain
positions over a range of possible values like coordinates in a 3D space.
With this method it is possible to create an estimate of the real probability
function by only using a number of samples.
The estimator is described as the following equation from [12]:

ρ(x) =
N∑
i=1

∫
y∈ei

K

(
x− y
h

)
(6)

ρ(x) : R2 → R+ is the estimated probability density function using the den-
sity kernel K : R2 → R+.
There are many choices for the types of functions that can be used for K.

An overview of the shapes for some popular choices is depicted in figure
4. For this thesis the highlighted Epanechnikov plays a major part and is
defined as K(x) = 1 − ||x||2. This function “optimally approximate the
density map in a minimal variance sense” [12].
The effect of bandwidth h is illustrated in figure 5. The choice of h needs

to be considered carefully and heavily depends on the used data.

2.3 Impostor

Impostors are used in many graphics applications dealing with large amounts
of objects that need to be rendered. One example is the field of molecular
visualization [28]. Instead of using complex meshes for rendering, textured
2D-billboards are used to improve the performance.
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Figure 4: Different kernel functions with Epanechnikov highlighted

Figure 5: A histogram from data points and density estimations with varying
bandwidths
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A ray-sphere intersection computation [9] can be used for a precise rep-
resentation of a sphere, which makes it attractive to represent the many
atoms of molecules as spheres in real-time applications, where large or-
ganic molecules consist of more than 50k atoms [28].
The following equation from [9] needs to be solved to get the intersection
positions of a ray and a sphere:(

~d · ~d
)

︸ ︷︷ ︸
a

t2 + 2
(
~f · ~d

)
︸ ︷︷ ︸

b

t+ ~f · ~f − r2︸ ︷︷ ︸
c

= at2 + bt+ c = 0 (7)

The solution for this quadratic equation from [9] is:

t0,1 =
−b±

√
b2 − 4ac

2a
(8)

~d is the ray direction and ~f = ~0 − ~G and ~G is the center position of the
sphere.
The discriminant b2 − 4ac falls below 0 there are no intersections and the
fragment of an impostor can be discarded. Otherwise t0,1 can be used to
calculate both intersection points.
Since networks are huge graphs with nodes and edges, the idea of using
impostors for their representation is reasonable. The nodes and edges can
be interpreted as two simple primitives that are rendered repeatedly at dif-
ferent positions. The use of sphere impostosr for nodes and a modified
version for edges is explored in this thesis.

3 Related Works

Methods from multiple areas of research are combined in this work. This
section is split into four parts each focusing on one area. In order to re-
flect the current state of visualization of neural networks, several methods
are presented in 3.1. Section 3.2 centers around optimization of neural net-
works, providing some interesting methods to identify the important parts
of a neural networks architecture. Chapter 3.3.1 reviews techniques for de-
cluttering huge graphs for visualization and 3.4 provides insight in relevant
rendering technologies.

3.1 Neural Network Representation

A classic illustration used to represent small fully-connected neural net-
works is shown in figure 6. These types of node-link diagrams are often
used in an educational context, but bring hardly any benefit for medium to
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Figure 6: Fully-connected neural network represented with nodes and edges. The
edges vary in size and opacity depending on their weight. Created using
[20]
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Figure 7: Illustration of a convolutional neural network. Created using [20]

Figure 8: Illustration of a convolutional neural network. Created using [20]

large models [10]. Stronger edge weights are highlighted in 6, but except
for small scale models, these tend to get too crowded to gain any insight
about the model.

For convolutional neural networks, which use convolutional layer, two
prevalent illustration types emerged. Figure 7 shows the “LeNet style”[20]
first established in [18] and figure 8 shows the “AlexNet sytle”[20] first es-
tablished in [16]. Both represent the convolutional layer with special sym-
bols and are more abstract without showing any detail about the trained
parameters. These illustrations usually add labels to describe details about
the different sizes of layers.
An example of existing 3D visualization is the interactive tool, that is in-

troduced in [10] focusing on neural network models trained on MNIST (see
2.1.3) data. This tool combats the overwhelming amount of edges in a fully-
connected layer by letting the user chose only small subsets of edges at a
time. As shown in figure 9 the user can write a digit and the tool highlights
the nodes with high activation values in the visualization.

3.2 Neural Network Optimization

Neural Network Optimization is a current topic regarding the computa-
tionally expensive and memory intensive large neural networks, where
there is still difficulty finding usage in situations with insufficient hardware
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Figure 9: An interactive tool visualizing the node activations from a drawn input
and showing incoming edge weights while hovering over the nodes. [10]

Table 1: Summarization of different approaches for model compression and accel-
eration taken from [4]

Theme Name Description Applications
Parameter pruning and
sharing

Reducing redundant parameters
which are not sensitive to the per-
formance

convolutional layer
and fully connected
layer

Low-rank factorization Using matrix/tensor decomposi-
tion to estimate the informative
parameters

convolutional layer
and fully connected
layer

Transferred/compact
convolutional filters

Designing special structural con-
volutional filters to save parame-
ters

convolutional layer
only

Knowledge distillation Training a compact neural net-
work with distilled knowledge of
a large model

convolutional layer
and fully connected
layer

13



availability [23]. A characteristic of neural networks is the overparameteri-
zation, which suggests a high degree of potential optimization.

One way to optimize a neural network model is by compression and ac-
celeration. In general, the goal is to reduce the required resources of neural
networks while preserving model performance. Some methods show ef-
fectiveness in lowering both complexity and the overfitting problematic of
neural networks [4]. A promising way to achieve this is by identifying and
extracting insignificant and redundant parameters.

There are four main methods for compression and acceleration of neural
networks, which are described in table 1
Pruning seems to be the most accessible method for a more general neu-
ral network visualization. It works either way for both convolution and
fully-connected layer, that are traditionally the most common used types
of layers. Pruning is also applicable on pre-trained models, providing a
huge advantage in dealing with large neural networks by saving a lot of
resources otherwise needed on training a model from scratch.

3.2.1 Pruning

Pruning is researched with the goal of taking on the problems described
in 1.1.1 to help mitigate the substantial cost of inference of large neural
networks. A reason for this is to increase the efficiency especially in envi-
ronments with limited computational resources [24].
A special emphasis is set on preserving the accuracy of models after prun-
ing. This entails the goal of cutting down non-informative parameters in
the network. In Pruning methods unimportant parameters are identified
and subsequently removed or disabled and it usually happens as a part of
three sequential steps [24]:

• Training

• Pruning

• Fine-tuning

A drawback of the pruning method is the fine-tuning that is needed be-
cause of the sensitivity of neural networks towards pruning parameters.
But the network performance critical aspects are negligible when serving a
visualization method, that abstracts a model for general architecture anal-
ysis. Therefore the focus for this thesis is on the pruning step and on iden-
tifying the important parameters alone.
One of the more straightforward methods to achieve this, is by simply re-
moving connections. Layer-wise magnitude-based pruning [21] expands
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on it by defining a threshold for each layer and prune parameters not ex-
ceeding this threshold per layer.
A special emphasis is set on preserving the accuracy of models after prun-
ing. This entails the goal of cutting down on non-informative parameter in
the network. When pruning single parameter, special sparse layers are cre-
ated, which is not always desired. Therefore many pruning methods focus
on pruning whole nodes or even whole layers with their associated param-
eters. The difficulty in these types of pruning is the potential of changing
the input of subsequent layers in unforeseen ways [4], which often result in
great accuracy losses.

Another way of identifying unimportant parameters is by calculating the
Hessian matrix of the loss function, which preserves a higher accuracy than
related methods [4], but is more difficult to implement. There are similar
concepts that take advantage of the commonly used L1 or L2 regulariza-
tion (see 2.1.2), but need more iterations of backpropagation to achieve the
necessary result.
It is therefore reasonable to assume, that this kind of method can be used
for measuring the importance of parameters. This kind of measurement
can then be used to highlight more significant parts of a neural network.

3.2.2 Network Slimming

Network slimming (a specific kind of pruning) is aiming at reducing the
neural network model size, decreasing the run-time memory footprint and
computing operations, while preserving the accuracy of the improved model
[23]. The method identifies unimportant neurons and channels, which can
be easily pruned from the model. For models that exceed a certain depth,
even layers can be effectively removed. Although it is designed for convo-
lutional layers, it can also be used for fully-connected layers and is therefore
functional for a wide range of neural network models.
The method combines batch normalization with L1 regularization while
training a neural network to filter channels or neurons not essential in the
network by utilizing the scaling factors in batch normalization layers [23].
This entails the condition of training a neural network, before it can be ef-
fectively pruned. The uncompromising removal of channels and neurons
can degrade the performance in unexpected ways, making it essential to
fine-tune a pruned network to maintain the original accuracy values. Al-
though [23] shows that the accuracy of pruned models sometimes exceeds
the originals.
The advantage of Network Slimming over different methods becomes ap-
parent by multiple factors:
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• minimal impact on the training process of a neural network

• no need for specific software/hardware

• minimal programming overhead through existing neural network li-
braries

In [23] it is also suggested, that this method can be employed for archi-
tecture learning, prompting the speculation over its value for evaluating
neural network architectures.

3.3 Graph Processing

At their core neural networks are dense directed graphs. Using visualiza-
tion techniques that are common for small graphs are not useful for neural
networks, because of the huge size of these networks. Fortunately there
are methods that focus on this type of graphs. In this section some relevant
work regarding the visualization of huge graphs are examined.

3.3.1 Edge Bundling

An effective method for decluttering very dense graphs and therefore its
usefulness in network analysis is given by edge bundling [12]. The edges of
a processed graph are represented as “tightly bundled curves”[12], which
improves the efficiency of visually presented graphs by highlighting spe-
cific parts of their structure. Generally the result is an improved readability
of emerging cluster of nodes.
The general process of this method consists of the following parts and are
usually implemented iteratively:

• construct a density map from the edges of the graph

• calculate the gradients for the edges using the density map

• advect the edges in gradient direction

3.3.2 Kernel Density Estimation-based Edge Bundling

KDEEB [12] is one implementation example. It is entirely image-based and
uses Kernel Density Estimation. This method meets the relevant require-
ments of being fast and simple to implement and it also bundles edges by
applying KDE in an iterative fashion. In figure 10 adapted from [12] the
process is summarized.
The vertices positions of a graph in a 2D plane are the input for this method
and can be set by any kind of algorithm. The edges between the vertices
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Figure 10: KDEEB pipeline adapted from [12]

are then sampled, which results in a representation of each edge as sets of
points. The density map as the approximation of the real density function
is calculated by using elliptical kernel. These kernels are applied between
every two neighbouring samples of an edge, following the KDE technique
described in 2.2.
The next equation describes the bundling operator B used in KDEEB and
is based on the density estimation ρ described in (6):

dx

dt
=

h(t)∇ρ(t)
max (||∇ρ(t)||, ε)

(9)

The solution of this ordinary differential equation, which utilizes the gra-
dient∇ρ of the density map defines the direction, in which the samples are
moved during the advection phase. The samples of an edge are basically
moved along the direction vector of the gradient, which is normalized and
scaled by the bandwidth h.
Therefore the distance and advection speed is defined by the bandwidth h,
which is the also the kernel bandwidth used in creating the density map ρ.
hmax is the initial bandwidth and is set to the average inter-edge distance
of the input graph [12].

hi = λihmax (10)

Iterative bandwidth reduction reduces the advection speed, stabilizing the
process and leading edges to converge to a local density maximum. Inac-
curacies in density estimation and discretization errors resulting from edge
sampling lead to artifacts that are displayed as zig-zag lines in bundles. To
mitigate this problem, multiple Laplacian smoothing iterations of the edges
are performed after each advection step. Well separated bundles of edges
reveal a smooth graph structure after estimating densities & gradients, ad-
vecting samples and smoothing over multiple passes.
Different shading and blending techniques can be applied to render a fi-
nal 2D image representing the graph and emphasizing the density of edge
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bundles, resulting in increased information captured in the final visualiza-
tion.

KDEEB seems promising in providing an easily adaptable method. The
capability and possibilities of modifying the basic method is proven in the
same work [12] by including user-specific obstacles, which are avoided by
edges in the bundling process.

3.3.3 3D Edge Bundling

The application of edge bundling on 3D graphs is shown in [17]. Special
grids are used instead of creating a large number of textures to cover the 3D
space. To achieve higher resolution without taking up too much memory,
grids with multiple varying sizes such as octrees or 3D Voronoi diagrams
can be applied. [17] mentions a common occlusion problem occurring with
3D visualization and explores a technique to circumvent this issue by re-
volving the edge bundles around a globe that are applied on geographical
data. This self-occlusion problem of 3D visualizations inspired the appli-
cation of special rendering techniques in this thesis, which are described in
the next chapter.

3.4 Rendering Techniques

This section covers the two main techniques adopted for the visualization
of neural networks introduced in this work. By Visualizing huge graphs in
3D, two major problems need to be addressed. On the one hand, the render-
ing of many nodes and edges in real time is not trivial, on the other hand
the problem of self-occlusion arises especially in 3D. The following two
chapters introduce two techniques explored in an effort to combat these
problems in their combination.

3.4.1 Cube Impostor

In [26] cube impostors in combination with the ray-sphere intersection cal-
culations described in [9] are used to represent atoms of a molecule as
spheres. Compared to using 2D-billboard as impostor, there is no need
to displace the impostor in regards to the perspective transformation while
rendering. These cube impostor are shown in 11. By using these impostors,
rendering large amounts of similar object makes it more efficient and suit-
able for real-time applications.
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(a) Impostors displaying spheres
correctly after applying per-
spective transformation with
indicated cube wireframe

(b) Impostors rendering intersec-
tions correctly

Figure 11: Two Cube Impostor rendered displaying ray-traced spheres in different
situations from [26]

(a) A molecule with a specific area
highlighted by coloration.

(b) A molecule with a specific area
highlighted by coloration using
the transparency technique.

Figure 12: Comparison of two differently rendered images of the same molecule
from [26]

3.4.2 Transparency

As previously mentioned in [17] and [11] the self-occlusion of complex
3D-structures hides important internal information. In [26] a transparency
technique is used to highlight specific parts of a molecular structure. The
technique is shown in 12 and provides a promising way of emphasizing
certain parts of a complex structure and is adopted in this thesis for high-
lighting important parts of a neural network graph.

4 Concept

A novel method is designed to visualize neural networks in an attempt to
address the problems described in 1.1. The goal is to find a way to gain
digestible insights about neural networks through processing and visual-
ization with the focus on the architecture and the influence it has on the
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performance. Several methods from different areas presented in 2 and 3
are modified and combined. This chapter presents the different modifica-
tions in theory and the hypothesized effects of these modifications. The
combination of these methods results in a technique for processing an in-
put neural networks and providing a 3D visualization.

4.1 Importance

Huge amounts of data such as the parameters of a neural network are diffi-
cult to visualize. When all parameters are displayed unfiltered, the presen-
tation quickly becomes overwhelming, making it difficult to retrieve infor-
mation from it. The most important factor in evaluating neural networks
is how well they approximate specific outputs given the corresponding in-
puts. The accuracy of their predictions in comparison to the expected result
is the main factor in choosing neural networks.
One way to declutter the neural network is to filter the parts of the neural
network according to their importance for the accuracy of the whole neural
network in order to highlight the relevant parts. This type of ranking pa-
rameters on different objectives like “absolute values, trained importance
coefficients, or contributions to network activations or gradients” is quite
common [2].

The importance of nodes and edges in a neural network can be estimated
by simply using weights of edges between neurons. Unfortunately, for the
weights in a graph, it cannot be assumed that the value immediately repre-
sents its importance for the graph’s structure.[30]. These weights therefore
might not correlate with the real importance of edges in the sense of pre-
serving the structure of graphs. Nodes combined with their edges might
unexpectedly change the input of the following layer when changed [4].
Therefore simply using the parameters of a network is not sufficient for vi-
sualizing important parts of a neural network. To mitigate this problem, the
method described in 3.2.2 is adopted. But instead of calculating one overall
importance value, an importance vector is constructed for every node with
one dimension regarding every output node i ∈ N :

I = (ι1, ..., ιn) with ιi ∈ R+ (11)

This is achieved by modifying an existing neural network model and train-
ing it on a tailored subset of data corresponding to the respective output
node. Between every existing layer a batch normalization layer is added.
These new layers normalize the outputs of the previous nodes and scal-
ing them for the next layer. In the training process the scaling factors are
optimized for each class and are interpreted as importance of their con-
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nected input and output. The importance vectors for nodes and edges are
extracted from the trained modified model, assuming the length of I as the
overall importance for the network.
In principle, this is a combination of fine-tuning and feature extraction
2.1.1, where the model that will be visualized plays the role of the pre-
trained model. The modifications are added for the new tasks the network
will be trained on. In order to keep the original structure intact, all original
layers are frozen and only the modifications in form of added layers are
fine-tuned. The process is further explained in 5.1.
This importance vector is used as an attribute in processing a neural net-
work and creating a 3D representation, describing their impact on different
output nodes at the end of the network architecture.

4.2 Node & Edge Bundling in 3D

Edge Bundling is a way to declutter graphs by grouping edges into bun-
dles and creating visible distinctions between them. Since neural networks
are basically huge graphs, this method is applicable and offers a potential
benefit for a graphical representation.
This technique is especially used for geographic data, which emphasizes
the key role of node positions in a graph for Edge Bundling. Before it can be
applied properly, the node positions must be determined. The main factor
for the positions of the nodes is their layer in the neural network. There-
fore the nodes of the different layers should be clearly separated from each
other, which is achieved by virtually clipping nodes to different 2D planes.
Because this is initially the only sensible and available information about
the position of nodes, additional information are added. This is achieved
by a novel method to generate spacial close groups of nodes. It makes sense
following the explored idea of defining closeness of edges by not only po-
sition, but also various data attributes [12] and in this case also nodes.

Using the previously mentioned importance values (4.1) it is possible to
group these nodes according to their similarity. For this purpose the Edge
Bundling method KDEEB from [12] (described in 3.3.1) is adopted and
modified. The nodes are iteratively advected according to their importance
vector. Therefore, instead of calculating a single density map, several maps
are calculated, one for each dimension of the importance vectors. Modify-
ing 6 with 11 provides us the following equation for the density values:

ρk(x) =

N∑
i=1

(
ιk ·
∫
y∈ei

K

(
x− y
h

))
(12)
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For K the Epanechnikov kernel K(x) = 1− ||x||2 is chosen as suggested by
[12]. This leads to a density vector function P : R3 → Rn

P (x) = (ρ1(x), ..., ρn(x)) (13)

With P it is possible to calculate similarities between nodes and positions
in the density map using the scalar product of both vectors.
The following equation is designed to act as an similarity based density
function ψ : R2 → R

ψ(x) = ||P (x)|| ·
(
〈 I
||I||

,
P (x)

||P (x)||
〉 − τ

)
(14)

Since the importance values ι and thus the accumulation of the density vec-
tors (13) are always positive, the resulting values for the scalar product of
these vectors can only be positive too. If each vector is normalized before,
the scalar product is between 0 and 1 and is taken as a similarity measure
between these two vectors.
With the desired feature in mind that similar nodes attract each other while
dissimilar nodes repel each other, τ is added. This variable acts as a thresh-
old for similarity attraction. If the similarity is smaller than τ the value is
negative and indicates a less desirable position at the density map. Finally
the length of the density vector ||P (x)|| scales the attraction/repulsion, to
assign a higher value to locations on the map with many similar nodes.
In analogy to (15) the operator BI : R3 → R3 is defined as the solution of
the following ordinary differential equation:

dx

dt
=

h(t)∇ψ(t)
max (||∇ψ(t)||, ε)

(15)

With this operator the nodes of a neural network will be iteratively dis-
placed according to their importance vector, creating groups of similar nodes
in 3D space. To ensure that the nodes remain on the 2D plane defined for
their layer, the nodes can simply be projected back onto these planes. If the
planes are axis-aligned, it is possible to simply skip the specific displace-
ment dimension.

Edges are approximated similar to KDEEB (3.3.1) by sampling points along
their path. Instead of bundling these edges together by unanimously ad-
vecting their samples, the importance vectors of the edges are utilized with
the method previously described for advecting nodes. While the smooth-
ing phase in KDEEB is skipped for nodes, it is kept for edges in each itera-
tion after the sample advection phase.

The whole process is illustrated in 13. The neural network with its impor-
tance values is the required input. For rendering both the clustered nodes
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Figure 13: Network edge bundling pipeline

and the smooth bundles from the edge processing is combined for the ren-
dering phase.
Instead of two separate steps for gradient estimation and advection (like

in 10) the process is combined. To use the relative density as shown in (14)
to calculate the gradient, information about each node or sample must be
accessed. Since the gradients are different for each element, it is not possi-
ble to calculate a universal gradient map.
Like the method on which it is based, most parts of the process can be par-
allelized to a high degree and present a feasible option especially with the
latest hardware improvements in graphics cards.

4.3 Rendering

The network is represented as a graph with nodes and edges in 3D. Spher-
ical 3D-Impostor are used for the nodes, while the edges are rendered us-
ing their samples to create elliptical 3D-Impostor. A special transparency
method 3.4.2 is applied to the primitives to mitigate occlusion problems
that are common in 3D visualizations.
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4.3.1 Cuboid Impostor for Ellipsoids

While nodes can be rendered using the sphere impostor described in 2.3,
this method is not originally practical for edges. Regarding the information
gained for edges through the previous processing, the input is a number of
samples for each edge. Rendering these samples as spheres is not provid-
ing the desired feature for an edge. Therefore the use of ellipsoids, which
bridge the distance between the samples seems more appropriate than the
use of concatenated spheres, .
A desired primitive for edge samples would be a tube-like object whose
concatenation results in string-like objects representing edges. Tubes en-
able varying the thickness for different edges but need additional work in
smoothly merging one end of a tube to the next. This problem leads to the
consideration of a different type of primitive. Overlapping ellipsoids seem
to provide smoother transitions between between successive primitives.

Cuboids are created by stretching a cube impostor along the vector be-
tween two successive edge samples. By using a matrix transformation to
transform information between world coordinates and the stretched space
within the cuboid, the stretch vector is axially aligned. This makes it easy
to modify the ray-sphere intersection calculation 3.4.1 by simply scaling the
ray direction vectors along the stretched axis.
The equation (7) is modified by the axially aligned ellipsoid radii ~e ∈ R3:(

~d

~e
·
~d

~e

)
︸ ︷︷ ︸

a

t2 + 2

(
~f

~e
·
~d

~e

)
︸ ︷︷ ︸

b

t+
~f

~e
·
~f

~e
− r2︸ ︷︷ ︸

c

= at2 + bt+ c = 0 (16)

~d and ~f are component-wise divided by the ellipsoid radii vector ~e. The
solution of the equation is analogous to the original (8).

4.3.2 Importance dependent Transparency

To highlight more important parts of the neural network, the transparency
method described in 3.4.2 is modified to include importance values (11).
This should reduce the effect of self occlusion and make the important parts
of the neural network more visible, while hiding unimportant parts.
For calculating the opacity α of a fragment for an element (node or edge)
the following equation is used:

α = g ((1− obase) , g(oimportance, ι) · g(odepth, d) · odensity) (17)

With g : R2 → R:
g(x, y) = 1− x+ x · y (18)
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This function effectively scales the influence of y by x.
ι is the importance value and can either be the overall importance or any
value of the importance vector I (11) to highlight either the overall impor-
tance or the importance for the relevant output node of the neural network
as described in 4.1. The rate, at which the importance is factored in α, is
defined by oimportance ∈ R+. The second part is the depth relative to the
camera of the current view d and its influence is defined by odepth ∈ R+.
odensity ∈ R+ is defined as the density of an element at the fragment po-
sition. This value is generated by calculating the intersecting portion of a
ray starting at the camera position and passing through an object. Is the
fragment showing the center of a sphere or ellipsoid, the normalized value
will be the greatest at 1, while the value at the edge of a sphere or ellipsoid
tends towards 0. obase simply defines a base opacity for every element in-
dependent of any factors.
Instead of blending the different color values based on α, the minimal color
value for each RGB-component defines the resulting screen pixel:

Cscreen = min (c0 · α0 + (1.0− α0) , ..., cn · αn + (1.0− αn)) (19)

The color c is multiplied by each overlapping elements fragment α at the
current pixel position. The larger α gets the stronger the original color c of
an element is presented. With α getting smaller, the resulting value trends
toward 1 and is therefore blending in with the white background.
By choosing the minimum, the order of elements in the rendering pipeline
does not have to be considered, which is otherwise required for regular
alpha blending. According to the equation, fragments with a larger α are
generally prioritized.

5 Implementation

The whole visualization method is implemented in Python using OpenGL.
For neural networks Keras API [5] is used with TensorFlow [1].
The input for creating a 3D representation is an existing trained neural net-
work. This network is first processed in two steps and can be rendered in
real-time afterwards. The first step is to calculate the importance values
for the network parameter. For utilizing these values a modified version of
edge bundling is applied to the edges and nodes and stored as a processed
model. This processed model can then be rendered in the 3D simulation.
This chapter describes the implementation of the presented visualization
method of this thesis.
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5.1 Importance calculation

To determine the importance of nodes and edges for the performance of an
existing neural network model, the method modifies its architecture, trains
it on specific labeled sample data and reads importance values from the
fine-tuned modified models. A set of specialized networks are created by
employing feature extraction (see 2.1.1) from the layer of the original model
and then fine-tuning (see 2.1.1) it on the added layers to learn the impor-
tance through backpropagation.
Each output node of the original neural network model (or every potential
class predicted by the model in the classification task) adds one dimension
to the importance vectors that have to be calculated. Therefore the training
data set needs to be split depending on the output node in focus.
Using the MNIST data set (see 2.1.3) as an example, there are 10 possibilities
of labels corresponding to the different numerical digits. A model predict-
ing these labels from pixel data of images would usually have 10 output
nodes with each representing one digit. MNIST training data would be
split according to their label.
Training a model on only one possible outcome is not sensible, therefore we
add a portion of every other class to the subset of training data and binary
label the data as either 0 for the relevant class or 1 for another class, without
differentiating between them. It is necessary to identify characteristics, that
show that the image corresponds to the relevant class as well as those that
indicate, that it does not correspond to the specific class. For every class the
resulting split should be 50% samples of the relevant class and 50% a mix
of equal amounts from the samples for every other class.
For every potential class the original model gets modified and the output
layer is changed into two nodes predicting it either as the “relevant class”
or as a “different class”.
The models are modified by adding a batch normalization layer (2.1.4) be-
tween every existing layer. Before training the new models on labeled sam-
ple data, every parameter of all original layers get fixated to ensure that
the original values are evaluated by the added batch normalization layers
without changing them.
In a fine-tuning (2.1.1) sense the new tasks are focusing on one output node
each and the data are subsets of the original data. The features of the
orginal model layer are preserved by freezing their parameter. Only the
new layers are optimized. The process results in multiple specialized mod-
els and is basically a combination of fine-tuning and feature extraction.
Training this modified model on the corresponding train data split, results
in an importance estimate of every node in the original model for the spe-
cific class. The importance values are taken from the added batch nor-
malization layers. The γ parameter of these layers can be interpreted as
the importance of this node and will be added to the importance vector as

26



mentioned in 2.1.4. After repeating this process for every class, the result
for the MNIST example would be a ten dimensional importance vector (11)
for every node, indicating the importance for correctly predicting the cor-
responding digit in the original model.
The resulting set of importance vectors for nodes is combined with the edge
weights in the original neural network, to generate the edge importance
values. For fully-connected dense layers, this is achieved by combining the
absolute edge weight with the importance vectors of the related nodes.

5.2 Neural Network Processing

The extracted importance in addition to the corresponding model is the
input for this part of the implementation. A modified version of Edge
Bundling (see 3.3.1) is applied to this data. Nodes and edges are extracted
from the model and combined with their corresponding importance val-
ues. First the nodes are clustered. The edges are then sampled between the
new node positions and subsequently bundled together in regards to their
similarity. The following chapters expand on the process in more detail.

5.2.1 Grid

A key component of the Edge Bundling method is the calculation of den-
sity and gradients for the region in focus. To approximate the real density
values, we divide the area into 3D cells of equal size. This is analogous to
using textures in [12] to create density maps. This grid temporarily capture
density vector information (13) from edge samples and calculate gradients
between cells based on estimated density values.
Because of the memory-intensive nature of a uniform grid, a single grid
ranging only between two layers is generated and simply reused for dif-
ferent layers by applying an offset to the access function of grid cells and
resetting it in between usages. For simplicity a single grid ranging the en-
tire network architecture is assumed in the following chapters.

5.2.2 Node Clustering

For the initial positions of nodes in a layer, the nodes are placed in a grid
pattern (see figure 14) with equal distances in a defined square aligned to
the x and y-axis. The resulting squares for each layer are set apart along
the z-axis in equal distances. To ensure a related grouping of nodes along
every layer regardless of the layer distance, the position of the nodes are
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Figure 14: Nodes of a neural network as they are initially set up separated by layer.
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projected to a single plane by disregarding their z-coordinate while access-
ing the grid. In the following steps the nodes are only displaced along the
x and y-axis in order to keep them in the plane defined for their layer.
The algorithm 1 shows the implementation of the node clustering method,
which is described in chapter 4.2.

Algorithm 1: Node Clustering
Data: nodes, grid
Result: clustered nodes

1 set initial node positions;
2 while bandwidth > ε do
3 foreach node do
4 set radius to bandwidth;
5 apply node density to grid cells in radius;
6 end
7 foreach node do
8 calculate gradients from nearest grid cells;
9 move node in gradient direction by bandwidth;

10 end
11 reduce bandwidth;
12 clear grid cells;
13 end

The bandwidth hmax (10) for nodes starts at a fraction of the initially
defined width of a layer plane and gets reduces by λ = 0.95, which tends
to reduce the length of the displacement vector for node positions slowly
enough to form groups of similar nodes.
An increasing similarity threshold τ from (14) is chosen to prevent scatter-
ing groups of similar nodes too early. When choosing a larger threshold
right from the beginning of this process, a larger proportion of nodes that
are similar may end up in different location separated by dissimilar groups
of nodes.
By increasing the threshold value antiproportionally to the bandwidth at
each iteration, the nodes are first drawn to the center of the plane. Over
time, as the dissimilarities begin to have repelling effects, the nodes begin
to spread outward, while remaining closer to their similar neighbors, re-
sulting in fewer but more distinct clusters of nodes.
An example for the clustered nodes of a neural network is presented in 15.

5.2.3 Edge Bundling

After the node clustering converges, the Edge Bundling process starts. To
apply this method, the edges of the graph of the neural network must be
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(a) Nodes of a neural network colored by their importance in the initial positions.

(b) Nodes after clustering by their importance similarity.

Figure 15: Comparison of initial node positions and post-clustering positions.
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sampled. The number of samples for an edge depends on the length of the
edge and changes in the advection process. The initial sampling and fol-
lowing resampling phases make sure that the distance between two neigh-
boring samples of one edge stay constant. To ensure the grid (5.2.1) is suf-
ficiently fine-grained for the desired sampling rate, the grid cell size is de-
fined as a fraction of the distance between edge samples. The importance
vectors of the edge samples are calculated by multiplying the edge weight
with the importance vector linked to the edge.
The algorithm 2 shows the implementation of the edge bundling method,
which is described in chapter 4.2.

Algorithm 2: Edge Bundling
Data: edges, grid
Result: bundled edges

1 sample edges;
2 while bandwidth > ε do
3 foreach edge do
4 foreach sample do
5 set radius to bandwidth;
6 apply sample density to grid cells in radius;
7 end
8 end
9 foreach edge do

10 foreach sample do
11 calculate gradients from nearest grid cells;
12 move sample in gradient direction by bandwidth;
13 end
14 end
15 repeat n times
16 foreach edge do
17 smooth samples;
18 end
19 end
20 reduce bandwidth;
21 clear grid cells;
22 end

The similarity threshold τ is changed in the same way as described with
the node clustering and is increased antiproportionally to the bandwidth
for edges. The bandwidth hmax (10) for edges starts at a fraction of the ini-
tially defined width of a layer plane and gets reduces by λ = 0.9 similar to
the value chosen in [12]. The bundling process stops when the bandwidth
gets too small and the process converges and stops.
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An example for the bundled edges of a neural network is presented in 16.

5.3 Neural Network Rendering

The processed network is rendered in 3D using the transparency technique
described in 3.4.2, which was designed to utilize spheres. At its core the
technique needs a volumetric primitive for it to be applied, but is not lim-
ited to spheres. The intersecting part of a ray passing through the prim-
itive defines the transparency value. Therefore the technique is applied
with two different primitives. On the one hand the nodes are represented
as the classic spheres, on the other hand concatenated ellipsoids resemble
edges. Using the more intricate ellipsoids over the spheres for edges pro-
vide a clear advantage. As demonstrated in figure 17, spheres need larger
or more primitives to represent a continuous smooth line compared to the
ellipsoids.

Ellipsoids are created for every two consecutive samples of an edge. To
create smoother lines using these impostor, the ellipsoids are stretched along
the vector between two samples. For straight lines this yields no problems
and works fine with moderate curvature. The relations between primitives
and sample positions are shown in 18.

The processed neural network can be visualized in different ways. For
every class one distinct color is configured. It is possible to highlight the
architecture related to a single class, all classes at once or by overall impor-
tance. An example of highlighting a class in the final visualization is shown
in 19.

6 Analysis and Evaluation

The lack of established 3D visualization techniques highlighting the trained
parameters makes it difficult to compare the method introduced in this the-
sis. Therefore evaluation is split in two parts. In the first part the under-
lying processing procedure of neural networks for extracting information
is verified. The second part centers around validating the visualization
in regard of its potential in identifying common attributes associated with
learned parameter.
For the evaluation multiple neural networks were trained and used. The
evaluation focuses on fully-connected layers. This type of layer is rep-
resented in many neural networks, but is describes as the “bottleneck in
terms of memory consumption” [4] in many cases. Following model archi-
tecture will be analyzed in the next chapters:
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(a) Edges of a neural network colored by their importance in the initial positions.

(b) Edges after bundling by their importance similarity.

Figure 16: Comparison of initial edge sample positions and post-bundling posi-
tions.
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(a) Edge samples rendered as spheres in different sizes.

(b) Edge samples rendered as ellipsoids in different sizes.

Figure 17: Size comparison of sphere impostor and ellipsoid impostor using the
same number of samples for an edge.

Figure 18: Ellipsoid impostor with highlighted sample positions in a straight line
and with curvature.
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(a) Front side of the processed model. (b) Back side of the processed model.

Figure 19: Processed model rendered using the transparency method and high-
lighting a selected class from different points of view.

Model A is trained on the MNIST database (see 2.1.3) and predicts the
10 different classes. The input layer consists of the 784 input nodes fol-
lowed by one hidden layer with 128 fully-connected nodes. The output
layer is also fully-connected and represent each class with one node (784-
128-10). The graph representing this network consists of 101,632 edges and
922 nodes. The network is trained with the default settings for Dense layer
in Keras. The hidden layer applies the RELU activation function, while the
output layer uses Softmax. The batch size is set to 128 and the training
epochs are set to 15, resulting in an accuracy of 97.82% on the test data.

6.1 Importance

To validate the calculated importance of a model (see 5.1), pruning (see
3.2.1 is applied. The usual verification process consists of pruning the
models and calculating the accuracy then pairing them with the rate of
pruned parameters like the parameter efficiency [24]. By pruning weights
on a trained model by itself is not performing well on improving accuracy
[23], therefore most pruning must be fine-tuned after pruning to regain or
even improve the accuracy of the original model. Decreasing accuracy on
pruned models does not need to be addressed for this thesis. Pruning is
solely used to verify the importance measure, which is used to visualize
the unchanged original model.
This fact paired with the missing experimental standardization makes the
comparisons to existing methods difficult [2]. Because of the resulting frag-
mentation in reported data, the evaluation focuses on a simple form of
pruning by only using the edge weights. A more extensive evaluation
could be done in further research, but is not a high priority, as their seems
to be no established measurements to which approach performs the best
and strongly depends on applications and requirements [4].

In order to determine whether the importance is an accurate measurement,
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the parts of the neural network are pruned depending on these values and
the change in the accuracy of the model is observed. In the following pre-
sented results every pruned model is not fine-tuned after pruning, which
is otherwise done for many of the presented results in related works. All
accuracy measurements from the figures of this section are based on test
data, which was not directly used for training these networks.

6.1.1 Overall Importance

For the following analysis an overall importance value for each node is
calculated and analyzed. The measure of importance over all classes is
defined as an average of all values of the Importance vector:

ιoverall =
1

n

N∑
i=1

ιi (20)

For the evaluation three types of importance calculations are compared.
The first is simply using the weight of the edges as it is already common
practice in some pruning methods. For the second one the scaling value
is extracted from the added batch normalization layer as described in 5.1.
And lastly a combination of both as a product of the two values.
Using the weight α of an edge should result in a decent compression rate,
as it is already proven to be a good indicator for the importance on its own.
The use of the γ value, which is not part of the original evaluated model
is untested to the best of my knowledge. In 3.2.2 the batch normalization
layers are part of the original model and are proven to be good indicator
for the importance. Therefore the assumption that these values should also
result in good predictions of importance is plausible. One disadvantage of
using γ alone is that you can only prune complete nodes with all edges to-
gether, instead of preserving sporadically distributed important edges.
A combination of both enables application of the importance on single
edges as well. The hypothesis is that this combination should provide bet-
ter results as the use of γ alone.

These three methods are applied on Model A and then compared. The
result is presented in 20.The combination outperforms the separated meth-
ods. At a pruning rate of 90% the pruned model for the combination achieves
an accuracy of 87.52%, while using the edge weights drops the accuracy to
61.66% and the use of the γ value alone drops it further to 45.81%.
The lower performances resulting from only using the γ value of the batch
normalization layer could be explained by the pruning of complete nodes
instead of single edges, but still provides reasonably good results. The per-
formance changes as expected with using the edge weights. It is interesting
that the improved preservation of performance from the combination val-
idates this method as superior at least for the tested type of neural network.
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Figure 20: Comparison of three importance calculation methods by the accuracy
of pruned models. The parameters are pruned in order of lowest im-
portance. Blue using only the γ value from the related batch normal-
ization layer, Green using only the weight of an edge, Orange using a
combination of both values.
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Figure 21: Comparison of importance generated with different settings for batch
normalization layer parameter. Blue and Orange use centering with β
while for Green and Red this parameter is disabled.

To check the effect of the different settings for the added batch normaliza-
tion layer, importance data is generated for Model A in four possible com-
binations of two distinct settings. The equation (4) consists of two mayor
parameters γ and β. The effect of β values is tested, which is adding a
trained value to an output regardless of the activation of the inputs. It is
assumed that using this value should not have a positive effect on the gen-
erated importance values, since they are not directly affected by the varia-
tion of the input values and can be considered as being static.
The γ values, which are later extracted directly from the trained model, are

a key factor of the whole concept. While it is not practical to disable these
values, it is possible to initialize them differently. Because of the way learn-
ing of neural networks works, the hypothesis is that zero values could get
stuck in training and important nodes and edges are potentially ignored.
This should lead to worse results than the alternative initialization with a
scale of one.
Figure 21 verifies the expected results by the same method used previously.
β has no significant effect on the tested Model A while γ seems to provide
better results on initialization with 1.0.

The importance values are extracted from parameters of modified and trained
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network models. These values can therefore be seen as predictions based
on the training data and are not perfect measurements. As with most pa-
rameters of a neural network the training process can be modified with
regularizer (see 2.1.2). As suggested in [23] enforcing of sparsity during
training through regularizers barely affects the performance and leads to
increased generalization accuracy. They also stated the use of specifically
L1 sparsity leading to smoother pruning and little accuracy loss.
To enforce a more sparse sets of γ values for a network, regularizer are
added to their training and tested.

Figure 22 compares the effect of training with the different regularizers.
In (a) any of the tested regularizer seem to bring a similar improvement
(at 90% pruning approx. 88% accuracy), but without using one it seems to
perform worse (at 90% pruning approx. 65% accuracy). In (b) the effect
becomes more clear. Using no regularizer has the opposite effect of identi-
fying important values and leads to pruning important parts of a network
early on.
One explanation for this can be, that the modified network becomes a com-
pletely different network with many heavy scaling factors that are chang-
ing the inputs of following layers completely, despite using fixed parame-
ters for the different layers. With regularizers the scaling factors are more
limited, which would probably lead to an increased reliance on the fixed
parameters for the optimization.
For this thesis and the presented 3D visualizations, the importance is cal-
culated using L1 regularization for more reliable importance values. L1 is
also used for the previously shown plots in this section.

6.1.2 Class Importance

The importance values are calculated for each class. To verify how accurate
this measurement is, applying pruning and simply observing the accuracy
of the original model is not sensible. Instead the accuracy of predicting a
single class is used. The predictions are categorized as either important class
or different class. With this categorization the original test data is highly
unbalanced with its many classes. Therefore the balanced accuracy is cal-
culated:

ba =
tp rate + fp rate

2
(21)

tp rate =
Positives correctly classified

Total positives
(22)

fp rate =
Negatives correctly classified

Total negatives
(23)

These equations are taken from and further explained in [8]. The balanced
accuracy is used to measure how well a model predicts input data as the
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(a) Tested models using the γ value from the related batch normalization layer
combined with the edge weight as importance for pruning.

(b) Tested models using only the γ value from the related batch normalization
layer as importance for pruning.

Figure 22: Comparison of four regularizer used in the added batch normalization
layer by the accuracy of pruned models. The parameters are pruned in
order of lowest importance. Blue uses L1, Green uses L2, Yellow uses
L1 combined with L2 and Red uses none
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Figure 23: Performance comparison of neural network models pruned depend-
ing on the importance to the relative class. The relative accuracy is the
difference between the balanced accuracy for predicting the class and
overall accuracy of a network.

relevant class or as a different class with equal influence of both types.

To verify if the measure of importance for specific classes is accurate, we use
the same method from 6.1.1. For every class the neural network parame-
ters are pruned in order of the importance values related to this class. From
these pruned models the balanced accuracy regarding the corresponding
class is compared to the overall accuracy in predicting every distinct class.
When pruning parameters that are important for a related class, the accu-
racy for a class should be preserved to a certain degree while the overall ac-
curacy would degrade more intensively. Therefore the difference between
those two accuracy measures should increase.
In figure 23 these differences are shown for every class. The Relative Accu-

racy value beeing positive means that the balanced accuracy for predicting
the class correctly is greater than the overall accuracy. The difference is
steadily increasing, until the value comes close to 100%. This trend proves,
that these importance values at least resemble the real importance to some
degree, because the parameters more relevant to the class are more likely
to be preserved.
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6.2 Bundling Comparison

The visualization contains information about the parameters and their im-
portance for the predictions of a neural network. The logical conclusion is
that vastly different neural networks should also differ in their represen-
tation. If the processed models gain distinct identifiable characteristics, it
becomes possible to abstract information by looking at their visualization
and recognizing these characteristics.
With this notion in mind multiple models are created for the current part of
the evaluation. All models are identical in their initial architecture, which
is described as Model A (see 6). The only difference between these models
is the training process modifying the parameter values that are ultimately
presented in the visualization method. When using different training tech-
niques, different characteristics should emerge. By using the exact same
architecture for the models we reduce interferences. Three different mod-
els are created to analyze the differences:

• The untrained model received their randomly initialized parameter
and is not further changed.

• The basic model is trained using the regular training data. With no
special settings for their fully connected layers.

• The regularized model is also trained using regular training data.
The difference lies with the introduction of L1 regularization on the
fully connected layers during training.

The expectation for the untrained model should be a lack of structure re-
sulting from the random parameter values, while the basic model should
learn to generalize to achieve its high performance. Lastly the regularized
model should represent a certain sparsity resulting from its L1 regulariza-
tion.
Figure 24 shows that a certain degree of distinctions can be made. For the

untrained model the nodes are more spread out, which potentially indi-
cates generally greater differences between the nodes and a lack of general-
ization. On the other hand the trained models seem to result in nodes being
closer to each other. The effect can be explained by assuming a node, which
is balanced in its importance for all classes. This node would naturally be
more likely to be attracted by every other vector, because their scalar prod-
uct results in greater values (see (14)). These generalizing nodes would
be drawn towards the center while also advecting surrounding nodes to
the center as a consequence. One characteristic of increased density can be
identified and assigned to generalization.

The sparsity is another attribute, which seems to be identifiable. Fig-
ure 25 shows more extreme bundling resulting in more isolated groups of
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Figure 24: Comparison of three different processed neural networks. Their param-
eter are highlighted according to their overall importance. On the left is
an untrained neural network, in the middle is the network trained with
basic settings and on the right trained using L1 regularization for the
original layer.

Figure 25: Comparison of three different processed neural networks. Their param-
eter are highlighted and colorized according to their importance vector.
On the left is an untrained neural network, in the middle is the network
trained with basic settings and on the right trained using L1 regulariza-
tion for the original layer.

Figure 26: Comparison of three different processed neural networks. Their pa-
rameter are highlighted and colorized according to their importance
regarding a single class. On the left is an untrained neural network, in
the middle is the network trained with basic settings and on the right
trained using L1 regularization for the original layer.
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nodes and edges and becomes clear in figure 26. An explanation could be
the sparsity in the resulting importance vector leading to more segregation
in the advecting process. The intra-group similarity increases, while the
cross-group similarity becomes smaller leading to the observed result.

7 Conclusion

The visualization method of neural networks with its underlying process-
ing seems to produce promising results. While the evaluation lacks direct
comparisons it still manages to proof its potential on basic problems regard-
ing neural networks. The novel approach presented in this thesis combines
the research field of network optimization with Edge Bundling and specific
rendering techniques in an intricate way.
More extensive research needs to be done to draw solid conclusion about
the presented method as it is only tested on a fairly simple subset of neural
networks. How the insights gained from this work could be used is ex-
plained in the next chapters.

7.1 Usability

The introduced method of generating importance values for an existing
neural network is promising regarding Network Optimization. It could be
used to identify problematic output nodes of trained neural networks and
as a pruning concept itself, which needs further evaluation to be compared
to existing methods. Another use-case could be in feature extraction for
single classifications by simply pruning parameters unnecessary for spec-
ified classifications, which is proven to work in the evaluation part of this
thesis. Instead of using complete layers singular parameters could be di-
rectly chosen.
There is potential in a visual tool that can be used for analysing neural net-
work parameters. The visualization could be used in an interactive tool
for targeted pruning of parameters, although the computation time of the
bundling process is not to be neglected. While the visualization of the re-
sulting 3D-model itself is real-time capable, the creation is not for moder-
ately to large neural networks. But an analysis tool could still be used with
prepared 3D-models, on which pruning parameters can be done in real-
time. Directly observing the performance for sample data is also possible,
depending on the inference time of the original neural network model. The
usability of such a tool in a professional setting ultimately needs to be eval-
uated by a group of experts. As for an educational sense it is arguably
sensible to find potential use. Comparing generated 3D models might be a
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feasible way of getting insights about potential issues of a model like low
generalization, although this needs a more extensive analysis on a wide
range of models.

7.2 Future work

The conceptualized method for extracting importance values uses subsets
of data to create importance values for these specific data sets. Instead of
splitting data regarding different classifications, it is possible to split the
data for different reasons. In cases where you have large amounts of artifi-
cially created data and a small set of real world data, it would be possible
to train the network on the complete data and select a subset of the created
model in regards to the importance for the expected data during inference.
Another aspect similar to the problem of poor generalization is redundancy
in neural networks. By bundling similar nodes this issue comes to mind
and there may lie untapped potential in identifying and reducing redun-
dancy instead of simply pruning by looking at the similarity of parameters
in the importance values.
For applying the method to extremely large neural networks optimiza-
tions like using octrees instead of a uniform grid for the bundling process
would be beneficial. Another way to improve performance would be to
increase the rendering time of the visualization by combining closely bun-
dled samples or edges instead of rendering the many overlapping edge
sample primitives.
So far only fully-connected layer are represented, but because of the nature
of the importance calculation the representation of various types of layers
seems feasible. In future works this method can be expanded for other
prominent layer types like convolutional layers.

The introduced visualization technique with the importance estimation for
neural network parameters proved to be a promising method, but needs a
lot more verification and refinement. In this thesis it is shown, that there is
potential in this type of visualization for neural network parameters, which
is worth further investigation.
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