
Epidemiological Modelling of the Spread
and Transmission of Infectious Diseases

by

Moritz Maximilian SCHÄFER

Baumbacher Straße 9
56410 Montabaur, Germany

Accepted Dissertation thesis for the partial fulfilment of the requirements
for the degree of DOCTOR RERUM NATURALIUM

in the

University of Koblenz

Department 3: Mathematics / Applied Sciences
Institute of Mathematics

1st Supervisor:
Prof. Dr. Thomas GÖTZ

2nd Supervisor:
Prof. Dr. Heikki HAARIO

Examiners:
Prof. Dr. Thomas GÖTZ
Prof. Dr. Michael HINZE
Prof. Dr. Christian FISCHER

Submission:
July 20, 2023

Oral exam:
December 13, 2023





iii

“Mathematics may not teach us how to add love or subtract hate, but it gives us every reason
to hope that every problem has a solution.”

– unknown
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Abstract

In the last years, the public interest in epidemiology and mathematical modeling of
disease spread has increased – mainly caused by the COVID-19 pandemic, which
has emphasized the urgent need for accurate and timely modelling of disease trans-
mission. However, even prior to that, mathematical modelling has been used for
describing the dynamics and spread of infectious diseases, which is vital for develop-
ing effective interventions and controls, e.g., for vaccination campaigns and social
restrictions like lockdowns. The forecasts and evaluations provided by these models
influence political actions and shape the measures implemented to contain the virus.

This research contributes to the understanding and control of disease spread,
specifically for Dengue fever and COVID-19, making use of mathematical models and
various data analysis techniques. The mathematical foundations of epidemiological
modelling, as well as several concepts for spatio-temporal diffusion like ordinary
differential equation (ODE) models, are presented, as well as an originally human-
vector model for Dengue fever, and the standard (SEIR)-model (with the potential
inclusion of an equation for deceased persons), which are suited for the description
of COVID-19. Additionally, multi-compartment models, fractional diffusion models,
partial differential equations (PDE) models, and integro-differential models are used
to describe spatial propagation of the diseases.

We will make use of different optimization techniques to adapt the models to med-
ical data and estimate the relevant parameters or finding optimal control techniques
for containing diseases using both Metropolis and Lagrangian methods. Reasonable
estimates for the unknown parameters are found, especially in initial stages of pan-
demics, when little to no information is available and the majority of the population
has not got in contact with the disease. The longer a disease is present, the more
complex the modelling gets and more things (vaccination, different types, etc.) appear
and reduce the estimation and prediction quality of the mathematical models.

While it is possible to create highly complex models with numerous equations
and parameters, such an approach presents several challenges, including difficulties
in comparing and evaluating data, increased risk of overfitting, and reduced general-
izability. Therefore, we will also consider criteria for model selection based on fit and
complexity as well as the sensitivity of the model with respect to specific parameters.
This also gives valuable information on which political interventions should be more
emphasized for possible variations of parameter values.

Furthermore, the presented models, particularly the optimization using the
Metropolis algorithm for parameter estimation, are compared with other established
methods. The quality of model calculation, as well as computational effort and appli-
cability, play a role in this comparison. Additionally, the spatial integro-differential
model is compared with an established agent-based model. Since the macroscopic
results align very well, the computationally faster integro-differential model can now
be used as a proxy for the slower and non-traditionally optimizable agent-based
model, e.g., in order to find an apt control strategy.
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Abstract (in German)

In den vergangenen Jahren ist das öffentliche Interesse an der Epidemiologie und
mathematischen Modellierung der Ausbreitung von Krankheiten gestiegen. Dies
wurde hauptsächlich durch die COVID-19-Pandemie verursacht, die die Notwendig-
keit einer genauen und zeitnahen Modellierung der Krankheitsübertragung deutlich
gemacht hat. Jedoch wurde bereits zuvor mathematische Modellierung genutzt, um
die Dynamik und Ausbreitung von Infektionskrankheiten zu beschreiben. Diese
Modelle sind entscheidend für die Entwicklung wirksamer Interventionen und Steue-
rungsmaßnahmen wie Impfkampagnen und etwaiger sozialer Einschränkungen (z.B.
Lockdowns). Die Prognosen und Analysen, die aus diesen Modellen resultieren, ha-
ben politische Entscheidungen beeinflusst und die Maßnahmen geprägt, die ergriffen
wurden, um das Virus einzudämmen.

Diese Forschungsarbeit möchte zum Verständnis und zur Kontrolle der Ausbrei-
tung von Krankheiten, insbesondere von Dengue-Fieber und COVID-19, beitragen.
Dabei werden verschiedene mathematische Modelle und Datenanalysetechniken
verwendet. Die mathematischen Grundlagen der epidemiologischen Modellierung
sowie verschiedene Konzepte für die räumlich-zeitliche Diffusion, wie beispiels-
weise Mensch-Vektor-Modelle, Modelle gewöhnlicher Differentialgleichungen (ODE),
Multi-Compartment-Modelle, Modelle für fraktionale Diffusion, partielle Differen-
tialgleichungsmodelle und integro-differentielle Modelle, werden in dieser Arbeit
vorgestellt.

Es werden zudem verschiedene Optimierungstechniken verwendet, um die Mo-
delle an medizinische Daten anzupassen und die relevanten Parameter abzuschätzen.
Außerdem werden optimale Steuerungstechniken zur Eindämmung von Krankhei-
ten mittels Metropolis- und Lagrange-Methoden benutzt. Dies ermöglicht sinnvolle
Schätzungen für unbekannte Parameter, insbesondere in den Anfangsphasen von
Pandemien, wenn nur wenig oder gar keine Daten verfügbar sind und die Mehr-
heit der Bevölkerung noch keinen Kontakt mit der Krankheit hatte. Je länger eine
Krankheit besteht, desto komplexer wird deren Modellierung und es treten mehr
Faktoren (wie Impfungen und verschiedene Mutationen) auf, die die Qualität der
mathematischen Modelle beeinträchtigen.

Obwohl es möglich ist, hochkomplexe Modelle mit vielen Gleichungen und Pa-
rametern zu erstellen, birgt ein solcher Ansatz mehrere Herausforderungen. Dazu
gehören Schwierigkeiten bei der Vergleichbarkeit und Bewertung von Daten, ein er-
höhtes Risiko von Überanpassung und eine verringerte Verallgemeinerbarkeit. Daher
werden auch Kriterien für die Auswahl von Modellen, basierend auf Anpassung und
Komplexität sowie die Sensitivität des Modells in Bezug auf bestimmte Parameter
berücksichtigt. Dies liefert auch weiterführende Informationen darüber, welche po-
litischen Interventionen bei möglichen Variationen der Parameterwerte vorrangig
angegangen werden sollten.

Weiterhin werden die vorgestellten Modelle, insbesondere die Optimierung mit-
hilfe des Metropolis-Algorithmus, die zur Parameterschätzung herangezogen wird,
mit anderen etablierten Methoden verglichen. Hierbei spielen die Qualität der Mo-
dellberechnung, aber auch Rechenaufwand und Einsetzbarkeit eine Rolle. Ebenfalls
wird das räumliche integro-differentielle Modell mit einem etablierten agentenbasier-
ten Modell verglichen. Da die makroskopischen Ergebnisse sehr gut übereinstimmen,
kann man nun das – auf den Aufwand bezogen – schnellere integro-differentielles
Modell als Proxy für das langsamere und nicht herkömmlich optimierbare agenten-
basierte Modell verwenden, um z.B. eine angemessene Kontrollstrategie zu finden.
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Chapter 1

Introduction

1.1 Motivation

In January 2020, media reported on the appearance of a new pneumonia of unknown
origin. This disease, caused by the novel coronavirus SARS-CoV-2, later referred to
as COVID-19 or Corona (mainly in Germany), would go on to influence economics,
politics and the entire community down to its very core. It has spread rapidly across
the globe, leading to widespread illness and death. While this was not the first and
most likely will not be the last time that epidemics have had a significant impact
on global health and society, the unprecedented scale and speed of the pandemic
has highlighted the need for accurate and timely modelling of disease spread. Un-
derstanding the spread and dynamics of these diseases is crucial for developing
effective prevention and control measures. Therefore, mathematical models can pro-
vide insights into the transmission dynamics of the virus, as well as inform the design
and evaluation of interventions such as vaccination, mask wearing and distancing
measures.

Epidemiologists make use of those models to describe the current or former be-
haviour of the disease, validate them with medical data, identify important parameters
and predict the futural outcome under certain assumptions, which can later be utilised
in order to drive or justify political decisions. The modelling of disease dynamics has
been an important topic in applied mathematics for over 100 years, so that many of
the models used today are not entirely new; for example, models used to describe
other epidemics and pandemics such as Dengue fever behaviour can also be adapted
and expanded for modelling of the COVID-19 dynamics.

The objective of this thesis is to utilize mathematical models to enhance our
comprehension of the epidemiology of Dengue and COVID-19. The emphasis will be
on the creation and assessment of models that can be used to increase our knowledge
of the transmission process and potentially even advise political decisions. This
research will be grounded in the utilization of data that is relevant to the study, and
will encompass various techniques for data analysis and model evaluation. Various
numerical methods for the evaluation of those models will be presented and applied.
Additionally, the research will strive to identify important parameters via parameter
estimation, in order to provide a more accurate understanding of the disease(s); the
impact of various parameters with respect to the disease dynamics is also analyzed.
Considering the potential high costs associated with implementing control measures
such as lockdowns or specific interventions, including political, social, and financial
implications, it also becomes essential to develop optimal control strategies which
balance the reduction of infected with the costs of such measures.

With this in mind, the next section will provide a brief historical outline of epi-
demics and epidemiology, setting the stage for a deeper exploration of the role of
mathematical modelling in this field.
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1.2 A short historical outline

In this section, it is firstly differentiated between three types of disease outbreaks.
Thereon, a focus is taken on the two diseases that are considered in this thesis (Dengue
fever and COVID-19), and specific properties and the history of both diseases are
considered.

1.2.1 Endemics, Epidemics and Pandemics

An infectious disease that occurs recurrently or persistently within a specific region,
resulting in a similar number of infections each year, is defined as an endemic [1]. A no-
table example of an endemic disease is Malaria, a disease transmitted by mosquitoes
that is endemic in around 100 countries worldwide. Other examples include yellow
fever and Ebola.

When an infectious disease appears in a specific region and the number of cases
rapidly increases within a short period of time, it is referred to as an epidemic [2]. The
rate of growth and time frame are crucial factors in this distinction. Fast-growing
epidemics, such as Typhus and Cholera, often decrease quickly over time, while
slower-developing, yet more persistent, epidemics – such as HIV – may persist for
a longer period. Epidemics are often related to the seasonality of certain infectious
agents. For example, influenza and the common cold occur predominantly in the
winter; vector-borne infections, particularly those spread by mosquitoes, typically
occur during the breeding cycle, which is connected to rain or monsoon periods in
tropical regions, cf. World Health Organization (WHO) [3]. Epidemics may be caused
by an increase in virulence or the ’import’ of a disease to a new geographical area
with different conditions, according to the Centers for Disease Control and Prevention
(CDC) [4].

When an epidemic spreads quickly across regions and occurs worldwide, it is
called a pandemic [2]. This often applies to new or newly-mutated viruses. As more
and more people become infected with the disease or are vaccinated (in case of
existence of a vaccine), they typically gain a certain level of immunity to the disease,
resulting in the pandemic eventually becoming an endemic.

It is important to note that the distinction between endemic, epidemic, and pan-
demic is based on the time period and number of cases, and not on the severity or
fatality of the disease. The social, economic, and physical costs can be high, especially
in terms of deaths and long-term impacts on those infected or recovered. Adopting a
strategy that relies on the expectation that a pandemic will eventually transition to an
endemic state is often an inadequate approach.

An infectious disease is only able to spread by the presence of a pathogen. These
pathogens, which be found in humans, animals, or the environment, can take various
forms, including bacteria (e.g., tuberculosis), viruses (HIV, Dengue or COVID-19),
fungi, parasites, or prions. Transmission can happen through different means, includ-
ing person-to-person contact (HIV, COVID-19), through the air (influenza), through
vectors such as mosquitoes (e.g. Dengue or Malaria), through food (Cholera) or
vertically from mother to fetus (HIV).

Dengue Fever

The first records of a disease that is similar to Dengue are found in Chinese medical
encyclopedia from the Jin Dynasty (3rd–5th centuries), describing a "water poison"
associated with flying insects. In the 18th and 19th centuries, growing international
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trading and urbanization have prepared ideal conditions for mosquitoes of the type
aedes agypti, and thus the spread of Dengue to new regions and countries. However,
only a few epidemics per century were registered, primarily because of long shipping
routes which hindered the transmission of the vector. This drastically changed in
times of globalisation in the later half of the 20th century and resulted in increased
infection numbers in many tropical and subtropical countries [5].

The Dengue virus is not transmitted directly from human to human but via
vectors, which makes the fever a so-called vector-borne disease. The majority of the
vectors are mosquitoes of the species aedes albopictus and especially aedes aegypti [3].
These mosquitoes prefer high temperatures and high humidity throughout the entire
year. There are four main serotypes of Dengue, called DENV-1 to DENV-4. After
a bite of an infectious mosquito and a ’successful’ transmission of the disease, the
incubation of time of Dengue is typically one week. Infectious persons are also the
primary carrier to infect healthy mosquitoes in case of a bite. After recovery, the
formerly infective person is immune against all strains for about 12 weeks. Thereon,
the patient remains immune against the specific serotype he was infected with for a
long time, but is susceptible to all other types and can get reinfected with any other
strain [3].
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FIGURE 1.1: Reported Dengue cases in Jakarta, 2008–2016 [6].

As of today, Dengue fever is not only one of the most impactful diseases in
Southern Asia, but also affects millions of people worldwide. Its symptoms can
range from mild to severe, including fever, headache, muscle or joint pain, nausea,
vomiting, and skin rash. In some cases, more severe symptoms such as abdominal
pain, persistent vomiting, and nose or gum bleeding can occur. An occasionally
life-threatening form of Dengue is called Dengue haemorrhagic fever (DHF) that
especially occurs during reinfections [7]. There are between 100–400 million annual



6 Chapter 1. Introduction

infections with Dengue (roughly 1% of which is DHF) and 20,000–25,000 deaths
worldwide [3, 7] .

Since 2016, first vaccines to be used for persons who have been infected with
Dengue are available [8]; however, no vaccines that can be used in order to avoid
getting infected are available of today [9, 10]. Despite ongoing efforts to control
Dengue transmission (especially toward a reduction of the vector population), the
disease continues to spread to new areas and cause outbreaks, e.g. in France [11].
The growing infection rates and worldwide spread highlight the need for accurate
and reliable mathematical models of Dengue transmission, especially including the
seasonality and the life-cycle of the vectors.

As an example, which will be of interest in chapter 3, Jakarta, the capital of Indone-
sia, presents ideal conditions for mosquitoes to thrive, with daily mean temperatures
of 26–27 ◦C throughout the year and minimal seasonal variation. The city experiences
a significant rainy period from December to March, with each month receiving an
average rainfall of over 200 litres per square meter, alongside high humidity. In
contrast, during the period of July to September, the average rainfall drops below
100 litres per month, while the humidity remains relatively unchanged. The seasonal
dependence of Dengue cases in Jakarta has been investigated in several works such
as Olinky et al. [12] or Augerand-Véron and Sari [13]. Dengue cases in Jakarta from
2008–2016, showing strong seasonal dependence, are presented in Fig. 1.1.

COVID–19

The COVID-19 pandemic is one of the most significant global events of the 21st

century. It has affected millions of people worldwide, caused significant loss of life,
and had a severe impact on economies and societies. The origins of the disease can be
traced back to late 2019, when an outbreak of a new respiratory illness was reported
in the city of Wuhan, China. The disease soon spread across the globe, and the World
Health Organization declared it to be a pandemic in March 2020, after the virus had
spread to over 100 countries.

In response to the pandemic, scientists and researchers around the world worked
together to develop COVID-19 vaccines, with the first vaccine receiving emergency
use authorization in December 2020. In 2021, the focus shifted towards vaccine
distribution and administration. Despite progress in vaccination efforts, new variants
of the virus emerged, posing new challenges to the control of the pandemic, so that
the pandemic situation was still ongoing.

However, as more people have come into contact with the virus until 2022
(through vaccination and/or infection), as well as less severe variants of COVID-19
have become dominant, the fatality rate declined. On 25 May, 2022, the WHO declared
the end of the COVID-19 pandemic, while local epidemics could still pose a threat
to the population. One year later, on 5 May, 2023, WHO chief Tedros Ghebreyesus
declared the end to COVID-19 as a global health emergency [14].

Situation in Germany The first case of COVID-19 in Germany was reported on 27
January, 2020 in Bavaria [15]. Initially, the majority of cases were imported by travelers
from China, Iran or Italy, as well as tourists returning from ski holidays in Austria
and Italy. By the start of March, more than 100 cases had been reported in Germany,
and a (quasi-)exponential rise in the number of cases was visible. The first death cases
were reported on 9 March [16]. A rapid increase in cases and hospitalizations was
thereon followed by a decline in cases and hospitalizations during the summer of
2020. This time period is commonly referred to as the "first wave" of the pandemic in
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Germany. Fig. 1.2 shows the temporal evolution of COVID-19 cases in Germany from
26 January until 30 September, as reported by the Johns-Hopkins-University (JHU).
The weekly fluctuations derive from specific delays in registration on weekends.
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FIGURE 1.2: Confirmed daily COVID-19 cases in Germany during the
first wave [17].

Since then, Germany has implemented a series of measures to slow the spread of
the virus, including lockdowns, distancing measures, and the mandatory of wearing
masks. The country has also rolled out a mass vaccination campaign, at first with
a focus on the most vulnerable populations. Despite these efforts, the country has
encountered several further waves of infections, with numbers rising and falling de-
pending on the transmission rate of the current variant, the severity of the restrictions
and the success of the vaccination campaign. In response to the growing outbreak
in the first wave, the German federal government introduced measures to reduce
the spread of the disease on 16 March. Schools, kindergartens and universities were
closed, and on 22 March, these measures were tightened with a national curfew and
contact ban being implemented. People were advised to stay at home, leaving only
for work-related activities, necessary shopping, medical treatment or sports [18].

By the mid of April, these mitigation measures, but also the cautiousness of the
population, had shown some success, with the number of new infections declining
from its peak of 6,933 on 28 March to less than 1,000 from 2 May onwards. In May,
a relaxation of the imposed restrictions to social and economic life was announced.
On 10 June, only 16 new infection cases were detected [17]. In the mid of June,
travel-related restrictions were relaxed within Europe [19]. However, the pandemic
still progressed worldwide. By the end of August, new maxima for the daily cases
worldwide set another record for that time [20]. Towards the end of the summer
holidays in the first German states in mid to end of August, a second rise of case
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numbers was detected, with over 1,000 new infection cases per day [17]. The specific
impact of travellers on the disease dynamics was analyzed in the paper in chapter 5.

This second wave of the pandemic developed in the fall of 2020 and a resurgence
of cases and hospitalizations was seen, leading to a nationwide lockdown from
December 2020 to spring 2021. The number of cases and hospitalizations peaked in
December, and then slowly decreased in early 2021. The third wave of the pandemic
began in the spring of 2021, and saw a spike in cases and hospitalizations due to the
emergence of new variants of the virus. This wave was characterized by a higher
number of cases among younger age groups. By the summer of 2021, Germany had
made significant progress in controlling the spread of the virus and vaccinating its
population. The country began to ease restrictions, allowing businesses and cultural
events to reopen and allowing travel within Europe. Nevertheless, a fourth wave
of the pandemic started in the end of 2021, which was characterized by a further
increase in cases and hospitalizations, as well as the emergence of new variants of the
virus, particularly the B.1.1.7 variant first identified in the United Kingdom. In 2022,
less severe variants of the virus dominated and several measures were easened. The
mandatory of wearing masks was stepwise disestablished until 2023.

Overall, the pandemic in Germany has been characterized by fluctuations in
the number of cases and hospitalizations, with several peaks and declines over the
course of the past two years. These fluctuations have been influenced by a variety
of factors, including the emergence of new variants of the virus, changes in social
and economic activity, and the implementation of various public health measures.
Comparing different waves of a disease outbreak poses challenges due to various
factors such as differences in the method of infection registration, variations in the
implementation of lockdown and testing strategies, and genetical evolution of the
virus. For example, accommodating changes in strategies of containing the disease or
measuring the amount of infected can be achieved by incorporating several piecewise
constant transmission rates or detection rates, which we will see in chapters 4 and
5. However, estimating parameters in a federal and non-homogeneous structure
with numerous time-restricted measurements becomes increasingly difficult due to
cross-correlation and the small sensitivity values associated with the process. This
is also a reason why the cumulative data presented in Figs. 1.3 and 1.4 for the time
span of 2020–2022 have to be taken with caution.

1.2.2 Medical data of Dengue fever and COVID-19

The thesis will restrict its analysis of Dengue fever dynamics to epidemics in Indonesia.
An important source of medical data in this country are the local health departments.
These departments collect data on Dengue cases within their respective regions.
They also work closely with the healthcare facilities within their regions to provide
treatment and care to those affected by Dengue and are responsible for providing
regular updates to the Ministry of Health [21] which collects and reports data on
Dengue cases from various healthcare facilities, including hospitals and clinics. This
information is used to develop national and regional level surveillance reports. The
infection data we will use in chapter 3 to fit the parameters, is originating from private
communications with Dipo Aldila [6].
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FIGURE 1.3: Evolution of the cumulative COVID-19 infections in
Germany from 2020–2022 [17], linearly scaled.
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FIGURE 1.4: Evolution of the cumulative COVID-19 infections in
Germany from 2020–2022 [17], semi-logarithmically scaled.
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For the COVID-19 data in Germany, confirmed cases and deaths were collected
by the Robert Koch Institute (RKI) [16], the country’s national public health institute.
The RKI received data from the country’s 16 states on a daily basis, and published
this information on its website (see Fig. 1.2). Additionally, the RKI also conducted
surveillance of COVID-19 cases through sentinel testing of general practitioners,
which helps to provide an estimate of the number of people with symptoms of the
disease in the population. This data was used to inform the decisions made by
German authorities regarding measures such as lockdowns and social distancing
guidelines. Furthermore, data on hospitalizations and intensive care unit (ICU)
admissions were collected by the German Interdisciplinary Association for Intensive
Care and Emergency Medicine (DIVI) and the German Hospital Federation (DKG).
Additionally, data on vaccination coverage was also collected and published by the
RKI.

To obtain the most accurate and up-to-date information on the spread of COVID-
19 in Germany, it is important to consult multiple sources of data. This will allow for
a more complete understanding of the pandemic and help inform decisions about
how to respond. In addition to data from the RKI, other organizations also tracked
COVID-19 cases in Germany and worldwide. From 21 January onwards, WHO’s
daily situation reports [20] or Johns Hopkins University [17] (JHU) contain the latest
figures on confirmed cases and deaths for almost all countries. The Johns Hopkins
University (JHU) Center for Systems Science and Engineering (CSSE) also provides
detailed data on confirmed cases, deaths, and recoveries at the national and regional
level. The JHU data is widely used by researchers and media outlets, and is updated
on a daily basis. In chapters 4 and 5, we relied on the data published by the JHU due
to their rapid updates and easy accessibility.

1.3 Epidemiology

Epidemiology is the study of the patterns, causes, and effects of health and disease
conditions in defined populations. It is the cornerstone of public health and informs
policy decisions and evidence-based practice by identifying risk factors for disease
and targets for preventive healthcare. The origins of epidemiology can be traced
back to ancient civilizations, where observations on the spread of disease were
recorded. In the the 18th and 19th centuries, epidemiology began to develop as a
scientific discipline. John Snow, a British physician, is considered to be the father of
modern epidemiology for his work in identifying the source of a cholera outbreak in
London in 1854. He used a map to plot the locations of cholera cases and identified a
contaminated water pump as the source of the outbreak [22]. In the late 19th and early
20th centuries, advances in microbiology and public health led to further development
of epidemiological methods. The introduction of vaccination and improvements in
sanitation also contributed to a decline in infectious disease deaths.

In 1902, British physician Sir Ronald Ross was awarded the Nobel Prize in
Medicine for his work on malaria, particularly for his discovery that anopheles
mosquitoes are carriers of the disease. Despite his groundbreaking contribution,
Ross faced criticism for his belief that malaria could be eradicated by reducing the
number of mosquitoes. Therefore, he used mathematical models to underpin his
statement. One of his models, which takes on similar assumptions as an SI-model, is a
mathematical representation of the transmission dynamics of malaria. It starts with
several definitions and takes into account various factors that impact the spread of
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malaria [23, 24]. For the mathematical background of the used differential equations,
which is anticipated here, refer to sections 2.1 and 2.3.

• Population N: The total number of individuals, assumed to be constant in time.

• Infected I(t): The individuals which are infected with the disease and infectious
(and thus infectious for mosquitoes) at time t.

• Vector population M: The total number of vectors, in this case anopheles
mosquitoes, also assumed to be constant in time.

• Infected vectors V(t): The amount of infected mosquitoes (and thus infectious
for humans) at time t. Contact with a susceptible individual can therefore lead
to transmission of the disease.

• Frequency f of bites: The amount of times a single vector bites humans in a
certain time unit.

• Transmission probability p: Given a bite of an infected mosquito on a non-
infected person – or a bite of a non-infected mosquito on an infected person –,
this denotes the probability that a previously uninfected gets infected with the
disease.

• Recovery rate r: The rate at which humans recover from the disease.

• Death rate m: The fraction of mosquitoes which die in a certain time interval.

During a time interval dt, any infected mosquito thus bites f dt humans, of which
the fraction (N − I(t))/N is not yet infected, and a transmission occurs with the
probability p. This way, he computed the amount of newly infected humans in a
certain time interval by

I′(t) = f p V(t) · N − I(t)
N

− rI(t). (1.1)

Any non-infected mosquito thus bites f dt humans, of which the fraction I(t)/N is
infected, and a transmission occurs with the probability p. This way, he computed
the amount of newly infected mosquitoes in a certain time interval by

V ′(t) = f p (M−V(t)) · I(t)
N
−mV(t). (1.2)

As Malaria is permanently existent in the observed African countries, he restricted
his observations on the stationary points of the system, where the amount of infected
humans and mosquitoes are constant in time, i.e., I′(t) = V ′(t) = 0. A trivial solution
is I∗ = V∗ = 0, equivalent to the absence of Malaria. It is easy to show that another
stationary equilibrium exists at

I∗ = N · 1− rmN/( f 2 p2M)

1 + rN/( f pM)
, (1.3)

V∗ = M · 1− rmN/( f 2 p2M)

1 + m/( f p)
. (1.4)

If the amount of mosquitoes lies above a certain threshold M > rmN/( f 2 p2), the
stationary solutions satisfy I∗ > 0 and V∗ > 0, supporting Ross’ assumption qual-
itatively. The model allows for a better understanding of the interactions between
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the disease and its environment, and helps to identify potential control measures
for malaria. However, despite searching for realistic parameter values, Ross could
not find meaningful quantitative results as any numerical results were very sensitive
towards small changes of the values. Nevertheless, this model remains an important
tool for epidemiologists and public health professionals to understand and control
the spread of malaria, and Ross’ work was a significant contribution to the field of
epidemiology and demonstrated the importance of using mathematical models to
understand complex health problems.

During the 20th century, the role of epidemiology in understanding the causes of
chronic diseases such as cancer and heart disease grew significantly. An example is
the Framingham Heart Study, which is one of the longest-running epidemiological
studies (since 1948) which has provided important insights into risk factors for heart
disease [25]. Epidemiology continues to evolve as new technologies and data sources
become available. The field of molecular epidemiology, which uses genetic and
molecular markers to study the spread of disease, is one area of growth. As of today,
epidemiology plays a crucial role in the identification, monitoring and control of
emerging infectious diseases, not only since COVID-19 and its worldwide impact.

1.4 Structure of the thesis

Part I continues with a comprehensive theoretical overview in chapter 2, serving as the
foundation for understanding the contributions presented in Part II. It encompasses
the fundamental definitions, theorems, and examples of ordinary, partial, fractional
and integral differential equations, along with the corresponding solution theory,
including commonly used numerical methods. Also, the most important concepts
in epidemiology are listed and explained. Further on, optimization techniques like
the Markov-chain Monte-Carlo method and the Forward-Backward method using
Lagrangian multipliers are presented.

Part II showcases six research papers, four of which have already been published,
highlighting the findings of our studies. Chapter 3 discusses the temporal modelling
of Dengue in Jakarta using a SIRUV-model, including model reduction through
time-scale separation and a transition from the human-vector based SIRUV-model
to an SIR-model with a time-dependent transmission rate. Also, it is made usage
of periodic transmission rates and a mobility matrix to include spatial spread. In
chapter 4, we model the epidemics of the initial phase of COVID-19 in Germany, and
make use of parameter estimation to identify important values using the Metropolis
algorithm. Chapter 5 considers the impact of travellers and the effect of the policies in
summer 2020 in Germany, and makes a comparison of the outcomes of the Metropolis
algorithm and an adjoint based approach. A more theoretical study of fractional diffu-
sion is presented in chapter 6, which includes several numerical methods to deal with
various boundary conditions in fractional diffusion equations, yet also introduces a
simple epidemiological model with fractional diffusion. In chapter 7, we consider
an epidemiological model with diffusion and model the spatio-temporal spread of
COVID-19 using the example of a German district. Lastly, chapter 8 introduces an
integro-differential model and use Lagrange multipliers to optimize the control (i.e.,
political measures) in order to regulate the disease dynamics under specific condi-
tions, taking both the amount of infected and the political and economical costs of a
lockdown into account, with a comparison to the results of an agent-based model.

In Part III, the research contributions are summarized and discussed and an
outlook on potential future research is provided.
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Chapter 2

Mathematical and Epidemiological
Tools

For readers of this thesis, pre-knowledge in linear algebra, calculus, integral theory,
stochastics and statistics is required. However, some of the most important defi-
nitions, theorems and concepts that are required for understanding the upcoming
mathematical theory and the research papers in Part II are introduced here.

2.1 Ordinary differential equations

2.1.1 Definitions

Before dealing with relevant models for disease dynamics, the most important math-
ematical tool in modelling the temporal evolution of quantities is introduced: the
fundamental research findings related to ordinary differential equations. This will
encompass a comprehensive overview of the theoretical foundations for finding
solutions, as well as the numerical techniques used.

Definition 2.1 (Ordinary Differential Equations). Let Ω ⊂ R× (Rm)n be an open set
and let f : Ω→ Rm be continuous. An ordinary differential equation (ODE) of order n
is an equation of the form

u(n)(t) = f
(

t, u(t), u′(t), u′′(t), . . . , u(n−1)(t)
)

. (2.1)

Let the function u : I ⊂ R→ Rm be n-times continuously differentiable, i.e., u ∈ Cn,
it is called a solution of the ordinary differential equation if it satisfies eqn. (2.1) and(

t, u(t), u′(t), u′′(t), . . . , u(n−1)(t)
)
∈ Ω. (2.2)

Definition 2.2 (Types of ODEs). There are several types of ordinary differential
equations, including:

• First-Order ODEs: Equations involving the first derivative of a dependent
variable with respect to an independent variable, which are of the form

u′(t) = f (t, u).

• Second-Order ODEs: Equations involving the second derivative of a dependent
variable with respect to an independent variable, which are of the form

u′′(t) = f (t, u, u′).
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• Linear ODEs: Equations of the form

n−1

∑
k=0

ak(t)u(k)(t) = b(t).

• Homogeneous ODEs: Equations in which b(t) is equal to zero, e.g.,

u′(t) + u(t) = 0.

• Nonhomogeneous ODEs: Equations in which b(t) is not equal to zero, e.g.,

u′(t) + u(t) = t + 1.

• Nonlinear ODEs: Equations in which the coefficients of the derivatives and
dependent variable are nonlinear, e.g.,

u′(t) = t2eu(t).

• Autonomous ODEs: Equations in which the right-hand side does not depend
explicitly on the independent variable, e.g.,

u′(t) = u2(t).

In the following, we will mainly restrict on autonomous and generally nonlinear
ODEs.

Definition 2.3 (Initial Value Problem). Let I ⊂ R be an interval and D ⊂ I ×Rn×k be
the domain of definition of u with k ∈ N. Finding a continuously differential function
u : D → R satisfying the (ordinary) differential equation (ODE)

u′(t) = f (t, u(t)) for all t ∈ R,
u(t0) = u0 for t0 ∈ I (2.3)

is called an initial value problem (IVP).

The theory of ODEs makes use of some results from functional analysis, which
will be presented in the following.

2.1.2 Some results from functional analysis

Definition 2.4 (Banach Space). Let X be a vector space over the scalar field K (typi-
cally, K = R or K = C), and let ‖·‖ be a norm. Let the metric d(x, y) := ‖x− y‖ be
induced over the norm. Any normed space (X, ‖·‖) is called a Banach space if every
Cauchy sequence with elements out of X converges with respect to the metric d.

This especially holds true for the space of continuous functions V = C(I, Rm) and
the infinity norm ‖·‖∞.

Definition 2.5 (Operator, Functional). A mapping T : D → W for a subset D ⊂ V
in two real and normed vector spaces (V, ‖·‖V) and (W, ‖·‖W) is referred to as an
operator. It is called a functional if W = R or W = C. Further on, T is called

• linear if T[αu + βv] = αT[u] + βT[v] for all α, β ∈ R and for all u, v ∈ D.
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• continuous if for all sequences un satisfying lim
n→∞

un = u0, it holds true that

lim
n→∞

T[un] = T[u0].

• Lipschitz (continuous) if ‖T[u]− T[v]‖W ≤ q ‖u− v‖V for a constant q > 0 and
for all u, v ∈ D.

• a contraction if T is Lipschitz with q ∈ [0, 1).

• bounded if ‖T[u]‖W ≤ C ‖u‖V for a C > 0 and for all u ∈ D.

Theorem 2.6 (Banach’s fixed point theorem). We consider a complete metric space
(X, d), typically a Banach space with the distance metric d(x, y) = ‖x− y‖. Let
M ⊂ X be a non-empty and closed set and let φ : M → M be a contraction, i.e.,
d(φ(x), φ(y)) ≤ k · d(x, y) for a k ∈ [0, 1) and all x, y ∈ M. Further , let xn+1 := φ(xn)
be an iterative sequence with x0 ∈ M. Then there exists a unique x̃ ∈ M satisfying
φ(x̃) = x̃ and lim

n→∞
xn = x̃.

Proof. For this proof, cf. e.g. Walter [1].

2.1.3 Existence and uniqueness of solutions

With those results, we can now investigate the existence and uniqueness of solutions
of IVPs.

Theorem 2.7 (Picard-Lindelöf theorem). Consider an IVP of the type as in Def. 2.3,
let the function f be continuous wrt t and Lipschitz wrt u on D. Then the IVP (2.3)
admits a unique solution on I.

Proof. A proof of the theorem can be found in Arnold [2].

Another important theorem, in case the function is not Lipschitz, gives the exis-
tence (not uniqueness) of solutions if the function f is at least continuous.

Theorem 2.8 (Peano’s theorem). Given a compact interval I ⊂ R and m ∈ N, a
closed and (simply) connected subset G ⊂ Rm, another set Ω := I × G, a bounded
function f ∈ C(Ω), and ξ, η ∈ Ω. Then, the IVP u′(t) = f (x, u) with u(ξ) = η has at
least one solution in Ĩ := I ∩ {|x− ξ| < δ/‖ f ‖∞}, where δ is defined as the distance
of η and ∂G.

Proof. A detailled proof of this theorem, built on the fixed point theorems of both
Arzelà-Ascoli and Schauder, can e.g. be found in Walter [1].

2.1.4 Analytical solution methods

In several cases, the solution of IVPs can be explicitly calculated by various techniques,
e.g., by separation of variables (cf. Aulbach [3]):

Example 2.9. Let u′(t) = α · u, with some initial condition u(0) = u0. To solve this
ODE, the separation of variables involves isolating the variable u on one side of the
equation and the variable t on the other side. Solving the ODE by separation of
variables, we get the exponential growth function

ln |u| = αt + c,

u(t) = ceαt = u0eαt, (2.4)
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where c is a constant of integration and is calculated by the initial condition u(0) = u0.
The solution along the directional field can be seen in Fig. 2.1 for parameter choices of
α = 1/3 and u0 = 1. An example of this exponential growth in epidemiology can be
found in the early stages of a disease outbreak.
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FIGURE 2.1: Directional fields and solution of the ODE in Ex. 2.9.

Example 2.10. Let u : R → R2, u(t) = (x(t), y(t))T and α > 0. Also let x + y = 1.
Consider the following equations:

x′(t) = −αxy, x(0) = x0, (2.5a)
y′(t) = αxy, y(0) = y0. (2.5b)

To solve the system, we can substitute y = 1− x into the second equation to obtain a
single first-order ordinary differential equation:

dx
dt

= −αx(1− x) (2.6)

First, the variables are seperated by moving terms involving x to one side and terms
involving t to the other side, so that the integrated equation looks as follows:

∫ dx
x(1− x)

= −
∫

α dt (2.7)

After some mathematical manipulations, we find

x(t) =
1

ceαt + 1
. (2.8)
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To determine the constant c, we use the initial condition x(0) = x0 and find

c =
1− x0

x0
=

y0

x0
. (2.9)

This gives an analytic solution to a simple SI-model which is one of the basic tools in
this work. More complicated models, where an analytical solution can not be found
that easily, are presented in chapter 2.3 and several papers in part II.

2.1.5 Numerical solution methods

In many of the upcoming problems, however, we can only solve the problems nu-
merically as no analytical solution methods for the (complex) problems are available.
Therefore, we make use of numerical methods. One of the most simple ones is the

Definition 2.11 (Euler method). Given the IVP as of Def. 2.3, we discretize the
derivative u′(t) using the forward difference

u′(t) ≈ u(t + h)− u(t)
h

, (2.10)

such that

u(t + h) ≈ u(t) + h · f
(

t, u(t), u′(t), . . . , u(k)(t)
)

. (2.11)

We discretize of the previously continuous time interval [t0, T] into ti = t0 + (i− 1)h
for all i = 1, . . . , n and h = (T − t0)/n, such that ui := y(t = ti) is defined over

ui+1 = ui + h · f (ti, xi). (2.12)

In this notation, ψ(ti, ui) = f (ti, ui) is called increment function of the method. We
can also discretize the right-hand side such that we receive an implicit Euler method,
which in general leads to a non-linear equation we have to solve in each step:

ui+1 = ui + h · f (ti+1, ui+1) (2.13)

Definition 2.12 (Consistency). For an IVP of the form (2.3), let ψ be the increment
function. Then the consistency error eh is defined as

eh(t, u) =
u(t + h)− u(t)

h
− ψ(t, u, h). (2.14)

For the explicit Euler method, this reads as ψ(t, u, h) = f (t, u). The method is
consistent if for h → 0, it holds |eh| → 0 for all t0 < t < T. If eh(t, u) = O(hp), then
the system is consistent of order p.

Both Euler methods are first-order consistent, such that the error is linearly depen-
dent on the step size. A classical example for higher-order schemes is the so-called
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Definition 2.13 (Runge-Kutta scheme). Given an IVP as of Def. 2.3, the (fourth-order)
Runge-Kutta scheme reads as follows:

k1 = f (ti, xi), (2.15a)

k2 = f
(

ti +
h
2

, xi +
h
2

k1

)
, (2.15b)

k3 = f
(

ti +
h
2

, xi +
h
2

k2

)
, (2.15c)

k4 = f (ti + h, xi + hk3) , (2.15d)

ui+1 = ui +
h
6
(k1 + 2k2 + 2k3 + k4) . (2.15e)

Higher-order schemes are possible by using more grid points for each calculation
and/or adaptive step sizes hi. For this we introduce the notation via the

Definition 2.14 (Butcher tableau). Let ψ(t, u, h) : [t0, T]×R×R+ → R be the incre-
ment of a numerical one-step or multi-step method, defined over the step functions
ki, i = 1, . . . , n:

ki(t, x, h) = f

(
ti + cih, x + h

n

∑
i=1

aijk j

)
, (2.16)

ψ(t, x, h) =
n

∑
i=1

biki. (2.17)

Then the coefficients bi, ci and aij are collected in the Butcher tableau as follows:

c A
bT (2.18)

For the Runge-Kutta scheme as of eqns. (2.15), the Butcher tableau has the following
form:

0 0
1
2

1
2 0

1
2 0 1

2 0
1 0 0 1 0

1
6

1
3

1
3

1
6

The standard solvers in MATLAB and PYTHON use a Runge-Kutta scheme RK4(5)
according to Fehlberg, which is of order O(h5). It is a type of adaptive step size
control method, which means that the step size h is adjusted during the computation
to ensure a desired level of accuracy. For more information, refer e.g. to Deuflhard
[4], p. 209.

The RK4(5) method uses four stages, as in the standard Runge-Kutta method, yet
additionally includes a fifth stage to estimate the error in the solution. This is done
by combining a fourth-order and a fifth-order method to approximate the solution at
each step, and then comparing the results. If the error exceeds a certain tolerance, the
step size is decreased, and if the error is below the tolerance, the step size is increased.

For the Butcher tableau representation, we require two different vectors b1 and b2:
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1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 − 7200

2197
7296
2197

1 439
216 -8 3680

513 − 845
4104

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40
25

216 0 1408
2565

2197
4104 − 1

5 0
16

135 0 6656
12825

28561
56430 − 9

50
2
55

Using the increment ψ1 leads to a Runge-Kutta method of order p = 5, while ψ2 leads
to a Runge-Kutta method of order p = 4. We calculate the update of the step size by

hnew = min
(

hmax, qh, h p+1

√
ρτ

ε

)
, (2.19)

with hmax as a maximum bound on the step size h, τ as the difference of the numerical
solutions, and ρ, q being two arbitrary parameters. Typically, it is set q ≈ 5 and
ρ ∈ [0.5, 0.75]. The error between those two methods is as usual denoted by

TE = |ψ1 − ψ2| . (2.20)

If TE > ε, the current step is repeated with hnew, otherwise we move on to the next
step. For order schemes, e.g. the eigth-order scheme of Dormand-Prince, refer e.g. to
Deuflhard [4], p. 209.

2.1.6 Equilibria and stability

Definition 2.15 (Equilibrium). Let f : Rn → Rn be a continuously differentiable
function, and let the resulting autonomous ODE u′(t) = f (u(t)). Then, a stationary
solution u∗ : R→ Rn with f (u∗) = 0 is called an equilibrium of the ODE. It has to be
noted that the equilibria are independent of the respective initial condition.

Example 2.16. Reconsider Ex. 2.10. The equilibria for eqn. (2.6) are x∗1 ≡ 0 and
x∗2 ≡ 1.

At any of the equilibria, we aim to observe on how the systems behave given
small disturbances. Therefore, we will make use of the stability theory.

Definition 2.17 (Stability). For an α > 0, let f be a continuous function on the space

Sα := {(t, y) : 0 ≤ t < ∞, ‖y− u(t)‖ < α}. (2.21)

A solution u(t) of u′ = f (t, u) on the interval [0, ∞) is called stable, if for any ε > 0
and t ∈ R+, there exists a δ = δ(ε) > 0 such that for all solutions λ with initial
values λ0 ∈ Rn with ‖λ0 − u(0)‖ < δ, the solutions λ(t) exist for all t ≥ 0 and satisfy
‖λ(t)− u(t)‖ < ε. It is called asymptotically stable, if it is stable and additionally it
holds

lim
t→∞
‖λ(t)− u(t)‖ = 0. (2.22)

It is called unstable if it is not stable. Summing things up, this means that if u(t)→ u∗

in a neighbourhood of u∗ for t→ ∞, then the equilibrium is stable, otherwise instable.

To prove the stability or instability of an equilibrium of linear autonomous sys-
tems, we introduce the
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Definition 2.18 (Jacobian, Hessian). Let f : Rn → Rn be a function whose first-order
partial derivatives exist on Rn. Then, the Jacobian of this function reads as

J f =


∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

. . . ∂ fn
∂xn

 (2.23)

The Hessian of this function reads as

H f =


∂2 f1
∂x2

1
. . . ∂2 f1

∂x1∂xn

...
. . .

...
∂2 fn

∂xm∂x1
. . . ∂2 fn

∂x2
n

 (2.24)

Definition 2.19. Given a continuously differentiable function f : Rn → Rn and a
stationary point u∗ of the linear and non-autonomous ODE u′ = A(t)u + b(t), where
A(t) : R+ → Rn×n and b(t) : R+ → Rn are continuous functions. Let D f (u∗) be the
Jacobian of f evaluated at u∗. Then u∗ is called

• stable if the real part <(λ) ≤ 0 for all λ ∈ σ
(

D f (u∗)
)
.

• asymptotically stable if <(λ) < 0 for all λ ∈ σ
(

D f (u∗)
)
.

• unstable if <(λ) > 0 for at least one λ ∈ σ
(

D f (u∗)
)
.

For non-linear ODEs, which we will mainly consider in the upcoming epidemio-
logical models, we have to make use of linearization, which can be done applying the
Taylor expansion around the stability point, i.e.,

f (u) = f (u∗) + f ′(u∗)(u− u∗) +O(|u− u∗|2). (2.25)

This leads us to the following

Definition 2.20 (Asymptotic Stability). Given a continuously differentiable function
f : Rn → Rn and a stationary point u∗ of the non-linear, but autonomous ODE
u′(t) = f (u(t)), let D f (u∗) be the Jacobian of f evaluated at u∗. Then the stationary
solution u∗ is asymptotically stable if for all λ ∈ σ(D f (u∗) it holds <(λ) < 0 . It is
unstable if there exists at least one λ̃ ∈ σ(D f (u∗) satisfying <(λ̃) < 0.

This means, that the asymptotic stability or non-stability of the linearization leads
to asymptotic stability or non-stability of the nonlinear problem. However, if the
linearized problem is ’only’ stable, no direct statement about the nonlinear problem is
possible. Another technique to show stability are Lyapunov functions (cf. e.g. Aulbach
[3], Walter [1] or Deuflhard and Bornemann [4]).

An aspect we will also consider in the contributions is the dependence of the
solution u with respect to certain parameters, e.g., the parameter α in Ex. 2.10.

Definition 2.21 (Sensitivity). Let f : Rn → Rn be a continuously differentiable
function and λ =

(
λ1, . . . , λp

)T ∈ Rp. Consider the following IVP:

u′(t) = f (t, u, λ), u(t0) = u0(λ). (2.26)
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Then

σi(t) :=
∂

∂λi
u(t, λ) (2.27)

is called the sensitivity of u wrt the parameter λi. For all i = 1, . . . , p, the sensitivity
can be computed by (cf. [5])

σ′i =
∂ f
∂u
· σi +

∂ f
∂λi

for all t ∈ R,

σi(t0) =
∂u0

∂λi
. (2.28)

Example 2.22. Again we consider a problem similar to Ex. 2.10. Let λ = (α, β)T and
let the IVP be defined as follows:

x′(t) = −αx(1− x) =: f (t, x, α), x(0) = x0(β) := β, (2.29)

with the solution

x(t, α, β) =
c

eαt + c
=

β

(1− β) eαt + β
. (2.30)

Then the sensitivities of this IVP are computed by

σα(t) =
∂

∂α
x(t, λ) = − (1− β)β t eαt

((1− β) eαt + β)2 , (2.31a)

σβ(t) =
∂

∂β
x(t, λ) =

eαt

((1− β) eαt + β)2 , (2.31b)

and satisfy the IVPs

σ′α :=
∂ f
∂x
· σα +

∂ f
∂α

= −α(1− 2x) · σα − x(1− x), σα(0) =
∂u0

∂α
= 0, (2.32a)

σ′β :=
∂ f
∂x
· σβ +

∂ f
∂β

= −α(1− 2x) · σβ, σβ(0) =
∂u0

∂β
= 1. (2.32b)

For Ex. 2.22, solving the IVPs in eqns. (2.32) will lead back to the solution of eqn.
(2.30).

2.2 Partial differential equations

Before presenting the central term of this section, the definition of partial differential
equations, we will first introduce the following notation for the

Definition 2.23 (Multi-Index, Multivariate Partial Derivative). We denote

Dα(u) :=
∂|α|u

∂α1
x1 . . . ∂αn

xn

= ∂α1
x1

. . . ∂αn
xn

u (2.33)

as the multivariate partial derivative of u wrt the multi-index α = (α1, . . . , αn), where
|α| := ∑n

i=1 αi.
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Using this notation, differential equations with functions depending on more than
one parameter can be defined as follows:

Definition 2.24 (Partial Differential Equation). Let Ω ⊂ Rn be an (open) domain,
u : Ω→ R and f : Ω×R×Rn × · · · ×Rn×k, k ∈ N.

f
(

x, u(x), Du(x), D2u(x), . . . , Dku(x)
)
= 0 (2.34)

is called an kth order partial differential equation (PDE) of u. If u : Ω → R solves the
PDE (2.34) for all x ∈ Ω, we call u a classical solution of the PDE.

Definition 2.25 (Types of second-order PDEs). Given functions a, b, c, d, e, f : R2 →
R, let a second-order PDE be notated as

a
∂2u
∂x1

2 + b
∂2u

∂x1∂x2
+ c

∂2u
∂x22 + d

∂u
∂x1

+ e
∂u
∂x2

+ f u = g. (2.35)

Then the corresponding PDE is called

• hyperbolic if b2 − 4ac > 0. The solutions are classically describing wave propa-
gation.

• parabolic if b2 − 4ac = 0. Those are used e.g. in the heat conduction equation.

• elliptic if b2 − 4ac < 0. The most simple example is the Laplace equation, i.e.,
∆u(x) = uxx + uyy = 0, which is equivalent to the steady-state heat equation.

Specific properties of each of the three types make it possible to determine ap-
propriate solution methods for each of those types, and the smoothness of a solution
given the geometry and initial/boundary conditions can be determined by its type.
For example, the wave propagation in hyperbolic PDEs indicates that ’jumps’ in the
initial condition will propagate onwards.

Definition 2.26 (Boundary conditions for PDEs). Given functions f , a, b : R2 → R

and a PDE as of eqn. (2.34), boundary conditions can be of the following types:

• Dirichlet type if u(x, y) = f (x, y) on the boundary ∂Ω.

• Neumann type if ∂nu(x, y) = f (x, y) on the boundary ∂Ω, where ∂nu denotes
the outer normal derivative of the function u at the boundary ∂Ω.

• Robin type if au(x, y) + b ∂nu(x, y) = f (x, y) on the boundary ∂Ω.

Example 2.27. As an example of an analytical solution to a PDE, we consider the
linear advection equation ut + ux = 0 with the initial condition u(0, x) = cos(x)
which can be solved using the method of characteristics. Its characteristic equations are
given by:

dt
ds

= 1, t(0) = 0 (2.36a)

dx
ds

= 1, x(0) = x0 (2.36b)

du
ds

= 0, u(0, x0) = cos(x0). (2.36c)

Solving the first two equations gives t = s and x = s + x0. Using the initial condition
u(0, x) = cos(x0), we have u(s, x0) = cos(x0) along the characteristic curve x = t+ x0.
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Solving for x0 yields x0 = x− t, and substituting this into the expression for u(t, x)
gives the solution:

u(t, x) = cos(x− t) (2.37)

A practical example of a numerical solution technique for PDEs can be found in
section 2.3.6.

2.3 Epidemiological models

We will first introduce the three most common epidemic models which are the basis
for the upcoming modelling papers. Also, vector populations can be included in
those

2.3.1 SIS-/SIR-/SEIR-models

A standard tool in epidemiological modelling is the SIR-model introduced by Ker-
mack and McKendrick [6], the SEIR–model, as well as their variations. Analogously
to e.g. [7], consider functions S, E, I, R, N ∈ C(V, R)2,1 (which means they are twice
continuously differentiable wrt space and once continuously differentable wrt time)
as follows:

• Susceptibles S: Depending on the transmission route, these individuals can
become infected with the disease when contact occurs.

• Exposed E: The corresponding indiviuals have already ingested the pathogen,
but are not yet infectious because they are still in the latency period.

• Infected I: These individuals are infected with the disease and infectious. A
contact with a susceptible individual can therefore lead to transmission of the
disease.

• Recovered R: After facing out an infection, individuals are considered recovered.
These individuals can no longer transmit the disease or get infected. Sometimes,
an additional subdivision of deceased persons D is introduced in order to
describe the amount of persons which have died as a result of the disease.

For instance, I(t) indicates the number of infected individuals at time t ≥ 0. The total
number of individuals is typically the sum of the subdivision, i.e., N = S + E + I + R,
and is typically assumed to be constant. The systems of three commonly used models,
presented in the form of ODEs, are outlined in Tab. 2.1.

At the core of every epidemiological model is the incidence term β(t)
N SI, which

shows how many people are newly infected with the disease at time t. The incidence
term relies on a transmission rate β : [0, tend] → (0, ∞) that can vary over time,
potentially due to changes in population restrictions. The exact value of β is usually
unknown and must be determined using data. The SIR- and SEIR-models also include
the recovery rate γ, which is the inverse of the average time it takes for an individual
to recover from the disease. For example, if recovery takes 10 days on average, then
γ = 0.1. The SEIR-model makes use of the parameter θ, which is the inverse of the
latency period, or the time between contracting the pathogen and becoming infectious.
For example, if the latency period is 3 days, then θ = 1/3. It is important to say that
the latency period does not have to be the same as the incubation period, which is the
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time between infection and the onset of symptoms. In regards to COVID-19, research
has shown that individuals can be infectious before displaying symptoms [8].

TABLE 2.1: Basic examples of epidemiological ODE models with flow
chart and equation system.

Model Structure ODE System

SIS S I
β(t)
N

SI

γ I

S′ = −β(t)
N

SI + γI, S(t = 0) = S0,

I′ =
β(t)
N

SI − γI, I(t = 0) = I0,

N = S + I .

SIR S I R
β(t)
N

SI γ I

S′ = −β(t)
N

SI, S(t = 0) = S0,

I′ =
β(t)
N

SI − γI, I(t = 0) = I0,

R′ = γI, R(t = 0) = R0,
N = S + I + R .

SEIR S E I R
β(t)
N

SI
θ E γ I

S′ = −β(t)
N

SI, S(t = 0) = S0,

E′ =
β(t)
N

SI − θE, E(t = 0) = E0,

I′ = θE− γI, I(t = 0) = I0,
R′ = γI, R(t = 0) = R0,
N = S + E + I + R .

Many models also integrate birth rates, denoted by µ, which contribute to the
amount of susceptible persons. Typically, it is assumed that the population remains
constant, with birth and immigration rates equal death and emigration rates; thus,
µ−1 can be interpreted the average life expectancy. This is likely not accurate in reality.
As an example, Jakarta and its districts, which we will examine in chapter 3, like most
large cities, feature a growing population. However, this will not have a significant
impact on a small time scale we are considering for the overall population numbers.
For models that cover a longer time frame, it may be necessary to incorporate varying
birth and death rates. For more information about that, also refer to e.g. Martcheva
[9].

2.3.2 SIRUV-model

We can include the dynamics of vector populations in our disease models for a more
realistic approach. In practice, we add both the susceptible vector population U and
the infected vector population V to the classical epidemiological model, referred to as
the SIRUV model, which includes the human populations of S, I, and R. Assuming
that the birth and death rate of vector populations, such as mosquitoes in the case of



2.3. Epidemiological models 27

Dengue, are constant and equal, the total number of vectors M is also constant:

M = U + V (2.38)

Assuming that all susceptible humans and vectors have the same ’chance’ of coming
into contact with infected individuals, the probability of disease transmission is then
proportional to the product of the respective susceptible and infectious populations.
The amount of susceptible humans who become infected is equal to β

M · S ·V dt, and
the amount of susceptible vectors who become infected is equal to ρ

N ·U · I dt. We
assume that both transmission rates β and ρ are constant. The (human) recovery rate
is then equivalent to the inverse of the recovery time, i.e., τ−1, and thus the number
of individuals who recover in a certain time interval is τ · I dt. Recovered individuals
can become infected again after a time κ−1, so the number of recovered individuals
returning to the susceptible population is κ · R dt. Since vectors do not have an
immune system, there is no recovery after being infected and also no subpopulation
of recovered vectors. The differential equation system, enhanced by equal birth and
death rates µ for humans and ϑ for vectors, reads as follows:

S′ = µ · (N − S)− β · S ·V
M

+ κ · R (2.39a)

I′ = −(µ + τ) · I + β · S ·V
M

(2.39b)

R′ = −(µ + κ) · R + τ · I (2.39c)

U′ = ϑ · (M−U)− ρ ·U · I
N

(2.39d)

V ′ = −ϑ ·V +
ρ ·U · I

N
(2.39e)

One issue for practical computation of the ODE system (2.39) lies in the lack of reliable
data on the number of vectors. However, by using the steady-state approximation, it is
possible to eliminate the vector populations from the model:

Given that the life expectancy of vectors is much shorter than that of humans,
i.e. ϑ−1 � µ−1, after a relatively short initial period, both vector populations do
not change over time and remain constant. This allows for the calculation of their
equilibrium values and replacement of the infected vector population in eqns. (2.39)
with the equilibrium value. This approximation is only valid if the observed time
interval is significantly larger than ϑ−1, which, in the case of mosquitoes, is typically
a value of around 2 weeks. For more information on this, cf. [10, 11].

The equilibria of the vector populations are reached if U′ = 0 and V ′ = 0. Defining
λ := ϑ

ρ · N, this is equivalent to

U∗ =
M

1 + ρ
ϑ·N I∗

=
λM

λ + I∗
(2.40a)

V∗ =
M · I∗

ϑN
ρ + I∗

=
M · I∗
λ + I∗

(2.40b)

We can now substitute the infected vector population V in equations (2.40) with its
equilibrium, effectively disregarding the vector populations in the model. Addition-
ally, since we know that S(t) + I(t) + R(t) = N for all t ≥ 0, one of the three human
population equations can be omitted due to redundancy. In this case, we eliminate
the equation for susceptibles, as the infectious class is the most critical to consider



28 Chapter 2. Mathematical and Epidemiological Tools

and the equation for recovered individuals is simpler to compute. This results in the
following system:

I′ = −(µ + τ) · I + β · (N − I − R) · I
λ + I

(2.41a)

R′ = −(µ + κ) · R + τ · I (2.41b)

While µ, τ, κ and N are parameters which we ’know’ or are able to estimate by
provided medical or statistical data, λ and β still remain variable. For the case of
Dengue, with seasonal and other effects which have to be considered, assuming both
of them to be constant is also not very useful. To account for these effects, there are
several options. Two of the most common approaches are presented in the following.
Firstly, we can assume that β is piecewise constant over a period of time [ti, ti+1].
This, for example, applies well for a time-restricted lockdown, effectively reducing
the transmission rate β = β(t).

β(t) :=


β0, t0 ≤ t < t1

. . .
βn, tn ≤ t < tn+1

(2.42)

Another possibility that accounts more for seasonally changing transmission rates –
which is, e.g., the case for the Dengue transmission in regions with monsoon seasons
– is the following: Suppose that β is a periodic function of time, represented by a finite
Fourier series:

β = β(t) = β0 +
K

∑
i=1

ci · cos(2πωi t + φi) (2.43)

With the restriction

β0 ≥
K

∑
i=1

ci, (2.44)

it is assured that β(t) ≥ 0 for all t. Because of that, given a transmission, a biologically
implausible possibility of an increasing number of susceptible persons after transmis-
sion, together with a decreasing amount of infectious persons, is prevented. In order
to find reasonable values of λ and all parameters related to β, we have to perform
parameter estimation in some way which finds the optimal parameters compared to
scientific data sets. This will be discussed in detail in section 2.4.

2.3.3 Equilibria and stability of the SIRUV-model

As already mentioned for the vector population in section 3.1, the equilibria of the
model as described in eqns. (2.41) are computed by (I′, R′) = (0, 0). Here, we only
consider the autonomous part of β(t) which is β0, neglecting the non-autonomous,
periodic part.

A disease-free equilibrium (DFE) is reached at (I∗1 , R∗1) = (0, 0); this means that there
is an equilibrium if the disease dies out and the whole human population belongs to
the susceptible class, i.e., N = S. The endemic equilibrium is reached if the following
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equations hold:

I∗2 =
β0 · N − λ · (µ + τ)

µ + τ + β0 · (1 + τ
µ+κ )

, (2.45a)

R∗2 =
τ

µ + κ
· I∗2 . (2.45b)

For stability analysis, we compute the basic reproductive number R0 by the next-
generation method according to van den Driessche and Watmough [12]. For that, we
only need to consider all infectious subpopulations, which, in this model, is just I.
Eqn. (2.41) is divided into two parts: the number of new infections in the infective
department FI , and the number of outgoing individuals WI :

I′ = FI −WI (2.46)

with

FI =
β0 · (N − I − R) · I

λ + I
, (2.47a)

WI = (µ + τ) · I. (2.47b)

The basic reproductive number can be interpreted as the number of secondary infec-
tions of a single infected person in an entirely susceptible population. The next step
involves calculating the Jacobian matrices of FI (denoted as JF) and WI (denoted as
JW). After derivation of FI and WI after I, we set I = R = 0, as we are assuming an
initially entirely susceptible population and observing the changes that occur when a
single infective individual is introduced.

JF =
∂FI

∂I

∣∣∣∣
I=R=0

=
β0 · N

λ
, (2.48a)

JW =
∂WI

∂I

∣∣∣∣
I=R=0

= µ + τ. (2.48b)

For the next-generation matrix, we compute the largest eigenvector of FW−1, i.e.,

R0 = ρ(FW−1) =
β0N

(µ + τ) · λ . (2.49)

IfR0 > 1, meaning β0N > (µ + τ) · λ, the expected number of secondary infections
exceeds the number of primary infections and thus the disease becomes epidemic. In
this case, the DFE (I∗1 , R∗1) is unstable. This can be shown by linearizing the system
around the equilibrium and computing the largest real eigenvalues of the Jacobian,
which are negative ifR0 > 1; ifR0 < 1, the number of secondary infections is lower
than the number of primary infections and thus the disease dies out eventually. This
corresponds to an asymptotically stable disease-free equilibrium, which can also be
shown by linearizing the system.

The endemic equilibrium (I∗2 , R∗2) is asymptotically stable ifR0 > 1, this can also
be shown using linearization. In case of R0 < 1, eqn. (2.45) implies I∗2 < 0 as the
denominator is always greater than 0 and the nominator gets less than 0; thus, a
realistic endemic equilibrium does not exist.
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2.3.4 PDE models

In order to be able to model the spatial spread of infections, we use an epidemiolog-
ical reaction–diffusion model. For this purpose, we consider a corresponding two-
dimensional area Ω and a time interval T . We are looking for a function u : V → Rm

with V = Ω× T , which is twice continuously differentiable on Ω and once continu-
ously differentiable on T , briefly u ∈ C(V, Rm)2,1. Assuming no flux at the boundary
∂Ω, the following PDE system with homogeneous Neumann boundary conditions
has to be fulfilled:

∂tu = κ∆x,yu + f (u) , (2.50a)
u = u0 , t = 0 , (2.50b)

∂νu = 0 , (x, y) ∈ ∂Ω . (2.50c)

Here, ∂tu stands for the component-wise derivative of u in the direction of time, i.e.,

∂tu =

(
∂u1

∂t
, . . . ,

∂um

∂t

)T

, (2.51a)

∆x,y =

(
∂2u1

∂x2 +
∂2u1

∂y2 , . . . ,
∂2um

∂x2 +
∂2um

∂y2

)T

(2.51b)

for the Laplacian in Ω. The parameter κ describes the diffusivity of the system and
the function f (u) contains the epidemiological component(s). As an initial condition
at time t0 = 0, a function u0 : Ω → Rm is used with u(x, y, t = 0) = u0(x, y). In
addition, Neumann boundary conditions are used, where

∂u
∂ν

=

(
∂u1

∂ν
, . . . ,

∂um

∂ν

)T

(2.52)

represents the derivative in the direction of the outward pointing unit normal ν and
∂Ω represents the boundary of Ω. In terms of context, the latter means that there is
no movement into or out of the area Ω.

We use the SEIR-model as an example to show how the models are prepared for
later data fitting. Let S(x, y, t), E(x, y, t), I(x, y, t), and R(x, y, t) indicate the number
of susceptible, exposed, infected and recovered individuals in the spatial coordinate
(x, y) ∈ Ω at time t ∈ T . Based on these presented groups, different epidemiological
models can be derived. We will present the PDE systems of three commonly used
models.

Example 2.28 (Types of disease models with PDEs). Analogously to Tab. 2.1, we
define the following infection models with PDEs:

• SIS-PDE model

∂tS = κ∆x,yS− β(t)
N

SI + γI, S(t = 0) = S0, (2.53a)

∂t I = κ∆x,y I +
β(t)
N

SI − γI, I(t = 0) = I0, (2.53b)

∂νS = ∂ν I = 0, (x, y) ∈ ∂Ω, (2.53c)
N = S + I . (2.53d)
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• SIR-PDE model

∂tS = κ∆x,yS− β(t)
N

SI, S(t = 0) = S0, (2.54a)

∂t I = κ∆x,y I +
β(t)
N

SI − γI, I(t = 0) = I0, (2.54b)

∂tR = κ∆x,yR + γI, R(t = 0) = R0, (2.54c)
∂νS = ∂ν I = ∂νR = 0, (x, y) ∈ ∂Ω, (2.54d)

N = S + I + R . (2.54e)

• SEIR-PDE model

∂tS = κ∆x,yS− β(t)
N

SI, S(t = 0) = S0, (2.55a)

∂tE = κ∆x,yE +
β(t)
N

SI − θE, E(t = 0) = E0, (2.55b)

∂t I = κ∆x,y I + θE− γI, I(t = 0) = I0, (2.55c)
∂tR = κ∆x,yR + γI, R(t = 0) = R0, (2.55d)
∂νS = ∂νE = ∂ν I = ∂νR = 0, (x, y) ∈ ∂Ω, (2.55e)

N = S + E + I + R . (2.55f)

Considering the SEIR-model (2.55), it should be noted that also for N, a PDE has
to be solved:

∂tN = κ∆x,yN , (2.56a)
N = S0 + E0 + I0 + R0 , t = 0 , (2.56b)

∂νN = 0 , (x, y) ∈ ∂Ω . (2.56c)

In the first step, we substitute R = N − S− E− I and thus reduce the system to an
SEI model. We define u : R2×1 → R3, u(x, y, t) = (u1, u2, u3)T := 1

N (S, E, I)T and
obtain a function f : C(V, R3)2,1 → R3,

f (u) = (−β(t)u1u3, β(t)u1u3 − θu2, θu2 − γu3) . (2.57)

The results for the SIS-model (2.53) and the SIR-model (2.54) can be derived analo-
gously. Tab. 2.2 summarizes the reduced systems for the respective system.

TABLE 2.2: Summary of f (u) for the reduced models (2.53–2.55).

Reduced System f (u)
SIS→ I β(t)(1− u)u− γu
SIR→ SI (−β(t)u1u2, β(t)u1u2 − γu2)

SEIR→ SEI (−β(t)u1u3, β(t)u1u3 − θu2, θu2 − γu3)

In order to meaningfully incorporate the biological context, we require β, γ, θ > 0
and κ ≥ 0. Restricting on the reduced SEI model, we as well require initial conditions
u0 := (u1,0, u2,0, u3,0)T ≥ 0 in the region Ω, it must also hold that

∫
Ω u3,0 dω > 0,
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using the notation uj(x, y, 0) := uj,0. We define

N (t) :=
∫

Ω
N(x, y, t) dω (2.58)

as the total population in the area Ω at time t and N0 := N(t0) as the total number of
individuals at time t = 0 in Ω . It is required that N0 > 0. Using Gauss’s theorem
and the Neumann boundary conditions, we find

∂tN =
∫

Ω
∂tN dω =

∫
Ω

κ ∆x,yN dω =
∫

∂Ω
κ ∂νN ds = 0 (2.59)

and thus N = N0 for any t > 0. As a result, the total population in the domain Ω is
constant with respect to time. The PDE systems (2.53)–(2.55) with the presented f (u)
in Tab. 2.2 in conjunction with the mentioned preconditions, have a unique solution.

Since the total population is being modeled with diffusion, an equilibrium will
only be established when the population density is equal throughout the district.
Thus, the temporal equilibrium will be similar to the equilibrium of the system
without diffusion.

Another possibility to model spatial dependency in the spread of diseases is the
inclusion of a so-called mobility matrix, which is explained in detail in chapter 3.

2.3.5 Hilbert and Lebesgue spaces

Definition 2.29 (Hilbert Space). Let H be a real or complex vector space. If it is
equipped with an inner product 〈·, ·〉 : H×H → R or C, and this inner product
induces a norm onH, making it a complete space with respect to the norm (i.e., every
Cauchy sequence inH converges), thenH is called a Hilbert space.

Definition 2.30 (Lebesgue Space). Let p ≥ 1 and Ω ∈ Rn. Then, the space of p-
integrable functions

Lp(Ω) :=
{

f : Ω→ R,
∫

Ω
| f (x)|p dx < ∞

}
(2.60)

is called the Lebesgue space.

The space Lp is a Banach space, i.e., every Cauchy sequence in Lp is convergent
with respect to the p-norm defined by

‖ f ‖p :=
(∫

Ω
| f (x)|p dx

) 1
p

. (2.61)

Also, L2 is a Hilbert space with the inner product

〈 f , g〉 =
∫

Ω
f (x)g(x) dx. (2.62)

Definition 2.31 (Sobolev space). Let Ω ⊆ Rn be an open set. Then, the space H1,
defined over the subset of functions f ∈ L2, where all partial dervatives of f are also
in L2, i.e.,

H1(Ω) :=
{

f ∈ L2(Ω), ∂i f ∈ L2(Ω) for i = 1, . . . , n
}

, (2.63)
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is called Sobolev space with the associated scalar product

〈 f , g〉1 := 〈 f , g〉+
n

∑
i=1
〈∂i f , ∂ig〉. (2.64)

We additionally define the Sobolev space with zero boundary conditions, i.e.,

H1
0(Ω) :=

{
f ∈ H1(Ω), f ≡ 0 at ∂Ω

}
. (2.65)

The spacesH1(Ω) andH1
0(Ω) are Hilbert spaces with the scalar product

〈 f , g〉H1 :=
∫

Ω
f (x)g(x) +∇ f (x)∇g(x) dx. (2.66)

The general concept we will use in hindsight to computing weak solutions is the
following: OnH1

0(Ω), we define the alternative scalar product

〈 f , g〉H1 :=
∫

Ω
∇ f (x)∇g(x) dx. (2.67)

which is possible due to the Poincaré-Friedrichs inequality. AssumingH is a Hilbert
space, a : H×H → R is a symmetric, bounded, coercive (i.e., a(u, u) ≥ c ‖u‖2 for a
c > 0), and bilinear form, and b : H → R is a linear and continuous functional, the
variational problem

min
u∈H

1
2

a(u, u)− b(u) (2.68)

has a unique solution, and the minimization problem is equivalent to finding u ∈ H
such that a(u, v) = b(v) for all v ∈ H. We will make use of this concept using weak
solutions in section 2.3.6.

2.3.6 Finite element method for the diffusion equation

In this section, which partially makes use of the results in chapter 7, a solution method
for the parabolic diffusion equation (2.50) for an SIR-PDE-model. Therefore, define
u ∈ R4 and g(u) : R4 → R3 as follows:

u = (u1, u2, u3)
T =

(
S
N

,
I
N

,
R
N

, N
)T

, (2.69a)

g(u) = (−βu1u2, βu1u2 − θu2, θu2, 0)T . (2.69b)

Applying initial conditions at time t0 = 0 and Neumann boundary conditions, the
PDE system reads as follows:
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∂tu1 = κ ∆x,yu1 − β(t)u1u3, u1(t = 0, x, y) = u0
1(x, y) for (x, y) ∈ Ω;

∂νu1 = 0 for (x, y) ∈ ∂Ω (2.70a)

∂tu2 = κ ∆x,yu2 + β(t)u1u3 − θu2, u2(t = 0, x, y) = u0
2(x, y) for (x, y) ∈ Ω;

∂νu2 = 0 for (x, y) ∈ ∂Ω (2.70b)

∂tu3 = κ ∆x,yu3 + θu2 − γu3, u3(t = 0, x, y) = u0
3(x, y) for (x, y) ∈ Ω;

∂νu3 = 0 for (x, y) ∈ ∂Ω (2.70c)
∂tu4 = κ ∆x,yu4 for (x, y) ∈ Ω;

∂νu4 = 0 for (x, y) ∈ ∂Ω (2.70d)

For the finite element method, we seperate eqns. (2.70) in two parts of the form
∂tui = κ ∆x,yui and ∂tui = gi(u). These two are handled by two different schemes,
we can make use of an operator splitting to solve the system [13]. E.g., for one time
step ∆t, this procedure is as follows:

(I) Solve ∂tui = κ ∆x,yui for t = ∆t/2 with the corresponding initial and boundary
conditions for i = 1, 2, 3.

(II) Solve ∂tui = fi(u) for t = ∆t with the corresponding initial and boundary
conditions for i = 1, 2, 3.

(III) Solve ∂tui = κ ∆x,yui for t = ∆t/2 with the corresponding initial and boundary
conditions for i = 1, 2, 3.

The equation in (II) is a simple ODE equation which can be solved by any standard
solver, e.g. the Euler method or the method of Runge-Kutta. To solve the equations
in (I) and (III) on the domain Ω with initial and homogeneous Neumann boundary
conditions on ∂Ω, we consider its weak form gained by multiplication with a test
function v ∈ H1

0(Ω); this means, that v vanishes at the boundary, i.e., v ≡ 0 at ∂Ω.
The weak form reads as follows: Instead of the ’strong’ solution u ∈ C2,1 for the PDEs
as of 2.70, we now aim to find a weak solution ui ∈ H1(Ω) solving

a(ui, v) : =
∫
Ω

∂tui v dω +
∫
Ω

∇ui∇v dω−
∫
∂Ω

ui v dλ

=
∫
Ω

∂tui v dω +
∫
Ω

∇ui∇v dω

= 0. (2.71)

For the numerical solution of this infinite-dimensional problem, we aim to find a
solution ui,h in a finite-dimensional subspace Vh solving

a(ui,h, vh) = a1(ui,h, vh) + a2(ui,h, vh)

=
∫
Ω

∂tui,h vh dω +
∫
Ω

∇ui,h∇vh dω

= 0 . (2.72)

We define the subspace Vh on a rectangular grid and linearly independent basis func-
tions φj piecewise over subregions Ωk = [x1, x2]× [y1, y2] ⊂ Ω, whereby x1, x2, y1, y2
satisfy x2 − x1 = ∆x and y2 − y1 = ∆y, i.e. the corresponding step sizes in x-and
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y-direction:

Vh =

{
uh = ∑

k

4

∑
j=1

c(k)j φ
(k)
j (x, y)

}
, (2.73)

where

φ
(k)
1 (x, y) =

(x− x2)(y− y2)

(x1 − x2)(y1 − y2)
, (2.74a)

φ
(k)
2 (x, y) =

(x− x2)(y− y1)

(x1 − x2)(y2 − y1)
, (2.74b)

φ
(k)
3 (x, y) =

(x− x1)(y− y2)

(x2 − x1)(y2 − y2)
, (2.74c)

φ
(k)
4 (x, y) =

(x− x1)(y− y1)

(x2 − x1)(y2 − y1)
, (2.74d)

for (x, y) ∈ Ωk; otherwise, those functions vanish, i.e., φ
(k)
j (x, y) ≡ 0 for (x, y) 6∈ Ωk,

j = 1, . . . , 4. Then the weak form a(ui,h, vh) = 0 reads as follows:

a(ui,h, vh) = a

(
∑

k

4

∑
j=1

c(k)j φ
(k)
j (x, y), φ

(k∗)
j∗ (x, y)

)
= 0 (2.75)

and, due to the linearity of a,

∑
k

4

∑
j=1

a
(

φ
(k)
j (x, y), φ

(k∗)
j∗ (x, y)

)
c(k)j = 0. (2.76)

The stiffness matrices A and B are defined by

Anm = a1

(
φ
(k)
j (x, y), φ

(k∗)
j∗ (x, y)

)
(2.77a)

Bnm = a2

(
φ
(k)
j (x, y), φ

(k∗)
j∗ (x, y)

)
(2.77b)

where n represents the row corresponding to (j∗, k∗) and m the column corresponding
to (j, k), which depends on the chosen order within the matrices. More information
about this can e.g. be found in [14]. The linear equation system with a mass matrix

A ∂tui + B ui = 0 (2.78)

can be solved by any scheme; e.g., a 4-step Runge-Kutta scheme, cf. e.g. [15].

Example 2.32. Consider the following elements in Fig. 2.2. In the graphic, we only
consider a part of the problem, the right upper case elements for the finite element R1
that has its center at (0, 0). The other results for the upper left, lower left, and lower
right elements follow from symmetry.
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hx

hy
(0, 0) (hx, 0)

(hx, hy) (0, hy)

R1 R2

R3 R4

FIGURE 2.2: FEM example.

Then, aij and bij can be computed by eqns. 2.72 and 2.74 as follows:

a11 = 4 ·
∫ hx

0

∫ hy

0

x2y2

h2
xh2

y
dy dx =

4
9

hxhy, (2.79a)

a12 = 2 ·
∫ hx

0

∫ hy

0

xy · (hx − x)y
h2

xh2
y

dy dx =
1
9

hxhy, (2.79b)

a13 = 2 ·
∫ hx

0

∫ hy

0

xy · x(hy − y)
h2

xh2
y

dy dx =
1
9

hxhy, (2.79c)

a14 = 1 ·
∫ hx

0

∫ hy

0

xy · (hx − x)(hy − y)
h2

xh2
y

dy dx =
1
18

hxhy, (2.79d)

and

b11 = 4 ·
∫ hx

0

∫ hy

0

y2 + x2

h2
xh2

y
dy dx =

4
hxhy

(
h2

x + h2
y

)
, (2.80a)

b12 = 2 ·
∫ hx

0

∫ hy

0

−y2 + x(hx − x)
h2

xh2
y

dy dx =
1

3hxhy

(
h2

x − 2h2
y

)
, (2.80b)

b13 = 2 ·
∫ hx

0

∫ hy

0

y(hy − y)− x2

h2
xh2

y
dy dx =

1
3hxhy

(
h2

y − 2h2
x

)
, (2.80c)

b14 = 1 ·
∫ hx

0

∫ hy

0

y(y− hy) + x(x− hx)

h2
xh2

y
dy dx = − 1

6hxhy

(
h2

x + h2
x
)

. (2.80d)

The system matrix is then well-defined by the values for aij and bij.

2.3.7 Space-fractional derivatives

The term fractional calculus is defined by calculus using non-integer powers of inte-
gration and derivation. Nowadays, it is used in many applications, e.g., network
dynamics [16], field theory and gravity [16, 17], price fluctuations in financial markets
[18], as well as in diffusion processes in epidemiology [16, 19].

In the following, we will generalize the concept of derivatives from integer to
non-integer orders. There are different concepts for this, but we will rely on the
definitions introduced by Riemann and Liouville and the according discretization
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given by Grünwald and Letnikov [20, 21, 17]). While this research is restricted
to space-fractional derivatives, the concept can also be extended to time-fractional
derivatives. Parts of this chapter are adapted from [22], cf. chapter 6.

For the start, we introduce fractional integrals of order α ∈ R.

Definition 2.33 (Fractional Riemann-Liouville integrals). Let f : [a, b] → R be a
sufficiently smooth function on an interval [a, b] (a = −∞ and b = ∞ are allowed as
well). Let

Γ(n) =
∫ ∞

0
tn−1e−t dt = (n− 1)! (2.81)

denote the gamma function. Then, for n ∈N, its right-sided n-fold repeated integral
is defined as follows, cf. [23, 24]:

I(n)a+ f (x) =
∫ x

a
dξ1

∫ ξ1

a
dξ2 · · ·

∫ ξn−1

a
f (ξn) dξn =

1
Γ(n)

∫ x

a
f (ξ)(x− ξ)n−1 dξ (2.82)

We can straightforwardly extend this to non–integer order α ∈ R \ {−1,−2, . . .} by

I(α)a+ f (x) =
1

Γ(α)

∫ x

a
f (ξ)(x− ξ)α−1 dξ . (2.83)

The above integral is called the right-sided fractional Riemann–Liouville integral of order
α. Analogously, we can define the left-sided fractional integral by

I(α)b− f (x) =
1

Γ(α)

∫ b

x
f (ξ)(ξ − x)α−1 dξ . (2.84)

It is easy to prove (cf. [21]) that for the fractional Riemann–Liouville integral it
holds

I(α)a+ I(β)
a+ f = I(α+β)

a+ f , (2.85a)

I(α)b− I(β)
b− f = I(α+β)

b− f . (2.85b)

According to the fundamental theorem of calculus, we identify the derivative of order
α as the inverse operators to the integrals of order α, i.e.,

D(α)
a+ f =

dn

dxn I(n−α)
a+ f , (2.86a)

D(α)
b− f =

dn

dxn I(n−α)
b− f . (2.86b)

To define the fractional derivative of order α > 0, let n = dαe = mink∈N {k > α}
denote the smallest integer larger than α. Formally, taking the nth-derivative of
the fractional Riemann–Liouville integral of order n − α, i.e., dn

dxn I(n−α), yields the
Riemann–Liouville definition of the fractional derivative of order 0 < α < 1.

Definition 2.34 (Riemann-Liouville derivatives). Given the function f ∈ Cn([a, b]),
we call

Dα
a+ f (x) =

∂α

∂a+xα
f (x) :=

1
Γ(n− α)

dn

dxn

∫ x

a
f (ξ)(x− ξ)n−α−1dξ (2.87)



38 Chapter 2. Mathematical and Epidemiological Tools

the (right-sided) Riemann–Liouville derivative of fractional order α with left boundary a
and

Dα
b− f (x) =

∂α

∂b−xα
f (x) :=

(−1)n

Γ(n− α)

dn

dxn

∫ b

x
f (ξ)(ξ − x)n−α−1dξ (2.88)

the (left-sided) Riemann–Liouville derivative of fractional order α with right boundary b
[20].

The above fractional derivatives are linear, i.e., for all f , g ∈ Cn([a, b]), all λ, µ ∈ R

and any α > 0, we have

Dα
a+ [λ f + µg] = λDα

a+ f + µDα
a+g , (2.89a)

Dα
b− [λ f + µg] = λDα

b− f + µDα
b−g . (2.89b)

Example 2.35. As an example, we consider the monomial xk and compute its frac-
tional derivative of order α. In alignment with the formal generalization of the integer
order derivative

dm

dxm xk = k(k− 1) · · · (k−m + 1)xk−m =
k!

(k−m)!
xk−m =

Γ(k + 1)
Γ(k−m + 1)

xk−m,

(2.90)

we obtain

D(α)
a+ xk =

1
Γ(n− α)

dn

dxn

∫ x

a
ξk(x− ξ)n−α−1dξ (2.91)

=
1

Γ(n− α)

dn

dxn
k

n− α

∫ x

a
ξk−1(x− ξ)n−αdξ = . . . (2.92)

=
1

Γ(n− α)

dn

dxn
Γ(k + 1)Γ(n− α)

Γ(n + k− α + 1)
(x− a)n+k−α (2.93)

=
Γ(k + 1)

Γ(k− α + 1)
(x− a)k−α, (2.94)

and analogously

D(α)
b− xk =

Γ(k + 1)
Γ(k− α + 1)

(b− x)k−α . (2.95)

For a = 0 and α := n ∈N, this corresponds to the well-known nth derivatives of the
monomials.

Example 2.36. We can also examine the exponential function f (x) = ecx with c > 0
and x ∈ [0, ∞). By utilizing the series representation of the exponential and applying
the right-sided fractional derivative to monomials, we can derive the following:

D(α)
0+ ecx =

∞

∑
k=0

ck

k!
D(α)

0+ xk =
∞

∑
k=0

ck

Γ(k + 1)
Γ(k + 1)

Γ(k− α + 1)
xk−α

= x−α
∞

∑
k=0

(cx)k

Γ(k− α + 1)
(2.96)
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By making some algebraic manipulations and utilizing the incomplete gamma func-
tion Γ(−α, cx) =

∫ ∞
cx t−α−1e−t, dt, we arrive at the following expression:

D(α)
0+ ecx = ecxcα ·

(
1− Γ(−α, cx)

Γ(−α)

)
. (2.97)

Again, for the special case of α = n ∈N, this result corresponds to the standard nth

derivative of the exponential function.

For a detailed view into the methods of fractional calculus, we refer to [18, 21, 23].
Numerical methods for evaluating the accuracy of modeling initial value problems
(IVPs) involving fractional derivatives can be established by setting up appropriate
schemes,which is explained in detail in chapter 6.

2.3.8 Integro-differential equations

In this section, which makes use of the results in chapter 6, we reconsider the SIR-
model by Kermack and McKendrick [6] with continuously differentiable functions
S, I, R, N. Consider a one-dimensional model with n = 1. We normalize the three
states S, I, and R by dividing all rows by N, resulting in s := S

N , z := I
N , r := R

N with
s+ z+ r = 1. In order to avoid confusion, we use a different lower case letter z instead
of i. Again following the model by Kermack and McKendrick, we assume the virus
is transmitted from infected persons to susceptible persons at a time-independent
rate β > 0 and a recovery rate of γ > 0 so that loss of infectivity is gained after
γ−1 days. Then, replacing s = (1− z− r), the relative sir-model for each time point
t ∈ [0, T] ⊂ R and point in space x ∈ [0, 1]n ⊂ Rn as follows:

d
dt

z(t, x) = β(1− z− r)z− γ z z(t = 0, x) = z0(x) (2.98a)

d
dt

r(t, x) = γ z r(t = 0, x) = r0(x) (2.98b)

In a spatial model this means that the disease dynamics in a certain point x would
entirely depend on the initial relations z0 and r0 and the parameters β and γ. To
include interaction between the spatial points, we replace the factor z in the term
β(1− z− r)z by an integral kernel, where the interaction term between x and y is
modelled by a kernel function k(t, x− y) which depends on the time and the distance
between x and y:

d
dt

z(t, x) = β(1− z− r)
∫ 1

0
z(t, y) k(t, x− y) dy− γ z z(t = 0, x) = z0(x) (2.99a)

d
dt

r(t, x) = γ z r(t = 0, x) = r0(x) (2.99b)

The basic reproductive number, making use of the next-generation ansatz as of [12],
can be calculated by R0 = β

γ ‖k‖2 according to [25], so that it also depends on the
kernel function k : [0, T ]× [0, 1] → R. For the purpose of reasonable modelling of
scenarios, k should consist of three terms as follows:

• an space-dependent part a(x− y) which is monotonously decreasing wrt |x− y|,
e.g., an exponential function decreasing with the distance, i.e., a(x − y) =
c e−δ|x−y|. This part can be controlled with
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• a control function u(t) ∈ U = C([0, 1]) which represents the effectiveness of
non-pharmaceutical interventions (lockdown, school closings, obligation of
wearing masks etc.). Here, u(t) ≡ 0 implies no regulations and u(t) ≡ 1 implies
total lockdown.

• a non-adjustable part k0 which represents the fraction of transmission or a kind
of ’background noise’ you cannot control, e.g. household related infections.
We also assume that this fraction does not depend on the spatial distance as
interactions between distances can be prevented by political or social measures.
For a more detailed view on the importance of households, cf. Dönges et al.
[26].

These considerations lead to the following formula:

k(t, x− y) = (1− u(t)) · a(x− y) + k0. (2.100)

The following assumptions regarding the interaction kernel k should be met for the
stationary case k = k(x− y), i.e., u ≡ 0:

1. k is continuous.

2. k is non–negative.

3. k(0) = k0 > k > 0.

4. k is monotonically decreasing wrt |x− y|.

5. k1 := ‖k‖1 =
∫ 1

0 k(r) dr > 0

6. k1 < K = maxx∈[0,1]
∫ 1

0 k(x− y) dy

Note, that in the case of a strict monotonically decreasing kernel, we get K =

2
∫ 1/2

0 k(r) dr. An optimization model which aims to minimize both the relative
share of infected z and the control term u, related to costs of political measures like
lockdowns etc., could look as follows:

min
u(t)∈U

J(u, z) = max
u(t)∈U

−J(u, z) = max
u(t)∈U

−
∫ T

0

∫ 1

0
z(t, x) dx dt− η

2

∫ T

0
u2(t) dt

subject to system (2.99),
z(t, x) ≤ zmax. (2.101)

A strategy to optimize this kind of infinite-dimensional optimization problems can be
found in section 2.6.2.

2.4 Basic definitions and tools in optimization

In this chapter we present different optimization techniques, such as Markov chain
methods and the Forward-Backward sweep method which can be used to either identify
parameters in models or optimize time and/or space-dependent controls. Before
presenting the two techniques, we list a few general definitions in optimization that
hold true for all optimization problems. A comparison of the two methods can e.g.
be found in [7].
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Definition 2.37 (Minimization Problem). Consider an optimization problem with
an objective function J(u). The goal is to find the solution that maximizes or mini-
mizes J(u) subject to the constraints gi(u) = 0. We can write this as the following
optimization problem: Let gi : Rm → R for all i = 1, . . . , n. Then the problem

min
u(t)∈U

J(u, z)

U = {u ∈ Rm | gi(u) = 0 for all i = 1, . . . , n} (2.102)

is called the constrained minimization problem with respect to the target function J and
the constraint function(s) gi.

Definition 2.38 (Types of Minima). Let an optimization problem of type (2.102) be
given. A (feasible) solution u∗ ∈ U is called

• local minimum if J(u∗) ≤ J(u) for all u ∈ Bε(u∗),

• strict local minimum if J(u∗) < J(u) for all u ∈ Bε(u∗),

• global minimum if J(u∗) ≤ J(u) for all u ∈ U,

• strict global or unique minimum if J(u∗) < J(u) for all u ∈ U.

The definitions for the maxima can be defined analogously.

In the following sections 2.5 and 2.6, we will present the two main optimization
techniques that are used for parameter estimation and optimization in the research
papers.

2.5 The Metropolis algorithm

The first technique we will consider, the Metropolis algorithm, derives from Bayesian
statistics, Markov chains and Monte Carlo simulations. Several passages in this
chapter have been updated and enhanced from chapter 3.

2.5.1 Markov chain theory

Given the observed data D and the set of model parameters θ, the posterior density
is denoted by P(θ|D), the likelihood (defined by the probability model) is denoted
by P(D|θ) and the prior distribution is denoted by π0(θ). Let a joint distribution be
given as follows:

P(D) = π0(θ)P(D|θ) (2.103)

The following formula describes the posterior distribution of θ, given an observation
D (cf. Gilks [27]):

P(θ|D) =
π0(θ) · P(D|θ)∫
π0(θ)P(D|θ) dθ

(2.104)

To calculate the expectation value of the posterior distribution, given a function
f (θ|D), we would need to calculate the integral

E[ f (θ|D)] =

∫
f (θ) · π0(θ) · P(D|θ) dθ∫

π0(θ) · P(D|θ) dθ
, (2.105)
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which is hard or even impossible to integrate using analytic tools. For this, Markov
chain theory proves to be helpful.

The fundamental idea behind MCMC methods is the generation of samples from
a probability distribution that approximates the desired posterior distribution f (θ|D).
This is accomplished by constructing a Markov chain with the posterior distribution
as its equilibrium distribution. Before delving into the specifics of MCMC algorithms,
it is important to first understand the underlying theory of Markov chains and how
they can be used to prove that the algorithms in question converge to the desired
posterior distribution.

Definition 2.39 (Markov Chain). Let S = {Xk}k∈K⊂R be the state space containing
all K possible states. A Markov chain is a sequence of random states, starting in any
state X0, and progressing from one state to the next. The sequence is written as
X = (X0, X1, ...). The outcome of the current state Xi only depends on the previous
state Xi−1. This means that if the system is in state Xi, it will transition to state Xj with
probability pij, which only depends on the current state and not any other previous
states. Formally, we can express this as

pij = p(Xi+1 = Xj|Xi, Xi−1, ..., X0) = P(Xi+1 = Xj|Xi). (2.106)

The initial probability of starting in a certain state Xi is denoted by p0
i for all states.

The set of all transition probabilities pij can be represented by a transition matrix
Π = (pij), where i and j run through all (finite) possible states.

The probability to move from state i to state j in exactly n time steps is denoted by

p(n)ij = P(Xn = Xj|X0 = Xi). (2.107)

An important theorem is the

Theorem 2.40 (Chapman-Kolmogorov equation). For n time steps and any k with
0 ≤ k ≤ n and the state space S, it holds

p(n)ij = ∑
r∈S

p(k)ir · p
(n−k)
rj . (2.108)

Also, the distribution of the chain at the nth step using the initial probability p0 and
the matrix Π is denoted by

p(n) = p0 ·Πn. (2.109)

Proof. A proof of this can be found in Ross [28].

In MCMC methods, the goal is to find an approximative distribution that even-
tually converges to the posterior distribution in question. The limiting distribution
of p0 ·Πn as n → ∞ is important in this process. Although it is not known yet if
the chain converges at all, it is assumed that a limit, denoted as π, exists. The limit
transition is determined using the following equation:

π = lim
n→∞

p0 ·Πn = lim
n→∞

p0 ·Πn+1 = π ·Π (2.110)

Before utilizing this result later on, a few characteristics of Markov chains are pre-
sented in the following
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Definition 2.41 (Ergodicity). A state Xi ∈ X is called ergodic if it is aperiodic, i.e., no
states are visited in regular intervals, and positively recurrent, i.e. there is a number
N < ∞ such that the state Xi can be reached from any other state Xj in less than N
steps. If all states in a Markov chain are ergodic, then the Markov chain itself is called
ergodic.

Definition 2.42 (Irreducibility). A Markov chain is called irreducible if its state space
X consists of only one equivalence class, i.e. i←→j (i.e., state i can be reached from
space j) for all Xi, Xj ∈ X.

One can demonstrate that a finite state irreducible Markov chain is ergodic when
it possesses at least one aperiodic state. In the case of a fully connected transition
matrix, where all transitions have a non-zero probability, this condition is satisfied
with N = 1.

Lemma 2.43. Let a Markov chain be ergodic and finite (i.e., it has a finite state set).
Then, for a certain N > 0, it holds that Πn > 0 for all n > N.

Proof. For a proof, refer e.g. to [29].

Theorem 2.44 (Perron-Frobenius theorem). If a matrix A ∈ Rn×n is strictly positive,
i.e. A > 0, all of its eigenvectors vj have the same algebraic and geometric multiplicity
1. For matrices B ∈ Rn×n with Bn > 0 for all n > N, the result holds true as well,
even if B is not strictly positive.

Proof. Proofs of this theorem can e.g. be found in [30, 31].

Now let Π ≥ 0 be the transition matrix of an ergodic Markov chain. From the
irreducibility, it follows that pn

ij > 0 for all i and j, and thus Πn > 0. By the Perron-
Frobenius theorem, Π has the algebraic and geometric multiplicity of 1. This means
there is a unique stationary distribution satisfying the formula π = π ·Π, implying
that all ergodic Matrix chains have a unique stationary distribution, which is also
independent of the initial distribution.

2.5.2 Algorithm formulation

The Metropolis algorithm is based on Bayes’ theorem and is used to update a hypothesis
probability estimate under new data. In Markov chain theory, we aim to find a
unique stationary distribution for the given probability matrix. The goal in Markov
Chain Monte Carlo (MCMC) methods is somewhat the opposite: We want to draw
random samples from a target distribution. To do this, we want to find an ergodic
Markov chain that has the (given) distribution as its limit. This Markov chain has
to be reversible to this distribution, satisfying the balance condition: Summing this
equation up for all i, we find

∑
i

πi · pij = ∑
i

πj · pji = πj ·∑
i

pji = πj (2.111)

This is the limit condition for a stationary distribution as in eqn. (2.110). The ’update’
of the states is done with random numbers: Starting with an arbitrary parameter
set, we draw a sample from a proposal distribution q, i.e., θnew ∼ q(θnew|θi−1) in
every iteration i. The sample is accepted with a certain probability α(θnew|θi−1), then
θi = θnew; if it is not accepted, we remain in the previous sample, i.e., θi = θi−1. This
is an adaptation of a random walk method using an accept-or-reject rule to converge
to the desired posterior distribution.
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The main advantages of MCMC methods are that they are simple to set up efficient
algorithms for sampling, even for rather complicated and high-dimensional posterior
distributions P(θ|D), and also enable the analysis of all model parameters in terms
of mean and standard deviation. Another useful feature is that for the purpose of
sampling, a full analytical description of the normalized product likelihood times
prior is actually not needed at all [32].

The work of Metropolis et al. [33] presents a simple method to implement the
concept of MCMC methods in practice. It is a direct applications for symmetric
proposal distributions q (mostly, a normal distribution is used) with a predefined
acceptance probability calculated by

α(θnew|θi−1) = min
(

1,
π(θnew) · q(θi−1|θi)

π(θi) · q(θi|θi−1))

)
= min

(
1,

π(θnew)

π(θi)

)
. (2.112)

Here, π(θ) is the approximating target distribution. When comparing distributions
with given data, we use the sum of squares

Υ = ∑
i

(
Di − D̂i(θnew)

)2 (2.113)

between the real data Di, i.e. the target distribution, and the estimated data D̂i(θnew),
both at data point i. Let σ be the standard deviation of the prior. The approximating
distribution is evaluated by

π(θ) = c · e−
Υ2

2σ2 . (2.114)

Determining the proportionality constant c in eqn. (2.114) is redundant since it cancels
out in eqn. (2.112). Obviously, the sum of squares Υ should optimally be 0, which
results in the approximative distribution converging to the target distribution if the
Markov chain is set up correctly. If the balance condition

π(θi) · P(θi|θnew) = π(θnew) · P(θnew|θi) (2.115)

holds true, the Metropolis sampling is correct and the chain converges to the
limiting distribution [32]. For any IVP with dependency on parameters, e.g., the
SEIRD-model as described in [7], a Metropolis algorithm (cf. [33, 34, 27]) can be
set up using the initial history and initial values for the to-be-estimated parameter
set u. Using starting conditions u0, we assign random draws unew from a normally
distributed (and thus symmetric) proposal function q, i.e. unew ∼ q(unew|ui−1), in
every iteration i.

Using J(u) as the target distribution, we calculate the approximating distribution
by

π(u) = c · exp
(
− J(u)2

2σ2

)
, (2.116)

whereby c is an arbitrary value in R. For the acceptance probability, it follows

α(unew|ui−1) = min
{

1,
π(unew) · q(ui−1|ui)

π(ui) · q(ui|ui−1))

}
= min

{
1,

π(unew)

π(ui)

}
. (2.117)

In eqn. (2.117), we can see that the value of c is redundant as it cancels out in the
division. If the sample is accepted with the probability α, we set ui = unew; with the
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probability 1− α, the sample is declined, meaning u = ui−1 [32, 35].

Algorithm 1 Pseudocode for the Metropolis algorithm.

1: u, Y, Z ← load initial values for u and data
2: x, z← solve IVP for state variable
3: J ← compute objective function regarding u
4: s← set step size (standard deviation) for the algorithm, e.g. s := σ(u)
5: repeat
6: uold ← u from previous draw
7: ûnew ← u ∼ N (uold, s)
8: x, z, J(ûnew)← update depending on u
9: α← min

{
1, exp

(
J(uold)

2 − J(unew)2/2σ2)}
10: unew ← ûnew with probability α and unew := u with probability 1− α
11: until maximum value of draws is reached
12: u∗, x∗, J∗ ← means of all u, x, J

Alg. 1 describes the basic framework for iterative optimization using the Metropo-
lis algorithm. In step 1, the mean values for the distribution are chosen based on the
problem and any potential restrictions on the parameters. In step 2, the initial value
problem (IVP) is solved using Runge-Kutta methods, such as MATLAB’s ode45 and
dde23 solvers. In step 5, the step size s is chosen as a fraction of the initial guess for
the parameter set u, allowing the parameters to move through the search space at
different ’speeds’. Steps 6 through 12 are repeated for all draws or until the system
’converges’. We will later address what this means in a probabilistic model.

The update of the parameter set u is done by taking a random value from a normal
distribution with mean u and step size s in step 8. The cost functional J(u) is then
compared to the previous cost functional using the function α in step 10, and the
new parameter set is accepted or rejected according to eqn. (2.117) in step 11. The
estimation parameter set can be computed from the mean value of the draws in step
13. In the case of non-convergence, the best fitting u from the set can be used as the
initial value in step 1 again, in order to improve the results.

The definition of ’convergence’ in a probabilistic model can be problematic. Simple
methods for checking convergence include graphical methods such as the trace plot,
which shows how well the chain is mixing within the state space, and the running
mean plot, which shows the current mean of all iterations up to the current one
against the number of the iteration and is assumed to converge to a fixed number.
Another graphical method is to plot histograms of the parameter values throughout
all the MCMC runs and checking for convergence by comparison with Gaussian
curves, as seen in the appendix of chapter 4. If no convergence has taken place, the
algorithm should be continued, as discussed in [36].

Gelman and Rubin [37] addressed the problem by constructing two different
estimators of the variance.

Definition 2.45 (Variance estimates, potential scale reduction factor). Let ũi,· be the
mean of the ith chain for i = 1, . . . , m, and ũ·,· the overall mean. Then we define

(i) the within-chain variance estimate as

W =
m

∑
i=1

n−1

∑
i=1

(uij − ũi,·)
2

m(n− 1)
, (2.118)



46 Chapter 2. Mathematical and Epidemiological Tools

(i) and the pooled variance estimate as

V̂ =
n− 1

n
·W +

n−1

∑
i=1

(ui· − ũ·,·)2

m− 1
. (2.119)

Then the potential scale reduction factor (PSRF) is defined by the ratio of those, i.e.,

R̂ =
V̂
W

= (n− 1)

(
1
n
+

m
m− 1

∑n−1
i=1 (ui· − ũ·,·)2

∑m
i=1 ∑n−1

i=1 (uij − ũi,·)2

)
. (2.120)

The numerator in eqn. (2.120) overestimates the target variance whereas the denom-
inator underestimates it, so that R̂ > 1, as the initial distribution of the chain is
overdispersed in finite samples. This means we can stop the simulation for R̂ ≈ 1
[37].

While the Metropolis algorithm is a powerful tool in optimization and can be
used in a broad bandwidth of optimization problems, especially for complicated
target functions, it features disadvantages in case the number of to-be-optimized
parameters is too high. In the next section, we will therefore consider the Lagrange
formalism as an alternative optimization technique.

2.6 Lagrange formalism

Another method we can use to optimize problems is the so-called Lagrange formalism,
which is a mathematical method for finding the maximum or minimum of a function
subject to constraints. This generally requires the objective function to be (twice) con-
tinuously differentiable. The Metropolis algorithm works well with low-dimensional,
discrete problems. Here, the addition of Lagrange formalism is a simple, yet extremely
helpful tool.

2.6.1 Lagrange function

In this method, we construct a Lagrange function, also known as the Lagrangian,
which is a combination of the original objective function and a set of constraints. The
Lagrangian is then optimized to find the desired solution.

Picking up from Def. 2.37, we first introduce necessary and sufficient optimality
conditions for functions J ∈ C2(Rm). Using the definition of the Hessian as of Def.
2.18, we can now define

Definition 2.46 (Necessary and Sufficient Conditions). Let J : Rm → R be twice
continuously differentiable. A point u∗ ∈ Rm is a local minimum of J if the following
necessary conditions hold true:

(i) the gradient vanishes at u∗, i.e., ∇u J(u∗) = 0 and

(ii) the Hessian matrix H f = ∇2
uu J(u∗) is positive semi-definite at u∗.

If the Hessian H f is positive definite at u∗, then there is a strict local minimum at u∗

with respect to J. This condition is then called sufficient.

However, using this most simple definition of optimality, the constraints on the
parameter set ’prevent’ a simple computation of optima. For constrained optimal
problems as of as of Def. 2.37, optimality conditions can be specified as well given
u, g ∈ C2:
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Definition 2.47 (Sufficient optimality conditions for constrained minimization, strict
local minimum). Consider a constrained minimization problem with Lagrange func-
tion L as of eqn. (2.102). If there exist (u∗, λ∗) ∈ Rm ×Rl such that all ∇gi(u∗),
i = 1, . . . , l are linearly independent, and the sufficient optimality conditions

i) ∇L(u∗, λ∗) = 0,

ii) sT∇2
uuL(u∗, λ∗)s > 0

are satisfied for all s ∈ Rm, satisfying ∇gi(u∗)Ts = 0 for all i = 1, . . . , l and s 6= 0,
then u∗ ∈ U is a strict local minimum for J in eqn. (2.102).

In order to solve the optimal control problem, we introduce a set Lagrange multi-
pliers λi associated with each constraint gi(x):

Definition 2.48 (Lagrange function). Consider the minimization problem as of eqn.
(2.102). Let λ ∈ Rn. Then the function

L(u, λ) = J(u) +
n

∑
i=1

λigi(u) (2.121)

is called the Lagrange function, whereby all λi are called Lagrange multipliers. Note that
for u ∈ U , it holds gi = 0 by definition, such that L(u, λ) = J(u) inside U .

This newly attained function L can now be treated as the new target function, i.e.
we replace the system (2.102) by

min
u∈U,λ∈Rn

L(u, λ). (2.122)

In order to find the critical points of the Lagrangian L, which correspond to the
optimal solutions of the original optimization problem, we compute the stationary
points of L(x, λ), satisfying the optimality conditions. This will be part of the forward-
backward sweep method presented in section 2.6.2.

2.6.2 Forward-backward sweep method

The forward-backward sweep method provides an iterative approach for solving
optimal control problems by combining forward and backward integrations. It allows
for the computation of optimal control and state trajectories as well as the gradients
of the cost function. This method is widely used in the field of optimal control and
offers a powerful tool for solving a variety of dynamic optimization problems.

We will introduce the forward-backward method alongside an example of a
comparatively simple SI-model:

Example 2.49 (Optimization of an SI-model using Lagrange Multipliers). In order to
illustrate the optimization technique using Lagrange multipliers, consider a simple
SI-model with a control on the transmission rate as follows:

S′(t) = − β

N
· (1− u(t)) S(t)I(t) (2.123a)

I′(t) =
β

N
· (1− u(t)) S(t)I(t)− τ I(t) (2.123b)

We aim to optimize the system with regard to both the total cases and also the impact
control. In a first formulation of the optimal control problem, we aim to minimize
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the total amount of infected, along keeping the costs, i.e. the control u(t), as low as
possible. In order to maintain convexity of the problem and avoid bang-bang controls
due to linearity in u, the cost function term is squared:

max
u(t)∈[0,1]

−J(u, I) = max
u(t)∈[0,1]

−1
2

∫ T

0
I(t)2 + u(t)2 dt (2.124)

A critical point, represented by (u∗, I∗), must meet the necessary optimality condition

∇L (u∗, I∗) = 0, (2.125)

where the Lagrangian L is defined as

L(z, u, r) =
∫ T

0
λ(t)

[
I′(t)− β

N
· (1− u(t)) S(t)I(t)− τ I(t)

]
dt− J(u, I(t)). (2.126)

We now want to find the stationary points of the partial derivatives of L with respect
to u and I:

∂L
∂u

=
∫ T

0

[
−λ′(t) +

β

N
· λ(t)S(t)I(t)− u(t)

]
dt !

= 0 (2.127a)

∂L
∂I

=
∫ T

0

[
β

N
· λ(t) (1− u(t)) S(t)− τ − I(t)

]
dt !

= 0 (2.127b)

This leads us to the following system:

S′ = − β

N
· (1− u(t)) SI S(0) = S0 (2.128a)

I′ =
β

N
· (1− u(t)) SI − τ I I(0) = I0 (2.128b)

λ′ =
β

N
· λSI − u(t) λ(T) = 0 (2.128c)

u(t) = 1− N(τ + I(t))
λβS(t)

(2.128d)

Starting with an initial guess of the control u over the whole interval, we solve the
forward problem according to the differential equations for first solution of I(t) on
the whole time interval. The transversality conditions λ(t = T) = 0 and the values
for u and I are used to solve the backward problem for λ. Using the results for λ and
I, we calculate an update û on the time-dependent control function. The update of
u(t) is done by moving only a fraction σ of the previous uold towards û(t):

unew(t) = (1− σ) uold(t) + σ û(t) for all t ∈ [0, T] (2.129)

This procedure will be repeated until the norm of two subsequent controls is ’close
enough’, i.e., ‖unew − uold‖ < TOL. The procedure of the forward-backward algo-
rithm. is shown in Alg. 2.
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Algorithm 2 Pseudocode for the Forward-Backward Sweep Method

1: u← load initial ’guess’ for u
2: repeat
3: z, r ← solve forward problem
4: J ← compute Lagrange multipliers λi out of u,z and r and λi(T) = 0
5: û← compute update of u out of λi
6: u← (1− σ)u + σû
7: until ‖û− u‖ < TOL or maximum value of draws is reached

More information about this so-called Forward-Backward sweep method can
be found in Lenhart et al. [38]. For convergence and stability results, also refer to
Hackbusch [39]. The formalism provides a convenient and flexible approach for
solving optimization problems with constraints. By combining the objective function
and constraints into a single function, the optimal solution is gained by finding
the critical points of the Lagrangian and verifying that the constraints are satisfied.
An advantage of the Lagrange formalism compared to the Metropolis algorithm is
that it is able to optimize continuously and does not require discretization. On the
other hand, we have to make several requirements on the optimal function (e.g.,
differentiability), so that it is necessary to use adapted Lagrange methods or other
methods like the Metropolis algorithm.
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Chapter 3

Modelling Dengue Fever
Epidemics in Jakarta

This article by Moritz Schäfer and Thomas Götz has been released in the JOURNAL

OF MATHEMATICAL BIOLOGY in 2020, and is based on the first author’s master thesis
at the University of Koblenz-Landau, referred to as [1]. The theory, formulation and
numerical calculations were done by Moritz Schäfer. Thomas Götz provided advice
and some linguistic revisions. The format is changed to meet the thesis standard.

Abstract

This article thematizes the qualitative estimation of transmission dynamics of Dengue
fever. At first, a single-compartment vector-host model for the total infective cases in
one homogeneous area has been set up and simplified using a steady-state approx-
imation. Seasonality has been considered in the transmission parameter which is
modelled by a Fourier sum. The equilibria of the model and their stability as well as
the computation of the basic reproductive number are presented. As a modification,
models considering a segmenting of the area in separate districts and their inter-
district mobility have been set up, both with and without dependence of the disease
transmission parameters on the district. Those have also been analyzed in terms of
equilibria and stability. Parameter estimation on available Dengue data from Jakarta
in the time interval of 2008–2016 using the Metropolis algorithm has been done. L1
and L2 comparisons show that using the multi-patch model with district-dependent
parameters a decent approximation to the infection data is possible.

3.1 Introduction

Dengue fever is a fast-spreading viral disease and according to the World Health
Organization (WHO), people in more than 100 countries, equalling 40% of the total
world population, are exposed to the virus. About 50 to 100 million people (as of 2012)
are infected annually. Estimates of the death rate of the disease range between 1% to
2.5%, mainly caused by untreated diseases and diseases with a very severe outcome
(according to WHO [2]). This work deals investigates the dynamics of Dengue using
mathematical models. Population models like the SIR model or its extensions have
been widely used in the past decades.

The Dengue virus is not transmitted directly from human to human but via
vectors, which makes the fever a so-called vector-borne disease. The majority of the
vectors are mosquitoes of the species aedes albopictus and especially aedes aegypti.
These mosquitoes prefer all-year around high temperatures and high humidity. For
more information about epidemiological models including vector populations, read
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e.g. [3]. Until now, there are only slight efforts in terms of vaccination (according to
[2]).

In these regards, Jakarta is an optimal resting place for the mosquitoes. Jakarta
features quite constant daily mean temperatures of 26 – 27 ◦C throughout the whole
year, with little seasonal variation. It also shares a significant rain period from
December to March (each month has an average of more than 200 litres of rainfall),
coming across with high humidity; during the period of July to September, the
average amount of rain is below 100 litres per month, yet with only slightly lower
humidity (according to the Deutscher Wetterdienst / DWD). Seasonal dependence
has also been investigated in several works; e.g. in [4] and [5].

There are four main serotypes of Dengue, called DENV-1 to DENV-4. After a bite
of an infectious mosquito and given transmission of the disease, the incubation of
time of Dengue fever is typically one week. Infectious persons are also the primary
carrier to infect healthy mosquitoes in case of a bite. After recovery, the formerly
infected person is immune for about 12 weeks. Thereon, the patient remains immune
against the specific type he was infected with, but is susceptible to all other types
and can get infected with those again. Jakarta, for instance, has experienced a few
severe disease waves in the past few years showing a certain seasonality. This will be
investigated first before constructing the models.

This article is structured as follows: Section 3.2 introduces several tools used for pa-
rameter estimation, including the theoretical background of the Metropolis algorithm
later used to optimize the parameters. In section 3.3, a dynamic disease model for
whole Jakarta is set up and implemented and the results are presented. In section 3.4,
a model which considers the five main districts of Jakarta with district-independent
parameter values, and another one including district-dependent parameter values
are considered, which are also implemented and presented. In section 3.5, the three
models are compared and the results are discussed.

3.2 Metropolis algorithm

As to be seen in sections 3.3 and 3.4 we will optimize a large number of parameters
with respect to all the data points. Because of this large parameter space, it will not be
useful to use standard optimization tools, e.g. least-squares methods, to estimate the
unknown parameters. A solution to this problem is found in the Metropolis algorithm
based on Bayes‘ theorem which is used to update a hypothesis probability estimate
under new data, and which returns not just a single value for the parameter estimates,
but the mean with standard deviation of a chain of parameters.

3.2.1 Markov chain theory

Let D be the observed data and θ be the set of model parameters. Then, we denote
the posterior density by P(θ|D), the likelihood (defined by the probability model)
by P(D|θ) and the prior distribution by π0(θ). Let a joint distribution be given as
follows:

P(D) = π0(θ)P(D|θ) (3.1)

Then, the posterior distribution P(θ|D) is given by (cf. Gilks [6]):

P(θ|D) =
π0(θ) · P(D|θ)∫
π0(θ)P(D|θ) dθ

(3.2)
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For the explicit calculation of the expectation value of a posterior distribution, say
given a function f (θ|D) for a parameter set θ and given data D, we would need to
calculate the integral

E[ f (θ|D)] =

∫
f (θ) · π0(θ) · P(D|θ) dθ∫

π0(θ) · P(D|θ) dθ
, (3.3)

where P(D|θ) is the likelihood function which is defined by the probability model,
π0(θ) is the prior distribution and P(D) is a normalizing constant. The integral in
eqn. (3.3) is hard or even impossible to integrate using analytic tools, especially for
large parameter sets [6].

In order to solve this problem, we make use of Markov chain theory, whose basic
idea lies in drawing samples of a probability distribution which approximates the
posterior distribution f (θ|D). This is done by calculating a Markov chain that has
the posterior distribution as its equilibrium distribution. In Markov chain theory,
the probability pij of moving from the current state Xi to Xj with a probability only
depends on the previous state and no other. The initial probability, meaning the
probability that the initial state is e.g. Xi, is denoted by p0

i for all states. We can
create a transition matrix Π = (pij) out of all transition possibilities where i and j run
through all possible states.

The probability to move from state i to state j in exactly n time steps is denoted by
pij. An important theorem is the Chapman-Kolmogorov equation [7]:

Lemma 3.1. For n time steps and any k with 0 ≤ k ≤ n and the state space S, it holds

p(n) = ∑
r∈S

p(k)ir · p
(n−k)
rj . (3.4)

The distribution of the chain at the nth step using the initial probability p0 and the
matrix Π is denoted by

p(n) = p0 ·Πn. (3.5)

In MCMC methods, our goal is to find an approximative distribution that eventually
converges to the posterior distribution in question. This is why the limiting distribu-
tion of p0 ·Πn for n→ ∞ is important. We do not know yet if the chain converges at
all, but for now, we just assume that a limit, call it π, exists. We use the limit transition
to determine it:

π = lim
n→∞

p0 ·Πn = lim
n→∞

p0 ·Πn+1 = π ·Π (3.6)

We now make use of the following result (as of Andrieu et al. [8]):

Lemma 3.2. For ergodic and finite Markov chains and a certain N > 0, it holds
Πn > 0 for all n > N.

Let Π ≥ 0 be the transition matrix of an irreducible and aperiodic, thus ergodic,
Markov chain. From the irreducibility, pn

ij > 0 for all i and j and thus Πn > 0. Next,
use is made of the Perron-Frobenius theorem [9, 10]:

Lemma 3.3. If a matrix A is a strictly positive matrix, i.e., A > 0, the spectral radius
ρ(A) has the same algebraic and geometric multiplicities of 1. For matrices B with
Bn > 0 for all n > N, the result holds true as well, even if B is not strictly positive.
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By applying this theorem, we know the spectral radius ρ(Π) has the algebraic
and geometric multiplicity of 1. Thus, there exists a unique stationary distribution
satisfying the formula π = π ·Π, implying that all ergodic Matrix chains have a
unique stationary distribution which is also independent of the initial distribution.

3.2.2 Markov Chain Monte Carlo methods

Regarding Markov chains, the goal is to find a unique stationary distribution for the
given probability matrix. The goal in MCMC methods is somewhat the opposite: We
want to draw random samples from a target distribution [11]. To do this, we want
to find an ergodic Markov chain that has the (given) distribution as its limit. This
Markov chain has to be reversible to this distribution, satisfying the balance condition
(summed up for all i):

∑
i

πi · pij = ∑
i

πj · pji = πj ·∑
i

pji = πj (3.7)

This is the limit condition for a stationary distribution as of eqn. (3.6) [12].
The ’update’ of the states is done with random numbers: Starting with an

arbitrary parameter set, we draw a sample from a proposal distribution q, i.e.,
θnew ∼ q(θnew|θi−1) in every iteration i. The sample is accepted with a certain proba-
bility α(θnew|θi−1), such that θi = θnew; if it is not accepted, we set θi = θi−1. This is an
adaptation of a random walk method using an accept-or-reject rule to converge to the
desired posterior distribution.

The main advantages of MCMC methods are that they are simple to set up efficient
algorithms for sampling, even for rather complicated and high-dimensional posterior
distributions P(θ|D), and also enable the analysis of all model parameters in terms
of mean and standard deviation. Another useful feature is that for the purpose of
sampling, a full analytical description of the normalized product likelihood times
prior is actually not needed at all [12].

The work of Metropolis et al. [13] presents a simple method to implement the
concept in practice. It is a direct application of the MCMC method for symmetric
proposal distributions q (typically a normal distribution) with a predefined acceptance
probability, calculated by

α(θnew|θi−1) = min
(

1,
π(θnew) · q(θi−1|θi)

π(θi) · q(θi|θi−1))

)
= min

(
1,

π(θnew)

π(θi)

)
, (3.8)

where π(θ) is the approximative target distribution (cf. Gilks [6]). By comparison
distributions with given data, we use the sum of squares of the difference between
the real data Di i.e., the target distribution, and the estimated data D̂i(θnew), both at
data point i:

Υ = ∑
i

(
Di − D̂i(θnew)

)2 (3.9)

The approximative distribution is then evaluated by

π(θ) = c · e−
Υ2

2σ2 . (3.10)

Determining the proportionality constant c in eqn. (3.10) is redundant, since it
cancels out in equation (3.8). Obviously, Υ should optimally be 0. This is why the
approximative distribution converges to the target distribution if the Markov chain is
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set up correctly. If the balance condition

π(θi) · P(θi|θnew) = π(θnew) · P(θnew|θi) (3.11)

holds true, the Metropolis sampling is correct and the chain converges to the limiting
distribution [12].

3.3 Single-compartment SIRUV models

We will now describe the basic epidemiological model for a single compartment, i.e.,
the disease dynamics for a single district Ω. As an application of the method, we
use Dengue data for the city of Jakarta in the time interval of 2008 – 2016 and apply
the parameter estimation using the Metropolis algorithm, minimizing the difference
between the model and the data.

3.3.1 Dengue cases in Jakarta

Before dealing with the model, we will first consider the demographical and epidemi-
ological situation in Jakarta.

The data that will be used to fit the parameters is originating from private com-
munications with Dipo Aldila, Department of Mathematics, University of Indonesia,
Depok [14]. Over the given time interval from 2008 – 2016, it features weekly infection
data in a total time interval of 468 weeks. The data is shown in Fig. 3.1.
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FIGURE 3.1: Reported Dengue cases in Jakarta, 2008–2016.

It is important to know that this data only shows the registered cases of Dengue
(i.e., those being cured in hospital). But it is obvious that a high number of cases is
not treated in hospitals and thus does not get registered, which will be considered in
the single-compartment SIRUV-model introduced in the following section.
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3.3.2 Introduction and model equations

Over the past decades, there have been many descriptions of classical epidemiological
models. A comprehensive representation can be found in [15, pp. 315-394]. In
general, the population whose disease dynamics we want to describe is assumed to be
homogeneously mixed in certain subpopulations, i.e., there are no spatial differences
in the population shares and the spread of the epidemic. In a classical epidemiological
model, the SIR-model, there are three distinctive classes: The susceptibles S are the
part of the population which is healthy but can get infected with the disease; the
infectives (or infected) I have been infected with the disease and carry it out; finally,
the recovered R have had the disease but are currently (yet only temporarily) immune
against the disease. The total population N is the sum of all three subpopulations:

N = S + I + R (3.12)

We assume there is a constant birth (plus immigration) rate and a constant death
(plus emigration) rate. All newborns and newly immigrated persons are assumed
to be susceptible. To simplify things slightly, we assume that the total population
is constant, so that birth or immigration rate and death or emigration rate are the
same (called µ from now on). This will most likely not be correct in reality; Jakarta,
in particular, features – as most large towns – a growing population. But it will not
cause significant changes in the observed time interval of 9 years, at least not in the
epidemiological data (yet of course in the total population numbers). For models
covering a significantly larger time intervals, the birth and death rates might have to
differ in order to stay realistic.

As Dengue fever is a vector-borne disease, vector dynamics are also included in
the model. Two more populations, the susceptible vectors U and the infected vectors
V, are added to the three human populations S, I and R (making it a SIRUV-model).
We assume that the birth and death rate of vectors are constant and equal as well,
named ϑ from now on. Thus, the total amount of vectors M also is constant:

M = U + V (3.13)

The transmission of the disease is modelled as follows, assuming the disease is
transmitted directly between the infected and susceptible subpopulations: Consider
that all susceptible humans have the same ’chance’ to get in contact with any infected
vector, as well as all susceptible vectors have the same ’chance’ to get in contact with
any infected human. The probability of disease transmission is then proportional
to the product of the respective susceptibles and infectious populations, i.e., the
amount of susceptible humans who get infected is equal to β·S·V

M , and the amount of
susceptible vectors who get infected is equal to ρ·U·I

N . As a first step, we assume that
β and ρ are constant. The recovery time of the disease for humans is τ−1, and thus
the amount of persons who recover in a certain time interval is τ · I. The recovered
persons can get infected again after a time κ−1; because of that, the number of
recovered persons returning to the suceptible department equals κ · R. Since vectors
do not have an immune system, there is no recovery after being infected, and no
subpopulation of recovered vectors. The differential equation system for this model
reads as follows:
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S′ = µ · (N − S)− β · S ·V
M

+ κ · R, (3.14a)

I′ = −(µ + τ) · I + β · S ·V
M

, (3.14b)

R′ = −(µ + κ) · R + τ · I, (3.14c)

U′ = ϑ · (M−U)− ρ ·U · I
N

, (3.14d)

V ′ = −ϑ ·V +
ρ ·U · I

N
. (3.14e)

The ODE system (3.14) consists of five equations that, in the later algorithms, have to
be computed in each draw. One problem arises in that there is no reliable data on the
amount of vectors. However, by the so-called steady-state approximation, it is possible
to eliminate the vector populations from the above model. Several of the parameter
are identified by the 2010 census and epidemiological data from the WHO, cf. Tab.
3.1.

TABLE 3.1: Fixed parameter values.

N µ τ κ

9.6 · 106 (69 · 52 w)−1 (2 w)−1 (12 w)−1

It obviously holds ϑ−1 � µ−1. This means that after a comparatively short
initial time period, both vector populations do not change with time any more and
remain constant. This approximation only holds true if the observed time interval
is significantly larger than ϑ−1 = 2 weeks. For an interval of 9 years, this is a valid
simplification. For further information about this, see e.g. [3] or [16].

The equilibria of the vector populations are reached if U′ = 0 and V ′ = 0. This is
equivalent to

U∗ =
M

1 + ρ
ϑ·N I∗

:=
M

1 + I∗
λ

, (3.15a)

V∗ =
M · I∗

ϑ
ρ · N + I∗

=
M · I∗
λ + I∗

. (3.15b)

with λ = ϑ
ρ · N. As discussed above, we can now replace V in eqns. (3.14) with its

equilibrium and ’ignore’ the vector populations in the model.
Furthermore, since we know S + I + R = N at all times t, we can leave out one of

the three human population equations as it is redundant. In our case, the susceptibles
are left-out, as the infectious class is the most important to handle and the recovered
equation is more simple in its computation. This results in the following system:

I′ = −(µ + τ) · I + β · (N − I − R) · I
λ + I

, (3.16a)

R′ = −(µ + κ) · R + τ · I. (3.16b)

While µ, τ, κ and N are parameters which we know or are able to estimate decently,
λ and β still remain variable. Assuming both of them to be constant is also not very
useful, as obviously, seasonal and other effects have to be considered. In this regard,
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we claim (without loss of generality) that β is a periodic function of time, represented
by a (finite) Fourier series:

β(t) = β0 +
N

∑
i=1

ci · cos(2π ·ωi · t + φi) (3.17)

With the restriction

β0 ≥
N

∑
i=1

ci, (3.18)

it is assured that β(t) ≥ 0 for all t. Because of that, given a transmission, a biologically
implausible possibility of an increasing number of susceptibles after transmission,
together with a decreasing amount of infected, is prevented.

Testing has shown that to keep the model ’as simple as possible, but no simpler’,
an apt number of summands is N = 3. The aspect of seasonality has to be considered;
therefore, the first frequency parameter is fixed to ω1 = (52 w)−1.

Another not yet considered problem is that our model does not yet take care of
the fact that the amount of registered infections is not the amount of actual infections.
As there is no evidence on the relation of those two numbers, we assume that the
ratio of registered and total infections is a fixed value η. As of 2016, however, Dengue
treatment in Jakarta’s hospitals became free (according to Badan Pusat Statistik (2010),
which most likely has changed the ratio η. So, we assume two different ratios η1 and
η2 in the respective time intervals Jan 2008 – Dec 2015 and Jan 2016 – Dec 2016.

The parameter set θ = (β0, c1, c2, c3, ω2, ω3, φ1, φ2, φ3, λ, η1, η2) is unknown, and
it needs to be estimated by simulation of the disease dynamics and optimization of
those parameters under the given data, as to be seen in subsection 3.5. Before, the
equilibrium points of the system and their stability are analyzed.

3.3.3 Equilibria of the model and stability

As already mentioned for the vector population in subsection 3.1, the equilibria of
the model as described in eqns. (3.16) are computed by ( İ, Ṙ) = (0, 0). Here, we only
consider the autonomous part of β(t) which is β0, neglecting the non-autonomous
and periodic part.

A disease-free equilibrium (DFE) is reached at (I∗1 , R∗1) = (0, 0); this means that
there is an equilibrium if the disease dies out and the whole human population
belongs to the susceptible class, i.e., N = S. The endemic equilibrium is reached if
the following equations hold:

I∗2 =
βa · N − λ · (µ + τ)

µ + τ + βa · (1 + τ
µ+κ )

, (3.19a)

R∗2 =
τ

µ + κ
· I∗2 =

τ · (βa · N − λ · (µ + τ))

(µ + κ) · (µ + τ + βa · (1 + τ
µ+κ ))

. (3.19b)

For stability analysis, we compute the basic reproductive number R0 by the next-
generation method according to Badan Pusat Statistik (2010). For that, we only need
to consider all infectious subpopulations, which is only I in this model. Eqn. (3.16a)
is divided into two parts, the number of new infections in the infective department FI
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and the number of outgoing individuals WI :

I′ = FI −WI (3.20)

with

FI =
βa · (N − I − R) · I

λ + I
, (3.21a)

WI = (µ + τ) · I. (3.21b)

The basic reproductive number R′ can be interpreted as the number of secondary
infections originating from a single infected person in an entirely susceptible popula-
tion. The Jacobian matrices of FI , noted as JF, and WI , noted as JW , are computed by

JF =
∂FI

∂I
=

βa · N · λ
(λ + I)2 =

βa · N
λ

, (3.22a)

JW =
∂WI

∂I
= µ + τ. (3.22b)

Here, N − I − R is replaced by N and I is equal to 0, because we assume an at first
entirely susceptible population and then observe the changes given a single infected
individual. The next-generation matrix is computed by the largest eigenvector of
FW−1, i.e.,

R0 = ρ(FW−1) =
βa · N

(µ + τ) · λ . (3.23)

IfR0 > 1, meaning βa · N > λ · (µ + τ), the expected number of secondary infections
exceeds the number of primary infections and thus the disease becomes epidemic.
In this case, the DFE (I∗1 , R∗1) is unstable. This can be shown by linearization of the
system around the equilibrium and computing the largest real eigenvalues of the
Jacobian, which is negative ifR0 > 1. IfR0 < 1, the number of secondary infections is
lower than the number of primary infections and thus the disease dies out eventually,
resulting in an asymptotically stable disease-free equilibrium, which also can be
shown by linearization.

The endemic equilibrium (I∗2 , R∗2) is asymptotically stable if R0 > 1, which can
also be shown using linearization. In case of R0 < 1, eqn. (2.45) implies I∗2 < 0 as
the denominator is always > 0 and the nominator gets < 0; thus, a realistic endemic
equilibrium does not exist.

3.4 Multi-compartment SIRUV model

In the previous section, a model based on one single geographical segment is dis-
cussed – consisting of the whole city of Jakarta. This might not reflect the actual
disease values aptly, as in Jakarta’s districts, the infection rates can be significantly
different, due to different environments, population size, demography or wealth. We
will first have a look on the real data before setting up a model considering several
compartments instead of a single patch.
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3.4.1 Population and infection data

As in section 3.3.1, we will first consider the data situation in Jakarta. The size of the
population in all districts is shown in table 3.2, according to [17].

TABLE 3.2: Population in the districts of Jakarta [17].

District Central North West South East

Population [106] 0.9 1.6 2.3 2.1 2.7

As a first step, we have a look at the relevant infection data for the districts. Com-
pared to the respective amount in Jakarta, multiplied with the share of population in
the district, we can see that some districts follow the infection dynamics well, while
others show significantly different behaviour. As an example, we plot the data of
infected for East Jakarta in Fig. 3.2 and the data of infected for West Jakarta in Fig.
3.3; the data is originating from private communication with Dipo Aldila [14]. The
data values have been averaged over a period of 11 weeks, five weeks before and
five after the respective week, in order to smoothen the data and eliminate potential
outliers. The blue line shows the total amount of registered infections in the various
districts. The green line shows the total amount of infections in Jakarta, which has
been ’normalized’ over the population share of the respective district.
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FIGURE 3.2: Reported Dengue cases in East Jakarta, 2008–2016.
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FIGURE 3.3: Reported Dengue cases in West Jakarta, 2008–2016.

Some districts that seem to have a significantly lower or higher infection rate than
the Jakarta average, even if only in certain years. In Central Jakarta and North Jakarta,
the infection rates are mostly slightly above average. In West Jakarta, the infection
rate is generally lower, while in South and East Jakarta, the rates are roughly in line
with the city average.

TABLE 3.3: Correlation between the Dengue cases in the districts of
Jakarta and the total Dengue cases.

District Central North West South East

Correlation 0.9402 0.9059 0.9167 0.9445 0.9734

The correlations between the respective district and the average are computed
and shown in Tab. 3.3. It shows that all districts correlate highly with the data of the
whole city, as all (main) districts have correlations over 0.9. North and West Jakarta
appear to be the least well correlating districts, while East Jakarta correlates extremely
well with the data of whole Jakarta. In the figures, it can also be seen that any model
applied only on the total amount of infected in Jakarta cannot appropriately describe
the dynamic of the disease in all districts. This is why in the following subsection,
a model is set up that handles all districts and the local infections individually. For
this, we will also allow mobility between districts, so that the infection can not only
spread vertically in one district, but also between the districts.

A mobility matrix G = {gij} of Jakarta is introduced (also originating from private
communication with Dipo Aldila, University of Indonesia), which we will use in the
following models. It is important that this mobility matrix is only an evaluation of
the commuters from the year 2011 and is just a rough approximation for the whole
time interval. The districts Central Jakarta, North Jakarta, West Jakarta, South Jakarta
and East Jakarta are ordered as i = 1, ..., 5 in this order. The mobility matrix G is
given in Tab. 3.4; the values (in percent) represent the fraction of the amount of
resident humans in district i which move from i to district j (represented by row and
column, respectively). Additionally, all entries on the diagonal are set to mii := 1,
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which represent the total resident population within a district and which will also be
helpful in the later model descriptions. Using this, we can set up a model including
equations for the separate districts and also the mobility matrix G.

TABLE 3.4: Inter-district mobility matrix for Jakarta in 2011.

from
to

Central North West South East

Central 100 7.79 11.05 11.82 5.56
North 11.54 100 6.61 3.14 4.19
West 11.76 10.61 100 6.73 1.15

South 13.03 2.71 5.19 100 6.41
East 10.06 7.21 3.50 11.52 100

3.4.2 Model equations

The main idea of the model lies in ’dividing’ the total population N into n (in case
of Jakarta n = 5) districts with a resident population Ni, each of which is assumed
to be constant with equal birth and death rates. Analogously to before, there are
three sub-compartments per district Si, Ii and Ri, which are the susceptible, infected,
and recovered persons in district i. The parameters µ, τ and κ are assumed to be
equal for all districts and take on the same values as in the previous sections, while
the parameters describing the transmission of the disease, i.e., βi and λi, can alter
in the various districts. Furthermore, mobility between the five districts has to be
considered – otherwise, we would gain five independent single-department models.
Humans from district i commute or travel to district j at a rate mij (which represents
percentage of commuters resident in district i, compared to the total population
Ni), but are assumed to return to their resident district after some time; there is no
parameter that deals with the mobility of people who move from one district to the
other. Vectorial mobility is hardly observable and thus also neglected.

We first consider some theory regarding multi-district epidemiological models.
The multi-patch model is based upon the single- department model represented in
eqns. (3.14), where effects of mobility have to be included in the transmission parts.
This is why our first goal is to find an adequate formulation for the transmission
parameters. Thus, there are three possible ways of disease transmission in district i:

1. Transmission from infected vectors in district i to susceptible humans resident
in district i, i.e., βi · Si · Vi

Mi
.

2. Transmission from infected vectors in all other districts j to susceptible humans
commuting from district i into district j, i.e., ∑

j 6=i
β j · gijSi ·

Vj
Mj

.

3. Transmission from infected humans commuting from district j into district i to
susceptible vectors in district i, i.e., ∑

j
ρi ·Ui · gji ·

Ij
Ni

.
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As mii = 1, the first two equations can be combined into a single sum, but without
the condition j 6= i. The multi-compartment model thus reads as follows:

S′i = µ · (Ni − Si)−∑
j

β jgijSi ·
Vj

Mj
+ κ · Ri, (3.24a)

I′i = −(µ + τ) · Ii + ∑
j

β jgijSi ·
Vj

Mj
, (3.24b)

R′i = −(µ + κ) · Ri + τ Ii, (3.24c)

U′i = θ · (Mi −Ui)−∑
j

ρiUimji ·
Ij

Ni
, (3.24d)

V ′i = −θVi + ∑
j

ρiUimji ·
Ij

Ni
. (3.24e)

As in section 3, the equilibria of the vector population are calculated, then the suscep-
tible class is omitted to reduce the dimensionality of the system. With some simple
algebra, we find

I′i = −(µ + τ) · Ii + ∑
j

β jgij · (Ni − Ii − Ri) ·∑
k

gkj · Ik

λj + ∑
k

gkj · Ik
, (3.25a)

R′i = −(µ + κ) · Ri + τ · Ii. (3.25b)

3.4.3 Equilibria and stability

Analogously to section 2.3.3, we analyze the equilibria and their stability of the multi-
compartment model with eqns. (3.25). Therefore, it must hold ( İi, Ṙi) = (0, 0) for
every compartment i. This results in the equation system

I∗i = ∑
j

β jgij · (Ni −
(

1 + τ
µ+κ

)
· I∗i )) ·∑

k
gkj I∗k

(µ + τ) · (λj + ∑
k

gkj I∗k )
, (3.26a)

R∗i =
τ

µ + κ
· I∗i . (3.26b)

Obviously, there exists a disease-free equilibrium (DFE) if (I∗i , R∗i ) = (0, 0) for all i.
Unfortunately, eqn. (3.26) is an expression that cannot be explicitly solved for I∗i , so
we cannot explicitly compute the endemic equilibrium or equilibria (as there can be
more than one).

However, the basic reproductive number can be calculated using eqns. (3.26). We
find that F and W are 5×1 vectors with

Fi = ∑
j

β jgij · (Ni − Ii − Ri) ·∑
k

gkj Ik

λj + ∑
k

gkj Ik
, (3.27a)

Wi = (µ + τ) · Ii. (3.27b)
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for i = 1 . . . 5. The partial derivatives of Fi and Wi with respect to the infected of any
district q (including i) are

(JF)iq =
∂Fi

∂Iq
= ∑

j

β jgijgqjNi

λj
, (3.28a)

(JW)iq =
∂Wi

∂Iq
=

{
µ + τ q = i
0 q 6= i . (3.28b)

Eqn. (3.28a) holds because it is assumed there are no infected in the respective
compartment at the start, and thus the derivatives are evaluated at Ij = 0 for all
districts j. The basic reproductive number is then calculated by the determinant of
JF J−1

W . After some simplifications, it follows

R0 = (µ + τ)−
1
2 · det(G)

1
n ·
(

n

∏
i=1

βi · Ni

λi

) 1
2n

. (3.29)

This result will become important later when the basic reproductive number can be
computed out of the means of the parameters of the Metropolis chains.

Another interesting aspect of the equilibria of multi-district models is the be-
haviour of the whole system in case of one district being at its DFE or its EE. Therefore,
regarding eqns. (3.26), if the system is at an equilibrium, then (I′i , R′i) = (0, 0) for all
districts i. If one district i∗ is in the DFE, then it additionally holds Ii∗ = Ri∗ = 0. For
this district i∗, it follows from equation (3.26)

∑
j

β jgi∗ jNi∗ ·∑
k

gkj Ik

λj + ∑
k

gkj Ik
= 0. (3.30)

As all summands are non-negative, any summand in this formula must be equal to 0.
It also holds true that the denominator is larger than 0, as for all j, it holds λj > 0 and
thus

β jgi∗ jNi∗ ·∑
k

gkj Ik = 0 (3.31)

for all j. Further simplification yields

gi∗ j ·∑
k

gkj Ik = 0 (3.32)

for all j. There are only three possibilities to satisfy eqn. (3.32). The first is that Ik = 0
for all k. The other two are that either for those k where Ik 6= 0, it must hold gkj = 0
or gi∗ j = 0 for all j, so that there is either no mobility from district k to district j, or
there are no commuters from district i∗. The latter two conditions might be valid in
case the observed areas are much larger (e.g., a whole country), but for non-isolated
areas, this is unreasonable. So, in case of an equilibrium, if one district is in the DFE,
then all other non-isolated districts are in the DFE as well.

If the system is at an equilibrium and one district i∗ is in the EE, so that Ii∗ > 0, it
is easy to see that disease in all other districts that can be reached from district i is in
the EE as well. If one of the other districts, say i′, would be in the DFE, then by the
previous result all other districts would be in the DFE as well, which contradicts the
statement that district i∗ is in the EE.
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3.5 Results

Applying the theoretical results of the previous sections, we can now make use of
the Metropolis algorithm (see section 3.2.2) to the three described models, the single-
compartment model and the multi-compartment models with district-dependent
and district-independent parameters. It is not trivial to see the number of draws is
’high enough’ to receive a decent parameter estimation, so that density plots of the
parameters after r = 2 · 104 draws are discussed later.

3.5.1 Single-compartment model

Using the data and the theoretical results from section 3.3, we now implement the
algorithm on the single-compartment model as of eqns. (3.16).

For values of the fixed parameters µ, τ, κ see Tab. 3.1. Starting values for the
infective and recovered populations are not modelled, but taken out of the data. It
is presumed that the initial value for the recovered is R0 = 0 as for any biologically
realistic value of R0 ∈ [0, N] the estimated infection data is not affected significantly
in the long run. The starting value for the number of registered infected persons I0 is
computed out of the starting value of the (flattened) epidemiological data, divided
by η1, which changes in each run of the algorithm.

After several test runs, correlations of all 12 parameters were computed. In these
tests, it appeared ω2 and φ2 are highly correlated (ρ > 0.95), because of this we
fixed φ2 to the estimated value φ2 = 47.8 as identification of both parameters is not
possible due to high correlation. Thus, the mutable parameter vector is reduced
to θ = (β0, c1, c2, c3, ω2, ω3, φ1, φ3, λ, η1, η2). All other parameter combinations had
correlations < 0.8.

The standard deviation of the estimated infected σI in the infection dynamics we
find for the initial parameter set is used to find an reasonable value for the standard
deviation of the target distribution. The proposal distribution draws samples from
the parameter set with this standard deviation (which can be called the ’step size’ of
the algorithm) and a resulting normal distribution q ∼ N (θi−1, σI). To implement the
accept/reject choice, a random number α∗ ∼ U (0, 1) is drawn; if α > α∗ with α as of
eqn. (3.8), the new state is accepted, otherwise rejected. We cannot be certain to have
achieved convergence of the algorithm after r draws with respect to the parameter set
θ according to [15, 11]. However, there are several tools for determining convergence
[12]. This will be part of the discussion in section 3.6.

Parameter statistics of the algorithm are shown in Tab. 3.5 for the single-patch
model are provided. For a better understanding of the parameter values, all ωi are
normalized so that they have the unit [y−1].
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TABLE 3.5: Parameter statistics, single-compartment model.

Parameter Mean Standard Deviation

β0 2.4589 · 10−4 0.0219 · 10−4

c1 6.4788 · 10−5 0.1614 · 10−5

c2 3.0351 · 10−5 0.2575 · 10−5

c3 1.0255 · 10−4 0.0231 · 10−4

ω2 4.2438 0.0940
ω3 2.4353 · 101 0.0216 · 101

φ1 2.3290 · 101 0.0150 · 101

φ2 4.7796 · 101 parameter fixed
φ3 7.0732 · 101 0.0061 · 101

λ 3.8029 · 102 0.0378 · 102

η1 3.2197 0.0188
η2 1.3151 0.0245

3.5.2 Model with compartment-independent parameters

Next, we will consider the multi-compartment model as of eqns. (3.25). It is assumed
that all βi are independent of the compartment i, thus the autonomous part β0 is the
same in all compartments, as well as λi, η1 and η2. Thus, no local differences except
of the total population of the compartments, starting values for the infective and
mobility between classes are considered. Optimization is done with respect to the
sum of squares function as of eqn. (3.9), for the data of all five districts.

The fixed parameters µ, τ, κ remain the same as before (see Tab. 3.1). Ii,0 is the
starting value of infective persons in each district, divided by the parameter η1 which
changes in each draw, while Ri,0 = 0 for all districts. The mutable parameter set
still consists of the 11 parameters as in subsection 3.5.1. The parameter means and
standard deviations are shown in Tab. 3.6.

TABLE 3.6: Parameter statistics, multi-district, district-independent
transmission and hospitalization parameters.

parameter unit mean value standard deviation

β0 [10−4] 2.2860 0.0189
c1 [10−5] 7.2466 0.0289
c2 [10−5] 3.9310 0.1540
c3 [10−5] 8.1134 0.2428
ω2 [100] 4.4319 0.0464
ω3 [101] 1.8682 0.1314
φ1 [101] 2.3266 0.0037
φ2 [101] 5.4305 parameter fixed
φ3 [101] 7.0131 0.0114
λ [101] 9.6255 0.1852
η1 [100] 5.1401 0.0115
η2 [100] 1.7321 0.0763
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3.5.3 Model with compartment-dependent parameters

Similar to subsection 3.5.2 (see there for more information about the ’setup’), we will
use the algorithm on eqns. (3.25), including local differences in transmission and
registration rates. This means that the transmission and hospitalization parameters
βi, λi and η1,2 are assumed to be variable as well. The means and standard deviations
of the parameter set are shown in Tab. 3.7.

TABLE 3.7: Parameter means and standard deviations.

parameter unit C mean C std N mean N std W mean W std S mean S std E mean E std

β0 [10−4] 2.3031 0.0049 2.3448 0.0683 2.2668 0.0310 2.2634 0.0087 2.2264 0.0014
c1 [10−5] 6.7742 0.0671 6.9125 0.1596 6.9869 0.0801 6.7701 0.0618 7.7733 0.2692
c2 [10−5] 3.8024 0.0378 4.2536 0.0721 3.5507 0.0798 4.7544 0.1266 4.3061 0.1122
c3 [10−5] 8.6899 0.1122 7.8066 0.0660 8.5680 0.0247 8.4691 0.0382 7.9756 0.0079
ω2 [100] 4.3519 0.0449 4.9020 0.0398 3.1474 0.0381 4.8015 0.0357 4.4661 0.0464
ω3 [101] 1.815 0.0596 2.2035 0.1469 2.5976 0.0106 1.6225 0.0256 1.8054 0.0631
φ1 [101] 2.3353 0.0037 2.3211 0.0199 2.3214 0.0021 2.3357 0.0017 2.3246 0.0011
φ2 [101] 5.3931 fixed 5.4407 fixed 5.4465 fixed 5.4678 fixed 5.4287 fixed
φ3 [101] 6.9882 0.0062 7.0502 0.0138 7.0709 0.0032 6.9819 0.0049 7.0029 0.0054
λ [101] 9.5301 0.0941 9.9895 0.0433 9.8583 0.0519 9.5031 0.0442 8.4255 0.0614
η1 [100] 4.9173 0.0408 4.4751 0.1446 6.3710 0.0723 5.3111 0.0454 4.4445 0.0371
η2 [100] 1.8235 0.0594 1.6728 0.0333 2.4642 0.0711 1.7108 0.0251 1.4502 0.0250

3.6 Discussion of the Models

In this section, the results of the models in sections 3.5.1 – 3.5.3 are compared in terms
of the basic reproductive number as well as their L1 and L2 errors. The solutions of
the disease dynamics with the mean of the estimated parameters are also presented.
In this section, ’model 1’ refers to the single-compartment model, ’model 2’ to the
multi-compartment model with district-independent parameters, and ’model 3’ to
the multi-district model with district-dependent parameters.

Tab. 3.8 lists the computed (mean) basic reproductive numbersR0 for the three
analyzed models computed out of eqn. (3.23) and (3.29) as well as the minimum and
maximum values taken out of the standard deviation ranges from all parameters.

TABLE 3.8: Mean, minimal and maximal values forR0 for the different
models.

model 1 model 2 model 3

R0 6.21 8.22 8.63
R0, min 6.09 8.00 8.54
R0, max 6.32 8.45 8.73

All models feature basic reproductive numbers considerably larger than 1 and
thus the disease is assumed to be endemic. In the model with district-dependent
parameters,R0 is significantly higher than in the single-district model.

In Fig. 3.4, the results for the multi-district model of all three models are plotted. In
Fig. 3.5 and Fig. 3.6, examplary plots of the estimated and real numbers of infections
in East and West Jakarta are shown for all three models.



72 Chapter 3. Research Paper I

0 50 100 150 200 250 300 350 400 450 500

time [weeks]

0

500

1000

1500

n
u

m
b

e
r 

o
f 

in
fe

c
ti
o

n
s

simulation multi-compartment, variable transmission parameters

simulation multi-compartment, constant transmission parameters

simulation single-compartment

infection data, Jakarta

FIGURE 3.4: Real and estimated Dengue cases in Jakarta.
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FIGURE 3.5: Real and estimated Dengue cases in East Jakarta.
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FIGURE 3.6: Real and estimated Dengue cases in West Jakarta.

For the quantitative comparison of all models with the data sets, we use both L1

andL2 errors for Jakarta and each of its districts. In the case of the single-compartment
model, the estimation of the various districts, which were not required in the model,
is done by multiplying the total estimated infections with the relative amount of
persons in the respective district according to Tab. 3.2, e.g., by 0.9

9.6 in Central Jakarta.
Tab. 3.9 shows the errors of the models for Jakarta and all districts.

TABLE 3.9: Comparison of the models with real data using L1 and L2
norms.

district model 1, L1 model 2, L1 model 3, L1 model 1, L2 model 2, L2 model 3, L2

Jakarta 0.2319 0.2338 0.2294 0.2513 0.2340 0.2504
Central Jakarta 0.2934 0.2910 0.2866 0.3620 0.3323 0.3138
North Jakarta 0.2590 0.2624 0.2348 0.2811 0.2881 0.2549
West Jakarta 0.4555 0.4607 0.2128 0.4618 0.4644 0.2500
South Jakarta 0.2683 0.2689 0.2563 0.2874 0.2831 0.2772
East Jakarta 0.2612 0.2807 0.2593 0.2984 0.3257 0.2820

In Fig. 3.4 and Tab. 3.9, it is visible that all three models are approximating the
total amount of infected in Jakarta decently and both L1 and L2 norms are quite
similar in all three models. As to be expected, the single-district model is significantly
’worse’ when comparing the results for Jakarta’s districts. The multi-district model
with district-independent parameters improves the results for the districts, while the
model with district-dependent parameters generally yields the best results for the
districts.

As also to be seen in Fig. 3.5, both multi-district models are decent approximates
for East Jakarta. In Fig. 3.6, the model including the district-dependent parameters for
all districts is not a decent approximation, while the one with variable transmission
parameters is much more accurate. In all figures, some peaks are underestimated even
in the ’best’ model; however, from week 200 onwards, the dynamics are approximated
quite well.

For diagnostics of convergence, see also Appendix A where the density plots of
the parameter set after r = 2 · 105 draws are shown. Most of the parameter plots
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show a normally or almost normally distributed behaviour. It is visible, however, that
several parameters appear to not be normally distributed (e.g., θ3 in Fig. 3.9), although
the bandwidth is comparatively small. This can be a hint of hidden correlations with
other parameters or a small impact of the parameter in the equations, which can be
caused by the model itself. Methods like burn-in or thinning as of e.g. [11] do not
lead to better mixing parameters.

3.7 Conclusion

The multi-district model with district-dependent parameters yields satisfying re-
sults to real data and appears to model spatial heterogeneity and mobility visibly
better compared to the single-patch model and the multi-patch model with district-
independent parameters. Theoretical findings make it possible to calculate, e.g., the
basic reproductive numbersR0 for the model. Problems like seasonality in the data,
jumps because of a different counting strategy of infections or a change in the health
policy are addressed. Handling of mobility and the quality of the model is strongly
dependent on reliable data. The mobility matrix G we have used in the models is a
rough estimate in a single year of the time period while the data obviously cannot
cover all infected – only the registered – persons. This, together with the time depen-
dency of transmission rates and jumps in the infection data, make it difficult to the
find decent estimates of the real infected data. The methods we have implemented to
solve these problems can be used in other infection scenarios as well, if only partially
in case, e.g., mobility data is not present. More pre-knowledge about the parameters
(e.g., the vector population and disease-related information) can be a valuable aid in
their identification and reduce the diagnostic problems.
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A Density plots of parameters

A.1 Single-district model

FIGURE 3.7: Density plot of β0 for model 1.

FIGURE 3.8: Density plot of c1 for model 1.
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FIGURE 3.9: Density plot of c2 for model 1.

FIGURE 3.10: Density plot of c3 for model 1.
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FIGURE 3.11: Density plot of ω2 for model 1.

FIGURE 3.12: Density plot of ω3 for model 1.
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FIGURE 3.13: Density plot of φ1 for model 1.

FIGURE 3.14: Density plot of φ2 for model 1.
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FIGURE 3.15: Density plot of φ3 for model 1.

FIGURE 3.16: Density plot of η1 for model 1.
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FIGURE 3.17: Density plot of η2 for model 1.
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A.2 Multi-district model with district-independent parameters

FIGURE 3.18: Density plot of β0 for model 2.

FIGURE 3.19: Density plot of c1 for model 2.
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FIGURE 3.20: Density plot of c2 for model 2.

FIGURE 3.21: Density plot of c3 for model 2.
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FIGURE 3.22: Density plot of ω2 for model 2.

FIGURE 3.23: Density plot of ω3 for model 2.
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FIGURE 3.24: Density plot of φ1 for model 2.

FIGURE 3.25: Density plot of φ2 for model 2.
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FIGURE 3.26: Density plot of φ3 for model 2.

FIGURE 3.27: Density plot of η1 for model 2.
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FIGURE 3.28: Density plot of η2 for model 2.
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A.3 Multi-compartment model with district-dependent parameters

FIGURE 3.29: Density plot of β0 for model 3, exemplary for West
Jakarta.

FIGURE 3.30: Density plot of c1 for model 3, exemplary for West
Jakarta.
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FIGURE 3.31: Density plot of c2 for model 3, exemplary for West
Jakarta.

FIGURE 3.32: Density plot of c3 for model 3, exemplary for West
Jakarta.
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FIGURE 3.33: Density plot of ω2 for model, exemplary for West Jakarta.

FIGURE 3.34: Density plot of ω3 for model 3, exemplary for West
Jakarta.
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FIGURE 3.35: Density plot of φ1 for model 3, exemplary for West
Jakarta.

FIGURE 3.36: Density plot of φ2 for model 3, exemplary for West
Jakarta.
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FIGURE 3.37: Density plot of φ3 for model 3, exemplary for West
Jakarta.

FIGURE 3.38: Density plot of η1 for model 3, exemplary for West
Jakarta.



92 Chapter 3. Research Paper I

FIGURE 3.39: Density plot of η2 for model 3, exemplary for West
Jakarta.
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Chapter 4

The COVID-19 Outbreak in
Germany – Models and Parameter
Estimation

This article by Peter Heidrich, Moritz Schäfer, Mostafa Nikouei and Thomas Götz has
been released in the journal COMMUNICATION IN BIOMATHEMATICAL SCIENCES in
2020, referred to as [1]. The theory, formulation of the optimal control problem and
numerical calculations were done by Moritz Schäfer (for the Metropolis algorithm) and
Peter Heidrich (for the adjoint method). Mostafa Nikouei provided some further nu-
merical computations (which did not end up in the present work), while Thomas Götz
provided the idea for the article as well as further advice, and wrote the Introduction.
The format is changed to meet the thesis standard.

Abstract

Since the end of 2019, an outbreak of a new strain of coronavirus, called SARS-CoV-2,
is reported from China and later also from other parts of the world. Since 21 January
2020, World Health Organization (WHO) reports daily data on confirmed cases and
deaths from both China and other countries [2]. The Johns Hopkins University [3]
collects those data from various sources worldwide on a daily basis. For Germany,
the Robert-Koch-Institute (RKI) also issues daily reports on the current number of
infections and infection related fatal cases and also provides estimates of several
disease-related parameters [4]. In this work we present an extended SEIRD-model
to describe these disease dynamics in Germany. The model takes into account the
susceptible, exposed, infected, recovered, and deceased fractions of the population.
Epidemiological parameters like the transmission rate, lethality or the detection rate
of infected individuals are estimated by fitting the model output to available data. For
the parameter estimation itself, we compare two methods: an adjoint based approach
and a Monte-Carlo based Metropolis algorithm.

4.1 Introduction

In December 2019, first cases of a pneumonia of unknown cause were reported from
Wuhan, China. In the meantime, these cases were identified as infections with a
novel strain of coronavirus, called SARS-CoV-2, and the disease it causes was called
Coronavirus Disease 2019 (COVID-19). At the beginning of January 2020, the virus
spread over mainland China and reached other provinces. From 21 January onwards,
WHO’s daily situation reports [2] or Johns Hopkins University [3] (JHU) contain
the latest figures on confirmed cases and deaths for almost all countries. In this
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work, we rely on the data published by the JHU due to their rapid updates and easy
accessibility.

The first COVID-19 case in Germany was reported on 27 January 2020 in Bavaria.
Later cases were imported by travelers from China, Iran or Italy, as well as tourists
returning from ski holidays in Austria and Italy. By 1 March 2020, more than 100
cases were reported in Germany; since then, the number of cases began to rise
exponentially. The first deaths were reported on 9 March [4]. By 16 March, the federal
government introduced first measures to reduce the spread of the disease: schools,
kindergartens and universities were closed. On 22 March, these measures were
tightened by implementing a national curfew and contact ban. People are advised to
stay at home, leaving only for work related activities, necessary shopping, medical
treatment or sports [5]. By mid of April, these mitigation measures showed some
success, with the number of new infections declining from its peak of 6,294 on 28
March to less than 1,000 from 2 May onwards. On 6 May, a relaxation of the imposed
restrictions to social and economic life was announced. Since then, the federal states
are progressing at an individual pace to ’normality’.

Asking the population to remain cautious and not to cause a second wave, local
governments of cities or districts are in charge to reinforce restrictions in case the
number of new infections surpasses the limit of 50 per 100,000 inhabitants within 7
days as of 6 May [6, 7]. Already four days later five districts exceeded this limit, with
no measures reported to alleviate it.

The pandemic continues to spread worldwide (as of June 2020) and the actual
possibility of a second wave demands for models to predict epidemic scenarios for
the near and mid future. The quality of those models heavily relies on the parameters
used. In this study we present SEIRD-models which are some sort of quasi standard
in epidemiological simulations and estimate their parameters by using the available
data from the JHU. The estimation itself is based on a least-squares fit between the
model output and the reported data. Both the reported infections and the reported
fatalities are taken into account.

4.2 SEIRD-model

Following the classical SIR-models introduced by McKendrick [8] and its every-
growing number of variants (cf. [9] for an overview), we chose an SEIRD-model to
describe the COVID-19 outbreak in Germany. The entire population N is subdivided
into five subdivisions: susceptibles S, exposed E, infected I, recovered R, and de-
ceased D. The virus is transmitted from infected persons to susceptible persons at a
time-dependent rate β(t); after an incubation phase of duration κ−1, exposed individ-
uals get infectious. Loss of infectivity is gained after γ−1 days and with a probability
µ, a patient dies from the disease. This leads us to the following five-dimensional
ODE system:

S′ = −β(t)
N

SI S(t0) = S0 = N − E0 − I0 − R0 − D0 > 0, (4.1a)

E′ =
β(t)
N

SI − κE E(t0) = E0 ≥ 0, (4.1b)

I′ = κE− γI I(t0) = I0 > 0, (4.1c)
R′ = (1− µ) γI R(t0) = R0 ≥ 0, (4.1d)
D′ = µγI D(t0) = D0 ≥ 0. (4.1e)
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The starting point t0 is chosen as 1 March, the date the number of reported cases
exceeded 100 cases for the first time, see Fig. 4.1.

It is immediate to see that the model (4.1) has non-negative solutions, provided
the initial values are all non-negative. Due to the absence of demographic terms,
there is just the trivial disease-free equilibrium S = N and E = I = R = D = 0. Since
the intention of our model is to provide short- and mid-term simulations, we are not
interested in its long-term behavior and hence possible endemic equilibria are of no
concern.

As a variant of the above basic model, we also consider a delayed differential
equation (DDE) version where we introduce a time lag τ between the infected and
the deceased state so that the fraction of people who recover or die from the disease
is not attained from the amount of infectives on the same day, but from the infectives
data τ days earlier. The previous ODE model can thus be seen as a special case of the
DDE model with τ = 0.

S′ = −β(t)
N

SI S(t0) = S0 > 0, (4.2a)

E′ =
β(t)
N

SI − κE E(t0) = E0 ≥ 0, (4.2b)

I′ = κE− γ
(
(1− µ)I + µI(t− τ)

)
I(t) = φ(t) > 0, (4.2c)

R′ = (1− µ) γI R(t0) = R0 ≥ 0, (4.2d)
D′ = µγI(t− τ) D(t0) = D0 ≥ 0. (4.2e)

Here, φ : [t0 − τ, t0]→ R+ denotes the initial history of the infected required for the
well-posedness of the above delay differential equation. Since the initial value I0 of
the infected at the starting date 1 March is later on subject of the estimation procedure,
we assume the initial history to show some exponential behavior

φ(t) := I0 · exp
(
− ln(0.1)

τ
(t− t0)

)
(4.3)

for t0 − τ ≤ t ≤ t0.
The transmission rate β(t) can be related to the basic reproduction numberR0 via

R0(t) =
β(t)

γ
. (4.4)

At the onset of the epidemic,R0 in Germany was estimated to beR0 ' 2.4–4.1 [10].
To take the different levels of restriction imposed on the social and economic life, we
assume β(t) as a step function in time:

β(t) :=


β0, t < 16 March
β1, 16 March ≤ t < 22 March
β2, 22 March ≤ t < 20 April
β3, 20 April ≤ t

(4.5)

Before the first restrictions were imposed on 16 March, the disease was allowed to
spread almost uncontrolled. After kindergarden, school and university closings on 16
March, the measures were tightened on 22 March by introducing a contact ban and
closing of a large number of shops and businesses. On 20 April, first relaxations were
announced and public life began to re-increase, but along with compulsory wearing
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of masks which has been introduced in late April. For each of these stages we assume
an specific contact rate between individuals and hence different transmission rates βi.

The values for the fixed model parameters are given in Table 4.1.

TABLE 4.1: Used parameter values for the DDE-models.

Parameter Value Unit Reference
N 83,019,213 – [11]
κ 1/3 d−1 [12]
γ 1/10 d−1 [12]
τ > 7 d [12]
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FIGURE 4.1: Cumulative infections in Germany during the first wave,
left: normal scaling, right: semi-logarithmic scaling [3].
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FIGURE 4.2: Cumulative death cases in Germany during the first wave,
left: normal scaling, right: semi-logarithmic scaling [3].

4.3 Parameter estimation

The unknown model parameter set u is estimated from a least squares fit of the model
output to the given data. Let Y and Z denote the accumulated registered COVID-19
cases or the accumulated COVID-19 deaths in Germany as reported by Johns Hopkins
University, see [3]. The reported cases Y consist of the currently infected cases, the
recovered and the deceased cases. Since by the very nature of the matter, not all
infections are detected, we introduce a detection rate δ. For the currently infected
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and the recovered ones, we assume that only this proportion δ is tested and detected
and hence appears in the statistics; however, we assume no undetected deceased
cases. Hence we compare the data Y to δ · (I + R) + D from the model output. To put
special emphasis on the fatalities, we add a term which just compared the reported
and the simulated deaths to the cost functional. As a third contribution we add a
regularization term proportional to the norm of the estimated parameters to attain a
convex function and prevent unrealistic outliers. With this in mind we arrive at the
following cost functional:

J(u) :=
‖δ(I + R) + D−Y‖2

L2

‖Y‖2
L2

+
‖D− Z‖2

L2

‖Z‖2
L2

+ ω ‖u‖2
2 (4.6)

where ω > 0 denotes some small weight allowing us to adjust the contribution be-
tween the normalized least squares terms and the regularization term and ‖ f (t)‖2

L2 =∫ T
t0

f (t)2dt denotes the square of the L2 norm of a function f resp. ‖u‖2
2 = ∑i u2

i for
the square of the Euclidean norm of a vector u.

The parameters to be estimated in model (4.1) are the transmission rate, the
detection rate, lethality and the numbers of exposed on 1 March 2020, i.e.

u = (β0, β1, β2, β3, δ, µ, E0) ∈ R7 (4.7)

which is the same parameter set as in model (4.2) with added but fixed time lag τ.
For the model with free and to-be-optimized time lag τ, we have the parameter set

u = (β0, β1, β2, β3, δ, µ, τ, E0, I0) ∈ R9. (4.8)

Here, we also estimate the initial number of infected on 1 March to allow for more
flexibility of the model. The optimal parameters u∗ are determined by solving the
following minimization problem:

min
u

J(u) subject to ODE (4.1) resp. (4.2), (4.9a)

u∗ = argminu J(u). (4.9b)

TABLE 4.2: Simulations with the respective constraints of the fitted
parameters.

Sim. Model βi δ µ τ E0 I0 R0

1 1 > 0.05 0.05− 0.5 ≤ 0.05 0 > 0 114/δ 16/δ
2 2 > 0.05 0.05− 0.5 ≤ 0.05 11.5 > 0 114/δ 16/δ
3 2 > 0.05 0.05− 0.5 ≤ 0.05 > 7 > 0 > 0 16/δ

Tab. 4.2 shows the planned simulations including constraints for the optimized
parameters in u. In Sim. 1, no time lag τ is included in the model. The starting values
for I0 and R0 are only updated in the first two simulations by division with δ in each
iteration. In Sim. 2, the time lag τ = 11.5 is fixed, as a mean value within the assumed
interval. The parameter τ is also fitted in Sim. 3, just like I0. All other unknown
parameters in this table are adjusted in each simulation.

Previous investigations in [13] already give us orders of magnitude for the initial
values of the optimization for βi and δ. For the lethality rate µ we assume the upper



100 Chapter 4. Research Paper II

limit

µ ≤ Z(T)
R(T)/δ + Z(T)

, (4.10)

whereby Z(T) denotes for the death cases, and R(T) denotes the registered recovered
individuals at end time T [14]. This upper limit becomes smaller the fewer COVID
cases are registered, since δ becomes smaller. For our data set, we find µ ≈ 0.05,
based on the registered cases, i.e. this upper limit would match, if δ = 1. Building on
the assumption that less than 50% of cases are detected, we also assume a starting
value for the lethality rate that is less than half of the calculated upper limit of 5%.
The order of magnitude of the time interval between the onset of infectiousness and
death is derived from the investigations in [12]. From the timelines available, we
derive τ ∈ (7, 17). In individual cases, this period can be considerably longer, so that
τ only represents an average value in the model. The starting values for I0 and R0 can
be taken from the statistics. Depending on the value of the detection rate, the actual
number is calculated by dividing the measured values for the infected and recovered
cases by δ. Regarding an estimate of the exposed individuals E0 at time t0, we use a
derivation usingR0, which indicates how many new infections an infected individual
causes on average during its illness in an otherwise susceptible population. In our
model, the infected persons I0 are at different time stages during their infectiousness.
As a mean value, we assume the middle of this time interval. Thus, up to this point in
time they could infect about I0R0/2 persons on average. Depending on the assumed
value of R′, this results in different starting values for E0. The model adaptations
are carried out in the simulations with the valuesR0 ∈ {3, 4, 5}, and it is checked if
significant effects on the other parameters can be found. The selected start values can
be seen in Tab. 4.3.

TABLE 4.3: Orders of magnitude of the initial guesses for adapting the
model to the available data.

Parameter β0 β1 β2, β3 δ µ τ E0 I0 R0

Initial Guess 0.6 0.4 0.1 0.25 0.02 11.5 I0R0/2 114/δ 16/δ

4.3.1 Adjoint based approach

To solve the minimization problem using adjoint functions, we introduce the La-
grangian function

L(u, x, z) = J(u) +
∫ T

t0

z(t) ·
(

g(t, x, u)− dx
dt

)
dt, (4.11)

whereby z = (zS, zE, zI , zR, zD) denotes the adjoint function regarding the state vari-
able x = (S, E, I, R, D), and g(t, x, u) denotes the right side of the ODE resp. DDE
system. It should be noted that within the integral, a scalar product of vectors is cal-
culated. A critical point (u∗, x∗, z∗) needs to fulfill the necessary optimality condition

∇L (u∗, x∗, z∗) = 0. (4.12)
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For precise details of the following procedure, please refer to [15]. Thus we find the
gradient ∇uL regarding the parameters in u:

∂L
∂βi

= 2ωβi +
1
N

∫ T

t0

∂β(t)
∂βi

SI (zE − zS) dt, i = 0, 1, 2, 3 (4.13a)

∂L
∂δ

= 2ωδ + 2
∫ T

t0

(I + R)
(

δ(I + R) + D−Y
)

dt, (4.13b)

∂L
∂µ

= 2ωµ + γ
∫ T

t0

I (zD − zI) dt, (4.13c)

∂L
∂E0

= 2ωE0 + zE(t0)− zS(t0), (4.13d)

∂L
∂I0

= 2ωI0 + zI(t0)− zS(t0), (4.13e)

resp. in model (4.2) we obtain, due to the time delay τ,

∂L
∂µ

= 2ωµ + γ
∫ T

t0

I (zI − zR) + I (t− τ) (zD − zI) dt, (4.13f)

∂L
∂τ

= 2ωτ + γµ
∫ T

t0

(zI − zD)
dI
dt

∣∣∣∣
t=t−τ

dt. (4.13g)

The adjoint system is given by the equations

dzS

dt
=

β(t)
N

I (zS − zE) , (4.14a)

dzE

dt
= κ (zE − zI) , (4.14b)

dzI

dt
=

β(t)
N

S (zS − zE) + γ (zI − zR + µ (zR − zD))−
2δ (δ(I + R) + D−Y)

‖Y‖2
L2

,

(4.14c)
dzR

dt
= − 2δ

‖Y‖2
L2

(
δ(I + R) + D−Y

)
, (4.14d)

dzD

dt
= − 2

‖Y‖2
L2

(
δ(I + R) + D−Y

)
− 2

‖Z‖2
L2

(D− Z), (4.14e)

with the terminal condition (zS, zE, zI , zR, zD)(T) = 0. By adding the time delay in
model (4.2), we receive

dzI

dt
=

β(t)
N

S (zS − zE) + (1− µ) γ (zI − zR)−
2δ

‖Y‖2
L2

(
δ(I + R) + D−Y

)
+ µγ

(
zI(t + τ)− zD(t + τ)

)
· χ[t0,T−τ](t). (4.14f)

Here, χ denotes the characteristic function

χ[t0,T−τ](t) =

{
1, t ∈ [t0, T − τ]

0, else
. (4.15)
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Algorithm 3 Pseudocode for the approach including adjoint functions.

1: u, Y, Z ← load initial values for u and data
2: x, z← solve ODE resp. DDE for state variable and adjoint function
3: J, ∇J ← compute objective function and gradient regarding u
4: s← compute search direction
5: repeat
6: Jold ← J
7: θ ← argminθ>0 ψ(θ) with ψ(θ) := J (u + θs)
8: u← u + θs
9: x, z, J, ∇J, s← update depending on u

10: until ‖J − Jold‖2 < TOL
11: u∗, x∗, z∗, J∗ ← u, x, z, J

Algorithm 3 represents the basic framework of the iterative optimization via
adjoint functions. To find a preferably global minimum, n multivariate normally
distributed start values for u can be created before step 1. These are then tested one
after the other with the presented procedure, and the best result is chosen. The mean
values of this distribution are then the values in Tab. 4.3, and the variances can be
selected according to the restrictions in Tab. 4.2. In step 2 the ODE or DDE systems
are solved using Runge-Kutta methods. Since the state variable is solved forward
and the adjoint function backward regarding the time scale, due to the initial and end
values, this is also called the forward-backward sweep method [15]. In MATLAB,
the ODE45 and DDE23 solvers are suitable for this purpose. The search direction s in
steps 4 and 9 is selected as Quasi-Newton method (BFGS). Useful alternative search
directions are (conjugated) gradient methods [16]. The line search procedure in step 7
cannot be solved analytically in our case. A common method for an appropriate step
size θ∗ would be a backtracking procedure considering the Armijo rule [17]. In the
present simulation, the procedure in Algorithm 4 is applied. It is based on a Taylor
series of ψ(θ) := J (u + θs) developed around θ0:

ψ(θ0 + h) = ψ(θ0) + ψ′(θ0)h +
1
2

ψ′′(θ0)h2 + ... , (4.16)

where ψ′, ψ′′, ... stand for the respective derivatives of ψ regarding θ. Based on this, we
assume that ψ for θ0 = 0 and sufficiently small values for h = θ can be approximated
by a parabola with

ψ(θ) ' aθ2 + bθ + c, (4.17a)
ψ′(θ) ' 2aθ + b. (4.17b)

Using the information ψ(0) = J(u) and ψ′(0) = ∇J(u) · s associated with a calculated
value ψ(θ1) = J (u + θ1s) for small and fixed θ1 allows for deriving the parameters

c = ψ(0), (4.18a)
b = ψ′(0), (4.18b)

a =
(
ψ(θ1)− ψ′(0)θ1 − ψ(0)

)
/θ2

1 , (4.18c)

and, by using the necessary condition ψ′ (θ∗) = 0, find the optimum of the parabola
in eqn. (4.17a) by

θ∗ = −b/(2a) = −0.5ψ′(0)θ2
1/
(
ψ(θ1)− ψ′(0)θ1 − ψ(0)

)
. (4.19)
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FIGURE 4.3: Example for finding the optimal value θ∗ using parabola
linesearch.

The left part of Fig. 4.3 shows that the Armijo rule ψ(θ) ≤ ψ(0) + αθψ′(0) is not
fulfilled for θ1 and the new step size is determined using the parabola minimum
θ∗. To make sure that the possible minimum of the parabola is below that line, one
chooses a small value for α ∈ (0, 0.5), e.g. α = 10−4. In the right figure, the Armijo
rule is already fulfilled with the fixed increment θ1, which can be adopted. There
can also be a parabola maximum, so that θ∗ takes a negative value. However, this is
circumvented because in this case, there is no optimization of the step size.

Algorithm 4 Pseudocode for line search in step 7 of Algorithm 3.

1: u, J(u), ∇J(u), s← input
2: θ ← 1
3: ψ(0)← J(u)
4: x ← compute state variable depending on u + θs
5: ψ (θ)← J (u + θs)
6: ψ′(0)← ∇J(u) · s
7: α← value in (0, 0.5)
8: if ψ (θ) > ψ(0) + αθψ′(0) then
9: repeat

10: θ ← −0.5ψ′(0)θ2/
(
ψ (θ)− ψ′(0)θ − ψ(0)

)
11: x ← update depending on u + θs
12: ψ (θ)← J (u + θs)
13: until ψ (θ) ≤ ψ(0) + αθψ′(0) (Armijo rule)
14: end if
15: θ∗ = θ

The effect of the weight ω can be seen on the diagonal of the Hessian matrix in
model (4.1):

∇2
uL = 2 diag

(
ω, ω, ω, ω, ω +

∫ T

t0

(I + R)2 dt, ω, ω, ω

)
(4.20)

All other entries in ∇2
uL are equal to 0. The value of ω directly influences the

definiteness of the Hessian matrix and thus the convexity of the objective function.
For this reason, different values for ω are tested in the simulations.
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4.3.2 Metropolis algorithm

According to the procedure described in [18], a Metropolis algorithm (cf. [19, 20,
21]) for model (4.2) can be set up using the initial history and initial values for the
to-be-estimated parameter set u. Using the parameter set u0 as of Tab. 4.3 as starting
conditions, we assign random draws unew from a normally distributed (and thus
symmetric) proposal function q, i.e. unew ∼ q(unew|ui−1), in every iteration i.

Using the previously defined J(u) as the target distribution, we calculate the
approximative distribution by

π(u) = c · exp
(
− J(u)2

2σ2

)
, (4.21)

whereby c is an arbitrary value in R. For the acceptance probability, it follows

α(unew|ui−1) = min
{

1,
π(unew) · q(ui−1|ui)

π(ui) · q(ui|ui−1))

}
= min

{
1,

π(unew)

π(ui)

}
. (4.22)

In eqn. (4.22), we can see that the value of c is redundant, as it cancels out in the
division.

If the sample is accepted with the probability α, we set ui = unew; with the
probability 1− α, the sample is declined, meaning u = ui−1 [22, 18].

Algorithm 5 Pseudocode for the Metropolis algorithm.

1: u, Y, Z ← load initial values for u and data
2: x, z← solve ODE resp. DDE for state variable
3: J ← compute objective function regarding u
4: σ← standard distribution of the solution, i.e. I + R + D over time
5: s← set step size (standard deviation) for the algorithm, e.g. s := u/100
6: repeat
7: uold ← u from previous draw
8: ûnew ← u ∼ N (uold, s)
9: x, z, J(ûnew)← update depending on u

10: α← min
{

1, exp
(

J(uold)
2 − J(unew)2/2σ2)}

11: unew ← ûnew with probability α and unew := u with probability 1− α
12: until maximum value of draws is reached
13: u∗, x∗, J∗ ← means of all u, x, J

Algorithm 5 represents the basic framework of the iterative optimization via the
Metropolis algorithm. In step 1, the mean values of this distribution as of Tab. 4.3 are
loaded as well as the variances according to the restrictions in Tab. 4.2. In step 2 the
ODE or DDE are again solved using Runge-Kutta methods via MATLAB’s ODE45
and DDE23 solvers. The step size s in step 5 is selected as a fraction of the initial
guess for the parameter set u, so that the parameters are allowed to move with an
individual "speed" through the entire search space. In steps 6 – 12, the process is
repeated for all draws, the number of draws in our case is set to 2e + 4. Alternatively,
you can think about termination conditions, but we avoided this due to the random
nature of the system. Firstly, the update of the parameter set u is done by taking a
random value out of the normal distribution with mean u and standard deviation s.
After solving the system in step 9, the cost functional J(u) is compared to the previous
cost functional with the function α in step 10 and the new parameter set is accepted
or rejected according to eqn. (2.117) in step 11. The estimation parameter set can then



4.4. Numerical results and comparison of the algorithms 105

be computed out of the mean value of the draws in step 13. Alternatively, in case of
non-convergence, it is possible to compute the best fitting u of the set and use this as
initial value as of step 1 again, in order to attain better results.

Choosing the weights ω for the target function J(u) was done under two purposes.
The first purpose was to create a convex target function so that the algorithm does not
converge to local minima (see also the previous subsection for this). The Metropolis
algorithm allows steps into parameter sets having a ’worse’ target distribution with a
certain probability, but it is still possible that it runs into local but not global minima
after a final amount of steps which justifies the usage of the term ω ||u||2. The other
purpose is to not have a too large ω so that the model-related terms still have a major
impact on the outcome of J(u). For these two regards, we found that a range for
ω ∈ [10−9, 10−7] to be decent, but we will also present the results if we neglect the
term with ω, i.e. ω = 0. For values ω ∈ (0, 10−9), no significant changes in the
outcomes to ω = 0 were detected, while for ω > 10−7 the model-related terms are
negligible and the results are quite unrealistic.

4.4 Numerical results and comparison of the algorithms

Tab. 4.4 shows the respectively best numerical results of the two algorithms. The
values for the transmission parameters βi are of similar magnitudes in almost all
simulations and algorithms. In isolated cases, there are more significant deviations,
such as β1 = 0.64 in Simulation 3 of the Metropolis approach or the value β3 = 0.099
in Simulation 1 of the adjoint approach. The values show that the dynamics of the
model at the beginning of the measurement period with β0 ' 0.6 suggest a much
higherR0 than assumed.

TABLE 4.4: Estimated parameters, target function, and number of
iterations of adjoint and Metropolis algorithms.

Algorithm Adjoint Metropolis
Simulation 1 2 3 1 2 3

β0 0.60 0.64 0.62 0.55 0.70 0.64
β1 0.50 0.48 0.51 0.49 0.40 0.64
β2 0.101 0.082 0.092 0.113 0.085 0.086
β3 0.099 0.050 0.058 0.054 0.055 0.055
δ 0.31 0.27 0.18 0.29 0.20 0.19
µ 0.015 0.018 0.011 0.013 0.013 0.011
τ 0 11.5 9.0 0 11.5 7.3
E0 + I0 + R0 831 1,105 1,512 1,255 854 1,090
(J(u)−ω ‖u‖2

2) · 103 23.0 9.1 6.1 18.1 8.2 3.2
No. of iterations 23 22 31 20000 20000 20000

The first measures lead to a small to moderate reduction of the transmission rate
to β1 ' 0.5, whereas the following lockdown causes a significant decrease of the
transmission rate to β2 ' 0.1. This also fits with the estimates of the RKI that the
Basic Reproduction Number is said to have dropped to a value of aroundR0 ' 1 due
to the extensive restrictions [4]. In the last phase of the data adaptation, the transfer
rate drops to β3 ' 0.06. Here, due to the loosening of the measurements, one would
expect an increase of the transmission rate. However, these were introduced very
slowly and under very strict hygiene measures, combined with a mask requirement in
public spaces, which apparently has decreased the β value. Regarding the detection
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rate δ, we find values of around 20− 30% in all cases. This means that according to
the simulations, the actual number of infected people is 3–5 times higher than the
official reports. The computed lethality is between 1–2% and is therefore roughly a
third of 5% which was calculated using (4.10) regarding the registered cases at the
end time point T. The average time interval τ between the onset of infectivity and
death in Simulation 3 is between 7 and 10 days. The influence of τ is also evident
with regard to the normalized least squares terms J(u)−ω ‖u‖2

2. By adding a fixed
time lag in Simulation 2 and then adjusting it in the third simulation, a significant
improvement is shown in all algorithms as J(u) is considerably smaller. Regarding
the magnitudes of the least-squares terms, the algorithms show similar values in
comparison to each other and lead to useful adjustments with minor deviations of
the model from the available data sets. This is also illustrated by the graphical results
which are shown in Appendices A and B. The sum of the initial values E0 + I0 + R0
lies within a realistic range at ' 1000. Thus, the unknown initial value for the
exposed individuals E0 is approximately in the order of magnitude of the infected I0
with an upward tendency, as expected. The variation regarding the initial value for
E0 = I0R0/2 in the optimization does not lead to significant differences in the results
whenR0 ∈ {3, 4, 5} is changed. For this reason, the results are presented here only
for initial estimations ofR0 = 3.

In the case of the Metropolis algorithm, the number of iterations is much higher
than in the adjoint approach. This is due to the fact that the Metropolis approach relies
on random draws and thus a large amount of draws is needed to obtain convergence
and to diminish the effect of outliers. This seemingly disadvantageous property of the
Metropolis algorithm is partly counter-balanced when using n multivariate normally
distributed values for u as starting guesses for the adjoint-based optimization. This
also increases the iteration number by a factor n. On the other hand, this would
have the consequence that the probability of reaching a global minimum for J(u)
would increase significantly. This aspect is already been cared for in the Metropolis
algorithm, so no additional computations are required unless the chain statistics (as to
be seen in the following sections). The value for J(u), especially in Sim. 3, are slightly
more accurate using the Metropolis algorithm. The comparison of the runtimes in
Sim. 3 on an INTEL CORE I5-6400 with 2.7 GHz and 16 MB-RAM also reflects this.
Due to the higher number of iterations, the Metropolis algorithm also has a longer
runtime, see Tab. 4.5.

TABLE 4.5: Average required runtime of the algorithms on an INTEL
I5-6400 with 2.7 GHz and 16 MB-RAM.

Algorithm Average runtime [s]
Adjoint approach 10
Metropolis 140

Additionally, the influence of the weight ω on the optimization is tested. Tab.
4.6 shows the results of the least squares term J(u)−ω ‖u‖2

2 for Sim. 3 with the two
methods and using different weights.
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TABLE 4.6: Values for the normalized least squares terms for the
optimization with different weights ω regarding the adjoint algorithm

in Sim. 3.

Method ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

(J(u)−ω ‖u‖2
2) · 103 adjoint 8.9 8.8 6.1 12.0

(J(u)−ω ‖u‖2
2) · 103 Metropolis 3.8 3.2 3.4 4.1

The results show that an appropriate weight value is ω ' 10−8 or ω = 10−9,
depending on the chosen algorithm. If the weight is too large, the value of the least
squares term also deteriorates. This makes sense, since the disturbance caused by
ω ‖u‖2

2 on the objective function becomes too large. On the other hand, a sufficiently
small value for ω leads to better optimization performance, since a weight of ω = 0
on the other hand gives a worse result.

4.4.1 Specific results for the adjoint approach

As shown in Tab. 4.4, the approach with adjoint functions leads to similar numerical
results as the other tested routine. The graphical results of Sim. 3 are shown in Fig.
4.4.
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FIGURE 4.4: Results of the adjoint method for τ := free, I0 = free,
R0 = 3 and ω = 10−8.

The necessary number of iterations until the convergence of the algorithm shows
that the algorithm moves quickly to the corresponding minima, see Fig. 4.5. The
process clarifies that the algorithm is very close to the optimal objective function value
already after 15 iterations, and needs the remaining calculation steps to reach the
given tolerance limit TOL = 10−12. However, the prerequisite for rapid convergence
is a good starting value for u.
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FIGURE 4.5: Development of the target function J using the adjoint
method.

In addition to the presented simulations with restrictions, the algorithm was
performed without limitations for the searched parameters, see Tab. 4.7 and Fig. 4.6.

TABLE 4.7: Numerical results of Sim. 3 without restrictions concerning
the estimated parameters.

β0 β1 β2 β3 δ µ τ E0 + I0 + R0 J(u)− ‖u‖2
2

0.77 0.46 0.27 0.41 0.002 0.0001 7 65046 7 · 10−4

The results show that the normalized least squares term J(u) − ‖u‖2
2 can be

reduced significantly compared to the restricted variants. It is noticeable that the
fitted value for the detection rate δ is very small at about 0.02%. This would mean that
only every 500th infected person would be registered. This seems unrealistic, even if
the dark figure is unknown. The values for transmission rate, lethality, and actual
number of exposed, infected, and recovered at the beginning of the measurement
period are changed accordingly. Due to the very low detection rate in this simulation,
the spread of the disease would have been much more intense than expected.
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FIGURE 4.6: Results of the adjoint method for Sim. 3 without restric-
tions on the parameters.
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4.4.2 Specific results for the Metropolis algorithm approach

We now consider the value for

J(u)−ω ‖u‖2
2 =
‖δ(I + R) + D−Y‖2

L2

‖Y‖2
L2

+
‖D− Z‖2

L2

‖Z‖2
L2

, (4.23)

i.e., the cost functional J(u) without the last term including the weight ω. This way,
we can compare the simulations with different weights ω in terms of J(u), because
the last term trivially raises along with ω.

TABLE 4.8: Values for the normalized least squares terms for the opti-
mization with different weights ω regarding the Metropolis algorithm

in Sim. 3.

ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

(J(u)−ω ‖u‖2
2) · 103 Sim. 1 18.6 18.1 18.6 21.7

(J(u)−ω ‖u‖2
2) · 103 Sim. 2 8.7 8.2 9.2 9.6

(J(u)−ω ‖u‖2
2) · 103 Sim. 3 3.8 3.3 3.4 4.1

Tab. 4.8 shows that the weight ω = 10−9 always yields the best, i.e. smallest
values for the given cost functional J(u) . Moreover, what you can also see in Tables
4.10, 4.12, and 4.14 in Appendix B, the value J(u) for the weight ω = 10−9 is larger
than the value J(u) with the weight ω = 0, even when the term 10−9 · ‖u‖2

2 is not
subtracted, which means that interestingly, the simulation with ω = 10−9 provides a
better result for a different cost functional.

The plots for the infected and dead cases in Sim. 3 with ω = 10−9, thus the best
simulation, are shown in Fig.4.7.
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FIGURE 4.7: Results of the Metropolis method for τ = free, I0 = free,
R0 := 3, and ω = 10−9.

The chain statistics done with the optimal results in Sim. 2 for ω = 10−9 as of
Fig. 4.8 show that for most parameters a normal distribution is visible and thus the
Metropolis algorithm appears to have converged. The parameter τ does not appear
to be normally distributed, but still remains in the range from 7–8 days. This also
affects some smaller side peaks regarding the other parameters. As the infection data
has the step size of 1 day, we assume that no further optimization within that range
is possible, so an estimation of τ ≈ 7–8 days is considered as decent.



110 Chapter 4. Research Paper II

FIGURE 4.8: Metropolis parameter statistics for Sim. 2, R0 = 3, and
ω = 10−9.
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A detailed numerical analysis as well as figures for all relevant plots can be found
in Appendix B. In the figures it is also visible that with fixed values τ = 0 or τ = 11.5,
the estimated death cases run after or run ahead of the data, respectively.

4.5 Conclusion

In the present work, two SEIRD-models for modelling the COVID-19 outbreak in
Germany were adapted to existing data from 1 March to 3 May. Two different
approaches for the estimation of parameters and approximation of the infection data
were used and their results and performance were compared. Regarding the graphical
and numerical results, all routines have provided similar meaningful results. Each
approach has advantages and disadvantages and should be selected depending on
the application needs, time, possible analytical and programming effort. The COVID-
19 outbreak results show that the restrictions taken by the authorities have had a
major impact on the dynamics of spread. The basic reproduction number could be
reduced from a presumably much higher value than the assumed R0 ' 3 to the
epidemiologically important limit R0 ' 1. Adding a time lag τ between the onset
of infectiousness and death significantly increases the accuracy of the tested model.
This time delay is estimated by the data adjustment to an average of 8 days, although
in reality, there may be very different values, depending on how long life-support
measures are maintained in intensive care units. The adjustment regarding the
detection rate and lethality showed that, according to the model, the actual number
of infected people is approximately 3–5 times higher than registered and at µ ≈ 1–2%,
the lethality is lower than assumed.

Conceivable extensions of the present work would be the application to other
countries, the integration of travelling or commuting after the relaxation of exit
restrictions or the integration of control variables to mathematically derive the optimal
time intervals for future lockdowns. With respect to the latter, in order to detect a new
increase in infections early on – before it returns to exponential growth –, a measure
within the model of the possible increase in transmission rate is required.
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A Results and plots for the adjoint approach
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FIGURE 4.9: Results of the adjacent method for Sim. 1, R0 = 3, and
ω = 10−8.
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FIGURE 4.10: Results of the adjacent method for Sim. 2,R0 = 3, and
ω = 10−8.
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FIGURE 4.11: Results of the adjacent method for Sim. 3,R0 = 3, and
ω = 0.
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FIGURE 4.12: Results of the adjacent method for Sim. 3,R0 = 3, and
ω = 10−9.
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FIGURE 4.13: Results of the adjacent method for Sim. 3,R0 = 3, and
ω = 10−8.
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FIGURE 4.14: Results of the adjacent method for Sim. 3,R0 = 3, and
ω = 10−7.
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B Results and plots for the Metropolis algorithm

B.1 Simulation 1 – no delay and fixed initial infectives

TABLE 4.9: Estimates in Sim. 1 for τ = 0, I0 = 114/δ, R0 = 16/δ, and
R0 = 3.

Parameter ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

Mean Std. Mean Std. Mean Std. Mean Std.
β1 .5822 .0353 .5525 .0439 .5935 .0177 .6381 .0227
β2 .5378 .0169 .4936 .0350 .4828 .0160 .4645 .0348
β3 .1140 .0111 .1130 .0067 .10940 .0048 .1014 .0130
β4 .0671 .0032 .0538 .0033 .0502 .0027 .0510 .0056
δ .2307 .0089 .2933 .0116 .2137 .0104 .3142 .0309
µ .0105 .0010 .0131 .0016 .0095 .0007 .0137 .0011
E0 540.7 22.5 811.4 41.5 819.8 52.9 440.8 16.1

TABLE 4.10: Target value of J(u) (in 103) for the different weights in
Sim. 1. The column represents the weight that is used for J(u) in the
Metropolis algorithm, and the row shows the value of J(u) for the

respective ω.

wrt ω
weight ω

0 10−9 10−8 10−7

0 18.6 18.1 18.6 21.7
10−9 19.2 18.9 19.5 22.1
10−8 24.0 26.2 28.1 25.0
10−7 72.3 99.1 114.2 54.3
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FIGURE 4.15: Results of the Metropolis method for Sim. 1, R0 := 3,
and ω = 0
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FIGURE 4.16: Results of the Metropolis method for Sim. 1, R0 := 3,
and ω = 10−9.
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FIGURE 4.17: Results of the Metropolis method for Sim. 1, R0 := 3,
and ω = 10−8.
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FIGURE 4.18: Results of the Metropolis method for Sim. 1, R0 := 3,
and ω = 10−7.
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B.2 Simulation 2 – fixed delay and initial infectives

TABLE 4.11: Estimates in Sim. 2 for τ = 11.5, I0 = 114/δ, R0 = 16/δ,
andR0 = 3.

Parameter ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

Mean Std. Mean Std. Mean Std. Mean Std.
β1 .6735 .0538 .7045 .0600 .6391 .0411 .6678 .0508
β2 .4414 .0250 .3951 .0336 .4823 .0323 .5011 .0323
β3 .0810 .0073 .0846 .0075 .0820 .0059 .0790 .0090
β4 .0672 .0042 .0552 .0073 .0520 .0027 .0605 .0091
δ .2055 .0228 .2050 .0161 .2761 .0217 .2871 .0214
µ .0132 .0009 .0131 .0013 .0178 .0011 .0179 .0013
E0 737.0 62.8 661.2 31.3 620.6 70.5 409.2 18.7

TABLE 4.12: Target value of J(u) (in 103) for the different weights in
Sim. 2. The column represents the weight that is used for J(u) in the
Metropolis algorithm, and the row shows the value of J(u) for the

respective ω.

wrt ω
weight ω

0 10−9 10−8 10−7

0 8.7 8.2 9.2 9.6
10−9 9.6 9.0 9.7 9.9
10−8 17.2 15.7 14.7 12.8
10−7 93.8 82.9 64.8 42.1
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FIGURE 4.19: Results of the Metropolis method for Sim. 2, R0 := 3,
and ω = 0.
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FIGURE 4.20: Results of the Metropolis method for Sim. 2, R0 := 3,
and ω = 10−9.
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FIGURE 4.21: Results of the Metropolis method for Sim. 2, R0 := 3,
and ω = 10−8.
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FIGURE 4.22: Results of the Metropolis method for Sim. 2, R0 := 3,
and ω = 10−7.
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B.3 Simulation 3 – free delay and initial infectives

TABLE 4.13: Estimates in Sim. 3 for τ = free, I0 = free, R0 = 16/δ,
andR0 = 3.

Parameter ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

Mean Std. Mean Std. Mean Std. Mean Std.
β1 .5859 .0530 .6442 .0357 .6737 .0300 .7370 .0548
β2 .4785 .0359 .6403 .0250 .5197 .0396 .4587 .0183
β3 .0926 .0097 .0862 .0039 .0920 .0037 .0949 .0034
β4 .0556 .0025 .0554 .0038 .0502 .0019 .0576 .0025
δ .2768 .0295 .1911 .0115 .2063 .0135 .2237 .0155
µ .0154 .0008 .0107 .0006 .0117 .0006 .0128 .0005
E0 790.0 46.7 690.0 52.5 500.8 206.4 351.2 14.9
I0 493.1 40.1 316.1 30.2 439.0 140.7 350.7 115.7
τ 7.3 .6 7.3 .4 7.4 .3 7.2 .6

TABLE 4.14: Target value of J(u) (in 103) for the different weights in
Sim. 3. The column represents the weight that is used for J(u) in the
Metropolis algorithm, and the row shows the value of J(u) for the

respective ω.

wrt ω
weight ω

0 10−9 10−8 10−7

0 3.8 3.3 3.4 4.1
10−9 4.7 3.8 3.8 4.3
10−8 12.5 9.0 7.8 6.5
10−7 90.5 60.9 47.7 28.7
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FIGURE 4.23: Results of the Metropolis method for Sim. 3, R0 := 3,
and ω = 0.
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FIGURE 4.24: Results of the Metropolis method for Sim. 3, R0 := 3,
and ω = 10−9.
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FIGURE 4.25: Results of the Metropolis method for Sim. 3, R0 := 3,
and ω = 10−8.
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FIGURE 4.26: Results of the Metropolis method for Sim. 3, R0 := 3,
and ω = 10−7.
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Chapter 5

The Impact of Travelling on the
COVID-19 Infection Cases in
Germany

This article by Moritz Schäfer, Karunia Putra Wijaya, Robert Rockenfeller and Thomas
Götz has been released in the journal BMC INFECTIOUS DISEASES in 2022, referred
to as [1]. The theory, formulation and numerical calculations were mainly done by
Moritz Schäfer. Karunia Putra Wijaya contributed with the section about confidence
intervals and the time-independent sensitivity analysis. Robert Rockenfeller con-
tributed with the section about the time-dependent sensitivity analysis. Thomas Götz
provided advice and some linguistic revisions. The format is changed to meet the
thesis standard.

Abstract

Background

COVID-19 continues to disrupt social lives and the economy of many countries and
challenges their healthcare capacities. Looking back at the situation in Germany in
2020, the number of cases increased exponentially in early March. Social restrictions
were imposed by closing e.g. schools, shops, cafés and restaurants, as well as borders
for travellers. This reaped success as the infection rate descended significantly in
early April. In mid July, however, the numbers started to rise again. Of particular
reasons was that from mid June onwards, the travel ban has widely been cancelled or
at least loosened. We aim to measure the impact of travellers on the overall infection
dynamics for the case of (relatively) few infectives and no vaccinations available.
We also want to analyze under which conditions political travelling measures are
relevant, in particular in comparison to local measures. By travel restrictions in our
model, we mean all possible measures that equally reduce the possibility of infected
returnees to further spread the disease in Germany, e.g., travel bans, lockdown,
post-arrival tests, and quarantines.

Methods

To analyze the impact of travellers, we present three variants of an susceptible-
exposed-infected-recovered-deceased model to describe disease dynamics in Ger-
many. Epidemiological parameters such as transmission rate, lethality, and detection
rate of infected individuals are incorporated. We compare a model without inclusion
of travellers and two models with a rate measuring the impact of travellers incorpo-
rating incidence data from the Johns Hopkins University. Parameter estimation was
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performed with the aid of the Monte-Carlo-based Metropolis algorithm. All models
are compared in terms of validity and simplicity. Further, we perform sensitivity
analyses of the model to observe on which of the model parameters show the largest
influence the results. In particular, we compare local and international travelling
measures and identify regions in which one of these shows larger relevance than the
other.

Results

In the comparison of the three models, both models with the traveller impact rate
yield significantly better results than the model without this rate. The model including
a piecewise constant travel impact rate yields the best results in the sense of maximal
likelihood and minimal Bayesian Information Criterion. We synthesize from model
simulations and analyzes that travellers had a strong impact on the overall infection
cases in the considered time interval. By a comparison of the reproductive ratios of
the models under traveller/no-traveller scenarios, we found that higher traveller
numbers likely induce higher transmission rates and infection cases even in the
further course, which is one possible explanation to the start of the second wave
in Germany as of autumn 2020. The sensitivity analyses show that the travelling
parameter, among others, shows a larger impact on the results. We also found that
the relevance of travel measures depends on the value of the transmission parameter:
In domains with a lower value of the transmission parameter, caused either by the
current variant or local measures, it is found that handling the travel parameters is
more relevant than the transmission parameter.

Conclusions

We conclude that travellers is an important factor in controlling infection cases during
pandemics. Depending on the current situation, travel restrictions can be part of a
policy to reduce infection numbers, especially when case numbers and transmission
rate are low. The results of the sensitivity analyses also show that travel measures
are more effective when the local transmission is already reduced, so a combination
of those two appears to be optimal. In any case, supervision of the influence of
travellers should always be undertaken, as another pandemic or wave can happen in
the upcoming years and vaccinations and basic hygiene rules alone might not be able
to prevent further infection waves.

5.1 Introduction

Background. The COVID-19 disease in Germany started with a first infection case
on 26 January 2020 in Bavaria [2]. In March, the number of cases grew rapidly (with a
maximum of 6933 cases on 27 March), and various social restrictions were imposed
as an active intervention of the disease [3, 4]. On 10 June, only 16 new infection
cases were detected [3]. In mid June, travel related restrictions were relaxed within
Europe [5]. However, the pandemic continued to spread worldwide and by the end
of August, new maxima for the daily cases worldwide set another record for that time
[6]. Towards the end of the summer holidays in the first German states in mid to end
of August, a second rise of incidence happened with over 1,000 new infection cases
per day [3]. Fig. 5.1 shows the temporal evolution of COVID-19 cases in Germany
from 26 January until 31 August, as reported by the Johns-Hopkins-University (JHU).
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The daily registered COVID-19 are shown on the left side; on the right side, the
cumulative registered cases can be seen.
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FIGURE 5.1: Daily confimed cases (left) and cumulative confirmed
cases (right) with COVID-19 in Germany during the first wave accord-

ing to JHU [3].

According to the Robert Koch Institute (RKI), a governmental institute for disease
control in Germany, many of the cases from June onwards were directly related to
German travellers returning home from abroad [7]. Given already long implementa-
tion of such travel restrictions (as of 2022), studies that evaluate their effectiveness in
Germany are limited. Internationally, however, relevant studies have been preceding
and may provide insights for ensuing ones.

Siegenfeld et al. [8] propose and estimate a region-to-region reproduction number,
as opposed to the usual person-to-person reproduction number, by assuming that
the number of other regions infected by a ’central’ region follows a Poisson process.
The number appears to be linearly dependent on the probabilities of an infected
individual from the central region to travel outside the region, before and after the
imposition of travel restrictions. Accordingly, supervision of the number of travellers
becomes one of the decisive parameters to contain the spread of COVID-19. They
conclude that if high-risk areas impose travel measures coupled with social measures
shortly after community transmission, then the reduction of travellers becomes the
determining factor if the outbreak can be eliminated. However, without timely social
measures that manage to reduce the local reproduction number to a value below 1,
travel restrictions only lead to a delay in the spread of epidemics.

Chinazzi et al. [9] emphasize a more broad-minded definition of travel restrictions
to include case detection and behavioral changes, as the lone flight traffic limitations
around Wuhan in January 2020 (up to 90%) could have only returned a modest
containment effect. However they found that, while initially effective – as case
importations were reduced by nearly 80% until mid-February by international travel
restrictions – after two to three weeks the effect was reduced and numbers grew
outside China.

Zou et al. [10] introduce a multi-patch transportation model and also studied the
effects of vaccination and quarantine on the disease dynamics of such a multi-patch
model. As a result, they propose to control travel or migration in high-risk areas
while interventions in low-risk areas are less effective.

Leung et al. [11] also address the combination of traffic flow reduction and
testing-quarantine for inbound travellers toward reopening the economy as a good
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response in case of weakening public health and social measures (PHSMs) and vaccine
limitation.

A systematic review over the impact of travel restrictions on influenza can be
found in Mateus et al. [12]. The WHO review considers the effectiveness of internal
and external travel restrictions and concludes only very strict restrictions would be
expected to have an impact on influenza transmission, but the evidence on these
results is proclaimed as low. It is also stated that extensive travel restrictions cause
meaningful reduction of the spread of influenza, but only in terms of a delay of
several weeks or months, not in terms of containing the disease in areas of high risk.

Also, correspondence by Hollingsworth et al. [13] conveys that for scenarios
with few infection cases and a low reproductive value R, travelling can help to
contain diseases, while for a higher value ofR only very hard travelling restrictions
can prevent spread or postpone the possible wave to a later date, so they conclude
that given those latter circumstances, country-based transmission reduction is to be
preferred over travel restrictions.

Epstein et al. [14] use stochastic epidemic models to explore the role of interna-
tional (air) travel restrictions, and also found that strong interventions in travelling
can lead to a short-time delay in the spread of epidemics, but they state that this
’saved’ time can be effectively used by other disease control measures.

Another systematic review by Grépin et al. [15] regarding the effectiveness of
travel restrictions compares the results to the role of travel restrictions on influenza.
The authors find that the recommendations of WHO [16] do not necessarily apply to
those of COVID-19 as it remains unclear if the findings on influenza can be compared
here. Travel measures implemented in Wuhan are found to be effective at the reduc-
tion of cases both nationally and internationally, and are more effective when those
measures are undertaken early (i.e. in the outbreak).

A diffusion-based and non-international approach can be found in Berestycki et
al. [17]. The authors find that fast diffusion effects along major roads are an important
factor of the spread of epidemics like COVID-19 in Italy and HIV in the Democratic
Republic of Congo.

Structure of the paper. In the present study our first question is the following:

(Q0) How can we model the spread of infections in Germany with inclusion of
travellers to measure the impact they have on the overall numbers?

A susceptible-exposed-infected-recovered-deceased (SEIRD-) model introduced in
the previous work of Heidrich et al. [18] is used as the foundation for any of the
applied systems. In the most simple version, we use a system which does not include
travellers as a reference. As a next step, we set up another SEIRD-model for Germany
which includes travellers to the respective countries and estimate both the ’classical’
parameters and also the impact of the infected travellers to the overall epidemics. In
one variation of the model, the impact of travellers is assumed to be constant over
time, while in a second formulation, we allow a time-dependent value as awareness
of the population and political policies might change over time. The travellers are
assumed to be part of the infection cycle in the respective destination countries, for
which we have also set up another (aiding) SEIRD-model.

We estimate the relevant model parameters by using the available data from the
Johns-Hopkins University (JHU) [3]. The estimation of several disease-related param-
eters like, e.g., the transmission rate, death rate or detection rate as of Heidrich et al.
[18] is based on a least-squares fit between the model output and the reported data,
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where both the reported infections and fatalities are taken into account. Furthermore,
the three models are compared in terms of validity and simplicity. Posterior to the
fitting and parameter estimation, two questions remain in discussions:

(Q1) Which variable parameters need more careful specifications for which the model
solutions, as well as the likelihood function, easily perturb within large orders
of magnitude as these parameters slightly change?

(Q2) Which interventions (local interventions like social distancing, masks, lockdown
etc. or travelling restrictions) should be more emphasized for possible variations
of parameter values in the prediction window?

Our goal will then be to answer these questions with the help of two measures: At
first, we consider a time-dependent measure, in which we observe which parameters
have a larger impact on the outcome of the five subdivisions. Further, we consider
time-independent measures and compare local measures (identified by the overal
transmission rate) and travel measures (identified with the newly introduced travel
impact rate) and regard under which circumstances one or the other are more relevant
for the infection cases. Using the results of questions (Q0), (Q1) and (Q2), we aim to
give an answer on the relevance of travel restrictions on the Corona or other infectious
diseases in general, and to investigate under which conditions travel restrictions can
be a more powerful tool than other non-pharmaceutical measures.

5.2 Methods

All methods were performed in accordance with the relevant guidelines and regula-
tions.

5.2.1 Data

The incidence data used in this study are daily registered COVID-19 cases and de-
ceased cases from Germany (see Fig. 1.2) and other countries from 1 June until 31
August, 2020. Due to the usual independent and identically distributed (iid) assump-
tion on the measurement error (cf. King et al. [19]), only the daily incidence data will
be used for optimization parameter estimation of the later introduced models. To
accompany the modeling, population data from all countries in consideration are
taken from UN data [20].

We only include European countries with available traveller statistics and coun-
tries outside of Europe with a total sum of more than 5,000 travellers in the travelling
statistics. For the close European countries, the number of travellers is estimated by
the travel statistics of 2020 for German travellers [21] (for relative shares) and hospi-
tality statistics in Germany for foreign travellers [22]; these numbers are generally
subtracted from the total amount of flight passengers.

The number of travellers from and to farther and non-European countries is
gained from analysis of the flight passengers from the respective country [23]. In some
larger countries, namely USA, Russia, China, and Japan, the data was problematic.
Flight routes from and to these countries are often non-direct, so the plain values of
flight passengers would underestimate the real amount of travellers to these countries.
As a compromise, we assumed the amount of German travellers to those countries
to be the same as the number of foreign visitors from those countries in Germany,
which makes this estimation more meaningful.
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The populations and amount of travellers per month of this total of 55 countries
is presented in Tab. 5.2.

5.2.2 SEIRD-models

Traveller induced model. In the previous work we investigated the dynamics of
COVID-19 disease until early May 2020 [18]; this study departs from this approach.
Again we use a variation of the SIR-model introduced by McKendrick [24]; see also
Martcheva [25] for an overview of mathematical models in epidemiology. It builds
up on delayed differential equation (DDE-) system to describe the behaviour of the
disease in Germany in summer 2020. While the use of stochastic variables can make
the model more realistic, but may also lead to further technical questions including
noise type, stable ergodicity, and predictability, which go beyond the original scope.

Therefore, we tested a deterministic model for the main aim. The entire population
N is subdivided into five subdivisions: susceptible S, exposed E, infected I, recovered
R, and deceased D, so that we deal with a so-called SEIRD-model. The virus is
transmitted from infected persons to susceptible persons at a piecewise constant rate
β. After an incubation duration κ−1 exposed individuals become infective. Loss of
infectivity is gained after an average duration γ−1; the death parameter µ describes
the probability for infected persons dying from the disease. A time lag τ between
the infected and the deceased state accounts for the fact that the number of people
dying from the disease is attained from the infected number τ days earlier. Here, we
also introduce an additional : travellers Et which have been exposed to the disease
abroad. Values for the fixed model parameters in Germany are given in Tab. 5.1.

TABLE 5.1: Used parameter values for all travel-based models.

Parameter Value Reference
N 83,019,213 [20]
κ (3 d)−1 [26]
γ (10 d)−1 [26]

These assumptions lead to the following five-dimensional ODE system.

Ṡ = − β

N
S I − ET(t) S(t0) > 0 (5.1a)

Ė =
β

N
S I + ET(t)− κ E E(t0) = E0 ≥ 0 (5.1b)

İ = κ E− γ ((1− µ) I + µ I(t− τ)) I(t0 − τ ≤ t ≤ t0) = φ(t) > 0 (5.1c)
Ṙ = (1− µ) γ I R(t0) = R0 ≥ 0 (5.1d)
Ḋ = µ γ I(t− τ) D(t0) = D0 ≥ 0 (5.1e)

Here, the initial value of susceptibles is fixed to S0 = N − E0 − I0 − R0 − D0. Let
X = (Xi) and Z = (Zi) denote the daily new confirmed cases and deaths related to
COVID-19 in Germany. The subscript i serves to point out the measurement at time
point ti as reported by the JHU [3]. Not all infections are by nature detected, from
which case we introduce detection rates δ for Germany and δj for the destination
country, respectively. For the persons which are currently infected or have recovered,
we assume that only this proportion δ or δj is tested and detected and hence appears
in the statistics; however, we assume no undetected deceased cases. We assume that
the proportion of detected cases versus real infections is constant over the whole time
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interval, so that no temporal change of the detection rate is needed in our model.
The initial value of the infected cases at the starting date t0 is later on subject of the
estimation procedure. Therefore, we use the infected data as the real data divided by
the detection rate, for Germany and destination countries, respectively:

φ(t) :=
interp{(Xi)}(t)

δ
, t0 − τ ≤ t ≤ t0. (5.2)

As travel measures are relaxed as of 15 June, we designed the starting time t0 of this
model as 1 June. This way we allow parameter estimation of the transmission rate β
in the first two weeks which is fully independent of the travel impact rate α, so those
parameters are not correlated during the optimization process (note that in eqn. (5.3)
those parameters are multiplied with each other). The end date is fixed to 31 August
because of the end of summer holidays (in most German states) and new restrictions
in other countries from September onwards, e.g. a travel warning for Spain [5], which
will affect the transmission parameters. The initial values are either gained from the
JHU data sets [3] or introduced as free parameters which have to be optimized in the
Metropolis algorithm. The function φ : [t0 − τ, t0]→ R+ denotes the initial history of
the infected required for the well-posedness of the above DDE; the value τ is another
free parameter. The number of travellers which have been exposed to the disease is
defined as

ET(t) = α(t) ∑
j

β(j)(t)
N(j)

T(0)↔(j)(t) I(j)(t). (5.3)

The values I(j) and N(j) are defined by the number of infected people and respectively
the resident population in country (j) 6= (0) at time t. The function T(0)↔(j)(t) de-
scribes the number of travellers from Germany to country j, whereby the superscript
(0) denotes Germany from now on. Travellers are assumed to have a higher risk of
getting infected, due to being more active, visiting places and travelling (e.g., in a
plane) with more contacts than an average resident. Therefore, we define α(t) to
quantify the special risk of getting infected as a traveller. If α ≡ 1, then the trans-
mission rate for travellers is equal to the country’s specific transmission rate β(j)(t).
This rate is piecewise constant with switching returned from imposition or relaxation
of certain measures. No inclusion of travellers due to bans or closed borders are
identical to α ≡ 0.

Infection rate induced model. As we aim to estimate β j(t) and I(j) for all relevant
countries, we have to set up another ODE system modelling the disease dynamics.
Let (j) therefore be the specific country. For all countries (j), j ∈ {1, 2, . . . , M− 1, M}
with M being the amount of observed countries, we estimate the local transmission
rate β j(t) as well as the amount of infected persons I(j)(t) for all relevant time points
by using an SEIRD-model without a traveller , while the total population N(j) is
assumed to be constant over time.
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Ṡ(j) = −
β j(t)
N(j)

S(j) I(j) S(j)(t0) > 0 (5.4a)

Ė(j) =
β j(t)
N(j)

S(j) I(j) − κ E(j) Ė(j)(t0) = E(j)
0 ≥ 0 (5.4b)

İ(j) = κ E(j) − γ ((1− µj) I(j) + µj I(j)(t− τj)) I(j)(t ≤ t0) = φ(j)(t) > 0 (5.4c)

Ṙ(j) =
(
1− µj

)
γ I(j) R(j)(t0) = R(j)

0 ≥ 0 (5.4d)

Ḋ(j) = µj γ I(j)(t− τj) D(j)(t0) = D(j)
0 ≥ 0 (5.4e)

The starting value of the susceptibles is again defined by S(j)(t0) = S(j)
0 = N(j) −

E(j)
0 − I(j)

0 − R(j)
0 − D(j)

0 for all compartments j. Let again X(j) = (X(j)
i ) and Z(j) =

(Z(j)
i ) denote the daily infection and death cases in the respective destination country

as reported by the JHU [3]. Then, the history function is denoted analogously to
before by

φj(t) :=
interp{(X(j)

i )}(t)
δj

t0 − τj ≤ t ≤ t0. (5.5)

The values for κ and γ are assumed to be independent of country (j). In the datasets
for the countries, we find a sudden ’step’ in the infection rates. This can not be mod-
elled by travellers like in the model for Germany, which has two reasons: (1) Traveller
data is not available for each country. (2) The reasons for the raised infection numbers
in other countries are not of interest for the traveller model in Germany. Instead of
using an additional parameter α and a traveller , we assume the transmission rates to
be piecewise constant. By performing various simulations, the best-fitting ’switching
date’ where the rate is allowed to change value is found to be 20 July:

β j(t) :=

{
β
(j)
0 , t ≤ 19 July

β
(j)
1 , 20 July ≤ t

(5.6)

This system (5.4) is used both for the destination countries of German travellers and
also for the model for Germany, which does not include travellers (later on to be
called Model A). In the latter case, we can see the system as a special case of system
(5.1) with j = 0, representing Germany. Travel restrictions are being relaxed as of 15
June [27]. This date is therefore assigned to be the starting time t0 for the destination
countries, while the starting date remains 1 June for the no-travel model for Germany.
The end date remains 31 August (in both cases) as we require the values of β j and
I(j) until the end of the observed time interval, and of course nothing changes for
the ’German’ model. The parameters N(j) reflect the current total populations in
all regarded countries which are the destination or origin of travellers from and to
Germany; the population values are taken from UN data [20]. Results using the
optimized parameters are also shown in Tab. 5.2.
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TABLE 5.2: Country populations, (estimated) number of German
travellers travelling to country j per month, and country-based trans-

mission parameters.

Country Population Travellers Transmission
June July August β j,1 β j,2

Decimal Power / Unit 106 1 1 1 10−1d−1 10−1d−1

Albania 2.88 945 3,366 9,505 1.20 1.19
Austria 8.90 312,364 636,414 782,818 1.35 1.36
Belarus 9.45 1,595 1,985 3,102 0.38 0.65
Belgium 11.51 36,210 155,295 92,495 1.17 1.60
Bosnia and Herzegovina 3.30 2,811 2,849 6,702 1.54 1.10
Brazil 211.05 6,715 4,366 3,778 1.22 1.12
Bulgaria 6.95 11,562 42,552 74,363 1.24 1.06
Canada 37.41 4,746 9,778 8,368 0.31 1.33
China 1,433.78 3,711 5,921 7,077 1.55 1.05
Croatia 4.06 66,029 84,952 150,790 0.31 1.10
Cyprus 0.89 360 7,191 14,049 0.42 1.89
Czech Republic 10.69 51,518 130,651 148,353 0.84 1.41
Denmark 5.81 48,986 395,924 571,649 0.77 1.70
Egypt 100.39 2,542 5,134 7,790 0.65 0.36
Estonia 1.33 1,006 3,380 5,967 0.23 2.00
Ethiopia 112.08 1,431 2,089 2,066 1.84 1.45
Finland 5.53 4,624 12,134 19,074 0.31 1.74
France 67.20 105,905 326,298 345,913 0.95 1.96
Greece 10.7 15,930 179,531 372,892 1.41 1.75
Hungary 9.77 30,154 53,080 71,577 0.36 1.71
Iceland 0.34 889 7,892 13,718 1.66 1.56
Ireland 4.97 4,892 8,965 9,065 0.43 2.20
India 1,366.42 5,168 8,676 14,046 1.39 1.25
Israel 88.52 2,455 2,693 797 1.65 1.23
Italy 60.29 126,855 272,324 415,581 0.21 1.75
Japan 126.86 1,457 2,340 3,292 1.78 1.29
Kosovo 1.72 586 7,341 18,626 1.59 1.10
Latvia 1.91 5,936 12,637 20,798 0.31 1.52
Lebanon 6.87 167 1,699 5,298 1.09 1.94
Lithuania 2.79 1,203 1,787 2,415 0.49 1.89
Luxembourg 0.63 4,562 4,466 2,946 2.54 0.51
Malta 0.51 261 9,338 16,974 1.16 1.95
Mexico 127.58 2,079 2,726 2,253 1.70 0.69
Montenegro 0.63 728 2,490 4,118 3.75 0.54
Moldova 4.04 972 1,728 3,815 0.85 1.30
Netherlands 17.40 188,840 721,721 1,592,831 1.04 1.72
Northern Macedonia 2.08 0 3,486 9,875 0.89 1.02
Norway 5.37 8,326 42,589 64,125 0.74 1.70
Poland 27.94 95,372 171,127 268,559 0.52 1.51
Portugal 10.29 17,659 63,369 111,867 0.51 0.81
Qatar 2.83 6,063 8,336 6,747 0.79 1.00
Romania 19.36 5,702 32,822 41,255 1.18 1.35
Russia 145.87 3,550 6,017 7,324 0.61 1.03
Serbia 8.77 5,164 5,577 9,672 1.62 0.61
Slovakia 5.46 19,372 31,161 56,401 1.16 1.54
Slovenia 2.07 3,759 5,361 5,987 1.44 1.14
Spain 47.32 22,209 331,894 436,624 1.19 1.86
Sweden 10.32 9,050 39,584 46,878 0.38 0.55
Switzerland 8.50 102,698 272,121 388,971 1.49 1.35
Tunisia 11.69 644 2,709 11,292 1.09 2.12
Turkey 83.43 36,986 144,350 343,972 0.77 1.14
United Kingdom 66.43 17,026 29,925 32,969 0.92 1.16
Ukraine 43.99 3,020 8,934 14,759 0.77 1.44
United States of America 329.06 24,123 42,409 41,613 0.81 1.62
United Arab Emirates 9.77 3,231 9,394 6,856 0.59 1.10
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Travellers and travel impact rate. We only include European countries with avail-
able traveller statistics and countries outside of Europe with a total sum of more
than 5,000 travellers in the travelling statistics. For the close European countries, the
number of travellers is estimated by the travel statistics of 2019 and 2020 for German
travellers [21] (for relative shares) and hospitality statistics in Germany for foreign
travellers [22]. The number of travellers from and to farther and non-European
countries is gained from analysis of the flight passengers from the respective country
[23]. In some larger countries, namely USA, Russia, China, and Japan, the data was
problematic. Flight routes from and to these countries are often non-direct, so the
plain values of flight passengers would underestimate the real amount of travellers
to these countries. As a compromise, we assumed the amount of German travellers to
those countries to be the same as the number of foreign visitors from those countries
in Germany, which makes this estimation more meaningful. The populations and
amount of travellers per month of this total of M = 55 countries is presented in Tab.
5.2.

Using Tab. 5.2, we can compute the daily value for T(0)↔(j) by the number of
travellers divided by the days in the respective month. E.g., for June, only the 16 days
from 15 June to 30 June are considered. Average time of spending time here is 12
days so e.g. for July, we have T(0)↔(j) = 331,894 · 12

31d ≈ 128,475 d−1. The uncertainty
in the value of 12 days for the average travel length is mitigated by the estimation of
α, as these two values are directly multiplied, and thus only the product of those two
values is important.
In Model B, α(t) is assumed to be constant over time as soon as the travel ban is
loosened:

α(t) :=

{
0 t ≤ 14 June
α 15 June ≤ t ≤ 31 August

(5.7)

In Model C, we define a piecewise constant function α(t) as follows:

α(t) :=


0 t ≤ 14 June
α0 15 June ≤ t ≤ 30 June
α1 1 July ≤ t ≤ 31 July
α2 1 August ≤ t ≤ 31 August

(5.8)

This way, we are able to identify temporal differences in the travelling subdivision,
e.g. caused by a different social behaviour or loosened restrictions. The last three
’switching points’ are arbitrarily chosen at the beginning of each month to account
for the time-dependency of α.

5.2.3 Optimization models, parameter bounds, and initial values

The parameters to be estimated in eqns. (5.1) and (5.4) are transmission rate, detection
rate, lethality, time lag, travel impact rate, and numbers of exposed on 1 June 2020
(Germany) resp. 15 June 2020 (all other countries). The optimal parameters u(j)∗ and
u∗ are determined by solving the following maximization problems in the respective
models. This results in consideration of the following three models, with an auxiliary
model being pre-evaluated before handling models B and C.
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Model A: Time-dependent transmission rate, starting 1 June

max
u(0)

L(u(0)) subject to ODE (5.4)

where u(0) =
(

β
(0)
0 , β

(0)
1 , δ0, µ0, τ0, E(0)

0

)
∈ R6 (5.9)

Auxiliary model for models B and C: For all countries j = 1, . . . , 55, starting 15 June

max
u(j)

L(u(j)) subject to ODE (5.4)

where u(j) =
(

β
(j)
0 , β

(j)
1 , δj, µj, τj, E(j)

0

)
∈ R6 (5.10)

Model B: Constant travel transmission parameter α(t) from 15 June onwards

max
u

L(u) subject to ODE (5.1)

where u = (β, δ, µ, τ, α, E0) ∈ R6 (5.11)

Model C: Piecewise linear travel transmission function α(t) starting 15 June and
jumps on 1 July and 1 August

max
u

L(u) subject to ODE (5.1)

where u = (β, δ, µ, τ, α0, α1, α2, E0) ∈ R8 (5.12)

Tab. 5.4 shows the constraints for all parameters in the three models, which can
also be used for uj (with the starting values R0 and Z0 = D0 as of [3]). Previous

TABLE 5.4: Parameter constraints with the respective constraints of
the fitted parameters.

β0/1 δ µ τ αj N0 E0 δI0 δR0 D0

> .05 .05− 1 ≤ .1 3− 40 > 0 82,846,340 > 0 9,407 165,632 8,555

investigations by [28, 18] already give us orders of magnitude for the initial values of
the optimization for βi and δ. The order of magnitude of the time interval between
the onset of infectiousness and death is derived from RKI modelling studies [26].
We allow a larger span in τ and τj than in [18] because the onset between infection
and death is also dependent of the date on which the death case is registered in the
statistics, where significantly different values depending on the country are possible
here. A potential reason for this lies in different policies and procedures in reporting
infection and death cases. The starting values at time t0 for the detected cumulated
infected X0, detected recovered Y0 = δR0 and detected dead Z0 can be taken from
the statistics. The initial number of infected is then defined as I0 = (X0 −Y0 − Z0)/δ.
Depending on the detection rate δ, the ’real’ numbers I0 and R0 can be calculated
by dividing those detected values by δ. For the initial guess on the ’real’ number of
exposed individuals E0 at time t0, we use a derivation using the Basic Reproduction
NumberR0, which indicates how many new infections an infected individual causes
on average during its illness in an otherwise susceptible population. In our model,
the share of infected persons I0 can either be at the start, the middle or the end of the
infection, so several possible time stages of the infections are possible. The middle of
this time interval is assumed to be the mean of all infected persons at time t0. Thus,
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up to this point in time they could infect aboutR0/2 · I0 persons on average which
then become exposed to the virus, i.e. this is identical to E0. Here, we assume that the
initial basic reproductive number is approximatelyR0 ≈ 1 because of the stagnation
of cases on a low level at the beginning of June.

TABLE 5.5: Orders of magnitude of the initial values for adapting the
model to the available data.

Parameter β0/1 δ µ τ αj E0

Initial Value .1 .3 .005 20 1 1/2 · I0

5.2.4 Likelihood function

As seen in the previous section, the unknown parameter sets u(j) and u will be
estimated by maximization of a likelihood function, which will be developed in this
section. Note that the derivation of the function is described in detail only for u, but
is equivalent for the likelihood function of u(j).
We denote Ĩ and R̃ as the difference between the daily infection cases, i.e. for i =
1 . . . N:

Ĩi = {δ[I(ti+1) + R(ti+1)] + D(ti+1)} − {δ[I(ti) + R(ti)] + D(ti)} (5.13a)
D̃i = D(ti+1)− D(ti) (5.13b)

Hence we compare the data X to the model output Ĩ and X(j) to Ĩ(j), as well as Z with
D̃ and Z(j) with D̃(j). At time ti, our model validation is subject to measurement error,
which is assumed to be of degenerate multivariate Gaussian distribution with mean
(Xi, Zi) or (X j

i , Zj
i ) and covariance matrix Σ or Σj, where one covariate corresponds

to the measurement error from confirmed cases, and the other to the deceased cases.
The time invariance of the covariance matrix was opted only for the sake of simplicity.
Further simplification may assert prior assumption that the covariance terms in the
measurement error are zero, meaning that each error is an independent process. This
leads us to Σ = diag(σY, σZ) or Σj = diag(σj

X, σ
j
Z). Our likelihood function for time

point ti reads as

Li(u) :=
1

2πσXσZ
exp

(
− ( Ĩi − Xi)

2

σ2
X

− (D̃i − Zi)
2

σ2
Z

)
. (5.14)

Assuming iid processes for all measurements at all time points, Kalbfleisch [29]
pointed out a constant K = (2π)N that serves to simplify the joint likelihood function

L(u) := K ∏
i

Li(u) =
1

σN
X σN

Z
exp

(
−∑

i

( Ĩi − Xi)
2

σ2
X

+
(D̃i − Zi)

2

σ2
Z

)
. (5.15)

Our study designates the standard deviations as to approximate the means of con-
firmed and deceased cases, σX := ‖X‖/N and σZ := ‖Z‖/N. Defining J(u) as
the sum of squares error of the difference between data and estimation using the
parameter set u, i.e.,

J(u) = ∑
i

( Ĩi − Xi)
2

‖X‖2 +
(D̃i − Zi)

2

‖Z‖2 ,
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the likelihood and log-likelihood function then read as

L(u) =
N2N

‖X‖N‖Z‖N exp
(
−N2 J(u)

)
, (5.16)

log L(u) = log
(

N2N

‖X‖N‖Z‖N

)
− N2 J(u).

= N(2 log N − log‖X‖ − log‖Z‖ − NJ(u)). (5.17)

As the calculation can be done equivalently for the destination countries (j), the
log-likelihood log L(j)(u) is defined as

log L(j)(u) = N(j)(2 log N(j) − log‖X(j)‖ − log‖Z(j)‖ − N(j) J(j)(u)). (5.18)

Model specification

The aim in model specification for the fitting of the data is that we have a measure
(criterion) based on fit and complexity (information-type criterion). Therefore, re-
garding models A, B, and C, we opt for a minimal value of the Bayesian Information
Criterion (BIC)

BIC = log N · |u| − 2 log L(u) (5.19)

according to Raftery [30], whose first term measures complexity represented by the
observation size N and the number of parameters |u|, while the second term repre-
sents the maximal likelihood function. Note that for the travel destination countries,
we do not compare the model output as we only allow the travel-independent system
(5.4). The BIC penalizes the number of parameters more than the Akaike Information
Criterion (AIC) [31], where the latter would have replaced the factor log(N) by 2.
As far as model specification is concerned, our aim will be to choose between three
models by selecting the model with minimal BIC as well as amending the question if
the role of travellers is significant.

5.2.5 Metropolis algorithm

In our study, we use a Metropolis algorithm (cf. [32, 33, 34]) for estimation of
parameters in the ODE systems (5.1) and (5.4) according to the procedure described
in [35, 18]. The parameter set u0 as of Tab. 5.5 is used for the initial guess. We assign
random draws unew from a normally distributed (and thus symmetric) proposal
function q, i.e. unew ∼ q(unew|ui−1), in every iteration i.

Using the previously defined J(u) as the target distribution, we calculate the
approximative distribution by

π(u) = c · exp
(
− J(u)2

2σ2

)
, (5.20)

whereby c is an arbitrary real value. For the acceptance probability, it follows

p(unew|ui−1) = min
{

1,
π(unew) · q(ui−1|ui)

π(ui) · q(ui|ui−1))

}
= min

{
1,

π(unew)

π(ui)

}
. (5.21)
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In eqn. (5.21), we can see that the value of c is redundant as it cancels out in the
division. If the sample is accepted with the probability p, we set ui = unew; with the
probability 1− p, the sample is declined, meaning u = ui−1 according to [36, 35].

5.2.6 Confidence intervals of the parameters

Considering that the observation size N and the number of parameters |u| hold the
relation N � |u|, we adopt the idea of asymptotic confidence interval proposed
in [37, 38]. These works suggest that the asymptotic confidence interval can be a
good approximation of the uncertainty in the optimal parameters u∗ providing that,
besides the aforementioned relation, the measurement error is relatively small as
compared to the data. The formula of the confidence interval for each parameter u∗k
is given by CIk :=

[
u∗k − ψ, u∗k + ψ

]
, with ψ being defined as

ψ :=
√

2χ2(q, d f ) · (∇−2(− log L(u∗)))kk. (5.22)

The operator ∇−2 denotes the inverse of the Hessian while χ2(q, d f ) denotes the q
quantile of the χ2 distribution with the degree of freedom d f . The degree of freedom
can be chosen between two that further determines the type of confidence interval:
d f = 1 gives the pointwise asymptotic confidence interval (PACI) that works on the
individual parameter, d f = |u| gives the simultaneous asymptotic confidence interval
(SACI) that works jointly for all the parameters [37].

5.2.7 Current reproductive number

We also calculated the current 7-day reproduction number as of [39]: Defining the
reproduction numberR7,t as the 7-day moving average of the infection cases at time
t to the infection cases at time t− 3 (assuming an incubation period of κ−1 = 3 days),
we have

R7,t =
∑6

k=0 It−k

∑6
k=0 It−3−k

. (5.23)

This ratio will be helpful to compare the results to the given infection data and find
estimates on how the disease dynamics behave at least shortly after the investigated
time interval.

5.2.8 Sensitivity analysis

To answer questions (Q1) and (Q2), the basic idea of sensitivity analysis lies in the
definition of a certain measureM for variable change that is worth of investigation,
especially when one would like to describe its sensitivity with respect to a parameter
θ. The sensitivity ofM with respect to θ in the sense of first-order change can be
measured using Taylor expansion. Suppose that θ is increased to a certain percentage
ε from its current value, i.e., θ 7→ θ + εθ. This way, the ratio (θ + εθ)/θ = 1+ ε returns
the total percentage post perturbation and ε denotes the additional percentage of gain.
Note that imposing ε as the percentage is considered more robust than as simply
the increase, considering that different parameters may live in disparate scales. In a
similar manner as for the parameter, the total percentage inM post perturbation on
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θ is given by

M(θ + εθ)

M(θ)
= 1 + εθ

∂θ ,M(θ)

M(θ)
+O(ε2) (5.24)

providing that ε is sufficiently small. Since the percentage of gain is usually considered
similar across parameters, the role of ε in the preceding equation is often neglected.
The remaining expression thus provides a measurement of the sensitivity. Usually,
authors refer ∂θM(θ) as the sensitivity index and θ∂θM(θ)/M(θ) as the elasticity, cf.
[40]. Between two parameters θ1, θ2, it is logical to say thatM is more sensitive to θ1
than θ2 when the absolute normalized sensitivity indices hold the relation∣∣∣∣θ1

∂θ1M(θ1)

M(θ1)

∣∣∣∣ > ∣∣∣∣θ2
∂θ2M(θ2)

M(θ2)

∣∣∣∣ . (5.25)

Time-dependent measures. The question (Q1) conveys the notion of model solu-
tion and addresses what our model solutions, including those excluded from the
measurement or fitting, could have changed as we perturb the optimal parameter
set, i.e. Λ = {β, α, ET, κ, µ, γ, τ}. Our interest is now driven by all the measures
M that represent model state variables Ψ = {S, E, I, R, D}, which apparently are
time-varying. To reveal the elasticity, one first compute the sensitivity index of state
ψi ∈ Ψ with respect to parameter λj ∈ Λ; i.e.,

Sij :=
d

dλj
Ψi (5.26)

from the sensitivity system of equations (cf. [40]):

S′ij = ∑
k

Skj ·
∂

∂ψk
fi +

∂

∂λj
fi, Sij(0) = 0 . (5.27)

The function f above defines the vector field of the model system, i.e., Ψ̇ = f (t, Ψ, Λ).

Time-independent measures. The question (Q2) is concerned more with interven-
tions. In this case, we focus more on parameters that can be changed with the help of
humans. In our context, such parameters could be β and α. The direct transmission
rate β has always been related to the proximity of the susceptible against infected
humans and can be reduced with the aid of masks and social/physical distancing.
The parameter α is related additional factors that drive the infection more than it
could have been in the origin and destination country. For example, travellers are
more exposed to physical encounters with other humans during flights, in public
transportation, or in touristic areas, whereas locals spend more time at home. More
protective apparatuses and educational campaigns will help reduce α. In this regard,
two different measures for the sensitivity can be considered. For the first choice, we
may take, for example,M :=

∫ T
0 I dt, which represents the total number of infected

cases over all observations. If α, β > 0,M is then more sensitive to β rather than α
when it holds

β ·
∣∣∣∣∣
∫ T

0 ∂β I dt∫ T
0 I dt

∣∣∣∣∣ > α ·
∣∣∣∣∣
∫ T

0 ∂α I dt∫ T
0 I dt

∣∣∣∣∣ . (5.28)
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This inequality, however, includes the terms
∣∣∣∫ T

0 ∂β I dt
∣∣∣ , ∣∣∣∫ T

0 ∂α I dt
∣∣∣ that do not ac-

count for entropy or state of disorder. However, it is possible that the integral vanishes
due to oscillations of the integrand ∂α I. This will result in a small sensitivity index
rather than ∂β I that just forms a ’calm’ trajectory above zero, so that the result would
not be meaningful. To account for the entropy, we shall therefore consider the second
measure

M :=
∫ β̂

0

∫ T

0
|∂β I(t, s)|dtds, (5.29)

which represents the total variation of I with respect to β, evaluated up to the current
parameter value β̂. Now,M is said to be more sensitive to β than α (or vice versa) if

β̂ ·

∣∣∣∣∣∣
∫ T

0 |∂β I|dt∫ β̂
0

∫ T
0 |∂β I(t, s)|dtds

∣∣∣∣∣∣ > α̂ ·
∣∣∣∣∣

∫ T
0 |∂α I|dt∫ α̂

0

∫ T
0 |∂α I(t, s)|dtds

∣∣∣∣∣ . (5.30)

From the computational perspective, one can define a certain grid representing
domain of interest for the two parameters, for example [βmin, βmax] × [αmin, αmax].
The next step follows from computing the sensitivity indices for all grid points and
applies the ratio of actual total variation and accumulated total variation as in eqn.
(5.30). Therefore, the left-hand side should be done via stepping α (vertical mode)
and the right-hand side via stepping β (right mode).

5.3 Numerical results

The number of iterations for Germany using the Metropolis algorithm, as well as for
the preprocessing in each country should be a high number to prevent the algorithm
from local minima. As in our previous work in [18], we set this number to 20,000.
While the estimation was done for the daily cases, we plot the cumulated infection and
dead because of better visibility. The reported cumulated cases consist of the currently
infected cases plus the recovered plus the deceased cases, which are calculated as
above by δ(I + R) + D.

5.3.1 Model A

To be able to compare the output of the optimal solutions for the three models, the
result of the model with a piecewise constant value for β and no traveller subdivision
is shown in Fig. 5.2. The optimization seems to be fairly decent for the death curve
(right figure), but the model overestimates the infection cases (left figure) between
June and August, which also shows in lower values for L(u) as seen in Tab. 5.9.
In Tab. 5.6, the mean and standard deviations for the estimated parameters of the
above explained model, starting values and methods are shown. Several parameter
estimates are not very reliable, like the detection rate of 18% which is expected to be
higher due to comparably few cases yet an increased amount of available tests. For
example, [41] suggests a dark figure of slightly less than 50% in total until November.
The death rate of 1‰ also appears to be much lower than expected (around 1%; for
example, in [42] a fatality rate of 0.83% is calculated for the first wave, while a fatality
rate of 2.15% as of November 2020 is found in [43]). These findings suggest that
Model A might not be a decent model to describe the disease behaviour in Germany
in summer 2020.
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TABLE 5.6: Numerical results for Model A without inclusion of α.

Parameter mean value σ of Metropolis
β0 8.65 · 10−2d−1 0.19 · 10−2d−1

β1 1.39 · 10−1d−1 0.01 · 10−1d−1

δ 1.84 · 10−1 0.03 · 10−1

µ 1.56 · 10−3 0.06 · 10−3

τ 2.60 · 101d 0.04 · 101d
E0 3.60 · 103 0.05 · 103
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FIGURE 5.2: Infections (left) and death cases (right) in Germany using
Model A during summer 2020 – JHU data [3] and estimations. The
shaded area represents the SACI interval. The dashed line describes
the simulation with α = 0, i.e. either no travelling is allowed or the

traveller subdivision had been completely free of the disease.

5.3.2 Model B

For Model B with a constant value for α from 15 June onwards, Tab. 5.7 shows the
mean and standard deviations for the estimated parameters of the above explained
model, starting values and methods. The estimated parameters, as far as known,
are in line with what is to be expected. At the beginning of the investigated time
interval, a rough estimate for the basic reproduction number without travellers is
R0 = β/γ ≈ 0.4. As β denotes the transmission rate at the beginning of June, without
any effect of travellers, this estimate seems to be valid, but less than expected. A
detection rate of 50–60% as well as a death rate of 0.6% are also valid estimates at
the observed time interval. The time lag between infection and death is obviously
dependent on the day of the registration of both infection and death, where 4 weeks
is a decent approximation as well. Additionally, the pointwise asymptotic confidence
interval and simultaneous asymptotic confidence interval are shown by ψ as of eqn.
(5.22), so that the respective interval is defined as CIk :=

[
u∗k − ψ, u∗k + ψ

]
.

Fig. 5.3 shows the estimated disease dynamics in comparison to the registered cases
using the parameters as of Tab. 5.7. Additionally, the uncertainty range raised by
the confidence intervals of the Metropolis algorithm is provided. For this, we add
or subtract the standard deviation to or from the mean of the parameter to show
the highest or lowest possible values of the registered cumulative infected persons.
The range of both PACI and SACI is comparatively lower and almost no differences
could be detected in the graphic. It is also observed how large the infected cases
and fatalities in this model had been, if α = 0, i.e. the travel ban had not ended and
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travellers had no impact on the disease dynamics whatsoever.
The left graphic in Fig. 5.3 shows that for our estimated parameter set, around 50,000
less infections with COVID-19 had been registered if the travel subdivision had not
been active. In the right figure concerning the death cases, we see significant changes
only from the end of July, resulting in a difference of roughly 150 death cases. As both
the number of infected and the infection rates are higher than in the simulation with
no traveller numbers, travellers appear to have created increased infection numbers
at least at the beginning of September. However, a reasonable prediction on case
numbers appears to be difficult, as interventions by authorities and the public (higher
awareness due to higher infection numbers) cannot be predicted in the sense of an
pre-calculable change of transmission rates.

TABLE 5.7: Numerical Results for Model B using a constant value of α.

Parameter mean value σ of Metropolis ψ of PACI ψ of SACI
β 3.59 · 10−2d−1 0.03 · 10−2d−1 0.002 · 10−2d−1 0.04 · 10−2d−1

δ 5.78 · 10−1 0.18 · 10−1 0.002 · 10−1 0.03 · 10−1

µ 6.18 · 10−3 0.19 · 10−3 0.004 · 10−3 0.09 · 10−3

τ 2.59 · 101d 0.04 · 101d 0.001 · 101d 0.03 · 101d
E0 2.59 · 103 0.05 · 103 0.001 · 103 0.03 · 103

α 2.97 0.06 0.002 0.04

FIGURE 5.3: Infections (left) and death cases (right) in Germany using
Model B during summer 2020 – JHU data [3] and estimations. The
shaded area represents the SACI interval. The dashed line describes
the simulation with α = 0, i.e. either no travelling is allowed or the

traveller subdivision had been completely free of the disease.

5.3.3 Model C

For Model C, we assume that α is not constant over the whole time from June to
August, but rather time-dependent, defining a piecewise constant function of α with
three different values. With α(t) being piecewise constant for 15–30 June, July and
August, the parameter estimation for system (5.4) yields the following results as to be
seen in Tab. 5.8. Parameter estimates are similar to those of Model B by the order of
magnitude and thus equally reliable. In Fig. 5.4, similar to above, we show estimates
and measured data for the cumulated cases and also the error range with respect
to the Metropolis algorithm (which is the largest deviation) and the scenario if no
travelling had been allowed.
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TABLE 5.8: Numerical Results for Model C using piecewise constant
values of α.

Parameter mean value σ of Metropolis ψ of PACI ψ of SACI
β 5.09 · 10−2d−1 0.12 · 10−2d−1 0.002 · 10−2d−1 0.06 · 10−2d−1

δ 4.94 · 10−1 0.08 · 10−1 0.007 · 10−1 0.19 · 10−1

µ 5.34 · 10−3 0.10 · 10−3 0.004 · 10−3 0.11 · 10−3

τ 2.58 · 101d 0.06 · 101 d 0.01 · 101 d 0.34 · 101 d
E0 2.45 · 103 0.03 · 103 0.003 · 103 0.07 · 103

α0 2.23 0.05 0.002 0.06
α1 2.45 0.05 0.008 0.02
α2 3.14 0.05 0.004 0.11

FIGURE 5.4: Infections (left) and death cases (right) in Germany using
Model C during summer 2020 – JHU data [3] and estimations. The
shaded area represents the SACI interval. The dashed line describes
the simulation with α = 0, i.e. either no travelling is allowed or the

traveller subdivision had been completely free of the disease.

5.3.4 Comparison

For the Bayesian analysis, we can now compare the BIC values of the three models
computed by eqns. (5.17) and (5.19). The results for Model A were gained by applying
eqns. (5.4), i.e. the model we used to estimate the disease behaviour in all other
countries (with no travel impact rate, but two piecewise constant transmission rates
β1,2) to Germany.

TABLE 5.9: Values for the least-square value J(u) and the BIC for the
various models.

J(u) # of Parameters BIC
Model A 4.4174 · 10−5 6 -9,087.0
Model B 4.1812 · 10−1 6 -8,538.6
Model C 4.1919 · 10−1 8 -8,529.9

Tab. 5.9 shows that in terms of the least-square output, the model with time-
dependent, piecewise constant values of α (Model C) shows the best results. Even
though the penalization of complexity with two more parameters, the BIC for Model
C is the lowest. According to Raftery [30], a BIC difference of 6–10 indicates a "strong"
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evidence (posterior probability of 95–99%) that Model C using three piecewise con-
stant values for α is to be preferred over B, while there is "very strong" evidence that
Model C, and also B, are to be preferred over Model A with a posterior probability of
> 99% as the difference is larger than 10.
Lastly, we compare the 7-day reproductive number as of eqn. (5.23). Fig. 5.5 shows
the values for the two models. Both curves have a similar behaviour and the values
of R7,t in Model B and C would remain ' 1 most of the time, resulting in growing
infected values even for at least a short time after the investigated time window, i.e.
at the beginning of September.

Additionally, we plotted the dynamics of R7,t for the hypothetic case that no
travellers had contributed to the infection cases. In this case the values of R7,t would
remain < 1 for the whole time in any of the two models. This means the disease
would have been contained if no other effects are assumed.

We can compare future simulations on a short-time scale by extending the time
interval of the model. When we assume that travelling had not been allowed during
the whole time interval α(t) ≡ 0, a simulation until September 15 assumes only 100
new registered infections. However, in the estimation of Model C where travelling is
allowed, we computed 21200 new infections if travelling had been disallowed from
September 1 onwards and 26300 new infections if the conditions for travelling had
not been changed at all between September 1 and 15 when we assume the situation is
not changed by any national or international measures, i.e. same travel numbers and
impact rates as at 31 August are assumed. Results for Model B show similar values in
terms of magnitude; it is important to note that values of those estimates are to be
taken with caution.
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FIGURE 5.5: Reproductive Values R7,t using the estimations of Models
B and C. Additionally, the dotted lines show the evolution of the
reproductive values in case travellers had no impact on the infections

in Germany.

5.3.5 Sensitivity analysis

For the investigation of time-dependent measures, we included the parameters γ
and κ from Tab. 5.1 although they were not optimized, yet can be assumed to bear
uncertainties, to observe the influence of those parameters to the solutions for all
five subdivisions S, E, I, R, and D. For Model B, all the parameters λi are almost
constant, except ET and α, and to some extent β and γ (latter of which is however
not a mutable parameter in our optimization). Fig. 5.6 shows the elasticities λjSij/Ψi
using (5.27) around the parameter values given in Tabs. 5.7 and 5.8, respectively. Gen-
erally, ET returns the highest sensitivity in all subdivisions, particularly with ongoing



5.3. Numerical results 143

simulation time. Additionally, changes in the parameters α (after a certain time delay,
mainly due to differing from zero only after 15 June) and also γ would significantly
influence the infected subdivision but not the subdivision of deceased, in which no
parameter shows a higher elasticity than 0.15. Note that the parameter ET is actually
proportional to α as of eqn. (5.3). After all, a caveat with these measures remains, as
the elasticities are time-varying. Therefore, preference to a certain parameter for the
highest elasticity could change over time.

Concerning the time-independent measure, we can now generate a two-region
profile for which the inequality in eqn. (5.30) indeed applies or the other direction
does. On the basis of Model B for the portraying the upcoming winter outbreaks,
Fig. 5.7 shows the comparison of the elasticities in reasonable ranges of β and α, the
two parameters where interventions actually can change values. While reducing
the overall transmissions in some way is equivalent to a reduction of β, reduction
of travellers can be interpreted as a reduction of α: Even if the value α is not related
to the amount of travellers, we have seen that α is multiplied with the amount of
travellers TGermany↔j. If this value is reduced, then the product is reduced by the
same factor, which would yield the same results as a reduction of α by this factor.
Alternatively, travel control without reduction of traveller numbers can also reduce α.
Using the fitted value (α, β) = (2.97, 0.0309) we find that the measureM as in eqn.
(5.29) is more sensitive to β than α.

This finding draws forth further practical relevance. Our model can be calibrated
with new incidence data on an initial take-off period in the next winter season,
where all parameters except β and α are fixed according to our fitting. At first, the
two parameters can be fitted to these new data. May they locate in one of the two
regions separated by the zero-curve in Fig. 5.7, we then acquire knowledge on
which resources should be drawn in order to attack the most sensitive parameter.
One can thus wait and see how the deployment of the resources gives the real-time
intervention to the number of infected cases. Re-calibration then follows after some
time as short-term feedback from such an intervention is gained, and the values
of optimal β and α can once again be evaluated via Fig. 5.7. The area shows the
contour of the elasticity in the left-hand side of eqn. (5.30) minus the right-hand
side expression. The region below the zero-line thus indicates all possible locations
of (β, α) at which the measureM as in eqn. (5.29) is more sensitive to β than to α,
and vice versa. This process of combining sensitivity-based interventions remains
continuous until the ultimate disease eradication is achieved without having to waste
resources.
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FIGURE 5.6: Sensitivities of the model states in Model B wrt its param-
eters.
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FIGURE 5.7: Comparison of the elasticities in Model B in a domain of
interest for β and α.

5.4 Discussion and conclusion

In this present work, we intended to measure the impact of travellers on the overall
disease dynamics in Germany during summer 2020 using a modified SEIRD-model
with a traveller . Travel rates are measured by using international flight and hospital-
ity data. The infection data of all 55 countries with more than 5,000 German travellers
in June, July and August together has been used to optimize the single-country in-
fections. Estimates for the transmission rates β j,0/1 and the infected Ij at all time t in
those countries are found using standard SIRUV-models and used to estimate the
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travel impact rate for Germany. Parameter estimation was done using a Metropolis
type algorithm, while other routines like an adjoint based approach are also possible.

The estimated parameter values of the travelling-induced models are generally
close to medical estimations, while the model with time-dependent transmission rates
delivers less reasonable results in terms of the target function and also the parameter
values. In the traveller models, the travel impact rate was estimated to be in the
range of 2.2 ≤ α ≤ 3.2, meaning a two-to three times higher infection possibility as a
traveller than the average inhabitant of the respective country. The model with three
time-dependent and piecewise constant values of the travel impact rate α(t) yields
better values than a model with only one constant value for α(t) in the L2-norm and
also better BIC values despite two more parameters being used, and can be classified
as very strongly preferred.

The raised infection numbers and infection rates by travellers are also assumed to
have caused higher infection numbers at least in the following weeks (autumn 2020),
based on an analysis of the reproductive number at the end of the investigated time
interval. Among other reasons such as seasonality and opening of schools after the
summer holidays, these are assumed to have an impact on the second large infection
wave in late 2020 [7, 3]. It needs to be clear that due to the lack of precise data,
traveller values can be only estimated to a certain degree and some data sets with
which the parameter estimates for the various countries are not necessarily reliable.
We aimed to reproduce the infection risks for travellers in those countries. Because of
the large number of countries, errors are therefore assumed to be evened out as the
value of ET is a sum of the infections from all those countries. Also, using piecewise
constant values for α (to some extent also β j) with switching dates as of the first of
each month is slightly arbitrary. While a steady function α(t) or optimization of the
switching dates in some way can lead to better results, those are prone to overfitting.
The lower BIC of the model with three different values for α indicates this did not
happen for Model C.

Further, we performed a sensitivity analysis for Model B, i.e., a constant value of
α. In particular, it is found that the sensitivities for the travel impact rate α can be
identified after a certain time delay (which is caused by the model definition). The
parameters α, ET – which has the same behaviour as α due to the construction of
the model –, β and γ are found to be the most relevant parameters. However, in the
further analysis we constricted toward β and α as those are the parameters regarding
which political interventions are possible. For those two parameters, we designed
a two-region profile for which the detected domains in which a reduction of α is
more relevant for disease control in case the transmission rate β, especially when the
infection cases are otherwise comparatively low and can be controlled.

Finding those domains is similar to the findings of Hollingsworth et al. [13], as
they claimed travel bans are only relevant in case of low values for R, which can be
interpreted as a reduction of the transmission rate β. In case of higher infectivity
rates like for, e.g., the latest mutants (Delta and, even more so, Omikron), which
go along with a larger value of β, those assumptions might thus not hold true in
the same way. However, it might be reasonable to consider travelling restrictions
for a supposed variant (or other disease) with comparatively low transmission rates
yet high mortality. Still, the raised infection rates at the end of summer 2021 are an
indicator that higher/’uncontrolled’ traveller numbers might have been a reason
for another (at that time ’fourth’) wave one year after the investigated time interval,
which can be part of future investigations.

Not letting aside that installation of travel restrictions has multiple political, legal,
social and economical problems (it is not to be forgotten these pose an encroachment
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into fundamental rights), we conclude that setting up travel policies can be an epi-
demiologically reasonable policy component to contain disease numbers at least for
short terms, which is in line to the findings of papers [8, 9, 10, 12, 13, 14, 15, 11].
Rather than an exportation of cases as in Siegenfeld et al. [8] or Chinazzi et al. [9] to
several countries or internally in China as in Zou et al. [10], we consider importation
of cases from many different countries with varying infection rates. Thus, unlike
[10], we make general statements of the effectiveness of travel restrictions due to a
combination of all countries in the equation for ET(t).

The analysis of the local reproduction number suggest that the values are fluctu-
ating around 1, and travel measures have the potential to below 1, resulting in an
extincting disease. Additionally, short-time simulations for the beginning of Septem-
ber 2020 show a difference of several thousands of infection cases between no (further)
travel restrictions and full travel restrictions. These two findings indicate that travel
measures should be imposed alongside other social measures for optimal disease
control. It is up to further research to regard whether solely a travel ban or tightening
of travel restrictions had just postponed the third infection wave to a later date.

Even if this latter assumption holds true, there are possible advantages of delay-
ing the disease: Similar to Epstein et al. [14], the findings show that delaying the
epidemics can be achieved inter alia by travel restrictions. This time can then be used
to prepare for the income of an infection wave, prevents overload the health care
system all at once (which is also found by Leung et al. [11]), or postpones epidemics
until vaccines are available so that the amount of severe disease courses is reduced.
Travel restrictions to farther countries is comparatively ’cheaper’ than to closer ones,
where border control is required which induces further political and social problems.
While restrictions to a (lower) amount of high-risk areas like several articles propose
can be more effective, global measures can be more effective or ’safer’ than targeted
measures in an epidemiological/stochastic sense, due to the highly connected world
we live in and possibly rapid changes in the disease dynamics in single countries.

Awareness of the dynamics of the Corona waves in previous years and its reasons
is important in upcoming years of the pandemic and for other fast-spreading diseases
as well, and at the start of a pandemic or at least a single wave, a strategy combining
local social measures with international measures, in particularly a (heavy) reduction
of traveller numbers, should be considered together in terms of optimal control
especially when risks cannot be foreseen. It is also to be noted that travel measures
are undertaken in a graded way. Details on related regulations have changed from
time to time, but certain entry restrictions have been upheld since the earlier rise of the
pandemic. For example, all persons entering the country must provide a negative test
result or, later, proof of immunity either by recovery or vaccination, then comply with
post-arrival quarantines depending on the place of departure. However, it remains a
question which of those two to consider primarily, and for that modelling scenarios
like the ones presented (Fig. 5.7) can e.g. be updated on the current situation.

Further work in this topic might also include the impact of foreign travellers
in Germany and a international multi-patch/network model including travellers
from and to all investigated regions or countries. Also, other types of models, e.g.,
stochastic delayed differential equations (SDDE) or agent-based systems, can be used
to model disease dynamics and incorporation of travellers.
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A Plots for the epidemic models for the various countries
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FIGURE 5.8: Infections and death cases in Albania – JHU data
[3] and estimations.
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FIGURE 5.9: Infections and death cases in Austria – JHU data
[3] and estimations.
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FIGURE 5.10: Infections and death cases in Belarus – JHU
data [3] and estimations.
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FIGURE 5.11: Infections and death cases in Belgium – JHU
data [3] and estimations.
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FIGURE 5.12: Infections and death cases in Bosnia and Herze-
govina – JHU data [3] and estimations.
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FIGURE 5.13: Infections and death cases in Brazil – JHU data
[3] and estimations.
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FIGURE 5.14: Infections and death cases in Bulgaria – JHU
data [3] and estimations.
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FIGURE 5.15: Infections and death cases in Canada – JHU
data [3] and estimations.
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FIGURE 5.16: Infections and death cases in China – JHU data
[3] and estimations.
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FIGURE 5.17: Infections and death cases in Croatia – JHU
data [3] and estimations.
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FIGURE 5.18: Infections and death cases in Cyprus – JHU
data [3] and estimations.
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FIGURE 5.19: Infections and death cases in the Czech Repub-
lic – JHU data [3] and estimations.
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FIGURE 5.20: Infections and death cases in Denmark – JHU
data [3] and estimations.
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FIGURE 5.21: Infections and death cases in Egypt – JHU data
[3] and estimations.
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FIGURE 5.22: Infections and death cases in Estonia – JHU
data [3] and estimations.
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FIGURE 5.23: Infections and death cases in Ethiopia – JHU
data [3] and estimations.
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FIGURE 5.24: Infections and death cases in Finland – JHU
data [3] and estimations.
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FIGURE 5.25: Infections and death cases in France – JHU
data [3] and estimations.



154 Chapter 5. Research Paper III

Jun 15 Jun 29 Jul 13 Jul 27 Aug 10 Aug 24 Sep 07

Date 2020   

4000

5000

6000

7000

8000

9000

10000

C
u
m

u
la

te
d
 C

a
s
e
s

(I(t)+R(t))+D(t) Model

Registered COVID-19 Cases

Jun 15 Jun 29 Jul 13 Jul 27 Aug 10 Aug 24 Sep 07

Date 2020   

190

200

210

220

230

240

250

260

C
u

m
u

la
te

d
 D

e
a

th
 C

a
s
e

s

D(t) Model

Registered Death Cases

FIGURE 5.26: Infections and death cases in Greece – JHU
data [3] and estimations.
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FIGURE 5.27: Infections and death cases in Hungary – JHU
data [3] and estimations.
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FIGURE 5.28: Infections and death cases in Iceland – JHU
data [3] and estimations.
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FIGURE 5.29: Infections and death cases in India – JHU data
[3] and estimations.
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FIGURE 5.30: Infections and death cases in Ireland – JHU
data [3] and estimations.
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FIGURE 5.31: Infections and death cases in Israel – JHU data
[3] and estimations.
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FIGURE 5.32: Infections and death cases in Italy – JHU data
[3] and estimations.
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FIGURE 5.33: Infections and death cases in Japan – JHU data
[3] and estimations.
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FIGURE 5.34: Infections and death cases in Kosovo – JHU
data [3] and estimations.
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FIGURE 5.35: Infections and death cases in Latvia – JHU data
[3] and estimations.
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FIGURE 5.36: Infections and death cases in Lebanon – JHU
data [3] and estimations.
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FIGURE 5.37: Infections and death cases in Lithuania – JHU
data [3] and estimations.
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FIGURE 5.38: Infections and death cases in Luxembourg –
JHU data [3] and estimations.
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FIGURE 5.39: Infections and death cases in Malta – JHU data
[3] and estimations.
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FIGURE 5.40: Infections and death cases in Mexico – JHU
data [3] and estimations.
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FIGURE 5.41: Infections and death cases in Montenegro –
JHU data [3] and estimations.
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FIGURE 5.42: Infections and death cases in Moldova – JHU
data [3] and estimations.
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FIGURE 5.43: Infections and death cases in the Netherlands –
JHU data [3] and estimations.
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FIGURE 5.44: Infections and death cases in Norway – JHU
data [3] and estimations.
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FIGURE 5.45: Infections and death cases in Northern Mace-
donia – JHU data [3] and estimations.
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FIGURE 5.46: Infections and death cases in Poland – JHU
data [3] and estimations.
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FIGURE 5.47: Infections and death cases in Portugal – JHU
data [3] and estimations.
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FIGURE 5.48: Infections and death cases in Qatar – JHU data
[3] and estimations.
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FIGURE 5.49: Infections and death cases in Romania – JHU
data [3] and estimations.
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FIGURE 5.50: Infections and death cases in Russia – JHU data
[3] and estimations.
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FIGURE 5.51: Infections and death cases in Serbia – JHU data
[3] and estimations.
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FIGURE 5.52: Infections and death cases in Slovakia – JHU
data [3] and estimations.
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FIGURE 5.53: Infections and death cases in Slovenia – JHU
data [3] and estimations.
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FIGURE 5.54: Infections and death cases in Spain – JHU data
[3] and estimations.
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FIGURE 5.55: Infections and death cases in Sweden – JHU
data [3] and estimations.
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FIGURE 5.56: Infections and death cases in Switzerland –
JHU data [3] and estimations.
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FIGURE 5.57: Infections and death cases in Tunisia – JHU
data [3] and estimations.
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FIGURE 5.58: Infections and death cases in Turkey – JHU
data [3] and estimations.
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FIGURE 5.59: Infections and death cases in the UK – JHU
data [3] and estimations.
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FIGURE 5.60: Infections and death cases in the Ukraine – JHU
data [3] and estimations.
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FIGURE 5.61: Infections and death cases in the USA – JHU
data [3] and estimations.
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FIGURE 5.62: Infections and death cases in the UAE – JHU
data [3] and estimations.
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Chapter 6

A Numerical Method for
One-Dimensional Space-Fractional
Diffusion Models with
Mass-Conserving Boundary
Conditions

This article by Moritz Schäfer and Thomas Götz has been released in the journal
MATHEMATICAL METHODS IN THE APPLIED SCIENCES in 2023, referred to as [1].
The theory, formulation and numerical calculations were mainly done by Moritz
Schäfer. Thomas Götz provided several ideas in the theoretical part and for numerical
evaluation, as well as some linguistic revisions. The format is changed to meet the
thesis standard.

Abstract

The mathematical description of the spread of epidemics is of special interest in the
past years, not only due to the omnipresent COVID-19 pandemic but also due to
several outbreaks of e.g. Dengue, Ebola or the West Nile Virus. Modelling the spatial
spread of this epidemics is particularly of concern. This article considers fractional
diffusion as a possibility for handling non-local infection spread. In this more theoret-
ical paper, we consider fractional diffusion by the Grünwald-Letnikov formulation
and several possibilities to handle boundary conditions in a mass-conserving way, i.e.
no gain or loss of the total population. We will present the basic model formulation
as well as sticky and reflecting boundary conditions and present the stationary points
of the model for both. Afterwards, some numerical one-dimensional examples are
described. The theoretical and numerical results suggest that reflecting boundary
conditions are more reasonable. For sticky boundary conditions, the stationary point
has infinite values at the boundaries, while for reflecting boundary conditions, there
is only the trivial stationary point for a ’good enough’ discretization.

6.1 Introduction

The authors’ aim is to find an apt representation about diffusion patterns in the
spreading of infections with special kinds of diffusion patterns, and especially to find
reasonable boundary conditions for (future) epidemiological investigations. For a
short time scale, we can consider countries as isolated, due to, e.g., the geographical or
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political situation; in early 2020, for example, border closures prevented the majority
of non-economical traffic in many parts of the world. Therefore, epidemics mostly
spread only inside those countries. This allows a country-based investigation of
the spread neglecting external factors. Spatial spread of epidemics can be modelled
locally and non-locally. Local models can be gained by adding mobility matrices in
several compartments (see e.g. Goel et al. [2], Schäfer and Götz [3]), traveller matrices
(Schäfer et al. [4]), diffusion models or partial differential equation systems (Gai et al.
[5] or Kuniya and Wang [6]). This can be described by the equation

∂

∂t
f (x, t) = κ ∆ f (x, t) + φ( f (x, t)). (6.1)

A problem lies in the point that local, is that there are a lot of regions with low popu-
lation density in between and there is little ’exchange’ of people between neighboring
villages but more to, from, and between larger distances. Thus, non-local models
which include spread on higher distances can be a helpful tool. While one possibility
of attaining non-local spreading effects are integro-differential equations (see e.g.
Kergassner et al. [7], Kuniya and Wang [6] or Schäfer et al. 2023 [8]), the focus of
this article is the usage of a fractional spatial derivative, i.e., an equation of using a
fractional diffusion operator ∆α, so that eqn. (6.1) transforms into

∂

∂t
f (x, t) = κ ∆α f (x, t) + φ( f (x, t)). (6.2)

Fractional calculus, i.e., calculus using non-integer powers of integration and deriva-
tion, is nowadays used in many applications, e.g., network dynamics (cf. Baleanu
and Kumar [9]), viscoelasticity (cf. [9] and Soczkiewicz [10]), field theory and gravity
(cf. [9] and Calcagni [11]), advection-dispersion flow equations (cf. Meerschaert and
Tadjeran [12]), diffusion processes in epidemiology (cf. [9] and Oldham and Spanier
[13]) and price fluctuations in financial markets (cf. Baleanu et al. [14]. Specifically, in
modelling of epidemics, both space and time fractional models are used, specifically
time-fractional models: Rezapour et al. [15] have set up an SEIR-model for trans-
mission of COVID-19). Goufo et al. [16] investigated an time-fractional SEIR-model
concerning measles. Sidi Ammi et al. [17] provided some useful theoretical results
concerning time-fractional SIR-models. Kuehn and Mölter [18] also investigate trans-
port effects on epidemics using two coupled models, a static epidemic network and
a dynamical transport network, also with non-local, fractional transport dynamics.
Hamdan and Kilicman [19] use a system of fractional-order derivative systems to
model and analyse control strategies for Dengue Fever epidemics in Malaysia. In
this article, we will consider aspects of space-fractional models which have been e.g.
considered by Gorenflo and Mainardi [20]. One can show that space-fractional diffu-
sion corresponds to a change from a Markovian random walk to a non-Markovian
random walk with Levy flights; cf. [13] and Skwara et al. [21].

Structure of the paper. In the methods section we provide an outline of the defini-
tion of fractional derivatives as far as they are relevant for the subsequent model(s).
Furthermore, we introduce a finite difference approximation of fractional deriva-
tives that allows numerical simulations. Two different kinds of boundary conditions
are introduced and theoretical results for approximations and convergence of the
schemes are given. Further on, numerical results for some one-dimensional examples
using both types of boundary conditions are provided. Lastly, both theoretical and
numerical results are discussed.
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6.2 Methods

6.2.1 Fractional derivatives

To generalize the concept of derivatives from integer to non-integer order, there exist
several concepts. In our work, we rely on the definitions introduced by Riemann and
Liouville and the according discretization given by Grünwald and Letnikov [9, 10,
11, 12]. Let f : [a, b]→ R denote a sufficiently smooth function on an interval [a, b],
where a = −∞ and b = ∞ can be included. Let Γ(n) =

∫ ∞
0 tn−1e−t dt = (n − 1)!

denote the gamma function. Then for n ∈N its right-sided n-fold repeated integral
is given by (cf. [22, 23])

I(n)a+ f (x) =
∫ x

a
dξ1

∫ ξ1

a
dξ2 · · ·

∫ ξn−1

a
f (ξn) dξn =

1
Γ(n)

∫ x

a
f (ξ)(x− ξ)n−1 dξ . (6.3)

We can straightforwardly extend this to non-integer order α ∈ R \ {−1,−2, . . .} by

I(α)a+ f (x) =
1

Γ(α)

∫ x

a
f (ξ)(x− ξ)α−1 dξ . (6.4)

The above integral is called the right-sided fractional Riemann-Liouville integral of order
α. Analogously, we may define the left-sided fractional integral by

I(α)b− f (x) =
1

Γ(α)

∫ b

x
f (ξ)(ξ − x)α−1 dξ . (6.5)

It is easy to prove (see e.g. [12]), that for the fractional Riemann-Liouville integral it
holds

I(α)a+ I(β)
a+ f = I(α+β)

a+ f , (6.6a)

I(α)b− I(β)
b− f = I(α+β)

b− f . (6.6b)

According to the fundamental theorem of calculus, we identify the derivative of order
α as the inverse operators to the integrals of order α, i.e.,

Da+ f =
dk

dxk I(k)a+ f , (6.7a)

Db+ f =
dk

dxk I(k)b− f . (6.7b)

To define the fractional derivative of order α > 0, let n = dαe = mink∈N {k > α}
denote the smallest integer larger than α. Formally, taking the n-derivative of the frac-
tional Riemann-Liouville integral of order n− α, i.e., dn

dxn I(n−α), yields the Riemann-
Liouville definition of the fractional derivative of order α.

Definition 6.1. Let f ∈ Cn[a, b]. We call

Dα
a+ f (x) =

∂α

∂a+xα
f (x) :=

1
Γ(n− α)

dn

dxn

∫ x

a
f (ξ)(x− ξ)n−α−1dξ (6.8)
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the Riemann-Liouville derivative of fractional order α with left boundary a. Analogously,
we define

Dα
b− f (x) =

∂α

∂b−xα
f (x) :=

(−1)n

Γ(n− α)

dn

dxn

∫ b

x
f (ξ)(ξ − x)n−α−1dξ (6.9)

as the Riemann-Liouville derivative of fractional order α with right boundary b [10].

The above fractional derivatives are linear, i.e. for all f , g ∈ Cn[a, b], all λ, µ ∈ R

and any α > 0 we have

Dα
a+ [λ f + µg] = λDα

a+ f + µDα
a+g , (6.10a)

Dα
b− [λ f + µg] = λDα

b− f + µDα
b−g . (6.10b)

Example 6.2. We consider the monomial xk and compute its fractional derivative of
order α. In alignment with the formal generalization of the integer order derivative

dm

dxm xk = k(k− 1) · · · (k−m + 1)xk−m =
k!

(k−m)!
xk−m =

Γ(k + 1)
Γ(k−m + 1)

xk−m

we obtain

D(α)
a+ xk =

1
Γ(n− α)

dn

dxn

∫ x

a
ξk(x− ξ)n−α−1dξ

=
1

Γ(n− α)

dn

dxn
k

n− α

∫ x

a
ξk−1(x− ξ)n−αdξ = . . .

=
1

Γ(n− α)

dn

dxn
Γ(k + 1)Γ(n− α)

Γ(n + k− α + 1)
(x− a)n+k−α

=
Γ(k + 1)

Γ(k− α + 1)
(x− a)k−α, (6.11)

and analogously

D(α)
b− xk =

Γ(k + 1)
Γ(k− α + 1)

(b− x)k−α . (6.12)

For a = 0 and α := n ∈N, this corresponds to the well-known n-th derivatives of the
monomials.

Example 6.3. As a second example, we consider the exponential f (x) = ecx for c > 0
and x ∈ [0, ∞). Using the series representation of the exponential and the above
right-sided fractional derivative of the monomials we obtain

D(α)
0+ ecx =

∞

∑
k=0

ck

k!
D(α)

0+ xk =
∞

∑
k=0

ck

Γ(k + 1)
Γ(k + 1)

Γ(k− α + 1)
xk−α

= x−α
∞

∑
k=0

(cx)k

Γ(k− α + 1)
(6.13)

After some algebraic manipulations and by introducing the incomplete gamma
function Γ(−α, cx) =

∫ ∞
cx t−α−1e−t dt, we arrive at

D(α)
0+ ecx = ecxcα ·

(
1− Γ(−α, cx)

Γ(−α)

)
. (6.14)
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Again, for α = n ∈N, this corresponds to the regular n-th derivative of the exponen-
tial function.

6.2.2 Sticky boundary conditions

As a next step, we define the fractional diffusion operator ∆α as a linear combination
of the right-sided and the left-sided fractional derivative. For the sake of simplicity,
we restrict ourselves on the spatial one-dimensional case on [a, b] with φ ≡ 0. In
any non-local fractional diffusion process, sticky boundary conditions imply that in a
closed domain [a, b], mass that leaves a certain point x and, without the boundaries,
would come to rest at a place y < a or y > b, is assumed to remain in either boundary a
or b (cf. [24]). This kind of boundary condition naturally meets the mass conservation
rule for φ ≡ 0 as no mass can leave (or enter) the domain. The fractional diffusion
equation for an order α of diffusion with 1 < α ≤ 2 then reads as the sum of both
right-sided and left-sided fractional derivatives:

∂

∂t
f (x, t) = κ1D(α)

a+ f (x, t) + κ2D(α)
b− f (x, t) (6.15)

In order to prevent confusion in the notation, [a, b] = [−1, 1] will be our standard
interval from now onwards. Therefore, we can simplify the notation by D(α)

+ := D(α)
a+ ,

and D(α)
− := D(α)

b− . Also, we will just consider symmetric fractional diffusion, i.e.
κ1 = κ2 =: κ > 0.

Example 6.4. Note that for a symmetrical diffusion operator with κ > 0, the fractional
derivative of the constant c (cf. example 2.35) do not vanish; in fact, they are not even
constant:

κ ·
(

D(α)
a+ + D(α)

b−

)
c = κc · Γ(k + 1)

Γ(k− α + 1)
[
(x− a)−α + (b− x)−α

]
> 0 (6.16)

Also, since mass conservation for φ ≡ 0 is expected from our model, we can only
include mass conserving boundary conditions, which excludes standard Dirichlet
boundary conditions.

Lemma 6.5. The only stationary solution of the equation is

f ∗(x) = c0
2√
π

Γ( β+2
2 )

Γ( β+1
2 )
· (1− x2)(β−1)/2. (6.17)

Proof. To determine stationary solution of the fractional diffusion, we aim to solve
the equation

κ
(

D(α)
+ + D(α)

−

)
f (x) = 0. (6.18)

Using the definition of the fractional derivatives, this reads as

0 =
1

Γ(2− α)

d2

dx2

(∫ x

−1
f (ξ)(x− ξ)1−α dξ +

∫ 1

x
f (ξ)(ξ − x)1−α dξ

)
=

1
Γ(2− α)

d2

dx2

∫ 1

−1
f (ξ) |x− ξ|1−α dξ. (6.19)
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This implies that the integral
∫ 1
−1 f (ξ) |x− ξ|1−α dξ is a linear function c0 + c1x. Sym-

metry of the solution requires c1 = 0, hence the integral has to equal the constant
c0.

The work of Shinbrot [25] (pp. 23-24) provides a solution for equations of the type

g(x) =
∫ 1

−1

f (ξ)

|x− ξ|β
dξ (6.20)

for an arbitrary β ∈ [0, 1] is provided (which, for our problem, is guaranteed by the
choice β = α− 1). Defining coefficients

γn := Γ
(

n + β+1
2

)
·
(
(2n + β) Γ(β) cos(πβ

2 )

π · 22n+β

)1/2

(6.21)

and functions

χn(x) := γn
dn

dxn (1− x2)n+ β−1
2 , (6.22)

the solution of the above integral equation is given by the series

f (x) =
∞

∑
n=0

χn(x)
∫ 1

−1
χn(ξ)ψ(ξ) dξ. (6.23)

In our case, g(x) ≡ c0. Thus

f (x) =
∞

∑
n=0

c0 χn(x)
∫ 1

−1
χn(ξ) dξ

= c0 χ0(x)
∫ 1

−1
χ0(ξ) dξ +

∞

∑
n=1

c0γn
dn−1

dxn−1 (1− x2)n+ β−1
2

∣∣∣∣1
−1

. (6.24)

The series term vanishes, since for n ≥ 1 all the terms (1− x2)n+ β+1
2 or its integer

derivatives vanish at the boundaries. Hence

f (x) = c0 γ0 χ0(x)
∫ 1

−1
(1− ξ2)(β−1)/2 dξ

= c0 γ2
0 (1− x2)(β−1)/2

∫ 1

−1
(1− ξ2)(β−1)/2 dξ

= c0
2√
π

Γ( β+2
2 )

Γ( β+1
2 )
· (1− x2)(β−1)/2, (6.25)

where c0 is a constant defined by the total initial mass. Also notice that for α = 2 the

constant reduces to c0 as Γ( 3
2 )

Γ(1) = π√
2
. For all 1 < α < 2, i.e. 0 < β = α− 1 < 1, it holds

that β−1
2 < 0 and the solution will tend to infinity at the boundary x = ±1.

6.2.3 Reflecting boundary conditions

To prevent the above presented singularities we now assume mass moving ’into’ the
boundary to get reflected and moving back in the opposite direction. To satisfy these
mirroring boundary conditions, consider the reflected and periodically continued
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version of f , i.e.

φ(x) :=

{
f (x− 4 k) if − 1 + 4 k ≤ x ≤ 1 + 4 k
f (4 k + 3− x) if 1 + 4 k < x < 3 + 4 k

, k ∈ Z0. (6.26)

While φ is defined on whole R, we only consider fractional diffusion in our closed
domain, i.e., for x ∈ [−1, 1]. This is then denoted by the following equation:

∂

∂t
f (x, t) =

1
Γ(2− α)

d2

dx2

[∫ x

−∞
φ(ξ)(x− ξ)1−α dξ +

∫ ∞

x
φ(ξ)(ξ − x)1−α dξ

]
(6.27)

In fact, the description as ’boundary condition’ is rather misleading, as the equations
have to be updated for all grid points in this case.

Lemma 6.6. The only stationary solution is the constant, i.e., f ∗(x) ≡ c0.

Proof. Stationary equilibria φ∗(x) are solutions of the equation

0 =
1

Γ(2− α)

d2

dx2

[∫ x

−∞
φ(ξ)(x− ξ)1−αdξ +

∫ ∞

x
φ(ξ)(ξ − x)1−αdξ

]
. (6.28)

In the corollary at [25, p. 24], it is shown that equation has at most one solution given
in the form. We show, that φ∗(x) = c0 (and thus f (x) ≡ c0) solves the problem, hence
it is the unique solution:

c0

(2− α) · Γ(2− α)

d2

dx2

{
lim
n→∞

[
(x− ξ)2−α

]x
−n + lim

n→∞

[
(ξ − x)2−α

]n
x

}
=

c0

(2− α) · Γ(2− α)

{
lim
n→∞

d2

dx2

[
(x + n)2−α + (n− x)2−α

]}
=

c0

Γ(1− α)

{
lim
n→∞

[
(x + n)−α + (n− x)−α

]}
= 0 (6.29)

To show uniqueness of the (trivial) solution, we assume φ∗(x) 6≡ c0 solves eqn. (6.27).
Then due to similar thoughts as for the sticky boundary conditions (symmetry of the
solution), we know that

ĉ =
∫ ∞

−∞
φ(ξ) |x− ξ|1−α dξ. (6.30)

We reconsider [25]: Construct a Fourier transform function χn(x). Then the solution
can be explicitly calculated by Fourier transforms using functions χn(x), n ∈N:

φ∗(x) =
∞

∑
n=1

χn(x)
∫ ∞

−∞
ĉ χn(ξ)dξ. (6.31)

The definition of all χn(x) is unique, so that φ(x)∗ ≡ c0 which contradicts the assump-
tion. Due to mass conservation, φ(x) ≡ c0 thus is the unique solution for the problem
with reflecting boundary conditions.
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6.3 Numerical methods

In order to derive a finite difference approximation to the fractional derivative, we
generalize the standard difference approximation

d2

dx2 f (x) = lim
h→0

1
h2

2

∑
k=0

(−1)k
(

2
k

)
f (x− (k− 1)h) (6.32)

to fractional orders using (−1)k(α
k) =

Γ(k− α)

Γ(k + 1)Γ(−α)
. This leads us to the following

Definition 6.7. (cf. [26]) Let f ∈ Cn[a, b] and α ∈ [n− 1, n). The right-shifted Grünwald-
Letnikov difference formulation to the fractional derivative of order α is given by

Dα
a+ f (x) := lim

h→0

1
hα

∞

∑
k=0

Γ(k− α)

Γ(k + 1)Γ(−α)
f (x− (k− 1)h) (6.33)

The left-shifted Grünwald-Letnikov difference formulation to the fractional derivative of
order α is given by

Dα
b− f (x) := lim

h→0

1
hα

∞

∑
k=0

Γ(k− α)

Γ(k + 1)Γ(−α)
f (x + (k− 1)h) (6.34)

In order to simplify notations, we introduce the Grünwald coefficient

gk :=
Γ(k− α)

Γ(k + 1)Γ(−α)
(6.35)

for k ∈N0 and α > 0 (cf. [27]).

The sum of all Grünwald coefficients vanishes, i.e., ∑∞
k=0 gk = 0, so that the

method is conservative (cf. [28]).
In order to approximate eqn. (6.15), assume that we have found a numerical

approximation, i.e.,

D(α)
+ f (x, t) + D(α)

− f (x, t) (6.36)

using a discrete operator ∆α,h which is yet to be found. Then we can use a stan-
dard ODE solver, e.g. the explicit or implicit Euler system or the Runge-Kutta
method, to find the numerical solution of this equation for h > 0 and fh(x, t) =

( f (x0, t), f (x1, t), . . . , f (xm, t))T:

Dt f = ∆α,h · fh(x, t) (6.37)

The discrete operator ∆α,h will now be adapted to the two different boundary condi-
tions.

6.3.1 Sticky boundary conditions

All mass that moves out of the boundary is assumed to find a rest at the boundary,
so the mass from x that would be moved to x − (k − 1)h < a will be moved to a
instead. Analogously, the mass from x that would be moved to x + (k − 1)h > b
will be moved to b instead. The same thing happens for the transportation of mass
from x = a to a + (k− 1)h and k = 0 for the right-sided fractional derivative, and
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the transportation of mass from x = b to b− (k− 1)h and k = 0 for the left-sided
fractional derivative. As f (x) = 0 for x < x0 := a and x > xm := b, the sum in
eqns. (6.33) and (6.34) becomes finite. Define M =

⌊ x−a
h + 1

⌋
and K =

⌊
b−x

h + 1
⌋

,
respectively. It is assumed that a part of the mass at value x− (k− 1)h is moved to x,
namely gk h−α f (x− (k− 1)h). This results into the following discrete formulations:

Dα
+ f (x, t) = lim

h→0

1
hα

M

∑
k=0

g̃k f (x− (k− 1)h) + r1 (6.38a)

Dα
− f (x, t) = lim

h→0

1
hα

K

∑
k=0

ĝk f (x + (k− 1)h) + r2 (6.38b)

Also, terms 1− α result of the boundary conditions and the formulations for the
right-sided fractional derivative at x = a and the left-sided fractional derivative at
x = b. For the boundary points we have to update the corresponding Grünwald
coefficients according to the absorption of mass:

g̃k =

{
gk if 0 ≤ k < M

∑∞
k=M gk = −∑M−1

k=0 gk if k = M
(6.39a)

ĝk =

{
gk if 0 ≤ k < K

∑∞
k=K gk = −∑K−1

k=0 gk if k = K
(6.39b)

For an equidistant grid with x0 = a, xm = b and xi = x0 + ih, i = 0, . . . , n, h = 1
m+1 ,

the discrete operator then reads as

∆α,h = κ(R + S). (6.40)

with transition matrices for the right-sided fractional diffusion, i.e.,

Ri,j =


1− α i = j = 1
gj−i+1 2 ≤ j ≤ m, i ≤ j + 1

∑∞
p=m+1−j gp = −∑

m−j
p=0 gp j = m + 1

(6.41)

as ∑∞
p=0 gp = 0. and the left-sided fractional diffusion, i.e.,

Si,j =


1− α i = j = m + 1
gj−i+1 1 ≤ j ≤ m, j ≤ i + 1

∑∞
p=m+1−j gp = −∑

m−j
p=0 gp i = 1

(6.42)

This shifted method using is first-order consistent, so that if

∆t
hα
≤ 1

ακ
, (6.43)

the error terms satisfy r1, r2 = O(h) (cf. Meerschaert and Tadjeran [29]).

6.3.2 Reflecting boundary conditions

For the numerical scheme, consider the discretization on an equidistant grid consist-
ing of m + 1 points x0 = a, xm = b and xi = x0 + hi, i = 1 . . . m− 1, h = 1

m+1 as above.
When the mass has moved m steps to the left and k + 1 steps are actually needed to
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be covered, then the mass is transported from the left boundary to the right for the
remaining k + 1−m steps. Same holds true for the right boundary. As the Grünwald
coefficient gk → 0 for k → ∞, but remains nonzero for finite k, we have an infinite
process where a decreasing mass is transported infinitely often between the left and
right boundaries. Note that there are two possible ways to design the ’mirror’: One
would be that if mass reaches the boundary and ’has yet one step to cover’, then
it can either return into the other direction for one step, or remain at the boundary
and only moves on into the other direction when there is more than one step yet to
cover. The first method is used in this paper to achieve a certain symmetry between
all grid points. We know that the Grünwald-Letnikov formulation is consistent of
order h for reflecting boundary conditions and the sum from 0 to x−a

h + 1 or b−x
h + 1,

respectively, because the function values vanish for points outside the boundary. For
h > 0 it holds:

D(α)
a+ f (x, t) =

1
hα

∞

∑
k=0

gk f (x− (k− 1)h) +O(h), (6.44a)

D(α)
b− f (x, t) =

1
hα

∞

∑
k=0

gk f (x + (k− 1)h) +O(h). (6.44b)

For the left-sided fractional derivative and arbitrary k, the mass moving from xi to xj
is considered. It first moves i + 2 steps to the left boundary a, then one step within the
left boundary, then j steps to the point xj, making it i + j+ 3 steps in total. Because the
process is repeated every 2(m + 1) steps, all elements i + j + 3 + 2(m + 1)l, l ∈ N0,
have to be summed up as well. After the i + j + 3 steps, it also moves m− j points to
the right boundary b, another point inside the right boundary and then m− j points
back to point xj, making it i− j + 2m + 4 points in total, similar to above it follows
that mass is moved from xi to xj for every distance i− j + 2m + 4+ 2(m + 1)l, l ∈N0.

x1 x2 . . . xi xj xm−1 xm = ba = x0 . . . . . .xi+1

i

j m− j

m− jj − i
1

1 1

FIGURE 6.1: Left Fractional Derivative.

For the right-sided fractional derivative and an arbitrary (but large enough) k, the
mass moving from xi to xj is considered. It first moves m− i + 2 steps to the right
boundary b, then one step within the right boundary, then m− j steps to the point
xj, making it −i− j + 2m + 2 steps in total. Thus, as described above, all elements
−i− j + 2m + 2+ 2(m + 1)l, l ∈N0, are summed up. After the 2m + 2− i− j steps, it
also moves j points to the left boundary a, another point inside the left boundary and
then j points back to point xj, making it j− i + 2m + 3 points in total, similar to above
it follows that mass is moved from i to j for every distance j− i + 2m + 3 + 2(m + 1)l,
l ∈N0.
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x1 . . . xixj xm−1 xm = ba = x0 . . . . . .xi−1

j

j

m− i

m− j

1

1 1

xm−2

i− j

FIGURE 6.2: Right Fractional Derivative.

Until now, the actual position of xi and xj has not been regarded. We have to
consider the possibilities xi < xj, xi = xj, and xi > xj. These can easily be condensed
if we consider a modified modulo formula

mod∗(a, n) :=

{
mod(a, n) mod(a, n) 6= 0
n mod(a, n) = 0

(6.45)

By using this formula, we can put all distances of the left and right fractional deriva-
tives into one formula for the mass transport from xi to xj each. Let therefore k ∈N0.
The discrete operator again reads as

∆α,h = κ(R + S) (6.46)

with

Rij =
∞

∑
k=0

gp1(k) f (x− (p1(k)− 1)h) + gq1(k) f (x− (q1(k)− 1)h), (6.47)

where

p1(k) : = mod∗(i + j + 3 + 2(m + 1)k, 2(m + 1)) + 2(m + 1)k
= mod∗(i + j + 3, 2(m + 1)) + 2(m + 1)k, (6.48a)

q1(k) : = mod∗(i− j + 2m + 4 + 2(m + 1)k, 2(m + 1)) + 2(m + 1)k
= mod∗(i− j + 2, 2(m + 1)) + 2(m + 1)k, (6.48b)

as well as

Sij =
∞

∑
k=0

gp2(k) f (x− (p2(k)− 1)h) + gq2(k) f (x− (q2(k)− 1)h), (6.49)

where

p2(k) : = mod∗(−i− j + 2m + 2 + 2(m + 1)k, 2(m + 1)) + 2(m + 1)k
= mod∗(−i− j, 2(m + 1)) + 2(m + 1)k, (6.50a)

q2(k) : = mod∗(−i + j + 2m + 3 + 2(m + 1)k, 2(m + 1)) + 2(m + 1)k
= mod∗(−i + j + 1, 2(m + 1)) + 2(m + 1)k. (6.50b)

A problem lies in the the infinite number of summands in each formula. However,
as we know that gk → 0 for k → ∞, reconsider the formulation of the Grünwald
coefficient as of eqn. (6.35). If for an arbitrary, but fixed N ∈ N, the partial sum
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∑∞
k=N gk = ∑N−1

k=0 gk can be estimated, we can find a decent approximation by the apt
choice of N, after which the sum of the Grünwald coefficients is stopped.

Lemma 6.8. It holds

∞

∑
k=N

gk ∼
∫ ∞

N
k−2dk = O(hp). (6.51)

Proof. The term Γ(−α) is independent of k and thus can be seen as constant. The term
Γ(k + 1) is equal to k! as k is integer. The term Γ(k− α) can be represented by

Γ(k− α) = (k− α− 1) · Γ(k− α− 1)
= (k− α− 2)(k− α− 1) · Γ(k− α− 2) = . . .
= (2− α)(3− α) . . . (k− α− 1) · Γ(2− α)

≤ 1 · 2 · · · · · (k− 2) · Γ(2− α)

= (k− 2)! · Γ(2− α) (6.52)

Altogether this implies

gk ≤
Γ(2− α)

Γ(−α)
· (k− 2)!

k!
∝

1
(k− 2)(k− 1)

= O(k−2). (6.53)

For the sum, it then holds

∞

∑
k=N

gk ∼
∫ ∞

N
k−2 dk = O(N−1). (6.54)

If we now set N = O(h−p), it follows ∑∞
k=N gk = O(hp).

We can even improve this estimation by computing the logarithm of the Grünwald
coefficient.

Lemma 6.9. It holds
∞

∑
k=N

gk = O(hαp).

Proof. For that, we use the Rocktäschel approximation [30]:

log(Γ(z)) ≈
(

z− 1
2

)
log(z)− z +

1
2

log(2π). (6.55)

We take the natural logarithm of the non-constant terms of the Grünwald coefficient
and apply this approximation:

log
(

Γ(k− α)

Γ(k + 1)

)
= log(Γ(k− α))− log(Γ(k + 1))

≈
(

k− α− 1
2

)
log(k− α)− k + α−

(
k +

1
2

)
log(k + 1) + k + 1

≈ · · · ≈
(

k +
1
2

)
log
(

1− α + 1
κ + 1

)
− (α + 1) log(k− α) + (α + 1)

(6.56)
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Additionally, we can approximate

log(1− ε) = −ε +O(ε2). (6.57)

This way we have

log
(

Γ(k− α)

Γ(k + 1)

)
≈
(

k +
1
2

)
α + 1
k + 1

− (α + 1) log(k)− (α + 1) log
(

1− α

k

)
+ α + 1

≈ · · · ≈ −(α + 1) log(k) + (α + 1)
(

α

k
+

1
2k + 2

)
. (6.58)

In total we have found

log
(

Γ(k− α)

Γ(k + 1)

)
= −(α + 1) log(k) +O(k−1). (6.59)

This implies

gk =
1

Γ(−α)
· Γ(k− α)

Γ(k + 1)
≈ C · k−(α+1) (6.60)

and thus the better approximation

∞

∑
k=N

gk = O(N−α) (6.61)

which by a choice of N = O(h−p) yields ∑∞
k=N gk = O(hαp).

Lemma 6.10. The trivial equilibrium of the numerical method is stable if

τ

hα
≤ 1

2κα
. (6.62)

Proof. By eqns. (6.38b), the fractional space derivatives then reduce to ∑∞
k=0 gk = 0.

This way, no diffusion takes place and the system is stationary. If, however, there
is a small varation from the stationary solution, i.e., ε(t, x), then we perform a von-
Neumann-analysis of the system. Assume a forward difference in time and discrete
values ul

n = u(xj, tn). We define the (discrete) error terms as εn
j = ρn eiωjh. A relative

comparison using the identity ∑∞
k=0 gk = 0 gives
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∣∣∣∣∣ε
n+1
j

εn
j

∣∣∣∣∣ =
∣∣∣∣ρn+1

ρn

∣∣∣∣ =
∣∣∣∣∣1 + κτ

hαρneiωjh

(
∞

∑
k=0

gkεn
j+1−k +

∞

∑
k=0

gkεn
j−1+k

)∣∣∣∣∣
=

∣∣∣∣∣1 + κτ

hα

∞

∑
k=0

gk

(
e−iω(k−1)h + eiω(k−1)h

)∣∣∣∣∣
=

∣∣∣∣∣1 + 2κτ

hα

∞

∑
k=0

gk cos(ω(k− 1)h)

∣∣∣∣∣
=

∣∣∣∣∣1 + 2κτ

hα

∞

∑
k=0

gk
[
1− 2 sin2(ω(k− 1)h))

]∣∣∣∣∣
=

∣∣∣∣∣1− 4κτ

hα

∞

∑
k=0

gk sin2
(

ω(k− 1)
2

h
)∣∣∣∣∣ !
≤ 1. (6.63)

It obviously holds that

4κτ

hα

∞

∑
k=0

gk sin2
(

ω(k− 1)
2

h
)
≥ 0 (6.64)

as the sine function vanishes at k = 1 for the only negative Grünwald coefficient
g1 = −α. Thus, it remains to show that this term is also ≤ 2, which is guaranteed if

2κτ

hα

∞

∑
k=0

gk sin2
(

ω(k− 1)
2

h
)
≤ 2κτ

hα

∞

∑
k 6=1

gk =
2κτ

hα
α ≤ 1, (6.65)

resulting in the desired inequality. This means, that for a ’good enough’ discretization,
the system will converge to its trivial equlibrium for any disturbance ε(t, x), so that
this equilibrium is stable.

6.4 Numerical results

6.4.1 Sticky boundary conditions

Numerical examples are provided for ψ(x) ≡ 1, κ = 10−2 and various α in in Figs.
??, ?? and ??. The border points at x = ±1 can be evaluated numerically at any time
t < ∞, but as t→ ∞, the value will diverge to ∞ as seen in lemma 6.5. The analytical
solution of the stationary solution described there is compared to the numerical
results with applied reflecting boundary conditions. The amount of runs of the
algorithm is terminated by the L2-norm. It is visible that the singularity causes a
larger discretization error near the boundaries, such that a comparison of the norms
is not useful.

This equilibrium is independent of starting values of the function, given the total
mass is the same. Also, the singularity at the boundaries is not what we would expect
for our problem (infectives in Sri Lanka) so reflecting boundaries are not a good
method for fractional diffusion in our case.
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FIGURE 6.3: Sticky boundary conditions for α = 1.1 and selected grid
sizes.
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FIGURE 6.4: Sticky boundary conditions for α = 1.5 and selected grid
sizes.
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FIGURE 6.5: Sticky boundary conditions for α = 1.9 and selected grid
sizes.

6.4.2 Reflecting boundary conditions

Numerical examples are provided for the domain Ω = [−1, 1] ⊂ R, in Figs. ?? and
??.These numerical solutions suppport the theoretical findings that the system with
mirrored boundary condition runs into the trivial equilibrium f (x) ≡ c0, where c0 is
the mean value of the initial mass. The velocity of diffusion increases with α.

f1(x) =


2x + 1 −0.5 ≤ x ≤ 0
−2x + 1 0 ≤ x ≤ 0.5,

0 else

f2(x) = −1
2
(x + 1) ,

as well as h = 10−2, τ = 10−3 and α ∈ {1.1, 1.5, 1.9}.
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FIGURE 6.6: Reflecting boundary conditions for f1(x).
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FIGURE 6.7: Reflecting boundary conditions for f2(x).

6.5 Discussion and conclusion

This article deals with the numerical approximation of space-fractional derivatives,
which can be used to solve space-fractional PDE systems which have many applica-
tions. We aimed to find a representation with respect to disease spread to be used
in future works. Using the finite difference approximation to the Riemann-Liouville
definition, the Grünwald-Letnikov formulation provides an easy to discretize the
derivative of fractional order. In order to conserve the mass, i.e. the total population
in a country, and assuming that there is no exchange of population to other countries
or regions, we considered two different boundary conditions; using these we can
also handle the non-local nature of the fractional diffusion. For sticky boundary
conditions, where all mass moving out of the boundary remains at the boundary, we
use the property of the Grünwald coefficients ∑k gk = 0 and a lemma of Shinbrot to
calculated the stationary solution, which tends to infinity at the boundaries even if
the integral is finite. This makes the usage of sticky boundary conditions a less realis-
tic choice than reflecting boundary conditions, as by using von-Neumann-stability
analysis we can show the only stationary point is the trivial equilibrium. For these
kind of ’boundary’ conditions that impose an infinite sum on each grid point a finite
formulation of order α has been found. Numerical one-dimensional results for both
formulations were applied to illustrate the scheme and the structure of the solutions
which support the theoretical findings.

In future work, these models can be applied to local epidemics (Dengue fever,
COVID-19) with their spatial distribution in an isolated area, e.g., the island of Sri
Lanka during the first Corona waves, and it can be ’checked’ if certain spreading
processes have a ’classical’ diffusion character or if the diffusion behaves in a fractional
way. A comparison between the results of space- and time-fractional PDE models can
also be made.
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Chapter 7

Modelling the Spatial Spread of
COVID-19 in a German District
using a Diffusion Model

This article by Moritz Schäfer, Peter Heidrich and Thomas Götz has been released in
the journal MATHEMATICAL BIOSCIENCES AND ENGINEERING in 2023, referred to as
[1]. The theory, formulation and numerical calculations for the Metropolis algorithm,
as well as the map creation, were mainly done by Moritz Schäfer. Peter Heidrich
contributed to the adjoint theory and the graphical figures for the various models.
Thomas Götz provided advice and some linguistic revisions. The format is changed
to meet the thesis standard.

Abstract

In this study, we focus on modeling the local spread of COVID-19 infections. As the
pandemic continues and new variants or future pandemics can emerge, modelling
the early stages of infection spread becomes crucial, especially as limited medical
data might be available initially. Therefore, our aim is to gain a better understanding
of the diffusion dynamics on smaller scales using partial differential equation (PDE)
models.

Previous works have already presented various methods to model the spatial
spread of diseases, but, due to a lack of data on regional or even local scale, few
actually applied their models on real disease courses in order to describe the be-
haviour of the disease or estimate parameters. We use medical data from both the
Robert-Koch-Institute (RKI) and the Birkenfeld district government for parameter
estimation within a single German district, Birkenfeld in Rhineland-Palatinate, during
the second wave of the pandemic in autumn 2020 and winter 2020-21. This district
can be seen as a typical middle-European region, characterized by its (mainly) rural
nature and daily commuter movements towards metropolitan areas.

A basic reaction-diffusion model used for spatial COVID spread, which includes
subdivisions for susceptibles, exposed, infected, recovered, and the total population,
is used to describe the spatio-temporal spread of infections. The transmission rate,
recovery rate, initial infected values, detection rate, and diffusivity rate are considered
as parameters to be estimated using the reported daily data and least square fit. This
work also features an emphasis on numerical methods which will be used to describe
the diffusion on arbitrary two-dimensional domains. Two numerical optimization
techniques for parameter fitting are used: the Metropolis algorithm and the adjoint
method. Two different methods, the Crank-Nicholson method and a finite element
method, which are used according to the requirements of the respective optimization
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method are used to solve the PDE system. This way, the two methods are compared
and validated and provide similar results with good approximation of the infected in
both the district and the respective sub-districts.

7.1 Introduction

At the beginning of January 2020, the COVID-19 virus began to spread throughout
mainland China, with the consequences that we all have experienced in the last three
years. Initially, the number of cases was limited to single clusters in a limited number
of locations, but later on expanded throughout the country. In previous studies, we
have investigated the macroscopic impact of the epidemic using an SIR-model for
all cases in Germany. For this, we have used classical differential models such as the
SEIRD- (susceptible-exposed-infected-recovered-dead) models to describe the spread
of infections during the first wave (cf. Heidrich et al. [2]), as well as the impact of
travelers on disease dynamics in summer 2020 (cf. Schäfer et al. [3]), both with a
strong emphasis on parameter estimation.

In this study, we aim to model the local spread of infections using PDE (partial
differential equation) models to gain a better understanding of the diffusion on
smaller scales. Viguerie et al. [4] argue that their geographical model simulations
could be used to inform authorities to design effective measures and anticipate
the allocation of important medical resources. Wang and Yamamoto [5] provide a
forecasting model for COVID-19 using Google mobility data and PDE models, as well
as find acceptable validity results of their model by comparison with COVID-19 data.
Elsonbaty et al. [6] extend the classical models to a fractional SITRS model, including
treated persons, while Ahmed et al. [7]. Kuehn and Mölter [8] investigate transport
effects on epidemics using two coupled models, a static epidemic network and a
dynamical transport network, also with non-local, fractional transport dynamics.
They find that transport processes induce additional spreading ways and that way
lowers the epidemic threshold; generalizing the process to fractional or non-local
dynamics, however, raises the epidemic threshold. Logeshwari et al. [9] also provide
a fractional PDE model of the spatial spread of COVID-19. Harris and Bodman [10]
investigate the spread through a country with different regions of different densities.
Another diffusion-based, non-international approach can be found in Berestycki et
al.[11]. The authors find that fast diffusion effects along major roads are an important
factor of the spread of epidemics like COVID-19 in Italy and HIV in the Democratic
Republic of Congo. The work of Abboubakar et al. [12] does not only present
a reaction-diffusion model for COVID-19 transmission and also applied them on
cumulated data for the entire country of Germany, yet without comparison to local-
scale data. Nawaz et al. [13] provide an explicit unconditionally stable scheme for
the solution of a PDE model designed for the spread of COVID-19 and applied it on
data for the Hubei province.

As we have seen, only few of the previous studies apply the theoretical models
to practical examples, and mostly do not make use of regional or even local based
medical data. A comparable inclusion of diffusion in compartmental models with
a comparison to real data can be found in Grave et al. [14] A general challenge
with diffusion-based PDE models is that diffusion of all compartments leads to
unwanted diffusion in the total population, which we aim to avoid. We also present
two different numerical methods in detail which are able to handle the diffusion on
arbitrary two-dimensional domains.
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FIGURE 7.1: Confirmed new daily cases (left) and cumulative con-
firmed cases (right) with COVID-19 in Birkenfeld from October 1, 2020

until February 25, 2021 according to RKI [15].

In this study, we use data down to local level for parameter estimation of the
model. We focus our numerical problem on a single district, the district of Birkenfeld
in southwestern Germany within the state of Rhineland-Palatinate. Approximately
81,000 people live there in an area of about 780 km2. The largest city within the
district is Idar-Oberstein, with about 28,000 inhabitants in an area of about 92 km2.
The remaining people live in the municipalities of Birkenfeld, Baumholder, and
Herrstein-Rhaunen. Within a 1.5 hour drive via federal highways and freeways, the
following metropolitan areas can be reached: Mainz, Trier, Koblenz, Kaiserslautern,
Saarbrücken, and Frankfurt. In addition, the Frankfurt-Hahn airport is located in
the neighboring Rhein-Hunsrück district to the northeast. The region is very rural,
with daily commuter movements common in the direction of the aforementioned
metropolitan areas. The region is also visited by tourists due to the gemstone industry
and trade in Idar-Oberstein, the numerous hiking routes, and the nearby Hunsrück-
Hochwald-Nationalpark.

The first COVID-19 case in the district of Birkenfeld was confirmed in March
2020. Until the end of June 2020, there were only 90 registered cases in the entire
district. However, the number of cases increased during the second wave in au-
tumn/winter 2020/21, with a cumulative 2,513 cases confirmed until March 2021
[15]. As of October 2022, over 32,000 cases have been counted in the district. We
restrict our research to the data from the second wave, since there was only a limited
number of previous infections, but comparatively high infection numbers further on;
also, no vaccines were available until the beginning of 2021, as well as a very small
amount of persons having been exposed to the disease multiple times. Finally, the
lockdown restrictions, particularly in November and December 2020, led to a slower
mixing of cases between different districts. This inter-district mobility is not taken
into account by our models. We consider daily infection data from the district and
all of its municipalities in the time frame from October 1, 2020 to February 25, 2021.
the cumulative number of infections in the district is depicted in Fig. 7.1. In this
figure, the first step visible in the data between end of December and beginning of
January is mainly caused by a delay of registration of case numbers due to Christmas
holidays. The reasons for a second one in mid January are unknown and could be
related to registration delays within the district. Note that there is only one detected
initial infection case on October 1, situated in the city of Idar-Oberstein, so there were
no detected cases in the rest of the entire district.
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The possibility of new variants of the virus or future pandemics highlights the
importance of modeling the spread of infections, particularly in their early stages
when limited medical data is available. The accuracy of these models depends greatly
on the used parameters and the corresponding data. In this study, we present SEIRD-
models, which are commonly used in simulations, and estimate their parameters
using data from the Robert-Koch-Institute (RKI) [15] and private communications
with the Birkenfeld district government [16]. We perform estimations using both
adjoint and Metropolis methods and base them on a least square fit between the
model output and the reported data.

Structure of the paper. In chapter 2, we provide the relevant epidemiological mod-
els as well as two schemes for the numerical solution of PDEs, the Crank-Nicholson
method and a Finite Element Method. In chapter 3, we perform the numerical dis-
cretization and prepare the optimization of a specific target function. Also, both the
Metropolis algorithm and the adjoint method are presented which will be used for the
parameter estimation. In chapter 4, we present and compare the numerical solutions
for both methods. Finally, in chapter 5, the results of this paper are discussed.

7.2 Materials and methods

7.2.1 PDE models

To model the spatial COVID spread in the presented areas, we use an epidemiological
reaction-diffusion model. For this purpose, we consider a corresponding spatial
area (x, y) ∈ Ω in a time period t ∈ T := [0, tend]. We are looking for a function
u : V → Rm with V = Ω× T , which is twice continuously differentiable on Ω and
once continuously differentiable on T , briefly u ∈ C(V, Rm)2,1. The following PDE
system has to be fulfilled:

∂tu = κ∆x,yu + f (u) , (7.1a)
u = u0 , t = 0 , (7.1b)

∂νu = 0 , (x, y) ∈ ∂Ω . (7.1c)

Here, ∂tu stands for the component-wise derivative of u in the direction of time, i.e.,
∂tu = (∂tu1, ..., ∂tum)

T and ∆x,y =
(
∂xxu1 + ∂yyu1, ..., ∂xxum + ∂yyum

)T for the Laplace
operator in Ω. The parameter κ describes the diffusivity of the system and the
function f (u) contains the epidemiological component(s). As an initial condition, at
time t = 0 a function u0 : Ω→ Rm is used with u(x, y, t = 0) = u0(x, y). In addition,
Neumann boundary conditions are used, where ∂νu = (∂νu1, ..., ∂νum)

T stands for the
derivative in the direction of the outward pointing unit normal ν and ∂Ω stands for
the boundary of Ω. In terms of context, the latter means that no individual can leave
or enter the territory Ω. This seems strange at first, since the district of Birkenfeld in
practice can be left or entered by land. On the other hand, we are looking at data sets
from a period when profound containment measures had already been taken in the
region and social measures, including a significant reduction inter-district mobility,
were already implemented.

For epidemiological modelling, we make use of a variant of the SIR model intro-
duced by Kermack and McKendrick [17], the SEIR-model, and consider subdivisions
as functions S, E, I, R ∈ C(V, R)2,1, which have the following meanings:
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• Susceptibles S: Depending on the transmission route, these individuals can
become infected with the infectious disease when contact occurs.

• Exposed E: The corresponding indiviuals have already ingested the pathogen,
but are not yet infectious because they are still in the latency period.

• Infected I: These individuals are infected with the disease and infectious. Con-
tact with a susceptible individual can therefore lead to transmission of the
disease.

• Recovered R: After surviving an infection, individuals are considered recovered.
These individuals can no longer transmit the disease or get infected.

For instance, I(x, y, t) indicates the number of infected individuals in the spatial
coordinate (x, y) ∈ Ω at time t ∈ T . The total population is then defined as N :=
S + E + I + R. Based on these presented groups, different epidemiological models
can now be derived. We present PDE systems of three common models in Tab. 7.1.

The derivation and precise functioning of spatial epidemiological models will
not be explained in detail here; for this purpose, reference is made to e.g. Martcheva
[18]. At the core of every epidemiological model is the so-called incidence term
β(t)
N SI, which indicates how many individuals are newly infected with the disease

in coordinate (x, y) at time t. The incidence term depends on a time dependent
transmission rate β : [0, tend]→ R+. In simple models, this can also be assumed to be
a constant parameter, but we assume that the transmission rate may fluctuate over
the observed periods due to the stepwise restrictions on the population. The value of
the transmission rate β is generally unknown and must be adjusted using the data
sets. Another parameter in the models is the recovery rate γ. This is the reciprocal
of the time required on average for an individual to recover from the disease. Thus,
if we assume that t is in days and an individual takes 10 days to recover, it holds
γ = 1

10 . In addition, the SEIR-model contains the parameter θ, which is the reciprocal
of the latency period, i.e. the time between the uptake of the pathogen into the body
and the onset of infectiousness. For example, assuming three days, it holds θ = 1

3 . It
should be noted here that the latency period does not have to be congruent with the
incubation period, as the latter indicates the period of time until the onset of the first
symptoms. With regard to COVID-19 in particular, it has been shown that infectivity
sets in even before the onset of symptoms (cf. He et al. [19]). Due to simplicity, we
also chose κ = κS = κE = κI = κR. In the following, we will only make use of the
SEIR-model for later data fitting because it turns out to reflect the epidemics closest.

In the first step, in order to omit a redundant equation, we substitute R = N −
S− E− I and thus reduce the system to an SEI-model. It should be noted, that also
for N a PDE has to be solved:

∂tN = κ∆x,yN , (7.2a)
N = S0 + E0 + I0 + R0 , t = 0 , (7.2b)

∂νN = 0 , (x, y) ∈ ∂Ω . (7.2c)

For this reason, we normalize the reduced SEI-model by dividing all rows by
N, assuming that the population density mathematically fulfills N(x, y, t) > 0 on V.
Defining u1 := S

N , u2 := E
N , u3 := I

N , u4 := N and u := (u1, u2, u3, u4), we obtain a
system as in (7.1) with a function f : C(V, R4)2,1 → R4,

f (u) = (−β(t)u1u3, β(t)u1u3 − θu2, θu2 − γu3, 0)T . (7.3)
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TABLE 7.1: Epidemiological subdivision models with flow chart and
PDE system.

Model Structure PDE-system

SIS S I

β(t)
N

SI

γ I

∂tS = κS∆x,yS− β(t)
N

SI + γI,

S(t = 0) = S0;

∂t I = κI∆x,y I +
β(t)
N

SI − γI,

I(t = 0) = I0;
∂νS = ∂ν I = 0,

(x, y) ∈ ∂Ω;
N = S + I .

SIR S I R

β(t)
N

SI γ I

∂tS = κS∆x,yS− β(t)
N

SI,

S(t = 0) = S0;

∂t I = κI∆x,y I +
β(t)
N

SI − γI,

I(t = 0) = I0;
∂tR = κR∆x,yR + γI,

R(t = 0) = R0;
∂νS = ∂ν I = ∂νR = 0,

(x, y) ∈ ∂Ω;
N = S + I + R .

SEIR S E I R

β(t)
N

SI
θ E γ I

∂tS = κS∆x,yS− β(t)
N

SI,

S(t = 0) = S0;

∂tE = κE∆x,yE +
β(t)
N

SI − θE,

E(t = 0) = E0;
∂t I = κI∆x,y I + θE− γI,

I(t = 0) = I0;
∂tR = κR∆x,yR + γI,

R(t = 0) = R0;
∂νS = ∂νE = ∂ν I = ∂νR = 0,

(x, y) ∈ ∂Ω;
N = S + E + I + R .
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Tab. 7.2 summarizes the results for the presented models without the equation for
N.

TABLE 7.2: Summary of f (u) for the reduced and normalized models.

SIS→ I f : C(V, R)2,1 → R, f1(u) = β(t)(1− u)u− γu

SIR→ SI f : C(V, R3)2,1 → R2, f1−2(u) =
(
−β(t)u1u2

β(t)u1u2 − γu2

)
SEIR→ SEI f : C(V, R4)2,1 → R3, f1−3(u) =

 −β(t)u1u3
β(t)u1u3 − θu2

θu2 − γu3


To meaningfully include the biological context, it must hold γ, θ > 0 and κ ≥ 0

and, as initial condition, u0 ≥ 0 in Ω. In addition, we assume that there are infected
individuals in the area Ω, i.e.

∫
Ω I0 dω > 0. For the reduced and normalized SEI-

model, it must then hold
∫

Ω u3,0 dω > 0, using the notation uj(x, y, 0) := uj,0. The
notation N0 :=

∫
Ω N(x, y, 0) dω represents the total number of individuals at time

t = 0 in Ω. It must be valid that N0 > 0. Moreover, we define the total population in
the area Ω at time t as N : [0, tend]→ (0,+∞) with N (t) :=

∫
Ω N(x, y, t) dω. Due to

Neumann boundary conditions, we receive using the Gauss theorem

∂tN =
∫

Ω
∂tN dω =

∫
Ω

κ ∆x,yN dω =
∫

∂Ω
κ ∂νN ds = 0. (7.4)

Thus, the total population in the domain Ω is constant with respect to time. Ana-
lytically, there exists a unique solution for each of the PDE systems (7.1) with the
presented f (u) in Table 7.2 in conjunction with the mentioned preconditions [20].

Due to the formulation using diffusion for the total population, an equilibrium
will only set in when the population density in the entire district is equal. Then, the
temporal equilibrium will be analogous to the equilibrium of the system without
diffusion.

As already mentioned, certain parameters of the model are known, such as γ
and θ. The transmission rates β j and the diffusivity κ are usually unknown. For the
transmission rate, we assume that the time-dependancy is piecewise constant. Due to
’light’ lockdown restrictions from November 2, 2020, and ’stricter’ restrictions from
December 17, 2020 to the end of the observed time interval, we assume three different
time intervals as follows:

β(t) =


β0 , 0 ≤ t < t0 ,
β1 , t0 ≤ t < t1 ,
β2 , t1 ≤ t ≤ tend .

(7.5)

In addition, due to noisy data sets, the initial conditions u0 must also be adjusted.
For that, we present two approaches to solve this in the following sections.

7.2.2 Crank-Nicholson method for the SEIR-model

For this purpose, we discretize the region Ω in x and y directions in equal equidistant
step sizes hx and hy, respectively. Also, the time interval T = [0, tend] is divided into
equidistant steps of length τ. In the following we use the notation un

i,j = u(xj, yi, tn).
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The Laplacian is expressed by finite differences

∆un
i,j =

1
h2

x

[
un

i,j−1 − 2un
i,j + un

i,j+1

]
+

1
h2

y

[
un

i−1,j − 2un
i,j + un

i+1,j

]
(7.6)

and the Crank-Nicolson scheme reads as

un+1
i,j − un

i,j

τ
=

1
2

[
κ∆un+1

i,j + κ∆un
i,j + f (un+1

i,j ) + f (un
i,j)
]

. (7.7)

The goal is to transform this approach so that un+1
i,j can be solved with a linear

system of equations. The non-linearity of f (u) is solved by evolving f using Taylor
expansion for small values τ around the current iteration value un

i,j with f (un+1
i,j ) =

f (ui,j(tn + τ)):

f (ui,j(tn + τ)) = f (un
i,j) + τ∂u f (un

i,j)∂tun
i,j +O(τ2)

≈ f (un
i,j) + τ∂u f (un

i,j)
[
κ∆un

i,j + f (un
i,j)
]

(7.8)

If we set rx := κτ/h2
x and ry := κτ/h2

y, this leads in eqn. (7.7) using eqn. (7.8) to

un+1
i,j −

1
2

rx

[
un+1

i,j−1 − 2un+1
i,j + un+1

i,j+1

]
− 1

2
ry

[
un+1

i−1,j − 2un+1
i,j + un+1

i+1,j

]
= un

i,j +
1
2

rx

[
un

i,j−1 − 2un
i,j + un

i,j+1

]
+

1
2

ry

[
un

i−1,j − 2un
i,j + un

i+1,j

]
+ τ f (un

i,j) +
1
2

τ2∂u f (un
i,j)
[
κ∆un

i,j + f (un
i,j)
]

. (7.9)

Thus, 1
2 τ2∂u f (un

i,j)
[
κ∆un

i,j + f (un
i,j)
]

is negligible for small values of τ, which leads to
the system

− 1
2

rxun+1
i,j−1 −

1
2

rxun+1
i,j+1 + (1 + rx + ry)un+1

i,j −
1
2

ryun+1
i−1,j −

1
2

ryun+1
i+1,j

=
1
2

rxun
i,j−1 +

1
2

rxun
i,j+1 + (1− rx − ry)un

i,j +
1
2

ryun
i−1,j +

1
2

ryun
i+1,j + τ f (un

i,j) . (7.10)

The system (7.10) leads to a linear equation system

Aqn+1 = Bqn + τ fn (7.11)

with, e.g., qn+1 =
(
[un+1

0,0 , ..., un+1
ly,0 ], [un+1

0,1 , ..., un+1
ly,1 ], ...., [un+1

0,lx
, ..., un+1

ly,lx
]
)T

. The vectors
qn and fn are defined analogously, where lx and ly indicate the number of discretiza-
tion points in x and y direction with respect to Ω. The square and non singular
matrices A and B are defined to contain the Neumann boundary conditions, which
are implemented by, e.g. un+1

k+1,j = un+1
k,j if un+1

k,j lies on the boundary of the domain
∂Ω. The previous refers to the solution of the PDE system of the state variable u. The
adjoint system must be solved backwards in time, which leads to the approach

zn−1
i,j − zn

i,j

−τ
= −1

2

[
κ∆zn−1

i,j + κ∆zn
i,j + p(un−1

i,j ) + p(un
i,j)
]

(7.12)
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where the p(un
i,j) contains componentwise the corresponding discretized terms of

∂uj g + ∑m
k=1 zk∂uj fk. Proceeding analogously as before yields the system

− 1
2

rxzn−1
i,j−1 −

1
2

rxzn−1
i,j+1 + (1 + rx + ry)zn−1

i,j −
1
2

ryzn−1
i−1,j −

1
2

ryzn−1
i+1,j

=
1
2

rxzn
i,j−1 +

1
2

rxzn
i,j+1 + (1− rx − ry)zn

i,j +
1
2

ryzn
i−1,j +

1
2

ryzn
i+1,j + τp(un

i,j) . (7.13)

Thus, when solving the linear system of equations, the matrices A and B can also be
used, due to the same Neumann boundary conditions. Despite the variety of possible
solutions to reaction-diffusion problems, we have chosen the Crank-Nicolson method
at this point in order to test the method with a standard procedure. With regard to
the stability of the procedure, reference is made to Oishi et al. [21]. Analogous investi-
gations with Neumann boundary conditions indicate that the method is numerically
stable. In the case of our parameter sizes we therefore have rx, ry < 1

2 .

7.2.3 Finite element method for the SEIR-model

An alternative to the Crank-Nicholson method which is used in the adjoint method,
we also present a version of the finite element method which produces similar results.
By plugging eqn. (7.3) in eqn. (7.1), the PDE system reads as follows:

∂tu1 = κ ∆x,yu1 − β(t)u1u3, (x, y) ∈ Ω; (7.14a)
∂νu1 = 0 , (x, y) ∈ ∂Ω;
u1(t = 0) = u1,0;

∂tu2 = κ ∆x,yu2 + β(t)u1u3 − θu2, (x, y) ∈ Ω; (7.14b)
∂νu2 = 0 , (x, y) ∈ ∂Ω;
u2(t = 0) = u2,0;

∂tu3 = κ ∆x,yu3 + θu2 − γu3, (x, y) ∈ Ω; (7.14c)
∂νu3 = 0 , (x, y) ∈ ∂Ω;
u3(t = 0) = u3,0;

∂tu4 = κ ∆x,yu4 (x, y) ∈ Ω; (7.14d)
∂νu4 = 0 , (x, y) ∈ ∂Ω;
u4(t = 0) = u4,0.

As the diffusion and ODE parts in eqns. (7.14) are handled by two different schemes,
we can make use of an operator splitting (cf. MacNamara [22]) to solve the system.
E.g., for one time step ∆t, this procedure is as follows:

(1) Solve ∂tui = κ ∆x,yui for t = ∆t
2 with the corresponding initial and boundary

conditions for i = 1, 2, 3, 4.

(2) Solve ∂tui = fi(u) for t = ∆t with the corresponding initial and boundary
conditions for i = 1, 2, 3, 4.

(3) Solve ∂tui = κ ∆x,yui for t = ∆t
2 with the corresponding initial and boundary

conditions for i = 1, 2, 3, 4.

The equation in (2) is a simple ODE equation which can be solved by any standard
solver, e.g. the Euler method or the method of Runge-Kutta. To solve the equation
in (1) and (3) on the domain Ω with initial and homogeneous Neumann boundary



200 Chapter 7. Research Paper V

conditions on ∂Ω, we consider its weak form gained by multiplication with a test
function v ∈ H1

0(Ω); this means, that v vanishes at the boundary, i.e., v ≡ 0 at ∂Ω.
The weak form reads as follows:Instead of u ∈ C2,1, we now aim to find a function
ui ∈ H1(Ω) solving

a(ui, v) : =
∫
Ω

ui v dω +
∫
Ω

∇ui∇v dω−
∫
∂Ω

ui v dλ

=
∫
Ω

ui v dω +
∫
Ω

∇ui∇v dω

= 0. (7.15)

This infinite-dimensional problem has to be solved numerically by discretization. We
aim to find a solution ui,h in a finite-dimensional subspace Vh solving

a(ui,h, vh) = a1(ui,h, vh) + a2(ui,h, vh) =
∫
Ω

ui,h vh dω +
∫
Ω

∇ui,h∇vh dω = 0 . (7.16)

We define the subspace Vh on the chosen grid and linearly independent basis functions
φj piecewise over subregions Ωk = [x1, x2]× [y1, y2] ⊂ Ω:

Vh =

{
uh = ∑

k

4

∑
j=1

c(k)j φ
(k)
j (x, y)

}
(7.17)

where

φ
(k)
1 (x, y) =

(x− x2)(y− y2)

(x1 − x2)(y1 − y2)
, (7.18a)

φ
(k)
2 (x, y) =

(x− x2)(y− y1)

(x1 − x2)(y2 − y1)
, (7.18b)

φ
(k)
3 (x, y) =

(x− x1)(y− y2)

(x2 − x1)(y2 − y2)
, (7.18c)

φ
(k)
4 (x, y) =

(x− x1)(y− y1)

(x2 − x1)(y2 − y1)
(7.18d)

for (x, y) ∈ Ωk; otherwise, those functions vanish, i.e., φ
(k)
j (x, y) ≡ 0 for (x, y) 6∈ Ωk,

j = 1, 2, 3, 4. Then the weak form a(ui,h, vh) = 0 reads as follows:

a(ui,h, vh) = a

(
∑

k

4

∑
j=1

c(k)j φ
(k)
j (x, y), φ

(k∗)
j∗ (x, y)

)
= 0. (7.19)

Due to the linearity of a, we have ∑k ∑4
j=1 a

(
φ
(k)
j (x, y), φ

(k∗)
j∗ (x, y)

)
c(k)j = 0. Then,

the stiffness matrices A and B are defined by

Anm = a1

(
φ
(k)
j (x, y), φ

(k∗)
j∗ (x, y)

)
, (7.20a)

Bnm = a2

(
φ
(k)
j (x, y), φ

(k∗)
j∗ (x, y)

)
, (7.20b)

where n represents the row corresponding to (j∗, k∗) and m the column corresponding
to (j, k), which depends on the chosen order within the matrices. More information
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about this can e.g. be found in Evans et al. [23]. The linear equation system with a
mass matrix

A ∂tui + B ui = 0 (7.21)

can be solved by any scheme; e.g., a 4-step Runge-Kutta scheme; cf. e.g. Dormand
and Prince [24].

7.3 Optimization and numerical methods

7.3.1 Discretization of the domain

To define the domain Ω for the partial differential equation model, we consider the
geographical data for the district (D), the association communities (AC) and the
municipalities (M). Using the free online data filtering tool Overpass Turbo [25] from
OpenStreetMap, we extracted the relevant geographical data and created the relevant
matrices assuming the map segment as rectangular, which appears reasonable due
to the very small size of the investigated window. The relevant data for the starting
values of the locations are then equally distributed across all relevant subdomains
of Ω. The size of the window is Lx × Ly = 39.23 km × 56.05 km. Using a step size
of hx = Lx

100 and hy =
Ly

100 , the discretization of the area yields 101× 101 matrices as
depicted in Figs. 7.2 and 7.3.

7.3.2 Target function

In the following, we present the analysis for the reduced SEI-model. The derivation
for the other models is analogous. Furthermore, in order to avoid confusion, we
rename (us, ue, uz, uN) := (u1, u2, u3, u4). The objective of this section is to present
two methods for data fitting of the presented models to the dataset of Birkenfeld
County in Germany.

Therefore, we introduce an objective function J : Rd × C(Ω, Rm)2,1 (i.e., twice
continuously differentiable wrt space and once continously differentiable wrt time),
defined by

J (χ, u0) =
w0

2
‖δβ(t)usuz− udata

z ‖2
L2

V
+

w1

2
‖χ− χ̃‖2

2 +
w2

2

m

∑
j=1
‖uI,j,0− udata

I,j,0 ‖2
L2

Ω
. (7.22)

This type of objective function has already been proven to be effective in previous
studies for adapting reaction-diffusion models to corresponding data sets, see Hei-
drich et al. [26]. On the one hand we make use of the L2-norm with respect to V
and Ω, defined for example by ‖g‖L2

X
=
(∫

X g2dx
)1/2, on the other hand we use the

Euclidean norm ‖x‖2 =
(

∑d
j=1 x2

j

)1/2
.

The L2
V-norm in J involves fitting the model u to the respective data sets, whereby

udata
z : V → Rm is an interpolation through the data points. Interpolation is performed

linearly with respect to the time axis for each grid point. We decided to fit the model
to the data point by point in the L2

V norm. The reason for this is the necessary analysis
in the adjoint method in subsection 7.3.5.

The Euclidean norm in the objective function corresponds to a regularization
term and contains the parameters of the model u, which have to be fitted to the data.
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For example, if we assume an unknown constant transmission rate β(t) ≡ β and a
diffusivity κ, we have χ = (β, κ, δ).

FIGURE 7.2: Discretizations of the district of Birkenfeld (left) and of its
association communities (right).

VG Baumholder VG Birkenfeld

VG Herrstein-Rhaunen Idar-Oberstein

FIGURE 7.3: Discretization of all municipialities in the district of
Birkenfeld; upper left: VG Baumholder, upper right: VG Birkenfeld,
lower left: VG Herrstein-Rhaunen, lower right: city of Idar-Oberstein,

which is classified as one municipiality.

Note, that we only use informations concerning the daily reported new infected
individuals. Thus, the data include the percentage of daily new infected individuals
which shall be fitted to the incidence term β(t)usuz in the reduced and normalized
SEI-model. In addition, one must assume that only a fraction of those actually infected
are reported. Therefore, we introduce a detection rate δ, which is unknown.



7.3. Optimization and numerical methods 203

The L2
Ω-norms are to match the initial conditions of u to the corresponding initial

guess udata
j,0 , which is in the following simulations assumed to be 0. The same applies

to the initial guess of χ̃.
In addition, the objective function includes weights wj with j = 0, 1, 2, whose

choice will be explained later. The goal is now to minimize J while satisfying the
model constraints, i.e.,

min
χ,u0

J , subject to PDE system (7.1) . (7.23)

7.3.3 Parameter bounds and initial values

Allowing the following respective constraints of the fitted parameters:

[β j, κ, u0, δ] ∈ [R+, [0, 1], R4
+, [0, 1]], (7.24)

the starting values at time t0 for the detected cumulated infected u3
0 can be taken from

the statistics, while we assume no initial recovered person u4
0 = 0 and, for the initial

amount of exposed persons, u2
0 = u3

0/2 with similar reasoning as in [2]. The initial
number of infected is then defined as I0 = u1

0 + u2
0 + u3

0 + u4
0.

TABLE 7.3: Orders of magnitude of the initial values for adapting the
model to the available data, which are chosen from pretesting several

parameter choices.

param. β j δ κ u1
0 u2

0 u3
0 u4

0
init. val. 0.1 0.5 0.1 1/N1 1/N2 1/N3 3/N4

7.3.4 Metropolis algorithm

The first presented method makes use of a Metropolis algorithm (cf. Metropolis et
al. [27], Gelman et al. [28] or Gilks et al. [29]) for estimation of parameters in the
PDE system (7.14) according to the procedure described in Schäfer and Götz [30]
and Heidrich, Schäfer et al. [2]. Using the parameter set u0 as of Tab. 7.3 as starting
conditions, we assign random draws unew from a normally distributed (and thus
symmetric) proposal function q, i.e. unew ∼ q(unew|ui−1), in every iteration i.

Using the previously defined Ĵ(u) as of eqn.(7.22) as the target distribution, we
calculate the approximative distribution by

π(u) = c · exp
(
− Ĵ(û)2

2σ2

)
, (7.25)

whereby c is an arbitrary real value and σ the standard deviation of the prior. For the
acceptance probability, it follows

p(ûnew|ui−1) = min
{

1,
π(ûnew) · q(ui−1|ui)

π(ûi) · q(ûi|ûi−1))

}
= min

{
1,

π(ûnew)

π(ui)

}
. (7.26)

In eqn. (7.26), we can see that the value of c is redundant, as it cancels out in the
division. If the sample is accepted with the probability p, we set ûi = ûnew; with the
probability 1− p, the sample is declined, meaning û = ûi−1 according to Rusatsi [31]
or Schäfer and Götz [30]. For parameter estimation using the Metropolis algorithm,
we use Algorithm 6.
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Algorithm 6 Pseudocode for the Metropolis algorithm.

1: π, ûdata ← load initial values for π and data
2: x, z← solve PDE for state variable
3: Ĵ ← compute objective function regarding π
4: σ← standard distribution of the solution, i.e. I over time
5: s← set step size (standard deviation) for the algorithm, e.g. s := π/100
6: repeat
7: πold ← π from previous draw
8: πnew ← π ∼ N (πold, s)
9: x, z, J(π̂new)← update depending on π

10: α← min
{

1, exp
(

Ĵ(πold)
2 − Ĵ(πnew)2/2σ2)}

11: πnew ← π̂new with probability α and πnew := π with probability 1− α
12: until maximum value of draws is reached
13: π∗, x∗, Ĵ∗ ← means of all π, x, J

7.3.5 Parameter estimation via adjoint functions

For parameter estimation via adjoint functions z ∈ C(V, Rm)2,1 we use them in con-
junction with a Lagrange function defined as L : Rd × C(Ω, Rm)2,1 × C(V, Rm)2,1 ×
C(V, Rm)2,1 → R, fulfilling

L(χ, u0, u, z) = J(χ, u0) +
m

∑
j=1

∫
V

zj
(

f j(u) + κ∆x,y,uj − ∂tuj
)

dωdt . (7.27)

At a possible minimum (χ∗, u0∗, u∗, z∗) of problem (7.23) must apply

0 = ∇L =
(
∂χ1L, ..., ∂χdL, ∂u1,0L, . . . , ∂um,0L, ∂u1L, . . . , ∂umL, ∂z1L, . . . , ∂zmL

)
. (7.28)

The derivatives in directions representing functions are determined with the help
of Gâteaux derivatives. The application of the optimal control theory as well as
Pontryagin’s maximum (minimum) principle provide the optimality conditions listed
as follows:

• 0 = ∂χkL for k = 1, . . . , d (scalar optimality condition),

• uj,0 = udata
j,0 −

zj(x,y,0)
w2

for j = 1, . . . , m (optimal initial conditions),

• ∂tzj = −
(

∂uj g + ∑m
k=1 zk∂uj fk + κ∆x,yzj

)
, where g := w0

2

(
δβ(t)usuz − udata

z
)2

(adjoint equations),

• z = 0 for t = tend (transversality conditions),

• ∂νz = 0 for (x, y) ∈ ∂Ω (Neumann boundary conditions).

It should be noted that the present conditions are given as g for the reduced SEI-
model. The adjoint equations PDE system has be solved numerically backward in
time. Let us assume a time-dependent transmission rate of the form of eqn. (7.5).
This leads to χ = (β0, β1, β2, κ, δ). Let I0 = [0, t0], I1 = [t0, t1] and I2 = [t1, tend] for
k = 0, 1, 2.
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The corresponding gradient then reads as follows:

∂βkL = w1
(

βk − β̃k
)
+
∫
Ik

∫
Ω

w0δusuz

(
δβ(t)usuz − udata

z

)
+ (z2 − z1) usuz dω dt ,

(7.29a)

∂κL = w1 (κ − κ̃) +
3

∑
j=1

∫
V

zj∆x,yuj dω dt , (7.29b)

∂δL = w1
(
δ− δ̃

)
+ w0

∫
V

β(t)usuz

(
δβ(t)usuz − udata

z

)
dω dt . (7.29c)

The adjoint equations in this case read as

∂tz1 = −
(

w0δβ(t)uz

(
δβ(t)usuz − udata

z

)
+ (z2 − z1) β(t)uz + κ∆x,yz1

)
, (7.30a)

∂tz2 = −
(
θ (z3 − z2) + κ∆x,yz2

)
, (7.30b)

∂tz3 = −
(

w0δβ(t)us

(
δβ(t)usuz − udata

z

)
+ (z2 − z1) β(t)us − γz3 + κ∆x,yz3

)
.

(7.30c)

For parameter estimation, we use Algorithm 7. Regarding the optimization of χ, a
Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) search direction is used.
The initial condition u0 is updated with a convex combination between the old value
and current ’optimal’ value. The step size is mediated by the Armijo stepsize rule. In
each optimization step, the PDE system for the state u and adjoint z variable must be
solved. This is done by the Crank-Nicholson method presented above. The fact that
the state variable must be solved forward and the adjoint variable backward in time
also leads to the term "forward-backward sweep method".

Algorithm 7 Pseudocode for the parameter estimation via adjoint functions.

1: βk, κ, δ, uDATA
z , udata

0 ← load initial values and data
2: u, z← solve PDE for state variable and adjoint function
3: J, ∇J ← compute objective function and gradient regarding χ = (β0, ..., βk, κ, δ)

4: s1 ← compute search direction regarding χ (Quasi-Newton (BFGS))

5: s2 ← (ũ0 − u0) compute search direction for u0 with ũj,0 = udata
j,0 −

zj(x,y,0)
w2

6: repeat
7: Jold ← J
8: α← 1
9: χ← χ + αs1

10: u0 ← u0 + αs2
11: u, J ← update
12: repeat
13: α← 0.5α
14: χ← χ + αs1
15: u0 ← u0 + αs2
16: u, J ← update
17: until J ≤ Jold + 0.001αsT∇Jold (Armijo Rule)
18: z,∇J, s1, s2 ← update
19: until ‖J−Jold‖2

‖Jold‖2
< TOL
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7.4 Numerical results

The numerical computations were both done with MATLAB (the Metropolis algo-
rithm) and PYTHON (the adjoint method). All codes are available on request.

7.4.1 Without penalty term (Metropolis)

Using the Metropolis algorithm as of chapter 7.3.4, we first set w0 = 1 and w1 = w2 =
0 in eqn. (7.22). In Fig. 7.4, the results for the district of Birkenfeld and in Fig. 7.5, the
results for the four ACs are presented; the red dots represent the respective data, the
blue line the outcome of the model.
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FIGURE 7.4: Result of the optimization with the Metropolis algorithm
for the district of Birkenfeld with w1 = w2 = 0.
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FIGURE 7.5: Result of the optimization with the Metropolis algorithm
for the lower level administrative units (Verbandsgemeinden) with

w1 = w2 = 0.
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7.4.2 With penalty term

We now include a penalty term; in eqn. (7.22) we choose w0 = 1 and w1 = w2 =
1 · 10−5. This guarantees a convex problem, cf. Heidrich, Schäfer et al. [2]. Additionally,
by pretesting various values, we aimed to find a reasonably large value of w1 = w2
such that the summands in the target function as of eqn. (7.22), including w0, w1, and
w2, respectively, are of the same magnitude. In Fig. 7.6, the results for the district
of Birkenfeld and in Fig. 7.7, the results for the four associated communities are
presented; the red dots represent the respective data, the blue line the outcome of the
model. We also compare the results to those of a standard SEIR-model with the usual
parameter estimation (using the Metropolis algorithm).
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FIGURE 7.6: Result of the optimization with the various methods for
the district of Birkenfeld with w1 = w2 = 10−5.
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FIGURE 7.7: Result of the optimization with the various methods
for the lower level administrative units (Verbandsgemeinden) with

w1 = w2 = 10−5.
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7.4.3 Comparison

In the results of the parameter estimation as shown in Tab. 7.4, as well as the target
function values for the different methods. The comparison of the absolute values of
J(u), e.g. within the Metropolis simulations for w1 = w2 = 0 and w1 = w2 = 10−5, is
not useful; however, the outcomes of the different models can be compared using the
value of J.

TABLE 7.4: Results for the Metropolis algorithm and the adjoint
method, compared to an SEIR-model without diffusion. For the
Metropolis simulations, the standard deviation is given as an addition.

Metropolis Metropolis Adjoint SEIR
w1 = w2 0 10−5 10−5 10−5

β0 (0.228± 0.005) d−1 (0.218± 0.011) d−1 0.202 d−1 0.206
β1 (0.097± 0.003) d−1 (0.099± 0.003) d−1 0.109 d−1 0.092
β2 (0.103± 0.029) d−1 (0.097± 0.027) d−1 0.097 d−1 0.105
κ 0.119± 0.004 0.100± 0.005 0.102 0.000

IBA
0 3.393± 0.077 2.629± 0.101 4.007 4.139
IBI
0 11.570± 1.183 4.424± 0.258 3.275 8.441

IHR
0 10.176± 0.276 4.753± 0.2615 6.350 9.632
I IO
0 20.681± 0.682 8.024± 0.291 14.630 12.207
δ 0.202± 0.005 0.495± 0.010 0.397 0.444

J(u) 0.4829 0.4836 0.4850 0.4858

It is notable that across all simulations, we find β1 ≈ β2, which indicates that the
more severe lockdown restrictions from December 17 onwards might be overlaid
by the rising number of festivities during Christmas. The adjustment regarding the
detection rate shows that, according to the model, the actual number of infected
people is approximately three to five times higher than registered, which is in line
with previous findings.

The parameter values for the transmission parameters βi are relatively consistent
across the different methods and parameter settings. The values β0 > β1 ≈ β2 show
that the so-called ’light’ lockdown in November 2020 had the most significant effect
on the case values, while the more ’severe’ lockdown before Christmas did not have
a significant effect. A reason for this can be Christmas itself during which the amount
of contacts has rised by nature, it also has to be noted that the measurement of case
numbers during or after Christmas was not consistent, which might lead to delays in
the infection data.

The parameter κ is ranging significantly between 0.05 and 0.12, but correlations to
the higher initial values of the infected, as well as the detection rate δ, vary across the
different methods and parameter settings, depending not only on the weights w1 and
w2 but also the chosen κ. The results indicate that there is some potential variation
in the optimal parameter values and parameter cross-correlation of parameters, e.g.
of the initial infection values and the detection rate, as well as to some extent in
the diffusivity. This can also be seen in the target function J(u) which, despite the
deviations, shows only minor variations among the different methods and parameter
settings.

The estimations for some of the districts is generally quite accurate, e.g., for
Herrstein-Rhaunen and Baumholder. However, for the city of Idar-Oberstein, the
area with most infections, the model underestimates the infection cases, which can
be explained by the diffusivity of the model that neglects the urban structures. On
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the other side, the model overestimates the infection cases in Birkenfeld. In total,
the amount of infected is slightly underestimated towards the end; some (perhaps
technical) jumps in the middle of the observed time interval cannot be represented
well in the chosen models.

For a convex target function and a weight choice of c = 10−5, the Metropolis algo-
rithm provides the most accurate results for the cumulative data. Compared to the
SEIR-model without diffusion, we see that both Metropolis and adjoint methods pro-
vide better target function values than the SEIR-model, which generally overestimates
the infections in all districts except the largest (Idar-Oberstein).

7.5 Discussion

We present a reaction-diffusion model used to simulate the spatial spread of COVID-
19, making use data down to the municipality level for parameter estimation. The
SEIR-model is based on a set of PDEs that describe the dynamics of susceptible,
exposed, infected, and recovered individuals, as well as an incidence term that
represents the transmission of the disease. The optimal control is based on a least
square fit between the model output and the reported daily data. Two different
numerical approaches for the estimation of parameters and approximation of the
infection data – the Metropolis algorithm and the adjoint method – were described in
detail and implemented on some existent medical data, and their results were plotted
and compared.

Regarding the graphical and numerical results, all routines have provided mean-
ingful results. The models depict the infection values quite accurately in several
subdistricts, yet slightly over- or underestimate them in others, which can partially
be explained by non-homogeneous behaviour of cities compared to rural areas. On
a local level, the quality of the estimations decreases – which is as expected, as it
cannot be assumed that a global model will apply perfectly to the behavior of single
villages, especially as some of them had no or less than a handful of detected infected
in the observed time interval. The parameter values, including initial infection values,
detection rate, and diffusivity, vary across different methods and parameter settings,
while the transmission-related parameters remain relatively consistent, and the target
function are very similar. Compared to a non-spatial SEIR-model, both Metropolis
and adjoint method provide better results with respect to the target function J(u).

The PDE model provides valuable insights and information and manages to
describe the diffusion in the epidemiological situation – i.e., very few and locally
condensed initial cases in a more or less completely susceptible population. The
results in this article suggest that PDE models for the spread of diseases are reasonable
tools, which is underpinned by the comparison with the local medical data. The
Metropolis and the adjoint methods, coupled by different numerical techniques for
the solution of PDEs, lead to similar results and are very similar in terms of the
approximation error.

Further refinement of the model or the use of additional data sources may improve
its accuracy in the future. Nevertheless, the accuracy of the model on district and
sub-district levels make it a valuable tool for understanding the spread of infections.
Not only new variants of COVID-19, but also the possibility of future pandemics
underscore the need for accurate modeling on local level.
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Chapter 8

An Integro-Differential Model for
the Spread of Diseases

This article by Moritz Schäfer, Karol Niedzielewski, Thomas Götz and Tyll Krüger
has been uploaded as a preprint to arXiv in July 2023, referred to as [1]. The theory,
formulation and numerical calculations of the integro-differential model were done
by Moritz Schäfer. Thomas Götz provided the idea for this work, as well as some
concepts and linguistic revisions. Karol Niedzielewski contributed the part with
agent-based model. Tyll Krüger provided several ideas and advice as well as the idea
of the proof for the uniqueness of the solutions. The format is changed to meet the
thesis standard.

Abstract

In this work, we study the optimal control for the mitigation of epidemic diseases on
regional levels. Therefore, we make use of a spatial susceptible-infected-recovered
(SIR-) model which is enhanced by an integral kernel, allowing for non-homogeneous
mixing between susceptibles and infectives. We define requirements for the kernel
function and derive analytical results for the SIR-model, especially the uniqueness of
solutions.

An associated control function is aimed to mimic conditions similar to lockdown
criteria during the COVID-19 epidemics, including hypothetical economic costs. In or-
der to optimize the balance between disease containment and the social and political
costs associated with lockdown measures, we set up requirements for the implemen-
tation of control function, and show examples for three different formulations for the
control: continuous and time-dependent, continuous and space- and time-dependent,
and piecewise constant space- and time-dependent. The latter represent reality more
closely, as the control cannot be updated for every time and location and mitigation
measures cannot be continuous. We found the optimal control values for all of those
setups, which are by nature best for a continuous and space-and time dependent
control, yet as well found reasonable results for the discrete (and more realistic)
setting.

The numerical results of the integro-differential model are compared to an estab-
lished agent-based model that incorporates social and other microscopical factors
more accurately. This shows that comparatively simple models can be transferred to
more realistic, complex models and used in proxy manner for optimization purposes.
Inversely, complex models can be used as benchmark for the integro-differential
approach; a close match between the results of both models validates the integro-
differential model as an efficient macroscopic proxy. Since computing an optimal
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control strategy for agent-based models is computationally very expensive, yet com-
paratively cheap for the integro-differential model, using the proxy model methodol-
ogy could become a useful tool for policy advices regarding pandemic preparedness.

8.1 Introduction

Since first cases have appeared in December 2019, COVID-19 has shown that there
is an increasing value in accurate models for the local and global spread of diseases,
also giving advice to policy makers on how to deal with them; cf. e.g. Bracher et al.
[2, 3], Sherratt et al. [4] and Priesemann et al. [5]. Country and region based statistics
from many countries show that regionally contained cases can spread throughout the
country in a short period of time, especially during the initial phase(s) of the disease
in spring and summer 2020. Countrywide and regional lockdowns and other social
restrictions were imposed in most European countries as a result in order to contain
the infection numbers, to relieve the strain on the health system, and to reduce the
amount of severely ill or dead, yet were hardly on a scientific basis.

The local or regional spread of infections has been adressed in many previous
works. Kuehn and Mölter [6] investigate transport effects on epidemics using two
coupled models, a static epidemic network and a dynamical transport network, also
including non-local, fractional transport dynamics. They find that transport processes
induce additional spreading ways and that way lowers the epidemic threshold;
generalising the process to fractional or non-local dynamics, however, raises the
epidemic threshold. In several papers, the local spread of infections is modelled by
partial differential equations (PDE) models. Viguerie et al. [7] argue that geographical
model simulations could be used to inform authorities to design effective measures
and anticipate the allocation of important medical resources. Wang and Yamamoto
[8] provide a forecasting model for COVID-19 using Google mobility data and PDE
models, and find acceptable validity results of their model by comparison with
medical data. A fractional PDE modelling of the spatial spread of COVID-19 can
be found in Logeshwari et al. [9], where a system is designed in order to predict
the outcome of viral spreading in India. Harris and Bodman [10] investigate the
spread through a country with different regions of different densities. A diffusion-
based and non-international approach can be found in Berestycki et al. [11]. The
authors find that fast diffusion effects along major roads are an important factor of
the spread of epidemics like COVID-19 in Italy and HIV in the Democratic Republic
of Congo. Schäfer and Heidrich [12] analyze the local spread of COVID-19 infections
in a German district by another susceptible-exposed-infected-recovered (SEIR) model
including PDEs. The inclusion of diffusion in compartmental models can also e.g. be
found in Grave et al. [13]. Domoshnitsky et al. [14] study a model of the spread of the
COVID-19 pandemic in the form of a system of integro-differential equations. Integro-
differential models, as shown for Italy in Salvadore et al. [15] and the united Kingdom
in Hritonenko et al. [16], including mitigation measures and a time-dependent
transmission rate, and where able to describe the local disease dynamics well.

How well intervention measures actually work is still an open or widely discussed
question, and very little is done in optimal control of epidemics and mitigation
strategies. By optimal control, we mean the mitigation strategy that fulfills desired
constraints (e.g., limits on hospitalization beds) and minimizes political or economical
costs, that can be expressed in a quantitative manner. We perceive the topic as
very important for assembling of preparedness plans that can be motivated and
educated by simulation, as well as for a responsive manner usage, when a wide
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spread of pathogen is present and fast, reliable alleviation is required. The EU
commission has made a decision regarding European preparedness plans which shall
be strongly coordinated with country pandemic plans [17, 18]; also, the WHO planned
an international treaty for pandemic preparedness which shall become mandatory
for all member states [19]. This work aims to present a toolbox contributing to the
optimization of mitigation strategies, which those plans can make use of.

In this article, after setting up a classical susceptible-infected-recovered (SIR)
model and several theoretical findings, our focus is not on the optimization of the
model with respect to medical data or parameter estimation, but toward the optimal
control of measures. It is aimed to contain the disease as much as possible, yet on the
other side, we also consider the social and political costs of a lockdown, especially
when case numbers are (comparatively) low, while attention has to be paid to not
overload the health capacities and other problems like Long-COVID or economic
burdens given large infection numbers. In order to validate our results, we compare
the outcomes to those of an established agent-based model for Poland [20]. The
results of this study can act as a framework for disease control in future pandemics.

Structure of the paper. In chapter 2, an SIR model is enhanced by an integral kernel.
We define several requirements for this kernel function and present a proof for the
uniqueness of solutions for the model. Lockdowns and other measures are included
in our model(s) by a control function, which can be optimized under various assump-
tions, making use of three different control functions: a time-dependent, a continuous
space- and time-dependent, and a piecewise constant space- and time-dependent
control. In the following chapter 3, we define the required target function for the opti-
mization of the "lockdown" control and present the corresponding Forward-Backward
method. The agent-based model, in which social factors can be implemented more
accurately, is described in chapter 4. The macroscopic outcome of our model is com-
pared to those of the microscopic agent-based model in chapter 5, which we interpret
as a kind of ’ground truth’. If the results of both match well enough, we can see our
integro-differential model as a macroscopic proxy model for the computationally
expensive agent-based model. Finally, in chapter 6, we discuss our results and present
an outlook on future work.

8.2 Integro-differential SIR model

8.2.1 Model formulation

The basis of our model is the SIR-model introduced by Kermack and McKendrick [21]
consisting of the subdivisions S, I, R, which have the following meanings:

• Susceptibles S: Depending on the transmission route, these individuals can
become infected with the infectious disease when contact occurs.

• Infected I: These individuals are infected with the disease and infectious. Con-
tact with a susceptible individual can therefore lead to transmission of the
disease.

• Recovered R: After surviving an infection, individuals are considered recovered.
These individuals can no longer transmit the disease or get infected.

The total number of individuals N = S + I + R is assumed to be constant. We
normalize the three subdivisions S, I, and R by dividing all rows by N, resulting
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in s := S
N , z := I

N , r := R
N with s + z + r = 1 (in order to avoid confusion, we

use a different lower case letter z instead of i). Following the model by Kermack
and McKendrick, we assume the pathogen is transmitted from infected persons to
susceptible persons at a time-independent rate β > 0 and a recovery rate of γ > 0
so that loss of infectivity is gained after γ−1 days. Then, replacing s = 1− z− r, the
relative sir-model for each time point t ∈ [0, T] ⊂ R and point in space x ∈ [0, 1]n ⊂
Rn as follows:

d
dt

z(t, x) = β(1− z− r)z− γ z z(t = 0, x) = z0(x) (8.1a)

d
dt

r(t, x) = γ z r(t = 0, x) = r0(x) (8.1b)

This means that the disease dynamics in a certain point x would entirely depend
on the initial relations z0 and r0 and the parameters β and γ. To include interaction
between the spatial points, we replace the factor z in the term β(1− z− r)z by an
integral kernel function k(t, x − y) which depends on the time and the distance
between x and y:

d
dt

z(t, x) = β(1− z− r)
∫ 1

0
z(t, y) k(t, x− y) dy− γ z z(t = 0, x) = z0(x) (8.2a)

d
dt

r(t, x) = γ z r(t = 0, x) = r0(x) (8.2b)

For the purpose of reasonable modelling of scenarios, the kernel k should consist of
three terms as follows:

• an space-dependent part a(x− y) which is monotonously decreasing wrt |x− y|,
e.g., an exponential function decreasing with the distance, i.e., a(x − y) =
c e−δ|x−y|. This part can be controlled with

• a control function u(t) ∈ U = C([0, 1]) which represents the effectiveness of
non-pharmaceutical interventions (lockdown, school closings, obligation of
wearing masks etc.). Here, u(t) ≡ 0 implies no regulations and u(t) ≡ 1 implies
total lockdown.

• a non-adjustable part k∗ which represents the fraction of transmission or a kind
of ’background noise’ you cannot control, e.g. serving as a first proxy for
household related infections. We also assume that this fraction does not depend
on the spatial distance as interactions between distances can be prevented by
political or social measures. For a more detailed view on the importance of
households, cf. Dönges et al. [22].

These considerations lead to this formula for the kernel k:

k(t, x− y) = (1− u(t)) · a(x− y) + k∗ (8.3)

For the following, assume that the kernel is independent of time t, i.e. u(t) is constant
over time. No loss of generality is effected when considering the case, reducing
k(t, x− y) to k(x− y) = a(x− y) + k∗ for the upcoming. The following assumptions
regarding the interaction kernel k should be met:

1. k is continuous.

2. k is non-negative.
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3. k(0) = k∗ > 0.

4. k is monotonically decreasing wrt |x− y|.

5. k1 := ‖k‖1 =
∫ 1

0 k(r) dr > 0

6. k1 < K = maxx∈[0,1]
∫ 1

0 k(|x− y|) dy

Note, that in case of a strict monotonically decreasing kernel, we get K = 2
∫ 1/2

0 k(r) dr.

8.2.2 Uniqueness of solutions

The existence and quality of equilibria of the integro-differential model is the main
question in this subsection. Even for the comparatively ’simple’ SIS-model in the
previous section, it is not possible to proof the uniqueness of equilibria using classical
fixpoint theory (cf. App. A). However, we can find satisfying results for uniqueness
even for the SIR-model using the prevalence. Again, wlog, we will consider the
time-independent kernel function, i.e., k(x− y).

Lemma 8.1. For the SIR-model (8.2), there exists exactly one equilibrium.

Proof. To proof those numerical findings for the integro-differential SIR-model (8.1),
we will compute its prevalence for s0 = s(0, x) ≈ 1 and r0 = r(0, x) ≡ 0. Reconsider
the equation for the susceptibles, i.e.,

ds
dt

= −s
∫ 1

0
k(t, x− y)z(t, y)dy. (8.4)

By substituting of the equation dr
dt = γz, we obtain

ds
dt

= − s
γ

∫ 1

0
k(t, x− y)

dr
dt

dy = − s
γ

d
dt

∫ 1

0
k(t, x− y) r(y) dy. (8.5)

Integrating this over t, it follows

ln s∞ = − 1
γ

∫ 1

0
k∞(x− y)r∞(y) dy. (8.6)

Now let Tk be the integral operator on a (generalized) ground space (S, µ), whereas
S = [0, 1] and µ(y) = y, be defined by

(Tk f )(x) =
∫ 1

0
k∞(x− y) f (y) dy. (8.7)

Together with the necessary condition 1 = s∞(x) + r∞(x) for all x ∈ [0, 1], we find

r∞(x) = 1− exp
(
− 1

γ

∫
y

k∞(x− y) r∞(y)
)

dy = 1− exp(−Tkr∞(x)). (8.8)

This system of nonlinear equations can e.g. be solved numerically. Uniqueness can
be shown using the paper of Bollobás-Janson-Riordan [23]: Following their Theorem
6.1, if

‖Tk‖ := sup{‖Tk f ‖2 : f ≥ 0, ‖ f ‖2 ≤ 1} < 1, (8.9)
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the equation only has the zero solution; if 1 ≤ ‖Tk‖ < ∞, and k∞ is irreducible, then
the equation has a unique non-zero solution for the prevalence.

This uniqueness result for the prevalence can be transferred to the uniquess of
the solution: Assume there exist two solutions (s1, z1, r1) and (s2, z2, r2) with the
same initial conditions, which have the same prevalence r∞. Consider the difference
function z̃(t) := (z1 − z2)(t) which must satisfy z̃(0) = 0. Then the solution is
z(t, x) ≡ r(t, x) ≡ 0, and the two solutions are equal.

As an addition, this provides a nice definition for basic reproductive numberR0:
By plugging this ansatz using the next-generation method [24], we findR0 = β

γ ‖k‖2,
so that it also depends on the kernel function k : [0, 1]→ R.

8.3 Optimization

8.3.1 Time-dependent control

In this article, we restrict our research on the case n = 1; higher-dimensional models
will be introduced in future research. In a first formulation of the optimal control
problem, we aim to minimize the total amount of infectives, along keeping the
costs, i.e. the control u(t), as low as possible. In order to maintain convexity of
the problem and avoid bang-bang controls due to linearity in u, the cost function
term is squared. Also, case numbers should be kept under a certain threshold zmax,
otherwise the capacities of the medical infrastructure can be exceeded. This could be
either modelled locally, i.e., z(t, x) ≤ zmax,1 or globally, i.e.,

∫ 1
0 z(t, x) dx ≤ zmax,2. If

zmax,1 ≤ zmax,2 for all x, the two terms fall together, which is also assumed here for the
sake of simplicity. Defining U as the set of continuous functions u ∈ U = C([0, T]),
we find the following minimization problem:

min
u(t)∈U

J(u, z) = min
u(t)∈U

∫ T

0

∫ 1

0
z(t, x) dx dt +

η

2

∫ T

0
u2(t) dt

subject to 0 ≤ u(t) ≤ 1, (8.10)
z(t, x) ≤ zmax.

For implementation of the constraint z < zmax, we add a sigmoidal term ψ : [0, 1]→
R+ in the cost functional, which holds ψ(z > 0) ≈ 0 and ψ(z < 0) � 1. Using the
function ψ (z− zmax), case numbers z > zmax are ’punished’ severely. Also, if case
numbers are low, we aim to ’punish’ larger values for u(t) because social restrictions
are less accepted by the population and the political costs to implement harder
restrictions increase. We therefore also define a threshold zmin under which political
costs are assumed to be high, i.e., ψ(z > zmin), such that case numbers z < zmin are
also punished severely. This results in the following maximization problem:

min
u(t)∈U

J(u, z) =
∫ T

0

∫ 1

0
z(t, x) dx dt +

η

2

∫ T

0
u2(t)

∫ 1

0

[
1 +

c1

2
ψ (zmin − z(t, x))

]
dx dt

+
ω

2

∫ T

0

∫ 1

0
c2ψ (z(t, x)− zmax) dx dt (8.11)

subject to 0 ≤ u(t) ≤ 1.

Alternatively, the control u can also depend on space, i.e., let Ũ be the set of continuous
functions u ∈ U = C([0, T]× [0, 1]→ [0, 1]). Then the minimization problem reads
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as follows:

min
u(t)∈U

J(u, z) =
∫ T

0

∫ 1

0
z(t, x) dx dt +

η

2

∫ T

0

∫ 1

0
u2(t, x)

[
1 +

c1

2
ψ (zmin − z(t, x))

]
dx dt

+
ω

2

∫ T

0

∫ 1

0
c2ψ (z(t, x)− zmax) dx dt (8.12)

subject to 0 ≤ u(t, x) ≤ 1.

On a discrete level, solving the above minimization problems might be complicated.
On a continuous level, we can introduce the Lagrangian function (see also Lenhart
and Workman [25] for further information):

L(z, u, r) =
∫ T

0

∫ 1

0
λ1(t, x)

[
z′(t, x)− (1− z(t, x)− r(t, x))

∫ 1

0
z(t, y) k(t, x− y) dy + γ z(t, x)

]
dx dt

+
∫ T

0

∫ 1

0
λ2(t, x)

[
r′(t, x)− γ z(t, x)

]
dx dt (8.13)

− J(z, u)

We now want to find the stationary points of the partial derivatives of L with respect
to u, z, and r:

∂L
∂u

=
∫ T

0

{∫ 1

0
λ1(t, x) (1− z(t, x)− r(t, x))

∫ 1

0
z(t, y) a(x− y) dy

−η u(t)
∫ 1

0

[
1 +

c1

2
ψ (zmin − z(t, x))

]
dx
}

dt !
= 0

(8.14a)

∂L
∂z

=
∫ T

0

∫ 1

0

{
−λ′1(t, x) + λ1(t, x)

∫ 1

0
z(t, y) k(t, x− y) dy

− λ1(t, x) (1− z(t, x)− r(t, x))
∫ 1

0
k(t, x− y) dy + γ λ1(t, x)

− γ λ2(t, x)

− 1 +
c1 η

4
u2(t) · ψ′ (zmin − z(t, x)) − c2 ω

2
ψ′ (z(t, x)− zmax)

}
dx dt !

= 0

(8.14b)

∂L
∂r

=
∫ T

0

∫ 1

0

{
λ1(t, x)

∫ 1

0
z(t, y) k(t, x− y) dy

−λ′2(t, x)
}

dx dt !
= 0

(8.14c)
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For the second and third equation we swapped the integrals and performed partial
integration with respect to time t. This leads us to the following system:

z′(t, x) = (1− z(t, x)− r(t, x))
∫ 1

0
z(t, y) k(t, x− y) dy− γ z(t, x),

z(t = 0, x) = z0(x); (8.15a)
r′(t, x) = γ z(t, x),

r(t = 0, x) = r0(x); (8.15b)

λ′1(t, x) = λ1(t, x)
[∫ 1

0
z(t, y) k(t, x− y) dy− (1− z(t, x)− r(t, x))

∫ 1

0
k(t, x− y) dy + γ

]
− γ λ2(t, x)

− 1 +
c1 η

4
u2(t) · ψ′ (zmin − z(t, x)) − c2 ω

2
ψ′ (z(t, x)− zmax)

}
,

λ1(T, x) = 0; (8.15c)

λ′2(t, x) = λ1(t, x)
∫ 1

0
z(t, y) k(t, x− y) dy,

λ2(T, x) = 0; (8.15d)

u(t) =

∫ 1

0
λ1(t, x) (1− z(t, x)− r(t, x))

(∫ 1

0
z(t, y) a(x− y) dy

)
dx

η
∫ 1

0

[
1 +

c1

2
ψ (zmin − z(t, x))

]
dx

. (8.15e)

This is the so-called Forward-Backward sweep method according to the method
described in Lenhart and Workman [25]. For convergence and stability results, also
see Hackbusch [26]. Starting with an initial guess of the control u over the entire
interval, e.g., u(t) ≡ 0.5 or u(t, x) ≡ 0.5, the forward problem is solved according to
the differential equations for first solution of z and r. The transversality conditions
λ1(T) = λ2(T) = 0 and the values for u , z and r are used to solve the backward
problem for λ1 and λ2. Using the results for λ1, λ2, z, and r, we calculate an update û
on the time-dependent control function. The update of u(t) is done by moving only a
fraction σ of the previous uold towards û(t):

u(t) = (1− σ) uold(t) + σ û(t) for all t ∈ [0, T] (8.16)

This procedure will be repeated until the norm of two subsequent controls is ’close
enough’, i.e. ‖u− uold‖ < TOL. By numerical experiments a choice of σ = 0.1 pro-
vided decent results which were convergent and the target function is monotonously
decreasing with respect to the iteration.

8.3.2 Space- and time-dependent control

We now assume that the control u also depends on space, i.e., the kernel function
reads as

k(t, x− y, x) = (1− u(t, x)) · a(x− y) + k∗. (8.17)

For this space-dependent formulation, we replace u(t) by u(t, x) in the previous
equations. Regarding ∂L

∂u , this leads to the following formulation:
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∂L
∂u

=
∫ T

0

∫ 1

0

{
λ1(t, x) (1− z(t, x)− r(t, x))

∫ 1

0
z(t, y) a(x− y) dy

−η u(t, x)
[
1 +

c1

2
ψ (zmin − z(t, x))

]}
dx dt !

= 0 (8.18)

and while the formulas for z and r remain the same, we find

λ′1(t, x) = λ1(t, x)
[∫ 1

0
z(t, y) k(t, x− y) dy− (1− z(t, x)− r(t, x))

∫ 1

0
k(t, x− y) dy + γ

]
− γ λ2(t, x)

− 1 +
c1 η

4
u2(t, x) · ψ′ (− zmin − z(t, x)) − c2 ω

2
ψ′ (z(t, x)− zmax)

}
,

λ1(T, x) = 0; (8.19a)

λ′2(t, x) = λ1(t, x)
∫ 1

0
z(t, y) k(t, x− y) dy,

λ2(T, x) = 0; (8.19b)

u(t, x) =
λ1(t, x) (1− z(t, x)− r(t, x))

∫ 1

0
z(t, y) a(x− y) dy

η
[
1 +

c1

2
ψ (zmin − z(t, x))

] . (8.19c)

8.3.3 Space- and time-dependent, discretized control

While the concept of a space- and time-dependent control is certainly reasonable, it
is not realistic to design the control in a continuous way. We therefore consider a
control function u(t, x) that is designed as a piecewise constant function in both time
and space. The control function u(t, x) takes different constant values over different
rectangular regions. Let’s denote the control value within each rectangle as uij, where
i represents the time interval number and j represents the spatial interval number.

Mathematically, we can express the piecewise constant control function as follows:
Let t0 < t1 < . . . < tn−1 < tn be the time instants that define the intervals, and
x0 < x1 < . . . < xm−1 < xm be the spatial locations that define the intervals. Then

u(t, x) =uij if t ∈ [ti−1, ti) and x ∈ [xj−1, xj) (8.20)

represents the control value within the corresponding rectangular region for i =
1 . . . n and j = 1 . . . m. For the piecewise constant functions, we use the starting value
for the time interval [ti−1, ti), i.e., ti−1, and the average of the space interval [xj−1, xj).
This is then plugged into the spatial model as described in section 8.3.2.

8.4 Agent-based model

In order to validate the model, we compare the above described integro-differential
model to a stochastic, microscopic agent-based model developed at the Interdisci-
plinary Centre for Mathematical and Computational Modelling at the University of
Warsaw. Complete details of this model are given in Niedzielewski et al. [20, 27]. In
this model, agents have certain states (susceptible, infected, recovered, hospitalized,
deceased, etc.) and infection events occur in certain contexts, i.e., on the streets, work-
places, and several more. A similar comparison can be found in Dönges et al. [22], but
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to ignore in-household transmission we use only single household contexts. Location
space is one dimensional with 100 location points that are available. The single
households are distributed uniformly in space. The agents are assigned individually
to households and corresponding street context (only these two types of contexts are
in use). When probability of infection is computed every street context infectivity
is taken into account. To allow for control of diffusion of infected throughout the
whole space, we also use the transmission kernel function k(t, x − y). As a result,
the infectivity decreases with distance between location of agent and street context.
Since the ODE-model (8.1) is a variant of an SIR-model, the agent-based model also
just uses the SIR-states and ignores all other states. The agent-based model uses
a recovery time for each infected individual that is sampled from an exponential
distribution with mean 10 days.

8.5 Numerical Simulations

In this section, the Lagrangian optimization of the integro-differential model as of
eqns. (8.11) and (8.12) is presented and the numeric results are shown. We denote the
initial condition function as follows:

z1
0(x) ≡ 2 · 10−5,

z2
0(x) =

{
1 · 10−5 x < 0.9
1 · 10−4 x ≥ 0.9

.

For reasons of comparability, at a choice of 100 spatial grid points almost the same
mass is used for the initial infected in both variants (as the average of z2

0 is equal to
z̄2

0 = 1.9 · 10−5). We listed all six model simulations in Tab. 8.1, including parameter
values for the optimal control as of system (8.11). Also, we choose parameter values of
c = δ = 50 (resulting in a kernel-based reproductive number ofR0 ≈ 2), β = γ = 0.1,
c1 = c2 = 1000, zmin = 1 · 10−5, and zmax = 5 · 10−3. For both η and ω, we choose
two different values which are described in Tab. 8.1. Lastly, wrt the penalization, we
use the function

ψ(z) = 1 + tanh (1000 z) ,

with its derivative

ψ′(z) = 1000 sech2(z).

In Sims. A, no space-dependent control is included in the model and the initial values
are constant. In Sims. B, again the control is only time-dependent, but we induce an
’infection wave’ at one of the boundaries. In Sims. C, we also induce this infection
wave at the boundary, but additionally allow a control depending on both space and
time. Two different choices for the parameter values η and ω as well as a different
maximal duration T are imposed on all of these simulations. In Sims. D, we use a
space-time-dependent control, but use 10-days resp. 10-cells average to account for a
more realistic representation of the control. The results are compared to 10 ABM runs
for each scenario and also their mean.
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TABLE 8.1: Listing of all simulations and different parameter values
used for optimization of the integro-differential model.

Variant space-dependent u? piecewise constant u? T z0 η ω

A1 no no 400 z1
0(x) 0.02 1

A2 no no 800 z1
0(x) 0.005 0.2

B1 no no 400 z2
0(x) 0.02 1

B2 no no 800 z2
0(x) 0.005 0.2

C1 yes no 400 z2
0(x) 0.02 1

C2 yes no 800 z2
0(x) 0.005 0.2

D1 yes yes 400 z2
0(x) 0.02 1

D2 yes yes 800 z2
0(x) 0.005 0.2

Choosing an arbitrary starting value for u(x) or u(t, x), we use the Forward-
Backward sweep method as of eqns. (8.15) and (8.19) and evaluate the target function
in each step. As an example, the convergence of the target function value is presented
in Fig. 8.1.

0 50 100 150 200 250 300

Iteration

0

500

1000

1500

2000

2500

J
(u

)

FIGURE 8.1: Exemplary behavior of the target function for model A1
and u(t) ≡ 1.

8.5.1 Simulation Results

In this section, the results for the optimal control, the infected (both using the SIR-
model and the ABM model) as well as the time mean of infected and the difference
between the models are presented and compared.
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Simulation A1
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FIGURE 8.2: Evolution of the control in Sim. A1.

FIGURE 8.3: Spatio-temporal evolution of the infected in Sim. A1 for
the integro-differential SIR-model (left) and the ABM model (right).
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FIGURE 8.4: Difference between the SIR-model to the ABM model
mean (left) and temporal evolution of the spatial mean in the SIR-
model and all single runs of the ABM model, as well as their mean

(right) in Sim. A1.
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Simulation A2
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FIGURE 8.5: Evolution of the control in Sim. A2.

FIGURE 8.6: Spatio-temporal evolution of the infected in Sim. A2, on
the left for the integro-differential SIR-model, on the right for the ABM

model.
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FIGURE 8.7: Difference between the SIR-model to the ABM model
mean (left) and temporal evolution of the spatial mean in the SIR-
model and all single runs of the ABM model, as well as their mean
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Simulation B1
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FIGURE 8.8: Evolution of the control in Sim. B1.

FIGURE 8.9: Spatio-temporal evolution of the infected in Sim. B1, on
the left for the integro-differential SIR-model, on the right for the ABM

model.
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FIGURE 8.10: Difference between the SIR-model to the ABM model
mean (left) and temporal evolution of the spatial mean in the SIR-
model and all single runs of the ABM model, as well as their mean

(right) in Sim. B1.
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Simulation B2
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FIGURE 8.11: Evolution of the control in Sim. B2.

FIGURE 8.12: Spatio-temporal evolution of the infected in Sim. B2, on
the left for the integro-differential SIR-model, on the right for the ABM

model.
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FIGURE 8.13: Difference between the SIR-model to the ABM model
mean (left) and temporal evolution of the spatial mean in the SIR-
model and all single runs of the ABM model, as well as their mean

(right) in Sim. B2.
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Simulation C1

FIGURE 8.14: Evolution of the control in Sim. C1.

FIGURE 8.15: Spatio-temporal evolution of the infected in Sim. C1,
on the left for the integro-differential SIR-model, on the right for the

ABM model.
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FIGURE 8.16: Difference between the SIR-model to the ABM model
mean (left) and temporal evolution of the spatial mean in the SIR-
model and all single runs of the ABM model, as well as their mean

(right) in Sim. C1.
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Simulation C2

0                                                                                                    
1
0
0                                                                                                    

2
0
0                                                                                                    

3
0
0                                                                                                    

4
0
0                                                                                                    

5
0
0                                                                                                    

6
0
0                                                                                                    

7
0
0                                                                                                    

8
0
0

t

0 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 1

x

0.2

0.25

0.3

0.35

0.4

0.45

0.5

FIGURE 8.17: Evolution of the control in Sim. C2.

FIGURE 8.18: Spatio-temporal evolution of the infected in Sim. C2,
on the left for the integro-differential SIR-model, on the right for the

ABM model.
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FIGURE 8.19: Difference between the SIR-model to the ABM model
mean (left) and temporal evolution of the spatial mean in the SIR-
model and all single runs of the ABM model, as well as their mean

(right) in Sim. C2.



230 Chapter 8. Research Paper VI

Simulation D1
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FIGURE 8.20: Evolution of the control in Sim. D1.

FIGURE 8.21: Spatio-temporal evolution of the infected in Sim. D1,
on the left for the integro-differential SIR-model, on the right for the

ABM model.
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FIGURE 8.22: Difference between the SIR-model to the ABM model
mean (left) and temporal evolution of the spatial mean in the SIR-
model and all single runs of the ABM model, as well as their mean

(right) in Sim. D1.
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Simulation D2
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FIGURE 8.23: Evolution of the control in Sim. D2.

FIGURE 8.24: Spatio-temporal evolution of the infected in Sim. D2,
on the left for the integro-differential SIR-model, on the right for the

ABM model.
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8.5.2 Observations for the integro-differential model

In simulation A1 (cf. Figs. 8.2,8.3,8.4), using an only time-dependent control function
and homogeneous initial conditions, we see that after light restrictions causing raising
numbers of infectives, a sudden increase in lockdown restrictions causes falling
numbers. The control only rises as late as possible in order not to surpass or get close
to zmax, and thereon remains relatively constant. Raising to levels at or slightly above
0.5, it manages to contain the disease spread due to R0 = 2. Later on, the effective
reproduction rate lowers as there is a higher amount of recovered which are assumed
to not get infected again in this simplified model. At the end, roughly 10 % of the
total population is infected or recovered, homogeneously spread on the whole spatial
domain. The drop of the control function towards the end can be explained as the
system regulates the epidemics such that the maximally allowed rates are just slightly
missed at the end. This observation is in fact independent of the chosen duration or
simulation. The convergence of the target function J(u) is exemplary shown for Sim.
A1 (Fig. 8.1) and looks similar for all other simulations. The results of Sim. A2 (cf.
Figs. 8.5,8.6,8.7) are comparable to Sim. A1, yet due to different values of η and ω,
the control reduces more quickly in a quite linear fashion after rising above 0.5. As a
result, the total amount of recovered and infectives is roughly equal to 20 % at the
end.

In simulations B1 (cf. Figs. 8.8,8.9,8.10) and B2 (cf. Figs. 8.11,8.12,8.13), an only
time-dependent control function and an inhomogeneous initial condition are used.
We observe similar optimal control functions in Sims. B1 and B2 as in A1 and A2,
respectively, resulting in a spatially delimited peak of infections slightly propagating
in time. Due to generally higher infection cases in Sim. B2, there is another peak at
the end of the observed time interval. The share of recovered again reaches values
around 10 % for B1, with a peak close to the boundary from which the disease was
important, and 20 % for B2, with homogeneously distributed values across the spatial
domain.

Simulations C1 (cf. Figs. 8.14,8.15,8.16) and C2 (cf. Figs. 8.17,8.18,8.19) feature
a space-time-dependent control function and an inhomogeneous initial condition.
While the spatially averaged behaviour of the control function in C1 and C2 is similar
as in B1 and B2, respectively, a more or less slight spatial ’propagation’ of the control
is visible. This adaptive behaviour allows for the control term to never surpass 0.5,
resulting in less effort and thus a lower target function. The share of recovered again
reaches values around 10 % for C1, and 20 % for C2, both with homogeneously
distributed values across the spatial domain.

Finally, simulations D1 (cf. Figs. 8.20,8.21,8.22) and D2 (cf. Figs. 8.23,8.24,8.25)
feature a piecewise constant space-time-dependent control function and an inho-
mogeneous initial condition. In those simulations, as to be expected, the control is
similar to the one in the continuous simulations C1 and C2. However, using the
starting value as the control for the next (10) days, causes higher infection rates in the
initial phase of the disease, such that it can be said that globally the control has to be
slightly larger as in the continuous simulations. The share of recovered again reaches
values around 10 % for D1, and 20 % for D2, yet features significant peaks at both
boundaries.

8.5.3 Comparison with the agent-based model

Tab. 8.2 lists the values of the target function of all simulations according to eqns.
(8.11) and (8.12). Additionally, the target function of a model without any control
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measures, i.e. u(t) ≡ 0 or u(t, x) ≡ 0, is listed, showing significant improvement in
the target function for simulations C1 and C2, while D1 and D2 were still reasonably
good in reducing the cost function values despite their restrictions.

TABLE 8.2: Target function values for the various simulations, accord-
ing to eqns. (8.11) and (8.12).

Simulation J(u ≡ 0) J(u∗)sir J(u∗)abm
A1 132.4 31.9 29.5
A2 32.9 13.4 12.6
B1 132.5 40.6 39.0
B2 32.9 19.9 19.3
C1 132.5 10.1 12.6
C2 32.9 8.5 9.0
D1 132.5 19.8 21.5
D2 32.9 12.2 12.5

If we compare the results of the target function, it shows that by using the optimal
control, it was possible to reduce the target function compared to u ≡ 0 by a factor
depending on the chosen simulation and parameter values of η and ω. As to be
expected, the best results for J(u) were found in the space-dependent, yet continuous
control. Comparing the results for the target function for the SIR-model and the ABM
model, we see that there are only minor differences in the outcome, mainly in C1
and C2 and there especially close to the boundaries. Those can be explained by the
stochastic nature of the ABM model of which also not all features can be adapted to
the integro-differential model.

8.6 Discussion and Outlook

In this work, we have presented a spatial integro-differential SIR-model, have proved
several theoretical properties (including uniqueness of the solution) and provided
setups in order to apply optimal control on the transmission of the disease. We aimed
to design the cost function in a reasonable way, including both the avoidance of the
overload of health capacities and the political and economical costs of measures and
lockdowns. The results were compared to the ABM model and are overall very much
accordant. This has an interesting consequence; the SIR-model is ’cheap’ to compute,
compared to the computationally ’expensive’ ABM model, for which an optimal
control is hardly possible. Thus, by optimization of the SIR-model, we are now able to
find a good proxy for the ABM model. While it will not be possible to reproduce the
results perfectly, the averages of both models are very similar and match very well
in most simulations except the space-and time-dependent continuous control. The
results always remain within the designed range [zmin, zmax], such that the healthcare
capacities are not overloaded, even in the model with piecewise constant values for u
that is less flexible to quickly raising infection numbers. The system still remains in
the range of stochastic fluctuations of the ABM model.

The model can be implemented with a set of real world mitigation measures
that are equipped with their expected effect on the transmission. Our approach and
methodology are of practical use since the lockdown cost function can be designed
freely depending on setting related to different countries or other circumstances, in
order to make it more realistic and accountable.
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In future work, multidimensional problems can be put under scrutiny as the
presented approach is not constrained on a specific dimensionality of the space, i.e., a
spatially 2D-problem with a commuting structure between inhabited spaces, which
actually represents a more realistic approach for entire countries (like Poland in the
ABM model in Niedzielewski et al. [20, 27]), can also be implemented. Another
interesting application lies in models of age-structure, where the parameter x is
interpreted as the age, and a discrete contact matrix for age cohorts can be transformed
into a kernel function. We can extend the presented models with more complex
representation of generation time like an SEIR-model in a straightforward manner,
which can effect the speed and peak of the wave.

Another interesting topic for further investigation would be the implementation
of vaccination as it is a subject of high interest for public health professionals; it is not
easy to anticipate the effect on the optimal control results. It seems it should be more
beneficial to have strong mitigation before and during vaccination to avoid health
costs, but on the other hand, when vaccine introduction takes too long or the efficacy
is too low, restrictions should be loosened. Furthermore, optimization of vaccination
administration with limited resources could be possible as well. In scenarios where a
new pathogen is introduced in an almost completely susceptible population, those
effects are rather negligible and the presented model assumptions are sufficient.
Another potential subject of research is the inclusion of households, e.g., using the
strategy described in Dönges [22]. Using the parameters and knowledge gained from
this work, we can implement the ABM model including households, and perform
parameter estimation to find reasonable values for k∗ in the integro-differential SIR-
model. The optimization of system complexity should be tailored to the specific
application, facilitating a comprehensive grasp of the system’s inherent mechanisms.
This entails a balance between the topical requirements and the mathematics at hand,
so that it is possible to aim for an feasible and effective implementation of even highly
sophisticated systems.
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A Existence and uniqueness of solutions of the SIS-model

The proof of uniqueness of solutions of the SIR-model made some theory redundant
that was previously performed for the SIS-model. However, we decided to publish
the most relevant parts of it in this appendix.

Consider an SIS-version of eqns. (8.1), wlog setting β = γ = 1. Then, this equation
reads in fix point form as

z(x) = (1− z(x)) ·
∫ 1

0
z(y) · k(x− y) dy. (8.21)

The trivial disease free equilibrium of the model (8.21) is given by z ≡ 0. Before
dealing with the question, whether there might exist other, non-trivial equilibria, we
will first prove

Lemma 8.2. Let z : [0, 1] → [0, 1] be a continuous solution of the fix point equa-
tion (8.21). Then z is symmetric, i.e. z(x) = z(1− x) for all x ∈ [0, 1].

Proof. It holds that

z(1− x) = (1− z(1− x))
∫ 1

0
z(y) k(1− x− y) dy. (8.22)

After substituting s = 1− y in the integral we arrive at

z(1− x) = (1− z(1− x))
∫ 1

0
z(1− s) k(s− x) ds. (8.23)

Hence, z̃(x) := z(1− x) solves

z̃(x) = (1− z̃(y))
∫ 1

0
z̃(y) k(x− y) dy . (8.24)

This implies that z̃ solves the same equation as z. Also, consider the following

Lemma 8.3. Let z : [0, 1] → [0, 1] be a continuous solution of the fix point equa-
tion (8.21). Then either z(x) = 0 for all x ∈ [0, 1] or z(x) > 0 for all x ∈ [0, 1].

Proof. Assume that z(x) 6≡ 0. Then there exists x0 ∈ [0, 1] such that z(x0) = 0 and
wlog z(x0 + δ) > 0 for all 0 < δ < δ0. Due to continuity of k and k0 > 0, there exists a
δ1 > 0, such that k(r) > 0 for all 0 ≤ r < δ1. Thus, it follows

z(x0) = (1− z(x0))
∫ 1

0
z(y) k(|x0 − y|) dy (8.25)

≥ (1− z(x0))
∫ min(δ0,δ1)

0
z(x0 + r) k(r) dr > 0. (8.26)

Next, we define χ[z](x) :=
∫ 1

0 z(y) k(|x− y|) dy. Then the fix point equation (8.21)
reads as

z = Φ[z] :=
χ[z]

1 + χ[z]
. (8.27)

We show, that any non–trivial solution of (8.21) has to satisfy a–priori bounds
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Lemma 8.4. Let z : [0, 1] → [0, 1] be a non–trivial solution of z = (1− z)χ[z]. Then
for all x ∈ [0, 1] we find

k1 − 1
k1

≤ z(x) ≤ K− 1
K

. (8.28)

Proof. To show the upper bound: By z(x) > 0, we know χ[z](x) > 0 and therefore
z = χ[z]/(1 + χ[z]) < 1. If z(x) < 1, then χ[z](x) < K and due to χ[z] < K we get
z(x) < K/(1 + K). Iterating this, for all n ∈N it holds

z(x) <
Kn

1 + K + · · ·+ Kn =
(K− 1)Kn

Kn+1 − 1
=

K− 1
K− K−n (8.29)

Passing to the limit n → ∞ yields z(x) ≤ (K − 1)/K. On the other hand, if z is
non–trivial, then due to Lemma 8.3, there exists an ε > 0 such that z(x) > ε for all
x. Hence χ[z](x) > εk1 and using z = χ[z]/(1 + χ[z]) as well as the monotonicity
of the function x 7→ x/(1 + x) we get z(x) > εk1/(1 + εk1). Iterating again between
estimates for χ[z] and z finally yields

z(x) >
εkn

1
1 + εk1 + · · ·+ εkn

1
=

εkn
1

1 + εk1(kn
1−1)

k1−1

= ε

[
k−n

1 +
εk1

k1 − 1
(1− k−n

1 )

]
(8.30)

for all n ∈N and after passing to the limit n→ ∞ we get z(x) ≥ (k1 − 1)/k1.

As an immediate consequence of Lems. 8.3 and 8.4 we obtain the following:
Let z : [0, 1] → [0, 1] be a non–trivial solution of z = (1 − z)χ[z]. Then for all
x ∈ [0, 1], we have χ[z](x) ∈ Mχ := [k1 − 1, K − 1] . Also, we conclude that if
K = maxx

∫ 1
0 k(|x− y|) dy ≤ 1, then no non–trivial solution of eqn. (8.21) can exist.

To prove the existence of non–trivial solutions we will apply a fix point argument.
As we know from previous results, possible non–trivial solutions have to satisfy the
bounds of Lem. 8.4. Therefore we define

Mz :=
{

z ∈ C0([0, 1]; R) :
k1 − 1

k1
≤ z(x) ≤ K− 1

K

}
(8.31)

as the subset of continuous functions satisfying the needed bounds. It is immediate
to see that for K > 1, the set Mz is non–empty. We equip M with the usual sup-norm

‖z‖∞ := max
x∈[0,1]

|z(x)| . (8.32)

Lemma 8.5. The operator Φ[z] := χ[z]/(1 + χ[z]) is a self–mapping on Mz, i.e. Φ :
Mz → Mz.

Proof. Let z ∈ M. Then k1 − 1 ≤ χ[z] ≤ K − 1 and, due to the monotonicity of
x 7→ x/(1 + x), we get

k1 − 1
k1

≤ Φ[z] =
χ[z]

1 + χ[z]
≤ K− 1

K
, (8.33)

hence Φ[z] ∈ Mz.

Lemma 8.6. If K/k2
1 < 1, then the operator Φ : (M, ‖·‖∞) → (M, ‖·‖∞) is a contrac-

tion on M with respect to the sup–norm.
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Proof. Let u, v ∈ M, x ∈ [0, 1] and K/k2
1 < 1. Then

Φ[u](x)−Φ[v](x) =
χ[u](x)

1 + χ[u](x)
− χ[v](x)

1 + χ[v](x)
(8.34)

=
χ[u− v](x)

1 + χ[u](x) + χ[v](x) + χ[u](x) · χ[v](x)
(8.35)

and

‖Φ[u]−Φ[v]‖∞ ≤

∫ 1

0
[u− v](y) · k(|x− y|) dy

1 + 2(k1 − 1) + (k1 − 1)2 ≤
K
k2

1
· ‖u− v‖∞ < ‖u− v‖∞ .

(8.36)

Theorem 8.7. For K/k2
1 < 1, there exists a unique non–trivial solution z∗ ∈ Mz of the

fix point problem (8.21).

Proof. The assertion follows from Banach’s fix point theorem applied to the operator
Φ on the set Mz ⊂ (C0, ‖·‖∞).

If k1 < 1, a solution can be the trivial equilibrium due to 0 ∈ Mz = C0[k1 − 1, K−
1]. While no uniqueness properties can yet be made for the case K/k2

1 ≥ 1, existence
can be guaranteed by

Lemma 8.8. If K > 1 and k1 > 1, the iteration Φ has at least one nontrivial solution
z∗(x) ∈ Mz.

Proof. M is a convex closed subset of the Banach space C0(R, ‖·‖). It is also non-
empty provided K > 1. The lemma of Arzelà-Ascoli says that for a compact and
metric space (S, d) and M ⊂ C[S] equipped with the supremum norm, it holds that
M is compact if it is limited, closed, and equicontinuous. This holds for any C[a, b]
(for a proof refer to standard literature) and thus for Mz = C[k1 − 1, K− 1]. Since Φ
is a continuous mapping of Mz (which is a compact and convex subset of a metric
space) into itself, it has at least one fix point in M according to the fix point theorem
of Schauder [28].

However, this result alone would not be satisfying, as the requirement on the
kernel k being ’flat enough’ to satisfy K < k2

1 is quite strict: Consider a standard SIS
model without any spatial terms. This would be equivalent to the above model with a
Dirac delta kernel at |x− y| = 0, which obviously does not satisfy the above equation.
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Chapter 9

Summary

In this thesis, after an introduction to epidemics and pandemics in general and
Dengue fever adn COVID-19 in particular, the mathematical background for ODEs,
fractional diffusion models, PDEs, and integro-differential models, as well their
application in epidemiology were presented. We focussed on the dynamics of Dengue
fever and COVID-19, yet the models can be used for other infectious diseases as well
if they are adapted to specific properties of the respective problem. Afterwards,
the basics for optimization of target functions using Bayesian analysis (Metropolis
algorithm) and classical Lagrange multipliers were presented.

In the research concerning Dengue fever, a steady-state approximation enabled
us to reduce the SIRUV- to an SIR-model, with which we were able to deal with
an exemplary data set from Jakarta. This enabled a useful parameter estimation
using the adjoint approach and allowed studying the direct impact of seasonal
meteorological conditions on the disease, which we modelled using a time-dependent
transmission rate, represented by a finite Fourier sum. We introduced a mobility
matrix for commuters in order to show the spatial spread of infectious across the
districts of Jakarta. The Metropolis algorithm is used for parameter estimation
and gave a generally good approximation for the districts. We also performed
convergence checks for the parameters of the Metropolis algorithm, which showed
that most parameters are normal distributed, but some show a slightly different
behaviour, which indicates minor cross-correlation between some of the parameters.
To account for the specific properties of Dengue fever (four serotypes and long
immunity against one, but only temporary immunity against the others) a refinement
toward a multistrain model should be considered, along with a more differentiated
modeling that accounts for external influences such as meteorological factors. Also,
spatially dependent models using some of the methods described below can be
applied here.

In the context of the COVID-19, we firstly considered a SEIRD-model with and
without time delay. The model was applied to the spread of diseases during the
first wave in Germany, i.e., the initial phase of the disease dynamics, and the results
demonstrated that the model with time delay and the presented parameter estimation
provided realistic values, especially concerning the detection rate and lethality rate,
which were not accurately known at the time. Additionally, we compared the outcome
of the Metropolis algorithm with an adjoint based approach, which both provided
similar results for the optimal parameter set, yet showed different performances
with respect to computation time. While the Metropolis algorithm featured a slightly
better target function, it was more computationally expensive than the adjoint method.
Ongoing research with respect to the dynamics of COVID-19 is useful, despite it
that it is considered a pandemic anymore; there is still a risk of new variants with
unknown properties, as well as a general risk of new pandemics, so the models are
aimed to be adaptable towards future events, with a focus on practical applicability.
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These two approaches have also been compared in the PDE approach, where the
disease dynamics of a German district during the second wave has been analysed.
There were comparatively few cases in the first wave in this district, so this can be
interpreted as a kind of initial phase of the disease in this region. We set up a SEIR-
model with diffusion and performed parameter estimation using the two approaches,
which both showed similar outcomes and similar values for the transmission-based
parameters, yet different diffusion-based parameters, detection rates and initial val-
ues. We also aim for models that also includes a more international-based approach
of the spatial spread of COVID-19 and its significance.

Three more possibilites to model spatial transmission of infections were presented.
In the traveller-based research paper, we analysed the influence of travellers on the
’regular’ disease dynamics in an SEIRD-model, incorporating a traveller compartment
which take part on other countries’ disease dynamics and play a substantial role in
international propagation of diseases. A sensitivity analysis however indicates that
given a necessity to reduce infection cases, the role of travellers is not as important as
the control of transmission on a local scale.

Fractional diffusion is also a potential way to describe propagation of diseases. In
a more theoretical approach we introduced the necessary mathematical background
and provided reasonable numerical methods in order to set up models using frac-
tional, non-local diffusion. In numerical experiments without data basis, an SI-model
with fractional diffusion was used to demonstrate the scheme and to reveal the de-
pendence on the behavior of the system with respect to the value of the fractional
derivative α. In the case of a regional epidemic, the fractional model predicts that with
a rise in α, the disease will spread rapidly to previously unaffected regions, yet also
suggests a decline in the number of cases in the original epicenter of the pandemic.
In order to meaningfully include fractional diffusion, is also aimed to use parameter
estimation to find reasonable values for the fractional diffusion parameter and the
diffusivity parameter. In the future, several of the presented models cab be applied to
describe specific epidemics (not restricted to Dengue or COVID-19 outbreaks), the
results of space-fractional or even time-fractional partial differential equation models
to epidemiological data and better understand the behavior of disease spread in a
specific area.

In general, the spatial spread of diseases is still a largely unexploited field. The
influence of roads in epidemics can also be analyzed, which can, e.g., include a
combination of 1D- and 2D-diffusion, which can be used to describe the fast diffusion
along major roads.

In a system making use of an integro-differential SIR-model, we set up the equa-
tions of the model and showed uniqueness of the solution. Also, we performed
various numerical simulations and optimal control calculations regarding reducing
the amount of infected, yet also aimed to minimize the control used to contain the
transmission parameter (and thus the infection cases), as it is connected to potentially
high political costs, especially when the current case numbers are fairly low. This
interplay provided interesting results on the spatially and time dependent optimal
control. A comparison to an existing and established agent-based model, which is
assumed to represent reality more closely, verified the approach. Since the computa-
tionally expensive agent-based model can hardly be optimized, due to extremely high
computing efforts have to be spent in it, the optimization of the ’cheaper’ SIR-model
can have practical applications when coupled with the agent-based model. As the
numerical computations have been done with spatially one-dimensional models only,
further research should involve the inclusion of two-dimensional spread. While
several more ’features’ like vaccinations, partial immunity, households (etc.) can
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be included in the integro-differential models, it is specifically important to keep
this model as simple as possible as its important feature is that it is simple enough
to be optimized in significantly smaller times than agent-based models. Further
research should also include a closer investigation of realistic controls; a first ansatz
is presented in the piecewise constant space- and time-dependent controls.

Both the design of the models and the theoretical and numerical concepts this
work presents, require and deserve further research to explore the ’world’ of infectious
diseases and I hope that this work can act at least as a small brick in a large building.
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