Technical and Methodological Improvements to
Mining Software Repositories

JOHANNES HARTEL

Genehmigte Dissertation
zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.),
Fachbereich 4: Informatik, Universitdt Koblenz

Vorsitzende des Promotionsausschusses: Prof. Dr. Karin Harbusch
Berichterstatter: Prof. Dr. Ralf Lammel
Prof. Dr. Alexander Serebrenik
Prof. Dr. Stefano Zacchiroli
Datum der wissenschaftlichen Aussprache: September 4, 2023

January 31, 2024

Abstract

Empirical studies in software engineering use software repositories as data sources
to understand software development. Repository data is either used to answer ques-
tions that guide the decision-making in the software development, or to provide tools
that help with practical aspects of developers’ everyday work. Studies are classified
into the field of Empirical Software Engineering (ESE), and more specifically into
Mining Software Repositories (MSR).

Studies working with repository data often focus on their results. Results are
statements or tools, derived from the data, that help with practical aspects of soft-
ware development. This thesis focuses on the methods and high-order methods used
to produce such results. In particular, we focus on incremental methods to scale the
processing of repositories, declarative methods to compose a heterogeneous analy-
sis, and high-order methods used to reason about threats to methods operating on
repositories. We summarize this as technical and methodological improvements. We
contribute the improvements to methods and high-order methods in the context of
MSR/ESE to produce future empirical results more effectively. We contribute the
following improvements.

We propose a method to improve the scalability of functions that abstract over
repositories with high revision count in a theoretically founded way. We use insights
on abstract algebra and program incrementalization to define a core interface of high-
order functions that compute scalable static abstractions of a repository with many
revisions. We evaluate the scalability of our method by benchmarks, comparing a
prototype with available competitors in MSR/ESE.

We propose a method to improve the definition of functions that abstract over a
repository with a heterogeneous technology stack, by using concepts from declarative
logic programming and combining them with ideas on megamodeling and linguistic
architecture. We reproduce existing ideas on declarative logic programming with
languages close to Datalog, coming from architecture recovery, source code querying,
and static program analysis, and transfer them from the analysis of a homogeneous
to a heterogeneous technology stack. We provide a prove-of-concept of such method
in a case study.

We propose a high-order method to improve the disambiguation of threats to
methods used in MSR/ESE. We focus on a better disambiguation of threats, op-
erationalizing reasoning about them, and making the implications to a valid data
analysis methodology explicit, by using simulations. We encourage researchers to
accomplish their work by implementing ‘fake’ simulations of their MSR /ESE scenar-
ios, to operationalize relevant insights about alternative plausible results, negative
results, potential threats and the used data analysis methodologies. We prove that
such way of simulation-based testing contributes to the disambiguation of threats
in published MSR/ESE research.

Zusammenfassung

Empirische Studien in der Softwaretechnik verwenden Software-Repositories als
Datenquellen, um die Softwareentwicklung zu verstehen. Repository-Daten werden
entweder verwendet, um Fragen zu beantworten, die die Entscheidungsfindung in
der Softwareentwicklung leiten, oder um Werkzeuge bereitzustellen, die bei praktis-
chen Aspekten der Entwicklung helfen. Studien werden in die Bereiche Empirical
Software Engineering (ESE) und Mining Software Repositories (MSR) eingeordnet.

Héaufig konzentrieren sich Studien, die mit Repository-Daten arbeiten, auf deren
Ergebnisse. Ergebnisse sind aus den Daten abgeleitete Aussagen oder Werkzeuge,
die bei der Softwareentwicklung helfen. Diese Dissertation konzentriert sich hinge-
gen auf die Methoden und High-Order-Methoden, die verwendet werden, um solche
Ergebnisse zu erzielen. Insbesondere konzentrieren wir uns auf inkrementelle Meth-
oden, um die Verarbeitung von Repositories zu skalieren, auf deklarative Methoden,
um eine heterogene Analyse durchzufithren, und auf High-Order-Methoden, die ver-
wendet werden, um Bedrohungen fiir Methoden, die auf Repositories arbeiten, zu
operationalisieren. Wir fassen dies als technische und methodische Verbesserun-
gen zusammen um zukinftige empirische Ergebnisse effektiver zu produzieren. Wir
tragen die folgenden Verbesserungen bei.

Wir schlagen eine Methode vor, um die Skalierbarkeit von Funktionen, welche
iiber Repositories mit hoher Revisionszahl abstrahieren, auf theoretisch fundierte
Weise zu verbessern. Wir nutzen Erkenntnisse aus abstrakter Algebra und Program-
minkrementalisierung, um eine Kernschnittstelle von Funktionen hoherer Ordnung
zu definieren, die skalierbare statische Abstraktionen eines Repositorys mit vie-
len Revisionen berechnen. Wir bewerten die Skalierbarkeit unserer Methode durch
Benchmarks, indem wir einen Prototyp mit MSR/ESE Wettbewerbern vergleichen.

Wir schlagen eine Methode vor, um die Definition von Funktionen zu verbessern,
die iiber ein Repository mit einem heterogenen Technologie-Stack abstrahieren, in-
dem Konzepte aus der deklarativen Logikprogrammierung verwendet werden, und
mit Ideen zur Megamodellierung und linguistischen Architektur kombiniert wer-
den. Wir reproduzieren bestehende Ideen zur deklarativen Logikprogrammierung
mit Datalog-nahen Sprachen, die aus der Architekturwiederherstellung, der Quell-
codeabfrage und der statischen Programmanalyse stammen, und iibertragen diese
aus der Analyse eines homogenen auf einen heterogenen Technologie-Stack. Wir
liefern einen Proof-of-Concept einer solchen Methode in einer Fallstudie.

Wir schlagen eine High-Order-Methode vor, um die Disambiguierung von Bedro-
hungen fiir MSR/ESE Methoden zu verbessern. Wir konzentrieren uns auf eine
bessere Disambiguierung von Bedrohungen durch Simulationen, indem wir die
Argumentation tiber Bedrohungen operationalisieren und die Auswirkungen auf
eine giiltige Datenanalysemethodik explizit machen. Wir ermutigen Forschende,
»gefalschte* Simulationen ihrer MSR/ESE-Szenarien zu erstellen, um relevante
Erkenntnisse iiber alternative plausible Ergebnisse, negative Ergebnisse, potenzielle
Bedrohungen und die verwendeten Datenanalysemethoden zu operationalisieren.
Wir beweisen, dass eine solche Art des simulationsbasierten Testens zur Disam-
biguierung von Bedrohungen in der verdffentlichten MSR /ESE-Forschung beitragt.

Acknowledgements

I thank my family, especially, Alexander, Christine, Linda and Lukas, for having
patience with me, and for helping in many other areas of my life. I thank Ralf for
giving me the chance to work freely, without distractions, and without imposing
any limitations on thinking. I thank Lukas, Marcel, Daniel and Philipp for sharing
the same enthusiasm for science, and for all the discussions. I thank the Koblenz
friends, Olaf, AK, Lubosz, Henny, Stef, Alex (and many others) for the past and
future parties, and for the company.

Short Biography

2008 - 2013 B.Sc. Computer Science at University of Koblenz-Landau.
2013 - 2016 M.Sc. Computer Science at University of Koblenz-Landau.
2016 - 2022 Research Assistant at University of Koblenz-Landau.

2022 Vrije Universiteit Brussel (VUB)

Contents

1 Introduction 1
1.1 Mining Software Repositories 1
1.2 Technical and Methodological Challenges 2

1.2.1 Technical Challenges 2
1.2.2 Methodological Challenges 3
1.3 Technical and Methodological Contributions 4
1.3.1 Incremental Map-Reduce on Repository History 5)
1.3.2 Repository Mining with Datalog 6
1.3.3 Simulation-Based Testing 7
1.4 Summary of the Delta to the Publication 7
1.5 Road-map of this Thesis 8
1.6 Metamodel for the Chapters 3-5 8

2 Overview 9
2.1 Publication List L 9
2.2 Publication Delta o 9
2.3 Contribution Types 11

2.3.1 Empirical Contributions 11
2.3.2 Technical and Methodological Contributions 11
2.4 Publication Timeline, 13
2.4.1 Classification of APIs by Hierarchical Clustering. 13
2.4.2 Systematic Recovery of MDE Technology Usage 14
2.4.3 EMF Patterns of Usage on GitHub 15

2.4.4 Empirical Study on the Usage of Graph Query Languages in
Open Source Java Projects 16

2.4.5 Understanding MDE projects: megamodels to the rescue for
architecture recovery L. 17
2.4.6 Incremental Map-Reduce on Repository History 18

2.4.7 Reproducible Construction of Interconnected Technology
Models for EMF Code Generation 18

2.4.8 Operationalizing Threats to MSR Studies by Simulation-
Based Testingo 19

2.4.9 Operationalizing Validity of Empirical Software Engineering
Studies 20

3 Incremental Map-Reduce on Repository History 21

3.1 Introduction 21
3.1.1 The Scalability Challenge 23
3.1.2 The Topleet Solution 24
3.1.3 Summary of this Chapter’s Contributions 25
3.1.4 Summary of the Delta to the Publication 26
3.1.5 Micro road-map of this Chapter 26

3.2 Motivation 27
3.2.1 Migration to Distributed Map-Reduce (DJ-Rex) 27
3.2.2 Domain-Specific Languages (Boa) 28
3.2.3 Reduction of Redundancies (LISA) 29

3.3 Background 30
3.3.1 Handmade Incrementalization 30
3.3.2 General Incrementalization 32

3.4 Technical and Methodological Improvements 38
3.4.1 Representing Repository History 38
3.4.2 Processing Repository History 39
3.4.3 Implementing the Topleet Prototype 41
3.4.4 Map-Reduce Operations 46
3.4.5 Advanced Infrastructure 48

3.5 Evaluation 50
3.5.1 Solutions 50
3.5.2 Software, Hardware and Default Parameters 50
3.5.3 Variability 50
3.5.4 Subject Repositories 51
3.5.5 Correctness 51
356 Time Lo 51
3.5.7 Memory o7
3.5.8 Computation Infrastructure 57
3.5.9 Distribution oo 57

3.6 Conclusion 59

4 Repository Mining with Datalog 60

4.1 Introduction 60
4.1.1 The Heterogeneity Challenge 60
4.1.2 A Declarative Solution using Datalog 61
4.1.3 Properties of Datalog 62
414 A Small Example L 63
4.1.5 Summary of this Chapter’s Contributions 64
4.1.6 Summary of the Delta to the Publication 64
4.1.7 Micro road-map of this Chapter 65

4.2 Motivationo 66

4.3 Backgroundo 68
4.3.1 Declarative Logic Programming in Datalog 68
4.3.2 Megamodeling and Linguistic Architecture 74

4.4 Technical and Methodological Improvements 78
4.4.1 Representational Mapping 78

i

6

7

4.5

4.6

4.4.2 Referencing the Repository and it Fragments
4.4.3 A Catalog of Accessor Functions
Evaluation o
4.5.1 Locating Repositories oL
4.5.2 Initial Classification of Files by Language
4.5.3 Selection of Repositories
4.5.4 Mining the EMF Pattern Catalog
455 Results.
4.5.6 Modeling Group Membership
4.5.7 Analyzing Mining Performance
Conclusion

Simulation-Based Testing

5.1

0.2

2.3

5.4

Introductiono
5.1.1 Meta Research Questions
5.1.2 Relevance
5.1.3 A New Validation Strategy: Simulation-based Testing
5.1.4 Meta-Validation
5.1.5 Summary of this Chapter’s Contributions
5.1.6 Summary of the Delta to the Publication
5.1.7 Micro road-map of this Chapter
Motivationo
5.2.1 What is a Valid Method?
5.2.2 Typical Strategies
Technical and Methodological Improvements
5.3.1 A New Validation Strategy: Simulation-Based Testing
5.3.2 A Simple Example: Logistic Regression For Defects
Evaluation
54.1 Meta-Validation oL
5.4.2 Dependent Observation (Case 1)
5.4.3 Prediction or Causation (Case 2)
5.4.4 Control of Variables (Case 3)
5.4.5 Correlated Variables (Case 4)
5.4.6 Distribution Types (Case 5)
5.4.7 Experimental Research (Case 6)

Conclusion

Limitations

7.1

7.2

Incremental Map-Reduce on Repository History (Chapter 3)
7.1.1 Core Interface
7.1.2 Pure Functions L.
7.1.3 Recursion
7.1.4 Abstracting Across Individual Revisions
7.1.5 Usability of Map-Reduce
Repository Mining with Datalog (Chapter 4)
7.2.1 Limitations of Datalog

1ii

100
100
104
109
109
110
114
116
120
122
128

134

8

9

7.2.2 Accessing the Repository by Pure Functions 138

7.2.3 Usability of Datalog 138
7.3 Simulation-Based Testing (Chapter 5) 138
7.3.1 Technical Limitation 139
7.3.2 Plausibility Limitation 139
7.3.3 Conclusions on Reality based on Simulated Data 139
Related Work 140
8.1 Technical Contributions 140
8.1.1 Languages and Interfaces 140
8.1.2 Scalable Computation 144
8.1.3 Storage 145
8.1.4 Structure in Time and Space 146
8.2 Methodological Contributions 147
8.3 Empirical Contributions 149
Conclusion 152

iv

Chapter 1

Introduction

1.1 Mining Software Repositories

Important practical aspects of developers’ everyday work manifest in software repos-
itories [BRBT09, KGB*14]. Typical studies in MSR and ESE attempt to better un-
derstand software development by employing this data, in terms of mining software
repositories [CIC16]. Using such existing data source for research is an alternative
to experimenting in software development. Experimenting is often intrusive and
expensive (see [MB20, JLY"19, TLPH95, SHH*05]).

Empirical studies in software engineering use software repositories as data sources
to understand software development. In particular, research studies models, ab-
stractions, variables, or metrics that reflect API migration [SPNT18, RvDV17,
RvDV12, RvDV13|, developers experience [RRC16, RD11, ETLI11], software
changes [MPS08, SZZ05, YMNC04, KYM06, MSR17], entropy of changes [Has09],
infrastructure as code [OZR22, OZVR21], dependencies [SPN*18 HV15, OBLI0,
RvDV13], network metrics [ZNO8], diversity [VPRT15], similarity [LKMZ12,
APMO04, CCP0O7, MMWBI13, SL16, HALI1S8|, architecture [LLN14], documenta-
tion [AHS14], source code [ETL11, CDR18, FOMM10, GKSDO05, CCPO07], static
code attributes [MGFO07], change bursts [NZZ"10, Cho20], corrective engineering,
bugs, defects and fixes [MWO00, MGF07, RD11, Has09, ZN08, MPS08, SZZ05,
NZZ*10, FBF*20], commit time [ETL11, SZZ05], pull requests [GPvD14, BPWS20,
GZSvD15, GSB16, YWF*15, TDH14], open-source collaboration [Cho20], branch-
ing [KPBI18], tests [BFST18], OO-metrics [BBM96], asserts [CDO*15, KL17],
social factors [FBF™20, VPR*15] model-driven technologies [KMK*15, HHLIS,
RHC*19, RHH'17], project popularity [AHS14, BHV16, WL14], languages us-
age [BTL*13, SHL*"19], software builds [MAH10, GACZ19] or reviewer assign-
ment [RRC16, SALJPM18|.

Repository data is either used to answer questions that guide the decision-making
in the software development (e.g., [Has06, Has08, TH18, VPR"15]), or to provide
tools that help with practical aspects of developers’ everyday work (e.g., [ZNOS,
RRC16]). Studies are classified into the field of Empirical Software Engineering
(ESE), and more specifically into Mining Software Repositories (MSR).

1.2 Technical and Methodological Challenges

Studies working with repository data often focus on their results. Results are state-
ments or tools, derived from the data, that help with practical aspects of soft-
ware development. This thesis focuses on the methods and high-order methods
used to produce such results!. In particular, we focus on incremental methods to
scale the processing of repositories, declarative methods to compose a heteroge-
neous analysis, and high-order methods used to reason about threats to methods
operating on repositories. We summarize this as technical and methodological im-
provements, motivated by previous work facing the same, and a series of related chal-
lenges [BRB109, KGB*14, KPB18, Has08, APPG19, DRNN14, DNRN15, SPN*18,
TDH14, RvDV17, STAH09, SAH10, RRH*20].

For instance, before authors can study results on library updates in [SPN*18],
four weeks of data extraction are needed (scalability). To better understand ver-
sioning conventions in [RvDV17], authors need an aggregate analysis runtime of
5.5 years (scalability). Authors of [PZST20] need three months on a 56-core server
before they can study refactorings (scalability). In [RRH'20], Java heuristics are
needed to understand the heterogeneous technology stack of MDE technology (het-
erogeneity). To study social and technical factors in the context of pull requests,
authors of [TDH14] rely on a valid method of using AIC [Aka98]. AIC is needed to
decide between structurally different models to prevent threats of under- and overfit-
ting (validity). Such challenging scenarios require effective methods and high-order
methods to work with repository data.

We contribute the improvements to methods and high-order methods in the
context of MSR/ESE to produce future empirical results more effectively.

1.2.1 Technical Challenges

Two technical challenges are handled in this thesis. They relate to mining the repos-
itory for variables, metrics, or abstractions, collecting raw data from the repository.
This is the first step for many empirical studies. We identify and handle two chal-
lenges, i.e., the scalability and heterogeneity challenge, and explain them in the
following two paragraphs.

Scalability Challenge Typical studies may benefit from data on the full re-
vision history of the software under version control [GHJ98, GKMS00, Has06].
To this end, we may need to compute abstractions of the repositories, that do
not only reflect the most recent revision, but abstractions that reflect all or
many revisions [KPB18, APPG19, LDKBJ22|. This can improve understanding
of the software development process, e.g., if the upcoming analysis builds ad-
vanced models that abstract over the time, or the branching structure of the

1'We use the term high-order method to describe methods that operate on methods. Such high-
order methods may solve methodological challenges by the study of methods used in empirical
research. While not explicitly talking about high-order methods, we can find the same distinction
between methods and high-order methods in recent statistic work, like in Gelman et al. [GHV20],
where simulations with fake data (the high-order method) are used to better understand how the
models are fit (an alias for several methods central to statistic science).

repository. Studies including such data and advanced models can be found
here [PFST20, SPN*18, AHS14, KPB18, GdCZ19, VPR*"15, FLHV22]. However,
compared to computing abstractions of single revisions, computing abstractions of
all or many revisions in a repository is expensive. If studying repositories with
more than a few revisions, which is not unusual, we meet a scalability challenge

(see [STAHO09, APPG19, LDKBJ22]).

Heterogeneity Challenge Typical studies that use repository data to under-
stand software development need to understand a heterogeneous (or diverse) tech-
nology stack, too, that potentially manifests in a repository and its fragments [HK06,
PML15, SBHT19]. For instance, empirical studies do not get rich abstractions of the
source code for free (ASTs). Studies need to understand the code in its surrounding,
including technological aspects, like the build system [MAH10, LPS11, GdCZ19],
dependencies management [LPS11, SB15], various possible interoperating lan-
guages [BTLT13], infrastructure as code [OZR22, OZVR21], or MDE technology
invoking code generation [ZS06]. Even when limiting following up analysis to a
very specific mixture of technologies (e.g., to mobile apps [SPNT18] or graph query
languages [SHL19]), an initial understanding of the technology stack, used in a
repository, is still needed as an inclusion/exclusion criteria. Defining abstractions
over a heterogeneous technology stack can be complicated due to the flexibility
of how technologies compose and interrelate (see work on documenting technolo-
gies and languages in software projects, which is motivated by such heterogene-
ity [FLV12, LV14, HLV17, HHL*17, Hei22, RRH*18, RRH20]). Concrete analysis
meets a challenge with such heterogeneous repositories.

1.2.2 Methodological Challenges

We define a methodology to be the set of methods used in a study. Methodological
challenges refer to problems with this set of methods and can be solved by the
study of methods. Methodological challenges are not necessarily related to concrete
results. They are related to results of a method (or set of methods) in a broader
sense. We handle one methodological challenge that we refer to as the walidity
challenge. Such challenge aims at making statements about the validity of methods
under clear conditions. We refer to methods dedicated to the study of methods as
high-order methods.

Validity Challenge A typical methodology in MSR/ESE does not interpret the
raw abstractions, metrics, or variables, mined from a repository. Instead, it com-
plements the raw variables, with unobserved or unobservable variables, which are
assumed to be relevant to understand software development. This might be con-
founding variables, or interesting parameters, relevant to understand a relationship
between other variables. To this end, studies use methods to build complex models
of the software development, to infer (learn) the unobserved aspects. See studies
that follow such practice [KSAT13, FBF*20, VPR"15, BHV16, FLHV22, SHL*19,
MWO00, YXF*+20, JTH21, NZZ*10, RRC16, ZPZ07, ZN08, TMHI16, TDH14, TH18].

Assessing the validity of data analysis methodology, that aims to understand and
use such variables, and typical relationships between variables, within the limits of

3

precisely defined threats, is often challenging. This motivates many books that
help with data analysis methodology in general [CCWA13, McE20, IR15, Aggl5,
Har15, DB18, GH06, GHV20|. This literature might not immediately be applicable
to MSE/ESE. For software engineering, in particular, a literature review of frequent
statistic errors that may threaten a methodology can be found in [RDCJ18].

The methodological complexity of data analysis reaches its peak in understanding
and using causation, crucial for every scientific domain. A general discussion of lead-
ing authors examining causation can be found in [IR15]. Other examples of concrete
challenges that arise are the sampling process of such variables [MHJ15, DAB21],
controlling variables [TH18] or correlated variables [JTH21]. Such challenges com-
plicate the methodology of MSR/ESE research in that the validity may sometimes
not be clear and threats are hard to disambiguate.

1.3 Technical and Methodological Contributions

This thesis includes a subset of the contributions published in three papers.
The critical mass of this thesis, however, cannot exactly be isolated to the
three publications.

We will provide an exhaustive list of publications, done over the past years in
our working group, with overlapping authorship, that is strongly relevant for
the critical mass of this thesis. Our previous publications are relevant to this
thesis for the following reasons:

e The challenges and motivations for this thesis, and the contributed
improvements to (high-order) methods, can be found in our previous
publications.

e The (high-order) methods presented in this thesis are developed in
the background of the publications contained in the list and are already
used in some of them silently.

The following list enumerates all publications, where titles in bolt are formally
included in this thesis. A detailed overview of all publications, including their con-
nections, is given in Chapter 2.

Ref. Year Included Title

[HAL18] 2018 Classification of APIs by Hierarchical
Clustering.

[RRHT18] 2018 Systematic Recovery of MDE Technol-
ogy Usage

[HHL18] 2018 Chapter 4 EMF Patterns of Usage on
GitHub

[SHL*19] 2019 Empirical Study on the Usage of Graph
Query Languages in Open Source Java
Projects

[HL20] 2020 Chapter 3 Incremental Map-Reduce on
Repository History

[RRH*20] 2020 Understanding MDE projects: meg-
amodels to the rescue for architecture
recovery

[HHL20] 2020 Reproducible Construction of Intercon-

nected Technology Models for EMF
Code Generation

[HL22] 2022 Chapter 5 Operationalizing Threats to MSR
Studies by Simulation-Based Test-
ing

[HL23] 2023 Chapter 5 Operationalizing Validity of Em-
pirical Software Engineering Stud-
ies

The publications included in this thesis and the corresponding contributions can
be summarized as follows.

1.3.1 Incremental Map-Reduce on Repository History

Studies working with abstractions of repositories with a high revision count face a
scalability challenge.

We propose a method to improve the scalability of functions that abstract over
repositories with high revision count in a theoretically founded way. We use insights
on abstract algebra and program incrementalization to define a core interface of
high-order functions that compute scalable static abstractions of a repository with
many revisions. Extended map-reduce primitives are built on top of the core in-
terface so that actual users can compose complex abstractions using the primitives,
without noticing the underlying technical efforts on incrementalization. We thereby
provide the first scaling solution that uses incrementalization to mine repositories.

This stands in contrast to previous work, assuming that incrementalization is not
applicable in MSR/ESE [SJAH09].

The mechanism that we present is generally applicable to circumvent bookkeep-
ing, with is typically needed when manually applying program incrementalization.
We illustrate and evaluate the improvements by a concrete empirical placeholder,
using map-reduce primitives to compute and aggregate cyclomatic complexity met-
rics for the files part of a revision. Previous work did show the successful use of
map-reduce in the context of MSR/ESE [SJAH09].

Incrementalization is orthogonal to other options to improve the scalability. We
show this by also enabling the reduction of redundancies and distributed processing
in our prototype. We thereby manage to better compare to existing competitor in
MSR/ESE.

We evaluate the scalability of our method by benchmarks, comparing a prototype
with available competitors in MSR/ESE. We compare with LISA [APPG19] that
reduces redundancy and with DJ-Rex [SJAH09, SAH10] that migrates an analysis
to a distributed map-reduce framework. Our prototype outperforms both in terms
of the time needed to process a repository and uses less memory than LISA.

1.3.2 Repository Mining with Datalog

Studies working with abstractions of repositories with a very heterogeneous tech-
nology stack may face difficulties composing functions, due to the flexibility of how
technologies compose and interrelate.

We propose a method to improve the definition of functions that abstract over a
repository with a heterogeneous technology stack, by using concepts from declarative
logic programming (in particular Datalog [DEGV01, GHLZ13]) and combining them
with ideas on megamodeling and linguistic architecture (see [FLV12, LV14, HLV17,
HHL*17, Hei22, RRH"18, RRH"20]). We reproduce existing ideas on declarative
logic programming with languages close to Datalog, coming from architecture recov-
ery [MMWO02, MTO01, TMO03], source code querying [HVAMO06], and static program
analysis [BS09, SBEV18], and transfer them from the analysis of a homogeneous to
a heterogeneous technology stack. In particular, we facilitate understanding a com-
plex technology stack in a repository by a bottom-up, step-by-step, and modular
classification of the repository, its fragments, and the involved technologies, using
Datalog rules. The method finally leads to a non-trivial understanding of the repos-
itory and the involved technologies in the large. Results conform to schemata from
previous work on megamodeling and linguistic architecture, which are developed to
document how complex technologies and languages manifest in software projects.

Our method facilitates modularity to fight the heterogeneity present in a tech-
nology stack. We use modular rules to infer classifications from other existing classi-
fications. Rules produce classifications that conform to ideas on megamodeling and
linguistic architecture, ideas that have proven to be well suited to describe the com-
plex composition of technologies in previous work [FLV12, LV14, HLV17, HHL"17,
Hei22, RRH"18, RRH"20]. Starting with basic classifications, e.g., of the revision’s
resources, our method uses modular Datalog rules that trigger more complex classi-
fications, e.g., of the build system, Java, XML, or MDE technology. Finally, we may
apply overall complex classification of technology patterns which might be part of

the repository. Our classifications can be read like proof-derivations, which helps to
trace interrelations between modular rules, separately classifying independent parts
of technologies.

We provide a prove-of-concept of such method in a case study. We apply the
previously reoccurring ideas from architecture recovery [MMWO02, MTO01, TMO03],
source code querying [HVAMO6], and static program analysis [BS09, SBEV18], to
a novel, heterogeneous context, studying the Eclipse Modeling Framework (EMF).
EMF is a very heterogeneous technology combining XML, Java, OSGI and various
build systems in its application [SBMPOS8]. This heterogeneous context requires a
more flexible access to the repository and its fragments. The case study defines and
runs the Datalog rules to mine EMF technology patterns. We step-by-step classify
different artifacts, part of EMF, find relationships (code vs. model vs. generator),
and finally do a high-level classification that detects specific EMF technology usage
patterns. We separate the rules for all technologies, and finally apply rules that
classify relationships. We apply the mining to GitHub repositories.

1.3.3 Simulation-Based Testing

We propose a high-order method to improve the disambiguation of threats to meth-
ods used in MSR/ESE. Data analysis methods, like regression modeling, statistic
tests or correlation analysis, are in active use with the aim to understand and use
software engineering data to improve software engineering practice. Assessing the
validity of data analysis methodology in this context, within the limits of precisely
defined threats, is challenging. We focus on a better disambiguation of threats, op-
erationalizing reasoning about them, and making the implications to a valid data
analysis methodology explicit, by using simulations. We encourage researchers to
accomplish their work by implementing ‘fake’ simulations of their MSR /ESE scenar-
ios, to operationalize relevant insights about alternative plausible results, negative
results, potential threats and the used data analysis methodologies. The simulation
replaces real data by ‘fake’ data, substituting observed and unobserved variables,
related to a real scenario, with synthetic variables, carefully defined according to
plausible (or controversial) assumptions on the scenario. The simulation allows to
critically explore how the methodology reacts in such a transparent scenario. This
is not possible on real data, since the reality is never fully transparent. A simulation
thereby manifests as an artifact that can accomplish research by disambiguating
its threats and their impact. We prove that such way of simulation-based testing
contributes to the disambiguation of threats in published MSR/ESE research.

1.4 Summary of the Delta to the Publication

This thesis is based on three central publications.

o Chapter 3 (Incremental Map-Reduce on Repository History) is published
in [HL20].

« Chapter 4 (Repository Mining with Datalog) is published in [HHL18]. This
thesis includes the method proposed in [HHL18]. The empirical results com-

7

puted in the case study of [HHL18|, using the method, are associated with
Heinz [Hei22]. We discuss the case study as a proof-of-concept of our method.

o Chapter 5 (Simulation-Based Testing) is published in [HL22, HL23].

Other publications, that are strongly related but not directly included, are listed
in Chapter 2. Details on the correspondence between publications and thesis will
be discussed within each chapter. A detailed overview is given in Chapter 2.

1.5 Road-map of this Thesis

Chapter 2 starts with an overview of the contributions of this thesis, describing the
interrelations and connecting it to a set of other publications done in the working
group. The Chapters 3-5 cover the central contributions included in the thesis.
Most parts of the Chapters 3-5 can be read isolated. We summarize limitations of
all contributions in Chapter 7. The related work will be discussed in Chapter 8. For
the conclusion and future work, see Chapter 9.

1.6 Metamodel for the Chapters 3-5

The Chapters 3-5 will follow the same metamodel:

e Each chapter will start with an introduction section.

« A motivation section reviews selected work and illustrates challenges that mo-
tivate the contribution.

» A background section summarizes established knowledge that backs the con-
tribution. Some content in the background sections has never been discussed
in the context of MSR/ESE before. We try to keep the background sections as
close to the original contributions of this thesis as possible, not introducing any
additional toy examples. Hence, the presentation in the background sections
can already be considered as an original part of each chapter’s contribution.
The background part will be skipped in Chapter 5 as there is no previous work
relevant for the contribution in the context of MSR/ESE.

o The main part of each chapter introduces the details of the contribution.

Hereafter, the evaluation is presented.

o Finally, a conclusion for the individual chapter is presented.

The related work is collectively discussed in Chapter 8.

Chapter 2

Overview

This chapter gives an overview of the composition of this thesis by the means of
iterating through its development process. We will discuss the relevant publications.

2.1 Publication List

We start with a chronological list of all publications that can be found in the close
context of this thesis. The publications can be found in Table 2.1. The publications
are done by our working group, at the University of Koblenz-Landau, Germany, and
in cooperation with a working groups from the University of L’Aquila, Italy.

Table 2.1 is composed as follows: The publications in bolt include the cen-
tral contributions of this thesis. The authorship of three of them ([HL20], [HL22]
and [HL23]) can entirely be associated with this thesis (and Johannes Hértel). Con-
crete empirical results of the case study published in [HHL18] (on the usage of EMF
on GitHub) are associated with Marcel Heinz and central to his thesis (see [Hei22]).
This thesis will sketch the case study, since we need it as a proof-of-concept for
the method we proposed to mine a heterogeneous technology stack. The technical
and methodological insights of using Datalog as a method for mining, are entirely
associated with Johannes Hartel and this thesis. We will again point out this detail
on the authorship in the remainder of this chapter and in Chapter 4.

The remaining publications of Table 2.1 are stepping stones, taken on the way
to this final document. Not all, but most publications include major contributions
attributed to other leading authors. The full list of publications is discussed in this
chapter, to understand the broader context, the development of this thesis, and the
relations among the publications. In this chapter, we will acknowledge how work
builds on each other, how ideas evolve, get reused, and are made more mature over
the time. This chapter will present the big picture.

2.2 Publication Delta

This thesis reuses passages of the original publications. We will improve the descrip-
tion of the contributions, but we will not apply fundamental change to the presented
contributions. For the main publications ([HL20], [HL22, HL23|] or [HHL18]), de-
tails on the delta between publication and thesis can be found in the corresponding

Table 2.1: Table of publications with contributions related and included in this
thesis

Ref. Year Included Title

[HAL18] 2018 Classification of APIs by Hierarchical
Clustering.

[RRHT18] 2018 Systematic Recovery of MDE Technol-
ogy Usage

[HHL18] 2018 Chapter 4 EMF Patterns of Usage on
GitHub

[SHL*T19] 2019 Empirical Study on the Usage of Graph
Query Languages in Open Source Java
Projects

[HL20] 2020 Chapter 3 Incremental Map-Reduce on
Repository History

[RRH*20] 2020 Understanding MDE projects: meg-
amodels to the rescue for architecture
recovery

[HHL20] 2020 Reproducible Construction of Intercon-

nected Technology Models for EMF
Code Generation

[HL22] 2022 Chapter 5 Operationalizing Threats to MSR
Studies by Simulation-Based Test-
ing

[HL23] 2023 Chapter 5 Operationalizing Validity of Em-
pirical Software Engineering Stud-
ies

10

chapters (Chapter 3, 4 and 5).

2.3 Contribution Types

The contributions included in this thesis are different from standard instances of
empirical research in MSR/ESE. In this thesis, the concrete empirical questions
and results, which are the usual contributions of empirical research, are taken as
placeholders. We use such placeholders to illustrate improvements to methods and
high-order methods used to do empirical research. We summarize this as technical
and methodological improvements in MSR /ESE.

When looking at the publication list (Table 2.1), we will discuss different types of
contributions. We distinguish between empirical contributions that focus on results,
and technical/methodological contributions that focus on methods and high-order
methods. The following sections give a brief description of the types as we use them
in this thesis.

2.3.1 Empirical Contributions

Empirical contributions that use a repository as data source either answer questions
that guide the decision-making in the software development (e.g., [Has06, Has08,
TH18, VPR*15]), or provided tools that help with practical aspects of developer’s
everyday work (e.g., [ZN08, RRC16]). Take the following examples:

« In [VPR*'15], authors focus on statements on the relation between gender
diversity, tenure diversity and productivity. Using such results in decision-
making may guide recruiting departments when composing teams.

« In [ZNO08], models predict defects using network metrics. Such predictions can
be used as a tool to help developers with their everyday work when trying to
find defects.

A set of methods is involved in such studies to collect and analyze the data. We
find regression modelling, computation of network metrics, correlation analysis, or
the Blau index (see [Bla77] for the Blau index). Evolving this set of methods is not
the central contributions of the previous publications.

2.3.2 Technical and Methodological Contributions

Evolving the methods used in such research is equally important. Works may exam-
ine a placeholder question by a set of methods, while contributing an improvement
to the underlying set of methods and its understanding.

Take the example of [LSBV17] that examines cyclomatic complexity, and com-
pare it to [APG17], that illustrates a new method to scalable MSR/ESE analysis
by showing how it computes the cyclomatic complexity. Both works have a fun-
damentally different interest in why they compute cyclomatic complexity. For the
latter, findings on the cyclomatic complexity, the concrete empirical results, are less
relevant. The general technical improvement of the method matters.

11

Take another example of [TMHM17], that examines a set of model validation
methods, and compare it to [TDH14] that examines social and technical factors
while applying AIC [Aka98| as a method to protect against overfitting.

Ideally, a work that aims at answering a concrete empirical question puts less
attention on reinventing methodological and technical aspects. Often, an established
set of methods can be used.

If a publication focuses on improving methods and high-order methods, we fur-
ther distinguish between technical and methodological contributions.

Technical Contributions

We consider technical contributions as those improving methods according to tech-
nical objectives, like scalability, or composability.

For instance, studies may need processing methods that are complicated to im-
plement or hard to scale. For many empirical contributions, correct and efficient
methods for data extraction and data storage are a mandatory prerequisite. Techni-
cal solutions typically apply some sort of code analysis to repositories and its frag-
ments or store related content (e.g., [CJ18, TMET18, SPN*18, FBF+20, DRNN14,
APPG19, STAH09, BPVZ20]).

Several works in MSR contribute technically to the methods used in MSR/ESE
(e.g., [DRNN14, APPG19, SJAH09, BPVZ20]). Often, such solutions try to fa-
cilitate the analysis of repositories and its fragments, without being limiting too
much to concrete empirical questions. They pick up the most relevant technical
characteristics of an MSR/ESE data collection method.

A strategy used in our and other work is to use existing software languages, or
storage mechanisms, and tailor them to the needs of analyzing repositories. Signal/-
Collect queries are run on repositories in [APPG19]; Map-reduce is used in our work
and in [SJAHO09]; domain-specific languages (DSLs) are examined in [DRNN14];
Datalog is examined in our work; graph compression for storage in [BPVZ20]. All
solutions can be used as a technical building block, as methods, to answer a wide
range of potential empirical questions.

Methodological Contributions

We define a methodology to be the set of methods used in a study. Methodological
challenges refer to problems with this set of methods and can be solved by the
study of methods. Methodological challenges are not necessarily related to concrete
results. They are related to results of a method (or set of methods) in a broader
sense. We handle one methodological challenge that we refer to as the wvalidity
challenge. Such challenge aims at making statements about the validity of methods
under clear conditions. We refer to methods dedicated to the study of methods as
high-order methods.

Methodological contributions may include examining the evaluation of meth-
ods, the applicability of quality criteria (like validity), or the meaning of threats in
such context. Selecting the right set of methods to do an empirical study is still
challenging and requires such high-order discussion.

We find related work that executes such high-order discussion of methods,
e.g., methodology on how to build models (e.g., [TMHM17, TH18, JTH21]).

12

In [TMHM17], for instance, model validation techniques are reviewed. This the-
sis follows the same direction, contributing simulations as a high-order method, to
better understand the methods involved in an empirical study and the corresponding
results.

2.4 Publication Timeline

In the following, we iterate Table 2.1 in chronological order and discuss the empirical,
technical and methodological contributions of the publications. We explain how
the contributions relate to this thesis. We also discuss some hidden technical and
methodological relations between the publication that have not been included in the
original papers.

2.4.1 Classification of APIs by Hierarchical Clustering.

Metadata
Authors Johannes Hartel
Hakan Aksu
Ralf Lammel
Venue ICPC

Year 2018 (May)
Reference [HALI1S]

The evolution of this thesis starts with an unsupervised classification model for
Application Programming Interfaces (APIs) published in [HAL18]. The classifica-
tion is done by hierarchical clustering.

APIs are crucial to software development. Building a model for API classes helps
developers to find the right API, e.g., by getting a list of available alternatives for
a given API. This motivation is also picked up in more recent work on the topic
(see [VCR22]). This early publication puts a clear focus on the concrete empirical
result that helps developers to better use APIs. The work also provides a tool for
doing this.

In particular, the model clusters APIs based on code identifiers. The raw data
is mined from JARs that we get from Maven Central. The clustering groups APIs
together that provide syntactically related functionality. The predicted clusters are
compared to preexisting categories, like XML, Security or Database. We use two
baselines of such categories, one from a previous work [RLP13], and one crowd-
sourced classification from Maven Central.

Technical and methodological challenges to involved methods are partially in-
cluded, but they are not the primary focus of this research.

This work includes a concrete technical challenge on scalability, which is to an-
alyze a list of 2.5 million POM files from GitHub. We solve it using distributed
map-reduce, which is not reported in our publication. The usage of map-reduce is
motivated by previous work of Shang et al. [SAH10]. The successful application is
one of the motivations for our future efforts in incrementalizing map-reduce for the
application in MSR/ESE.

13

Methodologically challenging is how the publication builds the model for mak-
ing predictions. The model is fitted using our baseline classifications. The model
includes unknown parameters that decide on alternatives in the classification mecha-
nism, in particular, how the code identifiers are extracted, NLP processing is applied,
and hierarchical clustering works. Parameters are fitted (learned) by a grid-search
going through all possible parameter combinations. Advanced algorithms for explor-
ing the parameter space are not applicable due to its discrete nature. We describe
the parameter space in terms of a feature model which is somehow novel.

However, we also face methodological weaknesses, that we have not been aware
of at this time. Corresponding threats have raised the interest in the later develop-
ment phase of this thesis. Most importantly, the presented work does not follow a
methodology to prevent overfitting. We assume that future work on API clustering
should be more careful about this threat if fitting parameters to existing data. Our
work on simulation-based testing, which appears four years after this publication, is
dedicated to making such threats more explicit.

2.4.2 Systematic Recovery of MDE Technology Usage

Metadata
Authors Juri Di Rocco
Davide Di Ruscio
Johannes Hértel
Ludovico Iovino
Ralf Lammel
Alfonso Pierantonio
Venue ICMT
Year 2018 (June)
Reference [RRHT1§]

About the same time of doing our research on APIs, our working group, and a
working group from University of L’Aquila, started cooperating on the examination
of model-driven engineering (MDE).

MDE [Béz05b, Béz05a, Sch06] has the goal to increase the quality and produc-
tivity in software development by the usage of models, metamodels, model trans-
formations, and model comparisons (note the ambiguity of models in this thesis).
In essence, developers try to work with (high-level) models instead of low-level code
(also considered as model) whenever possible. Often this is done to abstract from
implementation-specific details, that are finally derived from the high-level mod-
els using model transformations. Models may also be used in the communication
between developers, like often done using UML. Adoption of MDE in software devel-
opment is still subject to empirical research and the benefits are discussed controver-
sially, e.g., see work on EMF related technology in [KMK™15], or work on the relation
between UML and software quality (defects) examined in [RHCT19, RHH*17].

To gather raw data on MDE practice, our first publication on this topic proposes
a method to extract the usage of ATL transformations from open-source repositories.

This work is published in [RRH*18].

14

Mining of MDE technology is technically challenging. MDE technology is of-
ten very specific, project content is heterogeneous, and the analysis requires non-
standard methods to understand the different artifact types and how they relate to
each other. The method that we present in [RRH'18] uses heuristics to produce a
graph of connected MDE artifacts located in a subject MDE repository. A heuristic
is implemented in plain Java and queries the file system. The implementation of the
heuristics is very flexible since Java is a general purpose programming language.

However, during the development of the method, we noticed that such flexibility
weakens guarantees that we can give about the heuristics and their execution, e.g., on
modularity and complex interrelationships between them. Implementing heuristics
within a more constrained programming language, with stronger guarantees, but
that still allows mining of the complex artifact types, is the motivation for our
following up efforts using declarative logic programming with Datalog (see next
section).

The work published in [RRH"18] focuses on the technical aspects of recovering
MDE artifacts and relationships. The technical aspects of our recovery method
are presented in depth and evaluated for precision and recall, manually tagging the
expected results.

This publication does not include strong empirical contributions. No advanced
models are built that help to better understand the software development using
MDE techniques. Further, there is no representative sample of software projects
used, since the MDE projects studied come from a curated suite of ATL projects
(ATL Zoo). Such collection is likely to be different from ATL usage in the wild.
However, our publication argues the contributed method to collect raw data on the
relationships between MDE artifacts is still helpful for developers in the concrete
cases, since it can be used to understand the project while onboarding.

A technical insight of this work is that we spotted the first instance of a reoc-
curring technical problem of methods that access the content of repository revisions
through the operating system’s file layer. This indirection typically turns out to
be a performance bottleneck, especially if analyzing multiple revisions of the same
repository. We find related discussions in publications like [APPG19]. In the up-
coming publications of Table 2.1, we solved these issues using virtualized access by
dedicated primitives that immediately map file system access to the repository’s
object storage (using git bare repositories).

2.4.3 EMF Patterns of Usage on GitHub

Metadata
Authors Johannes Hartel
Marcel Heinz
Ralf Lammel
Venue ECMFA
Year 2018 (June)
Reference [HHLI1S§]

A second branch of concurrent research did examine the implications of a data
analysis method with stronger limitations in the programming language, when com-

15

pared to the previous weakly constrained usage of general purpose Java. Such efforts
also aim at the technical challenge of mining heterogeneous MDE technology. The
work is published in [HHL18].

In the publication [HHL18], the empirical placeholder is EMF technology. ATL
and EMF are very related. Both are well-known instances of MDE technology. One
benefit of studying EMF is that the gathered results on EMF usage is relevant
to Heinz [Hei22]. The results conform to a pattern catalog developed by Heinz
that he reports on in the context of a thesis on knowledge engineering. In the
publication [HHL18], but especially in this thesis, we contribute the method used
for mining the heterogeneous technology stack of EMF.

We propose a method to improve the definition of functions that abstract over a
repository with a heterogeneous technology stack, by using concepts from declarative
logic programming and combining them with ideas on megamodeling and linguistic
architecture. We reproduce existing ideas on declarative logic programming with
languages close to Datalog, coming from architecture recovery, source code querying,
and static program analysis, and transfer them from the analysis of a homogeneous
to a heterogeneous technology stack. We provide a prove-of-concept of such method
in a case study.

The method is discussed in detail in Chapter 4. However, there are small dif-
ferences between the publication and the thesis. In the original publication, we use
Apache Jena (a Datalog dialect). Occasionally, our specialize language for mining
is called QegalL due to its original purpose of querying linguistic architecture. In
this thesis, we change the presentation to standard Datalog and improve the related
work discussion on declarative programming. We applied this change to get a more
standardized discussion that better aligns with the related work.

Furthermore, future work on incrementalization is possible with Datalog. Incre-
mentalization was already planned to be part of our future work, but after publishing
the Datalog method, we decided to start with incrementalizing map-reduce as the
more established language for data processing and mining (see [SAH10]). Incremen-
talizing map-reduce is part of the upcoming publications discussed in the context of
Table 2.1. It is the central topic of Chapter 3.

2.4.4 Empirical Study on the Usage of Graph Query Lan-
guages in Open Source Java Projects

Metadata

Authors Philipp Seifer
Johannes Hértel
Martin Leinberger
Ralf Lammel
Steffen Staab

Venue SLE
Year 2019 (October)
Reference [SHL'19]

The next publication focuses on concrete empirical results of examining the usage
of graph query languages on GitHub. The paper is published in the Software Lan-

16

guage Engineering (SLE) community (in [SHL"19]), which shares a natural interest
in empirical data on the usage of (graph query) languages in the wild.

The paper compares the evolution of the usage of available graph query lan-
guages. The technically challenging analysis of the full revision history is limited to
SPARQL and Cypher. To get a detailed picture of the usage of both languages, we
first identify potential occurrences in repositories by analyzing project dependen-
cies. Afterward, we apply heuristics that indicate if a piece of code includes use of
SPARQL and Cypher.

At this time, a predecessor of our Topleet prototype (incremental map-reduce)
was already available, so we used map-reduce code to run the heuristic. Finally,
we examine a set of 7274 repositories and over one million revisions. We did not
report on this since our incremental map-reduce method was not yet published.
The successful application was another motivation for us to keep up with using
map-reduce as a method for the incremental processing of revisions.

Other than that, the publication relies on very basic methods to report and
compare the raw usage data. To some extends, this raw data is interesting since we
render it over more than ten years. Our paper informally explains the evolution of
the languages by characteristic events (like new versions of a graph query language).
At this point, we avoid advanced temporal models, which might have been part of
a more formal set of methods to study such raw data.

The paper includes a very basic regression model. This model tries to capture
the decision of a project for a query language, i.e., if it decides for SPARQL or
Cypher. The methodology to do this again shows some flaws, for instance, we
selected an inappropriate distribution for the output variable. Such flaws are part
of our upcoming work on simulations. Simulations that show the implications of the
wrong distribution form are already included in the online resources of [HL22], and
might appear in an extended journal version of the publication on simulation.

2.4.5 Understanding MDE projects: megamodels to the
rescue for architecture recovery

Metadata
Authors Juri Di Rocco
Davide Di Ruscio
Johannes Hartel
Ludovico Iovino
Ralf Lammel
Alfonso Pierantonio
Venue Software and Systems Modeling
Year 2020 (January)
Reference [RRH'20]

The publication [RRHT20] is a journal version of the previous work, described
in [RRH*18]. The journal version extends the list of heuristic, e.g., adding the anal-
ysis of Acceleo MDE technology. This decreases the number of unrelated artifacts
in the subject MDE projects, to better understand the relationships between the

17

different artifact types. Like in the previous conference version, the contribution of
this journal version is an improvement to the technical method for collecting data.

The work makes the motivation for the proposed methods more explicit by stat-
ing that: ‘diversity of employed languages and technologies blurs the picture making
it difficult to analyze existing MDE-based projects’ (direct citation [RRH20]). The
work also emphasizes the usage of megamodeling as an underlying schema for struc-
turing the extracted data.

2.4.6 Incremental Map-Reduce on Repository History

Metadata
Authors Johannes Hértel
Ralf Lammel
Venue SANER
Year 2020 (February)
Reference [HL20]

In February 2020, the method of using incremental map-reduce to process repos-
itory history was published, which is a technical contribution of this thesis. The
publication is motivated by the successful application of map-reduce in the previ-
ous publications, and by the scalability problems that we repeatedly faced doing
concrete empirical contributions.

We propose a method to improve the scalability of functions that abstract over
repositories with high revision count in a theoretically founded way. We use insights
on abstract algebra and program incrementalization to define a core interface of high-
order functions that compute scalable static abstractions of a repository with many
revisions. We evaluate the scalability of our method by benchmarks, comparing a
prototype with available competitors in MSR/ESE.

This publication is one of the central publications included in this thesis. Details
of this publication will be covered in depth in Chapter 3 of this thesis.

2.4.7 Reproducible Construction of Interconnected Tech-
nology Models for EMF Code Generation

Metadata
Authors Marcel Heinz
Johannes Hértel
Ralf Lammel
Venue JOT
Year 2020 (July)
Reference [HHL20]

A work on the reproducible construction of interconnected technology models is
one of the following up works. It technically relies on our Datalog method used to
mine an EMF repository with a heterogeneous technology stack. The publication
is central to the thesis of Marcel Heinz (see [Hei22]). To some extends, this work
shows a more recent application of the Datalog method, which provides another

18

proof of the applicability. Methodologically challenging aspects of reproducibility
can be found in this publication too.

2.4.8 Operationalizing Threats to MSR Studies by
Simulation-Based Testing

Metadata
Authors Johannes Hartel
Ralf Lammel
Venue MSR

Year 2022 (May)
Reference [HL22]

While most of the previous publications did not involve complex methodology
for building models of software development, unpublished efforts of us did.

In the first years of such efforts, we repeatedly consulted textbooks on modeling
methodology, trying to adapt recipes (typically coming from other domains). How-
ever, we did not have much success with this strategy since the software repository
data turned out to be too different from anything else.

A breakthrough came with the question of how to test if our methodology (the
set of methods we use) works as expected. Motivated by very recent literature on
statistic modeling by McElreath [McE20] and Gelman et al. [GHV20], we started
using simulations. We add a direct citation of the first three sentences of the preface
of [GHV20] to emphasize this trend: "Existing textbooks on regression typically have
some mizx of cookbook instruction and mathematical derivation. We wrote this book
because we saw a new way forward, focusing on understanding regression models,
applying them to real problems, and using simulations with fake data to understand
how the models are fit." (Direct citation of Gelman et al. [GHV20])

In such recent work, models that are the central entities of any methodology to
understand real data, are systematically complemented by models that are run on
simulated ‘fake’ data. Such practice allows making objective statements on whether
the model and methodology work as expected. Transferring such practice to MSR/
ESE requires simulating repositories and software engineering data. We noticed that
this is more systematic than copying established methods from unrelated domains.

The idea evolved and did appear in May 2022 [HL22]. We consider this con-
tribution as a high-order method because it aims at making statements about the
methodology (a set of methods), and does not aim at concrete empirical results.

We propose a high-order method to improve the disambiguation of threats to
methods used in MSR/ESE. We focus on a better disambiguation of threats, op-
erationalizing reasoning about them, and making the implications to a valid data
analysis methodology explicit, by using simulations. We encourage researchers to
accomplish their work by implementing ‘fake’ simulations of their MSR /ESE scenar-
ios, to operationalize relevant insights about alternative plausible results, negative
results, potential threats and the used data analysis methodologies. We prove that
such way of simulation-based testing contributes to the disambiguation of threats
in published MSR/ESE research.

We will describe the details in Chapter 5.

19

2.4.9 Operationalizing Validity of Empirical Software Engi-
neering Studies

Metadata
Authors Johannes Hartel
Ralf Lammel
Venue EMSE
Year 2023
Reference [HL23]

A corresponding journal version was published hereafter.

20

Chapter 3

Incremental Map-Reduce on
Repository History

3.1 Introduction

Empirical contributions in MSR/ESE often rely on data mined from repositories
and its fragments (i.e., revisions, parent-relations, commit-metadata, or resources).
Following up analysis typically depends on a process of abstracting from such raw
repository data, using abstractions that are well-suited to measure relevant aspects
of the software development.

Abstraction or metrics (often also called variable when used in following up
models) may reflect API migration [SPNT18, RvDV17, RvDV12, RvDV13], de-
velopers experience [RRC16, RD11, ETL11], software changes [MPS08, SZZ05,
YMNCO04, KYMO06, MSRI17], entropy of changes [Has09], infrastructure as
code [OZR22, OZVR21], dependencies [SPNT18, HV15, OBL10, RvDV13], net-
work metrics [ZN08], diversity [VPR*15], similarity [LKMZ12, APM04, CCP07,
MMWBI13, SL16, HAL18]|, architecture [LLN14], documentation [AHS14], source
code [ETL11, CDR18, FOMM10, GKSDO05, CCP07], static code attributes [MGFO07],
change bursts [NZZ710, Cho20], corrective engineering, bugs, defects and
fixes [MW00, MGF07, RD11, Has09, ZN08, MPS08, SZZ05, NZZ"10, FBF*+20],
commit time [ETL11, SZZ05], pull requests [GPvD14, BPWS20, GZSvD15,
GSB16, YWF*15, TDH14], open-source collaboration [Cho20], branching [KPB18§],
tests [BFST18], OO-metrics [BBM96|, asserts [CDOT15, KL17], social fac-
tors [FBFT20, VPR*15] model-driven technologies [KMK*15, HHL18, RHC*19,
RHH™17], project popularity [AHS14, BHV16, WL14|, languages usage [BTL*13,
SHL*19], software builds [MAH10, GdCZ19] or reviewer assignment [RRCI6,
SALJPM18].

Abstractions may strongly differ in how they measure the static or dynamic
aspects of the software development that manifest in a repository. When having a
function that abstracts over the repository, we can distinguish between':

» Static Abstractions: We may abstract over single revisions only. Such static

!There might be different terminology describing such difference, like static vs. change, process
or churn. We do not refer to the difference between static and dynamic program analysis. For
examples, see work on defects [MPS08, DLR10]. We stick to static and dynamic.

21

abstractions do not reflect the dynamics of the repository. We can compute
them as functions applied to a single revision and the resources part of it. For
instance, we may compute the abstractions mentioned above statically, e.g.,
the total lines of code, the number of dependencies, or the presence of a given
architecture pattern (in a given revision).

e« Dynamic Abstractions: We may also abstract over more than a single
revision. Such dynamic abstractions allow abstracting over differences between
revisions, over a revision’s past, over its future, or over a given time window
relative to it. We can compute them as functions applied to sets of revisions
and the resources part of it. For instance, we may compute the abstractions
mentioned above dynamically, e.g., aggregates of past lines changed, future
defects, or the entropy of the repository content in a time window (computed
on a set of revisions).

Such abstractions may reuse each other. We may find dynamic abstraction built
on top of static abstractions, e.g., the change (dynamic abstraction) of the total
lines of code (static abstraction). We may find static abstraction built on top of
dynamic abstractions, e.g., the total number (static abstraction) of previous changes
to files (dynamic abstraction). Related work that systematically explores various
forms of such abstractions, e.g., in the context of modeling defects, can be found
here [MPS08, Has09, DLR10].

What static and dynamic abstractions have in common is that we always
associate them with a single revision, or a point in time, where the abstrac-
tion reflects the software development process best. This is necessary for fol-
lowing up models that use abstractions as variables where the point in time,
and the temporal precedence of variables, is typically relevant for claims on
causation. See examples of work using various abstractions to build models
[KSA*T13, FBF*20, VPR*15, BHV16, FLHV22, SHL*19, MW00, YXF*20, JTH21,
NZZ*10, RRC16, ZPZ07, ZN08, TMHI16, TDH14, TH18]. In particular, a static
abstraction is always associated with a specific revision; a dynamic abstraction con-
siders the past and future of, or a time window relative to, a specific revision.

The previous aspects on computing abstraction of revisions bring up a funda-
mental problem with the scalable computation of such abstractions when done for
the repository’s full revision history.

Typical studies may benefit from data on the full revision history of the software
under version control [GHJ98, GKMS00, Has06]. To this end, we may need to com-
pute abstractions of the repositories, that do not only reflect the most recent revision,
but abstractions that reflect all or many revisions [KPB18, APPG19, LDKBJ22].
This can improve understanding of the software development process, e.g., if the up-
coming analysis builds advanced models that abstract over the time, or the branching
structure of the repository. Studies including such data and advanced models can be
found here [PFS*20, SPN*18, AHS14, KPB18, GACZ19, VPR*15, FLHV22]. How-
ever, compared to computing abstractions of single revisions, computing abstractions
of all or many revisions in a repository is expensive. If studying repositories with
more than a few revisions, which is not unusual, we meet a scalability challenge

(see [STAHO09, APPG19, LDKBJ22]).

22

In this chapter, we will focus on the technical challenge to compute static abstrac-
tion of single revisions, but for all or many revisions of the repository (comparable
to [APPG19, LDKBJ22]). We show how to scale such computations using methods
to incrementalization. We limit us to static abstractions because it is most com-
prehensible and good for illustration. Our method may also be able to accelerate
the computation of dynamic abstractions. We will present some ideas for future
work and more details in this chapter and in the chapter on limitations (Chapter 7).
However, dynamic abstractions are not part of our contribution, since we have not
yet done any evaluations.

3.1.1 The Scalability Challenge

In practice, work that computes static abstractions for multiple revisions faces a
scalability challenge. In the following enumeration, we list conceptual solutions for
realizing scaling computation:

e Scalability can be reached by the method of parallel and distributed anal-
ysis [SJAH09, SAH10, DNRN15, DNRN13, NDNR14]. Work may rely
on code written in map-reduce [SJAH09, SAH10| or domain-specific lan-
guages [DNRN15, DNRN13, NDNR14|. However, such work scales at the
expense of high hardware usage.

o Some work reports on handmade incrementalization to accelerate the process-
ing [CJ18, TME™18]. The typical analysis code calls git-diff and just examines
the changed code lines between revisions. Such incremental analysis may be
complicated because it requires additional bookkeeping efforts. The authors
of [STAHO09] state that this is not applicable when prototyping (see the related
work discussion of [SJTAH09)]).

e Another method is to reduce redundancies and memoize intermediate results,
leveraging the high similarity between revisions. Such method is presented
in [APPG19] and requires analysis to be written in Signal/Collect [SBC10].

o Other work relies on the method of sampling [MHJ™15, DAB21]|. Here, a
random subset of the target population, e.g., a sample of revisions, is examined.
Results on the sample need to be annotated with estimates of uncertainty.
Such work looses data.

o Query optimization is another method, applicable to improve the scalable pro-
cessing. An intuitive example is to optimize the order of query steps, like filter
and join. Filtering can often be executed before joining, which reduces the
data in advance of expensive joining. Other optimizations, like changing the
order of joints, may be applied based on runtime data. Recent frameworks,
like Catalyst for Spark DataFrames [AXL"15], enable such optimizations.

The previous technical methods can be considered as orthogonal. They can be
combined to improve the scalability of an MSR/ESE analysis which is tailored to the
processing of single or multiple revisions. Incrementalization is specific to analyzing
multiple revisions.

23

This chapter focuses on incrementalization. We exclude optimization by sam-
pling revisions because this practice just reduces the size of the actual problem.
We also do not include query optimization methods that may be run on top of our
method; a fact that calls for future work.

We propose a method to improve the scalability of functions that abstract over
repositories with high revision count in a theoretically founded way. We use insights
on abstract algebra and program incrementalization to define a core interface of
high-order functions that compute scalable static abstractions of a repository with
many revisions. Extended map-reduce primitives are built on top of the core in-
terface so that actual users can compose complex abstractions using the primitives,
without noticing the underlying technical efforts on incrementalization. We thereby
provide the first scaling solution that uses incrementalization to mine repositories.
This stands in contrast to previous work, assuming that incrementalization is not
applicable in MSR/ESE [SJAHO09].

The mechanism that we present is generally applicable to circumvent bookkeep-
ing, with is typically needed when manually applying program incrementalization.
We illustrate and evaluate the improvements by a concrete empirical placeholder, us-
ing map-reduce primitives to compute and aggregate cyclomatic complexity metrics
for the files part of a revision. We selected this placeholder because concrete em-
pirical studies examine the cyclomatic complexity too, like [JMF14, LSBV17], and
one of the direct competitor for the technical analysis of repositories, LISA, also
illustrates its method taking cyclomatic complexity as a placeholder (see [APG17]).
In an evaluation, we compare performance of incremental map-reduce with the di-
rect competitors. Previous work did show the successful use of map-reduce in the
context of MSR/ESE [STAHO09].

Incrementalization is orthogonal to other options to improve the scalability. We
show this by also enabling the reduction of redundancies and distributed processing
in our prototype. We thereby manage to better compare to existing competitor in
MSR/ESE.

Our work is inspired by incrementalization theory to define the high-order
functions forming our core interface. This includes insights on algebraic struc-
tures to define changes, and insights on (self-maintained) derivatives or homo-
morphisms, to define applied functions. General work using such insights are,
e.g., [GGMS97, CGRO14, BROL14].

We evaluate the scalability of our method by benchmarks, comparing a prototype
with available competitors in MSR/ESE. We compare with LISA [APPG19] that
reduces redundancy and with DJ-Rex [SJAH09, SAH10] that migrates an analysis
to a distributed map-reduce framework. Our prototype outperforms both in terms
of the time needed to process a repository and uses less memory than LISA.

3.1.2 The Topleet Solution

The idea of incrementalization is to process changes [RR93]. Assume that we already
know the input and output of a function. If the input to the function changes,
incremental processing favors updating the output, based on the input’s change,
rather than recomputing the new output from scratch.

We need another function (a derivative) that maps the input change to the output

24

change. This mechanism may be less expensive, but it only works if we already have
the previous input and output computed. The concept of incrementalization is
known for a long time [RR93].

Now, consider a function that takes a revision and returns a static abstraction
of it. If we want to compute the abstraction for two succeeding revisions (part
of a repository’s history), and already have the abstraction of the first revision,
we would favor using a derivative to update the previous abstraction based on the
changes between the two revisions. Take a trivial example abstraction, like counting
the number of classes. Here, we can react to a new file with a new class in a next
revision, by just adding +1 to our class count.

We know that, between succeeding revisions, often just a few resources change.
In the best case, we can reuse a big part of the previous abstraction, which is the
key insight of transferring incrementalization to the revision history.

Manually writing these derivatives, which are necessary for incrementalization,
is cumbersome and error-prone. To avoid handmade solutions, general program and
database incrementalization methods exist that take over the important bookkeeping
in the background [GGMS97, CGRO14, BROL14]. Such solutions rely on theoretic
insight on algebraic structures, derivatives and self-maintained derivatives (group
homomorphisms). We use the foundations and present the first method
that transfers such practice to mining software repository revisions.

We provide a well-motivated core interface to implement incremental function-
ality in terms of derivatives. The core interface delegates the function application
to all revisions of a repository. We introduce a prototypical implementation called
Topleet?. It implements the core interface, but it also provides the concrete deriva-
tives for extended map-reduce functionality, build on top of the core interface. A
user can finally compose complex processing in regular map-reduce syntax, without
manually implementing derivatives.

Topleet analysis is embedded into regular Scala code and provides a syntax that
resembles non-optimized map-reduce code, widely understood and used for analysis
in MSR/ESE [SJAH09, SAH10]. We also add optimization by reducing redundancies
and distribution to better compare to recent prototypes used in MSR/ESE.

We compare the scalability of Topleet to a method relying on a manual migration
of code to distributed map-reduce [SJAH09, SAH10], a corresponding hand-made
incrementalization, and to a reduction of redundancies [APPG19].

3.1.3 Summary of this Chapter’s Contributions

e An adaptation of incrementalization theory for processing multiple revisions
of the repository history.

o Topleet; a prototype for the scalable processing of multiple revisions in map-
reduce style, employing generally applicable incrementalization mechanisms,
reduction of redundancies and distribution.

2Implementation, advanced examples, usage guidelines and supplementing evalua-
tion data are available under http://github.com/topleet/topleet.

25

o An evaluation comparing the performance of Topleet with LISA (reduction
of redundancies) and DJ-Rex (distribution) and an evaluation of Topleet’s
infrastructure.

3.1.4 Summary of the Delta to the Publication

Parts of the following text are taken from the previous publication [HL20]. The
following items describe the delta of this thesis to the publication:

o We add a discussion of alternative algebraic structures and their implications
on practical solutions. This discussion is part of a new background section.

o We discuss a handmade incrementalization in detail, introducing the running
example on a function aggregating cyclomatic complexity metrics for a revi-
sion.

o This thesis improves the distinction between general, repository specific and
prototype-specific insights on incrementalization. We discuss general insights
in the background section, while repository specific and prototype-specific in-
sights follow in Sec. 3.4.

o The terminology changes towards using derivatives and self-maintained deriva-
tives (instead of index-based application and homomorphism). We assume
that this naming better aligns with existing work on incrementalization

(e.g., [CGRO14)).

o We add a more formal discussion of properties of our proposed method and
their correctness, which has not explicitly been given in the original publica-
tion. The original publication assures correctness by differential testing only.

3.1.5 Micro road-map of this Chapter

This chapter follows the metamodel defined in the introduction (Sec. 1.6). In par-
ticular,

Sec. 3.2 begins with a motivation, describing a running example on a function
aggregating cyclomatic complexity metrics for a revision. This thesis uses the ex-
ample throughout the chapter. Furthermore, we describe existing solutions coming
from the related work.

Sec. 3.3 introduces the background on incrementalization. To avoid additional
toy examples, the background section illustrates general incrementalization solving
the running example. The term ‘background’ is used in a modest sense, as this
section already contains content that has not been discussed in the context of MSR/
ESE before.

Sec. 3.4 transfers the background on incrementalization to mining software repos-
itory revisions. The section also discusses implementation details of our prototype.

Sec. 3.5 evaluates our prototype by comparing different features of it with two

related methods (DJ-Rex and LISA).

26

3.2 Motivation

We motivate this part of the thesis by an application-oriented view on recent solu-
tions to processing multiple revisions, part of a repository’s history. As the running
example, we choose to compute and sum up McCabe’s cyclomatic complexity on
all Java files of a revision. The computation of cyclomatic complexity has been
used for the technical presentation of LISA [AG15, APG17, APPG19], it fits into
the Boa infrastructure [DNRN15, DNRN13, NDNR14] and can be migrated to a
distributed map-reduces frameworks in analogy to DJ-Rex [SJAH09, SAH10]. The
cyclomatic complexity has been subject to empirical studies in software engineering,
e.g., in [JMF14, LSBV17, TH18|.

Later in the background section (Sec. 3.3), we start developing an incremental
solution for mining the sum of cyclomatic complexity on all Java files of a revision.

The running example on cyclomatic complexity is just a placeholder. Our final
prototype allows using the full range of extended map-reduce functionality. We will
give a concise summary of the limitations of our method later in Chapter 7.

3.2.1 Migration to Distributed Map-Reduce (DJ-Rex)

DJ-Rex is presented in [SJTAH09, SAH10] as a proof-of-concept showing the migra-
tion of an existing MSR analysis to distributed map-reduce. We reproduce two solu-
tions, according to the presentation of DJ-Rex, migrating a function that computes
McCabe’s cyclomatic complexity to a distributed map-reduce framework. We avoid
to show aggregation here. We call the solutions ‘DJ-Rex’” and ‘DJ-Rex Incremental’.

o The first solution, DJ-Rex, follows the conceptual idea of [SJTAH09, SAH10]
in a straightforward manner, just migrating a non-incremental solution to a
distributed map-reduced framework. Hence, this solution only benefits from
distribution.

o We also implement a second solution, DJ-Rex Incremental, migrating a hand-
made incremental solution to map-reduce. This solution benefits from dis-
tribution and incrementalization. We omit discussing DJ-Rex Incremental in
this thesis, since we discuss a closely related solution in Sec. 3.3.1. However,
this incrementalization is done ‘manually’ and invokes additional bookkeeping
that we need to do as a user.

The most relevant code of the DJ-Rex solution can be found in Listing 3.1.

1 val resources: RDD[(SHA, Path, Resource)] = . . .

2 val mcCabe: RDD[(SHA, Int)] = resources

s filter { case (_, path, _) => path.endsWith(" java") }

4 .map { case (sha, path, resource) =>

5 (sha, computeMCC(resource))}
Listing 3.1: DJ-Rex Solution: An excerpt of our reproduction of [STAH09] migrating
computeMCC to distributed map-reduce.

In particular, we use Scala and Apache Spark for distribution. The Resilient
Distributed Datasets (RDDs) [ZCD*12] provide a distributed collection of elements

27

that can be operated on in parallel. The operation filter restricts the resources
on Java files and map calls the foreign function computeMCC to compute the cyclo-
matic complexity on resources. We thereby executed the processing in parallel and
distributed manner.

The problem with such simple code is that, already for a medium-sized repository,
like libgdx /libgdx?, with around 14.000 revisions, it needs approximately seven hours
on a single machine. Handmade incrementalization efforts optimizing this map-
reduce code to just handle changed resources (‘DJ-Rex Incremental’) leads to a
much faster solution, taking six minutes. We will give an introduction to the idea
of such handmade incrementalization in the background section (Sec. 3.3.1).

However, handmade incrementalization invokes additional bookkeeping efforts
and is error-prone. Avoiding such bookkeeping in a generally applicable incremen-
talization framework will be the central topic of this chapter.

3.2.2 Domain-Specific Languages (Boa)

Another method that can be used to analyze repository history on a distributed map-
reduce platform is Boa [DNRN15, DNRN13, NDNR14]. To this end, the analysis
is written in a domain-specific language (DSL). The following excerpt can be found
in the reference documentation of BOA* answering the question: ‘How many fizing
revisions added null checks?’. We show the original solution, which is focused on
computing an abstraction of change between succeeding revisions. However, we
assume that an adaptation that computes the cyclomatic complexity as a static
abstraction over a revision is straightforward.

1 before node: ChangedFile —> {
// if this is a fixing revision and there was a previous version of the file
if (isfixing && haskey(files, node.name)) {
// count how many null checks were previously in the file
count = 0;
visit(getast(files[node.name]));
last := count;
// count how many null checks are currently in the file
count = 0;
visit(getast(node));
// if there are more null checks, output
if (count > last)
AddedNullCheck << 1;

© o N o o~ W N

S S S
w N = O

}
if (node.change == ChangeKind.DELETED)

remove(files, node.name);
else

files[node.name| = node;
19 stop;

[o S = S S
© ~N o o »

Listing 3.2: Boa Solution: ‘How many fixing revisions added null checks?” (Adapted
copy from the Boa reference documentation)

To determine if null checks have been added, the code counts null checks on
the previous revision of a changed file (if there is one) and on the current version.

Shttp://github.com/libgdx/1libgdx
“http://boa.cs.iastate.edu/docs/index.php

28

Comparable to the DJ-Rex Incremental solution, Boa code processes changes man-
ually — eye-catching by the usage of types such as ChangedFile and ChangeKind.

Boa provides a web-based interface to the proprietary Boa infrastruc-
ture [DNRN13]. We do not report on its performance as we cannot reproduce
this setup. However, we assume that the performance does not differ from the
DJ-Rex solutions; we also assume that there is the same performance gap be-
tween change-oriented (incremental) and non-change-oriented (non-incremental)
treatment. Again, we manually implement the incremental behavior.

3.2.3 Reduction of Redundancies (LISA)

LISA [AG15, APG17, APPG19] is a solution that reduces the redundancies in the
multi-revision code analysis, and the first in this presentation that does not require
handmade bookkeeping on how to handle changes.

LISA needs a registered parser for a target file extension and analysis code writ-
ten in Signal/Collect [SBC10]. The code for the computation of McCabe’s cyclo-
matic complexity can be found in the publications [APG17, APPG19]. LISA does
not allow direct calls to foreign functions.

The computation of McCabe’s cyclomatic complexity on the same repository
requires 12 minutes; however, LISA has the highest memory footprint with 6.4 GB.

After discussing the competitors of our method, where some already involve man-
ual incrementalization, we switch to the formal background on generally applicable
incrementalization mechanisms.

29

3.3 Background

This section starts with the formal idea of processing changes by derivatives, which
is the essence of program incrementalization. The idea will be capable to express
the handmade incrementalization practice on repository revisions, described in the
previous section, generally, applicable in terms of a core interface, and map-reduce
functions build on top of it.

Typical formalization expresses incremental processing in terms of abstract al-
gebra. This has been done for a while (e.g., [GGMS97, CGRO14, BROL14]). The
formalization helps to understand and plug the generic parts of an incrementaliza-
tion (rather than implementing all parts of a concrete solution manually). Many
bookkeeping efforts can be circumvented.

In this section, we give an introduction to the most relevant parts, in the context
of our running example. The main contributions will follow in Sec. 3.4, transferring
the ideas to the processing of repository revision history.

3.3.1 Handmade Incrementalization

We begin with a handmade program incrementalization, manually turning a non-
incremental solution into an incremental. This translation requires additional book-
keeping efforts that tailors the solution towards handling changes by manually im-
plementing the derivative.

Our running example corresponds to a function that computes a static
abstraction of a single revision. The function aggregates the sum of the
cyclomatic complexity of all Java files (part of the revision). The input type
of the function is a bag of resources. The output is of type integer. We
apply this function to all revisions, part of the repository, to get a
corresponding abstraction (integer) for each revision.

Non-incremental Solution A non-incremental Scala solution, applying the func-
tion to each revision, can be found in Listing 3.3.

The solution uses a virtualized access to the resources, contained in the revision,
by a mutable bag of resources. It uses two methods, add and remove, which inform
the program of changing path-resources tuples, updating the bag accordingly. Add
and remove is called while traversing the revision sequence (eventually backed by
the object storage of the bare repository). We hide this unessential aspect of the
code.

Such solution corresponds to methods using a working copy, located on the file-
system, and successively checking out revision after revision. The solution presented
here virtualizes such access using the bag of resources since an indirection over the
file-system introduces enormous overhead. We simplify and assume that we have
a sequence of revisions ordered by time (no branching) that we can traverse. In
Sec. 3.4, we will generalize this practice to graph structures that are better suited
to represent repository revision history.

30

The function abstraction reflects the function to compute the abstraction. It
aggregates the cyclomatic complexity for all Java resources, contained in the virtu-
alized access by the bag. To apply the function to all revisions, an analysis needs to
traverse the entire revision sequence (using add and remove) and call abstraction
after each step.

1 // Mutable data structure to maintain the input data.

2 val resources: mutable.Bag[(Path, Resource)] = ...

3

4 // The input of the program given in terms of add and remove.
5 def add(p:Path, r: Resource) = resources.add((p,r))

6 def remove(p:Path, r: Resource) = resources.remove((p,r))

7

s // The output of the program (the function computing the abstraction).
o def abstraction(): Int = {

10 varresult =0

11 for ((p, r) <— resources if p.endsWith(".java"))

12 result = result + computeMCC(r)
13 return result
1}

Listing 3.3: A non-incremental solution

Such solution has scalability issues for obvious reasons. The actual function
needs to be computed over and over again, for each traversed revision. Each call
needs to exhaustively process the resources part of the particular revision.

Incremental Solution We can improve the solution by applying a simple pro-
gram incrementalization, manually implementing the derivative (see Listing 3.4).
The solution operates on the input changes, given in terms of added and removed
path-resources tuples. We use the change to update the resulting output abstraction,
the total cyclomatic complexity, stored in an intermediate variable. In particular, the
cyclomatic complexity of added Java resources is added to an intermediate variable
totalMCC and the cyclomatic complexity of removed Java resources is subtracted.

// Intermediate store for the abstraction.
var totalMCC = 0

def addResource(p: Path, r: Resource) =
if(p.endsWith(".java")) totalMCC = totalMCC + computeMCC(r)

def removeResource(p: Path, r: Resource) =
if(p.endsWith(" java")) totalMCC = totalMCC — computeMCC(r)

© o N o O A W N R

// The function computing the abstraction.
def abstraction(): Int = totalMCC

=
SRS

Listing 3.4: An handmade incremental solution

The solution provides the same results as the non-incremental solution, but with
different performance characteristics, better suited to compute the abstraction for
each revision.

This program shows the essence of a basic program incrementalization, when
implementing the derivative manually. It handles incoming changes efficiently, po-
tentially producing outgoing changes. Outgoing changes may be connected to other

31

processing components (as incoming changes) in that more complex processing may
be composed. The underlying idea is more general and can be expressed in terms
of abstract algebra and certain properties of the applied functions.

3.3.2 General Incrementalization

The example problem that we have presented so far computes a pure function f on
all revisions. The function takes a single revision and produces an abstraction of it.
In our example, this function f takes the bag of resources (input) and produces an
integer (output). The type signature of such function is Bag[(Path, Resource)]
— Int.

The function f and the data types for input and output are generic parts of a
generally applicable incrementalization framework. If the function and types can
handle changes and act incrementally, performance benefits may kick in. This sec-
tion will describe the limits of such generic parts, which we call the core interface
for functions and types. We support this discussion by concrete instances, needed
to compute the sum of the cyclomatic complexity, but the interface is not limited
to cyclomatic complexity.

Our final prototype will follow an advanced strategy, building another layer on
top of the core interface. We will implement the primitives of extended map-reduce
(e.g., map, filter, group, join, count or sum) and repository resource access (git-diff),
on top of the core interface. More complex processing, like computing and summing
up the cyclomatic complexity, can be composed out of the primitives. We thereby
do not need to rewrite any primitive incremental functionality from scratch. Such
primitives will be discussed in the context of our prototype.

Representing Data and Change

The first part of the core interface covers the input and output data types for a
function. The requirements are different from typical data types, as we also need a
mechanism to capture data’s change.

We define data and changes to follow the axioms of algebraic structures. An
algebraic structure is defined over a set S and closed under a binary operator © :
S x S — S (Axiom 1). For each data type that we use, we need a corresponding
algebraic structure.

Axiom 1 (Closed under ®) Ifz,dx € S, then x ©dx € S.

Data and changes are elements in S. If x is some data and dr some change, and
both are contained in S, we consider x ® dx to be the data x after the change dz
has been applied. According to Axiom 1, the result is included in S. Hence, we can
represent arbitrary changes by a sequence of elements in S, fold by the ® operator.

We do not distinguish between data and changes (every data entry can also
be understood as a change and vice-versa) because typically, there are algebraic
structures applicable to represent both. There are also methods that distinguish
between data and changes but without immediate benefits within the context of
our work (see [CGRO14] for change structures that distinguish between data and
changes).

32

Example Output To make this more concrete, we now transfer such insights to
our running example. We start describing the output type of the function. We use
an algebraic structure, defined on the set of integers, S, with + (summation) being
the operator ®. Consider the following example of changing data. We read from
left to right®:

data change

AN ——
0 TG -5

The sequence represents data starting at 0, which is changing to 7 (by change 7),
and to 2 (by change —5). Summarizing the previous discussion: For our running
example, the output data and its changes can both be represented by using a plain
integer as data type. This is a relevant insight to a technical solution.

We want to emphasize that this illustration is tailored to our running example.
In our final map-reduce prototype, such limitations on types will hardly be noticed,
since one typically uses collections that allow flexible types of contained elements.
Algebraic structures are only relevant when understanding the limitations of the
underlying core interface.

Example Input For our example’s input data type, we use a bag of path-resource
tuples (our most important collection type). We define the algebraic structure on
the set of bags T'. To enable representing changes in terms of added and removed
elements by T, elements in the bag need to be tagged to indicate on removal. We
write such elements as 73. The operator ® (we use different symbols for this algebraic
structure) is defined to be the bag union and cancels out corresponding adds and
removes. For instance, {73} ® {ro} is the same as an empty bag {}. Consider the
following example of changing data:

data changes
~~
{} ofri,rt ®{rz rs}

The sequence starts on an empty bag {} and then adds r; and ry. Hereafter,
ro is removed and 73 is added. The elements rq, o and r3 stand for path-resources
tuples in this example.

Algebraic structures are useful to formalize sequences of changes. At the same
time, implementing an algebraic structure allows plugging custom data types into
the core interface of our incrementalization prototype. We will cover more algebraic
structures in the remainder of this thesis, but the most central structure for our
map-reduce prototype will be the bag. Have a look at our hand made incremental
solution again. We may now define both, function and derivative, having the type
signature Bag[(Path, Resource)] — Int. This will later be a property of a self-
maintained derivative.

Axioms of the Group Operator Four more axioms on the operator ® give rise
to an algebraic structure. In the remainder of this work, we will focus on algebraic

5There are formal ways to define such sequences of changes. We go for a very intuitive notation,
from left to right. In the following up discussion, transferring insights to the revision history, we
will be more formal.

33

Associativity Identity Invertibility Commutativity
Monoid ° °
Com. Monoid . ° °
Group . °
Abelian Group . ° °

Table 3.1: Axioms of Algebraic Structures

structures where all axioms hold. Such structures are called Abelian groups. How-
ever, for understanding different methods to incrementalization, this background
section also discusses other structures. Axioms may limit the core interface and
have relevant technical implications.

Axiom 2 (Associativity) Fora, bandcin S, (a®b)®c=a® (b® c) holds.

Axiom 3 (Identity) For each a, there exists an identity element z for that a®z =
a and z ® a = a holds.

Axiom 4 (Invertibility) For each element a, there exists an inverse element a™?!
in that a ® a™ = 2.

Axiom 5 (Commutativity) Fora andbin S, a®b=>b0 a.

Depending on which of the axioms hold, algebraic structures are called: Monoids
(ass. and id.), groups (ass., id. and inv.), commutative Monoids (ass., id. and
com.) and Abelian groups (all). See Table 3.1 for a summary. We do not claim for
completeness, as there are other algebraic structures that are not directly relevant
to this discussion.

We will do a short examination of the important benefits and drawbacks related
to the structures listed above.

Monoid and Commutative Monoid A monoid (or commutative monoid) is
used to formalize monotonous growth of data and to express the corresponding
change. The relevant characteristic is the missing inverse element, which is manda-
tory to undo previous changes (Axiom 4).

(Commutative) monoids are often used in the processing of (ordered) event
streams (e.g., [BROL14]). Such streams are continuously growing, while undoing
previous events is disregarded. For ordered event streams, monoids, S can be de-
fined as the set of lists closed under list concatenation. For unordered event streams,
commutative monoids, S is defined as the set of sets closed under the set union.
Monoids are also used to formalize monotonous growth of the Datalog fix-point
operator [AEJO19]. Datalog will be discussed in the next chapter of this thesis.

For typical abstractions of a repository, applied in MSR/ESE, the usage of com-
mutative monoids may have some interesting use cases, possibly relaxing the limi-
tations of our current prototype.

For instance, if we want to compute an abstraction of the past or future of a given
revision, e.g., summing up the distinct authors in the past, we have monotonous be-
havior of the data when traversing the revision history. We may decode data and

34

change as commutative monoid, by the set of sets closed under the set union. The
identity element will be the empty set. In particular, a function can be applied to
sets that include all previous SHAs (commits), and derive all kinds of useful abstrac-
tions from it. On monoids, some applied functions will become more attractive, for
instance, min or max aggregation will have efficient derivatives.

We did not yet examine implications of using (commutative) monoids, and also
did not consider switching between algebraic structures with different axioms. How-
ever, we assume that this will be a good extension of the capabilities of our method.

Group and Abelian Group A group (or Abelian Group) is used to formalize
data that allows undoing previous changes (including Axiom 4). If the input data
of a function is defined in this manner, it allows flexibility in terms of growing and
shrinking data, at the price of some more expensive computations. For instance,
functions implementing min and max will be less efficient, compared to those working
on (commutative) Monoids.

Groups and Abelian Groups are used to formalize general program and database
incrementalization, where data structures (like collections and tables) are modified
in terms of add and remove operations (e.g., [CGRO14, GGMS97]). Groups can be
used to formalize lists, where the order in which the updates apply matters. Abelian
Groups can be used in the formalization of bags where order does not matter.

Since this thesis primarily focuses on static abstractions, computed on the re-
sources of single revisions, monotonously growing data is not possible. We need
data types that reflect resource changes in terms of added and removed resources
between revisions. Commutativity helps to align with the acyclic history. Limita-
tions of working with Abelian groups will later get clear. Working with time windows
shares the same growing and shrinking characteristics which calls for Abelian groups.

Processing Data and Change

To complete the core interface, we describe the generic aspects of the applied func-
tion f, specified as f : S — T. Both, input and output type S and 7" need a
corresponding algebraic structure to have a representation for data and changes, de-
fined by the tuples (S, ®, zg) and (T, ®, zr). The elements of the tuples are the set,
the operator, and the identity element respectively. The inverse element is always

written as z 7L

Derivatives Incrementalization is based on the idea of having derivatives for func-
tions (see Definition 1).

If we have x ® dx, where x € S is some data, dr € S some change, we can
optimize a function application f(z ® dz) by reusing the previous result f(z) while
the derivative f'(z,dx) computes the output change when the input z is changed
by dx. The derivative f’ needs to assure that the semantics of the original f is
preserved. Formally, this means f(z ® dx) = f(z) ® f'(x,dz) needs to hold.

Definition 1 (Derivative) Having x,dz € S and a function f : S — T, a function
'8 =T is a derivative if f(x ®dx) = f(z) @ f'(x,dx) holds.

35

Definition 1 is the key insight to incrementalization. When replacing the left-hand-
side of the equation with the right-hand-side, we may save resources if the com-
putation of f(x) can be reused. Such reusing can be done recursively on change

sequences.
incremental

non-incremental previous derivative
— —~ = /,—/%
flxodr) = f(z) @ f(v,dx)

Many functions have a known derivative f’ that enables this sort of computation.

Self-maintained Derivatives We see that x is a mandatory input to both func-
tions f and f’. This is critical to solutions, e.g., limiting how data x is stored and
distributed. For instance, optimizing f(x) and f’(z, dx) to run on different hardware
is not possible without some data sharing mechanism, sending x.

However, there are derivatives that are self-maintained, i.e., the derivative is
independent of = (Definition 2). In this case, we meet the definition of a homomor-
phism, another concept from abstract algebra. We call this function h and say that
the function ‘is” a self-maintained derivative.

Definition 2 (Self-maintained derivative) Having x,dx € S and a function h :
S — T, the function h is a self-maintained derivative if h(x ® dx) = h(x) ® h(dz)
holds.

In practice, this implies that input data x does not need to be maintained while
processing a sequence of changes by h.

non-incremental self-maintained, incremental
——— —_——
hz®©dr) = h(z) ® h(dz)

Many functions will conform to such more efficient formalization. Take our
running example of the computation of the cyclomatic complexity as an instance,
where only the added and removed path-resources tuples (dz) are needed, while
maintaining the bag of overall path-resources tuples (x) is not needed. Function h
filters for java resources and sums up the cyclomatic complexity of changed resources,
where added resources are positive numbers and removed resources are negative
numbers.

While this is just an example of a concrete self-maintained derivative, we will
later provide a set of primitives that have self-maintained derivatives to allow a
composition of complex processing. In the case of our running example, we may
use self-maintained derivates of map-reduce functionality map, filter and sum to
compose the abstraction of the revision. We do not need to write the derivatives
manually.

Operations Conforming the Core Interface

In the remainder of this thesis, we w