
Technical and Methodological Improvements to

Mining Software Repositories

Johannes Härtel

Genehmigte Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.),
Fachbereich 4: Informatik, Universität Koblenz

Vorsitzende des Promotionsausschusses: Prof. Dr. Karin Harbusch
Berichterstatter: Prof. Dr. Ralf Lämmel

Prof. Dr. Alexander Serebrenik
Prof. Dr. Stefano Zacchiroli

Datum der wissenschaftlichen Aussprache: September 4, 2023

January 31, 2024

Abstract

Empirical studies in software engineering use software repositories as data sources
to understand software development. Repository data is either used to answer ques-
tions that guide the decision-making in the software development, or to provide tools
that help with practical aspects of developers’ everyday work. Studies are classified
into the field of Empirical Software Engineering (ESE), and more specifically into
Mining Software Repositories (MSR).

Studies working with repository data often focus on their results. Results are
statements or tools, derived from the data, that help with practical aspects of soft-
ware development. This thesis focuses on the methods and high-order methods used
to produce such results. In particular, we focus on incremental methods to scale the
processing of repositories, declarative methods to compose a heterogeneous analy-
sis, and high-order methods used to reason about threats to methods operating on
repositories. We summarize this as technical and methodological improvements. We
contribute the improvements to methods and high-order methods in the context of
MSR/ESE to produce future empirical results more effectively. We contribute the
following improvements.

We propose a method to improve the scalability of functions that abstract over
repositories with high revision count in a theoretically founded way. We use insights
on abstract algebra and program incrementalization to define a core interface of high-
order functions that compute scalable static abstractions of a repository with many
revisions. We evaluate the scalability of our method by benchmarks, comparing a
prototype with available competitors in MSR/ESE.

We propose a method to improve the definition of functions that abstract over a
repository with a heterogeneous technology stack, by using concepts from declarative
logic programming and combining them with ideas on megamodeling and linguistic
architecture. We reproduce existing ideas on declarative logic programming with
languages close to Datalog, coming from architecture recovery, source code querying,
and static program analysis, and transfer them from the analysis of a homogeneous
to a heterogeneous technology stack. We provide a prove-of-concept of such method
in a case study.

We propose a high-order method to improve the disambiguation of threats to
methods used in MSR/ESE. We focus on a better disambiguation of threats, op-
erationalizing reasoning about them, and making the implications to a valid data
analysis methodology explicit, by using simulations. We encourage researchers to
accomplish their work by implementing ‘fake’ simulations of their MSR/ESE scenar-
ios, to operationalize relevant insights about alternative plausible results, negative
results, potential threats and the used data analysis methodologies. We prove that
such way of simulation-based testing contributes to the disambiguation of threats
in published MSR/ESE research.

Zusammenfassung

Empirische Studien in der Softwaretechnik verwenden Software-Repositories als
Datenquellen, um die Softwareentwicklung zu verstehen. Repository-Daten werden
entweder verwendet, um Fragen zu beantworten, die die Entscheidungsfindung in
der Softwareentwicklung leiten, oder um Werkzeuge bereitzustellen, die bei praktis-
chen Aspekten der Entwicklung helfen. Studien werden in die Bereiche Empirical
Software Engineering (ESE) und Mining Software Repositories (MSR) eingeordnet.

Häufig konzentrieren sich Studien, die mit Repository-Daten arbeiten, auf deren
Ergebnisse. Ergebnisse sind aus den Daten abgeleitete Aussagen oder Werkzeuge,
die bei der Softwareentwicklung helfen. Diese Dissertation konzentriert sich hinge-
gen auf die Methoden und High-Order-Methoden, die verwendet werden, um solche
Ergebnisse zu erzielen. Insbesondere konzentrieren wir uns auf inkrementelle Meth-
oden, um die Verarbeitung von Repositories zu skalieren, auf deklarative Methoden,
um eine heterogene Analyse durchzuführen, und auf High-Order-Methoden, die ver-
wendet werden, um Bedrohungen für Methoden, die auf Repositories arbeiten, zu
operationalisieren. Wir fassen dies als technische und methodische Verbesserun-
gen zusammen um zukünftige empirische Ergebnisse effektiver zu produzieren. Wir
tragen die folgenden Verbesserungen bei.

Wir schlagen eine Methode vor, um die Skalierbarkeit von Funktionen, welche
über Repositories mit hoher Revisionszahl abstrahieren, auf theoretisch fundierte
Weise zu verbessern. Wir nutzen Erkenntnisse aus abstrakter Algebra und Program-
minkrementalisierung, um eine Kernschnittstelle von Funktionen höherer Ordnung
zu definieren, die skalierbare statische Abstraktionen eines Repositorys mit vie-
len Revisionen berechnen. Wir bewerten die Skalierbarkeit unserer Methode durch
Benchmarks, indem wir einen Prototyp mit MSR/ESE Wettbewerbern vergleichen.

Wir schlagen eine Methode vor, um die Definition von Funktionen zu verbessern,
die über ein Repository mit einem heterogenen Technologie-Stack abstrahieren, in-
dem Konzepte aus der deklarativen Logikprogrammierung verwendet werden, und
mit Ideen zur Megamodellierung und linguistischen Architektur kombiniert wer-
den. Wir reproduzieren bestehende Ideen zur deklarativen Logikprogrammierung
mit Datalog-nahen Sprachen, die aus der Architekturwiederherstellung, der Quell-
codeabfrage und der statischen Programmanalyse stammen, und übertragen diese
aus der Analyse eines homogenen auf einen heterogenen Technologie-Stack. Wir
liefern einen Proof-of-Concept einer solchen Methode in einer Fallstudie.

Wir schlagen eine High-Order-Methode vor, um die Disambiguierung von Bedro-
hungen für MSR/ESE Methoden zu verbessern. Wir konzentrieren uns auf eine
bessere Disambiguierung von Bedrohungen durch Simulationen, indem wir die
Argumentation über Bedrohungen operationalisieren und die Auswirkungen auf
eine gültige Datenanalysemethodik explizit machen. Wir ermutigen Forschende,
„gefälschte“ Simulationen ihrer MSR/ESE-Szenarien zu erstellen, um relevante
Erkenntnisse über alternative plausible Ergebnisse, negative Ergebnisse, potenzielle
Bedrohungen und die verwendeten Datenanalysemethoden zu operationalisieren.
Wir beweisen, dass eine solche Art des simulationsbasierten Testens zur Disam-
biguierung von Bedrohungen in der veröffentlichten MSR/ESE-Forschung beiträgt.

Acknowledgements

I thank my family, especially, Alexander, Christine, Linda and Lukas, for having
patience with me, and for helping in many other areas of my life. I thank Ralf for
giving me the chance to work freely, without distractions, and without imposing
any limitations on thinking. I thank Lukas, Marcel, Daniel and Philipp for sharing
the same enthusiasm for science, and for all the discussions. I thank the Koblenz
friends, Olaf, AK, Lubosz, Henny, Stef, Alex (and many others) for the past and
future parties, and for the company.

Short Biography

• 2008 - 2013 B.Sc. Computer Science at University of Koblenz-Landau.

• 2013 - 2016 M.Sc. Computer Science at University of Koblenz-Landau.

• 2016 - 2022 Research Assistant at University of Koblenz-Landau.

• 2022 Vrije Universiteit Brussel (VUB)

Contents

1 Introduction 1
1.1 Mining Software Repositories . 1
1.2 Technical and Methodological Challenges 2

1.2.1 Technical Challenges . 2
1.2.2 Methodological Challenges . 3

1.3 Technical and Methodological Contributions 4
1.3.1 Incremental Map-Reduce on Repository History 5
1.3.2 Repository Mining with Datalog 6
1.3.3 Simulation-Based Testing . 7

1.4 Summary of the Delta to the Publication 7
1.5 Road-map of this Thesis . 8
1.6 Metamodel for the Chapters 3-5 . 8

2 Overview 9
2.1 Publication List . 9
2.2 Publication Delta . 9
2.3 Contribution Types . 11

2.3.1 Empirical Contributions . 11
2.3.2 Technical and Methodological Contributions 11

2.4 Publication Timeline . 13
2.4.1 Classification of APIs by Hierarchical Clustering. 13
2.4.2 Systematic Recovery of MDE Technology Usage 14
2.4.3 EMF Patterns of Usage on GitHub 15
2.4.4 Empirical Study on the Usage of Graph Query Languages in

Open Source Java Projects . 16
2.4.5 Understanding MDE projects: megamodels to the rescue for

architecture recovery . 17
2.4.6 Incremental Map-Reduce on Repository History 18
2.4.7 Reproducible Construction of Interconnected Technology

Models for EMF Code Generation 18
2.4.8 Operationalizing Threats to MSR Studies by Simulation-

Based Testing . 19
2.4.9 Operationalizing Validity of Empirical Software Engineering

Studies . 20

i

3 Incremental Map-Reduce on Repository History 21
3.1 Introduction . 21

3.1.1 The Scalability Challenge . 23
3.1.2 The Topleet Solution . 24
3.1.3 Summary of this Chapter’s Contributions 25
3.1.4 Summary of the Delta to the Publication 26
3.1.5 Micro road-map of this Chapter 26

3.2 Motivation . 27
3.2.1 Migration to Distributed Map-Reduce (DJ-Rex) 27
3.2.2 Domain-Specific Languages (Boa) 28
3.2.3 Reduction of Redundancies (LISA) 29

3.3 Background . 30
3.3.1 Handmade Incrementalization 30
3.3.2 General Incrementalization . 32

3.4 Technical and Methodological Improvements 38
3.4.1 Representing Repository History 38
3.4.2 Processing Repository History 39
3.4.3 Implementing the Topleet Prototype 41
3.4.4 Map-Reduce Operations . 46
3.4.5 Advanced Infrastructure . 48

3.5 Evaluation . 50
3.5.1 Solutions . 50
3.5.2 Software, Hardware and Default Parameters 50
3.5.3 Variability . 50
3.5.4 Subject Repositories . 51
3.5.5 Correctness . 51
3.5.6 Time . 51
3.5.7 Memory . 57
3.5.8 Computation Infrastructure 57
3.5.9 Distribution . 57

3.6 Conclusion . 59

4 Repository Mining with Datalog 60
4.1 Introduction . 60

4.1.1 The Heterogeneity Challenge 60
4.1.2 A Declarative Solution using Datalog 61
4.1.3 Properties of Datalog . 62
4.1.4 A Small Example . 63
4.1.5 Summary of this Chapter’s Contributions 64
4.1.6 Summary of the Delta to the Publication 64
4.1.7 Micro road-map of this Chapter 65

4.2 Motivation . 66
4.3 Background . 68

4.3.1 Declarative Logic Programming in Datalog 68
4.3.2 Megamodeling and Linguistic Architecture 74

4.4 Technical and Methodological Improvements 78
4.4.1 Representational Mapping . 78

ii

4.4.2 Referencing the Repository and it Fragments 81
4.4.3 A Catalog of Accessor Functions 82

4.5 Evaluation . 84
4.5.1 Locating Repositories . 84
4.5.2 Initial Classification of Files by Language 84
4.5.3 Selection of Repositories . 85
4.5.4 Mining the EMF Pattern Catalog 86
4.5.5 Results . 87
4.5.6 Modeling Group Membership 91
4.5.7 Analyzing Mining Performance 92

4.6 Conclusion . 93

5 Simulation-Based Testing 94
5.1 Introduction . 94

5.1.1 Meta Research Questions . 94
5.1.2 Relevance . 95
5.1.3 A New Validation Strategy: Simulation-based Testing 95
5.1.4 Meta-Validation . 95
5.1.5 Summary of this Chapter’s Contributions 95
5.1.6 Summary of the Delta to the Publication 96
5.1.7 Micro road-map of this Chapter 96

5.2 Motivation . 97
5.2.1 What is a Valid Method? . 97
5.2.2 Typical Strategies . 97

5.3 Technical and Methodological Improvements 100
5.3.1 A New Validation Strategy: Simulation-Based Testing 100
5.3.2 A Simple Example: Logistic Regression For Defects 104

5.4 Evaluation . 109
5.4.1 Meta-Validation . 109
5.4.2 Dependent Observation (Case 1) 110
5.4.3 Prediction or Causation (Case 2) 114
5.4.4 Control of Variables (Case 3) 116
5.4.5 Correlated Variables (Case 4) 120
5.4.6 Distribution Types (Case 5) 122
5.4.7 Experimental Research (Case 6) 128

6 Conclusion 134

7 Limitations 135
7.1 Incremental Map-Reduce on Repository History (Chapter 3) 135

7.1.1 Core Interface . 135
7.1.2 Pure Functions . 136
7.1.3 Recursion . 137
7.1.4 Abstracting Across Individual Revisions 137
7.1.5 Usability of Map-Reduce . 137

7.2 Repository Mining with Datalog (Chapter 4) 137
7.2.1 Limitations of Datalog . 138

iii

7.2.2 Accessing the Repository by Pure Functions 138
7.2.3 Usability of Datalog . 138

7.3 Simulation-Based Testing (Chapter 5) 138
7.3.1 Technical Limitation . 139
7.3.2 Plausibility Limitation . 139
7.3.3 Conclusions on Reality based on Simulated Data 139

8 Related Work 140
8.1 Technical Contributions . 140

8.1.1 Languages and Interfaces . 140
8.1.2 Scalable Computation . 144
8.1.3 Storage . 145
8.1.4 Structure in Time and Space 146

8.2 Methodological Contributions . 147
8.3 Empirical Contributions . 149

9 Conclusion 152

iv

Chapter 1

Introduction

1.1 Mining Software Repositories
Important practical aspects of developers’ everyday work manifest in software repos-
itories [BRB+09, KGB+14]. Typical studies in MSR and ESE attempt to better un-
derstand software development by employing this data, in terms of mining software
repositories [CIC16]. Using such existing data source for research is an alternative
to experimenting in software development. Experimenting is often intrusive and
expensive (see [MB20, JLY+19, TLPH95, SHH+05]).

Empirical studies in software engineering use software repositories as data sources
to understand software development. In particular, research studies models, ab-
stractions, variables, or metrics that reflect API migration [SPN+18, RvDV17,
RvDV12, RvDV13], developers experience [RRC16, RD11, ETL11], software
changes [MPS08, SZZ05, YMNC04, KYM06, MSR17], entropy of changes [Has09],
infrastructure as code [OZR22, OZVR21], dependencies [SPN+18, HV15, OBL10,
RvDV13], network metrics [ZN08], diversity [VPR+15], similarity [LKMZ12,
APM04, CCP07, MMWB13, SL16, HAL18], architecture [LLN14], documenta-
tion [AHS14], source code [ETL11, CDR18, FOMM10, GKSD05, CCP07], static
code attributes [MGF07], change bursts [NZZ+10, Cho20], corrective engineering,
bugs, defects and fixes [MW00, MGF07, RD11, Has09, ZN08, MPS08, SZZ05,
NZZ+10, FBF+20], commit time [ETL11, SZZ05], pull requests [GPvD14, BPWS20,
GZSvD15, GSB16, YWF+15, TDH14], open-source collaboration [Cho20], branch-
ing [KPB18], tests [BFS+18], OO-metrics [BBM96], asserts [CDO+15, KL17],
social factors [FBF+20, VPR+15] model-driven technologies [KMK+15, HHL18,
RHC+19, RHH+17], project popularity [AHS14, BHV16, WL14], languages us-
age [BTL+13, SHL+19], software builds [MAH10, GdCZ19] or reviewer assign-
ment [RRC16, SdLJPM18].

Repository data is either used to answer questions that guide the decision-making
in the software development (e.g., [Has06, Has08, TH18, VPR+15]), or to provide
tools that help with practical aspects of developers’ everyday work (e.g., [ZN08,
RRC16]). Studies are classified into the field of Empirical Software Engineering
(ESE), and more specifically into Mining Software Repositories (MSR).

1

1.2 Technical and Methodological Challenges
Studies working with repository data often focus on their results. Results are state-
ments or tools, derived from the data, that help with practical aspects of soft-
ware development. This thesis focuses on the methods and high-order methods
used to produce such results1. In particular, we focus on incremental methods to
scale the processing of repositories, declarative methods to compose a heteroge-
neous analysis, and high-order methods used to reason about threats to methods
operating on repositories. We summarize this as technical and methodological im-
provements, motivated by previous work facing the same, and a series of related chal-
lenges [BRB+09, KGB+14, KPB18, Has08, APPG19, DRNN14, DNRN15, SPN+18,
TDH14, RvDV17, SJAH09, SAH10, RRH+20].

For instance, before authors can study results on library updates in [SPN+18],
four weeks of data extraction are needed (scalability). To better understand ver-
sioning conventions in [RvDV17], authors need an aggregate analysis runtime of
5.5 years (scalability). Authors of [PZS+20] need three months on a 56-core server
before they can study refactorings (scalability). In [RRH+20], Java heuristics are
needed to understand the heterogeneous technology stack of MDE technology (het-
erogeneity). To study social and technical factors in the context of pull requests,
authors of [TDH14] rely on a valid method of using AIC [Aka98]. AIC is needed to
decide between structurally different models to prevent threats of under- and overfit-
ting (validity). Such challenging scenarios require effective methods and high-order
methods to work with repository data.

We contribute the improvements to methods and high-order methods in the
context of MSR/ESE to produce future empirical results more effectively.

1.2.1 Technical Challenges
Two technical challenges are handled in this thesis. They relate to mining the repos-
itory for variables, metrics, or abstractions, collecting raw data from the repository.
This is the first step for many empirical studies. We identify and handle two chal-
lenges, i.e., the scalability and heterogeneity challenge, and explain them in the
following two paragraphs.

Scalability Challenge Typical studies may benefit from data on the full re-
vision history of the software under version control [GHJ98, GKMS00, Has06].
To this end, we may need to compute abstractions of the repositories, that do
not only reflect the most recent revision, but abstractions that reflect all or
many revisions [KPB18, APPG19, LDKBJ22]. This can improve understanding
of the software development process, e.g., if the upcoming analysis builds ad-
vanced models that abstract over the time, or the branching structure of the

1We use the term high-order method to describe methods that operate on methods. Such high-
order methods may solve methodological challenges by the study of methods used in empirical
research. While not explicitly talking about high-order methods, we can find the same distinction
between methods and high-order methods in recent statistic work, like in Gelman et al. [GHV20],
where simulations with fake data (the high-order method) are used to better understand how the
models are fit (an alias for several methods central to statistic science).

2

repository. Studies including such data and advanced models can be found
here [PFS+20, SPN+18, AHS14, KPB18, GdCZ19, VPR+15, FLHV22]. However,
compared to computing abstractions of single revisions, computing abstractions of
all or many revisions in a repository is expensive. If studying repositories with
more than a few revisions, which is not unusual, we meet a scalability challenge
(see [SJAH09, APPG19, LDKBJ22]).

Heterogeneity Challenge Typical studies that use repository data to under-
stand software development need to understand a heterogeneous (or diverse) tech-
nology stack, too, that potentially manifests in a repository and its fragments [HK06,
PML15, SBH+19]. For instance, empirical studies do not get rich abstractions of the
source code for free (ASTs). Studies need to understand the code in its surrounding,
including technological aspects, like the build system [MAH10, LPS11, GdCZ19],
dependencies management [LPS11, SB15], various possible interoperating lan-
guages [BTL+13], infrastructure as code [OZR22, OZVR21], or MDE technology
invoking code generation [ZS06]. Even when limiting following up analysis to a
very specific mixture of technologies (e.g., to mobile apps [SPN+18] or graph query
languages [SHL+19]), an initial understanding of the technology stack, used in a
repository, is still needed as an inclusion/exclusion criteria. Defining abstractions
over a heterogeneous technology stack can be complicated due to the flexibility
of how technologies compose and interrelate (see work on documenting technolo-
gies and languages in software projects, which is motivated by such heterogene-
ity [FLV12, LV14, HLV17, HHL+17, Hei22, RRH+18, RRH+20]). Concrete analysis
meets a challenge with such heterogeneous repositories.

1.2.2 Methodological Challenges
We define a methodology to be the set of methods used in a study. Methodological
challenges refer to problems with this set of methods and can be solved by the
study of methods. Methodological challenges are not necessarily related to concrete
results. They are related to results of a method (or set of methods) in a broader
sense. We handle one methodological challenge that we refer to as the validity
challenge. Such challenge aims at making statements about the validity of methods
under clear conditions. We refer to methods dedicated to the study of methods as
high-order methods.

Validity Challenge A typical methodology in MSR/ESE does not interpret the
raw abstractions, metrics, or variables, mined from a repository. Instead, it com-
plements the raw variables, with unobserved or unobservable variables, which are
assumed to be relevant to understand software development. This might be con-
founding variables, or interesting parameters, relevant to understand a relationship
between other variables. To this end, studies use methods to build complex models
of the software development, to infer (learn) the unobserved aspects. See studies
that follow such practice [KSA+13, FBF+20, VPR+15, BHV16, FLHV22, SHL+19,
MW00, YXF+20, JTH21, NZZ+10, RRC16, ZPZ07, ZN08, TMHI16, TDH14, TH18].

Assessing the validity of data analysis methodology, that aims to understand and
use such variables, and typical relationships between variables, within the limits of

3

precisely defined threats, is often challenging. This motivates many books that
help with data analysis methodology in general [CCWA13, McE20, IR15, Agg15,
Har15, DB18, GH06, GHV20]. This literature might not immediately be applicable
to MSE/ESE. For software engineering, in particular, a literature review of frequent
statistic errors that may threaten a methodology can be found in [RDCJ18].

The methodological complexity of data analysis reaches its peak in understanding
and using causation, crucial for every scientific domain. A general discussion of lead-
ing authors examining causation can be found in [IR15]. Other examples of concrete
challenges that arise are the sampling process of such variables [MHJ+15, DAB21],
controlling variables [TH18] or correlated variables [JTH21]. Such challenges com-
plicate the methodology of MSR/ESE research in that the validity may sometimes
not be clear and threats are hard to disambiguate.

1.3 Technical and Methodological Contributions

This thesis includes a subset of the contributions published in three papers.
The critical mass of this thesis, however, cannot exactly be isolated to the
three publications.
We will provide an exhaustive list of publications, done over the past years in
our working group, with overlapping authorship, that is strongly relevant for
the critical mass of this thesis. Our previous publications are relevant to this
thesis for the following reasons:

• The challenges and motivations for this thesis, and the contributed
improvements to (high-order) methods, can be found in our previous
publications.

• The (high-order) methods presented in this thesis are developed in
the background of the publications contained in the list and are already
used in some of them silently.

The following list enumerates all publications, where titles in bolt are formally
included in this thesis. A detailed overview of all publications, including their con-
nections, is given in Chapter 2.

4

Ref. Year Included Title
[HAL18] 2018 Classification of APIs by Hierarchical

Clustering.

[RRH+18] 2018 Systematic Recovery of MDE Technol-
ogy Usage

[HHL18] 2018 Chapter 4 EMF Patterns of Usage on
GitHub

[SHL+19] 2019 Empirical Study on the Usage of Graph
Query Languages in Open Source Java
Projects

[HL20] 2020 Chapter 3 Incremental Map-Reduce on
Repository History

[RRH+20] 2020 Understanding MDE projects: meg-
amodels to the rescue for architecture
recovery

[HHL20] 2020 Reproducible Construction of Intercon-
nected Technology Models for EMF
Code Generation

[HL22] 2022 Chapter 5 Operationalizing Threats to MSR
Studies by Simulation-Based Test-
ing

[HL23] 2023 Chapter 5 Operationalizing Validity of Em-
pirical Software Engineering Stud-
ies

The publications included in this thesis and the corresponding contributions can
be summarized as follows.

1.3.1 Incremental Map-Reduce on Repository History
Studies working with abstractions of repositories with a high revision count face a
scalability challenge.

We propose a method to improve the scalability of functions that abstract over
repositories with high revision count in a theoretically founded way. We use insights
on abstract algebra and program incrementalization to define a core interface of
high-order functions that compute scalable static abstractions of a repository with
many revisions. Extended map-reduce primitives are built on top of the core in-
terface so that actual users can compose complex abstractions using the primitives,
without noticing the underlying technical efforts on incrementalization. We thereby
provide the first scaling solution that uses incrementalization to mine repositories.

5

This stands in contrast to previous work, assuming that incrementalization is not
applicable in MSR/ESE [SJAH09].

The mechanism that we present is generally applicable to circumvent bookkeep-
ing, with is typically needed when manually applying program incrementalization.
We illustrate and evaluate the improvements by a concrete empirical placeholder,
using map-reduce primitives to compute and aggregate cyclomatic complexity met-
rics for the files part of a revision. Previous work did show the successful use of
map-reduce in the context of MSR/ESE [SJAH09].

Incrementalization is orthogonal to other options to improve the scalability. We
show this by also enabling the reduction of redundancies and distributed processing
in our prototype. We thereby manage to better compare to existing competitor in
MSR/ESE.

We evaluate the scalability of our method by benchmarks, comparing a prototype
with available competitors in MSR/ESE. We compare with LISA [APPG19] that
reduces redundancy and with DJ-Rex [SJAH09, SAH10] that migrates an analysis
to a distributed map-reduce framework. Our prototype outperforms both in terms
of the time needed to process a repository and uses less memory than LISA.

1.3.2 Repository Mining with Datalog
Studies working with abstractions of repositories with a very heterogeneous tech-
nology stack may face difficulties composing functions, due to the flexibility of how
technologies compose and interrelate.

We propose a method to improve the definition of functions that abstract over a
repository with a heterogeneous technology stack, by using concepts from declarative
logic programming (in particular Datalog [DEGV01, GHLZ13]) and combining them
with ideas on megamodeling and linguistic architecture (see [FLV12, LV14, HLV17,
HHL+17, Hei22, RRH+18, RRH+20]). We reproduce existing ideas on declarative
logic programming with languages close to Datalog, coming from architecture recov-
ery [MMW02, MT01, TM03], source code querying [HVdM06], and static program
analysis [BS09, SBEV18], and transfer them from the analysis of a homogeneous to
a heterogeneous technology stack. In particular, we facilitate understanding a com-
plex technology stack in a repository by a bottom-up, step-by-step, and modular
classification of the repository, its fragments, and the involved technologies, using
Datalog rules. The method finally leads to a non-trivial understanding of the repos-
itory and the involved technologies in the large. Results conform to schemata from
previous work on megamodeling and linguistic architecture, which are developed to
document how complex technologies and languages manifest in software projects.

Our method facilitates modularity to fight the heterogeneity present in a tech-
nology stack. We use modular rules to infer classifications from other existing classi-
fications. Rules produce classifications that conform to ideas on megamodeling and
linguistic architecture, ideas that have proven to be well suited to describe the com-
plex composition of technologies in previous work [FLV12, LV14, HLV17, HHL+17,
Hei22, RRH+18, RRH+20]. Starting with basic classifications, e.g., of the revision’s
resources, our method uses modular Datalog rules that trigger more complex classi-
fications, e.g., of the build system, Java, XML, or MDE technology. Finally, we may
apply overall complex classification of technology patterns which might be part of

6

the repository. Our classifications can be read like proof-derivations, which helps to
trace interrelations between modular rules, separately classifying independent parts
of technologies.

We provide a prove-of-concept of such method in a case study. We apply the
previously reoccurring ideas from architecture recovery [MMW02, MT01, TM03],
source code querying [HVdM06], and static program analysis [BS09, SBEV18], to
a novel, heterogeneous context, studying the Eclipse Modeling Framework (EMF).
EMF is a very heterogeneous technology combining XML, Java, OSGI and various
build systems in its application [SBMP08]. This heterogeneous context requires a
more flexible access to the repository and its fragments. The case study defines and
runs the Datalog rules to mine EMF technology patterns. We step-by-step classify
different artifacts, part of EMF, find relationships (code vs. model vs. generator),
and finally do a high-level classification that detects specific EMF technology usage
patterns. We separate the rules for all technologies, and finally apply rules that
classify relationships. We apply the mining to GitHub repositories.

1.3.3 Simulation-Based Testing
We propose a high-order method to improve the disambiguation of threats to meth-
ods used in MSR/ESE. Data analysis methods, like regression modeling, statistic
tests or correlation analysis, are in active use with the aim to understand and use
software engineering data to improve software engineering practice. Assessing the
validity of data analysis methodology in this context, within the limits of precisely
defined threats, is challenging. We focus on a better disambiguation of threats, op-
erationalizing reasoning about them, and making the implications to a valid data
analysis methodology explicit, by using simulations. We encourage researchers to
accomplish their work by implementing ‘fake’ simulations of their MSR/ESE scenar-
ios, to operationalize relevant insights about alternative plausible results, negative
results, potential threats and the used data analysis methodologies. The simulation
replaces real data by ‘fake’ data, substituting observed and unobserved variables,
related to a real scenario, with synthetic variables, carefully defined according to
plausible (or controversial) assumptions on the scenario. The simulation allows to
critically explore how the methodology reacts in such a transparent scenario. This
is not possible on real data, since the reality is never fully transparent. A simulation
thereby manifests as an artifact that can accomplish research by disambiguating
its threats and their impact. We prove that such way of simulation-based testing
contributes to the disambiguation of threats in published MSR/ESE research.

1.4 Summary of the Delta to the Publication
This thesis is based on three central publications.

• Chapter 3 (Incremental Map-Reduce on Repository History) is published
in [HL20].

• Chapter 4 (Repository Mining with Datalog) is published in [HHL18]. This
thesis includes the method proposed in [HHL18]. The empirical results com-

7

puted in the case study of [HHL18], using the method, are associated with
Heinz [Hei22]. We discuss the case study as a proof-of-concept of our method.

• Chapter 5 (Simulation-Based Testing) is published in [HL22, HL23].

Other publications, that are strongly related but not directly included, are listed
in Chapter 2. Details on the correspondence between publications and thesis will
be discussed within each chapter. A detailed overview is given in Chapter 2.

1.5 Road-map of this Thesis
Chapter 2 starts with an overview of the contributions of this thesis, describing the
interrelations and connecting it to a set of other publications done in the working
group. The Chapters 3-5 cover the central contributions included in the thesis.
Most parts of the Chapters 3-5 can be read isolated. We summarize limitations of
all contributions in Chapter 7. The related work will be discussed in Chapter 8. For
the conclusion and future work, see Chapter 9.

1.6 Metamodel for the Chapters 3-5
The Chapters 3-5 will follow the same metamodel:

• Each chapter will start with an introduction section.

• A motivation section reviews selected work and illustrates challenges that mo-
tivate the contribution.

• A background section summarizes established knowledge that backs the con-
tribution. Some content in the background sections has never been discussed
in the context of MSR/ESE before. We try to keep the background sections as
close to the original contributions of this thesis as possible, not introducing any
additional toy examples. Hence, the presentation in the background sections
can already be considered as an original part of each chapter’s contribution.
The background part will be skipped in Chapter 5 as there is no previous work
relevant for the contribution in the context of MSR/ESE.

• The main part of each chapter introduces the details of the contribution.

• Hereafter, the evaluation is presented.

• Finally, a conclusion for the individual chapter is presented.

• The related work is collectively discussed in Chapter 8.

8

Chapter 2

Overview

This chapter gives an overview of the composition of this thesis by the means of
iterating through its development process. We will discuss the relevant publications.

2.1 Publication List
We start with a chronological list of all publications that can be found in the close
context of this thesis. The publications can be found in Table 2.1. The publications
are done by our working group, at the University of Koblenz-Landau, Germany, and
in cooperation with a working groups from the University of L’Aquila, Italy.

Table 2.1 is composed as follows: The publications in bolt include the cen-
tral contributions of this thesis. The authorship of three of them ([HL20], [HL22]
and [HL23]) can entirely be associated with this thesis (and Johannes Härtel). Con-
crete empirical results of the case study published in [HHL18] (on the usage of EMF
on GitHub) are associated with Marcel Heinz and central to his thesis (see [Hei22]).
This thesis will sketch the case study, since we need it as a proof-of-concept for
the method we proposed to mine a heterogeneous technology stack. The technical
and methodological insights of using Datalog as a method for mining, are entirely
associated with Johannes Härtel and this thesis. We will again point out this detail
on the authorship in the remainder of this chapter and in Chapter 4.

The remaining publications of Table 2.1 are stepping stones, taken on the way
to this final document. Not all, but most publications include major contributions
attributed to other leading authors. The full list of publications is discussed in this
chapter, to understand the broader context, the development of this thesis, and the
relations among the publications. In this chapter, we will acknowledge how work
builds on each other, how ideas evolve, get reused, and are made more mature over
the time. This chapter will present the big picture.

2.2 Publication Delta
This thesis reuses passages of the original publications. We will improve the descrip-
tion of the contributions, but we will not apply fundamental change to the presented
contributions. For the main publications ([HL20], [HL22, HL23] or [HHL18]), de-
tails on the delta between publication and thesis can be found in the corresponding

9

Table 2.1: Table of publications with contributions related and included in this
thesis

Ref. Year Included Title
[HAL18] 2018 Classification of APIs by Hierarchical

Clustering.

[RRH+18] 2018 Systematic Recovery of MDE Technol-
ogy Usage

[HHL18] 2018 Chapter 4 EMF Patterns of Usage on
GitHub

[SHL+19] 2019 Empirical Study on the Usage of Graph
Query Languages in Open Source Java
Projects

[HL20] 2020 Chapter 3 Incremental Map-Reduce on
Repository History

[RRH+20] 2020 Understanding MDE projects: meg-
amodels to the rescue for architecture
recovery

[HHL20] 2020 Reproducible Construction of Intercon-
nected Technology Models for EMF
Code Generation

[HL22] 2022 Chapter 5 Operationalizing Threats to MSR
Studies by Simulation-Based Test-
ing

[HL23] 2023 Chapter 5 Operationalizing Validity of Em-
pirical Software Engineering Stud-
ies

10

chapters (Chapter 3, 4 and 5).

2.3 Contribution Types
The contributions included in this thesis are different from standard instances of
empirical research in MSR/ESE. In this thesis, the concrete empirical questions
and results, which are the usual contributions of empirical research, are taken as
placeholders. We use such placeholders to illustrate improvements to methods and
high-order methods used to do empirical research. We summarize this as technical
and methodological improvements in MSR/ESE.

When looking at the publication list (Table 2.1), we will discuss different types of
contributions. We distinguish between empirical contributions that focus on results,
and technical/methodological contributions that focus on methods and high-order
methods. The following sections give a brief description of the types as we use them
in this thesis.

2.3.1 Empirical Contributions
Empirical contributions that use a repository as data source either answer questions
that guide the decision-making in the software development (e.g., [Has06, Has08,
TH18, VPR+15]), or provided tools that help with practical aspects of developer’s
everyday work (e.g., [ZN08, RRC16]). Take the following examples:

• In [VPR+15], authors focus on statements on the relation between gender
diversity, tenure diversity and productivity. Using such results in decision-
making may guide recruiting departments when composing teams.

• In [ZN08], models predict defects using network metrics. Such predictions can
be used as a tool to help developers with their everyday work when trying to
find defects.

A set of methods is involved in such studies to collect and analyze the data. We
find regression modelling, computation of network metrics, correlation analysis, or
the Blau index (see [Bla77] for the Blau index). Evolving this set of methods is not
the central contributions of the previous publications.

2.3.2 Technical and Methodological Contributions
Evolving the methods used in such research is equally important. Works may exam-
ine a placeholder question by a set of methods, while contributing an improvement
to the underlying set of methods and its understanding.

Take the example of [LSBV17] that examines cyclomatic complexity, and com-
pare it to [APG17], that illustrates a new method to scalable MSR/ESE analysis
by showing how it computes the cyclomatic complexity. Both works have a fun-
damentally different interest in why they compute cyclomatic complexity. For the
latter, findings on the cyclomatic complexity, the concrete empirical results, are less
relevant. The general technical improvement of the method matters.

11

Take another example of [TMHM17], that examines a set of model validation
methods, and compare it to [TDH14] that examines social and technical factors
while applying AIC [Aka98] as a method to protect against overfitting.

Ideally, a work that aims at answering a concrete empirical question puts less
attention on reinventing methodological and technical aspects. Often, an established
set of methods can be used.

If a publication focuses on improving methods and high-order methods, we fur-
ther distinguish between technical and methodological contributions.

Technical Contributions

We consider technical contributions as those improving methods according to tech-
nical objectives, like scalability, or composability.

For instance, studies may need processing methods that are complicated to im-
plement or hard to scale. For many empirical contributions, correct and efficient
methods for data extraction and data storage are a mandatory prerequisite. Techni-
cal solutions typically apply some sort of code analysis to repositories and its frag-
ments or store related content (e.g., [CJ18, TME+18, SPN+18, FBF+20, DRNN14,
APPG19, SJAH09, BPVZ20]).

Several works in MSR contribute technically to the methods used in MSR/ESE
(e.g., [DRNN14, APPG19, SJAH09, BPVZ20]). Often, such solutions try to fa-
cilitate the analysis of repositories and its fragments, without being limiting too
much to concrete empirical questions. They pick up the most relevant technical
characteristics of an MSR/ESE data collection method.

A strategy used in our and other work is to use existing software languages, or
storage mechanisms, and tailor them to the needs of analyzing repositories. Signal/-
Collect queries are run on repositories in [APPG19]; Map-reduce is used in our work
and in [SJAH09]; domain-specific languages (DSLs) are examined in [DRNN14];
Datalog is examined in our work; graph compression for storage in [BPVZ20]. All
solutions can be used as a technical building block, as methods, to answer a wide
range of potential empirical questions.

Methodological Contributions

We define a methodology to be the set of methods used in a study. Methodological
challenges refer to problems with this set of methods and can be solved by the
study of methods. Methodological challenges are not necessarily related to concrete
results. They are related to results of a method (or set of methods) in a broader
sense. We handle one methodological challenge that we refer to as the validity
challenge. Such challenge aims at making statements about the validity of methods
under clear conditions. We refer to methods dedicated to the study of methods as
high-order methods.

Methodological contributions may include examining the evaluation of meth-
ods, the applicability of quality criteria (like validity), or the meaning of threats in
such context. Selecting the right set of methods to do an empirical study is still
challenging and requires such high-order discussion.

We find related work that executes such high-order discussion of methods,
e.g., methodology on how to build models (e.g., [TMHM17, TH18, JTH21]).

12

In [TMHM17], for instance, model validation techniques are reviewed. This the-
sis follows the same direction, contributing simulations as a high-order method, to
better understand the methods involved in an empirical study and the corresponding
results.

2.4 Publication Timeline
In the following, we iterate Table 2.1 in chronological order and discuss the empirical,
technical and methodological contributions of the publications. We explain how
the contributions relate to this thesis. We also discuss some hidden technical and
methodological relations between the publication that have not been included in the
original papers.

2.4.1 Classification of APIs by Hierarchical Clustering.
Metadata

Authors Johannes Härtel
Hakan Aksu
Ralf Lämmel

Venue ICPC
Year 2018 (May)

Reference [HAL18]

The evolution of this thesis starts with an unsupervised classification model for
Application Programming Interfaces (APIs) published in [HAL18]. The classifica-
tion is done by hierarchical clustering.

APIs are crucial to software development. Building a model for API classes helps
developers to find the right API, e.g., by getting a list of available alternatives for
a given API. This motivation is also picked up in more recent work on the topic
(see [VCR22]). This early publication puts a clear focus on the concrete empirical
result that helps developers to better use APIs. The work also provides a tool for
doing this.

In particular, the model clusters APIs based on code identifiers. The raw data
is mined from JARs that we get from Maven Central. The clustering groups APIs
together that provide syntactically related functionality. The predicted clusters are
compared to preexisting categories, like XML, Security or Database. We use two
baselines of such categories, one from a previous work [RLP13], and one crowd-
sourced classification from Maven Central.

Technical and methodological challenges to involved methods are partially in-
cluded, but they are not the primary focus of this research.

This work includes a concrete technical challenge on scalability, which is to an-
alyze a list of 2.5 million POM files from GitHub. We solve it using distributed
map-reduce, which is not reported in our publication. The usage of map-reduce is
motivated by previous work of Shang et al. [SAH10]. The successful application is
one of the motivations for our future efforts in incrementalizing map-reduce for the
application in MSR/ESE.

13

Methodologically challenging is how the publication builds the model for mak-
ing predictions. The model is fitted using our baseline classifications. The model
includes unknown parameters that decide on alternatives in the classification mecha-
nism, in particular, how the code identifiers are extracted, NLP processing is applied,
and hierarchical clustering works. Parameters are fitted (learned) by a grid-search
going through all possible parameter combinations. Advanced algorithms for explor-
ing the parameter space are not applicable due to its discrete nature. We describe
the parameter space in terms of a feature model which is somehow novel.

However, we also face methodological weaknesses, that we have not been aware
of at this time. Corresponding threats have raised the interest in the later develop-
ment phase of this thesis. Most importantly, the presented work does not follow a
methodology to prevent overfitting. We assume that future work on API clustering
should be more careful about this threat if fitting parameters to existing data. Our
work on simulation-based testing, which appears four years after this publication, is
dedicated to making such threats more explicit.

2.4.2 Systematic Recovery of MDE Technology Usage
Metadata

Authors Juri Di Rocco
Davide Di Ruscio
Johannes Härtel
Ludovico Iovino
Ralf Lämmel
Alfonso Pierantonio

Venue ICMT
Year 2018 (June)

Reference [RRH+18]

About the same time of doing our research on APIs, our working group, and a
working group from University of L’Aquila, started cooperating on the examination
of model-driven engineering (MDE).

MDE [Béz05b, Béz05a, Sch06] has the goal to increase the quality and produc-
tivity in software development by the usage of models, metamodels, model trans-
formations, and model comparisons (note the ambiguity of models in this thesis).
In essence, developers try to work with (high-level) models instead of low-level code
(also considered as model) whenever possible. Often this is done to abstract from
implementation-specific details, that are finally derived from the high-level mod-
els using model transformations. Models may also be used in the communication
between developers, like often done using UML. Adoption of MDE in software devel-
opment is still subject to empirical research and the benefits are discussed controver-
sially, e.g., see work on EMF related technology in [KMK+15], or work on the relation
between UML and software quality (defects) examined in [RHC+19, RHH+17].

To gather raw data on MDE practice, our first publication on this topic proposes
a method to extract the usage of ATL transformations from open-source repositories.
This work is published in [RRH+18].

14

Mining of MDE technology is technically challenging. MDE technology is of-
ten very specific, project content is heterogeneous, and the analysis requires non-
standard methods to understand the different artifact types and how they relate to
each other. The method that we present in [RRH+18] uses heuristics to produce a
graph of connected MDE artifacts located in a subject MDE repository. A heuristic
is implemented in plain Java and queries the file system. The implementation of the
heuristics is very flexible since Java is a general purpose programming language.

However, during the development of the method, we noticed that such flexibility
weakens guarantees that we can give about the heuristics and their execution, e.g., on
modularity and complex interrelationships between them. Implementing heuristics
within a more constrained programming language, with stronger guarantees, but
that still allows mining of the complex artifact types, is the motivation for our
following up efforts using declarative logic programming with Datalog (see next
section).

The work published in [RRH+18] focuses on the technical aspects of recovering
MDE artifacts and relationships. The technical aspects of our recovery method
are presented in depth and evaluated for precision and recall, manually tagging the
expected results.

This publication does not include strong empirical contributions. No advanced
models are built that help to better understand the software development using
MDE techniques. Further, there is no representative sample of software projects
used, since the MDE projects studied come from a curated suite of ATL projects
(ATL Zoo). Such collection is likely to be different from ATL usage in the wild.
However, our publication argues the contributed method to collect raw data on the
relationships between MDE artifacts is still helpful for developers in the concrete
cases, since it can be used to understand the project while onboarding.

A technical insight of this work is that we spotted the first instance of a reoc-
curring technical problem of methods that access the content of repository revisions
through the operating system’s file layer. This indirection typically turns out to
be a performance bottleneck, especially if analyzing multiple revisions of the same
repository. We find related discussions in publications like [APPG19]. In the up-
coming publications of Table 2.1, we solved these issues using virtualized access by
dedicated primitives that immediately map file system access to the repository’s
object storage (using git bare repositories).

2.4.3 EMF Patterns of Usage on GitHub
Metadata

Authors Johannes Härtel
Marcel Heinz
Ralf Lämmel

Venue ECMFA
Year 2018 (June)

Reference [HHL18]

A second branch of concurrent research did examine the implications of a data
analysis method with stronger limitations in the programming language, when com-

15

pared to the previous weakly constrained usage of general purpose Java. Such efforts
also aim at the technical challenge of mining heterogeneous MDE technology. The
work is published in [HHL18].

In the publication [HHL18], the empirical placeholder is EMF technology. ATL
and EMF are very related. Both are well-known instances of MDE technology. One
benefit of studying EMF is that the gathered results on EMF usage is relevant
to Heinz [Hei22]. The results conform to a pattern catalog developed by Heinz
that he reports on in the context of a thesis on knowledge engineering. In the
publication [HHL18], but especially in this thesis, we contribute the method used
for mining the heterogeneous technology stack of EMF.

We propose a method to improve the definition of functions that abstract over a
repository with a heterogeneous technology stack, by using concepts from declarative
logic programming and combining them with ideas on megamodeling and linguistic
architecture. We reproduce existing ideas on declarative logic programming with
languages close to Datalog, coming from architecture recovery, source code querying,
and static program analysis, and transfer them from the analysis of a homogeneous
to a heterogeneous technology stack. We provide a prove-of-concept of such method
in a case study.

The method is discussed in detail in Chapter 4. However, there are small dif-
ferences between the publication and the thesis. In the original publication, we use
Apache Jena (a Datalog dialect). Occasionally, our specialize language for mining
is called QegaL due to its original purpose of querying linguistic architecture. In
this thesis, we change the presentation to standard Datalog and improve the related
work discussion on declarative programming. We applied this change to get a more
standardized discussion that better aligns with the related work.

Furthermore, future work on incrementalization is possible with Datalog. Incre-
mentalization was already planned to be part of our future work, but after publishing
the Datalog method, we decided to start with incrementalizing map-reduce as the
more established language for data processing and mining (see [SAH10]). Incremen-
talizing map-reduce is part of the upcoming publications discussed in the context of
Table 2.1. It is the central topic of Chapter 3.

2.4.4 Empirical Study on the Usage of Graph Query Lan-
guages in Open Source Java Projects

Metadata
Authors Philipp Seifer

Johannes Härtel
Martin Leinberger
Ralf Lämmel
Steffen Staab

Venue SLE
Year 2019 (October)

Reference [SHL+19]

The next publication focuses on concrete empirical results of examining the usage
of graph query languages on GitHub. The paper is published in the Software Lan-

16

guage Engineering (SLE) community (in [SHL+19]), which shares a natural interest
in empirical data on the usage of (graph query) languages in the wild.

The paper compares the evolution of the usage of available graph query lan-
guages. The technically challenging analysis of the full revision history is limited to
SPARQL and Cypher. To get a detailed picture of the usage of both languages, we
first identify potential occurrences in repositories by analyzing project dependen-
cies. Afterward, we apply heuristics that indicate if a piece of code includes use of
SPARQL and Cypher.

At this time, a predecessor of our Topleet prototype (incremental map-reduce)
was already available, so we used map-reduce code to run the heuristic. Finally,
we examine a set of 7274 repositories and over one million revisions. We did not
report on this since our incremental map-reduce method was not yet published.
The successful application was another motivation for us to keep up with using
map-reduce as a method for the incremental processing of revisions.

Other than that, the publication relies on very basic methods to report and
compare the raw usage data. To some extends, this raw data is interesting since we
render it over more than ten years. Our paper informally explains the evolution of
the languages by characteristic events (like new versions of a graph query language).
At this point, we avoid advanced temporal models, which might have been part of
a more formal set of methods to study such raw data.

The paper includes a very basic regression model. This model tries to capture
the decision of a project for a query language, i.e., if it decides for SPARQL or
Cypher. The methodology to do this again shows some flaws, for instance, we
selected an inappropriate distribution for the output variable. Such flaws are part
of our upcoming work on simulations. Simulations that show the implications of the
wrong distribution form are already included in the online resources of [HL22], and
might appear in an extended journal version of the publication on simulation.

2.4.5 Understanding MDE projects: megamodels to the
rescue for architecture recovery

Metadata
Authors Juri Di Rocco

Davide Di Ruscio
Johannes Härtel
Ludovico Iovino
Ralf Lämmel
Alfonso Pierantonio

Venue Software and Systems Modeling
Year 2020 (January)

Reference [RRH+20]

The publication [RRH+20] is a journal version of the previous work, described
in [RRH+18]. The journal version extends the list of heuristic, e.g., adding the anal-
ysis of Acceleo MDE technology. This decreases the number of unrelated artifacts
in the subject MDE projects, to better understand the relationships between the

17

different artifact types. Like in the previous conference version, the contribution of
this journal version is an improvement to the technical method for collecting data.

The work makes the motivation for the proposed methods more explicit by stat-
ing that: ‘diversity of employed languages and technologies blurs the picture making
it difficult to analyze existing MDE-based projects’ (direct citation [RRH+20]). The
work also emphasizes the usage of megamodeling as an underlying schema for struc-
turing the extracted data.

2.4.6 Incremental Map-Reduce on Repository History
Metadata

Authors Johannes Härtel
Ralf Lämmel

Venue SANER
Year 2020 (February)

Reference [HL20]

In February 2020, the method of using incremental map-reduce to process repos-
itory history was published, which is a technical contribution of this thesis. The
publication is motivated by the successful application of map-reduce in the previ-
ous publications, and by the scalability problems that we repeatedly faced doing
concrete empirical contributions.

We propose a method to improve the scalability of functions that abstract over
repositories with high revision count in a theoretically founded way. We use insights
on abstract algebra and program incrementalization to define a core interface of high-
order functions that compute scalable static abstractions of a repository with many
revisions. We evaluate the scalability of our method by benchmarks, comparing a
prototype with available competitors in MSR/ESE.

This publication is one of the central publications included in this thesis. Details
of this publication will be covered in depth in Chapter 3 of this thesis.

2.4.7 Reproducible Construction of Interconnected Tech-
nology Models for EMF Code Generation

Metadata
Authors Marcel Heinz

Johannes Härtel
Ralf Lämmel

Venue JOT
Year 2020 (July)

Reference [HHL20]

A work on the reproducible construction of interconnected technology models is
one of the following up works. It technically relies on our Datalog method used to
mine an EMF repository with a heterogeneous technology stack. The publication
is central to the thesis of Marcel Heinz (see [Hei22]). To some extends, this work
shows a more recent application of the Datalog method, which provides another

18

proof of the applicability. Methodologically challenging aspects of reproducibility
can be found in this publication too.

2.4.8 Operationalizing Threats to MSR Studies by
Simulation-Based Testing

Metadata
Authors Johannes Härtel

Ralf Lämmel
Venue MSR

Year 2022 (May)
Reference [HL22]

While most of the previous publications did not involve complex methodology
for building models of software development, unpublished efforts of us did.

In the first years of such efforts, we repeatedly consulted textbooks on modeling
methodology, trying to adapt recipes (typically coming from other domains). How-
ever, we did not have much success with this strategy since the software repository
data turned out to be too different from anything else.

A breakthrough came with the question of how to test if our methodology (the
set of methods we use) works as expected. Motivated by very recent literature on
statistic modeling by McElreath [McE20] and Gelman et al. [GHV20], we started
using simulations. We add a direct citation of the first three sentences of the preface
of [GHV20] to emphasize this trend: "Existing textbooks on regression typically have
some mix of cookbook instruction and mathematical derivation. We wrote this book
because we saw a new way forward, focusing on understanding regression models,
applying them to real problems, and using simulations with fake data to understand
how the models are fit." (Direct citation of Gelman et al. [GHV20])

In such recent work, models that are the central entities of any methodology to
understand real data, are systematically complemented by models that are run on
simulated ‘fake’ data. Such practice allows making objective statements on whether
the model and methodology work as expected. Transferring such practice to MSR/
ESE requires simulating repositories and software engineering data. We noticed that
this is more systematic than copying established methods from unrelated domains.

The idea evolved and did appear in May 2022 [HL22]. We consider this con-
tribution as a high-order method because it aims at making statements about the
methodology (a set of methods), and does not aim at concrete empirical results.

We propose a high-order method to improve the disambiguation of threats to
methods used in MSR/ESE. We focus on a better disambiguation of threats, op-
erationalizing reasoning about them, and making the implications to a valid data
analysis methodology explicit, by using simulations. We encourage researchers to
accomplish their work by implementing ‘fake’ simulations of their MSR/ESE scenar-
ios, to operationalize relevant insights about alternative plausible results, negative
results, potential threats and the used data analysis methodologies. We prove that
such way of simulation-based testing contributes to the disambiguation of threats
in published MSR/ESE research.

We will describe the details in Chapter 5.

19

2.4.9 Operationalizing Validity of Empirical Software Engi-
neering Studies

Metadata
Authors Johannes Härtel

Ralf Lämmel
Venue EMSE

Year 2023
Reference [HL23]

A corresponding journal version was published hereafter.

20

Chapter 3

Incremental Map-Reduce on
Repository History

3.1 Introduction
Empirical contributions in MSR/ESE often rely on data mined from repositories
and its fragments (i.e., revisions, parent-relations, commit-metadata, or resources).
Following up analysis typically depends on a process of abstracting from such raw
repository data, using abstractions that are well-suited to measure relevant aspects
of the software development.

Abstraction or metrics (often also called variable when used in following up
models) may reflect API migration [SPN+18, RvDV17, RvDV12, RvDV13], de-
velopers experience [RRC16, RD11, ETL11], software changes [MPS08, SZZ05,
YMNC04, KYM06, MSR17], entropy of changes [Has09], infrastructure as
code [OZR22, OZVR21], dependencies [SPN+18, HV15, OBL10, RvDV13], net-
work metrics [ZN08], diversity [VPR+15], similarity [LKMZ12, APM04, CCP07,
MMWB13, SL16, HAL18], architecture [LLN14], documentation [AHS14], source
code [ETL11, CDR18, FOMM10, GKSD05, CCP07], static code attributes [MGF07],
change bursts [NZZ+10, Cho20], corrective engineering, bugs, defects and
fixes [MW00, MGF07, RD11, Has09, ZN08, MPS08, SZZ05, NZZ+10, FBF+20],
commit time [ETL11, SZZ05], pull requests [GPvD14, BPWS20, GZSvD15,
GSB16, YWF+15, TDH14], open-source collaboration [Cho20], branching [KPB18],
tests [BFS+18], OO-metrics [BBM96], asserts [CDO+15, KL17], social fac-
tors [FBF+20, VPR+15] model-driven technologies [KMK+15, HHL18, RHC+19,
RHH+17], project popularity [AHS14, BHV16, WL14], languages usage [BTL+13,
SHL+19], software builds [MAH10, GdCZ19] or reviewer assignment [RRC16,
SdLJPM18].

Abstractions may strongly differ in how they measure the static or dynamic
aspects of the software development that manifest in a repository. When having a
function that abstracts over the repository, we can distinguish between1:

• Static Abstractions: We may abstract over single revisions only. Such static
1There might be different terminology describing such difference, like static vs. change, process

or churn. We do not refer to the difference between static and dynamic program analysis. For
examples, see work on defects [MPS08, DLR10]. We stick to static and dynamic.

21

abstractions do not reflect the dynamics of the repository. We can compute
them as functions applied to a single revision and the resources part of it. For
instance, we may compute the abstractions mentioned above statically, e.g.,
the total lines of code, the number of dependencies, or the presence of a given
architecture pattern (in a given revision).

• Dynamic Abstractions: We may also abstract over more than a single
revision. Such dynamic abstractions allow abstracting over differences between
revisions, over a revision’s past, over its future, or over a given time window
relative to it. We can compute them as functions applied to sets of revisions
and the resources part of it. For instance, we may compute the abstractions
mentioned above dynamically, e.g., aggregates of past lines changed, future
defects, or the entropy of the repository content in a time window (computed
on a set of revisions).

Such abstractions may reuse each other. We may find dynamic abstraction built
on top of static abstractions, e.g., the change (dynamic abstraction) of the total
lines of code (static abstraction). We may find static abstraction built on top of
dynamic abstractions, e.g., the total number (static abstraction) of previous changes
to files (dynamic abstraction). Related work that systematically explores various
forms of such abstractions, e.g., in the context of modeling defects, can be found
here [MPS08, Has09, DLR10].

What static and dynamic abstractions have in common is that we always
associate them with a single revision, or a point in time, where the abstrac-
tion reflects the software development process best. This is necessary for fol-
lowing up models that use abstractions as variables where the point in time,
and the temporal precedence of variables, is typically relevant for claims on
causation. See examples of work using various abstractions to build models
[KSA+13, FBF+20, VPR+15, BHV16, FLHV22, SHL+19, MW00, YXF+20, JTH21,
NZZ+10, RRC16, ZPZ07, ZN08, TMHI16, TDH14, TH18]. In particular, a static
abstraction is always associated with a specific revision; a dynamic abstraction con-
siders the past and future of, or a time window relative to, a specific revision.

The previous aspects on computing abstraction of revisions bring up a funda-
mental problem with the scalable computation of such abstractions when done for
the repository’s full revision history.

Typical studies may benefit from data on the full revision history of the software
under version control [GHJ98, GKMS00, Has06]. To this end, we may need to com-
pute abstractions of the repositories, that do not only reflect the most recent revision,
but abstractions that reflect all or many revisions [KPB18, APPG19, LDKBJ22].
This can improve understanding of the software development process, e.g., if the up-
coming analysis builds advanced models that abstract over the time, or the branching
structure of the repository. Studies including such data and advanced models can be
found here [PFS+20, SPN+18, AHS14, KPB18, GdCZ19, VPR+15, FLHV22]. How-
ever, compared to computing abstractions of single revisions, computing abstractions
of all or many revisions in a repository is expensive. If studying repositories with
more than a few revisions, which is not unusual, we meet a scalability challenge
(see [SJAH09, APPG19, LDKBJ22]).

22

In this chapter, we will focus on the technical challenge to compute static abstrac-
tion of single revisions, but for all or many revisions of the repository (comparable
to [APPG19, LDKBJ22]). We show how to scale such computations using methods
to incrementalization. We limit us to static abstractions because it is most com-
prehensible and good for illustration. Our method may also be able to accelerate
the computation of dynamic abstractions. We will present some ideas for future
work and more details in this chapter and in the chapter on limitations (Chapter 7).
However, dynamic abstractions are not part of our contribution, since we have not
yet done any evaluations.

3.1.1 The Scalability Challenge
In practice, work that computes static abstractions for multiple revisions faces a
scalability challenge. In the following enumeration, we list conceptual solutions for
realizing scaling computation:

• Scalability can be reached by the method of parallel and distributed anal-
ysis [SJAH09, SAH10, DNRN15, DNRN13, NDNR14]. Work may rely
on code written in map-reduce [SJAH09, SAH10] or domain-specific lan-
guages [DNRN15, DNRN13, NDNR14]. However, such work scales at the
expense of high hardware usage.

• Some work reports on handmade incrementalization to accelerate the process-
ing [CJ18, TME+18]. The typical analysis code calls git-diff and just examines
the changed code lines between revisions. Such incremental analysis may be
complicated because it requires additional bookkeeping efforts. The authors
of [SJAH09] state that this is not applicable when prototyping (see the related
work discussion of [SJAH09]).

• Another method is to reduce redundancies and memoize intermediate results,
leveraging the high similarity between revisions. Such method is presented
in [APPG19] and requires analysis to be written in Signal/Collect [SBC10].

• Other work relies on the method of sampling [MHJ+15, DAB21]. Here, a
random subset of the target population, e.g., a sample of revisions, is examined.
Results on the sample need to be annotated with estimates of uncertainty.
Such work looses data.

• Query optimization is another method, applicable to improve the scalable pro-
cessing. An intuitive example is to optimize the order of query steps, like filter
and join. Filtering can often be executed before joining, which reduces the
data in advance of expensive joining. Other optimizations, like changing the
order of joints, may be applied based on runtime data. Recent frameworks,
like Catalyst for Spark DataFrames [AXL+15], enable such optimizations.

The previous technical methods can be considered as orthogonal. They can be
combined to improve the scalability of an MSR/ESE analysis which is tailored to the
processing of single or multiple revisions. Incrementalization is specific to analyzing
multiple revisions.

23

This chapter focuses on incrementalization. We exclude optimization by sam-
pling revisions because this practice just reduces the size of the actual problem.
We also do not include query optimization methods that may be run on top of our
method; a fact that calls for future work.

We propose a method to improve the scalability of functions that abstract over
repositories with high revision count in a theoretically founded way. We use insights
on abstract algebra and program incrementalization to define a core interface of
high-order functions that compute scalable static abstractions of a repository with
many revisions. Extended map-reduce primitives are built on top of the core in-
terface so that actual users can compose complex abstractions using the primitives,
without noticing the underlying technical efforts on incrementalization. We thereby
provide the first scaling solution that uses incrementalization to mine repositories.
This stands in contrast to previous work, assuming that incrementalization is not
applicable in MSR/ESE [SJAH09].

The mechanism that we present is generally applicable to circumvent bookkeep-
ing, with is typically needed when manually applying program incrementalization.
We illustrate and evaluate the improvements by a concrete empirical placeholder, us-
ing map-reduce primitives to compute and aggregate cyclomatic complexity metrics
for the files part of a revision. We selected this placeholder because concrete em-
pirical studies examine the cyclomatic complexity too, like [JMF14, LSBV17], and
one of the direct competitor for the technical analysis of repositories, LISA, also
illustrates its method taking cyclomatic complexity as a placeholder (see [APG17]).
In an evaluation, we compare performance of incremental map-reduce with the di-
rect competitors. Previous work did show the successful use of map-reduce in the
context of MSR/ESE [SJAH09].

Incrementalization is orthogonal to other options to improve the scalability. We
show this by also enabling the reduction of redundancies and distributed processing
in our prototype. We thereby manage to better compare to existing competitor in
MSR/ESE.

Our work is inspired by incrementalization theory to define the high-order
functions forming our core interface. This includes insights on algebraic struc-
tures to define changes, and insights on (self-maintained) derivatives or homo-
morphisms, to define applied functions. General work using such insights are,
e.g., [GGMS97, CGRO14, BROL14].

We evaluate the scalability of our method by benchmarks, comparing a prototype
with available competitors in MSR/ESE. We compare with LISA [APPG19] that
reduces redundancy and with DJ-Rex [SJAH09, SAH10] that migrates an analysis
to a distributed map-reduce framework. Our prototype outperforms both in terms
of the time needed to process a repository and uses less memory than LISA.

3.1.2 The Topleet Solution
The idea of incrementalization is to process changes [RR93]. Assume that we already
know the input and output of a function. If the input to the function changes,
incremental processing favors updating the output, based on the input’s change,
rather than recomputing the new output from scratch.

We need another function (a derivative) that maps the input change to the output

24

change. This mechanism may be less expensive, but it only works if we already have
the previous input and output computed. The concept of incrementalization is
known for a long time [RR93].

Now, consider a function that takes a revision and returns a static abstraction
of it. If we want to compute the abstraction for two succeeding revisions (part
of a repository’s history), and already have the abstraction of the first revision,
we would favor using a derivative to update the previous abstraction based on the
changes between the two revisions. Take a trivial example abstraction, like counting
the number of classes. Here, we can react to a new file with a new class in a next
revision, by just adding +1 to our class count.

We know that, between succeeding revisions, often just a few resources change.
In the best case, we can reuse a big part of the previous abstraction, which is the
key insight of transferring incrementalization to the revision history.

Manually writing these derivatives, which are necessary for incrementalization,
is cumbersome and error-prone. To avoid handmade solutions, general program and
database incrementalization methods exist that take over the important bookkeeping
in the background [GGMS97, CGRO14, BROL14]. Such solutions rely on theoretic
insight on algebraic structures, derivatives and self-maintained derivatives (group
homomorphisms). We use the foundations and present the first method
that transfers such practice to mining software repository revisions.

We provide a well-motivated core interface to implement incremental function-
ality in terms of derivatives. The core interface delegates the function application
to all revisions of a repository. We introduce a prototypical implementation called
Topleet2. It implements the core interface, but it also provides the concrete deriva-
tives for extended map-reduce functionality, build on top of the core interface. A
user can finally compose complex processing in regular map-reduce syntax, without
manually implementing derivatives.

Topleet analysis is embedded into regular Scala code and provides a syntax that
resembles non-optimized map-reduce code, widely understood and used for analysis
in MSR/ESE [SJAH09, SAH10]. We also add optimization by reducing redundancies
and distribution to better compare to recent prototypes used in MSR/ESE.

We compare the scalability of Topleet to a method relying on a manual migration
of code to distributed map-reduce [SJAH09, SAH10], a corresponding hand-made
incrementalization, and to a reduction of redundancies [APPG19].

3.1.3 Summary of this Chapter’s Contributions

• An adaptation of incrementalization theory for processing multiple revisions
of the repository history.

• Topleet; a prototype for the scalable processing of multiple revisions in map-
reduce style, employing generally applicable incrementalization mechanisms,
reduction of redundancies and distribution.

2Implementation, advanced examples, usage guidelines and supplementing evalua-
tion data are available under http://github.com/topleet/topleet.

25

• An evaluation comparing the performance of Topleet with LISA (reduction
of redundancies) and DJ-Rex (distribution) and an evaluation of Topleet’s
infrastructure.

3.1.4 Summary of the Delta to the Publication
Parts of the following text are taken from the previous publication [HL20]. The
following items describe the delta of this thesis to the publication:

• We add a discussion of alternative algebraic structures and their implications
on practical solutions. This discussion is part of a new background section.

• We discuss a handmade incrementalization in detail, introducing the running
example on a function aggregating cyclomatic complexity metrics for a revi-
sion.

• This thesis improves the distinction between general, repository specific and
prototype-specific insights on incrementalization. We discuss general insights
in the background section, while repository specific and prototype-specific in-
sights follow in Sec. 3.4.

• The terminology changes towards using derivatives and self-maintained deriva-
tives (instead of index-based application and homomorphism). We assume
that this naming better aligns with existing work on incrementalization
(e.g., [CGRO14]).

• We add a more formal discussion of properties of our proposed method and
their correctness, which has not explicitly been given in the original publica-
tion. The original publication assures correctness by differential testing only.

3.1.5 Micro road-map of this Chapter
This chapter follows the metamodel defined in the introduction (Sec. 1.6). In par-
ticular,

Sec. 3.2 begins with a motivation, describing a running example on a function
aggregating cyclomatic complexity metrics for a revision. This thesis uses the ex-
ample throughout the chapter. Furthermore, we describe existing solutions coming
from the related work.

Sec. 3.3 introduces the background on incrementalization. To avoid additional
toy examples, the background section illustrates general incrementalization solving
the running example. The term ‘background’ is used in a modest sense, as this
section already contains content that has not been discussed in the context of MSR/
ESE before.

Sec. 3.4 transfers the background on incrementalization to mining software repos-
itory revisions. The section also discusses implementation details of our prototype.

Sec. 3.5 evaluates our prototype by comparing different features of it with two
related methods (DJ-Rex and LISA).

26

3.2 Motivation
We motivate this part of the thesis by an application-oriented view on recent solu-
tions to processing multiple revisions, part of a repository’s history. As the running
example, we choose to compute and sum up McCabe’s cyclomatic complexity on
all Java files of a revision. The computation of cyclomatic complexity has been
used for the technical presentation of LISA [AG15, APG17, APPG19], it fits into
the Boa infrastructure [DNRN15, DNRN13, NDNR14] and can be migrated to a
distributed map-reduces frameworks in analogy to DJ-Rex [SJAH09, SAH10]. The
cyclomatic complexity has been subject to empirical studies in software engineering,
e.g., in [JMF14, LSBV17, TH18].

Later in the background section (Sec. 3.3), we start developing an incremental
solution for mining the sum of cyclomatic complexity on all Java files of a revision.

The running example on cyclomatic complexity is just a placeholder. Our final
prototype allows using the full range of extended map-reduce functionality. We will
give a concise summary of the limitations of our method later in Chapter 7.

3.2.1 Migration to Distributed Map-Reduce (DJ-Rex)
DJ-Rex is presented in [SJAH09, SAH10] as a proof-of-concept showing the migra-
tion of an existing MSR analysis to distributed map-reduce. We reproduce two solu-
tions, according to the presentation of DJ-Rex, migrating a function that computes
McCabe’s cyclomatic complexity to a distributed map-reduce framework. We avoid
to show aggregation here. We call the solutions ‘DJ-Rex’ and ‘DJ-Rex Incremental’.

• The first solution, DJ-Rex, follows the conceptual idea of [SJAH09, SAH10]
in a straightforward manner, just migrating a non-incremental solution to a
distributed map-reduced framework. Hence, this solution only benefits from
distribution.

• We also implement a second solution, DJ-Rex Incremental, migrating a hand-
made incremental solution to map-reduce. This solution benefits from dis-
tribution and incrementalization. We omit discussing DJ-Rex Incremental in
this thesis, since we discuss a closely related solution in Sec. 3.3.1. However,
this incrementalization is done ‘manually’ and invokes additional bookkeeping
that we need to do as a user.

The most relevant code of the DJ-Rex solution can be found in Listing 3.1.
1 val resources: RDD[(SHA, Path, Resource)] = . . .
2 val mcCabe: RDD[(SHA, Int)] = resources
3 .filter { case (_, path, _) => path.endsWith(".java") }
4 .map { case (sha, path, resource) =>
5 (sha, computeMCC(resource))}

Listing 3.1: DJ-Rex Solution: An excerpt of our reproduction of [SJAH09] migrating
computeMCC to distributed map-reduce.

In particular, we use Scala and Apache Spark for distribution. The Resilient
Distributed Datasets (RDDs) [ZCD+12] provide a distributed collection of elements

27

that can be operated on in parallel. The operation filter restricts the resources
on Java files and map calls the foreign function computeMCC to compute the cyclo-
matic complexity on resources. We thereby executed the processing in parallel and
distributed manner.

The problem with such simple code is that, already for a medium-sized repository,
like libgdx/libgdx3, with around 14.000 revisions, it needs approximately seven hours
on a single machine. Handmade incrementalization efforts optimizing this map-
reduce code to just handle changed resources (‘DJ-Rex Incremental’) leads to a
much faster solution, taking six minutes. We will give an introduction to the idea
of such handmade incrementalization in the background section (Sec. 3.3.1).

However, handmade incrementalization invokes additional bookkeeping efforts
and is error-prone. Avoiding such bookkeeping in a generally applicable incremen-
talization framework will be the central topic of this chapter.

3.2.2 Domain-Specific Languages (Boa)
Another method that can be used to analyze repository history on a distributed map-
reduce platform is Boa [DNRN15, DNRN13, NDNR14]. To this end, the analysis
is written in a domain-specific language (DSL). The following excerpt can be found
in the reference documentation of BOA4 answering the question: ‘How many fixing
revisions added null checks?’. We show the original solution, which is focused on
computing an abstraction of change between succeeding revisions. However, we
assume that an adaptation that computes the cyclomatic complexity as a static
abstraction over a revision is straightforward.

1 before node: ChangedFile −> {
2 // if this is a fixing revision and there was a previous version of the file
3 if (isfixing && haskey(files, node.name)) {
4 // count how many null checks were previously in the file
5 count = 0;
6 visit(getast(files[node.name]));
7 last := count;
8 // count how many null checks are currently in the file
9 count = 0;

10 visit(getast(node));
11 // if there are more null checks, output
12 if (count > last)
13 AddedNullCheck << 1;
14 }
15 if (node.change == ChangeKind.DELETED)
16 remove(files, node.name);
17 else
18 files[node.name] = node;
19 stop;
Listing 3.2: Boa Solution: ‘How many fixing revisions added null checks?’ (Adapted
copy from the Boa reference documentation)

To determine if null checks have been added, the code counts null checks on
the previous revision of a changed file (if there is one) and on the current version.

3http://github.com/libgdx/libgdx
4http://boa.cs.iastate.edu/docs/index.php

28

Comparable to the DJ-Rex Incremental solution, Boa code processes changes man-
ually – eye-catching by the usage of types such as ChangedFile and ChangeKind.

Boa provides a web-based interface to the proprietary Boa infrastruc-
ture [DNRN13]. We do not report on its performance as we cannot reproduce
this setup. However, we assume that the performance does not differ from the
DJ-Rex solutions; we also assume that there is the same performance gap be-
tween change-oriented (incremental) and non-change-oriented (non-incremental)
treatment. Again, we manually implement the incremental behavior.

3.2.3 Reduction of Redundancies (LISA)
LISA [AG15, APG17, APPG19] is a solution that reduces the redundancies in the
multi-revision code analysis, and the first in this presentation that does not require
handmade bookkeeping on how to handle changes.

LISA needs a registered parser for a target file extension and analysis code writ-
ten in Signal/Collect [SBC10]. The code for the computation of McCabe’s cyclo-
matic complexity can be found in the publications [APG17, APPG19]. LISA does
not allow direct calls to foreign functions.

The computation of McCabe’s cyclomatic complexity on the same repository
requires 12 minutes; however, LISA has the highest memory footprint with 6.4 GB.

After discussing the competitors of our method, where some already involve man-
ual incrementalization, we switch to the formal background on generally applicable
incrementalization mechanisms.

29

3.3 Background
This section starts with the formal idea of processing changes by derivatives, which
is the essence of program incrementalization. The idea will be capable to express
the handmade incrementalization practice on repository revisions, described in the
previous section, generally, applicable in terms of a core interface, and map-reduce
functions build on top of it.

Typical formalization expresses incremental processing in terms of abstract al-
gebra. This has been done for a while (e.g., [GGMS97, CGRO14, BROL14]). The
formalization helps to understand and plug the generic parts of an incrementaliza-
tion (rather than implementing all parts of a concrete solution manually). Many
bookkeeping efforts can be circumvented.

In this section, we give an introduction to the most relevant parts, in the context
of our running example. The main contributions will follow in Sec. 3.4, transferring
the ideas to the processing of repository revision history.

3.3.1 Handmade Incrementalization
We begin with a handmade program incrementalization, manually turning a non-
incremental solution into an incremental. This translation requires additional book-
keeping efforts that tailors the solution towards handling changes by manually im-
plementing the derivative.

Our running example corresponds to a function that computes a static
abstraction of a single revision. The function aggregates the sum of the
cyclomatic complexity of all Java files (part of the revision). The input type
of the function is a bag of resources. The output is of type integer. We
apply this function to all revisions, part of the repository, to get a
corresponding abstraction (integer) for each revision.

Non-incremental Solution A non-incremental Scala solution, applying the func-
tion to each revision, can be found in Listing 3.3.

The solution uses a virtualized access to the resources, contained in the revision,
by a mutable bag of resources. It uses two methods, add and remove, which inform
the program of changing path-resources tuples, updating the bag accordingly. Add
and remove is called while traversing the revision sequence (eventually backed by
the object storage of the bare repository). We hide this unessential aspect of the
code.

Such solution corresponds to methods using a working copy, located on the file-
system, and successively checking out revision after revision. The solution presented
here virtualizes such access using the bag of resources since an indirection over the
file-system introduces enormous overhead. We simplify and assume that we have
a sequence of revisions ordered by time (no branching) that we can traverse. In
Sec. 3.4, we will generalize this practice to graph structures that are better suited
to represent repository revision history.

30

The function abstraction reflects the function to compute the abstraction. It
aggregates the cyclomatic complexity for all Java resources, contained in the virtu-
alized access by the bag. To apply the function to all revisions, an analysis needs to
traverse the entire revision sequence (using add and remove) and call abstraction
after each step.

1 // Mutable data structure to maintain the input data.
2 val resources: mutable.Bag[(Path, Resource)] = ...
3

4 // The input of the program given in terms of add and remove.
5 def add(p:Path, r: Resource) = resources.add((p,r))
6 def remove(p:Path, r: Resource) = resources.remove((p,r))
7

8 // The output of the program (the function computing the abstraction).
9 def abstraction(): Int = {

10 var result = 0
11 for ((p, r) <− resources if p.endsWith(".java"))
12 result = result + computeMCC(r)
13 return result
14 }

Listing 3.3: A non-incremental solution

Such solution has scalability issues for obvious reasons. The actual function
needs to be computed over and over again, for each traversed revision. Each call
needs to exhaustively process the resources part of the particular revision.

Incremental Solution We can improve the solution by applying a simple pro-
gram incrementalization, manually implementing the derivative (see Listing 3.4).

The solution operates on the input changes, given in terms of added and removed
path-resources tuples. We use the change to update the resulting output abstraction,
the total cyclomatic complexity, stored in an intermediate variable. In particular, the
cyclomatic complexity of added Java resources is added to an intermediate variable
totalMCC and the cyclomatic complexity of removed Java resources is subtracted.

1 // Intermediate store for the abstraction.
2 var totalMCC = 0
3

4 def addResource(p: Path, r: Resource) =
5 if(p.endsWith(".java")) totalMCC = totalMCC + computeMCC(r)
6

7 def removeResource(p: Path, r: Resource) =
8 if(p.endsWith(".java")) totalMCC = totalMCC − computeMCC(r)
9

10 // The function computing the abstraction.
11 def abstraction(): Int = totalMCC

Listing 3.4: An handmade incremental solution

The solution provides the same results as the non-incremental solution, but with
different performance characteristics, better suited to compute the abstraction for
each revision.

This program shows the essence of a basic program incrementalization, when
implementing the derivative manually. It handles incoming changes efficiently, po-
tentially producing outgoing changes. Outgoing changes may be connected to other

31

processing components (as incoming changes) in that more complex processing may
be composed. The underlying idea is more general and can be expressed in terms
of abstract algebra and certain properties of the applied functions.

3.3.2 General Incrementalization
The example problem that we have presented so far computes a pure function f on
all revisions. The function takes a single revision and produces an abstraction of it.
In our example, this function f takes the bag of resources (input) and produces an
integer (output). The type signature of such function is Bag[(Path, Resource)]
→ Int.

The function f and the data types for input and output are generic parts of a
generally applicable incrementalization framework. If the function and types can
handle changes and act incrementally, performance benefits may kick in. This sec-
tion will describe the limits of such generic parts, which we call the core interface
for functions and types. We support this discussion by concrete instances, needed
to compute the sum of the cyclomatic complexity, but the interface is not limited
to cyclomatic complexity.

Our final prototype will follow an advanced strategy, building another layer on
top of the core interface. We will implement the primitives of extended map-reduce
(e.g., map, filter, group, join, count or sum) and repository resource access (git-diff),
on top of the core interface. More complex processing, like computing and summing
up the cyclomatic complexity, can be composed out of the primitives. We thereby
do not need to rewrite any primitive incremental functionality from scratch. Such
primitives will be discussed in the context of our prototype.

Representing Data and Change

The first part of the core interface covers the input and output data types for a
function. The requirements are different from typical data types, as we also need a
mechanism to capture data’s change.

We define data and changes to follow the axioms of algebraic structures. An
algebraic structure is defined over a set S and closed under a binary operator ⊙ :
S × S → S (Axiom 1). For each data type that we use, we need a corresponding
algebraic structure.

Axiom 1 (Closed under ⊙) If x, dx ∈ S, then x ⊙ dx ∈ S.

Data and changes are elements in S. If x is some data and dx some change, and
both are contained in S, we consider x ⊙ dx to be the data x after the change dx
has been applied. According to Axiom 1, the result is included in S. Hence, we can
represent arbitrary changes by a sequence of elements in S, fold by the ⊙ operator.

We do not distinguish between data and changes (every data entry can also
be understood as a change and vice-versa) because typically, there are algebraic
structures applicable to represent both. There are also methods that distinguish
between data and changes but without immediate benefits within the context of
our work (see [CGRO14] for change structures that distinguish between data and
changes).

32

Example Output To make this more concrete, we now transfer such insights to
our running example. We start describing the output type of the function. We use
an algebraic structure, defined on the set of integers, S, with + (summation) being
the operator ⊙. Consider the following example of changing data. We read from
left to right5:

data︷︸︸︷
0

change︷ ︸︸ ︷
⊙7 ⊙ −5

The sequence represents data starting at 0, which is changing to 7 (by change 7),
and to 2 (by change −5). Summarizing the previous discussion: For our running
example, the output data and its changes can both be represented by using a plain
integer as data type. This is a relevant insight to a technical solution.

We want to emphasize that this illustration is tailored to our running example.
In our final map-reduce prototype, such limitations on types will hardly be noticed,
since one typically uses collections that allow flexible types of contained elements.
Algebraic structures are only relevant when understanding the limitations of the
underlying core interface.

Example Input For our example’s input data type, we use a bag of path-resource
tuples (our most important collection type). We define the algebraic structure on
the set of bags T . To enable representing changes in terms of added and removed
elements by T , elements in the bag need to be tagged to indicate on removal. We
write such elements as r2. The operator ⊗ (we use different symbols for this algebraic
structure) is defined to be the bag union and cancels out corresponding adds and
removes. For instance, {r2} ⊗ {r2} is the same as an empty bag {}. Consider the
following example of changing data:

data︷︸︸︷
{}

changes︷ ︸︸ ︷
⊗{r1, r2} ⊗ {r2, r3}

The sequence starts on an empty bag {} and then adds r1 and r2. Hereafter,
r2 is removed and r3 is added. The elements r1, r2 and r3 stand for path-resources
tuples in this example.

Algebraic structures are useful to formalize sequences of changes. At the same
time, implementing an algebraic structure allows plugging custom data types into
the core interface of our incrementalization prototype. We will cover more algebraic
structures in the remainder of this thesis, but the most central structure for our
map-reduce prototype will be the bag. Have a look at our hand made incremental
solution again. We may now define both, function and derivative, having the type
signature Bag[(Path, Resource)] → Int. This will later be a property of a self-
maintained derivative.

Axioms of the Group Operator Four more axioms on the operator ⊙ give rise
to an algebraic structure. In the remainder of this work, we will focus on algebraic

5There are formal ways to define such sequences of changes. We go for a very intuitive notation,
from left to right. In the following up discussion, transferring insights to the revision history, we
will be more formal.

33

Associativity Identity Invertibility Commutativity
Monoid • •

Com. Monoid • • •
Group • • •

Abelian Group • • • •

Table 3.1: Axioms of Algebraic Structures

structures where all axioms hold. Such structures are called Abelian groups. How-
ever, for understanding different methods to incrementalization, this background
section also discusses other structures. Axioms may limit the core interface and
have relevant technical implications.

Axiom 2 (Associativity) For a, b and c in S, (a ⊙ b) ⊙ c = a ⊙ (b ⊙ c) holds.

Axiom 3 (Identity) For each a, there exists an identity element z for that a⊙z =
a and z ⊙ a = a holds.

Axiom 4 (Invertibility) For each element a, there exists an inverse element a−1

in that a ⊙ a−1 = z.

Axiom 5 (Commutativity) For a and b in S, a ⊙ b = b ⊙ a.

Depending on which of the axioms hold, algebraic structures are called: Monoids
(ass. and id.), groups (ass., id. and inv.), commutative Monoids (ass., id. and
com.) and Abelian groups (all). See Table 3.1 for a summary. We do not claim for
completeness, as there are other algebraic structures that are not directly relevant
to this discussion.

We will do a short examination of the important benefits and drawbacks related
to the structures listed above.

Monoid and Commutative Monoid A monoid (or commutative monoid) is
used to formalize monotonous growth of data and to express the corresponding
change. The relevant characteristic is the missing inverse element, which is manda-
tory to undo previous changes (Axiom 4).

(Commutative) monoids are often used in the processing of (ordered) event
streams (e.g., [BROL14]). Such streams are continuously growing, while undoing
previous events is disregarded. For ordered event streams, monoids, S can be de-
fined as the set of lists closed under list concatenation. For unordered event streams,
commutative monoids, S is defined as the set of sets closed under the set union.
Monoids are also used to formalize monotonous growth of the Datalog fix-point
operator [AEJO19]. Datalog will be discussed in the next chapter of this thesis.

For typical abstractions of a repository, applied in MSR/ESE, the usage of com-
mutative monoids may have some interesting use cases, possibly relaxing the limi-
tations of our current prototype.

For instance, if we want to compute an abstraction of the past or future of a given
revision, e.g., summing up the distinct authors in the past, we have monotonous be-
havior of the data when traversing the revision history. We may decode data and

34

change as commutative monoid, by the set of sets closed under the set union. The
identity element will be the empty set. In particular, a function can be applied to
sets that include all previous SHAs (commits), and derive all kinds of useful abstrac-
tions from it. On monoids, some applied functions will become more attractive, for
instance, min or max aggregation will have efficient derivatives.

We did not yet examine implications of using (commutative) monoids, and also
did not consider switching between algebraic structures with different axioms. How-
ever, we assume that this will be a good extension of the capabilities of our method.

Group and Abelian Group A group (or Abelian Group) is used to formalize
data that allows undoing previous changes (including Axiom 4). If the input data
of a function is defined in this manner, it allows flexibility in terms of growing and
shrinking data, at the price of some more expensive computations. For instance,
functions implementing min and max will be less efficient, compared to those working
on (commutative) Monoids.

Groups and Abelian Groups are used to formalize general program and database
incrementalization, where data structures (like collections and tables) are modified
in terms of add and remove operations (e.g., [CGRO14, GGMS97]). Groups can be
used to formalize lists, where the order in which the updates apply matters. Abelian
Groups can be used in the formalization of bags where order does not matter.

Since this thesis primarily focuses on static abstractions, computed on the re-
sources of single revisions, monotonously growing data is not possible. We need
data types that reflect resource changes in terms of added and removed resources
between revisions. Commutativity helps to align with the acyclic history. Limita-
tions of working with Abelian groups will later get clear. Working with time windows
shares the same growing and shrinking characteristics which calls for Abelian groups.

Processing Data and Change

To complete the core interface, we describe the generic aspects of the applied func-
tion f , specified as f : S → T . Both, input and output type S and T need a
corresponding algebraic structure to have a representation for data and changes, de-
fined by the tuples (S, ⊙, zS) and (T, ⊗, zT). The elements of the tuples are the set,
the operator, and the identity element respectively. The inverse element is always
written as x−1.

Derivatives Incrementalization is based on the idea of having derivatives for func-
tions (see Definition 1).

If we have x ⊙ dx, where x ∈ S is some data, dx ∈ S some change, we can
optimize a function application f(x ⊙ dx) by reusing the previous result f(x) while
the derivative f ′(x, dx) computes the output change when the input x is changed
by dx. The derivative f ′ needs to assure that the semantics of the original f is
preserved. Formally, this means f(x ⊙ dx) = f(x) ⊗ f ′(x, dx) needs to hold.

Definition 1 (Derivative) Having x, dx ∈ S and a function f : S → T , a function
f ′ : S → T is a derivative if f(x ⊙ dx) = f(x) ⊗ f ′(x, dx) holds.

35

Definition 1 is the key insight to incrementalization. When replacing the left-hand-
side of the equation with the right-hand-side, we may save resources if the com-
putation of f(x) can be reused. Such reusing can be done recursively on change
sequences.

non-incremental︷ ︸︸ ︷
f(x ⊙ dx) =

incremental︷ ︸︸ ︷
previous︷ ︸︸ ︷

f(x) ⊗
derivative︷ ︸︸ ︷
f ′(x, dx)

Many functions have a known derivative f ′ that enables this sort of computation.

Self-maintained Derivatives We see that x is a mandatory input to both func-
tions f and f ′. This is critical to solutions, e.g., limiting how data x is stored and
distributed. For instance, optimizing f(x) and f ′(x, dx) to run on different hardware
is not possible without some data sharing mechanism, sending x.

However, there are derivatives that are self-maintained, i.e., the derivative is
independent of x (Definition 2). In this case, we meet the definition of a homomor-
phism, another concept from abstract algebra. We call this function h and say that
the function ‘is’ a self-maintained derivative.

Definition 2 (Self-maintained derivative) Having x, dx ∈ S and a function h :
S → T , the function h is a self-maintained derivative if h(x ⊙ dx) = h(x) ⊗ h(dx)
holds.

In practice, this implies that input data x does not need to be maintained while
processing a sequence of changes by h.

non-incremental︷ ︸︸ ︷
h(x ⊙ dx) =

self-maintained, incremental︷ ︸︸ ︷
h(x) ⊗ h(dx)

Many functions will conform to such more efficient formalization. Take our
running example of the computation of the cyclomatic complexity as an instance,
where only the added and removed path-resources tuples (dx) are needed, while
maintaining the bag of overall path-resources tuples (x) is not needed. Function h
filters for java resources and sums up the cyclomatic complexity of changed resources,
where added resources are positive numbers and removed resources are negative
numbers.

While this is just an example of a concrete self-maintained derivative, we will
later provide a set of primitives that have self-maintained derivatives to allow a
composition of complex processing. In the case of our running example, we may
use self-maintained derivates of map-reduce functionality map, filter and sum to
compose the abstraction of the revision. We do not need to write the derivatives
manually.

Operations Conforming the Core Interface

In the remainder of this thesis, we will focus on incrementalizing primitives of ex-
tended map-reduce and on git-diff. The primitive functions are sufficient to compose
complex processing, and they can be plugged into our core interface. We will cover

36

further technical implications for the prototypical realization in Sec. 3.4.3. The eval-
uation in Sec. 3.5 measures and compares performance benefits of different methods
for the running example on the cyclomatic complexity.

37

3.4 Technical and Methodological Improvements
The main contributions of this work are structured as follows. In Sec. 3.4.1, we use
the background on abstract algebra to associate data with revisions, and changes
with parent relations. In Sec. 3.4.2, we use the background on derivatives and self-
maintained derivatives for the processing of changes instead of the corresponding
data. In Sec. 3.4.3, we describe the challenges of implementing a working prototype
that is embedded into Scala. The prototype uses the previous ideas on incremental-
ization. We use the prototype in the evaluation and show that this design improves
the scalability.

3.4.1 Representing Repository History
Opposed to regular program incrementalization practice, which focuses on a se-
quence of changes, we need to consider the acyclic nature of the repository history.

We consider the following aspects (Sec. 3.4.1, 3.4.2 and 3.4.3) as de-
sign decisions. The design suffices to implement typical computations of
MSR/ESE using our final prototype. Later evaluation will show that the
design improves scalability.

Graph Structure The repository history consists of a set of revisions and a set of
parent relations. This is a graph G = (E, N). Revisions are points in the history N .
Parent relations connect one point to another and represent an evolution E. Parent
relations are created by actions, such as committing, forking and merging. We prefer
the term revision instead of commit to better distinguish nodes from edges in the
graph. Since it is impossible for a revision to be a parent of itself, we have an acyclic
graph.

Data and Changes To transfer the insights on incrementalization to repository
history, we associate data with revisions and changes with parent relations. This
novel association is given in terms of the total functions for nodes Π : N → S and
edges Π′ : E → S. The tuple of the associations makes up our data structure.

For describing data and changes, we focus on Abelian groups (S, ⊙, zS). The
usage of Abelian groups is motivated by our typical showcase of functions that
operate on the bag of resources contained in a revision, which may grow or shrink
over the revision history. We go for Algebraic groups because it provides a proper
inverse (shrinking). Commutativity helps to align with the acyclic history6.

Properties of Π and Π′ We initialize the associations according to the following
two ideas on how data Π and its change Π′ manifest in repositories.

• We initialize the association Π so that it stores data (maintains the actual
‘payload’ of the data structure) for each revision. It is a generic part of the

6Other than that, if we aim at analyzing all preceding revisions of a given revision, we may
go for a commutative monoid, since such data grows monotonously. We did not yet examine the
second use case in this thesis. All structures may come with other limitations and benefits, we
focus on static abstractions on single revision, and Abelian groups.

38

data structure. In our running example, we instantiate it as the bag of path-
resources tuples, or the cyclomatic complexity metrics.

• We initialize the association Π′ (the change) according to Π and G. The
formalization of data and changes, given by an Abelian group, can be used to
guide the definition of change on an edge in E given by Π′. See Definition 3.

Definition 3 (Edges) Let N , E, Π, S, ⊙ be the repository history and Abelian
group, for every edge (n1, n2) ∈ E, the change association is defined by Π′((n1, n2)) =
Π(n2) ⊙ Π(n1)−1.

This definition says that for getting the change between two nodes, we form the
inverse of the first node, and combine it with the second node. It is a conventional
difference described in terms of abstract algebra. From Definition 3 it logically
follows that when traversing a path P through the graph, connecting n1 and n2, the
accumulated changes Σ⊙

e∈P Π′(e) will be consistent with the overall change between
the connected revisions Π(n1)−1 ⊙ Π(n2). This leads to Lemma 1.

Lemma 1 (Paths) Let N , E, Π, Π′, S, ⊙ be the repository history with Abelian
group, for every directed path P between two nodes n1, n2 ∈ N , Π(n2) = Π(n1) ⊙
Σ⊙

e∈P Π′(e) holds.

Lemma 1 offers a way to circumvent maintaining (or computing) the entire as-
sociations Π and Π′ which are central to our data structure. Using Definition 3, we
can turn Π into Π′. Using Lemma 1 we can turn Π′ back into Π if needed7. We
thereby have the option to only use one of both associations when working with
the data structure. It may often be the case that the changes Π′ will be easier to
maintain (and compute if we can use derivatives). Lemma 1 will be the theoretic
background for a Data Traversal (introduced later in the more technical sections).

Visual Example Figure 3.1 shows the conceptual idea of associating data and
changes with the graph visually.

The circles correspond to the revisions N = {A, B, C} and the directed edges
correspond to the parent relations E = {(A, B), (B, C), (A, C)}. The lower-case
letter correspond to data u, v, w ∈ S. In Figure 3.1, data can be found inside the
circles. Changes are annotated to the edges of the graph and defined according to
Definition 3.

3.4.2 Processing Repository History
We now transfer the capabilities of more efficient processing mechanisms using (self-
maintained) derivatives, to a data structure defined according to the previous sec-
tion, in terms of Π and Π′. We now distinguish between input S and output T for
an association respective to an applied function f : S → T .

7In particular, if we have Π(n1) for a single node n1, we can compute Π on every node reachable
from n1 by just using the changes Π′ on necessary edges. The single node n1 is later referred to
as a checkpoint.

39

Rev. A Rev. B Rev. C

u−1 ⊙ w

u v w
u−1 ⊙ v v−1 ⊙ w

Figure 3.1: Associating data and changes with the revisions A, B and C and the
parent relations (A,B), (B,C) and (A,C): The data associated with nodes is Π(A) =
u, Π(B) = v and Π(C) = w. The change associated with edges is Π′((A, B)) =
u−1 ⊙ v, Π′((B, C)) = v−1 ⊙ w and Π′((A, C)) = u−1 ⊙ w, defined according to
Definition 3.

The associations of an input data structure ΠS and Π′
S are assumed to be cor-

rectly defined according to Definition 3. Our aim is to apply a function f in that
an output association is ΠT (n) = f(ΠS(n)) for all n ∈ N . This is the way we
assume a data structure to work. By chaining such function calls, we can compose
the computation of static abstractions of single revisions. We apply the function to
all n ∈ N .

Definition 4 (Function Application) Let N , E, ΠT , ΠS, S, T be the repository
history and Abelian groups, for input and output associations, for every node n ∈ N ,
the data association after an application of f is ΠT (n) = f(ΠS(n)).

This computation may be inefficient. We prefer computing the new change
Π′

T (n1, n2) as a derivative, like f ′(ΠS(n1), Π′
S(n1, n2)), instead. If this is correct, we

can use Lemma 1 to recover ΠT from the efficiently computed Π′
T . Correctness of

the more efficient computation follows from our previous definitions:

Π′
T (n1, n2) ?= f ′(ΠS(n1), Π′

S(n1, n2))

ΠT (n1) ⊗ ΠT (n2)−1 ?= f ′(ΠS(n1), Π′
S(n1, n2)) (ap. Definition 3)

f(ΠS(n2)) ⊗ f(ΠS(n1))−1 ?= f ′(ΠS(n1), Π′
S(n1, n2)) (ap. Definition 4)

f(ΠS(n2)) ?= f(ΠS(n1)) ⊗ f ′(ΠS(n1), Π′
S(n1, n2)) (ap. ⊗ f(ΠS(n1)))

f(ΠS(n1) ⊙ Π′
S(n1, n2)) ?= f(ΠS(n1)) ⊗ f ′(ΠS(n1), Π′

S(n1, n2)) (ap. Lemma 1)

f(x ⊙ dx) ?= f(x) ⊗ f ′(x, dx) (renaming)
f(x ⊙ dx) = f(x ⊙ dx) (ap. Definition 1)

This results in Lemma 2. Lemma 3 follows accordingly.

Lemma 2 If a function f has a derivative f ′, for every edge (n1, n2) ∈ E in the
graph, Π′

T (n1, n2) = f ′(ΠS(n1), Π′
S(n1, n2)) holds.

40

Rev. A Rev. B

output (gray)

input
u v

f(u) f(v)

u−1 ⊙ v

f ′(u, u−1 ⊙ v)

Figure 3.2: Application of a derivative with input and output graph

Lemma 3 If a function h is a self-maintained derivative, for every edge (n1, n2) ∈
E in the graph Π′

T (n1, n2) = h(Π′
S(n1, n2)) holds.

These two lemmas provide the essence of optimized application of a function to
all revisions of a repository, being a technical alternative to a computation following
Definition 4.

Instead of computing ΠT for all n ∈ N , we can go the indirection over Π′
T , effi-

ciently computed by the derivatives, and then recompute ΠT according to Lemma 1
along the parent relations.

The limitation of regular derivatives, that need Π at the time of applying f ′, can
be avoided by recovered it on the fly according to Lemma 1. This still circumvents
applying f to every single revision.

Visual Example We see a visual example of the exchangeability, for a regular
derivative, in Figure 3.2. Data associations are shown insider the nodes. The change
associations are shown as edge labels. The function application is shown as dotted
arrows from top to bottom (input to output).

3.4.3 Implementing the Topleet Prototype
The previous sections illustrate how to formalize general program incrementalization
and how to transfer these insights to revisions and parent relations of a repository’s
history. In this section, we show how such insights can be turned into a concrete data
structure for processing repository history, as a prove-of-concept, and for running
an evaluation. The prototype that we show implements concrete derivatives of map-
reduce, that can immediately be used.

The following code is integrated into standard Scala. It shows our Topleet proto-
type computing the cyclomatic complexity on all Java file revisions in the repository
libgdx/libgdx.

1 // Git initialization.
2 val shas: Leet[SHA] = git("libgdx/libgdx")
3

4 // Accessing the resources of each commit.
4 val resources: Leet[Bag[(Path, Resource)]] = shas.resources()

41

5

6 // Filtering for Java.
7 val javas: Leet[Bag[(Path, Resource)]] = resources
8 .filter { case (path, resource) => path.endsWith(".java") }
9

10 // Computing the metrics.
11 val mcCabe: Leet[Bag[Int]] = javas
12 .map { case (path, resource) => computeMCC(resource)}
11

12 // Summing up the metrics.
13 val summed: Leet[Int] = mcCabe.sum()
Listing 3.5: Topleet Cyclomatic Complexity Solution: The part from line 4 to 10
corresponds to the map-reduce steps of the DJ-Rex solution, shown in Listing 3.1.

The code uses the Topleet data structure Leet[S], which maintains the reposi-
tory history as a graph in the background. Revisions are nodes and parent relation-
ships are edges. The data structure associates each node of this background graph
with one data entry of the generic type S for which we have a corresponding Abelian
group. The Abelian group is inferred during compile time using a Scala mechanisms
called implicit parameters.

Method calls on the data structure invoke processing steps that return new data
structures with altered data and change associations. This enables a fluent API
syntax that sequentially applies processing steps to the data entries of all revisions,
similar to map-reduce. Such processing steps are backed by a core interface for
applying regular and self-maintained derivatives.

For clarity, we assign the intermediate results in Listing 3.5 to placeholders (val)
annotated by the type. The solution starts with a call to git, initializing the
first data structure with the revision history of repository libgdx/libgdx used as
background graph. It associates each node of the background graph (i.e., a revision)
with a data entry of type SHA reflecting the revision’s identity. Method resources()
is invoked on this data structure to read out the available path-resource tuples for
each SHA, i.e., the revision’s corresponding resources at this point in the history.
In the background, this call relies on the self-maintained derivative git-diff. The
returned data structure maintains data entries of type Bag[(Path, Resource)].
The type Bag[E] is a bag of elements of type E. Path is a path to a resource
and Resource is a pointer to repository content providing an input stream. The
next steps invoke map, filter and sum according to the standard semantics of
bags; computeMCC is a foreign function of type Resource → Int to compute the
cyclomatic complexity on a single resource; it is the parameter of the high-order map
function.

Topleet processes the libgdx/libgdx history in around 3.2 minutes (DJ-Rex In-
cremental takes 6.5 minutes, LISA 12.0 and DJ-Rex 449 minutes). Topleet includes
the change processing (incrementalization), distribution and reduction of redundan-
cies under the hood, but looks almost similar to the basic map-reduce solution, such
as DJ-Rex.

42

Core Interface

Topleet builds up extended map-reduce on top of a simple core interface. The core
interface consists of operations for:

• applying derivatives (tmap),

• applying self-maintained derivatives (tmapHom),

• merging two data structures with the same background graph according to the
operator of the Abelian group (merge) and

• initializing a data structure with arbitrary data.

Background Graph

The Topleet data structure Leet[S] hides the repository history under the hood
in terms of the background graph. The background graph is created during the
initialization of the data structure and remains unchanged from this point on. It
consists of i) nodes N that represent individual revisions in the history, and of ii)
directed edges (N, N) connecting very similar revisions by the parent relations.

Conceptually, the background graph is not limited to repository history and
may also reflect other evolving artifacts, for instance, the versions of a JAR file and
the respective semantic versioning relation. Versioning practice, like the usage of
branches, may affect the topology of the background graph being a sequence, tree
or acyclic graph.

Change Collection

According to our discussion on the associations, Π and Π′, our data structure prefers
to work with Π′ instead of Π whenever possible. Instead of using data of type S, at
every node N, represented by, e.g., Map[N, S], Topleet prefers a collection of data
changes represented as Map[(N, N), S]. We refer to this as change collection.

An Abelian group, corresponding to type S of Leet[S], is used to initialize the
underlying elements of the change collection according to Definition 3. For each
background graph edge (n1, n2) and the corresponding data association Π(n1)
and Π(n2), a change element Π′(n1, n2) = Π(n2) ⊙ Π(n1)−1 is created during the
initialization of the data structure.

Implementing Abelian Groups

To derive the change collection for, let’s say, Leet[Int], we need an Abelian group
for Int. While our prototype typically works with bags as data type, we also show
Int for illustration here.

The Abelian group for natural numbers Int defines addition to be the operator
⊙, negation to be the inverse and 0 to be the zero element z. An implementation
can be found in Listing 3.6.

1 case class MyInteger extends AbelianGroup[Int]{
2

3 override def zero(): Int = 0

43

4

5 override def op(a: Int, b: Int): Int = a + b
6

7 override def inv(a: Int): Int = −a
8

9 }
Listing 3.6: Implementing an Abelian group for type Int

This Abelian group is passed into a data structure automatically whenever type
Int is used to initialize it, or if Int is the output of an applied derivative. This is
done by an implicit parameter. Without such mechanism, using the data structure
is more cumbersome because corresponding Abelian groups have to passed explicitly
whenever needed.

Composing Abelian Groups

For covering all types of our showcase in terms of Abelian Groups, such as SHA,
Bag[(Path, Resource)] and Bag[Int], we rely on a mechanism for composition.

One of the fundamental types that we use for such composition is Map[K, V]
which has a corresponding Abelian group if there is a ‘nested’ Abelian group for V.
The Abelian group for Map[K, V] is defined as follows: The operator e−1 inverts the
values of the map by the nested e−1

V operator; the ⊙ operator merges two maps in
that it combines the values with the same key by the nested ⊙V operator, filtering
out nested zV elements; operator z returns an empty map.

Accordingly, we can use the Abelian group for Int to compose an Abelian group
for Map[K, Int]. The type Map[K, Int] can also be considered as an alias for
Bag[K] assigning bag element K to the number of its occurrence, which may also
be negative. This is effectively the same as tagging removed elements, which we
have used in Sec. 3.3 to distinguish between added and removed elements in bags.
We use this Abelian group for the data structure Leet[Bag[(Path, Resource)]]
and Leet[Bag[Int]] in our cyclomatic complexity solution. The final user of our
prototype will typically work with bags.

Other than that, we have a corresponding Abelian group for tuples (V1,V2) that
can be composed out of an Abelian group for V1 and V2 by delegating to the nested
Abelian groups.

Escaping Abelian Groups

The processing of a Git repository, as shown in the solution, usually starts with
the initial data structure Leet[SHA]. However, the type SHA misses a corresponding
Abelian group; hence, we miss a way to represent it as change collection. In this
case, we fall back to non-incremental processing. Effectively, we wrap type SHA in
a single element Bag[SHA], having a Abelian group, to ease the implementation of
our prototype.

However, finding a reasonable decomposition of S into parts that change lit-
tle along the edges of the background graph is the premise to efficient processing
changes. While the repository content is predestined to be decomposed into bags of
resources that change little (i.e., by Bag[(Path, Resource)]), decomposing type

44

SHA is not beneficial. Neither would decomposition imply small changes, as suc-
ceeding SHAs are not trivially related, nor would there be derivatives with useful
properties.

Data Traversal

Our data structure processes changes, associated with parent relations, instead of
data, associated with revisions. Hence, data associated with revisions needs to be
restored whenever needed. This may be required when reading out the content of
the data structure at revisions or when applying a regular derivative f ′(x, dx) that
requires x.

Reading out data of Π happens according to Lemma 1. Changes Π′ can be com-
puted and fold along a path in the background graph, in that data Π, associated with
the revision and reachable over some known data association, can be recomputed.
We refer to this as data traversal. The traversed data can be listened. Immutable
types help to avoid visiting nodes twice or copying the data when the background
graph branches.

Checkpoint Collection

A problem of a data traversal, present in Lemma 1, is that it needs at least one
data association to start with. Without such reference point, the change collection
cannot be turned into data again. To enroll a data traversal, the Topleet structure
maintains a second checkpoint collection processing the data association of one node
in every connected component of the background graph. A type like Map[N, V] can
be used for this. The checkpoint collection is processed in analogy to the change
collection.

Applying Derivatives

For the processing, the way in favor is to work on the change collection by applying
(self-maintained) derivatives. The data structure enables this by the core operation
tmap and tmapHom. The prefix ‘t’ stands for topological. We use this naming to
disambiguate between default map calls on the type Bag[V] of Leet[Bag[V]], one
of map-reduce’s primitive function.

If having a regular derivative, the interface tmap of Leet[S] enables applying a
function f ′ : (S, S) → T to produce Leet[T]. The two parameters of the applied
function are x and dx, i.e., the data and its change on an edge. The function needs
to conform Definition 1.

If having a self-maintained derivative, the interface tmapHom of Leet[S] enables
applying a function h : S → T to produce Leet[T]. The parameter is dx, i.e., the
change on an edge. We need to be sure that the function conforms Definition 2.

Both calls to the core interface turn the change collection into the new change
collection according to Lemma 2 and Lemma 3. The checkpoint collection is modified
accordingly. The background graph is preserved during such invocation.

45

Accessing Resources (Git-Diff)

Most functions that compute static abstractions of a single revision start on the bag
of path-resource pairs contained in the revision. We would expect some functionality
f giving us the resource of a given revision (in our prototype the function is called
resources). We prefer to rely on bags, for which we have an Abelian group. We
define the input of f to be of (the escaped) type Bag[SHA] and the output to be of
type Bag[(Path, Resource)].

Since we favor derivatives, we need f ′. The function git-diff exactly fulfills the
requirements of a self-maintained derivative f ′. We can use tmapHom to apply it.

3.4.4 Map-Reduce Operations
A second layer on top of the core interface implements the primitive functions of
map-reduce, all realizable as (self-maintained) derivatives. Such functions can be
used to compose more complex processing. From this point on, end-users will not
get in touch with incrementalization at the core interfaces, but compose arbitrary
processing using the primitives.

filter : (K → Boolean) → Leet[Map[K, V]] → Leet[Map[K , V]]
map : (K1 → K2) → Leet[Map[K1, V]] → Leet[Map[K2 , V]]
sum : Leet[Bag[Int]] → Leet[Int]
count : Leet[Bag[K]] → Leet[Int]
join : Leet[Map[K,V1]] → Leet[Map[K,V2]] → Leet[Map[K,(V1,V2)]]
While the list shows regular aggregation, our prototype also allows applying

group wise aggregation. Principles for the incrementalization are the same.

Example Cyclomatic Complexity

We now revise the computation steps of the cyclomatic complexity, working only on
the change collection. A detailed picture of such processing is given in Figure 3.3.

The processing starts with a call to git taking the repository address as pa-
rameter. It initializes the data structure Leet[SHA] by creating the background
graph and populates the corresponding change collection. The Abelian group used
corresponds to type Bag[SHA] which is an alias for Map[SHA, Int] and the internal
substitute for the escaped type SHA.

We exemplify such initialization on a simple background graph that consist of
three succeeding commits A, B and C. We use letters to identify commits instead
of real SHAs. To derive the first change collection, we first define the association
of the background graph nodes: Π(A) = {(A→1)}, Π(B) = {(B→1)} and Π(C) =
{(C→1)}. Occasionally, we use a shorthand notation such bags, i.e., {A}, {B} and
{C}. The first change collection lists the changes: Π′(A, B) = {(A→-1),(B→1)}
removing A and adding B (short {A,B}) and Π′(B, C) ={(B→-1),(C→1)} removing
B and adding C (short {B,C}). From now on, the processing commences on the
change collection with the elements ((A, B), {A,B}) and ((B, C), {B,C}).

For the remaining steps of computing the cyclomatic complexity, we rely on
map, filter and sum, which are map-reduce primitives that are self-maintained
derivatives and thereby can immediately be applied to the change collection.

46

Edge BC
change
𝚷’(B,C)

Rev. B
data
 𝚷(B)

Edge AB
change
𝚷’(A,B)

Rev. A
data
𝚷(A)

Rev. C
data
𝚷(C)

(p1,r1)

 ↓ tmapHom (map by computeMCC) ↓

(p1,r1)

(p2,r2) (p2,r2)

(p3,r3)

(p2,r2)

(p1,r1)

(p3,r3)

5

2 22

55

Background
Graph Edges

X

Bag Elements:
Added Removed↓ Processing ↓

Step

 ↓ tmapHom (sum) ↓

+70 7 2-5

 ↓ tmapHom (resources) ↓

B

B CB

C

 ↓ Initialization (git) ↓

On Node On
edge

sh
as

(r
ow

 1
)

re
so

ur
ce

s
(r

ow
 2

)
m

cC
ab

e
(r

ow
 4

)
su

m
m

ed
(r

ow
 5

)

X

AA

 ↓ tmapHom (filter*) ↓

ja
va

s
(r

ow
 3

) (p1,r1) (p1,r1)

(p2,r2) (p2,r2)

(p1,r1)

(p2,r2)

(* p3 is not a Java resource)

Figure 3.3: Interchangeable processing of data and changes: The plot depicts
the processing steps (top to bottom) computing the cyclomatic complexity on three
succeeding commits (left to right). Row 1: The data and changes are initialized
according to an Abelian group for Bag[SHA]. Row 1 → 2: The path-resource tuples
are extracted. Commit A is empty, commit B adds the tuples (p1,r1) and (p2,r2);
commit C removes tuple (p1,r1) and adds (p3,r3). Row 2 → 3: We assume that
path p3 points to a Bitmap; hence, the tuple (p3,r3) is filtered out. Row 3 → 4:
The metrics are computed given by type Bag[Int]. Resource r1 has a cyclomatic
complexity of 5 and r2 a cyclomatic complexity of 2. Row 4 → 5: Finally, the
metrics are summed up. We apply a function between bags of natural numbers
Bag[Int] and natural numbers Int. The change at edge AB is Π′(A, B) = 7 and
the change at edge BC is Π′(B, C) = −5. All functions in this example have self-
maintained derivatives (see the usage of tmapHom).

47

3.4.5 Advanced Infrastructure
Topleet can be realized on local or distributed computation infrastructures that
provide map-reduce functionality on collections. In this section, we discuss how to
adapt the core operations to efficient processing infrastructures. It is based on our
experience implementing Topleet on Scala Collections and Apache Spark’s Resilient
Distributed Datasets (RDDs).

Lineage

Lineage refers to functions being chained and invoked on collections without materi-
alizing intermediate results [BF05, CCT09]. To guarantee lineage by an element-wise
processing of the change and checkpoint collections, we adapt the original collection
definition, e.g., Map[(N, N), V], to plain sequences Seq[((N, N), V)]. It allows
that changes on edges split into multiple collection elements. For instance, ((A,
B), u ∗ v) can be split into the collection elements ((A, B), u) and ((A, B), v).

Keeping u and v apart, or merging both, makes no semantic difference for the
application of a self-maintained derivative. Combining two data structures works
the same way.

However, merging corresponding changes and checkpoints in collections may de-
crease the size of the data and change (e.g., reducing 5 + 2 + 3 to 10). Deciding
if such merges should be applied, which necessary beaks lineage, depends on the
use case. Breaking lineage may also decrease performance. We set corresponding
defaults for the map-reduce functions and defer additional optimization to future
work.

Distribution

We delegate the distribution to Spark’s Resilient Distributed Datasets
(RDDs) [ZCD+12]. To enable a partitioning by key, we set S in Leet[S] to Map[K,
V] by default. This allows to use bags as the primary data type. The corresponding
RDDs maintain key-value pairs for changes RDD[((N, N), (K, V))] and check-
points RDD[(N, (K, V))]. We revise the interface for tmapHom and tmap accord-
ingly.

Implementation of the core operations tmapHom, and merge on RDDs is straight-
forward, as no shuffling of data is required. For tmap, we face problems, since we
need to enroll a data traversal. We apply a two-dimensional strategy to shuffle
collection elements.

• We partition elements by hash of the element’s key K.

• We partition elements by connected components of the background graph.

To apply tmap, the change and checkpoint collection elements are shuffled, in that
those with the same key and those in the same connected component are moved to
the same partition. Multiple assignments of K to V can be merged during the shuffle
step according to the nested Abelian group for V.

Afterwards, tmap can be applied within a partition. It contains all necessary
changes and checkpoints for a data traversal of the background graph.

48

Memoization

Applying a cost-intensive function (such as parsing) on the same input twice, can be
circumvented by caching a function’s input and corresponding output, or by applying
the function on an inverted representation of the collections (e.g., applying f to the
keys of RDD[(K, Set[(V, N, N)])]). Memoization is another open parameter that
depends on the applied function and data. We reduce additional redundancies by
such optimization.

49

3.5 Evaluation
We evaluate Topleet in computing McCabe’s cyclomatic complexity for all Java file
revisions in a repository. This task fits all related methods that we compare, and it
is used for the presentation of LISA.

3.5.1 Solutions
We compare Topleet in different configurations with two manual migrations
to distributed map-reduce, i.e., DJ-Rex and DJ-Rex Incremental (presented in
Sec. 3.2 and available online); and with LISA (the solution code is presented
in the publications [APG17, APPG19]). We cannot compare to Boa (presented
in [DNRN15, DNRN13, NDNR14]) because we cannot reproduce the proprietary
infrastructure behind it.

3.5.2 Software, Hardware and Default Parameters
All solutions are configured to the best of our knowledge. We follow a list of prin-
ciples to assure that the evaluation is as objective as possible:

1) We use the same Java parser. 2) For DJ-Rex (Incremental), and Topleet
we used Apache Spark for distribution. If running Spark on a single machine, we
fully employ the capabilities by using the local mode with 16 cores. We use Kryo
serialization with a buffer size of 512m. 3) For Topleet and DJ-Rex (Incremental),
we use one partition for each 100 revisions, with a minimum of 32 partitions to
guarantee parallelism. 4) We patched the tick-duration of Apache Akka to 10
milliseconds to run LISA on Windows. 5) Solutions that depend on computeMCC
use the same implementation. 6) We exclude the summation of the cyclomatic
complexity to align the output granularity of all methods on the file level. 7) The
output is fully persisted to a single storage system. We used the collect mechanism
of Apache Spark and LISA’s default CSV persistence. 8) The output of the methods
differs: LISA persists metric values for linear ranges of the flattened commit history8,
DJ-Rex (Incremental) persists metric changes for the flattened commit history and
Topleet changes for the commits of the acyclic commit history. 9) Depending on
the distribution mode, all solutions are executed on the same hardware. The local
evaluation is executed on an Intel Core i5-6600 @ 3.30GHz with 32GB memory, 64-
bit, Windows 10. We isolate each run in a separate JVM. Distribution is evaluated
using 4 or 7 Amazon EMR m5.xlarge on demand instance with 4 virtual cores and
16GB memory each. 10) Local measurements exclude the time for downloading a
repository.

3.5.3 Variability
For Topleet, we explore the following configurations:

8Commits included in branches can be flattened into one linear sequence.

50

• Topleet: We refer to the solution performing best as Topleet. It uses Apache
Spark, tmapHom for the map including memoization and filter preserving
lineage.

• Topleet (Mem. Off): Topleet without memoization.

• Topleet Scala Collections (Mem. Off): The Scala Collections implemen-
tation, no memoization.

• Topleet Data Traversal (Mem. Off): Topleet without memoization and
map using tmap to enforce a data traversal on each application.

• Topleet 4x m5.xlarge: Topleet on one master and 3 cores.

• Topleet 7x m5.xlarge: Topleet on one master and 6 cores.

3.5.4 Subject Repositories
We execute the evaluation on a sample of 98 repositories based on the GHTorrent
data set [GS12] from 2019-06-019 which is a mirror of the data exposed by the
GitHub API. We sampled for Java project with more the 1000 watches and more than
10 developers according to the specification of the GHTorrent dump. We exclude
the repository bytedeco/javacpp-presets as an outlier causing LISA to run into page
faults. We excluded one repository requiring credentials. DJ-Rex hits the size
limit for serialized results on repository SonarSource/sonarqube and wildfly/wildfly
(29.000 and 28.000 commits), both repositories remaining in our sample, as we are
interested in the performance of the other methods.

3.5.5 Correctness
The correctness of a Topleet variant can be checked during any processing step
by comparing results to a very basic reference implementation, i.e., a local and
non-incremental realization of the core operations (differential testing). Such imple-
mentation is trivial to write. We check such correspondence for different tasks on
the repository sample.

3.5.6 Time
Since LISA is not distributed, we compare all methods when running on a single
machine but still with all benefits of Apache Spark enabled in local mode. This
also assures that we have a fair comparison of resource usage. The averaged time
needed for all 98 repositories by a solution is shown in Figure 3.4. The averaged time
needed for repositories grouped into exponentially growing commit count buckets is
depicted in Figure 3.6. DJ-Rex misses time measurements for two repositories.

For repositories with low commit counts, all solution depicted in Figure 3.6
need a comparable amount of time. The time increases differently with increasing
commit count. The methods are ranked as follows: DJ-Rex takes the most time (on

9http://ghtorrent.org/downloads.html

51

Topleet

Topleet 7x m5.xlarge

Topleet 4x m5.xlarge

Lisa

Topleet (Mem. Off)

DJ−Rex Incremental

Topleet Data Traversal (Mem. Off)

Topleet Scala Collections (Mem. Off)

DJ−Rex

time [minutes]

0 10 20 30 40 50 60

Figure 3.4: The average time of a method, running on one of the 98 repositories,
sorted by time.

52

Topleet Scala Collections (Mem. Off)

DJ−Rex Incremental

Topleet

Topleet (Mem. Off)

Topleet Data Traversal (Mem. Off)

DJ−Rex

Lisa

Topleet 4x m5.xlarge

Topleet 7x m5.xlarge

[mb]

0

50
0

10
00

15
00

Figure 3.5: The average memory usage of a method, running on one of the 98
repositories, sorted by memory usage. The memory profile for distributed solutions
is left blank.

53

4 5 6 7 8 9 10 11

−
2

0
2

4
6

log commits

lo
g

tim
e

[m
in

ut
es

]

Topleet

Lisa

DJ−Rex

DJ−Rex Incremental

Topleet Data Traversal (Mem. Off)

Figure 3.6: Time in minutes (log-log scale): Curves are shown with a small offset
to prevent overlapping of error bars.

54

4 5 6 7 8 9 10 11

3
4

5
6

7
8

9

log commits

lo
g

m
em

or
y

[m
b]

Topleet

Lisa

DJ−Rex

DJ−Rex Incremental

Topleet Data Traversal (Mem. Off)

Figure 3.7: JVM Memory peak in mb (log-log scale):Curves are shown with a
small offset to prevent overlapping of error bars.

55

4 6 8 10 12

−
2

−
1

0
1

2
3

4

log commits

lo
g

tim
e

[m
in

ut
es

]

Topleet

Topleet Data Traversal (Mem. Off)
Topleet Scala Collections (Mem. Off)

Topleet (Mem. Off)

Figure 3.8: Time in minutes for different infrastructure solutions (log-log scale):
Curves are shown with a small offset to prevent overlapping of error bars.

56

average 67.12 minutes) followed by Topleet Data Traversal without memoization
(10.61), LISA (6.44), DJ-Rex Incremental (5.4) and Topleet (1.33). DJ-Rex, DJ-
Rex Incremental and Topleet Data Traversal do not employ memoization. This
appears to be beneficial for low commit count but hampers the performance on high
commit counts when computations tend to reoccur – reflected by a bend in the
average time at commit count 2990, for non-memoizing solutions.

3.5.7 Memory
The comparison of the maximum amount of memory used in the JVM is done
analogue to the comparison of time and depicted in Figure 3.7 and Figure 3.5. We
measure the memory peak for different repositories, minimizing the influence of
garbage collection.

Memory usage increases with rising commit count. For the average memory
peak over all repositories, DJ-Rex Incremental (0.32 GB) is sightly better than
Topleet (0.44), both running on Apache Spark in local mode. Topleet Data Traversal
Memoization Off (0.6) does not produce high overhead. DJ-Rex (1.34) and Lisa
(1.81) both use the most memory.

3.5.8 Computation Infrastructure
We compare the application time using different Topleet infrastructure features
in Figure 3.8. The Scala Collections API solution is best for low commit counts
because it does not boot Apache Spark. For high commit counts, Topleet with
memoization is the best (1.33 minutes on average), no memoization increases the
time (5.23), followed by the data traversal variant (10.61) and the Scala collections
realization (13.94).

3.5.9 Distribution
Increasing the number of core nodes in a distributed setup from 3 to 6 (i.e., Topleet
4x m5.xlarge and 7x m5.xlarge) changes the average time needed for repositories
from 2.23 to 1.39 minutes. Figure 3.9 shows the improvement for the different
commit buckets. For repositories with low commit counts, the improvement is low;
adding hardware might even slow down the processing. For repositories with high
commit count, the improvement is around 60%, for an 100% increase in hardware.

57

4 6 8 10 12

−
3

−
2

−
1

0
1

2
3

log commits

lo
g

tim
e

[m
in

ut
es

]

Topleet 7x m5.xlarge

Topleet 4x m5.xlarge

Figure 3.9: Distribution: The time running a solution on 7 cluster nodes (7x
m5.xlarge) and 4 cluster nodes (4x m5.xlarge). Both solutions include one mas-
ter node.

58

3.6 Conclusion
In this chapter, we cover our first technical challenge of scalable computation of ab-
stractions of the revisions of a repository. We focus on incrementalizing map-reduce,
motivated by previous occurrences of the scalability challenges in our working group,
and by previous work on map-reduce in MSR/ESE by [SJAH09].

We propose a method to improve the scalability of functions that abstract over
repositories with high revision count in a theoretically founded way. We use insights
on abstract algebra and program incrementalization to define a core interface of high-
order functions that compute scalable static abstractions of a repository with many
revisions. We evaluate the scalability of our method by benchmarks, comparing a
prototype with available competitors in MSR/ESE.

In the next chapter, we will switch to Datalog and use it to mine repositories with
a very heterogeneous technology stack. Our placeholder involves a technology stack
including divers artifact types and relationships in between the artifacts. We use
Datalog since it allows a very modular definition of abstractions over heterogeneous
repository content, facilitated by the declarative nature, not forced to any sequential
order, to facilitate composition. This stand in direct contrast to non-declarative
map-reduce, as we have used it in this chapter.

59

Chapter 4

Repository Mining with Datalog

4.1 Introduction
We start with describing the challenge of mining repositories with a heterogeneous
technology stack, as pointed out in some of our previous work, e.g., in [RRH+20],
and summarize the declarative solution proposed in this chapter.

4.1.1 The Heterogeneity Challenge
Typical studies that use repository data to understand software development need
to understand a heterogeneous (or diverse) technology stack, too, that potentially
manifests in a repository and its fragments [HK06, PML15, SBH+19]. For in-
stance, empirical studies do not get rich abstractions of the source code for free
(ASTs). Studies need to understand the code in its surrounding, including tech-
nological aspects, like the build system [MAH10, LPS11, GdCZ19], dependencies
management [LPS11, SB15], various possible interoperating languages [BTL+13],
infrastructure as code [OZR22, OZVR21], or MDE technology invoking code
generation [ZS06]. Even when limiting following up analysis to a very spe-
cific mixture of technologies (e.g., to mobile apps [SPN+18] or graph query lan-
guages [SHL+19]), an initial understanding of the technology stack, used in a
repository, is still needed as an inclusion/exclusion criteria. Defining abstractions
over a heterogeneous technology stack can be complicated due to the flexibility
of how technologies compose and interrelate (see work on documenting technolo-
gies and languages in software projects, which is motivated by such heterogene-
ity [FLV12, LV14, HLV17, HHL+17, Hei22, RRH+18, RRH+20]). Concrete analysis
meets a challenge with such heterogeneous repositories.

To understand heterogeneous technology stacks in MSR/ESE, concrete studies
often rely on monolithic functionality trying to consider all eventualities when pro-
cessing the repository and its fragments. See examples like, [KG11, SPN+18], and
an overview of tools used [CSS13]. Unlike the underlying technology stack, such
monolithic mining functionality cannot be composed in a straightforward manner.
We are aware of one exception, where a method aims at language independent anal-
ysis (LISA) [APPG19]. Such exception motivates the need for good solutions that
facilitate analysis of heterogeneous situations.

60

4.1.2 A Declarative Solution using Datalog
Since the technology stack of a repository can be composed flexibly, we assume that
mining logic needs to be composed flexibly too. This calls for modular solutions.

Declarative logic programming follows this ambition, describing a program with-
out focusing on its control flow. Declarative refers to a language which is less sensitive
to details on the control flow and logic refers to an execution that comes close to a
proof-derivation (see the general discussion of classifications in [Läm]). Datalog is
an instance of a declarative and logic programming language, which allows defining
programs in terms of modular rules [DEGV01, GHLZ13].

In this chapter, we show how to use Datalog to understand a heterogeneous
technology stack. We transfer existing ideas, previously presented in the context of
architecture recovery, source code querying, and static program analysis, from an
analysis of a homogeneous technology stack, limited to a single programming lan-
guage, to an analysis of a heterogeneous technology stack, involving very different
artifact types and languages. While the past work assumes well-defined abstractions
of the source code to be available upfront to analysis, we focus on understanding the
full surrounding of a complex technology during the analysis. Our placeholder of
studying MDE technology is sufficiently complex. Understanding MDE technology
requires understanding a heterogeneous mixture of other technologies first, related
to the build system, XML, Java and different MDE processes (including code gen-
eration).

We propose a method to improve the definition of functions that abstract over a
repository with a heterogeneous technology stack, by using concepts from declarative
logic programming (in particular Datalog [DEGV01, GHLZ13]) and combining them
with ideas on megamodeling and linguistic architecture (see [FLV12, LV14, HLV17,
HHL+17, Hei22, RRH+18, RRH+20]). We reproduce existing ideas on declarative
logic programming with languages close to Datalog, coming from architecture recov-
ery [MMW02, MT01, TM03], source code querying [HVdM06], and static program
analysis [BS09, SBEV18], and transfer them from the analysis of a homogeneous to
a heterogeneous technology stack. In particular, we facilitate understanding a com-
plex technology stack in a repository by a bottom-up, step-by-step, and modular
classification of the repository, its fragments, and the involved technologies, using
Datalog rules. The method finally leads to a non-trivial understanding of the repos-
itory and the involved technologies in the large. Results conform to schemata from
previous work on megamodeling and linguistic architecture, which are developed to
document how complex technologies and languages manifest in software projects.

Our method facilitates modularity to fight the heterogeneity present in a tech-
nology stack. We use modular rules to infer classifications from other existing classi-
fications. Rules produce classifications that conform to ideas on megamodeling and
linguistic architecture, ideas that have proven to be well suited to describe the com-
plex composition of technologies in previous work [FLV12, LV14, HLV17, HHL+17,
Hei22, RRH+18, RRH+20]. Starting with basic classifications, e.g., of the revision’s
resources, our method uses modular Datalog rules that trigger more complex classi-
fications, e.g., of the build system, Java, XML, or MDE technology. Finally, we may
apply overall complex classification of technology patterns which might be part of
the repository. Our classifications can be read like proof-derivations, which helps to

61

trace interrelations between modular rules, separately classifying independent parts
of technologies.

A novel aspect of our method, compared to previous work on architecture re-
covery, source code querying, and static analysis, is a flexible way of integrating
heterogeneous repository content into the Datalog reasoning. We provide an inter-
face for plugging pure high-order functions, typically parametrized by query terms,
which organize a traversal of the repository content. The traversal is initialized
at the repository root and navigates to arbitrary fragments by function applica-
tion. This may include fragments of different artifact types, like the file-system,
XML or Java. We use uninterpreted function terms for the identification of such
fragments. This allows a fluent mining process while other methods need to go
an indirection, e.g., over databases [HVdM06]. Our flexibility in data integration
helps to work around limitation imposed by data size, heterogeneous schemata, and
may be used to avoid operating on complete ASTs or similar structures (as in, e.g.,
[Roo11, RLP13, AA17, SME+17, APPG19, HVdM06]).

Opposed to the map-reduce analysis style (e.g., used in [SJAH09, HL20]), the
analysis with Datalog takes an important limitation, enabling recursive queries in
native manner. Recursion is an essential part of advanced (program) analysis [BS09,
SBEV18, GHK+19, HVdM06]. It is also mandatory in recent empirical contributions
in ESE/MSR, e.g., to chase transitive dependencies [ZMDR22].

We provide a prove-of-concept of such method in a case study. We apply the
previously reoccurring ideas from architecture recovery [MMW02, MT01, TM03],
source code querying [HVdM06], and static program analysis [BS09, SBEV18], to
a novel, heterogeneous context, studying the Eclipse Modeling Framework (EMF).
EMF is a very heterogeneous technology combining XML, Java, OSGI and various
build systems in its application [SBMP08]. This heterogeneous context requires a
more flexible access to the repository and its fragments. The case study defines and
runs the Datalog rules to mine EMF technology patterns. We step-by-step classify
different artifacts, part of EMF, find relationships (code vs. model vs. generator),
and finally do a high-level classification that detects specific EMF technology usage
patterns. We separate the rules for all technologies, and finally apply rules that
classify relationships. We apply the mining to GitHub repositories.

4.1.3 Properties of Datalog
Datalog share the following interesting properties, that makes us consider it as an
evident alternative (compared to map-reduce or SQL) to produce such bottom-up,
step-by-step classification:

• Datalog is a subset of Prolog which can benefit from more efficient algo-
rithms to evaluation, for instance, it can be incrementalized [GHLZ13].

• Datalog’s bottom-up evaluation, using rules to infer facts from existing facts
comes close to our idea of a step-by-step, bottom-up, and modular clas-
sification of the repository and its fragments. We infer classifications from
existing classifications: Stating with the most basic classifications (e.g., of the
revision’s resources) rules trigger more complex classifications (of the build

62

system, Java, XML or MDE technology); which finally leads to an overall
complex classification of the revision.

• Datalog uses modular rules, insensitive to order. We use this to decompose
our classification effort for the very heterogeneous artifact types. Possibly, we
may be able to reuse such logic in different MSR/ESE studies. This increases
the usability for different user groups.

• Our rules operate on the classifications of repositories and its fragments. Some
classifications may trigger other rules that contribute additional classifications.
This calls for recursion. Typical query languages, like SQL or map-reduce,
do not allow such flexibility in the interaction of queries (rules) triggering
each other. Datalog enabling recursive queries natively [GHLZ13].

• Datalog facts (the classifications) can be structured to conform to a schema
which resembles parts of our previous work on modeling in the large, referred
to as megamodeling or linguistic architecture [FLV12, LV14, HLV17,
HHL+17, Hei22, RRH+18, RRH+20]. We build on this previous knowledge on
how to classify complex technology to organize the extracted data systemati-
cally.

• There is recent work on static analysis with Datalog that realizes, e.g.,
points-to-analysis [BS09] or the analysis of control flow [SBEV18]. Both are
relevant for an in-depth understanding of repositories and may be reused for
our method. We show usage close to such complexity, finding relations between
artifacts and fragments thereof (providing classifications in terms of tuples).

4.1.4 A Small Example
To give the reader an idea of our method, consider the following trivial Datalog
rule drawn from an upcoming case study. The rule shows how to start from a basic
classification as file and XML, and derive a higher-level classification as metamodel.

1 elementOf(?x, Metamodel) :−
2 manifestsAs(?x, File),
3 elementOf(?x, XML),
4 "ecore" = Extension(?x).

Listing 4.1: Sample rule classifying Ecore files.

The body of the rule (i.e., the condition right to ‘:-’, line 2-4) quantifies over
artifacts ?x that are files with extension ‘ecore’ and readily known to be of ‘type’
(language) XML. For each such artifact, the head of the rule (left to ‘:-’, line 1) states
that the artifact is also of ‘type’ (language) ‘Metamodel’. Thus, the rule infers new
facts for artifacts to be classified as (Ecore) metamodels.

Notice that this rule does not give an explicit statement on the control flow
(declarative style) and the rule is modular in a sense that it can easily be accom-
plished by other rules for composing complex classifications. We later show how to
complement such rule by a series of other rules, used to refine the classification of
very heterogeneous artifacts in a repository step-by-step.

63

An important part of our method is an extensible suite of accessor primitives for
interacting with formats and structures part of repositories, such as, Java, XML, and
the file system (the folder structure). One example can be found in the previous
rule, where an accessor primitive Extension (highlighted by underlining) queries
the repository for a file extension. We consider this as a very specific integration
problem, allowing the exchange of data between the repository and the Datalog
engine. Our method favors not going an indirection over databases, but navigating
the repository and its fragments on-demand by high-order functions.

The dataset for the case study and the implementation of the prototype are
available online1.

4.1.5 Summary of this Chapter’s Contributions

• Our technical contribution is a reproduction of previously reoccurring methods
on using Datalog in architecture recovery, source code querying and static
analysis, transferring it to a novel application case of analyzing repositories
with a heterogeneous technology stack. We provide integration mechanisms for
accessing very heterogeneous repository content in a modular and declarative
way. We combine this with previous research on megamodeling and linguistic
architecture to represent the extracted data.

• We execute a case study as a proof-of-concept, to evaluate our method. We
illustrate the capability of the method in recovering a catalog of complex EMF
technology pattern in 5759 GitHub repositories. This contribution overlaps,
in parts, with the thesis by Marcel Heinz, who developed the catalog [Hei22].
The catalog and the corresponding empirical results, are associated with Heinz,
while the Datalog method used for mining is associated with this thesis.

4.1.6 Summary of the Delta to the Publication
The following items describe the delta of this thesis to previous publications.

• In [HHL18], the method, the pattern catalog, and the case study on EMF are
presented. This publication founds on the Apache Jena syntax for describing
the analysis (a very specific Datalog dialect that appears in the domain of
semantic web).

• This thesis differs in that it translates the syntax into conventional Datalog.
Rephrasing allows a more direct discussion of core Datalog features. This
thesis also improves the presentation of the case study results (e.g., in terms
of better visualizations and in-depth examination of the data). We also add
an in-depth introduction to the background on Datalog.

• We improve the related work section respective architecture recov-
ery [MMW02, MT01, TM03], source code querying [HVdM06], and static pro-
gram analysis [BS09, SBEV18].

1https://github.com/softlang/qegal

64

4.1.7 Micro road-map of this Chapter
This chapter follows the metamodel defined in the introduction (Sec. 1.6). In par-
ticular,

Sec. 4.2 begins with a motivation, describing a running example on mining a
code generation pattern from a repository. The example is used throughout this
chapter and is part of the final case study on EMF.

Sec. 4.3 introduces the background on Datalog and the abstract pattern catalog
used as a blueprint for the case study. To avoid toy examples, the background
section illustrates general Datalog concepts solving the running example (mining
code generation patterns from a repository). The term ‘background’ is used in a
modest sense, as this section also contains a significant amount of original content.

Sec. 4.4 accomplishes the presentation of our method, focusing on the integration
of very heterogeneous revision content into the Datalog engine, and on referencing
mechanisms used to identify repository content.

Sec. 4.5 evaluates the method by a prototypical realization of a complex case
study (on mining EMF usage from GitHub).

65

4.2 Motivation
This section introduces a running example on mining a code generation pattern.
Mining code generation of EMF will later be part of the case study (Sec. 4.5). It is
the placeholder we use to present our method.

Why to Detect Code Generation? MDE [Béz05b, Béz05a, Sch06] has the
goal to increase the quality and productivity in software development by the usage
of models, metamodels, model transformations, and model comparisons (note the
ambiguity of models in this thesis). In essence, developers try to work with (high-
level) models instead of low-level code (also considered as model) whenever possible.
Often this is done to abstract from implementation-specific details, that are finally
derived from the high-level models using model transformations. Models may also
be used in the communication between developers, like often done using UML.
Adoption of MDE in software development is still subject to empirical research and
the benefits are discussed controversially, e.g., see work on EMF related technology
in [KMK+15], or work on the relation between UML and software quality (defects)
examined in [RHC+19, RHH+17].

Code generation is a very central aspect to such MDE technology, which makes
models executable. EMF generates code from class diagrams; UML may be trans-
lated into executable bits of code. However, what is typically very relevant during
software development, is if there is a correspondence between the UML/EMF model
and the code. If both do not correspond, the model might be an outdated leftover,
subject to earlier development phases. If taking the existence of such a model as em-
pirical evidence for the active application of MDE, one might be mistaken. Hence,
certain MSE/ESE analysis may have an interest in the detection of up-to-date code
generation.

Furthermore, we assume that code generation is a good placeholder, closely re-
lated to a series of problems that appear during the technical analysis of very hetero-
geneous repository content involving heterogeneous technologies. First, we need to
find relationships between artifacts and not just examine isolated artifacts. Second,
we need to examine different types of artifacts (model and code). Third, we might
need to examine the correspondence, having a recursive look at the structure of the
different artifact types.

In the following, we introduce a concrete running example as a placeholder, but
we assume that the discussion of this chapter can be transferred to other closely
related questions sharing the same characteristics.

Detecting Code Generation Figure 4.1 shows the typical artifacts involved in
a basic code generation (and fragments thereof). We also include fragments, since
we want to point out how nesting structures may be examined by recursion.

First, we have two different artifact types that we need to examine with an
internal structure. The metamodel M to the right, i.e., a simplified class diagram,
contains nested diagram elements that reflect the classes A, B and C (the fragments
of the metamodel). Java package P to the left of the figure shows the nested Java
classes A, B and C (the fragments of the package).

66

Java Package P

Java Class C

Java Class A

Java Class B

Metamodel M

Model Class
C

Model Class A

Model Class B

correspondsTo

correspondsTo

correspondsTo

correspondsTo

Figure 4.1: Placeholder Technology Pattern: Correspondence of a metamodels
(right) and generated Java code (left).

Next to the structure of the different artifact types, the plot shows correspon-
dence relationships that one might assume when facing code generation (depicted
as arrows). The Java package P corresponds to the metamodel M and each Java
class corresponds to a metamodel class. Such correspondence is only explicit at the
moment of running the generation. Rerunning the generation might be an option
to record this correspondence while being produced. However, reproducing the ex-
act application of specific technology in the development environment, such as code
generators, on heterogeneous repositories, is often too complex.

In practice, such generation can also be detected by examining hints on the
past execution of the generation process that manifest in the repository. The corre-
spondence might be inferred by employing naming conventions, unique identifiers,
artifacts (like generator scripts), or by checking (deep) structural correspondence
of metamodel and package. This is an approximation of the development runtime
behavior somewhat similar to the approximation of program runtime by points-to-
analysis.

Different empirical questions might depend on such correspondence, as previously
sketched. In this chapter, we focus on the technical contribution of mining with
Datalog. The case study will include a preliminary empirical discussion of the data
on EMF.

67

4.3 Background
This section introduces background on Datalog, background on megamodeling and
linguistic architecture, and an EMF pattern catalog. The catalog was developed by
our working group (in particular Marcel Heinz) in the context of megamodeling and
linguistic architecture.

4.3.1 Declarative Logic Programming in Datalog
After early research in the eighties and early nineties, Datalog almost disappeared
from research. However, due to technical advances, recent work from different do-
mains picks up such research again [HGL11, GHLZ13]. In particular, work covers
architecture recovery [MMW02, MT01, TM03], information extraction [SDNR07],
source code querying [HVdM06], static program analysis [LWL+05, EKKM08, BS09,
SB10, SBEV18, Sza21] and data integration [Len02, FKMP05, GKIT07]. Some of
those methods, e.g., by Mens et al. and Tourwé et al., use inference rules that look
identical to ours. We consider such previous efforts as a motivation for our work.
We complement the original methods putting a focus on understanding repositories
with a very heterogeneous technology stack.

Datalog is well-known, so we only refer to a recent survey for a general audi-
ence [GHLZ13]. However, in the following, we will give the background on Datalog
to make this thesis self-contained. The survey inspires our discussion.

The running example that we use in this section, and the corresponding Datalog
solution to mine correspondence, is original to this work.

Defining the ‘what’ and not the ‘how’

The essence of declarative programming is to define the ‘what’, and not the ‘how’.
We start with some informal statements on ‘what’ to find in a repository. We want
to avoid including too many details on ‘how’ to find it, e.g., by instructing the
program on which SQL query to run first; or how to join.

For the running example, mining should assure the following. Most statements
can be read as classification of the repository and its fragments.

• The first artifact is classified as metamodel.

• The second artifact is classified as Java package.

• There is a fragment of the metamodel that can be classified as its identification.

• There is a fragment of the Java package that can be classified as its identifi-
cation.

• The identification of metamodel and package are the same.

Facts The following Datalog facts describe the previous statements on the code
generation. In particular, the facts describe a scenario where a generation process
uses the metamodel at path ’repository:/model.ecore’ to generate the Java
package located at path ’repository:/src/package’.

68

1 manifestsAs(’repository:/src/package’, Folder).
2 manifestsAs(’repository:/model.ecore’, File).
3

4 elementOf(’repository:/src/package’, JavaPackage).
5 elementOf(’repository:/model.ecore’, Metamodel).
6

7 id(’repository:/src/package’,’http://my.id.org’).
8 id(’repository:/src/model.ecore’,’http://my.id.org’).

Listing 4.2: Facts related to code generation in Datalog syntax.

Datalog facts begin with a predicate symbol, such as, manifestsAs, elemmentOf,
or id, followed by a list of constants in braces. In our example, artifacts that are frag-
ments of the revision are referenced by path constants (starting on repository:/).
Other constants, like File, Folder, JavaPackage, and Metamodel, are used as clas-
sifier (that do not materialize in the revision). The constant ’http://my.id.org’ is
a string literal and represents the identification of the metamodel and Java package.
Literals can be considered as parts of the raw content of a revision. In the ongoing
discussion (Sec. 4.4.2), we will add details on constants and explain the referencing
mechanisms for revision content. For now, the details can be skipped.

The facts mirror the content of a repository: One of the artifacts is a Folder and
a JavaPackage; the other artifact is a File and a Metamodel. Such classifications
are given by the predicate manifestsAs for the content type and elementOf for
further language classifications. We will also have a closer look at this schema used
to mirror the repository content as facts in Sec. 4.3.2 (such distinction is motivated
by previous knowledge on megamodeling [FLV12, LV14, HLV17, HHL+17, Hei22,
RRH+18, RRH+20]). In the last two lines of the code (7-8), a predicate id assigns
both artifacts to the same identification.

For now, we assume that these facts are part of the set of previously known
classifications, integrated upfront to our analysis; hence, we can directly start with
Datalog reasoning. We will add details on how to integrate such facts from a repos-
itory in Sec. 4.4.1.

Pattern Matching A central aspect of working with Datalog facts is pattern
matching. Pattern matching can be compared to running a basic query against the
facts (close to regular SQL or map-reduce queries).

Suppose we are interested in facts matching elementOf(?x, Metamodel) where
?x is a placeholder. This corresponds to querying artifacts that are metamod-
els. According to our previous list of facts, the assignment of placeholder ?x is
{’repository:/model.ecore’}. Such query can also be viewed as a simple filter
operation on the set of facts defined by the predicate elementOf. The second entry
of the tuple needs to be equals to the Metamodel classifier. It can also be imple-
mented as a basic SQL query when considering elementOf to be represented as a
table.

Now suppose we are querying for a more complex pattern. We aim to
find the identification of the metamodel artifact by writing elementOf(?x,
Metamodel), id(?x,?y) where ?x and ?y are placeholders. When looking at
the facts, we will only find one possible assignment for ?x and ?y which is
{(’repository:/model.ecore’, ’http://my.id.org’)}. Such query can be re-

69

alized in terms of a select/project/join strategy on all facts (possible in SQL or
map-reduce).

Rules However, pattern matching is not sufficient to implement complex cascades
of step-by-step, bottom-up and modular classifications of the repository and its
fragments.

Datalog allows rules that infer new facts from existing facts. We use it to infer
new classifications from existing classifications. The following rule infers a corre-
spondence that classifies the code generation that we search for. It adds a new fact
correspondsTo to the data.

1 correspondsTo(?p,?m) :−
2 manifestsAs(?p, Folder), manifestsAs(?m, File),
3 elementOf(?p, JavaPackage), elementOf(?m, Metamodel),
4 id(?p, ?id), id(?m, ?id).

Listing 4.3: A declarative solution finding a code generation pattern.

The body of the rule (i.e., the condition right to ‘:-’) is a pattern matched
against existing facts. In order to detect correspondences, the placeholders ?p,
?m and ?id are matched. Placeholder ?p needs to manifests as Folder, ?m
as File, ?p is classified as JavaPackage, ?m as Metamodel, and both have the
same id ?id. There is a single match, i.e., {(’repository:/src/package’,
’repository:/model.ecore’, ’http://my.id.org’)} for ?p, ?m, ?id.

The head of the rule (left to ‘:-’) now adds a new fact using the placeholder
assignment. It produces the fact shown in Listing 4.4.

1 correspondsTo(’repository:/src/package’,’repository:/model.ecore’).
Listing 4.4: A new fact is created.

This primitive form of a rule can be understood as a named query. The rule’s
body defines the query by pattern matching, and the rule’s head names the result.
However, the difference to regular SQL and map-reduce comes with the interaction
of rules. Comparable to queries reusing other queries, rules may infer facts that
trigger other rules. However, in some cases, Datalog does not require a strict order
of queries using each other, and it allows recursion.

Datalog allows us to focus on the produced facts (our classifications) that fol-
low a well-understood schema based on previous knowledge on megamodeling and
linguistic architecture. It does not force us to name queries and organize their or-
der of execution. Such a mechanism to classification is modular if we agree on the
schema. We can add and remove rules that step-by-step refine the classification of
the repository. Possibly, we may classify recursively.

Recursion Adding a new fact to the existing facts may potentially trigger another
(or the same) rule to mach again. Hence, the process of matching and adding facts
may repeat until a fixpoint is reached, and no more facts can be added to the data.

Such recursion can be examined on top of a precedence graph, where all predi-
cates involved in a Datalog program are depicted as nodes. In this graph, directed
edges between predicates are inserted if used in the body and head of the rule, re-
spectively. Figure 4.2 shows such graph for the predicates of the correspondence rule

70

manifestsAs

correspondsTo

elementOf id

Figure 4.2: Precedence graph

(Listing 4.3). New facts for predicate manifestsAs, elementOf, and id are used to
infer new facts for predicate correspondsTo. Adding more rules may blow up such
a graph; however, as long as we face an acyclic graph, the underlying logic is free
of recursion (we do not need a fixpoint computation). A basic project/select/join
strategy (regular map-reduce or SQL query), computing the predicates in the order
of a topological sorting of the precedence graph, suffices to get an equivalent to the
Datalog program.

We will now extend this by a recursive rule for dealing with deep correspon-
dence. As shown in the diagram that illustrates code generation (Figure 4.1), we
assume that there are nested components of a package and metamodel that may
correspond to each other. For illustration, we add new partOf facts to the existing
facts (manually) that describe the structure of the metamodel and the Java package
(containing classes A, B and C and corresponding identifications).

1 partOf(’repository:/src/package/ClassA.java’,’repository:/src/package’).
2 partOf(’repository:/src/package/ClassB.java’,’repository:/src/package’).
3 partOf(’repository:/src/package/ClassC.java’,’repository:/src/package’).
4

5 id(’repository:/src/package/ClassA.java’,’ClassA’).
6 id(’repository:/src/package/ClassB.java’,’ClassB’).
7 id(’repository:/src/package/ClassC.java’,’ClassC’).
8

9 partOf(’repository:/model.ecore#ClassA’,’repository:/model.ecore’).
10 partOf(’repository:/model.ecore#ClassB’,’repository:/model.ecore’).
11 partOf(’repository:/model.ecore#ClassC’,’repository:/model.ecore’).
12

13 id(’repository:/model.ecore#ClassA’,’ClassA’).
14 id(’repository:/model.ecore#ClassB’,’ClassB’).
15 id(’repository:/model.ecore#ClassC’,’ClassC’).

Listing 4.5: Nested artifacts

We also add a second rule for inferring nested correspondence. It examines the
parts of an existing correspondence relation and checks if parts with equal identifi-
cation exist. It creates a new correspondence fact for them, if this is the case.

1 correspondsTo(?part_x,?part_y) :−
2 correspondsTo(?x,?y),
3 partOf(?part_x, ?x), partOf(?part_y, ?y),

71

manifestsAs

correspondsTo

elementOf id partOf

Figure 4.3: Precedence graph with recursion

4 id(?part_x, ?id), id(?part_y, ?id).
Listing 4.6: A recursive definition of (deep) correspondence

The new precedence graph (Figure 4.3), including the rule from Listing 4.3 and
Listing 4.6, shows the new predicate partOf and a self reference for the predicate
correspondTo. Hence, correspondTo may be invoked recursively, adding facts,
while checking the nested parts across multiple layers. We limit the example to
the class level, but the program may potentially recur into deeper layers, examining
structural properties of classes. The following facts are added by running the new
rule.

1 correspondsTo(’repository:/src/package/ClassA.java’,’repository:/model.ecore#ClassA’).
2 correspondsTo(’repository:/src/package/ClassB.java’,’repository:/model.ecore#ClassB’).
3 correspondsTo(’repository:/src/package/ClassC.java’,’repository:/model.ecore#ClassC’).

Listing 4.7: Facts infered by the recursive definition of (deep) correspondence

As previous mentioned, Datalog provides an intuitive and modular way to write
such classification. Realizing the same kind of recursive classifications in map-reduce
or SQL is not straightforward.

Stratified Negation So far, we have an answer for the existence of a correspon-
dence relation, but often we are also interested in nonexistence.

In the following, we add a rule inferring whether there is a missing structural
correspondence where a higher level correspondence demands for it. This may an-
swer, for instance, if a metamodel class is missing a corresponding Java class. In
our running example, we will refer to this new insight as fact notUpToDate. This
comes close to one of the patters we search for in the case study. We also need
to add an intermediate predicated deepCorrespondsTo for checking deep structural
correspondence of two parts.

1 deepCorrespondsTo(?x,?part_x,?y,?part_y) :−
2 partOf(?part_x, ?x), partOf(?part_y, ?y),
3 correspondsTo(?x,?y), correspondsTo(?part_x,?part_y).
4

5 notUpToDate(?y, ?part_y) :−
6 correspondsTo(?x,?y),
7 partOf(?part_y, ?y),
8 not deepCorrespondsTo(?x,?part_x,?y,?part_y).

Listing 4.8: Use of negation in a rule for checking the absence of deep structural
correspondence

72

manifestsAs

correspondsTo

elementOfid partOf

deepCorrespondsTo

notUpToDate

-

Figure 4.4: Precedence graph with recursion and negation

This rule for producing notUpToDate classifications only applies if we know for
sure that there is a correspondence between two artifacts, ?x, and ?y. It examines the
parts of placeholder ?y and checks whether there is a deep structural correspondence
deepCorrespondsTo missing for the ?party using not. A symmetric definition for
the missing parts of ?x can be given in analogy.

Negation changes how the basic rule-based inference mechanism works. Datalog
will stop being monotonous, i.e., adding new facts may have the effect of invalidating
previous facts and thereby invalidate the application of rules.

Dealing with removed facts caused by negation can be circumvented if the compu-
tation of predicates in the precedence graph is sorted along the topology of strongly
connected components (called strata). This assures that, during the computation of
higher strata, lower strata will be up-to-date and reasoning will not face situations
where previously inferred facts are invalidated.

However, there are exception where this strategy does not apply. For the follow-
ing two rules, p :- not q. and q :- not p., no unique answer can be given. This
problem is typically resolved by constraining negation to not appear in a recursion.
This can be implemented as a static check on the precedence graph2.

In Figure 4.4, we see a precedence graph for our example using negation (List-
ing 4.8). This graph does not include a negation in a cycle. The predicates can
be computed in the order: id, manifestsAs, elementOf, partOf, correspondsTo,
deepCorrespondsTo, and notUpToDate.

Stratified Aggregation Stratified aggregation follows the same principle as the
stratified negation. Aggregation is expressed in the head of a rule. The following
example shows how to sum up the classes that are not up-to-date in an artifact or

2An interesting aspect is that our analysis of deep non-correspondence also avoids this recursive
use of negation. From a static perspective, this is correct, but if considering the structure of the
artifacts, which is typically a tree, such limited use of negation is not necessary. The tree structure
guarantees the order, comparable to stratification. We did not examine such issues in depth, but
we want to point out that this does not limit analysis too much.

73

manifestsAs

correspondsTo

elementOfid partOf

deepCorrespondsTo

notUpToDate

-

sumNotUpToDate

sum

Figure 4.5: Precedence graph with recursion, negation and aggregation

part thereof. The precedence graph can be found in Figure 4.5.
1 sumNotUpToDate(?p, sum<?c>) :− notUpToData(?p,?c).

Listing 4.9: Use of negation in a rule for checking the absence of deep structural
correspondence

Advanced Datalog Concepts Other concepts of Datalog include: components,
i.e., some sort of template mechanism (e.g., provided by Souffle3); uninterpreted
function terms (functors) for composing data types like lists; infinite relations for
realizing custom functions. Our method also uses (uninterpreted) functions and
infinite relations. We will explain them in greater detail when needed in Sec. 4.4,

4.3.2 Megamodeling and Linguistic Architecture

The content on megamodeling and linguistic architecture, and the pattern
catalog, including the corresponding empirical results, are not part of the
contributions of this thesis. The pattern catalog was developed by Marcel
Heinz. The empirical results of the case study on the EMF pattern catalog
are associated with Marcel Heinz. We summarize the content here to provide
this necessary background. The method used to mine the pattern catalog is a
contribution of this thesis.

One of our long-term research objectives, present in the previous work of our
working group, is to apply megamodeling (see [BJV04, BJRV05]) to the problem
of documenting software-technology usage in software projects. In our previous

3https://github.com/souffle-lang/souffle

74

work [FLV12, LV14, HLV17, HHL+17, Hei22, RRH+18, RRH+20], we focused on
case studies, basic aspects of language support, some forms of verification of a meg-
amodel to correspond to a proper system abstraction, the axiomatization of the
involved megamodeling expressiveness, the methodology for discovering megamod-
els, and surveying related concepts in the literature. We also use the term (models
of) ‘linguistic architecture’ for such megamodels. We can consider this as a form of
an abstraction of a repository.

From Megamodel and Linguistic Architecture to Datalog

In this thesis, we rely on the aspect of megamodeling and linguistic architecture to
document heterogeneous language and technology occurrence in software projects.
It serves us in ‘structuring’ the data that we extract from a repository (potentially
with a heterogeneous technology stack) by a well-motivated schema. We employ
the previous axioms and schemata, presented in the context of megamodeling and
linguistic architecture, in a mining- (or reverse engineering-) oriented view, using
closely related Datalog rules as instructions for the declarative mining of such ab-
straction. The extracted data, following such a schema, can be seen as a unified
abstraction of the repository, focusing on languages and technologies.

We reuse the idea to classify artifact in terms of their structure, the used lan-
guages, and the technologies. We have presented such classifications in the previous
fact in terms of:

• manifestsAs used to classify different kinds of Artifacts,

• elementOf used to classify the language,

• and partOf or correspondsTo used to describe the structure of artifacts.

However, we also see more complex patterns that are part of a technology-specific
pattern catalog described in the following.

An EMF Pattern Catalog

The complex placeholder technology, used to illustrate our method, is the Eclipse
Modeling Framework (EMF). This technology was part of our previous work on
megamodeling and linguistic architecture (e.g., in [HHL+17]). In ongoing efforts over
the years, we have developed a pattern catalog of EMF. It is published in [HHL18].

The catalog is an abstract summary of what we aim to know about EMF, i.e.,
some list of abstractions that we are especially interested in. We can see this as
our requirements that we need to mine with our method. The patterns covered in
the catalog are mined in our case study using our Datalog based method. It is a
proof-of-concept and the evaluation of our proposed method.

The core of EMF (and the catalog) is a code generation process, almost similar
to our running example. The EMF code generation may occur in different ways
in repositories, subject to the presence of different types of artifacts, possibly with
different multiplicities and in different combinations. In [HHL18], we published the
catalog for EMF which covers the basic ‘artifact’ types: Ecore Package, as identified
in ‘.ecore’ files where one such file can possibly define several such packages (in our

75

Table 4.1: An EMF Repository Pattern Catalog
Id Cls. Artifacts Description and cause
Single artifact patterns
E Pres. • Ecore Pkg. The presence of an Ecore Pkg. in ‘.ecore’ files

as root or subpackage.

J Pres. • Java Pkg. The presence of a Java Pkg.
G Pres. • Genmodel

Pkg.
The presence of a Genmodel Pkg. in ‘.gen-
model’ files as root or subpackage.

C Pres. • Customized
Java Pkg.

The presence of a Java Pkg. with customized
interface or implementation.

Double artifact patterns
EJ1 Pot. In-

comp.
• Ecore Pkg.
• Java Pkg.

(ma)

aMissing

A Java Pkg. cannot be found for a given nsURI
as extracted from some Ecore Pkg. This is only
a potential incompleteness, because a Java
Pkg. could be potentially derived, if no cus-
tomization is intended.

EJ2 Def. In-
comp.

• Ecore Pkg.
(m)

• Java Pkg.

An Ecore Pkg. cannot be found for a given
nsURI as extracted from some Java Pkg. This
is a definite incompleteness because the Java
Pkg. is derived and thus, the underlying pri-
mary artifact (the Ecore Pkg.) should also be
in the repository.

EJ3 Pres. • Ecore Pkg.
• Java Pkg.

The presence of a Java Pkg. and Ecore Pkg.
with the same nsURI. One Ecore Pkg. can cor-
respond to many Java Packages.

EE Def. In-
cons.

• Ecore Pkg.
• Ecore Pkg.

An Ecore Pkg. with at least one competing
Pkg. with the same nsURI.

EJc1 Def. In-
cons.

• Ecore Pkg.
• Java Pkg.

An Ecore classifier contained in an Ecore Pkg.
with a corresponding Java Pkg., but without
a corresponding Java classifier (based on name
comparison). For instance, one may have for-
gotten to rerun the generator after adding a
classifier to the model.

EJc2 Def. In-
cons.

• Ecore Pkg.
• Java Pkg.

A Java class that is part of the Java Pkg.
with a corresponding Ecore Pkg., but with-
out a corresponding Ecore classifier (based on
name comparison). One may have forgotten to
remove the Java classifier by hand, after delet-
ing it from the mode, as the generation does
not delete code by default.

Triple artifact patterns
EJJ Pres. • Ecore Pkg.

• Java Pkg.
• Java Pkg.

An Ecore Pkg. with at least two corresponding
Java Packages.

running example this is the metamodel); Java Package – an actual Java package
containing derived classes according to a metamodel, a factory, and a package de-
scription; and Generator Package as identified in ‘.genmodel’ files (not present in
our previous running example).

Artifacts of these types can be related in certain ways in a repository. In fact,
by checking on certain relationships, e.g., by determining the absence of certain
artifacts or elements thereof, we may infer cases of incompleteness or inconsistency,
where these are either potential or definite problems of EMF usage in the repository.

Table 4.1 lists patterns organized along these different dimensions (artifact type,
presence, incompleteness, inconsistency, potential versus definite). It groups them
by cardinalities of artifacts: single, double, and triple artifact patterns. We exclude
patterns related to XMI-based persistence in this thesis, as we have faced scalability
issues in their extraction. Generally, further work is needed to arrive at a more
comprehensive catalog for EMF. Detailed data on the presence of such patterns in

76

GitHub repositories will be reported in the case study included in this chapter.

77

4.4 Technical and Methodological Improvements
The previous background section introduced a blueprint of our repository mining
method, illustrated for a running example. In particular, we show how to classify
two artifacts, involved in a code generation scenario, to correspond to each other. We
use this to produce a complex classification in terms of correspondsTo, classifying
the relation between two artifacts. Datalog rules used for the inference are closely
related to previous work on architecture recovery [MMW02, MT01, TM03], source
code querying [HVdM06], and static program analysis [BS09, SBEV18].

In the following, we fill the gaps that have been omitted in the background
section, that allow the fluent integration of the repository and its fragments, into
the analysis with Datalog. We focus on heterogeneous content, in that we aim
at accessing different artifact types, like, the file system, XML, Java and MDE
artifiacts.

4.4.1 Representational Mapping
In the previous example, we have ‘manually’ added some facts to the reasoning.
Those facts did not have incoming edges in the precedence graphs, shown un-
til this point, like manifestsAs, partOf, elementOf, and id. Other facts, like
correspondsTo, deepCorrespondsTo, notUpToDate, and sumNotUpToDate, have
been derived by Datalog rules. This simplification applies to the background section.
Our method provides dedicated integration mechanisms for this.

In related work, this integration is often called the representational mapping, or
language synopsis. However, related work typically focuses on integrating just a
single language, where we already have an AST, e.g., provided by the IDE.

In this work, we provide two integration mechanisms, doing the representational
mapping. Both solve a limited version of an O/R-Mapping problem, between the
revision and its fragments (where access is granted by object-oriented APIs, such
as, JGit, JavaParser, JDT or DOM) and the Datalog reasoner (that works with
relational data). We do not meet the full complexity of an O/R-Mapping, since for
our use case, a partial mapping suffices, and the revision content typically does not
change during analysis.

However, we still handle difficulties related to the identity and equality of ob-
jects, and we need a referencing mechanisms for objects to be used in the fact rep-
resentation. In this section, we discuss the differences between the two integration
mechanisms that we use. We described a referencing mechanism in Sec. 4.4.2.

The central difference between the two mechanisms is the following. The details
will be described below.

• We may use finite relations to integrate revisions and its fragments. In
SQL or map-reduce, we would consider this as tables or collection that we
run queries on, and that we know in advance. This mechanism is essentially
the same as in previous work, like on architecture recovery [MMW02, MT01,
TM03], source code querying [HVdM06], and static program analysis [BS09,
SBEV18].

78

• We may use infinite relations to integrate revisions and its fragments on de-
mand. Such mechanism calls function that traverse the content of the revision
and its fragments.

Finite Relations

The first integration mechanism adds facts to the data upfront to analysis. This
requires a finite set of objects and references to be known in advance.

The integration mechanism requires declaring an O/R-mapping on how the con-
tent, available through an object-oriented API, can be converted into the fact repre-
sentation. It can be written in any general purpose programming language adding
facts over a Datalog interface.

This basic integration mechanisms may work well for scenarios where the size of
the data is limited and the object-oriented structure, provided by an API, is well
understood. It suffices for the related methods in architecture recovery [MMW02,
MT01, TM03], source code querying [HVdM06], and static program analysis [BS09,
SBEV18], as they all focus on a homogeneous scenario, with a well-understood
language, and where we get the AST ‘for free’ (e.g., provided by the IDE).

Infinite Relations (Functions)

Often such basic representational mapping runs into limitations if the integrated
object-oriented structure, provided by an API, is too big, too complicated, and
when we need additional (Datalog) logic to fully understand the structure. We
assume that this is a problem in a heterogeneous technology stack, e.g., as we may
first understand aspects of the build system, to conclude on how to integrate ASTs.

The second mechanism to do representational mapping handles such limitations,
by tightly integrating it into the Datalog reasoning. We use infinite relations that can
be triggered by rules, which allows a flexible integration (see [GHLZ13] for general
details on infinite relations). In the remainder, we will refer to infinite relations as
‘functions’. We give this background in the following:

Consider the task of integrating an API realizing a basic arithmetic function
that adds 1 to an existing number. In Datalog syntax, it is written as Y = X +
1. Without knowing which X is relevant to analysis, the X and Y tuples cannot
be materialized as facts upfront to analysis. This problem thereby exceeds the
capabilities of the first integration mechanism. However, the function still provides
reasonable semantics when X is known (in Datalog terminology, when X is grounded).

The same problem appears when flexibly accessing content of a repository. We
allow arbitrary functions to fully customize the access over object-oriented APIs to
repository content. This includes functions that apply: parsing, querying, decom-
posing artifacts, computing metrics (cyclomatic complexity) and other functionality
(implemented in a general purpose programming language). The crucial point is
that the function must be pure, i.e., it returns the same output for the same input.
This property is typically assured when using repository related APIs for querying
purposes.

The following rule shows how the integration of the file and folder structure can
be done by the functions DecFs, IsFile, and IsFolder. They are used to access and
traverse files and folders over the JGit API. We highlight functions by underlining.

79

manifestsAs

partOf

IsFolder IsFile

DecFs

Figure 4.6: Precedence graph including repository content integration, highlighted
by gray background of predicates.

1 // Root folder of the repository.
2 manifestsAs(’repository:/’, Folder).
3

4 // Recursive decomposition using an XPath query.
5 partOf(?part, ?x) :−
6 manifestsAs(?x, Folder),
7 ?part = DecFs(?x, "/∗").
8

9 // Classification of folders and files.
10 manifestsAs(?p, Folder) :− partOf(?p, ?x), manifestsAs(?x, Folder), IsFolder(?p).
11 manifestsAs(?p, File) :− partOf(?p, ?x), manifestsAs(?x, Folder), IsFile(?p).

Listing 4.10: Decomposing a folder using infinite relation DecFs.

The integration starts with one initial fact, defining the root of the repository to
be a folder (line 2, Listing 4.10). Then, the file system is successively decomposed
(line 5-7) driven by the function DecFs (short for decompose file system), where the
first argument of the function is a folder, and the second an XPath for realizing
arbitrary queries to a file system starting at the folder (we have just decided to
use XPath; other query languages may also apply, in general, we face a high-order
function passed to Datalog). This rule produces new partOf facts. The functions
IsFile and IsFolder check whether the new parts are files or folders; the rules
(line 10 and 11) produce corresponding manifestsAs facts. All functions operate
on file paths that refer to files and folders.

New classifications as folders assure that the decomposition is triggered recur-
sively until no more folders are added. Accordingly, the precedence graph (Fig-
ure 4.6) contains a cycle involving predicated partOf and manifestsAs and a self
reference for manifestsAs.

Functions plugged into the Datalog reasoner enable the same flexibility as the
foreign function interface tmapHom or tmap, presented in the context of the map-

80

reduce solution (Chapter 3).

4.4.2 Referencing the Repository and it Fragments
As previously described, we do the integration by chaining (high-order) function calls
to compose access of arbitrary object-oriented structure. The input and output of
functions thereby directly refers to object-oriented structure. We need to assure
that such referencing keeps intact.

Uninterpreted Function Terms In the previous examples, we have used path
constants to refer to files and folders. In this section, we derive a general solution
using an inductive approach:

• We assume that we have a unique identification of the repository root. All
integration starts by function calls taking the root as input.

• If we have a unique identification of the input of a function, we also have an
identification for its output, that is, the uninterpreted function applied to the
identification of the input. As long as all functions are pure, such referencing
mechanisms will always provide an identification that exactly describes the
access to the same object (or objects) part of the revision.

This approach helps to chain function application without the need to define elab-
orate ways of mapping data between the object-oriented and the relational world.
If the literal form of the reference is needed, e.g., the content of a file, the string
representation of an AST, or the timestamp of a commit, a special function may
return it.

The identification of files and folders by path is the same as an un-
interpreted application of a selection, traversing the children of a folder.
Take the following chain of function applications to the root of the
repository select(’pkg’, select(’src’, ’reposiory:/’)) which corresponds to path
reposiory:/src/pkg.

References to Heterogeneous Content Figure 4.7 illustrates how to chain
function calls to access heterogeneous repository content. The chain starts at the
repository root and accesses different formats like Java and XML. This is the founda-
tion for referencing, starting at the revision root, accessing folders, files, and finally
the fragments for files of different languages. Whether all the conceivable fragments
of, e.g., an AST, are materialized as facts depends on the design of the rules. In
our case study, we materialize the file system completely, but we materialize file
content selectively. Our method does not require the exhaustive classification of the
revision and its fragments. Rules may also be turned on and off depending on which
classification is needed.

Reference Optimization All other aspects of referencing are up to mechanisms
for normalization and optimization. Normalization can, for instance, rewrite unin-
terpreted high-order function applications, including XPath queries, into a chained

81

The gray boxes repre-
sent selection of AST
elements of the file
‘Program.java’ (the first
type and its first mem-
ber).

repository:/
repository

src/
folder

pkg/
folder

build.xml
file

Program.java
file

#/type[1]
ast fragment

/members[1]
ast fragment

#/project[1]
xml fragment

/property[2]
xml fragment

repository:/ refers to
the root folder of the
repository. References
to child nodes are ob-
tained by chaining func-
tion applications. The
white boxes represent
the selection of files or
folders.

When a reference to a
file is reached, the gray
boxes select parts of the
‘build.xml’ file (in the
example the root and
the second property of
the root).

Figure 4.7: Referencing heterogeneous repository content for a small sample project
containing an ANT and a Java file. The chained application of selection functions
goes from top to bottom.

application of selection, traversing the direct containment relation (if there is such).
This is beneficial in that different XPath queries, that point to the same files or
folder, can be identified as identical after normalization.

Optimization, like memoization of intermediate results, can be used to avoid
recomputing expensive parsing results during the execution of the Datalog program.

Flat Collection Output Functions returning collection types are essential to
our method, e.g., for decomposing Folders or ASTs into its fragments. A selection
applied to a collection can be used to disambiguate between the collection and the
individual members. For instance, function ?part = DecFs(?x, "/*") binds ?part
to individual members of the decomposition and not to the collection. This decision
is up to the implementation of the function. It is somehow analogue to the difference
between map and flatMap in classical map-reduce.

4.4.3 A Catalog of Accessor Functions
We have realized the previous aspects on accessing repository content, providing
a prototypical list of high-order accessor functions. Most of the functions can be
parameterized by XPath to customize the access. The list can be used to integrate
standardized formats and structures part of repositories, such as the files, folders,
Java AST and XML AST. The functions are also used in the case study and are
shown in Table 4.2.

82

Table 4.2: Primitives for accessing folder structure (in general) and file content for
XML and Java (in the case study).

Primitive Parameters and Description
IsFile (artifact) Matches if the artifact can be accessed as a file.
IsFolder (artifact) Matches if the artifact can be accessed as a folder.
Extension (file) Returns the extension of a file.
NameFs (artifact) returns the name of a file or folder.
DecFs (folder, xpath) Returns references to files of folders by applying an XPath

expression xpath on the repository starting from the given folder; returns
the individual (flat) results.

XmlWellformed (file) Parses the content of a file and matches if the content is well-formed
XML.

DecJava,
DecXml

Variations on DecFs working on Java ASTs or XML trees as opposed to the
file system. XPath also applies to the output of object-oriented parsing APIs.

StrXml,
StrJava

Variations on the decomposition primitives returning the literal form of the
result (and not the reference form).

83

4.5 Evaluation
We evaluate the method in terms of implementing a prototype and running a com-
plex case study. We use the prototype to recover the abstract patterns presented in
the pattern catalog (Sec. 4.3.2) on GitHub.

The evaluation will proceed as follows: We first located repositories with traces
of EMF usage. In a first stage, we produce a foundational understanding of the
repositories and the build systems. We limit following up more complex classifi-
cations to well-understood EMF project layouts, for which we assumed insights to
be more comprehensible. We then build more advanced analysis of MDE related
artifacts. Eventually, we detect EMF repository patterns.

We discuss some modular Datalog rules, showing some challenges of processing
XML ASTs. We will discuss the mined patterns and the mining performance.

4.5.1 Locating Repositories
We used the GitHub search API to locate all recently indexed Ecore, Generator
Model and Java Model files on GitHub as an indication of EMF usage in repositories.
The corresponding queries are listed in Table 4.3. A list of 5759 GitHub repositories
was extracted from the query results4.

Table 4.3: Queries for locating repositories through GitHub API.
Evidence Query Extension
Java Model "extends EObject {" java
Ecore Model EClass ecore
Generator Model GenModel genmodel

4.5.2 Initial Classification of Files by Language
We start classifying files by languages, as this is a prerequisite for diving deeper into
the content of a repository, e.g., at the level of parse trees or ASTs. The following
rules classify files by a language, adding elementOf facts for files and the language
at hand (Listing 4.11).

1 elementOf(?x, Java) :− manifestsAs(?x, File), "java" = Extension(?x).
2 elementOf(?x, XML) :− manifestsAs(?x, File), XmlWellformed(?x).
3 elementOf(?x, Gradle) :− manifestsAs(?x, File), "build.gradle" = NameFs(?x).
4 elementOf(?x, Ecore) :−
5 manifestsAs(?x, File), elementOf(?x, XML), "ecore" = Extension(?x).
6 elementOf(?x, Manifest) :−
7 manifestsAs(?x, File), "MANIFEST.MF" = NameFs(?x),
8 partOf(?x,?folder), "META−INF" = NameFs(?folder).
9 elementOf(?x, Ant) :−

4For what it matters, at the date the search was applied, the API search limit was circumvented
by recursive query segmentation which splits a query by setting an upper and lower bound in file
size based on the returned number of total results. This process may miss some results. The search
API only considers heads of default branches and files smaller than 384 KB.

84

10 manifestsAs(?x, File), elementOf(?x, XML), "build.xml" = NameFs(?x).
11 elementOf(?x, Pom) :−
12 manifestsAs(?x, File), elementOf(?x, XML), "pom.xml" = NameFs(?x).

Listing 4.11: Rules for basic language classification.

We classify Java, Ecore and XML files, as those three kinds are the most im-
portant languages in the context of EMF. XML is not classified by extension, but
by well-formedness, as it often appears with domain-specific file extensions in EMF.
We also classify files related to the used build systems.

4.5.3 Selection of Repositories
The rules of Listing 4.11 are the starting point to recover the ‘repository layout’
in terms of usage of build systems, project dependencies, and other aspects. We
developed the following classifiers that apply to the repository as a whole as an
extension to the EMF pattern catalog:

Homogeneous versus heterogeneous build system: We search for traces of
Manifest, POM, Gradle, and ANT, as modeled by the rules in Listing 4.11. In
the homogeneous case, only one such technology is used; otherwise, we apply
the heterogeneous classifier. We assume that the heterogeneous situation is
harder to understand in terms of project dependencies.

Single component versus multiple components: Based on an analysis of
project dependencies, as described in more detail below, we determine the
number of components. We assume that repositories with multiple compo-
nents are special. Such a repository may be, for example, a ‘zoo’ [KSW+13].
Note that a single component can still imply the presence of multiple (depen-
dent) projects, part of the repository.

Variants: This classifier applies when we locate different versions of the same
project in a repository based on the analysis of project dependencies. We
assume again that repositories with variants are special. Such a repository
may capture, for example, versions in a migration process.

EMF’s default is the use of Manifest files for defining OSGi projects and depen-
dencies. We decided to only include homogeneous repositories using Manifest files in
our case study. The heterogeneous build system of repositories calls for future work.
The analysis of dependencies is based on ‘Bundle-SymbolicName’ elements in Man-
ifest files. Listing 4.12 presents the rules for inferring the occurrence of declarations
(predicate decOccures), references (predicate refOccures) and OSGi dependencies
between Manifest files (predicate dependsOn):

1 // Extraction of Bundle−SymbolicName declaration.
2 decOccurs(?file, ?declaration) :−
3 elementOf(?file, Manifest),
4 ?x = StrManifest(?file, "Bundle−SymbolicName"), // Extract a manifest property.
5 ?declaration = ReplaceAll(?x, "(;[^,]∗)|\\s", ""). // Replace details.
6

7 // Extraction of Bundle−SymbolicName references.
8 refOccurs(?file, ?reference) :−

85

Figure 4.8: Number of repositories with a particular build system, further parti-
tioned into homogeneous versus heterogeneous case.

9 elementOf(?file, Manifest),
10 ?x = StrManifest(?file, "Require−Bundle"), // Extract a manifest property.
11 ?xi = ReplaceAll(?x, ’("[^"]∗)"’, ""), // Replace details.
12 ?reference = Split(?xi,’,’). // Split multiple dependencies.
13

14 // Creating dependency fact.
15 dependsOn(?deca, ?decb) :−
16 elementOf(?a, Manifest), elementOf(?b, Manifest),
17 decOccurs(?a, ?deca), refOccurs(?a, ?decb), decOccurs(?b, ?decb).
Listing 4.12: Rules for extracting OSGi declarations, references and dependencies.

The function StrManifest(file, property) is a specialized decomposition
function of a Manifest file, returning a Manifest property in literal and not in refer-
ence form. In Listing 4.12, ?x is assigned to the ‘required’ or ‘defined’ bundles. The
chains of function applications on ?x, invoking ReplaceAll and Split, continues
processing ?x in literal form according to the standard String processing semantics.

We exclude repositories with duplicated declarations, where decOccurs refers to
the same declaration from different files (classifier Variants). This can, for instance,
be checked by aggregation. We apply an algorithm for detecting connected compo-
nents to the dependsOn relation. We exclude repositories with multiple components.

The results of the selection steps are depicted in Fig. 4.8. In what follows, we
only consider repositories with a single component, Manifest usage only, and no
variants. We refer to these repositories as ‘Vanilla EMF repositories’. There are
1437 such projects. These are the projects considered for mining.

4.5.4 Mining the EMF Pattern Catalog
For brevity, we focus on the detection of correspondence between Java and Ecore
models, as introduced in the motivation section. In particular, we show the decom-
position of an Ecore model which is persisted as XML; we omit the rules for detecting
and decomposing the Java package; we also omit handling Ecore sub-packages.

Consider the beginning of a small Ecore sample file as follows:
1 <ecore:EPackage ... name="fsml" nsURI="http://www.softlang.org/metalib/emf/Fsml" nsPrefix

="fsml">
2 <eClassifiers xsi:type="ecore:EClass" name="FSM">

86

3 ...
Listing 4.13: The first lines of a sample Ecore file.

The following rules decompose the Ecore model into root package and nested
classifiers:

1 // Decomposition of the Ecore file into ...
2 // ... the root package.
3 partOf(?part, ?x), elementOf(?part, EcorePackageXMI) :−
4 elementOf(?x, Ecore),
5 ?part = DecXml(?x, "/ecore:EPackage").
6

7 // ... the nested classifiers in a package.
8 partOf(?part, ?x), elementOf(?part, EcoreClassifierXMI) :−
9 elementOf(?x, EcorePackageXMI),

10 ?part = DecXml(?x, "/eClassifiers").
11

12 // Extracting nsURI and name, necessary for detecting correspondence.
13 id(?x,?id) :−
14 elementOf(?x, EcorePackageXMI),
15 ?id = StrXml(?x, "/@nsURI"). // NsUri for a package as id.
16

17 id(?x,?id) :−
18 elementOf(?x, EcoreClassifierXMI),
19 ?id = StrXml(?classifier, "/@name"). // Get the classifier’s name as string.

Listing 4.14: Decomposing Ecore into classifiers appending a nsURI.

A partOf relationship is inserted along the nesting structure and fragments
are classified by EcorePackageXMI and EcoreClassifierXMI respectively. This
decomposition is handled by the first two rules (line 3-5 and 8-10, Listing 4.14),
using the function DecXml to construct references to the XML AST. The last two
rules (line 13-15 and 17-19, Listing 4.14) extract the attributes ‘nsURI’ and ‘name’
in literal form, using StrXml applied to the AST. This is mandatory because the
literal values ‘FSM’ (name) and ‘http://www.softlang.org/metalib/emf/Fsml’
(nsURI) are needed rather than the references to the AST.

The rules for establishing the correspondence are similar to those for the running
example, presented in the background section (with small modifications, exchanging
classifier names). In total, we mine 10 patterns that arise from combinations of the
heterogeneous artifact types.

4.5.5 Results

The empirical results on the EMF pattern catalog, and the catalog, are associ-
ated with Marcel Heinz. We summarize the content here to be self-contained.
Parts of the presentation of the results has been improved in this thesis. How-
ever, we only show the results because of their relevance to a credible case
study, that serves us as a prove-of-concept for the method we contribute in
this chapter.

This chapter focuses on the technical aspect of declarative mining of a hetero-
geneous technology stack. The previous section proves that this is possible in this

87

Figure 4.9: Overall pattern sum and the number of repositories a pattern occurs in.

concrete case (prove-of-concept). For completeness, we also discuss the results of
our mining.

The results of the case study, applied to 1437 Vanilla EMF repositories, are sum-
marized in this section. In the following, we will: i) present raw data on the indi-
vidual patterns, ii) model group membership (definite incompleteness) as a function
of repository popularity (stars) and iii) model how the mining performance relates
to the number of analyzed files in a repository.

Raw Numbers of Patterns

Fig. 4.9 gives a first overview on the number of pattern occurrences. It shows two
overlapping bars that represent: i) the overall sum of patterns across all repositories
(light blue) and ii) the number of repositories that contain the pattern at least once
(dark blue). The plot gives a first intuition on which patterns are less frequent, i.e.,
EJ2, EJc2 and EJJ. Pattern EE is frequent, but just in a few repositories. We did
not find EJc1.

A detailed picture of the distribution of pattern frequencies over all repositories
is reported in Figure 4.10. The series of plots show how often 0, 1, 2, 4, 8 . . .
occurrences of the same pattern are part of a repository (0 indicates absence). This
view is more applicable than examining the mean and standard deviation, as the
distributions are far from being normal. We also add the description of the pattern
as a recap in the caption. The following observations can be made:

• E (Figure 4.10a): The presence of an Ecore Pkg. in ‘.ecore’ files as root or
subpackage. In almost all repositories, we find at least one Ecore package.
Only 48 of the 1437 Vanilla EMF repositories miss it. Such absence might be
caused by some additional process deriving the Ecore model. In most cases
(900), we exactly face one package. However, there are also repositories with
more than a single package. One repository contains over 256 Ecore packages.

88

Pattern Frequency

R
ep

os
ito

ry
 F

re
qu

en
cy

0
50

0
10

00
15

00

48

900

288

111
45 27 13 4 0 1

0 2 8 32 128

(a) Pattern E: The presence
of an Ecore Pkg. in ‘.ecore’
files as root or subpackage.

Pattern Frequency

R
ep

os
ito

ry
 F

re
qu

en
cy

0
50

0
10

00
15

00

285

845

202
75 18 10 1 1

0 1 2 4 8 16 64

(b) Pattern J: The presence
of a Java Pkg.

Pattern Frequency

R
ep

os
ito

ry
 F

re
qu

en
cy

0
50

0
10

00
15

00

143

956

247

71 11 9

0 1 2 4 8 16 32

(c) Pattern G: The presence
of a Genmodel Pkg. in ‘.gen-
model’ files as root or sub-
package.

Pattern Frequency

R
ep

os
ito

ry
 F

re
qu

en
cy

0
50

0
10

00
15

00

1033

237

75 44 21 15 9 3

0 1 2 4 8 16 64

(d) Pattern EJ1: A Java
Pkg. cannot be found for
a given nsURI as extracted
from some Ecore Pkg.

Pattern Frequency

R
ep

os
ito

ry
 F

re
qu

en
cy

0
50

0
10

00
15

00

1394

26 12 2 3

0 1 2 4 8 16

(e) Pattern EJ2: An Ecore
Pkg. cannot be found for
a given nsURI as extracted
from some Java Pkg.

Pattern Frequency
R

ep
os

ito
ry

 F
re

qu
en

cy

0
50

0
10

00
15

00

310

768

239

82 21 12 4 0 1

0 1 2 4 8 32 128

(f) Pattern EJ3: The pres-
ence of a Java Pkg. and Ecore
Pkg. with the same nsURI.
One Ecore Pkg. can corre-
spond to many Java Pack-
ages.

Pattern Frequency

R
ep

os
ito

ry
 F

re
qu

en
cy

0
50

0
10

00
15

00 1419

11 4 2 0 1

0 1 2 4 8 16 32

(g) Pattern EJJ: An Ecore
Pkg. with at least two corre-
sponding Java Packages.

Pattern Frequency

R
ep

os
ito

ry
 F

re
qu

en
cy

0
50

0
10

00
15

00

1280

0
102

26 10 8 6 4 1

0 1 2 4 8 32 128

(h) Pattern EE: An Ecore
Pkg. with at least one com-
peting Pkg. with the same
nsURI.

Pattern Frequency

R
ep

os
ito

ry
 F

re
qu

en
cy

0
50

0
10

00
15

00

1214

151
47 13 7 5

0 1 2 4 8 16 32

(i) Pattern EJc2: A Java
class that is part of the Java
Pkg. with a corresponding
Ecore Pkg., but without a
corresponding Ecore classifier
(based on name comparison).

Figure 4.10: The distribution of patterns over Vanilla EMF repositories.

• J (Figure 4.10b): The presence of a Java Pkg. In comparison to the previous
pattern, the number of repositories without Ecore Java packages is high with

89

285. This is reasonable, since often generated code is not committed to the
repository.

• G (Figure 4.10c): The presence of a Genmodel Pkg. in ‘.genmodel’ files as
root or subpackage. The number of repositories without a generator package
is somewhere in between the previous two cases, E and J, with 143. Often, the
generator model can be derived, but there are also points where customization
might be necessary, which requires committing the generator.

• EJ1 (Figure 4.10d): A Java Pkg. cannot be found for a given nsURI as ex-
tracted from some Ecore Pkg. Having no corresponding Java package for an
Ecore model can happen if the generated code is not uploaded (potential in-
completeness). In 1033 repositories, we do not face the pattern. However, in
404 repositories we face this pattern at least once, indicating that the reposi-
tories definitely do not customize code and potentially rely on a proper gen-
eration process to run after checkout.

• EJ2 (Figure 4.10e): An Ecore Pkg. cannot be found for a given nsURI as
extracted from some Java Pkg. This is the first pattern that indicates a
definite incompleteness, since we know that if code is uploaded, also the model
needs to be uploaded for the shake of consistency. The distribution of such
pattern looks different to the previous patterns. In only 43 of the Vanilla
repositories (3%) this pattern is faced at least once. Some sort of feedback
to developers that introduce such problem might resolve such situation. EMF
does not inform uses on this.

• EJ3 (Figure 4.10f): The presence of a Java Pkg. and Ecore Pkg. with the same
nsURI. One Ecore Pkg. can correspond to many Java Packages. This is the
regular correspondence present in many repositories. However, there is still an
amount of 310 repositories that misses such correspondence (possibly because
they also lack Java code, i.e., pattern J, 258 repositories).

• EJJ (Figure 4.10h): An Ecore Pkg. with at least two corresponding Java Pack-
ages. This is a corner case, employing a rare feature of EMF to derive poten-
tially different implementations of models. We only face it in 18 repositories.

• EE (Figure 4.10h): An Ecore Pkg. with at least one competing Pkg. with the
same nsURI. We face this pattern in 157 repositories at least once. Duplica-
tion is not common practice and classified as definitely inconsistent. However,
it still seems to be a common habit, potentially involved in situations of pro-
totyping EMF solutions.

• EJc1 (not matches): An Ecore classifier contained in an Ecore Pkg. with a
corresponding Java Pkg., but without a corresponding Java classifier (based on
name comparison). In other words, we miss a Java class. We do not find any
occurrence of this pattern which indicates that, if the Java code is uploaded,
nobody misses rerunning the generation after adding a classifier.

• EJc2 (Figure 4.10i): A Java class that is part of the Java Pkg. with a cor-
responding Ecore Pkg., but without a corresponding Ecore classifier (based on

90

0 1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

log(stars + 1)

pr
ob

ab
ili

ty

EJ2 (def. incompl.)
no EJ2

Figure 4.11: Probability of facing EJ2 computed by a logistic regression

name comparison). In other words, we find a useless Java class in the gen-
erated code. We find this pattern often with 223 repositories that have at
least one occurrence. Such a pattern is not inconvenient, as the generator
process does not automatically delete code (to protect against the deletion of
handwritten code). We face a definite inconsistency.

4.5.6 Modeling Group Membership
In this section, we model the existence of problematic pattern, as a function of
repository popularity. We assume that problematic patterns are less frequent in
popular repositories. We focus on definite incompleteness in terms of pattern EJ2,
which is the most problematic in our catalog.

We model the presence of EJ2 as a function of the repository popularity in terms
of stars. The stars are stated-log transformed, since popularity often shares an
exponential growth. We implement a Bayesian logistic regression (with flat priors).

The resulting model is depicted in Figure 4.11, showing the probability of a repos-
itory including an EJ2 pattern, over the range of possible popularity values. The
line depicts the mean probability. The shaded area shows the Bayesian credibility
interval (95%) around the mean. We plot all repositories as dots or crosses (depend-
ing on the presence of EJ2), with jitter on the x and y-coordinates at y-coordinate
0.0 or 0.15.

The pot shows a decreasing trend of EJ2 membership with popularity. The 95%
credibility interval for the slope, however, may include positive trends (the interval
lies between −1.27 and 0.26). For a star count of 0, the credibility interval for the
probability of facing EJ2 ranges from 2.2% to 4.2%.

91

0 2000 4000 6000 8000 10000

0
10

00
0

20
00

0
30

00
0

40
00

0

files

tim
e

[m
s]

(a) All repositories

0 500 1000 1500 2000 2500 3000

0
10

00
20

00
30

00
40

00
50

00

files

tim
e

[m
s]

(b) Low file counts

Figure 4.12: Performance of the Mining

4.5.7 Analyzing Mining Performance
We analyze the performance of our prototype by modeling the mining time as a
function of repository files. We use a Bayesian model (with flat priors).

The output variable mining time is modeled following a gamma distribution (typ-
ical for distance and duration since it is constrained to be positive and continuous
with a peak above 0). We use a parameterization setting the distribution shape as
a model parameter, and the distribution mean as a polynomial function of time.

The resulting fit is depicted in Figure 4.12, where the left plot show all reposi-
tories (files vs. mining time) and the right is limited to low file counts. We plot the
mean of the distribution as a line over file counts and the 95% credibility interval
of expected mining times as a shaded area. The plots show some weaknesses of
the model for low file counts. We can see this in terms of the interval that does
not align with the actual lower border of the observations (see the lower part of
Figure 4.12b). We assume that this model is still sufficient to make statements on
the mining performance.

We aim to examine the linear O(n) and quadratic effort O(n2) of running our
method on files. The plots hint at an evident quadratic trend. The model reports
that the average startup time lies between 0.65 and 0.7 seconds; the time needed
to process a single file lies between 0.57 and 0.77 milliseconds. Further, we have a
factor between 5.47E − 05 and 14.29E − 05 for the quadratic effort, increased by
each file.

92

4.6 Conclusion
In this chapter, we demonstrate how to use declarative logic programming, in partic-
ular Datalog, to mine a repository with a heterogeneous technology stack. We focus
on mining EMF usage patterns. Such patterns consist of a heterogeneous mixture
of XML, Java and specific MDE artifacts. We also discuss the results.

We propose a method to improve the definition of functions that abstract over a
repository with a heterogeneous technology stack, by using concepts from declarative
logic programming and combining them with ideas on megamodeling and linguistic
architecture. We reproduce existing ideas on declarative logic programming with
languages close to Datalog, coming from architecture recovery, source code querying,
and static program analysis, and transfer them from the analysis of a homogeneous
to a heterogeneous technology stack. We provide a prove-of-concept of such method
in a case study.

In the next chapter, we will start to discuss methodological challenges of working
with repository data, leaving the rather technical challenges of the computation be-
hind. Choosing the appropriate methodology for answering real empirical questions
based on raw abstractions/variables mined from repositories and its fragments, is
highly challenging. The previous parts, included in Chapter 3 and 4, can be seen
as the technical tools operating in the background. Such technical solutions are one
important aspect of a good methodology in MSR/ESE to collect data.

93

Chapter 5

Simulation-Based Testing

5.1 Introduction
The reviewing process of empirical work is challenging because quality criteria on
the validity of methods and results are hard to define and communicate. For exam-
ple, the International Conference on Software Maintenance and Evolution (ICSME)
includes a dedicated category for empirical work. Calls-for-papers in the years 2021,
2022, and 2023 include this statement to describe the reviewing of such a category:

An empirical work is a ‘[...] paper in which the main contribution is the empirical
study of a software evolution technology or phenomenon. [...] The authors should
provide convincing arguments [...] why certain methods or models are
needed. Such a contribution will be judged on its study design, the
appropriateness and correctness of its analysis, and its discussion of
threats to validity. Replications are welcome.’ (copy from the call-for-papers of
ICSME 2021, 2022, and 2023)

Similar statements on the validity (or correctness) of work can be found in
other empirical fields. While reproducibility and replicability are somewhat under-
stood [CSFG19, SSM18], standardized and operational ways to define and commu-
nicate the validity of methods and results, and the threats to it, are less understood.
An example of recent work that points out challenges of defining and communicating
threats, in the context of program comprehension experiments, is [BWGW23]. This
thesis focuses on this latter aspect.

5.1.1 Meta Research Questions
In this thesis, we try to better understand the general problems related to the validity
of methods and results in empirical research with a focus on scenarios coming from
the field of Mining Software Repositories (MSR) and Empirical Software Engineering
(ESE). We hope that this effort also contributes to an improved understanding in
other empirical fields.

We derive the following meta research questions, that we later instantiate for
concrete empirical studies:

• RQ 1: What assumptions of ESE and MSR studies can be operationalized?

• RQ 2: What is the impact of such assumptions on the study results?

94

The first question asks for a more operational way of expressing assumptions
about an empirical scenario. Such operational form can be helpful in the commu-
nication and the reviewing process. This is the foundation to discuss validity. The
second question asks about the impact of assumptions on the results of a study.
This is relative to the method used to produce results and alternatives to it.

5.1.2 Relevance
Our research questions matter from an author and a reviewer perspective: Authors
of empirical research try to assess and explain the validity of their empirical research.
Reviewers need guidelines on what validation they should search for in submissions.

5.1.3 A New Validation Strategy: Simulation-based Testing
This thesis presents a new strategy that operationalizes statements about the valid-
ity of empirical studies. In this chapter, we use the term strategy as an alias for a
high-order method.

We operationalize assumptions on an empirical research scenario, typically infor-
mal in a paper, by simulations that produce artificial data and results. The impact
of a used method on its results can be checked in such a transparent setting.

We encourage researchers to submit simulation code as validation arti-
facts in the reviewing process of empirical work to define and communicate
properties related to the validity of their methods.

5.1.4 Meta-Validation
What we propose is a general strategy (or method) to validate methods and results
for a concrete empirical scenario. To provide a validation on our part, we applied
our general method to 6 real scenarios examined in published studies in MSR and
ESE. In each case, we instantiate our meta research questions and show how we can
answer them.

We prove that benefit can be expected by such additional validation
artifacts. We show that we can either: i) support validity ii), threaten validity, or
iii) prove invalidity of the used methods and results by simulated scenarios.

5.1.5 Summary of this Chapter’s Contributions

• We present simulation-based testing for MSR/ESE studies to operationalize
threats to validity.

• We evaluate simulation-based testing, showing the relevance of simulation-
based testing by applying it to published studies in MSR/ESE.

• We provide an initial catalog of relevant threats to MSR/ESE studies using
simulation-based testing.

95

The full simulation code covered in the remainder of this chapter can be found
online1 and may be used for reproducing the presented tests. The code is written
in R but can be translated into other languages.

5.1.6 Summary of the Delta to the Publication
This chapter keeps close to the previous publication [HL22] and to a more recent
journal version [HL23]. We adjust some minor structural aspects, to better fit to
the overall metamodel of this thesis.

5.1.7 Micro road-map of this Chapter
This chapter follows a limited version of the metamodel defined in the introduction
(Sec. 1.6). In particular, Sec. 5.2 begins with a motivation; the background section is
skipped; Sec. 5.3 introduces simulation-based testing using a basic example; Sec. 5.4
evaluates simulation-based testing by applying it to existing studies in MSR and
ESE.

1https://github.com/topleet/MSR2022

96

5.2 Motivation
We start with the discussion of existing strategies for the validation of empirical
work that come close to our general strategy. We add some known examples of
empirical work where validation has gone wrong. This motivates the complexity of
validation.

The section can be skipped if a positioning in the context of reviewing and
validating empirical work is not of immediate interest upon first reading.

5.2.1 What is a Valid Method?
Reasoning about the validity of a method used in empirical research is hard:

• There might be trivial problems. An example of a study, where columns in
the data are accidentally flipped, is described in [Mil06]. The authors needed
to withdraw five publications because of this mistake in their method. Such
trivial bugs might be a detail that nobody notices for years, but a detail that
changes the results dramatically. Nothing prevents researchers from running
into such problems.

• There might be more subtle problems. An instance is a study about cultures
with moralizing gods in the field of anthropology, criticized in [BAB+21]. Here,
a small difference in the method, in particular, on how to handle missing
values in historical records, leads to dramatic changes in the results. There
is no real solution to the problem, as discussed in [McE20] (page 512). Such
reasoning relates very plausible assumptions on the empirical scenarios, in
particular, about the origin of missing data, to the method and its incapability
of producing valid results.

What can be noticed in such discussions is that it is hard to judge a
method by its results. A comparison of methods might indicate differences in
the results, but differences alone cannot always tell something about validity. An
understanding of the empirical scenario is necessary for claims on validity.

5.2.2 Typical Strategies
Typical strategies that may help with the validity of empirical work will be listed
next. The use of simulations is not established. The following list summarizes our
experience with validation strategies we spotted in past publications of MSR/ESE.

• Intuition: Research in MSR/ESE is typically conducted, reviewed and read
by software engineers. This implies that all results and empirical scenar-
ios can, to some extent, be judged by our intuition. We often see sec-
tions in publications that trigger this, giving small anecdotes, and explain-
ing why particular results are intuitive or not. Some examples can be found
here [GS10, GdCZ19, Vok04, PCGA08, SMS16, JMF14, BFS+18]. The most
characteristic text passage we may find in papers is ‘. . . results confirms our
intuition that . . . ’. However, such judgment of results might be dangerous.

97

• Authority: In some cases, authors may establish authority, which creates an
impression of validity. This may be done by an extensive discussion of related
work or referring to previous efforts done by the authors.

• Cookbook Methods: In several cases, claims on the validity of methods
(and parts of it) are outsourced by using previously established methods. Pa-
pers list references to previous work, using the method too, to prove valid-
ity. Established methods that have been used for a while, are for instance,
the events-per-variable (EPV), introduced in [PCK+96] and used as part of
MSR/ESE methods in [GdCZ19, JTH21, TH18, TMHM17, PFD11], or AIC,
introduced in [Aka98], and used in MSR/ESE method like [TDH14, PFD11,
RPD12, CDO+15, IYNH19]. However, if a methods works out-of-the-box in a
new empirical scenario is not always clear.

• Comparison Results: Examining the consistency of results with previous
work is also typical. This can be done by replication of previous studies, or
by a meta-analysis. Typically, studies are applied in a closely similar scenario
and on fresh data. An example is presented in [Moc10], where a detailed
table makes explicit to which previous studies the new results conform or
not. Consistency is assumed to be a good sign in favor of a study. Less
formal replication, comparison, and confirmation of previous results, located
in the text, rather than in a table, can be found in [CDO+15, KL17, TBP+17].
However, whether consistency alone may be taken as a sign for a valid study
can be doubted. It may also be caused by the repeated application of an
invalid method.

• Comparison Methods: The comparison of methods may indicate a differ-
ence in the results. In specific cases, as in the case of a model comparison
(see the next item), the difference is meaningful. However, in general, such
a difference may not necessarily indicate which method is valid. Without a
clear understanding of the relation between the empirical scenario, method
and results, statements about validity are limited.

• Model Comparison Method: We consider the comparison of models that
are proxies for different hypotheses as one particular method. It is maybe
the most established and useful in empirical research. Here, a comparison se-
lects between different models by preferring those that fit the collected data
best. Relevant part of such method is the protection against over and under-
fitting by cross-validation (used in [BSHA20, CLP+15, DBG+15, HPMY13,
NFK+18]), information criteria (used in [TDH14, PFD11, RPD12, CDO+15,
IYNH19]) or regularization (used in [NPK13]). Model comparison is well un-
derstood, but still limited. Model comparisons can, for instance, be misleading
when talking about causality. Non-causal models are often preferred because
they improve the fit. In general, associating models and hypotheses is not
trivial and might go wrong.

• Simulations: The use of simulation is a recent trend that is currently starting
to spread in teaching statistics [GHV20, McE20]. According to our knowledge,
it is not a formal requirement in the reviewing process.

98

In this paper, we will go this new way of simulating empirical scenarios
and results to support or threaten the validity of methods used in MSR
and ESE.

99

5.3 Technical and Methodological Improvements
This section presents the original contribution.

5.3.1 A New Validation Strategy: Simulation-Based Testing
This section introduces simulation-based testing to operationalize statements about
the validity of empirical research in MSR and ESE.

We call our strategy ‘simulation-based testing’ because of the anal-
ogy between writing simulation artifacts and writing test cases.

A Simplified Empirical Study

For a structured discussion, we decompose empirical research studies into i) an
empirical scenario, ii) a method, and iii) the results. This is a strong simplification.

• The empirical scenario is the domain-specific and more ‘informal’ part of a
study that is the subject to research.

• The method consists of the steps to produce results.

• The results are non-trivial statements about the empirical scenario.

The following logic statement (that should not be read with formal ambitions)
illustrates the argumentation on validity in many studies: ‘Valid assumptions about
the empirical scenario and a valid method imply valid results.’

empirical scenario ∧ method → results

Judging the validity of the results is often complicated and influenced by ex-
pectations. Instead, researchers judge the assumptions about the empirical scenario
and the validity of the used method. Correct results are implied (→). However, such
argumentation requires a clear understanding of the relationship between the three
parts: How do the assumptions on the empirical scenario and the method influence
the results?

In this paper, we will show how to operationalize statements about
the validity in terms of the relationship between the assumption about
the empirical scenario, the method, and the results.

Variables and Relationships

In one form or another, an empirical study suggests a description of a data generation
process:

• Variables label relevant data for the research scenario. Typical variables in
MSR/ESE are the occurrence of defects, lines-of-code, or effect strengths. The
measurement of such variables matters: Some variables can be observed (e.g.,
lines-of-code); some variables can only be observed with uncertainty (e.g.,

100

defects due to inaccuracy of SZZ [SZZ05]); other variables are conceptual and
thereby in principle unobserved. They can be inferred as the result of an
empirical study (e.g., effect strength of lines-of-code influencing defects).

• Relationships between variables describe how variables relate to each
other. Relationships may be functional or stochastic. The latter invokes a
notion of uncertainty. Uncertainty is handy, since we do not find exact re-
lationships between variables. The direction of such relationships is relevant
for claims on causation and to describe a process. Temporal precedence of
variables sometimes limits the plausible directions in which a relationship may
operate. Relationships can never be measured directly.

Different algorithms can now use relationships to infer, predict, iden-
tify, learn or simulate variables using other variables.

Depending on which variables are observed or not, how unobserved variables
are treated, and which relationships are used, the names for the procedure and the
involved algorithms may differ:

• Algorithms may predict unobserved defects.

• Algorithms may infer, learn or identify unobserved parameters relevant to a
relationship. We stick to the term identify.

• Algorithms may simulate complete data sets following plausible assumptions
on unobserved variables, like on the relationship between defects and lines-of-
code.

The Baseline Empirical Method

We now describe a common underlying method used in many empirical studies. It
is not part of our new strategy, but relevant to it. We describe it here to make this
discussion self-contained.

Studies often execute a variation of the following steps to arrive at the results:

• A study’s method uses the toolbox of variables and relationships to decode
hypotheses about the empirical scenario as ‘models’. There are often stereo-
typical ways of connecting variables by relationships, with well-known names
and algorithmic support. For instance, there are linear (regression) models,
logistic (regression) models, mixed-effect models, autoregressive models, or
generalized additive models. These names just refer to blueprints that still
need to be customized.

• The data collection mines a sample, for instance repositories, to replace some
unobserved with observed variables.

• Algorithms attempt to identify the remaining unobserved variables in the mod-
els.

• The identified unobserved variables, often called the parameters, and the
model that fits the data best is considered as the result of a study. Hypothesis
are discussed respectively.

101

We can find comparable practice in the following papers [KSA+13, FBF+20,
VPR+15, BHV16, FLHV22, SHL+19, MW00, YXF+20, JTH21, NZZ+10, RRC16,
ZPZ07, ZN08, TMHI16, TDH14, TH18].

Simulation-Based Testing in a Nutshell

Judging the validity of such a method and variations of it is complicated because it
is connected to assumptions on the empirical scenario. To make the assumptions
transparent, we operationalize them in terms of a simulation.

A simulation-based test replaces the real empirical scenario, in essence the col-
lected data, by a ‘simulation’ that reflects our assumptions about the empirical
scenario. The simulation produces artificial data.

The simulation-based test often works in an ‘opposite way’ when compared to the
original method. Instead of using the observed data to produce results, it reverts the
algorithms, and produces artificial data for given results. The results can be purely
fictional (or counterfactual) and are typically invented for the purpose of simulation.

An empirical study’s original method, or any other method that potentially
applies, can be run on the simulated data.

The simulated empirical scenario, the method, and the results are now transpar-
ent. The relationship can operationally be judged. The impact of our assumption
on the results can operationally be judged.

Possible Statements on Validity: Simulated scenarios operationalize state-
ments about validity by describing the relationship between (plausible or con-
troversial) simulated empirical scenarios, (alternative) methods, and the im-
pact on the results. We have different options to operationalize statements
about validity:

• Supporting Validity: We want to show that for all plausible simula-
tions (i.e., those likely to correspond to the real scenarios) our method
produces valid results.

• Threatening Validity: We accept that for some controversial simula-
tions (i.e., those unlikely to correspond to the real scenarios) our method
produces invalid results.

• Invalidity: We do not accept that for a plausible simulation (i.e., one
likely to correspond to the real scenarios) our method produces invalid
results.

Our paper encourages researchers to capture those kinds of statements in simu-
lations operationally. This may happen upfront to research or during revisions.

Explicit, Operational Assumptions

Running the method of the empirical study in reverse, capturing all its assumptions
in simulation code, is not as trivial as it seems. It leads to non-trivial insights, as
we will show in the meta-validation section.

The simulation can ‘hard-code’ assumptions that are mostly implicit in the orig-
inal method of a study. The simulation can be explicit on the process, given by the

102

direction of relationships, on how the data is sampled from a bigger population, on
mechanisms that lead to missing data, on unobserved data like the results, or on
the way how measurement works.

This creates an operational and potentially parametrized simulation of our as-
sumed reality. For instance, a simulation may first simulate artificial data, and then
simulate different mechanisms on how parts of the data get lost. This simulates
problems with measurement. How a methods reacts to such data can then be ex-
amined operationally by running the simulation and afterwards the method on the
produced artificial data.

Plausible and Controversial Simulated Scenarios

A simulated scenario can be considered as a complex but operational form of an
assumption.

We iterate plausible or controversial simulations to strengthen the method by
examining the impact on the results. Comparable to a regular assumption, every-
thing derived in that way is conditional on the plausibility. In this case, it is the
plausibility of the simulation that we deliver as an operational artifact. Rating if
simulations are plausible or controversial is often subjective and can benefit from
the involvement of reviewers. However, we now have an artifact that supports such
review and discussion.

When designing, reviewing, or revising a method, the aim should be to stick
to the most basic method, which is most resistant against the important threats
operationalized by simulations. A catalog covering simulations of typical threats in
MSR/ESE may help in such a case.

103

5.3.2 A Simple Example: Logistic Regression For Defects
We start with a simple example of how a simulation may operationalize statements
on the validity of a method. We will check the application of a basic logistic re-
gression model, comparable to the method in many past and recent studies on soft-
ware defects (e.g., in [KSA+13, FBF+20, MW00, YXF+20, JTH21, NZZ+10, ZPZ07,
ZN08, TMHI16]).

Technically, a simulation implements stochastic and functional relationships be-
tween variables. It draws variables from random number generators (stochastic)
or produces variables according to basic mathematical functions (functional). Such
simulations boil down to very basic code.

Understanding the following section does not involve specific libraries or exten-
sive statistic background knowledge.

Original Method

A study that uses logistic regression to examine defects formulates a model that
describes the relationship between some observed variable X, typically a software
metric, and the observed defect Y . Both variables can be mined from repositories.
The results of such method improve the understanding of the relationship, for in-
stance, discussed in [KSA+13, FBF+20, MW00, YXF+20, JTH21, NZZ+10, ZPZ07,
ZN08, TMHI16].

The most basic form of a logistic regression characterizes the relationship in
terms of two unobserved variables, identified using the observed X and Y variable:

• Intercept (alpha): The intercept is an unobserved variable reflecting the
average probability of defects when X = 0.

• Slope (beta): The slope is an unobserved variable reflecting the change in
the probability of defects when X increases by one unit.

To exemplify this analysis, we borrow data from the elasticsearch project, pub-
lished in the context of examining defects in [FBF+20]. We use a binary defect
classification for our observed variable Y (computed according to SZZ [SZZ05]).
The variable X is the stated-log transformed lines-of-code changed by a commit.
For further details, we refer to the original study.

The code we use to invoke a logistic regression, in essence, an algorithm that
identifies alpha and beta using X and Y , is given in Listing 5.1:

Listing 5.1: The original method applies a logistic regression to model the relation-
ship between X and Y (R code).

1 model <− glm(Y ~ X, family = binomial())

When running this code, it reports that the unobserved intercept is −3.28 and
the slope is 0.45. From the perspective of the results, the interesting aspect is the
existence, the strength, the direction, and a potential causal nature of the relation-
ship between changed lines-of-code and defects. Because of the positive slope (0.45),
we may now conclude that commits with more changed lines are more dangerous,
as this increases the probability of defects.

104

In such a trivial case, the method is often not further questioned. We trust in the
fact that we apply the logistic regression correctly, that the software works, that we
have enough data, and that our interpretation is valid, although we have never seen
the real relationship, and the real values of the unobserved variables and compared
them with our identified values −3.28 and 0.45.

We may implement additional checks by cross-validation. However, cross-
validation is an important remedy against overfitting, it does not resolve the con-
ceptual issue of not knowing the real intercept and slope.

Replacing the Empirical Scenario by a Simulation

We will now replace the real scenario with a simulation. In particular, this means
that we replace some (or all) observed and unobserved variables with artificial coun-
terparts, carefully simulated according to assumptions about the real empirical sce-
nario. We will capture this in an operational simulation artifact.

We provide the simulation code in Listing 5.2 and as an online resource. Com-
ments help to distinguish between scalars, vectors, and matrices. All simulation
code in the thesis is written in standard R, not using advanced libraries.

Listing 5.2: The simulation artifact: R code that replaces data used by the original
method (X and Y) with artificial data.

1 # Kept observed variables.
2 N <− N # Number of commits.
3 X <− X # (vector) Keep the original variable X.
4

5 # Substituted unobserved variables.
6 alpha <− −3.0
7 beta <− 0.4
8 prob <− 1 / (1 + exp(−(alpha + beta ∗ X))) # (vector) Assumption of the logistic regression

model on the relation between X and Y.
9

10 # Substituted observed variable Y.
11 Y <− rbinom(N, size = 1, prob = prob) # (vector) Assumption on the output distribution.

The first three lines of Listing 5.2 denote that we keep the original variable X
and the number of observations N to stick close to the original data. However, this
is not necessary. We could also rely on fully artificial data.

Next, the code assigns the unobserved intercept and slope variable in terms of
alpha and beta. This is a crucial part of the simulation code, where the unobserved
variables that correspond to our results, get replaced by artificial variables. We
invent both values. We use slightly different values, compared to those that are
the result of the original study run, to point out the fictional character of this
replacement. We now use −3.0 for the intercept and 0.4 for the slope. We will test
alternatives in the next section more systematically.

All the remaining code (line 8 and 11) directly follows the basic assumptions of
a logistic regression on the relationship between X and Y (just run in reverse).
MSR/ESE studies (e.g. [KSA+13, FBF+20, MW00, YXF+20, JTH21, NZZ+10,
ZPZ07, ZN08, TMHI16]) make this assumption implicitly when using a logistic
regression model; authors are aware of this definition.

The code specifies the exact probability prob of facing a defect as a (logistic)

105

function of alpha, beta and X. This vector of exact probabilities is another interme-
diate unknown that can never be observed. In reality, we can just observe the final
defect classification Y . We simulate defects Y by a stochastic function producing
uncertainty, a binomial distribution (rbinom) with one trial and the probability set
to the vector prob. It is a simple random number generator2.

Running the Original Method on the Simulated Data

We can now process the artificial data (X and Y) as if it were the real data, using
the original method from Listing 5.1 with one important difference: We know alpha,
beta, and prob.

Correspondence of the Results The original method identifies the unobserved
variables (the results we like to interpret) in the simulated run to be alpha ≈ −2.97
and beta ≈ 0.39. We can objectively support the validity of the method under the
simulation because the results alpha and beta are very close to those values set in
the simulation (−3.0 and 0.4). However, there are two remaining questions on such
correspondence.

Uncertainty of the Results First, it is unclear why the method does not exactly
meet the artificial alpha and beta. It is because of the stochastic relationship used
between prob and Y (Listing 5.2, line 11). The method only observes Y , but the
corresponding prob is not known for sure; hence, also the identified values for alpha
and beta are uncertain.

If repeating the simulation, using different initial seeds for the used random
number generators, the identified alpha and beta distribute as depicted in Figure 5.1.
This shows that on average, the identified alpha and beta variables are excellent,
but not totally exact. This is a reason many studies report on confidence intervals
and p-values.

Parametrized Tests Second, it is not clear what happens if we use different
artificial values for alpha and beta. The simulation can examine this by going
through multiple combinations of both, checking the impact of the method on its
results.

The results for a grid of 30 × 30 combinations is shown in Figure 5.2 (left).
The plot illustrates the impact of a particular combination of our assumptions,
operationally given by the artificial alpha and beta, on the difference between the
identified and the artificial beta. Such a difference can be interpreted as an error
in the identification done by the method. Figure 5.2 (left) shows this as a scatter
plot. The assumptions in terms of artificial alpha and beta can be read from the two
axis, and the error is depicted by the red color of a dot. When alpha and beta are
both high or low, identification struggles, it produces a high error (red dots). On
the diagonal, e.g., when alpha is high and beta is low, errors are low (white dots).
We do not show the error in the identification of alpha, but a plot can be derived
in analogy.

2In R, random number generators are vertorized and start with a letter r followed by an abbre-
viation for the distribution family (we will see rbinom, rnorm and rpoisson).

106

Identified Intercepts (alpha)
F
re
qu
en
cy

-3.10 -3.05 -3.00 -2.95

0
5

10
15

Identified Slopes (beta)

F
re
qu
en
cy

0.39 0.40 0.41 0.42

0
2

4
6

8
10

12
14

Figure 5.1: Identified unobserved variables intercept (alpha) and slope (beta) by the
method in 100 repeated simulation runs.

The phenomenon is well-known. If counting the number of defects in the artificial
Y variable and relating it to this error, we see that the identification only struggles
on extremely high or low defect counts (see right of Figure 5.2).

We know this under the name class-imbalance [TTDM15] or in terms of in-
structions on events-per-variable (EPV) [PCK+96]. Our simulation does detailed
suggestions, i.e., that if we have more than approximately 400 defects in the data
set, the method should be safe from the threat of too low defect counts. In our real
data set, we have 5771 defects, so we can deny the plausibility of this simulated
scenario, and thereby also the impact on the error in results.

107

-10 -5 0 5 10

-1
.0

0.
0

0.
5

1.
0

alpha

be
ta

0 2 4 6 8 10

0.
0

0.
4

0.
8

number of defects (log)

er
ro

r

Figure 5.2: Dots are repeated simulation runs. Left: Artificial alpha and beta and
the error in the identification, depicted as red dots (red increases with error). Right:
The total sum of defects in the artificial variable Y (log scale) and the relation to
the error in the identification.

108

5.4 Evaluation
In this section, we present an evaluation by applying simulation-based testing to
existing studies in MSR/ESE.

5.4.1 Meta-Validation
To provide a validation on our part, we apply simulation-based testing to six real
scenarios that are studied in MSR and ESE. We show what benefit can be expected
by simulations as additional validation artifacts. We show that we can either i)
support validity, ii) threaten validity, or iii) show the invalidity of the used methods
and results by simulated scenarios.

Section Structure

The following six sections will provide this meta-validation of simulation-based test-
ing (Sec. 5.4.2-5.4.7). These sections follow the structure:

• Research Question: We instantiate our meta research questions for a par-
ticular empirical study. We discuss how we will answer the research questions
in the concrete case by a simulation artifact.

• Original Method: We describe the original method of a study (or of a type
of study) that may or may not have problems with validity.

• Simulated Scenarios: We describe how we replace the assumptions about
an empirical scenario, subject to the study, by one or more simulations of the
scenario. The simulation artifacts are provided online.

• Rating Results: We discuss the results provided by the original method
when applied to the simulated scenarios.

• Conclusions on Validity: We conclude on the validity of the original method
conditional on the plausibility of the simulations.

• Revision (Optional) We show how to improve the original method so that
it produces correct results for the simulated scenarios.

Summary

We give a short sketch of the main findings and argumentation patterns for
the cases examined in this meta-validation.

• Dependent Observation (Sec. 5.4.2, Invalidity): We show that a used
method computes results with incorrect confidence intervals in a simulated
scenario where observations are dependent. Especially in MSR, observations
are often sampled from the same repositories which may introduce dependency.
This is a plausible scenario, and thereby may invalidate parts of the original
study.

109

• Prediction or Causation (Sec. 5.4.3, Supports Validity): We show that
when using a logistic regression method, the results can also be interpreted
causally if the underlying simulated scenario is sufficiently basic. The simula-
tion supports the validity of the original study. We hint at limits and potential
improvements of the plausibility of the proposed simulation. We explain how
extending simulations may also lead to simulations that threaten claims on
causation.

• Control of Variables (Sec. 5.4.4, Invalidity): We show that under a plau-
sible simulation, a method to prove the relevance of a novel metric, produces
trivial and misleading results. This renders the method as invalid. We show
how to revise the method.

• Correlated Variables (Sec. 5.4.5, Invalidity): We show that under a
series of plausible simulations, a new method always fails to produce correct
results. No simulated scenario shows an improvement of the results. In some
scenarios, the quality of results even decreases. This renders the proposed
method as invalid.

• Distribution Types (Sec. 5.4.6, Supports Validity): We show that a
certain type of mismatch between method and simulated scenario does not
influence a certain interpretation of the results. The interpretation of the
original study is still valid. We support the validity.

• Experimental Research (Sec. 5.4.7, Supports Validity): We simulate a
random experiment and show the impact of some alternative methods on the
interpretation of results. We support the validity of such studies.

Acknowledgement

We want to acknowledge the original work of the authors in the studies, subject to
the following illustrations. All studies have been selected because of their originality.
However, we believe that this meta-validation of simulation-based testing is not
credible on unpublished examples. We need to continue on real studies.

5.4.2 Dependent Observation (Case 1)
After laying the foundations, we start with the first case for our meta-validation. We
examine a study by Alali et al. [AKM08]. The work examines the ‘typical commit’.

Research Question

The original paper examines a research question, simplified as follows:

• RQ∗: What is the typical commit in a software repository?

In this paper, we are interested in operationalized statements about the validity
of the way the study attempts to answer this research question. We instantiate our
meta research questions for the study accordingly:

110

• RQ∗1: What assumptions of this study on repositories, commits, and prop-
erties of the typical commit can be operationalized?

• RQ∗2: What is the impact of such assumptions on the result of the study
regarding the properties of the typical commit?

We believe that most results of Alali et al. are valid. However, the study runs into
a specific problem, that we believe, is characteristic for the analysis of repository
data. The results include statements on uncertainty, while the method ignores a
potential structure in the analyzed sample of commits.

We will provide simulation artifacts that operationalize these assumptions, and
then show that they invalidate confidence intervals for the results.

Original Method

The original method of the study mines the history of nine open-source software
systems. It reports on the number of lines, files, and hunks changed by commits.
Further, the correlation between the variables is described.

Examining the ‘typical commit’ indicates that the resulting statements are not
necessarily specific to the nine observed repositories. Statements may also hold for
other repositories, those that the authors had in mind, but did not examine due to
computational overhead. Such sampling is standard practice in MSR [CIC16].

A method needs to produce results with a notion of uncertainty because variables
identified using the nine repositories might not exactly correspond to values com-
puted including the unobserved repositories. A method can give such statements in
terms of confidence estimates.

The method of Alali et al. report on confidence, i.e., p-values for the correlation
between the variables. In the remainder, we will leverage instead the notion of
confidence intervals, since p-values are less intuitive for most readers. Problems
with p-values are the same and can be shown the same way.

We assume that the original method computes p-values according to standard
practice because the paper does not report on counteractions against dependent
observations. In our reproduction of the original method, we also stick to standard
practice3.

Simulated Scenario A

The data of [AKM08] is not available, so we simulate all the data of the empirical
scenario. We simplify the original research and examine the correlation between just
two variables X1 and X2.

Listing 5.3 shows simulated scenario A, which simulates two correlating variables
in a structured sampling process.

Listing 5.3: Simulating two correlating variables X1 and X2 for 100 repositories,
each with 100 commits.

1 X1all <− NULL # X1 collected over repositories.

3All our reproductions of other papers are fully available online to guarantee the reproduction
of this thesis.

111

2 X2all <− NULL # X2 collected over repositories.
3 N <− 100 # Number of repositories.
4

5 for (repo in 1:N) {
6 rho <− 0.2 # Rho is the same in each repository.
7 M <− 100 # Number of commits in each repository.
8 # Simulating X1 and X2 for a repository.
9 X1 <− rnorm(M, mean = 0, sd = 1)

10 X2 <− rnorm(M, mean = 0, sd = 1)
11 # Producing the correlation (rho).
12 sigma <− matrix(c(1, rho, rho, 1), 2, 2)
13 X <− cbind(X1, X2) %∗% chol(sigma)
14 # Collecting X1 and X2.
15 X1all <− c(X1all, X[, 1])
16 X2all <− c(X2all, X[, 2])
17 }

The code produces data for N=100 repositories, each with M=100 commits. Within
a repository (inside the loop), we simulated two variables X1 and X2 for M commits
following a normal distribution (rnorm). A correlation between X1 and X2 is
simulated using the Cholesky decomposition with rho = 0.2.

Finally, we simulate the random sampling step (see the online resources for the
complete code). We randomly decide on 91 repositories where we consider X1 and
X2 as unobserved variables, and 9 repositories where we consider X1 and X2 as
observed variables.

Simulated Scenario B

The assumption of dependent observations is added by a small modification to sim-
ulated scenario A.

Listing 5.4: Simulating a repository-specific variation in the correlation rho.
1 for (repo in 1:100) {
2 rho <− rnorm(n = 1, mean = 0.2, sd = 0.23) # A repository−specific variation in the

correlation.
3 # ...
4 }

In simulated scenario B, the correlation rho is sightly different for each repository,
but on average 0.2, since we draw it from a normal distribution with mean 0.2. The
standard deviation (sd) decides on the severity of the threat, we set it to 0.23, but
other configurations can be explored in the same fashion as done in Sec. 5.3.2. Some
values that cannot serve as a correlation rho need to be filtered out. The rest of the
simulated scenario is the same as in the previous simulated scenario A.

Rating Results

The original method of Alali et al. [AKM08], used to report on the uncertainty of
the results on the typical correlation, works under simulated scenario A, but not
under simulated scenario B. Repeating ten simulation runs suffice to show this.

We compare the correlation (rho) computed on all 100 repositories, including the
unobserved, with the confidence interval identified according to the original method

112

0.0 0.1 0.2 0.3 0.4

2
4

6
8

10

Independent Observations (Sub. A)

Confidence Interval vs. Sim. rho

S
im

ul
at

io
n

R
un

0.0 0.1 0.2 0.3 0.4

2
4

6
8

10

Dependent Observations (Sub. B)

Confidence Interval vs. Sim. rho

S
im

ul
at

io
n

R
un

Figure 5.3: Ten simulation runs showing confidence intervals for rho, identified
based on 9 repositories (gray line), and rho computed on all 100 repositories (black
dot). We distinguish between independent (left) and dependent observations (right)
produced according to simulated scenarios A and B.

on the 9 observed repositories. Since we report on confidence intervals of 95%, 0.5
out of 10 simulation runs are allowed to fail. When having a look at Figure 5.3,
we see that the number of failing confidence intervals is different in both simulated
scenarios:

• Under simulated scenario A (left), almost all confidence intervals include the
correct correlation.

• Under simulated scenario B (right), we see that in 4 out of 10 simulation runs,
the method fails to include the correct correlation in the confidence interval.
The small variation regarding repositories has a big impact for statements
on uncertainty. The chance that our confidence interval includes the correct
correlation, is almost comparable to flipping a coin.

Conclusions on Validity

We have operationally defined the assumption of dependency in observations, and
then we have shown that it may invalidate the results produced by the original
method regarding uncertainty.

Indicators for the plausibility of simulated scenario B, compared to simulated
scenario A, can be found in every analysis that proves that repositories are different
(e.g., see the highly different slopes in regression models computed on different repos-
itories in [FBF+20, KSA+13]). We may even check such assumption on dependency
on the data (which we don’t have in this case).

The impact of our assumptions about the number of repositories N, and the
standard deviation sd can be explored by a parameterization of the simulation.
This may uncover that more repositories and lower standard deviations decrease
the error in computed confidence intervals.

113

Revision

General advice on improving the method can be guided by informing the model
of the structured sampling process. In the simulation above, we simplified. We
recommend casting the problem as a linear model, where slopes correspond to the
correlation we like to examine. The linear model can be evolved to a hierarchical
linear model, where the repository-specific impact on the correlation can be identified
as a random effect. The random effect may follow a normal distribution and the
standard deviation is thereby identified, too.

We recommend testing such models in simulations. We recommend work on
hierarchical/multilevel/mixed-effect models for guidance [GH06].

5.4.3 Prediction or Causation (Case 2)
The next case in our meta-validation examines an experience report by Tan-
tithamthavorn et al. in [TH18]. The report discusses challenges and actionable
guidelines when using methods for defect modelling.

We selected this work because of its progressive understanding of defect mod-
eling to be more than just defect prediction. We expect this report to have a big
impact on our community. However, this work fears to name one actual challenge,
which is examining causation. We will show how to sharpen this understanding by
simulations.

Research Question

The original paper examines a research question, simplified as follows:

• RQ∗: What are the challenges and actionable guidelines when using methods
from defect modeling?

We are interested in operationalized statements that complement such guidelines.
We instantiate our meta research questions for the study accordingly:

• RQ∗1: What assumptions of this study on causes for defects in commits can
be operationalized?

• RQ∗2: What is the impact of such assumptions on the result of the study
when talking about causation?

We will accomplish the original study by simulation artifacts that support the
validity of claims on causation. This sharpens the guidelines of Tantithamthavorn
et al.

Original Method

Practitioners may use an analytical defect model not just to predict defects, but
also to answer questions, like ‘whether complex code increases project risk’ (copy
from [TH18]). Project risk refers to defects.

Within this setting, the term increases can be understood in different ways, and
the original study is unclear on this:

114

• Do we wish to compare or relate complex code with project risk? If so, we can
use this insight to (mentally) predict one variable using the other.

• Do we wish to know if modifying the complexity of code causes the project
risk to change? This insight is efficient to guide our decisions. It corresponds
to what most people have in mind when hearing the statement above.

Tantithamthavorn et al. and many other researches in MSR/ESE fear to claim
causation (second statement). This is not surprising. Causation is difficult to ex-
amine, definite claims are impossible, even in randomized experiments.

On the other hand, most of the operational decisions should be driven by causal
relationships. Their examination is the crucial point of modern empirical research
(see the preface of [IR15]). Even more dramatically, statements on the relation
between complex code and project risk are intrinsically hard to understand if not
aiming at causation. Understanding may get harder if a defect model grows, without
having causation in mind, including more variables.

Simulated scenarios are a useful extension to the original paper, since they can
make clear when claims on causation are valid.

Simulated Scenario C

Following the definition of Imbens et al. [IR15] (page 6), a claim on causation can
unambiguously be given by comparing the potential outcomes of different treat-
ments in exactly the same situation. Reality does not allow observing more than
one potential outcome in the same situation, but a simulation-based test allows
synthesizing both.

Listing 5.5: Simulating causation.
1 X <− rnorm(N) # Synthetic variable X.
2 # Producing two potential probabilities.
3 prob_pot1 <− 1 / (1 + exp(−(alpha + beta ∗ X)))
4 prob_pot2 <− 1 / (1 + exp(−(alpha + beta ∗ (X + 1))))
5 # Corresponding potential defects.
6 Y_pot1 <− rbinom(N, size = 1, prob = prob_pot1)
7 Y_pot2 <− rbinom(N, size = 1, prob = prob_pot2)

Listing 5.5 implements such simulated scenario, using ‘treatment’ X, but also
continuing with the modified X +1, in exactly the same situation. The relationships
are the same as in the basics on logistic regression provided in Sec. 5.3.2. In the sim-
ulation, we get two potential outcomes. According to the definition, the difference
between Ypot1 and Ypot2 reflects the causal relationship between X and Y .

Rating Results

According to our previous strategy of hiding artificial but unobserved variables from
the original method, we run the original method just using one of the potential
outcomes, keeping the other hidden. However, the simulated scenario shows that
we can identify the causal relationship by the logistic regression method.

Multiple runs of the simulation, with different artificial values for beta, show
that there is a clear correspondence between the identified beta using only the ob-

115

-0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

-1
.0

-0
.5

0.
0

0.
5

1.
0

Difference Potential Outcomes

Id
en

tif
ie

d
B

et
a

by
 L

og
is

tic
 r

eg
re

ss
io

n

Figure 5.4: Identifying causation under strong assumptions (simulated scenario C).

served variables, and the difference between both potential outcomes also including
unobserved variables (see Figure 5.4).

Conclusions on Validity

We have provided operational assumptions about a scenario on causes for defects,
and did show the impact of such a scenario for claims on causation in the context
of the method examined in the original study.

Our simulation artifacts provide a clean notion of assumptions and the implica-
tions on the validity of claims on causation. Our simulation artifacts can be used
to sharpen the guide by Tantithamthavorn et al., being more precise on what the
interpretation of defect models is.

However, simulated scenario C may not be considered as the most plausible
scenario. In fact, it is very limited. It assumes the effect of X (beta) to be stable
across all our observations; no dependency between observations; X is just a random
variable, not influenced by anything else. The simulation may be evolved based on
these insights, and the results of methods can be checked if they are valid claims on
causation. This may render some threats to claims on causation that we prefer to
make explicit.

5.4.4 Control of Variables (Case 3)
In [TBP+17], the authors propose a new metric to reflect a developer’s ability to
correctly understand the code.

116

Research Question

The original paper examines a research question, simplified as follows:

• RQ∗: What is a metric that reflects a developer’s ability to correctly under-
stand code?

We are interested in operationalized statements about the validity of the method
used to prove the relevance of the new metric. We instantiate our meta research
questions for the study accordingly:

• RQ∗1: What assumptions of this study on a new metric regarding the devel-
oper’s ability to correctly understand code can be operationalized?

• RQ∗2: What is the impact of such assumptions on the result of the study,
which is aimed at correctly proving relevance?

We show simulations for which the used method always proves relevance. The
simulation uncovers that the used method is incapable of producing negative results.
This renders the method as invalid.

Original Method

The original method follows the standard in defect modeling as described in
Sec. 5.3.2. It relates the novel experience metric E to defects Y . Defects are used
as a proxy for a developer’s ability to correctly understand the code. The method is
slightly adapted because the authors show the relation using a basic statistic test,
rather than a logistic regression. The proof of the existence or non-existence of such
a relationship can be considered as the result of the method.

The novel experience metric is defined using the cosine similarity between files
touched by a commit, and the lexical background of the contributing developer
(back). Defects may increase, as similarity decreases. This lexical background is
composed out of all modifications done by the developer in the past. We refer to
the original work for details on how to compute the exact metric.

Our first intuition reading the original paper was that the technical computation
using the cosine may accidentally influence the results of the method. We expected
a potential correlation between the cosine and the file size.

This is a serious threat if we aim to interpret the fact that it is experience,
and not the file size, that influences defects. We know from works in MSR/ESE,
e.g., [Moc10, FBF+20, KSA+13], and from Sec. 5.3.2, that the file size (or lines-
of-code) strongly relates to defects. Such confounding effect of the new experience
metric over variable files size would not be surprising and not much of interest. The
new metric would just be an overcomplicated proxy for file size.

Simulated Scenario D

This means that the method used in the study needs to protect against such false
claims on the existence of a relationship. We can write a simulation-based test to
check such a protection. This scenario simulates a part of the metric computation
to produce variable X and E using the cosine.

117

Listing 5.6: Simulating the computation of experience.
1 N <− 8000
2 X <− NULL
3 E <− NULL
4 for(n in 1:N){
5 nTerms <− 200
6 # Generate two random term vectors.
7 back <− rpois(n = nTerms, lambda = 5.0)
8 file <− rpois(n = nTerms, lambda = 0.1)
9 # Compute the similarity defining experience.

10 E <− c(E, cosine(back, file))
11 # Size of the file.
12 X <− c(X, log(sum(file) + 1))
13 }
14

15 alpha <− −3.0
16 beta <− 0.4
17 prob <− 1 / (1 + exp(−(alpha + beta ∗ X)))
18

19 # Substituted observed variable Y.
20 Y <− rbinom(N, size = 1, prob = prob)

Listing 5.6 produces N artificial file and background pairs using vectors sampled
from a Poisson distribution (stochastic function). The number of terms (nTerms)
in the VSM is set to 200. The Poisson distribution works well for simulating term
vectors because it only produces discrete positive vector entries. The average term
frequency is set by the lambda parameters. The code collects the new experience
metric E defined by the cosine, but also the corresponding file size X as the stated-
log transformed sum of its terms (as often assumed in defect modeling). Alternatives
can easily be explored using the online material. According to our knowledge, they
do not influence our conclusions under simulated scenario D.

Finally, the code simulates the probability prob and the defects Y , as we have
done in the previous sections. In this simulated scenario, we assume that there is
no effect of E. This is clear from the code because E is not input to the function
producing prob.

Rating Results

The original method does not manage to handle the simulated scenario D correctly.
The Mann-Whitney test used in the original study rejects the null-hypothesis (which
it should not do according to our assumptions of the simulation) in approximately
45 out of 100 simulation runs at a confidence level of 95%. That means that in 45
runs, it incorrectly detects the existence of a relationship. Doing it in 5 runs would
correspond to the confidence level. Hence, the result is invalid.

The reason gets clear when looking at the raw data in Figure 5.5, showing a
strong positive correlation between X (file size) and E (novel experience metric).
The very simplistic Mann-Whitney test accidentally attributes the effect of X (file
size) to E (novel experience metric). As expected, it is caused by the technical
computation of the cosine.

118

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

File Size (X)

E
xp

er
ie

nc
e

(E
)

Figure 5.5: Relation between file size X and experience E computed by the cosine
in a single simulation run.

Conclusions on Validity

The previous simulated scenario operationally shows how a method is technically
not suited to produce valid results. We show this in an important case for the
researchers, proving their new contribution to be wrong.

Simulated Scenario D is plausible enough in that we can demand a method
to resolve it. Claiming that a developer-specific factor relates to defects, while it
is essentially just the file size, does not provide a novel insight. This holds for
examining causation as well as for prediction.

Revision

Indeed, there are ways to improve the original method. We appreciate that the
original data is provided by the authors so that we can rearrange the statistical
checks.

We convert the original test (Mann-Whitney) into a logistic regression model,
which allows the control of variables. The control for the variable file size is the
mandatory step that resolved the threat to a method. It blocks the confounding
effect of the new experience metric over file size, in that we get the direct effect of
experience that we are interested in. Such a model indeed succeeds in not detecting
an effect on the artificial data produced by simulated scenario D. See the online
resources extending the simulation for this insight.

We now apply the method (with and without control) to the real data and revise
the original study. The relevant information on the logistic regression models can
be found in Table 5.1. For further details, we refer to the reproduction code.

119

Table 5.1: A model with and without control applied to the real data, showing the
effect strength, the usual significance encoding, and AIC.

Variables Original Control
Experience 1.42∗∗∗ 0.12
File Size 0.01∗∗∗

AIC 19968 18282

Experience

File size

File size + Experience

2700 2750 2800 2850 2900

Sum of Square Errors (SSE)

Figure 5.6: The performance impact of the new experience metric evaluated in cross-
validation on the original data.

• We start with a reformulation of the original statistic test, describing the
effect of experience on defects as a basic logistic regression. This model is
called Original and reports that, comparable to the original work, the effect
of the novel experience on defects is positive and highly significant.

• The second model, called Control, adds the file size as a control metric. The
effect of the experience drops by a factor of ten (from 1.42 to 0.12). The effect
stops being significant. This conforms to our initial intuition that the study
just proves a confounding effect over file size and not the importance of a new
metric.

Even when evaluating the new metric in prediction, adding it next to file size,
as a new predictor, does not lead to an improvement. Cross-validation results for
prediction on the original data can be found in Figure 5.6.

A simulation would have discovered this problem with the computation of the
cosine and the invalid method early.

5.4.5 Correlated Variables (Case 4)
The next study that we examine is by Jiarpakdee et al. [JTH21]. The study aims
at showing a general improvement to methods interpreting defect models with cor-
related variables. The authors motivate the practice of removing variables based on
correlation or VIF thresholds (VIF [CCWA13]).

120

Research Question

The original paper examines a research question, simplified as follows:

• RQ∗: Can we improve the results of a method for defect modeling by a
threshold-based removal of correlated variables?

We are interested in operationalized statements about the validity of this im-
provement of the method. We instantiate our meta research questions for the study
accordingly:

• RQ∗1: What assumptions of this study on the typical interpretations of results
and strong correlation between variables can be operationalized?

• RQ∗2: What is the impact of such assumptions on the result of the study,
which applies the new proposed variation of the method?

We will show that the proposed improvement to the method does not improve
the results in a series of plausible simulated scenarios. In some scenarios, it even
causes additional problems. We are not aware of a simulation that supports the
validity in terms of showing that the improvement to the method provides better
results. The new method can be considered as invalid.

Original Method

In a nutshell, the original study claims that model interpretation methods, that
are run on data sets where correlated variables have been removed by thresholds,
provide better results. Strongly simplified, Jiarpakdee et al. support this claim by
showing that both methods provide different results. We refer to the original paper
for the details on how the authors assume this argumentation to work.

Simulated Scenario E

We will simulate a series of scenarios with strong correlation, and check if a method
that removes correlated variables leads to better results.

In the following, we focus on a fully artificial data set with the variables X, Z,
W and the resulting defects Y . We will simulate a causal pattern where W is a
confounding variable for the relation between X and Y , while Z and W may get
strongly correlated depending on a simulation parameter.

Listing 5.7: Simulating relationships, producing correlated variables and defects.
1 # Alternative standard deviation of Z produces different correlation strength between Z and W.
2 for (sdZ in seq(0, 1, length.out = 40)) {
3 # Stochastic relationships between W, X and Z.
4 W <− rnorm(N)
5 X <− rnorm(N, mean = −W, sd = 1)
6 Z <− rnorm(N, mean = W, sd = sdZ)
7

8 prob <− 1 / (1 + exp(−(W + X)))
9 Y <− rbinom(N, size = 1, prob = prob)

10 # ...

121

In this simulation, no variable influences W . Variable W influences X and Z. Both
variables X and Z are given as stochastic functions following a normal distribution,
with the mean set to be W or −W . Further, the stochastic function simulating Z is
configured using different values for the standard deviation. This means that with
decreasing standard deviation sdZ, the variable Z becomes a perfect copy of W .

The final defects Y are produced as a stochastic function of X and W . The
variable Z is not related to defects.

Rating Results

We want to cover two ‘interpretations’: First, we are interested in the effect of Z
and W . Both effects are unobserved variables that we set in the simulation. When
running the logistic regression including all variables, the identified effect of Z and
W is correct until the correlation reaches a threshold of about 0.9 (see Figure 5.7).

The improved method of Jiarpakdee et al. should resolve this. We expect it to
drop Z, since the variable Z is not related to defects according to the simulation.
However, this insight cannot be made by using the correlation or VIF values, since
both are symmetric. A selection would be comparable to flipping a coin.

In a second ‘interpretation’, we are interested in the effect of X. We show
the identified effect of X in models, including variables Z, W , none and both in
Figure 5.8. The model not including W and Z fails as it runs into the problem with
confounding. The model, including all variables, succeeds like the model including
W . The model using Z fails up to the point that the correlation gets so high in that
Z can be used as a replacement for W .

We see that neither dropping W nor Z makes sense, as the model including both
does a perfect identification of the effect of X. If we decide between W or Z, we
risk to drop the wrong variable.

Conclusions on Validity

The previous simulated scenario operationally shows how a proposed improvement
to a method does not improve results.

The simulated scenarios that we show include a very plausible causal pattern.
We can expect a study that recommends dropping correlated variables, with the
aim of improving the interpretation of defect models, to exactly resolve such issues.
We do not expect the results of a method to get worse.

We are not aware of any simulated scenario where the recommended practice
brings real benefits for results. Even for prediction, dropping correlated variables
just decreases performance (corresponding simulations are straightforward to imple-
ment). This conforms to recent statistic guidelines (e.g., see [McE20], page 169).

5.4.6 Distribution Types (Case 5)
The next example will focus on one of our previous works that is presented
in [SHL+19]. We will illustrate the implications of choosing the wrong output dis-
tribution for a regression model. It is a mistake that we did in [SHL+19].

122

0.75 0.80 0.85 0.90 0.95 1.00

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

Correlation

Id
en

tif
ie

d
E

ffe
ct

 W
 o

r
Z

Identified effect of W (dot)

Identified effect of Z (cross)

Figure 5.7: The identified effect of W and Z (which should be 1.0 and 0.0 respec-
tively) under different correlation.

123

0.75 0.80 0.85 0.90 0.95 1.00

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Correlation

Id
en

tif
ie

d
E

ffe
ct

 X

Model using X

Model using X, Z

Models using X, W (and Z)

Figure 5.8: Models in simulation runs and the identified effect of X (which should
be 1.0) under different correlation and different control variables.

124

Research Question

The original paper examines a research question, simplified as follows:

• RQ∗: What are the characteristic differences of repositories using SPARQL
and Cypher queries?

We are interested in operationalized statements about the validity of resulting
statements. We instantiate our meta research questions for the study accordingly:

• RQ∗1: What assumptions of this study on the differences between repositories
using SPARQL and Cypher can be operationalized?

• RQ∗2: What is the impact of such assumptions on the result of the study,
regarding statements about the difference?

In this case, we show how parts of the results of an obviously wrong method can
still be valid under plausible assumptions.

Original Method

We will only focus on the parts of the method that run a regression model in this
section. Other elements of the method should also be reviewed within the framework
of the new strategy.

Originally, we used the regression model to better understand the decision of
a software project between two alternative graph query languages, SPARQL, and
Cypher. The model tries to associate the decision between the two languages with
different properties of a project, i.e., with its age (created_days_ago), the popu-
larity (stargazer_count), the number of active developers working on graph queries
(active_developers), and the active files that include graph queries (active_files).
In essence, the study results suggest that SPARQL is preferred by projects that are
older, more popular, more active, and that have more files including graph queries.

In this section, we particularly focus on the output distribution of such a model,
which needs to reflect the decision between SPARQL and Cypher. It thereby con-
forms to the binomial distribution with a single trial, where one language (e.g.,
SPARQL) is represented by 1 and the other by 0. The model thereby aligns with
our previous discussion of defects.

Table 5.2: Parameters identified by different models that describe the decision for
SPARQL: The table shows the difference in identified parameters when using a linear
or a logistic regression model (normal vs. binomial output distribution).

Output Distribution Type Normal Binomial Normal Binomial
Variables Parameters Scaled Parameters
created_days_ago 0.040 0.187 0.935 0.860
stargazers_count 0.017 0.086 0.392 0.393
active_developers 0.117 0.498 2.731 2.287
active_files 0.060 0.515 1.405 2.365

125

Due to a lack of experience with such modeling practice at the time, we decided
to go for what, we believed, was the more established method. We used the wrong
output distribution. We used a linear regression and thereby a normally distributed
output. This is clearly a mistake. We provide the results of our original method on
the original data, and a method using the improved binomial output distribution
type, in Table 5.2.

The middle part of the table illustrates our mistake. We can see that the identi-
fied parameters differ for a model with normal and binomial output. For instance,
the variable created_days_ago has an effect of 0.040 for a normally distributed out-
put, while for a binomial output, we have an effect of 0.187.

However, our interpretation of the parameters, i.e., if a variable has a positive
or negative effect on the decision for SPARQL, does not change. For instance,
older projects with a higher variable created_days_ago still seem to prefer SPARQL.
This consistent interpretation gets more obvious by scaling the identified parameters
of both models, dividing them by their standard deviation. On the right side of
Table 5.2, showing the scaled parameters, we notice that the results of the different
models are very close to each other. Hence, if ignoring the scale, our interpretation
of them still appears to be almost correct.

Simulated Scenario F

We will examine this in detail, to show that it is the regular behavior, if making this
mistake, and not a fortunate coincidence. We start with producing a fully artificial
version of the problem.

We use this showcase as an opportunity to generalize the simulation for a logistic
regression, that we have developed so far, to a version with a flexible number of
variables M. This simulation applies to defect modeling the same way.

Listing 5.8: Simulating M variables for N repositories.
1 N <− 120 # Number of repositories.
2 M <− 4 # Number of variables to examine.
3

4 Xs <− matrix(rnorm(N ∗ M), nrow = N, ncol = M) # Producing a N ∗ M matrix of random
normally distributed values.

The previous code produces a matrix of artificial normally distributed variables.
It contains N rows for the repositories to examine, and M columns that store M vari-
ables for each repository. By adjusting N and M, we can change the characteristics
of this simulation.

Next, we need to produce the binary output that reflects the decision for one of
the two query languages, based on the variables in matrix Xs. In essence, this is the
same as previously presented for defects in Listing 5.2. However, we need to change
this code to operate on a matrix with a flexible number of variables.

Listing 5.9: Simulating the decision for M variables and N repositories.
1 # Producing a vector of M + 1 random betas, including one variable for a random intercept.
2 betas <− rnorm(M + 1) # Random betas.
3

4 # Adding a column of ‘ones’ at the left of the matrix, later multiplied with the first beta and
serves as intercept.

126

5 Xs <− cbind(1, Xs)
6

7 # Matrix multiplication (’%∗%’) of Xs and betas, then applying the logistic function.
8 prob <− 1 / (1 + exp(−(Xs %∗% betas))) # The probability deciding for one of the two

languages.
9

10 # Producing a decision (same as in the previous simulations).
11 Y <− rbinom(N, size = 1, prob = prob)

Instead of setting alpha and beta as individual variables in the code (as done in
Listing 5.2), we generalize and use a vector called betas (line 2). This vector includes
the intercept alpha as its first entry. The vector is chosen randomly, since we do not
care about the particular effects of variables in the simulation.

As a convenient way to cope with the intercept alpha, which is somehow special
in not being multiplied with a corresponding variable, the matrix Xs is extended by
a column of ‘ones’ on the left (line 5). The matrix multiplication (written %∗%, line
8) then multiplies each variable (including the ones) with the corresponding betas
(including the intercept), forms the sum, and thereby produces what is finally feed
into the logistic function.

Rating Results

We can now examine the correspondence of betas identified by models using a bi-
nomial and the wrong normal output distribution. Furthermore, we can do this on
simulated problems with a flexible number of variables and repositories. We will
limit us to M and N as set in the previous code. The parameters can be explored
systematically using the online resources.

In Figure 5.9, we show six simulation runs that apply the wrong and the correct
model. In each gray block, we show a single simulation run, depicting the simulated
betas excluding the intercept (×), and the counterparts identified by the logistic (•)
and linear regression (◦). Simulated and identified variables are scaled to have a
standard deviation of 1.0 to make them comparable.

We see that simulated betas (×) are typically different from the identified betas
(• and ◦). This is not a surprise and reflects the discussion of uncertainty (see
Sec. 5.3.2). However, we also notice that the identified betas by both models (• and
◦) are close to each other in the six runs, although one of the two models uses a
wrong output distribution that does not correspond to the simulation.

Conclusions on Validity

In essence, this shows that we can trust the identified betas, and interpret them,
if ignoring their scale. The distribution type of the output is not relevant for this
particular statement that we did in our original work. This is an interesting insight
as is shows how methods behave if not exactly mirroring the assumptions of the
simulation.

However, we want to emphasize that other properties of the wrong model will
indeed be wrong. For instance, estimates of uncertainty for the betas will be wrong.
We can extend the simulation to show this.

127

-3
-2

-1
0

1
2

3

M Variables in 6 Simulation Runs

Id
en

tif
ie

d
an

d
S

im
ul

at
ed

 B
et

as
 (

S
ca

le
d)

Sim. 1 Sim. 2 Sim. 3 Sim. 4 Sim. 5 Sim. 6

Identified using a Binomial Out. Dist.
Identified using a Normal Out. Dist.
Simulated

Figure 5.9: Running simulations to explore the difference between logistic and linear
regression for the identification of betas.

The insights that we presented here conform to general statistic litera-
ture [CCWA13] (page 483). Extracting this cookbook instruction from literature
and transferring it to our MSE/ESE cases, when needed, is not easy. We produced
the same insights by a simulation-based test here.

5.4.7 Experimental Research (Case 6)
For the last example, we will switch to an experimental method, as an alternative
to the analysis of existing data observed from repositories. Experimenting provides
major benefits, in particular, in the examination of causal relationships [SCC02].
This is because some assumptions on our scenario can be fixed by the experiment’s
design. Works on software engineering and ESE research relies on this too [MB20,
JLY+19, TLPH95, SHH+05, AC14, AS05, ADGC14, MKPR11, JSD+20, SKP+20].

Research Question

We ask a simplified research question that may be part of many experimental studies
in software engineering. This case does not correspond to a specific study but unifies
aspects of the studies listed above. We ask a research question, simplified as follows:

• RQ∗: Does our tool improve software development?

We are interested in operationalized statements about the validity of the experi-
mental results. We instantiate our meta research question for the study accordingly:

128

• RQ∗1: What assumptions of the study on the design of an experiment for
testing a tool can be operationalized?

• RQ∗2: What is the impact of such assumptions on the result of the study,
regarding the improvement of software development by the tool?

In this section, will show two apects on validity:

• We emphasize the strength of experimental research in ESE by operationalized
assumptions on the study design. In experimental research, some assumptions
are plausible by design, which is an interesting difference to observational
studies.

• We show the importance of methods delivering confidence estimates for the
interpretation of results, and basic insights of a power analysis.

We believe that even such basic discussion is important because experiments
are widespread (see instances like [AC14, AS05, ADGC14, MKPR11, JSD+20,
SKP+20]). However, they are also run by researchers that encounter this kind
of practice for the first time. The simulation of an experiment can help to raise
a researcher’s confidence in a correctly applied method and corresponding statistic
devices, upfront to the actual execution of the experiment.

Original Method

We stick to a basic experimental design to prove the benefit of a new tool. The
method that we follow can be considered as a simplified version of instances found
in related work, e.g., examining the effect of artifact formats [AC14], the role of
use cases [AS05], unit testing techniques [ADGC14], performance evaluation of
software architectures [MKPR11], textual vs. graphical software design descrip-
tions [JSD+20], or run-time configuration frameworks [SKP+20].

We are doing a randomized experiment with 20 subjects. We start with the
selection of the 20 subjects. Ideally, the subjects conducting our experiment are
representative of a population. What this means is hard to formalize, and best
described by the process on how the subjects are selected. We will ignore aspects of
sampling.

The experimenters then randomly assign each subject to the treatment or control
group. A subject may use our new tool as treatment, or an established (or no) tool
as control. We measure the outcome of the experiment in terms of the time each
subject needs. Depending on the group, this may be with or without the new tool.
Finally, we compute the difference in time, needed by subjects in the treatment and
control group.

Simulated Scenario H

In the following simulation, we simulate the experiment producing an artificial ver-
sion, where our new tool improves how a subject handles a task. The time needed
is reduced by four minutes.

129

We will hard-code relevant parameters, like the number of subjects (20), the
effect of the tool (- 4 minutes), or the severity of difference in the subject’s pre-
conditions (given by a standard deviation of 5 minutes). We recommend changing
these parameters and exploring the implications based on the online material to get
a better understanding of the impact on results.

Listing 5.10: Simulating a randomized experiment.
1 N <− 20 # Number of subjects.
2 S <− rnorm(N, mean = 60, sd = 5) # Unobserved preconditions of subjects.
3

4 # Randomly assigning treatment and control.
5 G <− sample(c("treatment", "control"), N, replace = T)
6

7 # The effect of our treatment.
8 X <− ifelse(G == "treatment", −4, 0)
9

10 # Composing the time that a subject actually needs.
11 Y <− S + X

In a first step, the code decides on the number of subjects N (line 1). We
simulate the preconditions of subjects as the unobserved variable S, i.e., the time a
subject would need for the task ignoring tool support. We use a stochastic function
following a normal distribution with a mean of 60 minutes and a standard deviation
of 5 minutes (line 2). We thereby have artificial subjects as unobserved preconditions
S.

Following the standard method of randomized experiments, we now randomly
assign our subjects to treatment and control group. We use the stochastic function
sample to do such random assignment to treatment or control (line 5). We store
it as observed variable G. We then simulate the effect of our new tool X for the
assignments, as a function of G, using a basic ifelse (line 8). We make our treatment
(new tool) decrease the time needed by exactly four minutes.

Here we face an important difference to our previous definitions of X, e.g., in
Sec. 5.4.3, since we can assure by the design of the experiment, that G, and thereby
also X, is independent of anything else.

Finally, we simulate running the experiment, producing the time Y as the sum
of X and S (line 11). The time is decreased by our treatment but still influenced by
each subject’s unobserved precondition.

Rating Results

Obviously, we should recognize that the experiment is a success by just looking at
the difference between treatment and control group’s average time needed for the
task. Our simulation clearly defines that the treatment (the tool) decreases the time
by four minutes.

However, the simulated random preconditions of subjects will complicate showing
the success of our tool. We can illustrate the invalidity of an over-simplistic method
that only interprets the difference between treatment and control group, by repeating
the simulated experiment many times. We record plain difference between treatment
and control (see online resources) and report on it in the histogram in Figure 5.10.

Fortunately, most of the simulated experiments suggest that our new tool is

130

Difference Between Means of Treatment and Control Group

F
re

qu
en

cy

-10 -5 0 5

Figure 5.10: Repeating the simulated experiment and interpreting the plain differ-
ence between treatment and control group.

indeed a success. Often, we almost exactly meet the −4 minutes. However, there
are also cases where we run into simulated experiments that suggest that the new
tool slows down the task. We know that this is not the case, since the simulation is
fully transparent.

The reason behind these cases are unlucky assignments of subjects to treatment
and control, where the majority of the subjects with good preconditions concen-
trate on the control group. This is something that happens. There is no way to
resolve this problem, without a better observation of the preconditions (which is
often impossible).

Revision

We will now show the conceptual remedy, that resolves this problem by reasoning
about the uncertainty associated with the preconditions of the subjects. It is the
typical device of a t-test or confidence interval, that almost all studies doing exper-
iments are aware of. We again focus on confidence intervals, which we believe are
more intuitive for most readers.

Instead of interpreting the plain difference that we find between treatment and
control group, we now prefer to interpret a confidence interval around this difference.
We illustrate this in Figure 5.11 in the same way as we have done it previously in
Sec. 5.4.2. The confidence intervals for 10 simulation runs uncover two important
insights:

• First, we resolve the threat of accidentally claiming a wrong effect of our
tool. In all simulation runs, we see that the confidence interval includes the
simulated effect of our tool −4. When running the actual experiment, we
can thereby be sure that that our statement, which is now less accurate by
including a notion of uncertainty, is valid in claiming the success of our tool
under the simulated assumptions.

131

-15 -10 -5 0 5

0
2

4
6

8
10

Confidence Interval vs. Sim. Effect of the Treatment (i.e., -4)

S
im

ul
at

io
n

R
un

Figure 5.11: Showing 10 simulated experiments and the corresponding uncertainty
for the difference between treatment and control. The black dot reflects the simu-
lated difference, the gray dot the difference that we find, and the gray bar the 95%
confidence interval around the difference.

• However, we spotted a new problem. Most of our confidence intervals (8 out
of 10) suggest that we cannot be sure that our tool has an influence at all
because the 0 is included in the intervals. Some people say that we missed
rejecting the null hypothesis. This operationalizes invalidity of statements
about the ‘absence of an improvement by our new tool’. The simulation states
that the effect is there. If we claim absence because of a confidence interval
that included the 0, we are wrong. This may happen for about 80% of the
runs, but we can decrease the chance. For instance, by increasing the number
of subjects, the confidence intervals will get more narrow and the 80% will
decrease. We do this until we think the chance is small enough to be accepted.
If we now still face a confidence interval including the 0, the effect of our tool
may be truly negligible. We face an instance of a power analysis based on a
simulation.

Conclusions on Validity

The important property of such experiment is that the independence of the assign-
ment to treatment and control can be assured by the design of the experiment. We
operationalize this assumption in our simulation.

As the consequence, this assures the independence of the effect of the tool used
in the experiment (the effect that we are actually interested in). We can continue
to reason about causation, as sketched in Sec. 5.4.3, while having the most relevant
assumption in the simulation plausibly being assured by our design. There is no
need to control for variables, as required in Sec. 5.4.4.

Furthermore, this example again revisits aspects of uncertainty, first presented
in Sec. 5.3.2, and refined in the context of dependent observations in Sec. 5.4.2.
However, having dependent observations in experimenting is not completely im-

132

plausible. Subjects might influence each other when running the experiment in the
same room, or we might design the experiment so that we measure the same subject
executing multiple tasks. Such dependent observations require advanced methods,
e.g., subject-item designs, examined in simulations in [BDB08].

We also distinguished between claiming the existence and non-existence of ef-
fects. We show a basic version of a power analysis by a simulation. We recommend
exploring the online material, adjusting N, the effect of the tool, or the severity of
difference in the subject’s preconditions given by the standard deviation for simulat-
ing S, to examine the impact for resulting claims on existence and non-existence.

133

Chapter 6

Conclusion

This paper describes and validates a new strategy to validate methods and results
of empirical research studies. While reproducibility and replicability are somewhat
understood, standardized and operational ways to define and communicate such
validity of empirical research studies are less understood.

Our strategy operationalizes important assumptions, that are typically informal
in papers, by simulations. We use the simulations to show how the assumptions
impact the results of a study. We call the strategy simulation-based testing because
of the analogy between writing simulation artifacts and test cases.

In a (meta) validation, we show how simulation-based testing instantiates re-
search questions on the validity of studies in six real scenarios. We show that we
can either support validity, threaten validity, or invalidate studies.

We encourage researchers to accompany submissions of research works with simu-
lation artifacts, thereby proving the status of an operationalized validation; thereby,
helping reviewers in assessing validity. In this way, the reviewing process of future
empirical work would be improved.

This conclusion finalizes the last contribution of this thesis. We will now continue
with a summary of the limitations of our methods, a collective discussion of the
related work, and finally draw an overall conclusion.

134

Chapter 7

Limitations

This chapter summarizes the limitations of all three contributions included in this
thesis (Chapter 3, 4, and 5).

For the incremental map-reduce and Datalog method, the technical limitations
are mostly inherited from the corresponding general usage of map-reduce and Dat-
alog. Most limitations of map-reduce and Datalog are well-known. There are some
additional details discussed in this chapter, caused by tailoring such methods to the
computation of abstraction of repositories (potentially focusing on a heterogeneous
technology stack, or incrementalization).

For the simulation-based testing high-order method, the limitations are not ob-
vious. There are no real limitations on how to write simulations, but there may be
limitations in the plausibility of certain simulated scenarios. Plausibility needs to
be discussed as parts of concrete research. In the following, we will refine this idea.

7.1 Incremental Map-Reduce on Repository His-
tory (Chapter 3)

Technical computations using our incremental map-reduce prototype are limited in
close analogy to regular map-reduce frameworks. The general framework of map-
reduce has previously been used in the context of MSR/ESE, which is an indication
for the suitability [SJAH09, SAH10].

The application of map-reduce in MSR/ESE is somewhat special, as computation
involves accessing repositories and its fragments. Our method is special because it
scales such computation by mechanisms coming from incrementalization theory.

7.1.1 Core Interface
The core interface of our prototype is not limited to map-reduce, but in terms of
constraints on the data types, that need to have an algebraic structure for the
change representation, and in terms of functions that need to have (self-maintained)
derivatives.

While such abstract limitation of the core interface is interesting for the concise
realization of our prototype, concrete limitation for a user of our prototype comes
with the map-reduce framework that we build on top of the core interface. A

135

typical user will not need to program against the core interface or provide specialized
algebraic structures.

The data type processed by our method must have a conforming algebraic struc-
ture. Since we aim at implementing map-reduce on top of the core interface, we
need a collection type. We provide an algebraic structure (Abelian group) for bags
by default, so a user does not need to get in touch with the change representation.
Bags are containers that are flexible enough to store all kinds of abstractions of the
source code, no matter of what data type. Such a bag may also hold key-value
tuples to capture the structure of the data, e.g., to maintain a connection between
a class and a metric. Set semantics of the collection can be realized by a function
computing the distinct elements. List semantics is complicated to incrementalize,
so we exclude it. There is always the option to escape incrementalization, and to
fall back to standard map-reduce without acceleration.

To get an incremental performance benefit over regular map-reduce, the core
interface limits a function to have a proper (self-maintained) derivative. For our
placeholder, we have just been illustrating how to compute and aggregate cyclomatic
complexity, but our method allows incrementalizing the full range of extended map-
reduce primitives, including map, filter, group-wise aggregation, joining and the
Cartesian product. Such functions operate on bags, possible with key-value en-
tries. More complex processing is limited to chaining these functions, analogue to a
conventional map-reduce framework.

7.1.2 Pure Functions
The high-order map function is one of the most important when it comes to discussing
limitations. The map function takes another function as a parameter and applies it
to the elements of the bag. This can be used to plug a wide range of analysis code
and apply it to the individual resources.

The map function has an important but somehow obvious limitation. The func-
tion which is passed as a parameter needs to be pure so that we can guarantee that
the self-maintained derivative of map is pure too. Otherwise, our method will fail.
However, implications of this limitation in the context of repository revisions are
not immediately obvious. We illustrate this using a basic example.

Consider the following two Scala objects, shown in Listing 7.1 and 7.2, con-
tained in different resources of the revisions (e.g., in the files ‘Program.scala’ and
‘Library.scala’). We want to associate parts of the program with types.

1 object Program {
2 val out = Library.compute()
3 }

Listing 7.1: A Scala program

1 object Library {
2 def compute(): String = "Some String"
3 }

Listing 7.2: A library object the Scala program uses

Naive type resolution would use map to apply a function to the individual re-
sources. We may reuse an existing solution to parsing and type resolution. However,

136

the type resolution in this example depends on the context. If we try to resolve the
type of variable out, we need the Library file to do so. Here we face a problem since
the Library file may change over the revision history too (e.g., the return type of
compute may change). As a consequence, the type resolution function, applied to a
single resource, will not be pure.

Such cascades of changes renders incremental type resolution, done over multi-
ple revisions, to be a complicated problem. Type resolution is definitely a very
elementary problem to every code analysis, but even closely related work, like
LISA [APPG19], does not discuss it in-depth (or solve it). They also use map for
individual resources.

We assume that work on incremental static program analysis can contribute
ideas for future work on this limitation, e.g., [Sza21, SBEV18, dPSER20].

7.1.3 Recursion
The missing support and evaluation for recursion or fixpoint operations is another
limitation of our method. We assume that we can solve recursive problems, us-
ing standard iterative methods that chain map-reduce primitives until a fixpoint is
reached. This is comparable to the usage of map-reduce in, e.g., [MAB+10]. How-
ever, we did not conduct any experiments on this option, so we still consider it as a
limitation.

7.1.4 Abstracting Across Individual Revisions
We only contribute static abstraction of single revisions, computed for all revisions
of the repository. This contribution may be an important building block for more
advanced abstractions of the full repository history. However, functions that ab-
stract over more than a single revision are currently excluded from our method. We
discussed this in the introduction of Chapter 3 and suggest some ideas for resolving
this in the background section of the same chapter.

7.1.5 Usability of Map-Reduce
Another question is if we can assume map-reduce to be used by software engi-
neering practitioners, educators, and researchers to express MSR-like queries. The
contribution done in this thesis focuses on the technical aspects of incrementalizing
map-reduce with the aim to improve scalability when abstracting over repositories.

We do not study the limitations of usability for map-reduce in different user
groups. This is beyond the scope of this thesis. However, map-reduce is popular and
has already been used for MSR/ESE before [SAH10]. These are strong indications
that map-reduce can be used by a wider range of user groups.

7.2 Repository Mining with Datalog (Chapter 4)
Technical computations using our Datalog method are limited in close analogy to
regular Datalog. There are some differences because we aim to transfer the ap-

137

plication, from understanding a homogeneous, to understanding a heterogeneity
technology stack in a repository.

7.2.1 Limitations of Datalog
The limitations of Datalog are well-known [GHLZ13]. Related work in architec-
ture recovery [MMW02, MT01, TM03], source code querying [HVdM06], and static
program analysis [BS09, SBEV18] shows that these limitations do not prevent com-
puting advanced abstractions of the source code and its surrounding. Potential
limitations may be relaxed by adding features to Datalog, or using closely related
declarative logic programming languages, often being a compromise between limi-
tations, assertions and efficient algorithms.

7.2.2 Accessing the Repository by Pure Functions
The method of using pure functions to access the repository and its fragments is
very flexible. We may plug arbitrary (high-order) functions into such mechanism
and drive access selectively by Datalog rules. There should be no access that cannot
be decoded as a chained application of functions. We provide an initial catalog of
high-order functions for accessing standard formats, which may need to be extended
to also cover other subject technologies.

A limitation with such a method is that different ways of accessing the same
fragment leads to difference entities in the Datalog reasoning. Here the modularity
of our method ends, and users writing rules need to agree or normalize access to
the content. Aligning the same entities in different knowledge representations is a
well-known problem [ZLH+21]. It does not fit into the scope of this thesis.

7.2.3 Usability of Datalog
Like previously discussed for map-reduce, it is not obvious if our Datalog method can
be used by software engineering practitioners, educators, and researchers to express
MSR-like queries. The contribution done in this thesis focuses on the technical
aspects of such solution, but also provides a concrete case study that shows that
such method is suitable.

Our study can be seen as a reproduction of previously reoccurring ideas on
architecture recovery [MMW02, MT01, TM03], source code querying [HVdM06], and
static program analysis [BS09, SBEV18], evaluated in a novel application context.
The continuously reoccurring idea of declarative logic programming to solve related
problems is a strong sight for the usability.

We also assume that different use groups can benefit from it, since previous
work, like [SB10], point out the ease of configuring such solutions. Future work may
combine such efforts and come up with ‘copy and paste’ solutions (or even AI-based
solutions), composing mining logic with minimal manual intervention.

7.3 Simulation-Based Testing (Chapter 5)
For the simulation-based testing high-order method, the limitations are not obvious.

138

7.3.1 Technical Limitation
There are no real limitations on how to write simulations. We have shown how to
write simulation in R, but such code can be transferred to any other programming
language. There are some features that facilitate writing simulations, like built-in
random number generators, vectorized operations, and matrix libraries.

We also assume that there is no ‘correct way’ of designing simulations. Orthog-
onal approaches, based on actors, may also contribute plausible ways of simulating
aspects of the software development.

7.3.2 Plausibility Limitation
We may be limited in the plausibility of simulated scenarios. Simulations are based
on assumptions, that may or may not be true. For the way we use simulations to
test methodology (methods and models), the fact that an assumption is true, does
not immediately matter. We may, for instance, show that a methodology works
independent of an assumption. Often this is not immediate obvious in complex
scenarios.

However, in some cases, a methodology may fail for a given assumption. This
can render a threat to a methodology. The simulations only disambiguates the
threat and its impact. If the assumption is true, cannot be rated by our high-order
method. Plausibility of assumptions is subjective and needs to be discussed as parts
of concrete research.

7.3.3 Conclusions on Reality based on Simulated Data
Methodology, methods, models, and simulations are very related in that they are col-
lections of assumptions and everything that can formally/operationally be derived.
They are useful to derive results from the assumptions that are not immediately
obvious to us.

For instance, we might have assumptions on relations between variables, as-
sumptions that some parameters exist, assumptions on the meaning of data being
our variables, or even assumptions on the process on how to connect all this best.
All assumptions are subjective (or axiomatic), but we have already agreed on some
of them, mostly because they have been shown useful.

Take the statistical methods, as an instance, that help us to reason about how
reality behaves under clear assumptions. On the contrary, our idea of a simulation
helps us to reason about how statistical methods behave under clear assumptions.
We consider our use of simulations as some sort of high-order method, further relax-
ing, changing, or strengthening various assumptions systematically, to facilitate our
understanding of an underlying set of methods. Seeing assumptions at work, instead
of just having them fixed, or knowing them from discussions, is often helpful.

An irrational expectation of the use of simulated data is that it can help to
partially or fully replace real data in its meaning to understand real phenomenon.
A good example is the intuition that replacing privacy critical data by synthetic
data may help. If we start working with assumptions instead of real data, we may
argue, but typically, we move away from reality.

139

Chapter 8

Related Work

This chapter presents the related work, divided into the three contribution types
that we have previously introduced in Chapter 2. We will start with technical
contributions to methods, followed by methodological contributions to high-order
methods (mostly related to simulations), and finally list some concrete empirical
contributions that might benefit from such (high-order) methods.

We exhaustively discuss work positioned in MSR/ESE. However, this section will
selectively discuss work coming from different fields that shares a strong relation to
our contributions. For empirical contributions in Sec. 8.3, we will limit us to the
field of ESE/MSR.

To improve readability, we highlight the passages discussing the relation be-
tween the related work and our contributions (comparable to this paragraph).

8.1 Technical Contributions
The two technical methods we contribute are: i) incremental map-reduce to scale
the computation of abstractions of repositories, and ii) Datalog to abstract over
repositories with a heterogeneous technology stack. We examine the related work
following this structure:

• The top-level structure iterates through principle decisions for the proposed
methods, starting with the used languages and interfaces, ways to scale com-
putation, options for data storage, and special properties of the data under
study.

• The second-level structure distinguishes between fields, e.g., between very gen-
eral, and MSR/ESE-specific work. The related work discussion is exhaustive
for MSR/ESE. Other fields are not exhaustively discussed.

8.1.1 Languages and Interfaces
A language or interface in which a data analysis can be written is one of the key
properties of broadly applicable data analysis methods in MSR/ESE. Decisions have
an impact on following up options, e.g., for the scalable computation or storage.

140

General In the following, we will discuss general methods to data analysis, going
from functional, to declarative logic, to imperative.

The following general methods are not designed for, or evaluated at, the anal-
ysis of repositories and its fragments (in the field of MSR/ESE). Our two
technical contributions built up on such general work. However, we tailor and
evaluate them for the analysis of repositories (potentially with a heterogeneous
technology stack).

Map-reduce is one of the popular functional interfaces for the processing of
data [LLC+11]. There may be a distinction between basic and extended map-reduce,
where the latter also allows operations like join or the Cartesian product. Solv-
ing recursive problems in map-reduce can be done by iterative solutions [ELZ+10].
Large-scale graph computations, based on map-reduce, are closely related and can
be expressed in Pregel [MAB+10].

Relational algebra like interfaces and languages, like SQL, Pandas DataFrames,
R DataFrames, or Spark DataFrames, are other functional option to data analysis.
SQL, for instance, is used in MSR/ESE, like in [RvDV13, Gou13]. Such methods
are related to map-reduce in the operations they provide (e.g., join, map, or fil-
ter), but relational algebra in more specific in focusing on tabular data. Focusing
on tables allows some automated optimization of data analysis, e.g., by rewriting
queries [AXL+15].

Our incremental map-reduce solution is motivated by such general work on
map-reduce and relational algebra. We provide a map-reduce interface that
allows users to compose processing. We do not provide dedicated support to
work with tables, but users can process bags of tuples by map-reduce opera-
tions.
Datalog [HGL11, GHLZ13] and Signal/Collect [SBC10] are declarative, since an

analysis can be written independent of a sequential order. Such specifications can be
composed out of independent modules. Datalog builds on top of relational algebra
to store facts, but infers new facts using a set of rules. Signal/Collect builds on top
of a graph, sending and consuming messages along the edges, to infer facts at the
nodes of the graph. Datalog and Signal/Collect allow recursion natively.

Our Datalog method is motivated by such general work on Datalog. Our
Datalog method is different from Signal/Collect.

Previous options may work with streams of data too, which requires the un-
derlying execution engines to work on changing data. One example is Structured
Streaming for Spark, that provides functionality close to Spark DataFrames, while
reacting to updated data [ADT+18]. Such options involve data flow abstractions,
such as sources, sinks, and stores [BROL14, ADT+18].

Our incremental map-reduce method is close to such notion of changing data
and the underlying incremental update. However, we tailor our method to-
wards processing the repository history as the primary data source.

Data analysis may always be written in general purpose imperative programming
languages, such as Java or C# (e.g., see the analysis in [SPN+18]).

141

Architecture Recovery In the field of architecture recover, Mens et al., Mens et
al., and Tourwe et al. (see [MT01, MMW02, TM03]) focus on the usage of declarative
logic programming to recover different aspects of the software architecture, like
design patterns or programming patterns. Such data is used, for instance, to provide
support during refactoring activities.

To this end, the authors use declarative logic meta-programming, i.e., a declara-
tive logic metalanguage to operate on, and formulated queries to, an object-oriented
base language. As metalanguage, the authors rely on a Prolog-variant. Authors ex-
periment with Smalltalk and Java as base language. To connect the metalanguage
with the base language, an interface is introduced that describes the representational
mapping between both.

Our method using Datalog can be considered as a recent reproduction of such
methods in a different context. The logic rules that we use for inference are
almost similar to what the previous authors use. We differ in tailoring our
language to examine a more heterogeneous technology stack, not limiting our
analysis to a well-defined AST of a single base language. We consider EMF as
a heterogeneous technology to be subject to analysis, involving different kinds
of artifacts, including the build system, Java, OSGI, or XML. Compared to
the previous representational mapping interface, our accessor primitives are
designed to be more flexibly to bridge such gap. Our access to a repository
starts at its root. Hereafter, we can navigate the fragments by chaining ar-
bitrary high-order function calls. During such traversal, we might potentially
access, and decompose, different artifacts types, building abstractions, like
ASTs, on the fly. We always have a default identification of the fragments of
the repository by the uninterpreted function terms used to access them.

Source Code Querying In the field of source code querying, Hajiyev et
al. [HVdM06] propose to use Datalog. The aim it to query Java source code us-
ing Datalog as part of an Eclipse plugin. Access to the AST is granted over an
indirection over a database. The authors also do initial experiments on incremen-
tally updated queries.

The rules used by the previous authors are almost similar to the rules in our
Datalog method. We see this as a sign of the applicability of Datalog to query
source code and related artifacts. However, our method differs in allowing a
more flexible access to the heterogeneous content, not just being tailored to a
single base language.

In [RNKJ11], the logic program query language SOUL is used to query Java
code that is part of Eclipse JDT projects.

We focus on a heterogeneous set of languages involved in the technology stack
subject to analysis.

Static Program Analysis Work in the context of static program analysis picks
up concepts from declarative logic programming. In [EKKM08], program dependen-
cies are analyzed using Datalog. In [BS09, SB10], points-to-analysis is implemented

142

using Datalog. Authors come to the conclusions that: ‘implementation is modular
and can be easily configured to analyses with a wide range of characteristics, largely
due to its declarativeness’ (direct citation [SB10]).

The previous methods on static program analysis show rules almost similar
to our rules. The representational mapping is different as it is tailored to
a homogeneous base language. The conclusion that definitions are modular
and easy to be configured supports the modularity of our method. Advanced
static program analysis may be a reusable component that we might add to
our inference in future work.

MSR/ESE We now discuss work in the MSR/ESE field. The DJ-Rex solu-
tion [SJAH09, SAH10] motivates the migration of existing analysis to map-reduce.
Boa [DNRN15, DNRN13, NDNR14] uses a DSL for visiting the Java ASTs in a
distributed manner which is backed by distributed map-reduce.

We have previously discussed both solution in Chapter 3. Analysis code in
Topleet and DJ-Rex are comparable. The difference comes with the perfor-
mance. For the usability, relying on established map-reduce may also be a
benefit, compared to introducing a novel DSL.

LISA [APG17, AG15, APPG19] enables the usage of Signal/Collect [SBC10] to
process the history of an AST created by plugging a parser. As previously discussed
for Signal/Collect, LISA allows a declarative way of formulating queries by specifying
messaging. Messaging is done along the edges of the AST.

Such method using Signal/Collect is different from map-reduce, but closely
related to our Datalog method. However, limiting messaging to a previously
defined AST, as LISA does, cause difficulties, because of lacking an option
to add edges/nodes during analysis. This might be necessary to reason about
implicit connections in the AST, e.g., like needed for points-to-analyses or type
resolution.
In work by Stevens et al. (see [Ste15, SRN+14]), declarative logic program-

ming is aligned with a graph query language to abstract over the revision history.
The representational mapping allows accessing to source code of all revisions and
thereby enables computing abstractions over the full revision history. Regular path
expressions are used for querying such revision graphs.

The presented solution provides abstractions over the repository revision his-
tory, like our map-reduce method, but it uses declarative logic programming,
like our Datalog method. However, we focus on incrementalization and on a
heterogeneous technology stack.

There are very basic methods to access the repository data. We may use
the Git command line [SG18], or Git wrappers, like JGit1 or PyDriller [SAB18].
In [LDKBJ22], specific processing, like reference resolution, are optimized by a multi-
revision AST. Authors of [GCB+21] and [HHK20] limit their work to the history of
source code methods.

1https://www.eclipse.org/jgit/

143

Such work does not propose methods to write custom analysis. There is no
elaborate language or interfaces to compose custom abstractions of repositories
and its fragments. We examine map-reduce and Datalog to produce such
abstractions.

8.1.2 Scalable Computation
A second aspect of data analysis is how computation is scaled. Solution can scale
at the price of adding computation resources; other improve performance by mem-
orizing intermediate results or applying incrementalization.

General Map-reduce frameworks provide distributed and parallel computation
almost by default [LLC+11]. Pregel [MAB+10] is optimized with respect to
iterative graph computations, but comparable to map-reduce in its distribu-
tion. Signal/Collect [SBC10] shares a stronger relation to actor frameworks fa-
cilitating asynchronous messaging. Actors systems can be distributed [Agh90].
Stream processing can be distributed [CBB+03]. The processing of relations can
be distributed [AXL+15]. Datalog queries can be run in parallel and in the
cloud [GST90, ACC+10]. All such solution scale at the prices of adding compu-
tation resources.

Our methods inherit such capabilities from the general methods. Our map-
reduce method allows distributed and parallel processing. The Datalog method
does not yes employ comparable mechanisms, but conceptually they are ap-
plicable.

Solutions to incrementalization, memoization and redundancy reduction are
somewhat related. All solutions split the data analysis into sub-problems, and
thereby facilitate reusing existing solutions to make analysis scale. Methods do
not necessary scale at the expense of additional computation resources, which is a
benefit because it saves energy.

Most of the general methods provide extensions to existing analysis languages
and interfaces, to realize incrementalization, memoization and redundancy re-
duction. Such strategies are employed in the batch processing platform Dryad-
Inc [PBYI09], reusing identical computations and processing changes. Closely re-
lated works are [LOR+10, YYY+12, BWR+11]. Systems sharing a corresponding
understanding of abstract algebra, such as monoid structures and monoid homomor-
phisms, are [HS13, BROL14, Feg16]. The systems described in [BROL14, Feg16,
ADT+18] concern incremental stream processing. In the database literature, incre-
mentalization occurs as view maintenance [CY12, QGMW96, GMS93]; production
systems are incrementalized in [For82]. The usage of Abelian groups for incremen-
talization can be found in [GGMS97] for view maintenance, and in [CGRO14] for
incrementalization by program transformation. In [LW97], incremental aggregation
is discussed. All such solution do not scale at the prices of adding additional hard-
ware.

144

Our efforts on incremental map-reduce is motivated by such general work,
but specific, since it aligns incrementalization with the revision history. Our
Datalog solutions does not systematically explore such optimizations yet. Con-
ceptually, Datalog can be incrementalized.

MSR/ESE DJ-Rex and Boa are both executed on a distributed map-reduce
framework; LISA applies local parallelization, not employing the option to distribute
Signal/Collect [SBC10].

Topleet delegates its core operations to a distributed map-reduce framework
and thereby inherits distribution. Self-maintained derivatives are efficient to
distributed, regular derivatives may require shuffling of data. Our Datalog
method does not provide any support for distribution or parallelization yet, but
such improvement is conceptually suitable, as described in [GST90, ACC+10].
It may be part of future work.

LISA covers the reduction of redundancies. It tries to merge similar AST nodes
and messaging as much as possible, employing the similarity of succeeding revisions.
The underlying Signal/Collect infrastructure enables recursion.

LISA does not build on theoretical foundations, like abstract algebra and
derivatives, which makes the proposed optimizations seem more improvised.
LISA filters and maps the changed resources during initializing the AST; both
operations conform to self-maintained derivatives (homomorphisms). LISA
does not allow using them in different ways, or to plug custom derivatives. In
our map-reduce method, we allow the usage of extended map-reduce operations
where all functions have known derivatives. We also allow plugging custom
derivatives. However, LISA natively allows recursion, which our map-reduce
method cannot provide. Our evaluate show that we outperform LISA in terms
of time and memory, on a simple task computing the cyclomatic completely.
However, the capabilities of map-reduce and Signal/Collect still strongly differ,
making such comparison only partially meaningful.

Boa and DJ-Rex do not employ related concepts to improve scalable computa-
tion without adding computation resources. They scale at the price of additional
computational resources.

Currently, there is no other method that enables computing static abstraction
of repositories accelerated by incrementalization. Our Datalog solution does
not focus on scalability.

8.1.3 Storage
Query mechanisms, like the ones we propose, should typically not be designed with-
out thinking about mechanisms to store data.

Optimization of the underlying storage is not the central research aim of our
technical contributions. However, we list some important related work and
options for future work.

145

General There is a wide range of applicable techniques for efficient data stor-
age. When using distributed map-reduce, in particular Apache Spark, there is a
range of alternative serializers (like Kryo) or tabular data formats (like Apache Par-
quet [Voh16]). Other options include databases, like standard SQL, or Key-Values
stores, to persist data.

We rely on the storage mechanisms of the underlying frameworks we build our
solutions on. We do not examine alternative storage mechanisms.

MSR/ESE While there is a dedicated category for work in MSR/ESE providing
concrete data sets (e.g., [NBKO21, VSF15]), the more general challenges of data
storage in MSR/ESE can be understood as the practice of scalable archiving of
software engineering data, and abstractions thereof. Such work needs to efficiently
protect against loosing data permanently, that eventually turns out to be relevant
to future research in software engineering.

Archiving is done by Software Heritage, and presented in [CZ17]. Such mech-
anisms serve as an important alternative to conducting empirical research on pro-
prietary GitHub. Other efforts, like GHTorrent [GS12], recently stopped active
archiving. The latter case shows the importance of initiatives to archiving.

Our work is limited to very basic data storage. We allow access to a Git
repository, but we may be able to adjust our interfaces to also access different
kinds of archives. We assume that data storage motivates future work that
tightly aligns storage and computation.

Authors of [BPVZ20] present counteractions to growing data, i.e., to improve the
scalable storage of repository data, by applying graph compression. Compression
may be a compromise between computation time and storage space. Such counterac-
tions may not necessarily alight with scalable mechanisms to compute abstractions
on the data. We assume that bringing together scalable computation of abstractions
and archiving, is one of the important steps for future work on the technical side of
ESE/MSR.

Our incremental map-reduce method completely inherits the storage mecha-
nisms provided by Apache Spark. For our Datalog method, we store the results
in a convenient, but inefficient XML dialect.

8.1.4 Structure in Time and Space
Methods, analyzing data, share a corresponding understanding of how the data is
structured in time and space. Such notion may be a limitation for the processing.

General Online methods, like those concerned with stream processing [Feg16],
focus on low-latency by processing arriving changes. Offline processing, such
as [PBYI09, LOR+10, YYY+12, BWR+11], employ the evolution of fully available
data (batch) to decrease computation costs. Some hybrid methods switch between
both [BROL14].

146

All such methods consider temporal evolution as something linear without
branching. Our map-reduce method is different as it considers the acyclic
revision history.

MSR/ESE Online processing of streams has been discussed in [GSV16] regarding
real-time capabilities, adequate query models and data summarization techniques.
A stream-based method is GHTorent [Gou13], gathering meta-data from GitHub’s
push API. Acyclic evolution, i.e., branching, is somehow special to MSR. Formaliz-
ing patches, merges and conflicts has been done in [AMLH14, MG13]. Such works
provide formalization that does not offer ways to compute abstractions over repos-
itories. MSR methods like DJ-Rex, LISA and Boa can be considered as offline.
DJ-Rex and Boa do not make any strong assumptions on the underlying notion of
time, since they do not employ it natively to improve scalability; LISA is limited to
a linear history. [LDKBJ22] reuses AST nodes along the time and space. The latter
refers to reusing nodes part of the same revision.

Our work is the first that provides optimized (offline) processing of data evolv-
ing according to an acyclic repository history, i.e., involving a notion of branch-
ing, by incrementalization. Our Datalog analysis does not yet work on multiple
revisions.

8.2 Methodological Contributions
This section discusses general work that proposes (high-order) methods or discus-
sions to improving data analysis methodology. We distinguish between fields, start-
ing with statistic science, continuing with work specialized towards computer science,
and finally discussing MSR/ESE-specific insights.

Statistic Science There are numerous textbooks that guide statistic data analy-
sis, such as [CCWA13, DB18, Har15, McE20]. Such work applies to several domains.
Application examples are often limited to medicine, psychology, or ecology. Such
work cites simulation studies as primary source for the justifications of methods,
next to mathematical derivations. Mathematical derivations and simulations can
be considered as high-order methods to examine, understand and teach statistic
methods.

In [Har15, McE20, GHV20], original simulations are developed to show central
properties of the presented data analysis methods. We add a direct citation of the
first three sentences of the preface of [GHV20] to emphasize this trend: "Existing
textbooks on regression typically have some mix of cookbook instruction and mathe-
matical derivation. We wrote this book because we saw a new way forward, focusing
on understanding regression models, applying them to real problems, and using sim-
ulations with fake data to understand how the models are fit." (Direct citation of
Gelman et al. [GHV20]). This excerpt makes clear that simulations are used on
a different conceptual level, compared to fitting a model (a typical method in the
statistic science). They are used to understand the typical method. This is the
reason we refer to them as a high-order method.

147

In [McE20], simulations are used as a central device for the presentation. In such
work, simulations can be considered as a lightweight alternative to more formal
derivations. As a counterexample, a focus on mathematical derivations used to
understand data analysis methods is taking in [DB18].

Statistic work examines cross-validation in a simulation study in [Sha93].
In [RBC+17], cross-validation is evaluated on simulated structural data in the field
of ecology. In [BLST13], the impact of random effect structures is examined by
simulation. The events-per-variable (EPV) are examined in the context of logistic
regression in medicine [PCK+96]. In [GAB+20], the authors simulate what happens
if something informative is ignored, which is part of longitudinal health data. The
authors of [BARH06] discuss the role of simulation studies in medicine. The evalua-
tion of statistic methods by simulation is discussed by [MWC19] (also in medicine).

Our work on simulation-based testing is motivated by such work coming from
the statistical science.

General Computer Science Compute science adapts many such works from
the statistic science, employing the rapid amount of available data and new compu-
tational possibilities. Evolving disciplines are data mining, pattern recognition or
machine learning [Agg15, JM15, Bis06].

According to our best knowledge, authors mostly provide mathematical deriva-
tions, or compare methods working on real data. Authors do not yet rely on simu-
lations to examine methods.

There are many direct adaptations of statistic practice in the context of computer
science. In [AB11], guidelines for statistic tests are listed, focusing on algorithms
with random components. Such guidelines are collections of references to general
statistic science.

Most recently, testing machine learning start to become of interest. A review is
provided by [BK20]. However, such survey does not show the systematic usage of
simulations to test ML models on synthetic problem. This work lists a few instances
of the use of synthetic data, to detect conceptual errors in ML models.

Our simulation-based testing can be seen as a special case in general computer
science that focuses on empirical research in software engineering. We did not
evaluate our method in a bigger context.

MSR/ESE When moving towards MSR/ESE, advice again becomes more similar
to general statistic science, including many references to statistic science. A typical
reference is a paper on events per variable (EPV) [PCK+96], original to medicine,
which appears as reference in many ESE/MSR studies using logistic regression (e.g.,
in [GdCZ19, JTH21, TH18, TMHM17, PFD11]).

In one of our simulation-based tests, we have shown how to tailor such findings
towards MSR/ESE scenarios by own simulations.

Authors of [RDCJ18] report on the occurrence of well-known threats in existing
literature.

148

Opposed to a plain literature survey, our simulation-based testing is a high-
order method used to clearly disambiguate threats to methods. It helps to
better understand methods and threats.
In [BRB+09, KGB+14, KGB+16], authors focus on methodological advice when

studying GitHub as a primary data source. Benefits and pitfalls, discussed in this
paper, can be considered as guidelines for the data analysis targeting GitHub. In
[KAB+08], the authors propose a reading method to evaluate guidelines for empir-
ical software engineering. Authors report on their experience in defect modeling
in [TH18]. Methodological challenges of highly correlated variables in defect models
are discussed in [JTH21]. Methods to do model validation, including cross-validation
variants, are examined in [TMHM17].

All such paper have in common that they aim to give very general methodolog-
ical advice for MSR/ESE. However, they limit their examination of methods to
conceptual discussions, or to running them or real data. Such practice does not
facilitate some conclusions on methods, including the potential impact of as-
sumptions, alternative results, or threats. Simulation may help to understand
how methods operate in a synthetic scenario. To the best of our knowledge,
there is no (high-order) testing method in MSR/ESE like this, dedicated to
the methods used in a study.

The distinction between simulation, inference, and prediction is often vague.
This gets clear in work like [dFA20], that discuses the role of simulation-based studies
in software engineering. The authors primarily discuss simulation-based studies as
another method to produce empirical results.

We consider a simulation as a high-order method to better understand, test and
operationalize insights about methods used in MSR/ESE. We show detailed
cases how simulations help to revise published methods.

In the following, we list work in MSR/ESE that refers to their own approach as
simulation.

In [HHG14, HHH+15, Hon15], simulations of the software development process
are introduced to help project managers to extrapolate future scenarios. Data mined
from repositories is used to construct the simulations. The authors use agent-based
systems. In such case, simulations are used to extrapolate, which is reasonable
if configured with the right prior knowledge on unobserved variables. In [SL09],
agent-based simulations for OS development are created using prior literature to
set the relevant unobserved variables. In [BBH+19], multi-agent simulations predict
next moves of agents. In [BSSG20], social coding dynamics are simulated based on
historic data to forecast information spread.

In contrast to such work, our simulations test methods used in MSE/ESE
studies.

8.3 Empirical Contributions
This section focuses on concrete empirical work in MSR/ESE and how our technical
and methodological contributions may guide their improvement. For a more detailed

149

overview on empirical studies on GitHub, we refer to [CIC16].
Recent studies contain the empirical analysis of API migration [SPN+18,

RvDV17, RvDV12, RvDV13], developers experience [RRC16, RD11, ETL11],
software changes [MPS08, SZZ05, YMNC04, KYM06, MSR17], entropy of
changes [Has09], infrastructure as code [OZR22, OZVR21], dependencies [SPN+18,
HV15, OBL10, RvDV13], network metrics [ZN08], diversity [VPR+15], similar-
ity [LKMZ12, APM04, CCP07, MMWB13, SL16, HAL18], architecture [LLN14],
documentation [AHS14], source code [ETL11, CDR18, FOMM10, GKSD05,
CCP07], static code attributes [MGF07], change bursts [NZZ+10, Cho20], corrective
engineering, bugs, defects and fixes [MW00, MGF07, RD11, Has09, ZN08, MPS08,
SZZ05, NZZ+10, FBF+20], commit time [ETL11, SZZ05], pull requests [GPvD14,
BPWS20, GZSvD15, GSB16, YWF+15, TDH14], open-source collaboration [Cho20],
branching [KPB18], tests [BFS+18], OO-metrics [BBM96], asserts [CDO+15, KL17],
social factors [FBF+20, VPR+15] model-driven technologies [KMK+15, HHL18,
RHC+19, RHH+17], project popularity [AHS14, BHV16, WL14], languages us-
age [BTL+13, SHL+19], software builds [MAH10, GdCZ19] or reviewer assign-
ment [RRC16, SdLJPM18].

There are some studies that already rely on dedicated solutions to scale analysis,
like Boa (see [DRNN14]). However, several of them are also written in general
purpose languages (e.g., see [SPN+18] which needs 4 weeks for analyzing revisions
of 291 repositories).

All such studies may benefit from scalable methods, like from our incremental
map-reduce method, but also from DJ-Rex, Boa and LISA. We also assume
that most of them may benefit from a better understanding of the underlying
technology stacks, which is often heterogeneous in the practice.

From a methodological side, we are not aware of empirical studies in MSR/ESE
that test a methodology by simulations and report on this. In the following, we
discuss some studies that may potentially benefit from simulation-based testing.

In [GdCZ19], reasons for long duration builds in continuous integration pipelines
are examined using multilevel models. Boh et al. [BSE07] shows an effect of ex-
perience on productivity using multilevel models. In [VPR+15], multilevel models
are used to examine gender and tenure diversity. The authors of the previous pa-
pers are aware of the issues of dependent observations using advanced solutions, not
comparable to the methodology shown in our first case (Sec. 5.4.2).

However, multilevel models are complicated. Our experience is that simula-
tions can be a great help in testing and understanding how multilevel models
react to the threat of a structured sampling process in MSR/ESE.

Several works in MSR/ESE uses a methodology that assumes completely inde-
pendent observations and thereby invokes threats (e.g., [RD11, TBP+17, ZHMZ17]).

Such work may benefit from simulating the structured sampling process, and
other reoccurring structural entities, like artifacts and developers, to recognize
the potential dangers for results.

There is work discussing aggregation or disaggregation strategies applied to soft-
ware engineering data [ZHMZ17, HZ13].

150

In simulations, it is easy to show that aggregation artificially increases corre-
lation. Simulation-based tests may guide novel ideas on how to resolve issues
with correlated variables (Sec. ??), potentially by disaggregated analysis of
repository data.

Further, we assume that a series of work, relying on the well known SZZ al-
gorithm [SZZ05], may benefit from simulation-based testing. Defect classification
produced by SZZ is critically influenced by the sampling process, and the temporal
evolution of commits in a repository.

We assume that simulations of commit and fix behavior of developers can easily
uncover that SZZ classifications share a natural correlation with time because
for later commits, opportunities being fixed are just getting rare. This can
be considered as a systematic measurement error. Hence, the effect of every
metric correlating with time, e.g., experience measures, may be confused with
such effect. It may be resolved in parts by the control of variables (Sec. ??).

Bird at al. [BBA+09] examine the empirical challenges of incorrectly labeled bugs
in historical defect data, which is an important threat to following up methodology.

Transferring this reference to our terminology, a ‘fix’ is an observed variable,
but the actual ‘bug’ is unobserved. We may simulate both to examine the
impact of different assumption on this relation. Bird at al. does an initial
step in the examination, but does not use synthetic fix-bug-pairs. This makes
forming a precise picture complicated.

151

Chapter 9

Conclusion

Summary Empirical studies in software engineering use software repositories as
data sources to understand software development. Repository data is either used
to answer questions that guide the decision-making in the software development,
or to provide tools that help with practical aspects of developers’ everyday work.
Studies are classified into the field of Empirical Software Engineering (ESE), and
more specifically into Mining Software Repositories (MSR).

Studies working with repository data often focus on their results. Results are
statements or tools, derived from the data, that help with practical aspects of soft-
ware development. This thesis focuses on the methods and high-order methods used
to produce such results. In particular, we focus on incremental methods to scale the
processing of repositories, declarative methods to compose a heterogeneous analy-
sis, and high-order methods used to reason about threats to methods operating on
repositories. We summarize this as technical and methodological improvements. We
contribute the improvements to methods and high-order methods in the context of
MSR/ESE to produce future empirical results more effectively. We contribute the
following improvements.

Chapter 3 We propose a method to improve the scalability of functions that
abstract over repositories with high revision count in a theoretically founded way.
We use insights on abstract algebra and program incrementalization to define a
core interface of high-order functions that compute scalable static abstractions of
a repository with many revisions. We evaluate the scalability of our method by
benchmarks, comparing a prototype with available competitors in MSR/ESE.

This contribution found on a strong theoretical background and applies it to
the study of repository history, which is a novel application field. The placeholder
used to illustrate this new method is to compute the cyclomatic complexity metrics
for a repository. This is a rather simplistic showcase. However, the proposed map-
reduce interface of our method can be applied broadly. The main limitations of
our method are the missing support for recursion, and the less-modular definition
of an analysis, given in terms of chained map-reduce function applications. The
popularity of map-reduce can be seen as an indication of its usability.

Chapter 4 We propose a method to improve the definition of functions that ab-
stract over a repository with a heterogeneous technology stack, by using concepts

152

from declarative logic programming and combining them with ideas on megamod-
eling and linguistic architecture. We reproduce existing ideas on declarative logic
programming with languages close to Datalog, coming from architecture recovery,
source code querying, and static program analysis, and transfer them from the anal-
ysis of a homogeneous to a heterogeneous technology stack. We provide a prove-of-
concept of such method in a case study.

The proposed method using Datalog differs from the map-reduce method, pre-
sented in Chapter 3. Datalog allows composing analysis of repositories in terms of
modular rules. The modular rules require a schema on how to structure the data
extracted by the rules. We borrow this schema from previous work on linguistic
architecture and megamodeling. A prove-of-concept shows that such analysis of a
heterogeneous technology stack is possible. The placeholder used to demonstrate our
method is analyzing EMF patterns of usage. Compared to studying the cyclomatic
complexity, studying EMF patterns of usage is technically more demanding. The
main limitation of our Datalog method is the scalability, which we did not examine
in detail. Scientific applications of declarative languages, close to Datalog, used for
related purposes (architecture recovery, source code querying and static program
analysis), can be seen as an indication of its usability.

Chapter 5 We propose a high-order method to improve the disambiguation of
threats to methods used in MSR/ESE. We focus on a better disambiguation of
threats, operationalizing reasoning about them, and making the implications to a
valid data analysis methodology explicit, by using simulations. We encourage re-
searchers to accomplish their work by implementing ‘fake’ simulations of their MSR/
ESE scenarios, to operationalize relevant insights about alternative plausible results,
negative results, potential threats and the used data analysis methodologies. We
prove that such way of simulation-based testing contributes to the disambiguation
of threats in published MSR/ESE research.

We consider the proposed method to use simulations to be a high-order method.
We use it to better understand sets of methods (the methodology) in studies in
MSR/ESE.

We assume that the technical and methodological improvements, presented in
this thesis, will help future studies to produce new empirical results more effectively.
We consider the following aspects to be the relevant future work on the challenges
discussed in the thesis.

Future Work on Scalability Relying solely on adding hardware in a distributed
setup should not be the only option to scale data processing, if there are other
options, like incrementalization, or memoization. In the field of MSR/ESE, we have
identified a less resource-intensive option to compute abstractions of repositories.
This is presented in Chapter 3. Methods for the technical analysis should work with
such advantage. We assume that the following mostly scalability related points are
relevant for the future.

• In Chapter 4, we have used Datalog as an alternative to map-reduce. The
realization, that we have presented so far, is a prove-of-concept. Datalog
should be a subject to future work on improving the scalability too. Datalog

153

allows incremental execution. We are confident that ideas on incremental
static analysis with languages close to Datalog can successfully be transferred
to the processing of repository history.

• One question that we did not address is how efficient data storage and archiving
methods can be used to back our methods. We limit our methods to the com-
putation of scalable abstractions, but do not consider storage. We currently
use default storage mechanisms and access to cloned GitHub repositories. We
may benefit from access to GHTorrent or Software Heritage. Depending on
which data we process, we may also benefit from graph compression.

• Scalable computation of abstractions, as we discuss it, mostly ends with a
dataset. We typically call this methodological step the data collection. The
dataset can then be used to build more elaborate abstractions. Often, such
abstractions are more complex models of the software engineering process. We
assume that such strict line between models and data collection is outdated (at
least in the field of MSR). A tighter connection can be beneficial. Scalability
may be improved by navigating the extraction of repository data by a model’s
understanding of importance.

Future Work on Heterogeneity As a prove-of-concept, we illustrate our declar-
ative method in a case study on EMF usage patterns. We assume that the com-
bination of modular rules with a well-defined schema for structuring knowledge on
technologies and languages, is an alternative to the usage of chains of map-reduce
calls to analyze repositories. However, evaluating the benefits of such declarative
programming style, applied in a heterogeneous context, still needs to be done more
systematically. We assume that the following mostly heterogeneity related points
are relevant for the future.

• We need a more systematic way of comparing the benefits of Datalog and other
(non-) declarative languages, used in a heterogeneous MSR/ESE setting. The
appropriate way to do so is a randomized experiment. This is very difficult
due to the complexity of typical MSR/ESE tasks. Finding subjects to perform
such tasks and potentially training the subjects in advance of an experiment is
challenging. We find the same problem in related work that proposes methods
to mine repositories. We are not aware of any work proving the usability of
methods in experiments. Experiments may be needed in the future.

• The usage of our declarative solution calls for a catalog of rules to abstract
over different technologies. Such a catalog may be designed in close analogy
to previous work on megamodeling and linguistic architecture. It may be
relevant to decouple and reuse efforts on abstracting over existing technologies.
It may also be an alternative to having fixed data sets, which are essentially
materialized abstractions. Instead of a dataset, MSR/ESE work may share
their modular rules in that also other authors can benefit from the mining
logic, and can reproduce it on new or the same repositories. Reusing monolithic
functionality is typically more complicated than reusing modular functionality.

154

• A prerequisite for our modular mining is a schema that we borrow from pre-
vious work on megamodeling and linguistic architecture. Understanding in
how far the current schema is suited to abstract over complex technology, still
requires future work.

Future Work on Validity The implications and possibilities of the simulation-
based testing method are wide. In our presentation, we have started showing typical
threats of methods that are used in existing studies in MSE/ESE. We assume that
the following mostly validity related points are relevant for the future.

• We suggest forming a catalog of simulations that make threats to methods
more explicit. This can be a step towards better understanding and testing
the methods used in the scientific process. This may assure that future studies
improve, and it can serve as a counteraction against reproducibility crisis.

• The catalog can be seen as a part of an MSR/ESE body of knowledge, that can
serve as a reference for studies and for teaching. Simulations recently proved
their importance for teaching in the recent statistic literature.

• We assume that studies in MSR/ESE need to be more careful in distinguish-
ing between results, methods and high-order methods, when doing empirical
research. If researchers contribute new results, the methods used to produce
the results should be valid. If researchers contribute new methods, the results
should be seen critically. Intuitive results should not be taken as the validation
of a set of methods. Simulations may be a better option for validating a set
of methods. Presenting a new method, with new results, can be a mistake.
Researchers may modify the methods until the results fit their intuition.

155

Bibliography

[AA17] Mattia Atzeni and Maurizio Atzori. CodeOntology: RDF-ization of
Source Code. In Proc. ISWC, 2017.

[AB11] Andrea Arcuri and Lionel C. Briand. A practical guide for using sta-
tistical tests to assess randomized algorithms in software engineering.
In ICSE, pages 1–10. ACM, 2011.

[AC14] Özlem Albayrak and Jeffrey C. Carver. Investigation of individual fac-
tors impacting the effectiveness of requirements inspections: a repli-
cated experiment. Empir. Softw. Eng., 19(1):241–266, 2014.

[ACC+10] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy,
Joseph M. Hellerstein, and Russell Sears. Boom analytics: explor-
ing data-centric, declarative programming for the cloud. In EuroSys,
pages 223–236. ACM, 2010.

[ADGC14] Cecilia Apa, Oscar Dieste, Edison G. Espinosa G., and Efraín R. Fon-
seca C. Effectiveness for detecting faults within and outside the scope
of testing techniques: an independent replication. Empir. Softw. Eng.,
19(2):378–417, 2014.

[ADT+18] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shix-
iong Zhu, Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia.
Structured Streaming: A Declarative API for Real-Time Applications
in Apache Spark. In SIGMOD Conference, pages 601–613. ACM, 2018.

[AEJO19] Mario Alvarez-Picallo, Alex Eyers-Taylor, Michael Peyton Jones, and
C.-H. Luke Ong. Fixing Incremental Computation - Derivatives of
Fixpoints, and the Recursive Semantics of Datalog. In ESOP, volume
11423 of Lecture Notes in Computer Science, pages 525–552. Springer,
2019.

[AG15] Carol V. Alexandru and Harald C. Gall. Rapid Multi-Purpose, Multi-
Commit Code Analysis. In ICSE (2), pages 635–638. IEEE Computer
Society, 2015.

[Agg15] Charu C Aggarwal. Data mining, volume 1. Springer, 2015.

[Agh90] Gul A. Agha. ACTORS - a model of concurrent computation in dis-
tributed systems. MIT Press series in artificial intelligence. MIT Press,
1990.

156

[AHS14] Karan Aggarwal, Abram Hindle, and Eleni Stroulia. Co-evolution of
project documentation and within github. In MSR, pages 360–363.
ACM, 2014.

[Aka98] Hirotogu Akaike. Information Theory and an Extension of the Maxi-
mum Likelihood Principle, pages 199–213. Springer, 1998.

[AKM08] Abdulkareem Alali, Huzefa H. Kagdi, and Jonathan I. Maletic. What’s
a Typical Commit? A Characterization of Open Source Software
Repositories. In ICPC, pages 182–191. IEEE Computer Society, 2008.

[AMLH14] Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert
Harper. Homotopical patch theory. In ICFP, pages 243–256. ACM,
2014.

[APG17] Carol V. Alexandru, Sebastiano Panichella, and Harald C. Gall. Re-
ducing redundancies in multi-revision code analysis. In SANER, pages
148–159. IEEE Computer Society, 2017.

[APM04] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An Au-
tomatic Approach to identify Class Evolution Discontinuities. In IW-
PSE, pages 31–40. IEEE Computer Society, 2004.

[APPG19] Carol V. Alexandru, Sebastiano Panichella, Sebastian Proksch, and
Harald C. Gall. Redundancy-free analysis of multi-revision software
artifacts. Empirical Software Engineering, 24(1):332–380, 2019.

[AS05] Bente Anda and Dag I. K. Sjøberg. Investigating the Role of Use
Cases in the Construction of Class Diagrams. Empir. Softw. Eng.,
10(3):285–309, 2005.

[AXL+15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies
Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J.
Franklin, Ali Ghodsi, and Matei Zaharia. Spark SQL: Relational Data
Processing in Spark. In SIGMOD Conference, pages 1383–1394. ACM,
2015.

[BAB+21] Bret Beheim, Quentin D. Atkinson, Joseph Bulbulia, Will Gervais,
Russell D. Gray, Joseph Henrich, Martin Lang, M. Willis Monroe,
Michael Muthukrishna, Ara Norenzayan, Benjamin Grant Purzycki,
Azim Shariff, Edward Slingerland, Rachel Spicer, and Aiyana K
Willard. Treatment of missing data determined conclusions regard-
ing moralizing gods. Nature, 595(7866):1476–4687, 2021.

[BARH06] Andrea Burton, Douglas G Altman, Patrick Royston, and Roger L
Holder. The design of simulation studies in medical statistics. Statistics
in Medicine, 25(24):4279–4292, 2006.

[BBA+09] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham
Bernstein, Vladimir Filkov, and Premkumar T. Devanbu. Fair and

157

balanced?: bias in bug-fix datasets. In ESEC/SIGSOFT FSE, pages
121–130. ACM, 2009.

[BBH+19] Jim Blythe, John Bollenbacher, Di Huang, Pik-Mai Hui, Rachel
Krohn, Diogo Pacheco, Goran Muric, Anna Sapienza, Alexey
Tregubov, Yong-Yeol Ahn, Alessandro Flammini, Kristina Lerman,
Filippo Menczer, Tim Weninger, and Emilio Ferrara. Massive Multi-
agent Data-Driven Simulations of the GitHub Ecosystem. In PAAMS,
volume 11523 of Lecture Notes in Computer Science, pages 3–15.
Springer, 2019.

[BBM96] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A Validation
of Object-Oriented Design Metrics as Quality Indicators. IEEE Trans.
Software Eng., 22(10):751–761, 1996.

[BDB08] R Harald Baayen, Douglas J Davidson, and Douglas M Bates. Mixed-
effects modeling with crossed random effects for subjects and items.
Journal of Memory and Language, 59(4):390–412, 2008.

[Béz05a] Jean Bézivin. Model driven engineering: An emerging technical space.
In GTTSE, volume 4143 of Lecture Notes in Computer Science, pages
36–64. Springer, 2005.

[Béz05b] Jean Bézivin. On the unification power of models. Softw. Syst. Model.,
4(2):171–188, 2005.

[BF05] Rajendra Bose and James Frew. Lineage retrieval for scientific data
processing: a survey. ACM Comput. Surv., 37(1):1–28, 2005.

[BFS+18] Neil C. Borle, Meysam Feghhi, Eleni Stroulia, Russell Greiner, and
Abram Hindle. Analyzing the effects of test driven development in
GitHub. Empirical Software Engineering, 23(4):1931–1958, 2018.

[BHV16] Hudson Borges, André C. Hora, and Marco Tulio Valente. Predicting
the Popularity of GitHub Repositories. In PROMISE, pages 9:1–9:10.
ACM, 2016.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Information science and statistics. Springer, 1st edition, 2006.

[BJRV05] Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Val-
duriez. Modeling in the Large and Modeling in the Small. In Proc.
MDAFA 2003 and MDAFA 2004, volume 3599 of LNCS, pages 33–46.
Springer, 2005.

[BJV04] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. On the Need
for Megamodels. In Proc. OOPSLA/GPCE: Best Practices for Model-
Driven Software Development workshop, 2004.

[BK20] Houssem Ben Braiek and Foutse Khomh. On testing machine learning
programs. J. Syst. Softw., 164:110542, 2020.

158

[Bla77] Peter Michael Blau. Inequality and heterogeneity: A primitive theory
of social structure, volume 7. Free Press New York, 1977.

[BLST13] Dale J. Barr, Roger Levy, Christoph Scheepers, and Harry J. Tily.
Random effects structure for confirmatory hypothesis testing: Keep it
maximal. Journal of Memory and Language, 368(3):255–278, 2013.

[BPVZ20] Paolo Boldi, Antoine Pietri, Sebastiano Vigna, and Stefano Zacchi-
roli. Ultra-large-scale repository analysis via graph compression. In
SANER, pages 184–194. IEEE, 2020.

[BPWS20] Marcus Bertoncello, Gustavo Pinto, Igor Scaliante Wiese, and Igor
Steinmacher. Pull Requests or Commits? Which Method Should We
Use to Study Contributors’ Behavior? In SANER. IEEE Computer
Society, 2020.

[BRB+09] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton,
Daniel M. Germán, and Premkumar T. Devanbu. The promises and
perils of mining git. In MSR, pages 1–10. IEEE Computer Society,
2009.

[BROL14] P. Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy J. Lin. Sum-
mingbird: A Framework for Integrating Batch and Online MapReduce
Computations. PVLDB, 7(13):1441–1451, 2014.

[BS09] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In OOPSLA, pages 243–
262. ACM, 2009.

[BSE07] Wai Fong Boh, Sandra Slaughter, and J. Alberto Espinosa. Learn-
ing from Experience in Software Development: A Multilevel Analysis.
Manag. Sci., 53(8):1315–1331, 2007.

[BSHA20] Abdul Ali Bangash, Hareem Sahar, Abram Hindle, and Karim Ali. On
the time-based conclusion stability of cross-project defect prediction
models. Empirical Software Engineering, pages 1–38, 2020.

[BSSG20] Neda Hajiakhoond Bidoki, Madeline Schiappa, Gita Sukthankar, and
Ivan Garibay. Modeling social coding dynamics with sampled historical
data. Online Soc. Networks Media, 16:100070, 2020.

[BTL+13] Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang,
and Laurent Réveillère. Popularity, Interoperability, and Impact of
Programming Languages in 100, 000 Open Source Projects. In COMP-
SAC, pages 303–312. IEEE Computer Society, 2013.

[BWGW23] Marvin Muñoz Barón, Marvin Wyrich, Daniel Graziotin, and Stefan
Wagner. Evidence profiles for validity threats in program comprehen-
sion experiments. In ICSE, pages 1907–1919. IEEE, 2023.

159

[BWR+11] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A.
Acar, and Rafael Pasquini. Incoop: MapReduce for incremental com-
putations. In SoCC, page 7. ACM, 2011.

[CBB+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald
Carney, Ugur Çetintemel, Ying Xing, and Stanley B. Zdonik. Scalable
Distributed Stream Processing. In CIDR. www.cidrdb.org, 2003.

[CCP07] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. Identify-
ing Changed Source Code Lines from Version Repositories. In MSR,
page 14. IEEE Computer Society, 2007.

[CCT09] James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance
in Databases: Why, How, and Where. Foundations and Trends in
Databases, 1(4):379–474, 2009.

[CCWA13] Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken.
Applied multiple regression/correlation analysis for the behavioral sci-
ences. Routledge, 2013.

[CDO+15] Casey Casalnuovo, Premkumar T. Devanbu, Abílio Oliveira, Vladimir
Filkov, and Baishakhi Ray. Assert Use in GitHub Projects. In ICSE
(1), pages 755–766. IEEE Computer Society, 2015.

[CDR18] Maximilian Capraro, Michael Dorner, and Dirk Riehle. The patch-
flow method for measuring inner source collaboration. In MSR, pages
515–525. ACM, 2018.

[CGRO14] Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Oster-
mann. A theory of changes for higher-order languages: incrementaliz-
ing λ-calculi by static differentiation. In PLDI, pages 145–155. ACM,
2014.

[Cho20] Using Productive Collaboration Bursts to Analyze Open Source Col-
laboration Effectiveness. IEEE, 2020.

[CIC16] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot.
Findings from GitHub: methods, datasets and limitations. In Proc.
MSR, pages 137–141, 2016.

[CJ18] Haipeng Cai and John Jenkins. Leveraging historical versions of An-
droid apps for efficient and precise taint analysis. In MSR, pages 265–
269. ACM, 2018.

[CLP+15] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco
Oliveto, Annibale Panichella, and Sebastiano Panichella. Defect pre-
diction as a multiobjective optimization problem. Softw. Test. Verifi-
cation Reliab., 25(4):426–459, 2015.

[CSFG19] April Clyburne-Sherin, Xu Fei, and Seth Ariel Green. Computational
reproducibility via containers in psychology. Meta-psychology, 3, 2019.

160

[CSS13] K. K. Chaturvedi, V. B. Singh, and Prashast Singh. Tools in Mining
Software Repositories. In ICCSA (6), pages 89–98. IEEE Computer
Society, 2013.

[CY12] Rada Chirkova and Jun Yang. Materialized Views. Foundations and
Trends in Databases, 4(4):295–405, 2012.

[CZ17] Roberto Di Cosmo and Stefano Zacchiroli. Software Heritage: Why
and How to Preserve Software Source Code. In iPRES, 2017.

[DAB21] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling Projects
in GitHub for MSR Studies. In MSR, pages 560–564. IEEE, 2021.

[DB18] Annette J Dobson and Adrian G Barnett. An introduction to general-
ized linear models. CRC press, 2018.

[DBG+15] Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou,
and Stéphane Ducasse. Untangling fine-grained code changes. In
SANER, pages 341–350. IEEE Computer Society, 2015.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming. ACM Comput.
Surv., 33(3):374–425, 2001.

[dFA20] Breno Bernard Nicolau de França and Nauman Bin Ali. The Role of
Simulation-Based Studies in Software Engineering Research. In Con-
temporary Empirical Methods in Software Engineering, pages 263–287.
Springer, 2020.

[DLR10] Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive
comparison of bug prediction approaches. In MSR, pages 31–41. IEEE
Computer Society, 2010.

[DNRN13] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen.
Boa: a language and infrastructure for analyzing ultra-large-scale soft-
ware repositories. In ICSE, pages 422–431. IEEE Computer Society,
2013.

[DNRN15] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen.
Boa: Ultra-Large-Scale Software Repository and Source-Code Mining.
ACM Trans. Softw. Eng. Methodol., 25(1):7:1–7:34, 2015.

[dPSER20] Jens Van der Plas, Quentin Stiévenart, Noah Van Es, and Coen De
Roover. Incremental Flow Analysis through Computational Depen-
dency Reification. In SCAM, pages 25–36. IEEE, 2020.

[DRNN14] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen.
Mining billions of AST nodes to study actual and potential usage of
Java language features. In ICSE, pages 779–790. ACM, 2014.

161

[EKKM08] Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira Mezini.
Defining and continuous checking of structural program dependencies.
In ICSE, pages 391–400. ACM, 2008.

[ELZ+10] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne,
Seung-Hee Bae, Judy Qiu, and Geoffrey C. Fox. Twister: a runtime
for iterative MapReduce. In HPDC, pages 810–818. ACM, 2010.

[ETL11] Jon Eyolfson, Lin Tan, and Patrick Lam. Do time of day and developer
experience affect commit bugginess. In MSR, pages 153–162. ACM,
2011.

[FBF+20] Filipe Falcão, Caio Barbosa, Baldoino Fonseca, Alessandro Garcia,
Márcio Ribeiro, and Rohit Gheyi. On Relating Technical, Social Fac-
tors, and the Introduction of Bugs. In SANER, pages 378–388. IEEE,
2020.

[Feg16] Leonidas Fegaras. Incremental Query Processing on Big Data Streams.
IEEE Trans. Knowl. Data Eng., 28(11):2998–3012, 2016.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa.
Data exchange: semantics and query answering. Theor. Comput. Sci.,
336(1):89–124, 2005.

[FLHV22] Hongbo Fang, Hemank Lamba, James D. Herbsleb, and Bogdan
Vasilescu. "this is damn slick!" estimating the impact of tweets on
open source project popularity and new contributors. In ICSE, pages
2116–2129. ACM, 2022.

[FLV12] Jean-Marie Favre, Ralf Lämmel, and Andrei Varanovich. Modeling
the Linguistic Architecture of Software Products. In Proc. MODELS
2012, volume 7590 of LNCS, pages 151–167. Springer, 2012.

[FOMM10] Thomas Fritz, Jingwen Ou, Gail C. Murphy, and Emerson R. Murphy-
Hill. A degree-of-knowledge model to capture source code familiarity.
In ICSE (1), pages 385–394. ACM, 2010.

[For82] Charles Forgy. Rete: A Fast Algorithm for the Many Patterns/Many
Objects Match Problem. Artif. Intell., 19(1):17–37, 1982.

[GAB+20] Alessandro Gasparini, Keith R Abrams, Jessica K Barrett, Rupert W
Major, Michael J Sweeting, Nigel J Brunskill, and Michael J Crowther.
Mixed-effects models for health care longitudinal data with an infor-
mative visiting process: A Monte Carlo simulation study. Statistica
Neerlandica, 74(1):5–23, 2020.

[GCB+21] Felix Grund, Shaiful Alam Chowdhury, Nick C. Bradley, Braxton Hall,
and Reid Holmes. CodeShovel: Constructing Method-Level Source
Code Histories. In ICSE, pages 1510–1522. IEEE, 2021.

162

[GdCZ19] Taher Ahmed Ghaleb, Daniel Alencar da Costa, and Ying Zou. An
empirical study of the long duration of continuous integration builds.
Empirical Software Engineering, 24(4):2102–2139, 2019.

[GGMS97] Dieter Gluche, Torsten Grust, Christof Mainberger, and Marc H.
Scholl. Incremental Updates for Materialized OQL Views. In DOOD,
volume 1341 of Lecture Notes in Computer Science, pages 52–66.
Springer, 1997.

[GH06] Andrew Gelman and Jennifer Hill. Data analysis using regression and
multilevel/hierarchical models. Cambridge university press, 2006.

[GHJ98] Harald C. Gall, Karin Hajek, and Mehdi Jazayeri. Detection of Logical
Coupling Based on Product Release History. In ICSM, pages 190–197.
IEEE Computer Society, 1998.

[GHK+19] Bernardo Cuenca Grau, Ian Horrocks, Mark Kaminski, Egor V.
Kostylev, and Boris Motik. Limit Datalog: A Declarative Query Lan-
guage for Data Analysis. SIGMOD Rec., 48(4):6–17, 2019.

[GHLZ13] Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao
Zhou. Datalog and Recursive Query Processing. Found. Trends
Databases, 5(2):105–195, 2013.

[GHV20] Andrew Gelman, Jennifer Hill, and Aki Vehtari. Regression and other
stories. Cambridge University Press, 2020.

[GKIT07] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tan-
nen. Update Exchange with Mappings and Provenance. In VLDB,
pages 675–686. ACM, 2007.

[GKMS00] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey P. Siy. Pre-
dicting Fault Incidence Using Software Change History. IEEE Trans.
Software Eng., 26(7):653–661, 2000.

[GKSD05] Tudor Gîrba, Adrian Kuhn, Mauricio Seeberger, and Stéphane
Ducasse. How Developers Drive Software Evolution. In IWPSE, pages
113–122. IEEE Computer Society, 2005.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian.
Maintaining Views Incrementally. In SIGMOD Conference, pages 157–
166. ACM Press, 1993.

[Gou13] Georgios Gousios. The GHTorent dataset and tool suite. In MSR,
pages 233–236. IEEE Computer Society, 2013.

[GPvD14] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An ex-
ploratory study of the pull-based software development model. In
ICSE, pages 345–355. ACM, 2014.

[GS10] Mark Gabel and Zhendong Su. A study of the uniqueness of source
code. In SIGSOFT FSE, pages 147–156. ACM, 2010.

163

[GS12] Georgios Gousios and Diomidis Spinellis. GHTorrent: Github’s data
from a firehose. In MSR, pages 12–21. IEEE Computer Society, 2012.

[GSB16] Georgios Gousios, Margaret-Anne D. Storey, and Alberto Bacchelli.
Work practices and challenges in pull-based development: the contrib-
utor’s perspective. In ICSE, pages 285–296. ACM, 2016.

[GST90] Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. A Frame-
work for the Parallel Processing of Datalog Queries. In SIGMOD Con-
ference, pages 143–152. ACM Press, 1990.

[GSV16] Georgios Gousios, Dominik Safaric, and Joost Visser. Streaming soft-
ware analytics. In BIGDSE@ICSE, pages 8–11. ACM, 2016.

[GZSvD15] Georgios Gousios, Andy Zaidman, Margaret-Anne D. Storey, and Arie
van Deursen. Work Practices and Challenges in Pull-Based Develop-
ment: The Integrator’s Perspective. In ICSE, pages 358–368. IEEE
Computer Society, 2015.

[HAL18] Johannes Härtel, Hakan Aksu, and Ralf Lämmel. Classification of
APIs by hierarchical clustering. In ICPC, pages 233–243. ACM, 2018.

[Har15] Frank E Harrell. Regression modeling strategies: with applications to
linear models, logistic and ordinal regression, and survival analysis,
volume 2. Springer, 2015.

[Has06] Ahmed E. Hassan. Mining Software Repositories to Assist Developers
and Support Managers. In ICSM, pages 339–342. IEEE Computer
Society, 2006.

[Has08] Ahmed E. Hassan. The road ahead for Mining Software Repositories.
In Frontiers of Software Maintenance, pages 48–57, 2008.

[Has09] Ahmed E. Hassan. Predicting faults using the complexity of code
changes. In ICSE, pages 78–88. IEEE, 2009.

[Hei22] Marcel Heinz. Knowledge engineering for software languages and soft-
ware technologies. 2022.

[HGL11] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Data-
log and emerging applications: an interactive tutorial. In SIGMOD
Conference, pages 1213–1216. ACM, 2011.

[HHG14] Verena Honsel, Daniel Honsel, and Jens Grabowski. Software Process
Simulation Based on Mining Software Repositories. In ICDM Work-
shops, pages 828–831. IEEE Computer Society, 2014.

[HHH+15] Verena Honsel, Daniel Honsel, Steffen Herbold, Jens Grabowski, and
Stephan Waack. Mining Software Dependency Networks for Agent-
Based Simulation of Software Evolution. In ASE Workshops, pages
102–108. IEEE Computer Society, 2015.

164

[HHK20] Yoshiki Higo, Shinpei Hayashi, and Shinji Kusumoto. On tracking
Java methods with Git mechanisms. J. Syst. Softw., 165:110571, 2020.

[HHL+17] Johannes Härtel, Lukas Härtel, Ralf Lämmel, Andrei Varanovich, and
Marcel Heinz. Interconnected Linguistic Architecture. Programming
Journal, 1(1):3, 2017.

[HHL18] Johannes Härtel, Marcel Heinz, and Ralf Lämmel. EMF Patterns
of Usage on GitHub. In ECMFA, volume 10890 of Lecture Notes in
Computer Science, pages 216–234. Springer, 2018.

[HHL20] Marcel Heinz, Johannes Härtel, and Ralf Lämmel. Reproducible Con-
struction of Interconnected Technology Models for EMF Code Gener-
ation. J. Object Technol., 19(2):8:1–25, 2020.

[HK06] Imed Hammouda and Kai Koskimies. Concern based mining of het-
erogeneous software repositories. In MSR, pages 80–86. ACM, 2006.

[HL20] Johannes Härtel and Ralf Lämmel. Incremental Map-Reduce on
Repository History. In SANER, pages 320–331. IEEE, 2020.

[HL22] Johannes Härtel and Ralf Lämmel. Operationalizing threats to MSR
studies by simulation-based testing. In MSR, pages 86–97. IEEE, 2022.

[HL23] Johannes Härtel and Ralf Lämmel. Operationalizing validity of em-
pirical software engineering studies. Empir. Softw. Eng., 28(6):153,
2023.

[HLV17] Marcel Heinz, Ralf Lämmel, and Andrei Varanovich. Axioms of lin-
guistic architecture. In Proc. MODELSWARD 2017, 2017.

[Hon15] Verena Honsel. Statistical Learning and Software Mining for Agent
Based Simulation of Software Evolution. In ICSE (2), pages 863–866.
IEEE Computer Society, 2015.

[HPMY13] Zhimin He, Fayola Peters, Tim Menzies, and Ye Yang. Learning from
Open-Source Projects: An Empirical Study on Defect Prediction. In
ESEM, pages 45–54. IEEE Computer Society, 2013.

[HS13] Matthew Hayes and Sam Shah. Hourglass: A library for incremental
processing on Hadoop. In BigData, pages 742–752. IEEE Computer
Society, 2013.

[HV15] André C. Hora and Marco Tulio Valente. apiwave: Keeping track
of API popularity and migration. In ICSME, pages 321–323. IEEE
Computer Society, 2015.

[HVdM06] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. codeQuest:
Scalable Source Code Queries with Datalog. In ECOOP, volume 4067
of Lecture Notes in Computer Science, pages 2–27. Springer, 2006.

165

[HZ13] Kim Herzig and Andreas Zeller. The impact of tangled code changes.
In MSR, pages 121–130. IEEE Computer Society, 2013.

[IR15] Guido W Imbens and Donald B Rubin. Causal inference in statistics,
social, and biomedical sciences. Cambridge University Press, 2015.

[IYNH19] Rahul N Iyer, S Alex Yun, Meiyappan Nagappan, and Jesse Hoey. Ef-
fects of Personality Traits on Pull Request Acceptance. IEEE Trans-
actions on Software Engineering, 2019.

[JLY+19] John Johnson, Sergio Lubo, Nishitha Yedla, Jairo Aponte, and Bonita
Sharif. An Empirical Study Assessing Source Code Readability in
Comprehension. In ICSME, pages 513–523. IEEE, 2019.

[JM15] Michael I Jordan and Tom M Mitchell. Machine learning: Trends,
perspectives, and prospects. Science, 349(6245):255–260, 2015.

[JMF14] Ahmad Jbara, Adam Matan, and Dror G. Feitelson. High-MCC Func-
tions in the Linux Kernel. Empir. Softw. Eng., 19(5):1261–1298, 2014.

[JSD+20] Rodi Jolak, Maxime Savary-Leblanc, Manuela Dalibor, Andreas Wort-
mann, Regina Hebig, Juraj Vincur, Ivan Polásek, Xavier Le Pallec,
Sébastien Gérard, and Michel R. V. Chaudron. Software engineer-
ing whispers: The effect of textual vs. graphical software design de-
scriptions on software design communication. Empir. Softw. Eng.,
25(6):4427–4471, 2020.

[JTH21] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Ahmed E. Has-
san. The Impact of Correlated Metrics on the Interpretation of Defect
Models. IEEE Trans. Software Eng., 47(2):320–331, 2021.

[KAB+08] Barbara A. Kitchenham, Hiyam Al-Kilidar, Muhammad Ali Babar,
Mike Berry, Karl Cox, Jacky Keung, Felicia Kurniawati, Mark Sta-
ples, He Zhang, and Liming Zhu. Evaluating guidelines for reporting
empirical software engineering studies. Empir. Softw. Eng., 13(1):97–
121, 2008.

[KG11] Siim Karus and Harald C. Gall. A study of language usage evolution
in open source software. In MSR, pages 13–22. ACM, 2011.

[KGB+14] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M. Germán, and Daniela E. Damian. The promises and perils
of mining GitHub. In MSR, pages 92–101. ACM, 2014.

[KGB+16] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M. Germán, and Daniela E. Damian. An in-depth study of the
promises and perils of mining GitHub. Empir. Softw. Eng., 21(5):2035–
2071, 2016.

[KL17] Pavneet Singh Kochhar and David Lo. Revisiting Assert Use in GitHub
Projects. In EASE, pages 298–307. ACM, 2017.

166

[KMK+15] Dimitrios S. Kolovos, Nicholas Drivalos Matragkas, Ioannis Korkontze-
los, Sophia Ananiadou, and Richard F. Paige. Assessing the Use
of Eclipse MDE Technologies in Open-Source Software Projects. In
OSS4MDE@MoDELS, volume 1541 of CEUR Workshop Proceedings,
pages 20–29. CEUR-WS.org, 2015.

[KPB18] Vladimir Kovalenko, Fabio Palomba, and Alberto Bacchelli. Mining
file histories: should we consider branches? In ASE, pages 202–213.
ACM, 2018.

[KSA+13] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Au-
dris Mockus, Anand Sinha, and Naoyasu Ubayashi. A Large-Scale
Empirical Study of Just-in-Time Quality Assurance. IEEE Trans.
Software Eng., 39(6):757–773, 2013.

[KSW+13] Angelika Kusel, Johannes Schoenboeck, Manuel Wimmer, Werner
Retschitzegger, Wieland Schwinger, and Gerti Kappel. Reality Check
for Model Transformation Reuse: The ATL Transformation Zoo Case
Study. In Proc. AMT 2013, volume 1077 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2013.

[KYM06] Huzefa H. Kagdi, Shehnaaz Yusuf, and Jonathan I. Maletic. Mining
sequences of changed-files from version histories. In MSR, pages 47–53.
ACM, 2006.

[Läm] Ralf Lämmel. Software Languages Syntax, Semantics, and Metapro-
gramming. Springer.

[LDKBJ22] Quentin Le Dilavrec, Djamel Eddine Khelladi, Arnaud Blouin, and
Jean-Marc Jézéquel. HyperAST: Enabling Efficient Analysis of Soft-
ware Histories at Scale. In ASE. IEEE Computer Society, 2022. To
appear.

[Len02] Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In
PODS, pages 233–246. ACM, 2002.

[LKMZ12] Thierry Lavoie, Foutse Khomh, Ettore Merlo, and Ying Zou. Inferring
Repository File Structure Modifications Using Nearest-Neighbor Clone
Detection. In WCRE, pages 325–334. IEEE Computer Society, 2012.

[LLC+11] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and
Bongki Moon. Parallel data processing with MapReduce: a survey.
SIGMOD Record, 40(4):11–20, 2011.

[LLN14] Mircea Lungu, Michele Lanza, and Oscar Nierstrasz. Evolutionary
and collaborative software architecture recovery with Softwarenaut.
Sci. Comput. Program., 79:204–223, 2014.

[LOR+10] Dionysios Logothetis, Christopher Olston, Benjamin Reed, Kevin C.
Webb, and Ken Yocum. Stateful bulk processing for incremental ana-
lytics. In SoCC, pages 51–62. ACM, 2010.

167

[LPS11] Ralf Lämmel, Ekaterina Pek, and Jürgen Starek. Large-scale, AST-
based API-usage analysis of open-source Java projects. In SAC, pages
1317–1324. ACM, 2011.

[LSBV17] Davy Landman, Alexander Serebrenik, Eric Bouwers, and Jurgen J.
Vinju. Corrigendum: Empirical analysis of the relationship between
CC and SLOC in a large corpus of Java methods and C functions
published on 9 December 2015. J. Softw. Evol. Process., 29(10), 2017.

[LV14] Ralf Lämmel and Andrei Varanovich. Interpretation of Linguistic Ar-
chitecture. In Proc. ECMFA 2014, volume 8569 of LNCS, pages 67–82.
Springer, 2014.

[LW97] Leonid Libkin and Limsoon Wong. Query Languages for Bags and
Aggregate Functions. J. Comput. Syst. Sci., 55(2):241–272, 1997.

[LWL+05] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Mar-
tin, Dzintars Avots, Michael Carbin, and Christopher Unkel. Context-
sensitive program analysis as database queries. In PODS, pages 1–12.
ACM, 2005.

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:
a system for large-scale graph processing. In SIGMOD Conference,
pages 135–146. ACM, 2010.

[MAH10] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. The evolution
of ANT build systems. In MSR, pages 42–51. IEEE Computer Society,
2010.

[MB20] Ian R. McChesney and Raymond R. Bond. Observations on the Lin-
ear Order of Program Code Reading Patterns in Programmers with
Dyslexia. In EASE, pages 81–89. ACM, 2020.

[McE20] Richard McElreath. Statistical rethinking: A Bayesian course with
examples in R and Stan. CRC press, 2020.

[MG13] Samuel Mimram and Cinzia Di Giusto. A Categorical Theory of
Patches. Electr. Notes Theor. Comput. Sci., 298:283–307, 2013.

[MGF07] Tim Menzies, Jeremy Greenwald, and Art Frank. Data Mining Static
Code Attributes to Learn Defect Predictors. IEEE Trans. Software
Eng., 33(1):2–13, 2007.

[MHJ+15] William J. Martin, Mark Harman, Yue Jia, Federica Sarro, and
Yuanyuan Zhang. The App Sampling Problem for App Store Min-
ing. In MSR, pages 123–133. IEEE Computer Society, 2015.

[Mil06] Greg Miller. A Scientist’s Nightmare: Software Problem Leads to Five
Retractions. Science, 314(5807):1856–1857, 2006.

168

[MKPR11] Anne Martens, Heiko Koziolek, Lutz Prechelt, and Ralf H. Reussner.
From monolithic to component-based performance evaluation of soft-
ware architectures - A series of experiments analysing accuracy and
effort. Empir. Softw. Eng., 16(5):587–622, 2011.

[MMW02] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software de-
velopment through declaratively codified programming patterns. Ex-
pert Syst. Appl., 23(4):405–413, 2002.

[MMWB13] Xiaozhu Meng, Barton P. Miller, William R. Williams, and Andrew R.
Bernat. Mining Software Repositories for Accurate Authorship. In
ICSM, pages 250–259. IEEE Computer Society, 2013.

[Moc10] Audris Mockus. Organizational volatility and its effects on software
defects. In SIGSOFT FSE, pages 117–126. ACM, 2010.

[MPS08] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative
analysis of the efficiency of change metrics and static code attributes
for defect prediction. In ICSE, pages 181–190. ACM, 2008.

[MSR17] Tim Molderez, Reinout Stevens, and Coen De Roover. Mining change
histories for unknown systematic edits. In MSR, pages 248–256. IEEE
Computer Society, 2017.

[MT01] Tom Mens and Tom Tourwé. A Declarative Evolution Framework
for Object-Oriented Design Patterns. In ICSM, pages 570–579. IEEE
Computer Society, 2001.

[MW00] Audris Mockus and David M. Weiss. Predicting risk of software
changes. Bell Labs Technical Journal, 5(2):169–180, 2000.

[MWC19] Tim P Morris, Ian R White, and Michael J Crowther. Using simu-
lation studies to evaluate statistical methods. Statistics in Medicine,
38(11):2074–2102, 2019.

[NBKO21] Sebastian Nielebock, Paul Blockhaus, Jacob Krüger, and Frank Ort-
meier. AndroidCompass: A Dataset of Android Compatibility Checks
in Code Repositories. In MSR, pages 535–539. IEEE, 2021.

[NDNR14] Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan.
Mining preconditions of APIs in large-scale code corpus. In SIGSOFT
FSE, pages 166–177. ACM, 2014.

[NFK+18] Jaechang Nam, Wei Fu, Sunghun Kim, Tim Menzies, and Lin
Tan. Heterogeneous Defect Prediction. IEEE Trans. Software Eng.,
44(9):874–896, 2018.

[NPK13] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. Transfer defect
learning. In ICSE, pages 382–391. IEEE Computer Society, 2013.

169

[NZZ+10] Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim
Herzig, and Brendan Murphy. Change Bursts as Defect Predictors. In
ISSRE, pages 309–318. IEEE Computer Society, 2010.

[OBL10] Joel Ossher, Sushil Krishna Bajracharya, and Cristina Videira Lopes.
Automated dependency resolution for open source software. In MSR,
pages 130–140. IEEE Computer Society, 2010.

[OZR22] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. Smelly
Variables in Ansible Infrastructure Code: Detection, Prevalence, and
Lifetime. In MSR, pages 61–72. IEEE, 2022.

[OZVR21] Ruben Opdebeeck, Ahmed Zerouali, Camilo Velázquez-Rodríguez, and
Coen De Roover. On the practice of semantic versioning for Ansible
galaxy roles: An empirical study and a change classification model. J.
Syst. Softw., 182:111059, 2021.

[PBYI09] Lucian Popa, Mihai Budiu, Yuan Yu, and Michael Isard. DryadInc:
Reusing Work in Large-scale Computations. In HotCloud. USENIX
Association, 2009.

[PCGA08] Massimiliano Di Penta, Luigi Cerulo, Yann-Gaël Guéhéneuc, and Giu-
liano Antoniol. An empirical study of the relationships between design
pattern roles and class change proneness. In ICSM, pages 217–226.
IEEE Computer Society, 2008.

[PCK+96] Peter Peduzzi, John Concato, Elizabeth Kemper, Theodore R Holford,
and Alvan R Feinstein. A simulation study of the number of events per
variable in logistic regression analysis. Journal of clinical epidemiology,
49(12):1373–1379, 1996.

[PFD11] Daryl Posnett, Vladimir Filkov, and Premkumar T. Devanbu. Ecologi-
cal inference in empirical software engineering. In ASE, pages 362–371.
IEEE Computer Society, 2011.

[PFS+20] Valentina Piantadosi, Fabiana Fierro, Simone Scalabrino, Alexander
Serebrenik, and Rocco Oliveto. How does code readability change
during software evolution? Empir. Softw. Eng., 25(6):5374–5412, 2020.

[PML15] Luca Ponzanelli, Andrea Mocci, and Michele Lanza. Summarizing
Complex Development Artifacts by Mining Heterogeneous Data. In
MSR, pages 401–405. IEEE Computer Society, 2015.

[PZS+20] Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino,
Valentina Piantadosi, Rocco Oliveto, Gabriele Bavota, and Massim-
iliano Di Penta. Why Developers Refactor Source Code: A Mining-
based Study. ACM Trans. Softw. Eng. Methodol., 29(4):29:1–29:30,
2020.

170

[QGMW96] Dallan Quass, Ashish Gupta, Inderpal Singh Mumick, and Jennifer
Widom. Making Views Self-Maintainable for Data Warehousing. In
PDIS, pages 158–169. IEEE Computer Society, 1996.

[RBC+17] David R. Roberts, Volker Bahn, Simone Ciuti, Mark S. Boyce, Jane
Elith, Gurutzeta Guillera-Arroita, Severin Hauenstein, José J. Lahoz-
Monfort, Boris Schröder, Wilfried Thuiller, David I. Warton, Bren-
dan A. Wintle, Florian Hartig, and Carsten F. Dormann. Cross-
validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure. Ecography, 40(8):913–929, 2017.

[RD11] Foyzur Rahman and Premkumar T. Devanbu. Ownership, experience
and defects: a fine-grained study of authorship. In ICSE, pages 491–
500. ACM, 2011.

[RDCJ18] Rolando P. Reyes, Oscar Dieste, Efraín R. Fonseca C., and Natalia
Juristo. Statistical errors in software engineering experiments: a pre-
liminary literature review. In ICSE, pages 1195–1206. ACM, 2018.

[RHC+19] Adithya Raghuraman, Truong Ho-Quang, Michel R. V. Chaudron,
Alexander Serebrenik, and Bogdan Vasilescu. Does UML modeling
associate with lower defect proneness?: a preliminary empirical inves-
tigation. In MSR, pages 101–104. IEEE / ACM, 2019.

[RHH+17] Gregorio Robles, Truong Ho-Quang, Regina Hebig, Michel R. V. Chau-
dron, and Miguel Angel Fernández. An extensive dataset of UML
models in GitHub. In Proc. MSR, pages 519–522, 2017.

[RLP13] Coen De Roover, Ralf Lämmel, and Ekaterina Pek. Multi-dimensional
exploration of API usage. In Proc. ICPC 2013, pages 152–161. IEEE,
2013.

[RNKJ11] Coen De Roover, Carlos Noguera, Andy Kellens, and Viviane Jonckers.
The SOUL tool suite for querying programs in symbiosis with Eclipse.
In PPPJ, pages 71–80. ACM, 2011.

[Roo11] Coen De Roover. A logic meta-programming foundation for example-
driven pattern detection in object-oriented programs. In Proc. ICSM,
pages 556–561. IEEE, 2011.

[RPD12] Foyzur Rahman, Daryl Posnett, and Premkumar T. Devanbu. Recall-
ing the "imprecision" of cross-project defect prediction. In SIGSOFT
FSE, page 61. ACM, 2012.

[RR93] G. Ramalingam and Thomas W. Reps. A Categorized Bibliography
on Incremental Computation. In POPL, pages 502–510. ACM Press,
1993.

[RRC16] Mohammad Masudur Rahman, Chanchal K. Roy, and Jason A.
Collins. CoRReCT: code reviewer recommendation in GitHub based

171

on cross-project and technology experience. In ICSE (Companion Vol-
ume), pages 222–231. ACM, 2016.

[RRH+18] Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico Iovino,
Ralf Lämmel, and Alfonso Pierantonio. Systematic Recovery of MDE
Technology Usage. In ICMT, volume 10888 of Lecture Notes in Com-
puter Science, pages 110–126. Springer, 2018.

[RRH+20] Juri Di Rocco, Davide Di Ruscio, Johannes Härtel, Ludovico Iovino,
Ralf Lämmel, and Alfonso Pierantonio. Understanding MDE projects:
megamodels to the rescue for architecture recovery. Softw. Syst.
Model., 19(2):401–423, 2020.

[RvDV12] Steven Raemaekers, Arie van Deursen, and Joost Visser. Measuring
software library stability through historical version analysis. In ICSM,
pages 378–387. IEEE Computer Society, 2012.

[RvDV13] Steven Raemaekers, Arie van Deursen, and Joost Visser. The maven
repository dataset of metrics, changes, and dependencies. In MSR,
pages 221–224. IEEE Computer Society, 2013.

[RvDV17] Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic
versioning and impact of breaking changes in the Maven repository.
Journal of Systems and Software, 129:140–158, 2017.

[SAB18] Davide Spadini, Maurício Finavaro Aniche, and Alberto Bacchelli. Py-
driller: Python framework for mining software repositories. In ES-
EC/SIGSOFT FSE, pages 908–911. ACM, 2018.

[SAH10] Weiyi Shang, Bram Adams, and Ahmed E. Hassan. An experience
report on scaling tools for mining software repositories using MapRe-
duce. In ASE, pages 275–284. ACM, 2010.

[SB10] Yannis Smaragdakis and Martin Bravenboer. Using Datalog for Fast
and Easy Program Analysis. In Datalog, volume 6702 of Lecture Notes
in Computer Science, pages 245–251. Springer, 2010.

[SB15] Anand Ashok Sawant and Alberto Bacchelli. A Dataset for API Usage.
In MSR, pages 506–509. IEEE Computer Society, 2015.

[SBC10] Philip Stutz, Abraham Bernstein, and William W. Cohen. Signal/-
Collect: Graph Algorithms for the (Semantic) Web. In International
Semantic Web Conference (1), volume 6496 of Lecture Notes in Com-
puter Science, pages 764–780. Springer, 2010.

[SBEV18] Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voel-
ter. Incrementalizing lattice-based program analyses in Datalog. Proc.
ACM Program. Lang., 2(OOPSLA):139:1–139:29, 2018.

[SBH+19] César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier
Barais, and Benoit Baudry. The emergence of software diversity in
maven central. In MSR, pages 333–343. IEEE / ACM, 2019.

172

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[SCC02] William R Shadish, Thomas D Cook, and Donald T Campbell. Experi-
mental and quasi-experimental designs for generalized causal inference.
Houghton Mifflin Company, 2002.

[Sch06] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engi-
neering. Computer, 39(2):25–31, 2006.

[SdLJPM18] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Alexandre
Plastino, and Leonardo Murta. What factors influence the reviewer
assignment to pull requests? Information & Software Technology,
98:32–43, 2018.

[SDNR07] Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakr-
ishnan. Declarative Information Extraction Using Datalog with Em-
bedded Extraction Predicates. In VLDB, pages 1033–1044. ACM,
2007.

[SG18] Diomidis Spinellis and Georgios Gousios. How to analyze git reposito-
ries with command line tools: we’re not in kansas anymore. In ICSE
(Companion Volume), pages 540–541. ACM, 2018.

[Sha93] Jun Shao. Linear model selection by cross-validation. Journal of the
American statistical Association, 88(422):486–494, 1993.

[SHH+05] Dag I. K. Sjøberg, Jo Erskine Hannay, Ove Hansen, Vigdis By Kamp-
enes, Amela Karahasanovic, Nils-Kristian Liborg, and Anette C. Rek-
dal. A Survey of Controlled Experiments in Software Engineering.
IEEE Trans. Software Eng., 31(9):733–753, 2005.

[SHL+19] Philipp Seifer, Johannes Härtel, Martin Leinberger, Ralf Lämmel, and
Steffen Staab. Empirical study on the usage of graph query languages
in open source Java projects. In SLE, pages 152–166. ACM, 2019.

[SJAH09] Weiyi Shang, Zhen Ming Jiang, Bram Adams, and Ahmed E. Hassan.
MapReduce as a general framework to support research in Mining
Software Repositories (MSR). In MSR, pages 21–30. IEEE Computer
Society, 2009.

[SKP+20] Mohammed Sayagh, Noureddine Kerzazi, Fábio Petrillo, Khalil Ben-
nani, and Bram Adams. What should your run-time configuration
framework do to help developers? Empir. Softw. Eng., 25(2):1259–
1293, 2020.

[SL09] Taemin Seo and Heesang Lee. Agent-based Simulation Model for the
Evolution Process of Open Source Software. In SEKE, pages 170–177.
Knowledge Systems Institute Graduate School, 2009.

173

[SL16] Thomas Schmorleiz and Ralf Lämmel. Similarity management of
’cloned and owned’ variants. In SAC, pages 1466–1471. ACM, 2016.

[SME+17] Anas Shatnawi, Hafedh Mili, Ghizlane El-Boussaidi, Anis Boubaker,
Yann-Gaël Guéhéneuc, Naouel Moha, Jean Privat, and Manel Abdel-
latif. Analyzing program dependencies in Java EE applications. In
Proc. MSR, 2017.

[SMS16] Ingo Scholtes, Pavlin Mavrodiev, and Frank Schweitzer. From Aris-
totle to Ringelmann: a large-scale analysis of team productivity and
coordination in Open Source Software projects. Empir. Softw. Eng.,
21(2):642–683, 2016.

[SPN+18] Pasquale Salza, Fabio Palomba, Dario Di Nucci, Cosmo D’Uva, An-
drea De Lucia, and Filomena Ferrucci. Do developers update third-
party libraries in mobile apps? In ICPC, pages 255–265. ACM, 2018.

[SRN+14] Reinout Stevens, Coen De Roover, Carlos Noguera, Andy Kellens, and
Viviane Jonckers. A logic foundation for a general-purpose history
querying tool. Sci. Comput. Program., 96:107–120, 2014.

[SSM18] Victoria Stodden, Jennifer Seiler, and Zhaokun Ma. An empirical anal-
ysis of journal policy effectiveness for computational reproducibility.
Proc. Natl. Acad. Sci. USA, 115(11):2584–2589, 2018.

[Ste15] Reinout Stevens. A Declarative Foundation for Comprehensive History
Querying. In ICSE (2), pages 907–910. IEEE Computer Society, 2015.

[Sza21] Tamás Szabó. Incrementalizing Static Analyses in Datalog. PhD thesis,
University of Mainz, Germany, 2021.

[SZZ05] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do
changes induce fixes? In MSR. ACM, 2005.

[TBP+17] Michele Tufano, Gabriele Bavota, Denys Poshyvanyk, Massimiliano Di
Penta, Rocco Oliveto, and Andrea De Lucia. An empirical study
on developer-related factors characterizing fix-inducing commits. J.
Softw. Evol. Process., 29(1), 2017.

[TDH14] Jason Tsay, Laura Dabbish, and James D. Herbsleb. Influence of social
and technical factors for evaluating contribution in GitHub. In ICSE,
pages 356–366. ACM, 2014.

[TH18] Chakkrit Tantithamthavorn and Ahmed E. Hassan. An experience
report on defect modelling in practice: pitfalls and challenges. In
ICSE (SEIP), pages 286–295. ACM, 2018.

[TLPH95] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz.
Experimental evaluation in computer science: A quantitative study.
J. Syst. Softw., 28(1):9–18, 1995.

174

[TM03] Tom Tourwé and Tom Mens. Identifying Refactoring Opportunities
Using Logic Meta Programmin. In CSMR, pages 91–100. IEEE Com-
puter Society, 2003.

[TME+18] Nikolaos Tsantalis, Matin Mansouri, Laleh Mousavi Eshkevari, Davood
Mazinanian, and Danny Dig. Accurate and efficient refactoring detec-
tion in commit history. In ICSE, pages 483–494. ACM, 2018.

[TMHI16] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and
Hajimu Iida. Revisiting code ownership and its relationship with soft-
ware quality in the scope of modern code review. In ICSE, pages
1039–1050. ACM, 2016.

[TMHM17] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and
Kenichi Matsumoto. An Empirical Comparison of Model Validation
Techniques for Defect Prediction Models. IEEE Trans. Software Eng.,
43(1):1–18, 2017.

[TTDM15] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. Online Defect
Prediction for Imbalanced Data. In ICSE (2), pages 99–108. IEEE
Computer Society, 2015.

[VCR22] Camilo Velázquez-Rodríguez, Eleni Constantinou, and Coen De
Roover. Uncovering Library Features from API Usage on Stack Over-
flow. In SANER, pages 207–217. IEEE, 2022.

[Voh16] Deepak Vohra. Apache Parquet, pages 325–335. Apress, Berkeley, CA,
2016.

[Vok04] Marek Vokác. Defect Frequency and Design Patterns: An Empirical
Study of Industrial Code. IEEE Trans. Software Eng., 30(12):904–917,
2004.

[VPR+15] Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark G. J. van den
Brand, Alexander Serebrenik, Premkumar T. Devanbu, and Vladimir
Filkov. Gender and Tenure Diversity in GitHub Teams. In CHI, pages
3789–3798. ACM, 2015.

[VSF15] Bogdan Vasilescu, Alexander Serebrenik, and Vladimir Filkov. A Data
Set for Social Diversity Studies of GitHub Teams. In MSR, pages 514–
517. IEEE Computer Society, 2015.

[WL14] Simon Weber and Jiebo Luo. What Makes an Open Source Code
Popular on Git Hub? In ICDM Workshops, pages 851–855. IEEE
Computer Society, 2014.

[YMNC04] Annie T. T. Ying, Gail C. Murphy, Raymond T. Ng, and Mark Chu-
Carroll. Predicting Source Code Changes by Mining Change History.
IEEE Trans. Software Eng., 30(9):574–586, 2004.

175

[YWF+15] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar T. Devanbu,
and Bogdan Vasilescu. Wait for It: Determinants of Pull Request
Evaluation Latency on GitHub. In MSR, pages 367–371. IEEE Com-
puter Society, 2015.

[YXF+20] Meng Yan, Xin Xia, Yuanrui Fan, David Lo, Ahmed E. Hassan, and
Xindong Zhang. Effort-aware just-in-time defect identification in prac-
tice: a case study at Alibaba. In ESEC/SIGSOFT FSE, pages 1308–
1319. ACM, 2020.

[YYY+12] Cairong Yan, Xin Yang, Ze Yu, Min Li, and Xiaolin Li. IncMR: In-
cremental Data Processing Based on MapReduce. In IEEE CLOUD,
pages 534–541. IEEE Computer Society, 2012.

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Resilient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing. In NSDI, pages 15–28.
USENIX Association, 2012.

[ZHMZ17] Feng Zhang, Ahmed E. Hassan, Shane McIntosh, and Ying Zou. The
Use of Summation to Aggregate Software Metrics Hinders the Per-
formance of Defect Prediction Models. IEEE Trans. Software Eng.,
43(5):476–491, 2017.

[ZLH+21] Kaisheng Zeng, Chengjiang Li, Lei Hou, Juanzi Li, and Ling Feng. A
comprehensive survey of entity alignment for knowledge graphs. AI
Open, 2:1–13, 2021.

[ZMDR22] Ahmed Zerouali, Tom Mens, Alexandre Decan, and Coen De Roover.
On the impact of security vulnerabilities in the npm and RubyGems
dependency networks. Empir. Softw. Eng., 27(5):107, 2022.

[ZN08] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects
using network analysis on dependency graphs. In ICSE, pages 531–540.
ACM, 2008.

[ZPZ07] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting
defects for eclipse. In PROMISE 2007, page 76. IEEE, 2007.

[ZS06] Yuefeng Zhang and Dhaval Sheth. Mining Software Repositories for
Model-Driven Development. IEEE Softw., 23(1):82–90, 2006.

176

