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Chapter 1

Introduction

The natural world is a result of a complex interaction between biotic and abiotic
factors. These interactions occur at a range of spatial and temporal scales and
can be considered as a dynamic and evolving system. Vegetation structure is
one important aspect of this system, and has been widely studied due to its role
as both a biotic system and as a modifier and constructor of habitat. Observed
vegetation patterns are a reflection of their evolution, adaptation, climate vari-
ability, ecosystem structure, and response to anthropogenic factors. They are
therefore a fundamental system to understand in terms of environmental im-
pacts, biodiversity and the maintenance and construction of suitable habitats.
In addition, the succession of vegetation structure over a range of spatial and
temporal scales is often required to understand the historical significance of
biotic communities and the likely trajectory of future environmental systems.
Hence, the ability to model aspects of vegetation distribution over a range of
spatial and temporal scales is of fundamental importance to a wide range of
scientific disciplines.

Vegetation modeling naturally involves the construction of a spatial and tempo-
ral framework to limit the types of interactions that will be considered. These
frameworks differ in style depending on the type of model behavior that is de-
sired. For example, a spatial framework may use a discrete model of space such
as a lattice, where individual cells define a homogeneous region, or may define
space as a continuous surface without an explicit scale associated with the rep-
resentation. In a similar manner the temporal framework defines the rate and
quality of change that can be considered, and is often associated with the life-
cycle characteristics of the vegetation types under consideration. The models
may also describe vegetation distribution as a simple density, a two-dimension
position of individual plants, or may model both position and structure, allow-
ing a consideration of the role of tiered vegetation as a modifier of habitat for
other biotic species.

The work presented in this thesis has been motivated by the problem of be-
ing able to produce a simulation of tussock grassland distribution from the
South Island of New Zealand. In particular, the model requirements were to
be able to consider possible historical patterns and their relationship to cur-
rently observed patterns. This problem is important since there are conflicting
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Chapter 1. Introduction

views regarding the historical succession of these grasslands, and therefore one
approach to addressing possible historical patterns is via simulation. Further-
more, two practical reasons for research regarding grasslands can be adduced.
Firstly, grassland is an important part of agriculture and therefore for economy,
particularly in New Zealand (Lemaire, Wilkins, and J. 2005). Secondly, invad-
ing plant species lead to fast changes in ecology of New Zealand (Fenner and Lee
2001) and a deep knowledge about grasslands is necessary to react effectively
and efficiently to this problem.

This thesis presents a vegetation distribution model based on a cellular au-
tomata that can be generally applied. Flexibility is enhanced for the reason to
apply it to different areas on the South Island of New Zealand, and grassland
species, in particular different tussock species. Individuality of plants and spa-
tially explicit representation are fundamental properties of the intended model.
It should provide a framework for the research of botanists and ecologists and
maybe it can help a tiny bit to protect this beautiful island in the Southern
Pacific.

This thesis is structured as follows: Chapter 2 provides basic information about
modeling. Therefore mathematical and computer-based simulation approaches
for modeling are generally discussed. Thereafter (in Chapter 3) the field of veg-
etation is applied to modeling. Entities of existing vegetation models provide
a basis for the development of a new simulation model and therefore the most
important models will be introduced and discussed. In chapter 4 the require-
ments for the intended model are formulated and argued. The structure of the
model is explained in the chapter model description (chapter 5). Different view
points – regarding, for example, to the process or to the individuals – enhance
an understanding of the whole model. The verification of the model in chapter
6 consists of documented tests and the interpretations of dependencies between
parameter settings and results. The conclusion (chapter 7) shows the most
important gains from this thesis and further implications.
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Chapter 2

Modeling frameworks

2.1 Introduction to this chapter

Many different approaches and frameworks are possible considering the simu-
lation or modeling of vegetation structures. This chapter gives an overview of
general modeling frameworks and provides a basic vocabulary for the subsequent
work. The first part describes the approach of mathematical models, followed
by simulation model frameworks.
However, firstly two questions should be answered. What is modeling and why
is modeling useful?

Modeling is the attempt to construct a replication of parts of reality (Troitzsch
1990). Therefore models are a focused view on certain aspects of a real existing
circumstance. With this definition a broad range of concepts may be considered
as models. Pictures, photographs or even synonyms can be rated as models. In
the context of this paper we will only examine models for scientific use, and in
particular for the modeling of vegetation patterns over space and time.

To answer the second question – what the use of modeling is – there are three
major reasons. One reason to model is to make predictions. Predictions are
necessary for planning and decision making. Another reason for modeling is
understanding. Understanding of relationships between different aspects of a
system is important for scientific work and essential for improvement of exist-
ing models. The third reason is to facilitate the management of complexity
(Thornley 1998). Systems that exist in the real world are often very complex
and difficult to handle, either because their interactions are too numerous to
consider, or because information is not available for all levels of detail.
Modeling provides a powerful approach to reduce complexity. By reducing the
complexity of a circumstance to a few important aspects, a valid scientific appli-
cation can be enabled, even though the system as a macrocosm is too complex
to be represented.

3
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2.2 Mathematical models

Mathematical models are probably the most popular models and have a long
history prior to the advent of computer-based simulations. They are also often
the key elements involved in simulation models. Because of this strong connec-
tion between computer-based simulations and mathematics it can be interesting
to mark out differences, but also similarities.

Mathematicians and computer scientists typically view computer simulation
models as representing the mathematical structure of the objects they simulate.
The flip side is that every simulation model itself is a mathematical object. As
Matiyasevič proved (in his negative solution of Hilbert’s tenth problem), any set
which a computer program in general – and a simulation model in particular –
can output, is Diophantine. A Diophantine set is any set whose members are
those nonnegative whole numbers that give an equation that has a solution,
when they are substituted into the variable x in some Diophantine equation1

(Davis 1982). For example, the state of a system, which is being simulated, can
be encoded as a number. The deterministic action of the computer-based simu-
lation model on this number is matched perfectly by some Diophantine function.
In this case both fulfill the same role. Therefore Diophantine functions are as
powerful as computer simulation models.

A question therefore arises regarding the use of simulations: Does simulation
with a computer-based program make sense when – on the other hand – it is also
possible to explain all circumstances with a (simple) equation? The answer is
given by the lack of possibilities to handle that equation.
Computer-based simulation modeling, however, has the advantage that it is
much easier to manage than the mathematical approach. Simulation also gives
a powerful alternative to utilize empirical research methods. This provides the
opportunity to get a deep understanding of parameters’ (or variables’) impacts
and their relationships. To get the capability to do empirical research with sta-
tistical measurements the simulation models framework has to provide detailed
output information.

Mathematical modeling can be utilitarian for interpretation of outputs from
computer-based simulation models, as well as for the development. Mathemat-
ical models are precise descriptions of relationships between variables. They
may be, for example, differential equations or processes like Markov-Processes.
Markov-Processes are often applied in modeling and therefore should be de-
scribed. They are used for modeling as well as for analysis.
Another mathematical approach – particular to analyse and assess computer-
based simulation – is the regression. Other mathematical models will be de-
scribed later if they are needed.

2.2.1 Markov-Processes

The current state of a Markov-Process is independent of past incidents, and
therefore the model is often represented as a fixed matrix of transition prob-

1A Diophantine equation is polynomial equation with integer coefficients where the vari-
ables also are allowed to be integers only (Ord and Kieu 2003), (Davis 1982).
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abilities. If it is also possible to assume that time and states are discrete a
Markov-Processes can be applied (Georgrii 2004).
Most simulation models are also independent from the past. Time is in almost
every simulation model the determining dimension. Considering a certain part
of a simulation run makes it obvious that the future is (partly) independent from
the past. Certainly, the past has influenced the current state of the simulation
run, but random values must be redetermined. Hence, the future behavior of
the model is independent from the past and Markov-Processes can be applied
as models.

2.2.2 Regression models

Regression models are useful to describe dependencies between different factors
(see also (Berk 2003)). For instance, in vegetation the temperature is some-
how related to the expansion of a certain plant species. The strength of this
dependency can be measured by regressions.

2.3 Simulation models

In the field of vegetation dynamics analytical models are often used in the form of
linear equations, which are typically overly simple for expressing the complexity
of ecosystems (Shugart 1998). Computer-based simulation models, on the other
hand, can provide a powerful approach to produce information about conditions
in the future or by recreating and analysing past conditions. There are many
general scientific fields in which simulation is used, especially in the natural
sciences such as astronomy (e.g. (Pavlidou, Kuijpers, Vlahos, and Isliker 2001),
(Winglee, Dulk, Bornmann, and Brown 1991)), biology (e.g. (Focks, Daniels,
Haile, and Keesling 1995), (Ermentrout and Edelstein-Keshet 1993)), chemistry
(e.g. (Lieberman, Chellamma, Varughese, Wang, Lent, Bernstein, Snider, and
Peiris 2002), (Hassink and Whitmore 1997)), geoscience (e.g. (Raines, Zientek,
Causey, and Boleneus 2002), (Lantuèjoul 2001)), medicine (e.g. (Eddy 2007),
(Patel, Gawlinski, Lemieux, and Gatenby 2001)), and physics (e.g. (Birdsall
and Langdon 2004), (Feynman 1982)).
Simulation models have also been used in social sciences (Gilbert and Troitzsch
1999), especially with the recent interest in modeling over networks. In the
social sciences simulation modeling is used, for example, to produce informa-
tion about economic theories, the behavior of groups or individual. Simulation
models for political science can be seen as another example from the field of
social science, as well as traffic simulations. Traffic simulation helps to plan and
realize more efficient road systems and other urban infrastructure, through the
modeling of individual behaviors and considering the resulting global patterns
exhibited by the system. These types of models are also difficult to state mathe-
matically and therefore simulation often allows complex systems to be modeled
without an explicit mathematical basis. Here we can find another example for
the interdependency of computer-based simulation and mathematics. However
that may be, in each field, where simulation is used, different aspects must be
considered.

The aim of this thesis is to develop a computer-based simulation model for a
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vegetation distribution in the Southern Island of New Zealand and the model’s
aim is to provide realistic behavior of the propagation and distribution of vege-
tation species over space and time. New Zealand is the most isolated continental
island group (Halloy, Mark, and Dickinson 2001). Because of this isolation, the
external influences are minimized and it is possible to perceive vegetation within
this environment as a closed system. Hence, these islands provide ideal condi-
tions for an application of a (simulation) model.

In summary, it is possible to argue that simulation models can be adapted to the
field in which they are used. Possibly the main advantage of their application
is to handle non-linear properties. The disadvantage is the lack of tractability
and generality. Therefore the results of a simulation model are always uncer-
tain and they have to be seen critical. To compensate for this disadvantage
it is possible to compare different results from identical simulation models out
of different runs with each other (also referred to as Monte-Carlo-Simulation).
Thereafter statistical analysis can facilitate the measurement of reliability and
other indicators of the models goodness out of varying results.

2.3.1 Cellular automata

Cellular automata consist of topologically or metrically structured identical cells
typically arranged in a grid. Each cell can be in one of a number of predefined
states (Gilbert and Troitzsch 1999). The grid is therefore a representation of
discrete space.
Time proceeds also in discrete steps (Gilbert and Troitzsch 1999), although the
model may run2 in either a synchronous or asynchronous form of updating.
The cells states and the adoption of other states are controlled by rules. Often
these rules consider the states of the neighbor cells. To clarify which cells are a
neighbor basically two simple definitions for a two-dimensional grid exist3.
Firstly the von Neumann neighborhood uses the north, south, east, west cells
and the current cell, thus giving five cells (see figure 2.1a). Secondly the Moore
neighborhood represents the neighborhood as nine cells, the current cell it-
self and the surrounding eight cells (north, north-east, east, south-east, south,
south-west, west and north-west) (see figure 2.1b). It is possible to assign the
von Neumann and the Moore neighborhood into a three- or more dimensional
context. In a one-dimensional context both definitions of neighborhood are
identical.
The shape of each cell in a cellular automata’s grid is not necessarily a square.
As long as the cells’ number of dimensions is equal to the number of dimensions
of the grid, every conceivable shape is possible. (For example, a two-dimensional
cell cannot be assigned to a three-dimensional grid.) Therefore a regular tessel-
lation is not compulsory and irregular tessellations are also possible.
Figure 2.2 shows a grid of regular tessellation (a) and an example of irregular
tessellation (b). For a regular tessellation the form of shape can also be a tri-
angle or a hexagon (Kier and Witten 2005) and even more complicated shapes

2A simulation run is from now onwards defined as “a single time path with fixed values for
all its inputs and parameter” (Kleijnen 1998).

3In fact they are also applicable for one- and three-dimensional grids, but in principle the
definitions are the same, independent of the amount of dimensions.
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Figure 2.1: von Neumann and Moore neighborhood

are feasible for regular tessellations4.

Cellular automata defining are commonly defined as a grid of regular, or identi-
cal cells (e.g (Wolfram 1998) , (Gutowitz 1991)). However, some models require
the representation of space as irregular cells, and that is possible (Flache and
Hegselmann 2001).
This (little) disagreement derives possibly from the different fields where the
cellular automata have been applied. For instance in ecology it is often useful
to have identical cells and thereby a regular tessellation, if the objects of simu-
lation are homogeneous enough to assume an identical structure. In contrast to
that stands the field of social science, as an example. Different objects can be
represented by different sized cells. On the other hand, is it possible in ecology
to aggregate homogeneous areas to cells, and these cells are often geometrically
different, and if additionally the grid should keep its spatially explicit charac-
teristic, it has to be irregular. That is often the approach in ecology (Polack
and Stepney 2005).
However, making a general statement that links a science field to either regular
or irregular tessellation is not possible. The important aspects is that both –
regular and irregular tessellations are possible.

It is feasible to portray a cellular automata’s topology not as grid, but as
a network. The frequent usage of the term “grid” in literature (e.g. (Dijk-
stra, Timmermans, and Jessurun 2000), (Zhang, Sato, Takahashi, Muraoka,
and Chiba 1999), (Toffoli and Margolus 1987)) suggests that the structure must
be homogeneous, but in fact every topology for a cellular automata is possi-
ble. Certainly, the most common topology is the grid, but the term lattice is
(slightly) more formal and allows a more abstract view on topology, because it
includes the network topology.
In a network topology the cells’ positions are not explicitly required to be spa-

4Some paintings of the artist M.C. Escher are examples for such shapes.
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Chapter 2. Modeling frameworks

Figure 2.2: Regular and irregular tessolations

tially located, however the topological relationship between cells (i.e. the neigh-
bors) are defined by the connectivity of the network. This abstract way to
design neighbors allows spatial relationships that are not necessarily related to
any form of multi-dimensional space, although the edges of the network may in
fact be associated with a spatial dimension.
The network topology can embody every possibly neighborhood. That means
that the grid topology is just a particular kind of a network topology. Therefore
the network topology is a powerful approach, but its modeling is more difficult
than a regular topology. Concerning topology a statement from Toffoli and Mar-
golus is quite appropriate. They argue that basically every cellular automata
is a network of interacting cells (Toffoli and Margolus 1994). Hence, there is a
need to distinguish between a regular (a) and an irregular network topology (b)
as shown in figure 2.3.

In summary, there are two main criteria for structuring a cellular automata.
One is the tessellation and the other is the topology. The regular tessellation,
combined with a regular topology seems to be the most common form of a
cellular automata5.

2.3.2 Agent-based models

The central concept of agent-based or multi-agent-based models are the self-
contained programs or agents. Based on their perceptions of the environment
the agents make decisions and are consequently controlling their own behavior
(Huhns and Singh 1998). Four fundamental characteristics can be stated for
agents. Firstly, autonomy, each agent has direct control over its behavior. Sec-
ondly, social ability, that makes an interaction between different agents possible.
Thirdly, reactivity, an agent can perceive the environment and interact with it.

5By verifying the simulation model that will be developed, a function wind shows how
powerful the network topology is (see section 6.2).
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Figure 2.3: Classic cellular automata and network topology

Lastly, proactivity, that means agents are able to take initiative. By taking
initiative their strategic behavior becomes notable (Wooldridge and Jennings
1995).
The difference between agent-based and multi-agent-based models is just the
fact that agents in a multi-agent-based system work in teams, which allows the
simulation of group behavior and cooperation.

2.3.3 Individual-based models

In agent-based models and cellular automata the aggregation of several individ-
uals to one object is possible. However, modeling individuals means a strong
disaggregation of these objects. Every single individual is modeled and sim-
ulated separately (Grimm, Berger, Bastiansen, Eliassen, Ginot, Giske, Guss-
Custard, Grand, Heinz, Huse, Huth, Jepsen, Jørgenson, Mooij, Müller, Pe’er,
Piou, Railsback, Robbins, Robbins, Rossmanith, Rger, Strand, Souissi, Still-
man, Vabø, Visser, and DeAnglis 2006). This provides some advantages, be-
cause the modeling is very detailed. On the other hand, it limits the number of
simulation objects.
Vegetation modeling often needs large numbers of simulation objects, but aggre-
gation is difficult for a natural environment. Biodiversity leads to heterogeneous
areas, even over very small areas. The decision as to whether individual-based
modeling or aggregation should be applied cannot be made in general.
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Chapter 3

Current approaches and
methods in modeling
vegetation

3.1 Introduction to this chapter

The current approaches to model vegetation distribution, particularly in New
Zealand, are based mainly on Markov-Processes (Lough, Wilson, Mark, and
Evans 1987) or finite state models1 (Grove, Mark, and Dickinson 2002) (West-
oby, Walker, and Noy-Meir 1989).
Finite state models are often used in ecology (see (McPherson and DeStefano
2003), (Stringham, Krüger, and Shaver 2003)), especially in modeling of grass-
land systems (see (Humphreys 2007), (Cowling, Richardson, and Pierce 1997),
(Rodriguez Iglesias and Kothmann 1997)). A finite state model contains a
catalog of alternative states and transitions from one state to another. The
transitions are triggered by natural or artificial events and they provide the dy-
namics of the system (Perrings 1995).
Because of the need to define all possible states before application, a finite state
model cannot produce general novel results. Interaction between individuals
can certainly produce results that are not expected. In terms of basic novelty,
however, the modeling method is limited, because states which are not consid-
ered are not possible.
Computer-based simulation models, on the other hand, can provide richer dy-
namics compared with finite state models. The reason for this is that simulation
models do not require the explicit definition of all possible states in advance.
The first step to consider, regarding the simulation model – which will be devel-
oped as a part of this study – will be a review of the current literature. Different
types of models to simulate vegetation will be discussed. Important aspects for
comparing and describing these models are given in table 3.1. If the literature
provides enough information, all aspects will be discussed in the context of the
existing models.
Later an evaluation of the most useful approaches will enhance the development

1Finite state models in ecology are most often called state-and-transition models.

10



Chapter 3. Current approaches and methods in modeling vegetation

Form of spatial representation
Individual-based model versus area or distribution models based approach
Spatial modeling
Spatial scales
Temporal modeling
Temporal scales
Paramterization
Limitations and assumptions
Possibility for integration of real data

Table 3.1: Aspects for the development of a vegetation distribution model

for a general computer-based simulation model for grasslands in New Zealand.

3.2 Structuring existing models

In the current literature a range of different vegetation models exists. Every
type provides different advantages and disadvantages. Vegetation models are
strongly connected to landscape models and often the term landscape model is
used for both – landscape models and vegetation models (Perry and Enright
2006). However, they are basically not the same, since landscape models of-
ten consider additional aspects like erosion. However that may be, these terms
should not lead to confusion even though they are sometimes used synony-
mously.

Initially it is useful to consider the structure of existing models. Different
aspects will be used to group the models. Such aspects can be the scientific
method or the object of the model. Doubtless there are many dependencies
between these aspects, but structuring the models in this way provides a better
understanding for the important aspects of this project’s model. The review
will provide a background for the subsequent approach of this work and will
hopefully give new perceptions of the scope and limitations of the work.

3.2.1 Mathematical models in vegetation

In the field of vegetation dynamics mathematical models are often used in the
form of linear equations (Horn, Shugart, and Urban 1989). However, they are
typically overly simple for expressing the complexity of ecosystems (Shugart
1998). The typical mathematical model in ecology is the regression model, of-
ten expressed as a combination of linear terms.

Often it makes sense to use mathematical models to evaluate single aspects
of a model. The influence of one parameter on the predictions of a model, gen-
erally described as sensitivity analysis, can often be used to determine critical
aspects of the modeled system. This has already been discussed in general (see
section 2.2).
The existing mathematical models in the field of ecology and vegetation are not
useful for the purpose of this paper, because of their specialization on certain
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aspects or empirical data. An exception could possibly be the application of
these data at the stage of verifying outputs from the simulation.

3.2.2 Simulation models in vegetation

Simulation models are often used in the field of ecology, but these models are
adjusted for special regions and species, as we see later. Transformations to
other regions or characteristics seem to be difficult or even impossible. A com-
plete new development might be easier. However, it makes sense to discuss these
approaches to get knowledge and ideas for the development of a model.
To structure vegetation simulation models, two main approaches are of note.
Firstly, the area of spatially explicit landscape models and secondly, the gap
replacement models (Perry and Enright 2006).

Spatially explicit landscape Models

Spatially explicit landscape models are often used to simulate the spread of fire
in vegetation areas (Sklar and Costanza 1991) and they have been extensively
refined and extended since their initial development in the 1970s. Nowadays
spatially explicit landscape models are often combined with geographical infor-
mation systems (GIS) (Perry and Enright 2006). Miller et al. define vegetation
modeling as “predicting the distribution of vegetation across a landscape based
on the relationship between the spatial distribution of vegetation and environ-
mental variables” (Miller, Franklin, and Aspinall 2007, p. 225). Hence, spatial
explicitness is a required element for vegetation modeling.
In vegetation modeling the spatial environment and relationships are clearly
a central criteria. To prevent potential confusion, it must be stated that the
criteria of a spatially explicit representation depends on the model’s purpose.
For example, economic models are often spatially explicit in their field only,
but from an ecological point of view the same models are not spatially explicit
(Anselin 1992).
An example – out of the field of economy – can be a model where agents com-
municate. All agents are scattered somewhere in a space. The ability to com-
municate is not influenced by the distance between the agents. Hence, the exact
position does not matter and they are placed randomly. In ecologic terms the
model is not spatially explicit, because of the random placement, but for the
economists the localization is not important, they can assume that there are
modern ways of communicating, like telephone.

Spatially explicit landscape models are often regarded to large areas (i.e. small
scales) and for that reason most of them are highly aggregated (Pausas J. and
Noble 1997). On the other hand, unaggregated – individual-based – landscape
models are presentational, but they must be applied to small area (i.e. large
scales), because of limited computing power.

Gap replacement models

All gap replacement models are based on the same kind of design. They are also
known as mechanistic approaches (Martin 1992) and consist of discrete areas
which are also called patches. The whole environment is set up like a mosaic
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Light X X X X
Climate X X X
Moisture X
Leaf litter X
Mineral soil X X
Herbivore X X
Seed pool X X
Fire X
Vegetative Reproduction X X
Phenology of seed X
Dormancy X X
Site availability X X

Table 3.2: Different filters in entities of gap models (Leishman, Hughes, French,
Armstrong, and Westoby 1992, p. 603)

of these patches (Leishman, Hughes, French, Armstrong, and Westoby 1992).
Perceiving the mosaic as a lattice and the patches as cells leads to the idea
that this definition is quite similar to the description of a cellular automata (see
section 2.3.1). In fact gap replacement models are individual-based simulation
models in a cellular automata (Perry and Enright 2006).

Often the gap replacement models are labeled as gap models only. They all
simulate the dynamics of tree populations at annual time steps2. Growing is
based on the current size and it is negatively influenced by crowding or shading.
In addition, mortality is often considered (Shugart 1987).

Gap replacement models have been used for different research objectives. To
get an overview of the different entities of gap models table 3.2 shows different
gap models and which filters3 are used.
The most important existing gap replacement models will be described next:

JABOWA: JABOWA is an acronym for the developers names (Janak, Botkins
and Wallis) and can be seen as the master pattern from which all other gap
replacement models are derived. It was developed in 1972 and it is spe-
cialized for modeling forestry systems (Botkin, Janak, and Wallis 1972b).
One of the major aspects that are modeled in JABOWA is the canopy
size of a tree (Shugart 1984). This is important for light distribution.
Smaller trees or plants may be disadvantaged, because vast and dense
canopies of bigger plants prevent the availability of the resource light (see
also (Aussenac 2000)). The modeled space is two-dimensional and the

2Later an exception will be introduced (see the ZELIG model on page 14).
3Filters are certain properties of the environment (Leishman, Hughes, French, Armstrong,

and Westoby 1992). Therefore filters are parameters that represent the environment and
aspects of species, too.
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calculation of light availability occurs only by considering the canopies of
the neighbored trees (Botkin, Janak, and Wallis 1972a).
A special aspect about JABOWA is that the cells cannot communicate at
all. They only receive instructions. The cells are discrete and arranged in
a lattice (Deutschman, Levin, Devine, and Buttel 1997). The cell’s lack
of the ability to communicate seems to be extraordinary in the context of
a cellular automata.
The cells size is constructed for the assumed maximum size of a canopy
(Deutschman, Levin, Devine, and Buttel 1997).

FORET: FORET stands for Forests of Eastern Tennessee. It was developed
by Shugart and West in 1977, and it is a descendant of JABOWA. The
most distinctive change is the ability of the cells to communicate. The cells
of FORET are arranged discretely, as well as in JABOWA. A more de-
tailed modeling framework has been implemented allowing trees to sprout
out of the root or the stem. Also the resource light is a central aspect in
FORET (Deutschman, Levin, Devine, and Buttel 1997) and reproduction
by seedlings is new compared to JABOWA (Shugart and Prentice 1992).

FORICO: The FORICO model was developed by Doyle in 1982. Its purpose
is to simulate the Puerto Rican rain forests under the effects of hurricanes
(Shugart, Smith, and Post 1992). It can process 36 different tree species
(Doyle 1982).
The model simulates a forested area of 1/30 ha and the time steps are –
as usual for gap replacement models – yearly. Growth, death and estab-
lishment of new trees is the modeled sequence. The major result is that
a diversity in the vegetation structure can help to prevent damages from
hurricanes (Doyle, Shugart, and West 1982).

ZELIG: The ZELIG tree simulator model was designed to consider the growth
and mortality of trees. Urban finished the model in 1980. The tempo-
ral interval which is used is one month (Miller and Urban 1999). ZELIG
retains all important features of its parent model which is the FORET
model. The scale of the model is an area of 10 x 10 meters for each cell.
The number of cells is 900. Therefore an area of 90,000 square meters can
be simulated by the model (Urban, Bonan, Smith, and Shugart 1991).

BRIND: BRIND is another model developed for a certain region. It simulates
a 1/12 ha area of an Eucalyptus forests near Canberra in Australia. It
was created by Noble, Shugart and Schauer in 1980 (Noble, Shugart, and
Schauer 1980).
The model has many successor models – for instance the EDEN model
(Pausas J. and Noble 1997) – but it cannot provide novel ideas of mod-
eling vegetation. However, the model and its successors show that a spe-
cialization to other regions makes a complete remodeling necessary. This
can be prevented by the development of a common model.
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Kiambram: The Kiambram model is an approach by Shugart in 1980. The
model was used to simulate the sub-tropical rain forest in Australia (Van-
clay 1995). The name is derived from the aboriginal word for thick forest.
Kiambram allows the modeling of 125 species and is a detailed gap re-
placement model developed by different repetitions of design, application
and verification (Shugart, Mortlock, Hopkins, and Burgess 1980). Subse-
quently the OUTENIQUA system was developed based on concepts from
this model.

OUTENIQUA: OUTENIQUA is named after a mountain range in South
Africa and was developed by van Daalen and Shugart (van Daalen and
Shugart 1989). The model seems to be very specialized, and therefore
does not contribute to general modeling techniques.

FORENZ: The reason for mentioning FORENZ is that is has been developed
for forests in New Zealand (Shugart, Smith, and Post 1992). It has been
derived from JABOWA and FORET (DeVelice 1988).
The model uses an area of 1/10 ha and can represent five certain species.
It is designed very simply and forgoes parameters like temperature and
light (DeVelice 1988). Because of this simplicity it is easy to handle, but
it is also surprisingly reliable. Comparing the results of field observations
(see (Mark, Scott, Sanderson, and James 1964)) with this model was used
to support the models coherence.

FORMIND: The FORMIND model is very well described in the literature
compared to most other models. Developed by Köhler and Huth in 1997
it uses an area of 20 x 20 meters. An interesting approach in FORMIND
is that similar species are aggregated to functional groups (Köhler and
Huth 1998). Hence it is basically not individual-based. This provides the
advantage that many different species can be modeled in a simple way.
FORMIND was successfully evaluated and further versions were devel-
oped (Köhler, Ditzer, Ong, and Huth 2001).

SORTIE: SORTIE is based on modeling and simulating the diameter of a tree
stem. The resources which are contained in the model are water, light
and nitrogen. Wind and fire can be simulated in SORTIE, but its prin-
ciple task is to get information about the growth and mortality of tree
communities or single trees and the amount of wood they can produce
(Deutschman, Devine, and Buttel 2000).
Because of the purpose of this model it seems to be developed for eco-
nomic forecasting only. Forest management is probably the only field that
is interested in the amount of wood.
Competition in SORTIE happens only with regards to light. The devel-
opers of the model argue that the simulation addresses a real existing part
of a forest4, but the positions of the individuals are determined randomly

4More precisely it is regarded to an oak forest (Pacala and Deutschman 1995) in the
northeast of Connecticut in the USA (Deutschman, Devine, and Buttel 2000).
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(Pacala, Canham, Saponara, Silander, Kobe, and Ribbens 1996). This
may seem contradictory, but in a homogeneous area, this approach could
be useful.
The gap replacement model can process empirical data and it works as
an individual-based simulation (Deutschman, Levin, Devine, and Buttel
1997). The ability to handle empirical data seems to be a useful concept,
for obvious reasons. Otherwise, the model would be too much based on
assumptions that cannot enhance the quality of results or be justified.
The functionality of light should be described more detailed, because it
seems to be the key function in SORTIE. The competition between trees
in SORTIE is only about light. This seems to be typical of gap replace-
ment models. The data about light is an aggregated value for a whole
season. The distribution of light is calculated for each individual tree.
The simulation program regards the size, density, position and species of
the neighborhood. After the amount of light for each tree is calculated,
the resulting value is used as the basis to determine the probabilities for
mortality for each tree and the growth rate (Deutschman, Devine, and
Buttel 2000).

Common to all of the gap replacement models is that they are developed to
model forests or trees. Often vegetation simulation is put on the same level as
forest simulation. However, since forest models are principally concerned with
the growth and management of a controlled environment there are some doubts
as to how applicable their methods are when general vegetation patterns are
considered.
Also the competition about light – which is essential in all gap replacement
models – seems to be less important for small sized vegetation. Smaller plants
like tussock grass and and other grassland species, like herbages, are not influ-
enced by their neighbors in terms of light.
These plants are not so high that they can trigger shade, neither do they have
canopies. Experimental research examining shade for grassland species has
shown that a strong influence between mortality – particular for seedlings –
and shade exists (Silvertown and Tremlett 1989), (Goldberg and Werner 1983).
However, the trigger for shade in those experiments has not been natural. They
had to place some artificial barriers to prevent light. Hence, light as resource can
be ignored by examining grasslands and therefore the gap replacement models
are inappropriate. However, even if the models of the gap replacement are not
suitable to the purpose of grassland simulation, many ideas are derived from
these methods of modeling. So the individual-based approach seems to be suc-
cessful tested by those models. Also the gap replacement models show that
small areas – like 1/30 ha for FORICO or 1/10 ha for FORENZ – are useful to
model, and not too small for vegetation models.

3.2.3 Forest, non-forest and vegetation models

It can be useful to distinguish models, which are solely concerned with trees and
groups of trees, the forest models, from models which consider only plants (with-
out trees) and from models which consider any form of plants, the vegetation
models.
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Forest models

Many forest models are developed to predict the growths of trees. Mortality
and reproduction is not included. These models are used in forestry (Botkin,
Janak, and Wallis 1972b). Their aim is to provide projections of future income
potentials. The stem diameter and the growth of a tree is more important than
for example competition between seedlings, because human influence can con-
trol seedlings.

The important forest models are already discussed (see section 3.2.2). They
can provide new ideas for the development of a vegetation distribution model,
however both approaches – forest models and vegetation distributions models –
are very different. Therefore a more detailed discussion makes no sense in terms
of the goal for this research. Instead non-forest models should be examined.

Non-forest models

Non-forest models are models which consider smaller plants only (Shugart,
Smith, and Post 1992). Hence models that examine grassland are also non-forest
models. Two models that are described in detail could be found in literature.

AcevedoRaventòs: AcevedoRaventòs5 is a model which simulates three species
of grass in the Venezuelan savanna during a period of one year. Fire is
an important aspect, because usually once a year widespread fire destroys
the plants, except the roots. The model is based on very detailed data
collection and shows an effective way to implement reproduction. How-
ever, it should be mentioned that the three vegetation species considered
by this model exclusively use a reproduction strategy by placing shoots
(Acevedo and Raventòs 2002).
The model provides an advantage by being very simple. On the other
hand, the period of only one year is quite short and allows no long-term
measurements. Fire is the reason, but it occurs regularly only in certain
regions.

WinklerKlotz: The model from Winkler and Klotz6 is applied to a certain
grass area in Germany. The plants in the model use two strategies to re-
produce: Cloning and sexual reproduction. The simulated area is divided
into cells of size 1 x 1 cm arranged in a lattice of 100 x 100 cells, which
means large-scale (in the sense of small area) behaviors are considered.
Different weather influences are considered (Winkler and Klotz 1997).

Vegetation models

Specialized models for universal vegetation – trees and for instance grassland –
are rare. Modeling vegetation in general is much more complex than the par-
ticular development of a forest or grassland environment.
The first justification for this statement is the fact that mainly data is available

5This model has no special name so the developers names are used.
6The authors did not designate the model with a name as well as Acevedo and Raventòs.
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about pure forests. The governmental and economic concern regarding forests
seems to be more significant than the scientific interest of common vegetation
or plants (Shugart, Smith, and Post 1992). Another reason is the already men-
tioned complexity of vegetation systems. Vegetation includes trees and smaller
plants, at the same time, while the forest models consider trees only. The inter-
action between trees are not so complex especially when the quantity of different
tree species is low. Also the size of entities is quite similar. If plants and trees
interact in one model, aspects like the light distribution must be considered
more carefully than in models without smaller plants, as well as in a model of
smaller plants without trees.
Furthermore the space which a plant takes is usually smaller. Hence, there are
more plants in a given area than trees, and the properties of the system may re-
quire relationships to be modeled at multiple scales. The number of vegetation
models is noticeably less than the number of forest models (Shugart, Smith, and
Post 1992) or the non-forest models.

3.2.4 Different approaches to vegetation-climate models

Vegetation is influenced by the climate but in addition the climate is also in-
fluenced – vice-versa – by vegetation (Martin 1992). On the basis of this fact
the existing models in vegetation distribution can be categorized in a different
manner. Possibly some aspects of the vegetation-climate models are assignable
for the development of a grassland distribution model, although a feedback from
grassland to climate is unlikely.

Probabilistic approaches

The probabilistic approaches are based on empirical data out of surveys (Martin
1992). This seems to be useful particularly in areas which are not influenced
by human activities like forestry or other anthropogenic impacts. Probabilities
can be generated out of the survey data. Probabilistic approaches assume that
single plants can be replaced with plants of other species or also with the same
species (Martin 1992).
An example for a probabilistic approach is the model FATE 7. FATE uses a
discrete pattern to simulate a vegetation area. Reducing complexity of different
species is possible by grouping different species in cohorts (Moore and Noble
1990) which is a similar approach to considering functional groups. Criteria
for this grouping is, for example, the age of plants. Hence the type of species
can be ignored if the behavior is similar given a similar age. The fact that the
parameters of the FATE model are static over the simulated timespan should
be noted as a limitation. On the other hand, it can be useful for certain re-
search foci. The coefficients of the model, which determine the probabilities
of assumed aspects for each species, are constant during the whole simulation
process (Martin 1992).

Inferential approaches

The inferential approaches are linked to the fact that plants should establish and
grow to a point of maturity. For that purpose data out of biology and botany

7Fate is an acronym for Functional Attributes in Terrestrial Ecosystems (Terradas 2005).
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Figure 3.1: Empirical approaches

is needed. Measurements out of laboratories provide the data about the plants
physiology, for instance the demand of water or the responses of vegetation to a
change in temperature or other environmental conditions (such as soil nutrients)
(Martin 1992). The main object of inferential approaches is the vegetation and
not the climate, even though the climate is also part of these models.

Correlative approaches

The correlative approaches are divided into empirical, statistical and threshold
approaches (Martin 1992).

• Empirical approaches

The empirical approaches are very similar to the inferential approaches. The
difference is their focus. While the inferential approaches are mainly linked to
the individuals (or groups of individuals), the empirical approaches are respec-
tively linked to environment and climate.
The empirical approaches are based on empirical data of the environmental con-
ditions. The environment itself is modeled in four levels on the basis of climatic
zones. They are distinguished by climatic criteria, like the influence of light,
warmth, etc.. Given a particular climatic zone the current vegetation is mod-
eled. Typical areas of vegetation are summarized and linked to the environment.
The result is a typical vegetation associated with the climatic zone (Emanuel,
Shugart, and Stewenson 1985) (see figure 3.1).
The simulation of these models allows the prediction of changes in the vege-
tation caused by a change in climatic conditions. For example, if the climatic
conditions in one area are changing, another vegetation (which is typical for the
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new climatic conditions) will replace the current vegetation.

• Statistical approaches

The statistical approaches work with the so-called climate space (Gates
1980). The climate space is a set of environmental conditions in which an
organism can exist (Martin 1992). Therefore it is necessary for the survival of
the organism that the conditions of the environment are a subset of the climate
space.
The reason for the name statistical approaches seems to be that statistical mea-
surements are used to determine and characterize the set of climate spaces.
One example from the statistical approach is the BIOCLIM model. In BIOCLIM
the sets of environmental conditions for the survival of species are declared as
envelopes (Walker and Cocks 1991). The model is very popular and also in use
for modeling possible distributions for animal species (Lindenmayer 1996).

• Threshold approaches

Threshold approaches add to inferential, empirical and statistical approaches
some dynamic aspects, or constraints. For example, the propagation of species
into new areas is limited to one kilometer per year (Martin 1992). This assump-
tion would probably be adjusted, depending on the species and environmental
conditions. For instance, because of the prevailing wind direction.

Ecophysiological approaches

These kind of approaches use experimental data about an organisms minimum
requirements. These data comprise the amount of sun light, the minimum
temperature and the water balance (which is the ratio of incoming and outgoing
water in the vegetation) (Woodward and Rochefort 1991).

3.2.5 Other models

There are other models in the field of vegetation modeling, which do not easily
fit into the current classification. Models which possibly contribute new aspects
or ideas to the aim of this research will now be discussed.

Invasion models

Invasion models in the field of vegetation focus on the competition between
plants. Tolerances of environmental conditions are important. Because of the
focus on competition, individual-based models are the most common approach
in this field (Bolker and Pacala 1999).
In the field of invasion models regarding vegetation distribution additional influ-
ences are provided by modeling wind (Hastings, Cuddington, Davies, Dugaw,
Elmendorf, Freestone, Harrison, Holland, Lambrinos, Malvadkar, Melbourne,
Moore, Taylor, and Thomson 2005). The influence of wind could also be a cru-
cial influencing factor for non-invasion models.
Invasion models are basically very similar in their structure to non-invasion
models. The difference to non-invasive models is primarily the focus and the
distinction of invading and native species.
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Genetic focused models

Genetic based models are applied to animal and plant species and basically
concentrated on propagation and success of certain genes in a population. En-
vironmental aspects are considered. The best described simulation model in the
literature is QU-GENE (QUantitative-GENEtics) (Wang, van Ginkel, Podlich,
Ye, Trethowan, Pfeiffer, DeLacy, Cooper, and Rajaram 2003).

QU-GENE is a highly flexible software with graphical interfaces and detailed
opportunities to generate outputs (Podlich and Cooper 1998).
The genetic focused models seem to be all considering humanly genetic manip-
ulated species. These are the best explored organisms. For a natural vegetation
model that works with genetic aspects the required data is probably not (yet)
available.

3.3 Deeper approach to vegetation models

In terms of designing a general simulation model of the vegetation distribution in
the South Island of New Zealand the WinklerKlotz model seems to be the best
described simulation model in the literature. However, for using the model’s
structure as a kind of guide line, the large scale that the model uses could be a
problem. As mentioned before the model uses only a patch-size of one square
meter (see section 3.2.3). This has the disadvantage that only an extraction of
a vegetation area can be modeled, but it provides a certain accuracy.
Also it must be considered that the WinklerKlotz model is developed for a
certain region and certain species. The aim of this research study is to develop
a general model, that can be applied at different places in New Zealand and
manage different species. Even the amount of species should be variable.
Because of the detailed description of the WinklerKlotz model in literature, the
next approach will be a closer discussion about the WinklerKlotz model, after
that a small-scaled vegetation distribution model will be discussed. It might
be possible to combine the accuracy of the large-scaled WinklerKlotz model
with aspects of a small-scaled model. Therefore the WinklerKlotz model should
be discussed in more detailed and furthermore at least one small-scaled model
should be introduced.
To get an overview of the spatial scales that are in use for modeling ecological
properties Kirkby (1999) provides a framework. In figure 3.2 the typical scales
of time and space for research in ecology and geoscience are shown. The range
of possible scales is satisfactory, in particular for the spatial dimension.

3.3.1 A large-scale model: WinklerKlotz

The WinklerKlotz model is spatially explicit, it uses real distance scales and
not simplified distances (Winkler and Klotz 1997). This is important for a veg-
etation model, because spatial distances are crucial for distribution in general,
and in particular for representing competition between single individuals.
The reason for choosing such a small patch size (one square meter) was partly
due to the limited computer performance available in 1997 (Winkler and Klotz
1997). However, it is also useful to discuss a large-scale model as argued earlier.
In the study area, the researchers found five different species. However, only
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Figure 3.2: Temporal and spatial scaling in ecology and geoscience modeling
(modified from (Kirkby 1999, p. 191))

three of them were modeled. The model is cell-based which means one cell con-
tains one individual (or a part of an individual) or it is empty. The possibility
for bigger plants to occupy more than one cell also exists. These tufts are mod-
eled with a central or original cell surrounded by peripheral cells (Winkler and
Klotz 1997).
The individuals are characterized by age, by the position of its (central) cell and
the radius measured by the amount of cells if it is a tuft. By reaching maturity
the individual is capable of producing seeds. New seeds can only germinate on
empty cells which implicitly introduces resource competition to the model. The
lengths of an individuals life is determined by probability distribution depending
on their current age (Winkler and Klotz 1997). The different life expectancies
of the species are considered as part of the model.
The probability distribution predicates an individuals minimum life span with a
probability of 100%. That means that plants cannot die before the break in the
distribution graph is reached. This possibly seems to be oversimple for obvious
reasons (see figure 3.3).
Seed dispersal is not modeled explicitly in WinklerKlotz. Every empty cell can
be populated by a species. When more than one germ arrives on an empty
cell, a competition happens. Each species has a certain probability to prevail
(Winkler and Klotz 1997).
It is essential to model spatial interactions explicitly in an ecological model
(Miller, Franklin, and Aspinall 2007), this is especially true for small-scaled
models. Because of the large modeled scaling, used by Winkler and Klotz, spa-
tial structure is not so important for seed dispersal. However, because of the
spatially explicit modeling of the individuals, it should easily be possible to ex-
tend the model by considering these aspects at a smaller scale.
The growths of individuals is simplified, since only the growth for tufts is con-
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Figure 3.3: Conceptual probability distribution of life span depending on age
(Winkler and Klotz 1997, p. 191)

sidered. If more than one individual wants to enter a cell by growing the same
competition rules, as in case of seed dispersal, are applied (Winkler and Klotz
1997).
Light availability seems to be important in most of the vegetation distributions
models. This availability strongly depends on the height and also on the species
in the surroundings of the considered individual. Height is a result of growth
and this should be modeled in any vegetation model where light competition
is relevant. In WinklerKlotz it is not important to consider the height of the
individual, since they seem to be at a similar level regardless of their age or
species.
Parameterization in WinklerKlotz is provided for fecundity delay, diaspore pro-
ductivity per cell, mortality, mean number of fragments per tuft, mean dias-
pore import8, probability of diaspore export9, mean dispersal distance, seedling
establishment probability, seedling competition strength and (relative) compe-
tition strength for the growing of tufts. All parameters exist for each species
(Winkler and Klotz 1997).

The ten parameters used in WinklerKlotz are manageable. In the vegetation
distribution model for the South Island of New Zealand some additional param-
eters would be useful, although, of course, additional parameters require values
to be given, and these may not be known. For example, precipitation and tem-
perature are examples of more complex environmental conditions. However, the
work of WinklerKlotz shows that it is possible to use a short list of parameters
for model complex vegetation patterns successfully.
Additionally, the WinklerKlotz model provides another feature. It is possible
to enlarge the size of the simulated area by designing more than one patch and
creating connections between all of them (Winkler and Klotz 1997).
In summary, the WinklerKlotz approach seems to provide a sound basis for the

8The WinklerKlotz model does not assume that the simulated area is completely isolated.
In fact there are virtual individuals outside the area that spread diaspores. The parameter
diaspore import steers the number of diaspores coming out of the not-simulated area.

9This is the opposite of diaspore import. Some of the diaspores leaving the simulated area.
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model development of the general vegetation distribution model for the South-
ern Island of New Zealand. The small area which is considered by Winkler and
Klotz can be the most significant difference between WinklerKlotz and the in-
tended model. However, the advantages for a simulation model of a small area
cannot be ignored. For example, a verification by empirical data from surveys
is much easier, furthermore the survey itself can be arranged without a large ef-
fort. Nevertheless, a consideration of smaller scaled models should be analyzed
prior to a decision being made for the design of intended model.

3.3.2 Two small-scale models: MEDRUSH and MAPSS

Small-scale vegetation models are very rare. In fact only two serious types ex-
ist. MEDRUSH is one of them and it is developed as a part of a project of the
European Union. It is applicable in several regions, but mostly applied to areas
close to the Mediterranean Sea. The maximum size of area in the simulation
model is 5,000 square kilometers and time spans are up to 100 years. The time
step used in the model is one hour (Kirkby 1999). The model is not just fo-
cused on vegetation distribution, it also contains erosion and hydrology (Kirkby
2001), and therefore is more complex than the intended modeling problem of
this project.
Parameterization is for example given by assumptions regarding rainfall, solar-
energy and temperature (Kirkby and McMahon 1999).
In terms of the complexity of a large-scale model, aspects like hydrology and even
erosion seem to be inseparable from the environment of the modeled vegetation.
In a model that is just focused on vegetation the causes and effects of erosion
can perhaps be omitted, although this would largely depend on the environment
and whether the geomorphology and changing environmental structure is crucial
to the growth of vegetation or not. For MEDRUSH the time step of just one
hour seems to be required for the detailed modeling of the erosion, whereas this
time scale is not required when we consider vegetation patterns that have slow
growth and maturation rates. Hence, for the modeling and simulation of veg-
etation distribution there are little reason for requiring such a detailed time step.

As mentioned before MEDRUSH is not focused only on vegetation. It shows that
small-scales are possible, but it does not provide a good basis for the intended
vegetation distribution model in New Zealand. The vegetation is modeled, but
the focus is too different for the purpose of our model.

Concerning the general vegetation distribution model in New Zealand the model
MAPSS10 seems to be a more useful approach than MEDRUSH.
MAPPS is focused on vegetation distribution and it also considers water balance
(Neilson 1995). The dependency between these two aspects is obvious (Stephen-
son 1990). The parameterization describes physical limits of the environment
for species like temperature (Woodward 1987), and therefore similarities to the
correlative approaches that consider climatic envelopes (see section 3.2.4) are
likely.
Attributes concerning the vegetation are biomes11 and their distribution. The

10The Mapped Atmosphere-Plant-Soil System.
11Biomes are a community of species which are living in a specific ecological region.
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large-scale model: small-scale model:
WinklerKlotz MAPSS

Form of spatial
representation spatially explicit spatially explicit

kind of model individual-based aggregated model
Spatial modeling 1 square meter ca. 50,000 square kilometers
Spatial scales unknown 1 : 10,000 meters
Temporal modeling discrete discrete
Temporal scales 1 year 1 month

Table 3.3: Large-, and small-, scale models in respect of the aspects for devel-
opment of a vegetation distribution model

leaf area index 12 and its pattern is the other vegetation attribute. For the
calculation of the water balance it is also important to consider the stomatal
conductance of the leafs, depending on the season (Neilson 1995).
Many parameters are utilities in the model. Environmental conditions (for ex-
ample, rain, snow or a mixture of rain and snow) are considered in MAPSS.
In addition, the model distinguishes between precipitation, which stays in the
canopy and that, which falls through (Rutter, Morton, and Robins 1975). Fur-
thermore wind spread is implemented in the model (Neilson and Marks 1994).
Figure 3.4 gives schematically an overview of environmental influences covered
by MAPSS and its complexity, only for the water balance. By integrating light
and other parameter it becomes, of course, even more extensive.
The time steps are monthly and besides water, light is an important resource.
Individuals are highly aggregated by calculating, for example, the average of
the leaf area index (Neilson 1995).
The only information available about the spatial aspects of the model is that
MAPSS has a resolution of ten kilometers and it covers circa 50,000 square
kilometers (Neilson 1995). Therefore it seems to be a continuous spatial model
with a high aggregation.

3.4 Summary of existing vegetation models

Table 3.3 shows the important properties of the models that have been previ-
ously discussed in detail.
The different models are diverse and they show a range of possible environmen-
tal parameters like water, temperature, light and soil. In particular, the MAPSS
model shows that the parameters are strongly connected with each other. This
circumstance demands much complexity.
However, to develop a general model these aspects may be too difficult to con-
sider. For verifying the model all these parameters must be assigned with values
and a lot of these values must be estimated, if no information is available. And
this possibly makes the resulting model uncertain. Furthermore a focus on veg-
etation distributions is needed. A typically grassland should be modeled and
most of the aspects of the large-scale models seem to be unimportant.

12The leaf area index is percentage of the leaf area relative to the ground area (Neilson
1992). It is an important indicator for transpiration and transpiration is crucial for the water
balance.
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Figure 3.4: Modeling of the water balance in MAPSS (modified from (Neilson
1995, p. 363))
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On the other hand, the WinklerKlotz model provides a solid base. Its only
disadvantages are its large-scale and a conspicuousness regarding tufts.
Ignoring of plant height in the WinklerKlotz model seems to be useful. Grass-
land plants are not big enough to be an obstacle in the vertical dimension. The
horizontally growth of tufts in WinklerKlotz, on the other hand, is critically
implemented. In the WinklerKlotz model the tufts grow horizontally and this
additional growth is not viewed as the origin of new individuals. If the oldest
part of a tuft dies in WinklerKlotz the whole tuft dies as well (Winkler and
Klotz 1997). This seems to be unrealistic against the background of botanical
literature in grassland dynamics, because tufts consisting of more or less inde-
pendent individuals and for that reason a tuft can survive even when some parts
of it have died (Tomlinson, Dominy, Hearne, and OConnor 2007).
Hence, a plant’s horizontally growth should be better replaced with reproduc-
tion. Additionally, the specialization of the WinklerKlotz on a certain area with
certain species is somewhat limiting. The model for New Zealand needs more
flexibility.
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Model requirements

Chapter 3 has described many aspects for the modeling of vegetation and there-
fore also for the development of such a model. The intended model should be
spatially explicit. Thereby arises a problem, because the model should also be
independent from certain species and areas. In addition, as many species and
regions as possible should be applicable for the model. The only constraint is
that the species should be domestic or invading grass-plants of southern New
Zealand, and the environment is also located on this island.
Most of the models in chapter 3 are specially focused on certain areas and
species. Hence, very precise modeling is feasible. Therefore detailed informa-
tion about region and species are necessary. Such kind of information, however,
is not available for this project. Moreover the model should not be very special-
ized. A general model is needed, which allows the configuration of the species
and the environment. Also the number of species should be modifiable. Hence,
only abstract species and environments are applied for the verification of the
model (see chapter 6).

Because of the support for a spatially explicit representation a cellular automata
with individual-based entities is implemented. The updating procedures work
synchronously. The spatial design depends on the size of the species. In prin-
cipal, a size of 20 x 20 centimeters per cell is assumed. This is the average
diameter of a tussock1 (Münzbergová, Kr̆ivaneká, Bucharová, Juklic̆ková, and
Herben 2005). The size of the lattice is changeable. The basic configuration is
100 x 100 cells. Therefore an area of 400 square meters is modeled. That seems
to be a useful approach to simulate grassland vegetation at a large scale.
The dynamics of the system are implemented by interaction of the species with
its environment. Therefore the Moore neighborhood is applied, because it seems
to be the most realistic approach. Plants can breed inside an eight-cell environ-
ment (see also section 2.3.1, especially figure 2.1). Additionally, wind is modeled
and enlarges the environment. It can be determined how many seedlings will be
spread per period. The basic setting is one seedling per plant in each period2.
Of course, the plant must be mature to get this ability. To occupy a cell the

1Tussock grass is widespread in New Zealand’s grasslands and therefore it provides a solid
orientation (Calder, Wilson, Mark, and Ward 1992).

2In the verification of the model (see chapter 6) wind is completely switched off, except for
the experiments where it is mentioned.
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seedling must enter an environment with conditions that fit the requirements of
the species. Otherwise it dies. The change of the environmental conditions –
temperature and humidity – while the simulation is running is also possible.
Because of the small size of the modeled area, all cells have the same likelihood
that a descendant of a plant reaches it via wind, there are no disadvantages due
to the distance. Furthermore all cells should be treated equally. Therefore cells
on the border of the lattice should have as many neighbors as cells in the middle
(the solution for this requirement is described in section 5.2.1).

The WinklerKlotz model (see section 3.3.1) will be a raw role model, not at least
because of its detailed description. The aspects of reproduction by seedlings
from the FORET model is also implemented. These seedlings must reach a cell
and afterwards they must establish on it. Because of the lack of well described
vegetation models in the literature, the model of this thesis will be described in
detail. Further development and progress in science is otherwise very difficult
or even impossible3.

The implemented parameters can be divided into parameters of the environment
and parameters of species. The environmental parameters will be temperature
and humidity.
The reason for choosing humidity is that the water balance is an important
aspect of most of the models. It is hard to get detailed information about water
balance, but in grassland it seems to be a good opportunity to aggregate the
complex system of water balance to humidity. Information about humidity is
probably available in an easy way.
Temperature is the other essential environmental parameter. In times of global
warming the temperature is crucial and should be considered. It has not been
modeled in all the discussed models of chapter 3, but it seems to be essential
for obvious reasons.
The third potential environmental parameter is soil. For that, information also
is rarely – or not at all – available. Another reason for not modeling soil is that
it is often seen as an indirect factor in botany (Burke, Lauenroth, Vinton, Hook,
Kelly, Epstein, Aguiar, Robles, Aguilera, Murphy, and Gill 1998). Hence, the
program should provide the ability to extend the model for soil parameters.
The reasons for renouncing light as parameter has already been explained (see
3.3.1). In a grassland the shade is not crucial.
Species parameters are age, maturity, and life expectancy. The life expectancy
should be modeled more realistic than Winkler and Klotz (see figure 3.3). One
possibility is to use a gaussian distribution. A preferred humidity is also impor-
tant for each species, as well as preferred temperature.
Of special importance is the competition of different species. Availability of
information about competition in flora is limited. However, particular data
about the competition of seedlings from different species exists. Most botanical
studies are of short duration, therefore research is concentrated on competition
effects of seedlings and not of adult plants (Sackville Hamilton 2002). Hence,
in the intended model the competition will be implemented for seedlings. It is
assumed that one cell of their model can only be occupied by one plant. This is

3For this very reason the source code of the computer program is fully available (see
appendix A).
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a sound approach for a spatially explicit model and also used by Winkler and
Klotz (see section 3.3.1). However, compared to the WinklerKlotz model, the
competition rules are extended (see 6.4.12).
To enhance the dynamics of the model, the plants of a species should not be
absolutely equal. Some opportunities for mutations should be enabled. The
implementation of this requirement is explained in the next chapter (5).
For more details about the parameterization see table 5.1.
Handling of empirical data is a basic requirement. Hence, changing the settings
for species and environment must be easy for the user.

The intended model transfers different characteristics from the models of chap-
ter 3. Firstly, it is a non-forest model (see section 3.2.3) and it also fits into
the field of probabilistic approaches (see section 3.2.4), because the assumptions
about replacement are basically the same.

The model should also correspond to Liebig’s law that is also known as the
Law of the minimum. Liebig’s law is a very basic assumption in botany. It
claims a dependency of plant on the minimum quantity of a resource (Martin
1991). If one need of a plant is not satisfied the others are not important any
more. This law seems to be very crucial for modeling vegetation.
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Model description

5.1 Introduction to this chapter

The model structure for the spatially explicit general vegetation distribution
model will be described in this chapter.
The model is encoded in Java and therefore independent from any platform.
Since there is little information regarding the form of species and environmen-
tal conditions during the design phase, the software will be implemented to be
as flexible as possible. Another reason for this decision is to enhance further
development. Changes and modifications for specific usage are a central con-
sideration of the software design and should allow a range of vegetation and
environmental properties to be used without recoding the model.
Time and space are implemented discretely as a cellular automata. The aggre-
gation is on an individual level (see chapter 4).

The description of the developed model will be structured into a functional
and procedural specification to enhance efficient usage. An object-orientated
depiction assists further development. This flexibility is a tribute to the com-
plexity and diversity of different possibilities for the application of the model in
the field of vegetation simulation.

5.2 Functional and procedural description

The functional description can be divided into two major parts. Firstly, the
environmental view allows an understanding of the model concerning the envi-
ronment. The cellular automata consists of cells and therefore the environment
is the complete set of cells, associated with their spatial arrangement. This
arrangement is a lattice with a regular tessellation and a partly irregular topol-
ogy1.
Secondly, the individual view provides an understanding of the plants behavior.
The assumptions for their behavior are argued here. For the usage of the sim-
ulation model it is necessary to comprehend details about the parameters and
algorithms.

1The irregular element is given by the including of wind (see section 2.3.1).

31



Chapter 5. Model description

Figure 5.1: Torus as model shape

Finally, the process of the simulation program is described. This gives a detailed
understanding of the model as a whole. The process, of course, depends on the
functions and vice versa. However, the functions are more constitutional and
for that reason they are specified firstly.

5.2.1 Environmental view

The environment is modeled as a discrete surface. Each cell, ordered in a lattice,
represents an element of the surface. Concerning the vegetation of a surface,
the cells can be basically in one of two states: Either they are occupied by a
plant or not2. Therefore it is not possible for two plants – even if they are from
the same kind of species – to occupy the same cell at a single time.

To avoid issues where plants are located at the border of the lattice, the sur-
face is represented as a continuing surface without boundaries. Hence, the cells
directly located at the border of the lattice are neighbors of the cells at the
opposite border (see figure 5.1). This structure – also known as torus – is not
natural, but the abstraction provides the advantage of equality of all cells.
The cells conditions constrain the plants behavior by using different parameters.
These parameters are temperature and humidity. Temperature and humidity
of each cell are determined by two digital maps, one for each parameter. These
parameters are not necessarily static over time. Basically they can be influ-
enced to all possible values of their spectrum at any time (see section 5.2.3).
It is also possible to use the same map for both parameters. The maps will be
scaled automatically by the software to the size the model needs. Alternatively

2By considering temperature, humidity, or the kind of plant that can occupy the cell, the
amount of states is actually unlimited.
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a determination of the parameters by random values at the setup of the lat-
tice is enabled. This setup happens only once for each run. More precisely, at
the beginning, during the initializing of the simulation program. To determine
the random value two gaussian distributions – one for temperature and one for
humidity – are applied. The reactions of the plants concerning these two pa-
rameters are described later in the section Individual View (5.2.2).
Both environmental parameters are related to each other in respect to Liebig’s
Law. That means that substitution between temperature and humidity is not
possible. If one condition does not match a species’ requirements, then the con-
dition of the other parameter is not important, irrespective of how suitable it
is.
Temperature is modeled as whole numbers on a scale of 0 to 255. This is rea-
soned by the fact that the usage of digital maps is possible. The color of each
pixel will be identified and translated into RGB-Encoding. In the common 24-
Bit encoding RGB provides 256 different possible values for each of the colors
red, green and blue (Gonzalez and Woods 2007). In the simulation model the
color red is used for temperature and blue for humidity. The need for transla-
tion of the interval [0,..,255] into a Celsius scale is essential to use the model in
a more realistic way. The exact conversion depends on the required spectrum
on the Celsius scale. Therefore it is necessary to find and use values that reflect
real environmental conditions for the Southern Island of New Zealand.

During one year the average temperature differs a lot in some regions of New
Zealand. For instance, the mountain structure on parts of the Southern Island
leads to cold temperatures – values below zero on the Celsius scale are com-
mon here – even in summer time, but they can also be very high (Leisnham,
Cameron, and Jamieson 2003). This means that the temperature is volatile in
these altitudes and makes an aggregation of temperature to an average number
for a whole year problematic.
For the use of the simulation model – that should be developed – the most
important group of plants is possibly tussock grass (see chapter 4) and these
species do usually not live in the mountains3 (O’Connor 1982). Therefore the
volatile temperature in these regions is not a problem for the simulation model.

It is useful to find a typical grassland area on the Southern Island where this
species usually lives. The annual average temperature in that region can be
applied for the average temperature for the random values in the model, and
– even more important – it can also give an idea how to convert the RGB-
Encoding to the Celsius scale.
A matching example for a typical tussock area is Wye Creek Conservation
area. It is located beside Lake Wakatipu near Queenstown in Otago (45◦09’S,
168◦46’E). The average annual temperature is +10.4◦ Celsius4 (Miller and Dun-
can 2004). The application of a gaussian distribution is useful for the same
reason to use it for the species.
Wye Creek’s altitude is in-between 515 and 575 meter above sea level (Miller
and Duncan 2004). Therefore the volatile behavior of mountain temperature
during a year cannot be assumed.

3Exceptions are species of the snow tussocks (Rose and Platt 1987), (Mark 1969).
4Recorded over 130 years (Miller and Duncan 2004).
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Taking the opportunity to aggregate the available information about the monthly
temperature in this region, to an annual average is supported by the fact that
the standard deviation is only 3.8◦ Celsius (NIWA 2008).
This means that not only for the random values, to determine the temperature
for the model’ cells, an aggregation of temperature is possible, furthermore it
is feasible to aggregate temperature for a whole year. Hence, annual time steps
are applicable for the model.
It is useful to determine the middle of the RGB-Scale to the mean of the tem-
perature. That means that a RGB value of 127 (for the color red) enunciates
10.4◦ Celsius. The next step is to find the most simple equation that covers an
acceptable spectrum for the model on the Celsius scale.
The equations which probably meets this condition best is linear and converts
one step on RGB scale with 0.1◦ Celsius (see equation 5.1).

Temperature(x)◦Celsius = 0.1 · xRGB − 2.3 (5.1)

With that equation an interval of −2.3◦ until +23.2◦ on the Celsius scale is
supported.

5.2.2 Individual view

At the beginning of the simulation the plants are located randomly on the
lattice. The amount of one species at the beginning is independent from the
amount of other species5 and it is represented by a probability, which is applied
on each cell of the lattice.
It is also possible to control exactly the placement of the plants at the initial-
ization, that means at the beginning of a run.

The plants are parameterized with an age. The age determines maturity and
death of a plant. For both events a gaussian distribution provides a functional
dependency from the plant’s age (see equation 5.2).

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 (5.2)

In nature gaussian distributions can often be observed (Stewart 1990). There-
fore it is reasonable to use this function unless there is other evidence, such as
empirical data, that is available.
At a first glance the gaussian distribution does not appear to be a natural con-
dition for the death of organisms. Intuitively the deviation must be negatively
skewed, because an early dying for a plant is more likely than an age that is
almost double of the average. For instance, the likelihood that a plant dies
in the first 2% of its expected life time is much higher than the likelihood for
reaching an age of 198% of the average life time of its species. Therefore the
mean is smaller than the mode. Hence, the deviation is not symmetric, rather
it should be left-skewed (see (b) in figure 5.2).

5By verifying the model it becomes clear, that even so, there is an indirect dependency be-
tween the amount of different species for random initialization (see section 6.4.1, and especially
equation 6.3).
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Figure 5.2: Symmetric and left-skewed distribution (modified from (Engel,
Möhring, and Troitzsch 1994, p. 42))

However, plants seem to behave different. Observations of different plant species
show that the mortality is the highest in early seedling stages. Ignoring the early
dying of seedlings leads almost to a symmetric distribution (Hamann 2001).
Hence, it is useful to use a gaussian distribution (see (a) in figure 5.2) and
model the high seedling mortality by competition of seedlings. For the devi-
ation regarding the maturity no study could be found. Therefore, the normal
deviation will be assumed, too.

In the simulation model, the mean (µ) and the standard deviation (σ) are char-
acteristics of the plant species. On the basis of these two values a gaussian
function is calculated and the current age determines the possibility to breed
offspring or the death of a certain plant.

Two different solutions are possible to implement this in the simulation model.
One possibility is that the simulation program can calculate the values for the
probability of maturity and death during the whole simulation run. Whenever
the time to breed has been reached, the value will be calculated and determines
if the plant can breed or not. The same applies for death. The other possibility
is to calculate the values beforehand at the first possible point of time, which
is the individual’s birth. Both solutions provide different advantages and disad-
vantages.
The first possibility, which is the repetitive calculation of the value in every
breeding (or dying) phase, needs obviously more calculations. On the other
hand it seems more natural and intuitive at a first glance. The plant has to face
the current circumstances and these conditions have an immediate influence.
They may, in some circumstances, change over time, and therefore it would not
be realistic to assume that the death of a plant could be determined at the
time of its birth. Therefore the decision whether a plant can breed or must
die is the question of the current situation and must be continually assessed.
However, another, and more profound disadvantage is the fact that the results
can be inconsistent. If, for instance, the possibility for a plant’s maturity will
be calculated and the species’ average age for breeding is five periods and the
standard deviation is two periods (µ = 5 and σ = 2) then a result of the gaussian
equation of four is likely. Furthermore it is assumed that the age of the plant
is five periods. Hence, the algorithm will allow the plant to breed, because the
current age of the plant is higher than the random value under consideration of
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Figure 5.3: Gauss function with µ = 12 and σ = 0.5

the gaussian distribution. However, the inconsistency can occur in the next cy-
cle when the plant has the age of five and if the gaussian distribution calculated
a result of six for the plant’s maturity age. The consequence is that the plant
cannot breed in this cycle. This seems not to be visceral, because in the period
earlier it had the ability to breed. However, plants do not breed at every time
period, and so there is a procedure for this behavior. An algorithm provides the
possibility to constrict the probability for breeding. It is possible to constrain
the amount of seedlings or the whole ability to breed.
The application of the gaussian distribution is more meaningful and realistic, if
it is used independent from the cycles of the model and only calculated at the
beginning of a plants existence – the birth. It works like destiny for the indi-
vidual plants but it is probably more compatible with most of the empirical data.

In detail the program determines the values for maturity and death, separately,
at the very first point of time when the plant is born. Thereby the gaussian
function uses species’ specific values for the mean and the standard derivation.
For instance, the species is characterized by a mean of twelve periods and a
standard derivation of a half period (µ = 12 and σ = 0.5) for its death. With a
probability of ˜10% the plant gets a life of 13 periods length (see figure 5.3).
The calculation of the preferred humidity and temperature works by the same
approach. With a gaussian function the two values are calculated, separately.
The control of the exact value can be determined by the input of mean and
standard deviation.

The competition strength works without a gaussian deviation. It is only a
real number that defines the strength of a species-species competition.

Table 5.1 summarizes the parameters of species. The values are freely selectable
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by the user.

5.2.3 Process view

The simulation process works in periods (or time steps). Each periods consists
of one cycle. These periods continuing until the program is stopped by user
intervention. Before the periods can commence a setup is necessary. This setup
creates the lattice which defines the spatial universe for the plants. With a
certain probability on each cell of the lattice, a plant of a species will be placed.
This is determined by the probability chosen by the user (the so called setup
ratio).
The run of the simulation is controlled by the user. Run means the start and
the continuation of the time steps of the model (see also section 2.3.1).
After the setup, the first step of a cycle is the subsequent aging of the plants.
Every existing plant ages by one time step, that currently is assumed to repre-
sent a year. It is possible to note here again that a discrete time is implemented
in the program, as well as the discrete space (see also section 5.1).
The second step in the cycle is defined as the spreading operation. Concerning
this, every plant searches in their Moore neighborhood for unoccupied cells. Ad-
ditionally the wind helps to exceed the direct neighborhood. If such cells exist,
the conditions for humidity and temperature of these cells will be verified. If the
conditions fit the species criteria the seedling establishes. It is possible to set an
additional probability value to decrease the seedling likelihood even if the en-
vironmental conditions are appropriate for the plant. This procedure concerns
every unoccupied cell in the Moore neighborhood and other unoccupied cells by
wind spreading. However, the seedling procedure works not completely in this
part of the process. Plants on cells which are located at the lattice in a position
where the spreading process starts would have an advantage over plants that
are located on a later position at the lattice. To synchronize the procedure a
competition list has been implemented.
The competition list is a kind of stack. Every cell has such a stack and at each
time a plant tries to seed on a cell the sprout will be placed in that stack. After
the completion of all existing plant propagations the competition list is full. A
contest between all members of the competition list determines the successful
individual. This plant can occupy the cell and the others die. To find a basis
for the contests every species has a specific competition strength. The value for
competition strength is combined with a random value. Of course, if empiri-
cal data exists relating the competition between different species this can be
represented as a n x n matrix of competition probabilities. Later (see section
6.4.12) it is argued that both possibilities – a matrix for competition between
certain species and an individual competition strength – are implemented and
it is possible to choose one method. The decision which method should be used
depends on the available data about the species.
The chosen implementation of spreading shows that only one plant can occupy
a cell. The idea comes directly from the WinklerKlotz Model (see section 3.3.1).
This constrains the model to a behavior that is much easier to analyze and fits
also to the conception of a discrete spatial model.
The last step of the cycle regarding the individuals is the dying of the plants. If
a plant has reached the age which has been calculated for its life expectancy the
plant dies. The plant will be erased from the simulation program by canceling
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Parameter Description
Species Number Unique number which identifies

the species.

Species Name Name of the species, that makes
it easier for the user to
analyze the output data.

Setup Ratio The probability for each cell that
a species exists on it at the
setup of the simulation.

Humidity Mean The mean of optimal humidity for
the species.

Humidity Standard Deviation The standard deviation of optimal
humidity for the species.

Temperature Mean The mean of optimal temperature
for the species.

Temperature Standard Deviation The standard deviation of
optimal temperature for the
species.

Maturity Mean The mean of the age when the
species becomes able to breed.

Maturity Standard Deviation The standard deviation of
the age when the species
becomes able to breed.

Life Expectancy Mean The mean age of the species’
life expectancy.

Life Expectancy Standard Deviation The standard deviation of
the species’ life expectancy.

Competition Strength The strength of a species when
it has to compete with another
plant for cell occupation.

Color (RGB) The Color (divided in red, green
blue), that makes it easier for
the user to analyze the output
data.

Table 5.1: Parameters of species
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Figure 5.4: Process of the model

the reference from the lattice to the plant6.
Eventually the update of the environment occurs. In this step of the cycle the
temperature or the humidity of the cells can be changed. It is possible to im-
plement all possible settings. Therefore the model provides richer dynamics.
After the update of the environmental conditions the cycle is finished and the
simulation program starts a new cycle, starting with the aging of the plants.
Figure 5.4 gives an overview of the whole process.

The initial setup is the only possibility for plants to occupy cells which do
not fit their environmental needs. The reason is that plants can be seated there
by humans or through other external influences. Of course, it is more or less
unrealistic that these plants survive for their average life expectancy on these
places, but to ignore this fact gives the model’s application more dynamics. The
user can set the requested setup ratio and hence the requested number of plants
(see section about parameters (5.2.2)) is applied. Furthermore, we show that
this assumption does not lead to differences in the long term distribution (see
also section 6.5). Also it is often useful to analyse plants behavior under less
than ideal conditions (see the test design in section 6.5).

5.3 User interfaces

To enable an efficient use of the simulation tool a short description of the user
interfaces should be given. The interfaces are designed for an intuitive use.
However that may be, the major aim of the development is not to create a user
friendly program. The target group for the software consists of professional
botanical and ecological scientists and therefore a basic understanding can be
presumed.

6The garbage collector from Java assures that the plants will be destroyed completely,
because every object without a reference will be deleted from memory (Samaschke 2004),
(Flanagan 2005).
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Figure 5.5: Main interface of the simulation software

Basically two graphical interfaces enable the handling without recoding or pro-
gramming the software. The main interface provides different views and control
elements (see figure 5.5).
The functions are ordered in the way the user typically works with the tool:

Setup: The button Setup opens a graphical interface. It allows the user to con-
figure the parameters of environment and species (see figure 5.6). Because
of the specification of the parameters (in table 5.1) a detailed description
is not necessary.
The number of different species is determined by filling out the right quan-
tity of forms. A form must be filled out completely otherwise the species
will be discarded.
Scrolling down to the end of the setup view leads to the configuration of
the environment. Here it can be decided whether maps for humidity and
temperature will be used or random values. The decision for humidity
and temperature are independent from each other.

Start: Start is the button to run the simulation.

Pause: Pause stops the simulation run, but it does not reset the setting, fur-
thermore it freezes every view element and the user can analyze the current
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Figure 5.6: Setup interface of the simulation software

patterns. After that it is possible to continue the simulation with the Start
button.

OneStep: This function is nothing else than a combination of Start and Pause.
The simulation tool works in a discrete time and OneStep executes exact
one time step. Of course, it works only when the simulation is not running.

Vegetation, Humidity and Temperature: These three functions are con-
trolled by one button. It changes the content of the main view. Prin-
cipally the main view shows the vegetation, – that means the plants in
different colors placed on the cells – but information about the environ-
mental conditions of the cells are often useful. Therefore it is possible
to switch to humidity and to temperature view. The button changes the
view from vegetation, to humidity, to temperature, and back to vegetation.

Symbols on, Symbols off: The problem with the humidity and temperature
view is, that the user looses the overview whether a plant exists on a cell
or not. However, that can be an important information. Furthermore it is
useful to distinguish between the different species here. Therefore symbols
for each species exist and these symbols can be added with the Symbols
on function. With the symbols the user can easily recognize where the
different plants are, while he still sees the conditions of the environment.

End: This function exits the software.

Show Animation, Show Plot, and Show Histogram: The check box Show
Animation is switched on in default. Switching off disables the animation
that shows the plants on the surface in the main view. The advantage is
improved performance. The same function is supported for the plots, and
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the histogram with the check box Show Plot, or Show Histogram, respec-
tively.

Speed Delay: The Speed Delay slows the running speed down to make the
observations of changes easier.

Print Lattice: The Print Lattice button triggers a very detailed output. An
Excel-file is created that contains information about the whole lattice and
the plants. A more detailed description of the file’s contents ensues later
(see section 5.4).

The Counters: The first counter (Step Count) displays the elapsed time in
steps. For each complete cycle of the program one step will be added.
The other counters represent the amount of species. Firstly, the name of
the species is displayed, followed by its amount. Then the second species
follows, and so forth. Everything is represented in the color of the species.
The species’ name with the highest amount of all is displayed in capital
letters.

Histogram: To represent the age pattern, a histogram is provided. The de-
piction is independent from the species and aggregates the plants in age-
clusters.

Plots: The plots display the current amount of the plants grouped by species
on a time scale and relative to one another.

5.4 Outputs

Apart from the information output inside the main interface – for instance
counters and plots – two different outputs are claimable. The first output
contains the amount of plants for each species dependent on each time step.
This information will be stored automatically in a CSV-file and the syntax
for the file’s name is “Output ”(current Year)“-”(current Month)“-”(Current
Day)“ ”(current Hour)“-”(current Minute)“-”(current Second)“.csv”. In this
context current means the current time of the computer’s clock. Hence, all
files are stored on the hard disk in chronological order, if more than one run is
executed. The files’ content is shown in table 5.2 as a scheme.

“StepCounter:” 1st species Name ... n-th species Name
“1” amount of 1st species ... amount of n-th species
“2” amount of 1st species ... amount of n-th species
... ... ... ...

Table 5.2: Scheme of output (CSV-file)

Furthermore a detailed output is possible. By creating an output a trade-off be-
tween the degree of information’s particularization and the level of information’s
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aggregation always exists. Aggregation of information has the benefit of easy
and fast analyses; but the aggregation’s lack of powerfulness is the advantage of
particularization. That is the reason for the simplicity of the CSV-output and
the additional ability to create a very detailed output when necessary.
As mentioned before the Print Lattice function creates an Excel-file. It includes
different worksheets and each contains the whole lattice from different view
points. For instance the first worksheet contains the information of tempera-
ture (the second humidity, the third the species number etcetera). Eventually
a sheet with prepared measurements is provided and some statistical measures.
However, these statistics are only simple; the user is required to enhance these
measurements.
An English installation of Microsoft Excel is recommended. Also the usage of
StarOffice has been tested successfully, excepting the prepared measurements.
The syntax for the name of this Excel-file is “Output ”(current Year)“-”(current
Month)“-”(Current Day)“ ”(current Hour)“-”(current Minute)“-”(current Sec-
ond)“ ”(current value of the step counter)“ detailed.xls”. With that name and
the name of the more simple CSV-file it is easy to order all files usefully and
thereby the files who are belonging to one simulation run are placed together.

5.5 Object-orientated description

Basically there are two reasons for describing the simulation program from an
object-oriented view. Firstly, it provides a better understanding of the model.
And secondly, – the more important reason, is that – further development of
the model is facilitated.
Fourteen classes define the core of the program. Additional packages – like the
JXL-Package for working with Excel-files, and a package for the gaussian func-
tions – are included.
The most important class is the TussockSimulator. It is the center of the pro-
gram, contains the main view of the simulation program, and it controls a two-
dimensional array, which represents the lattice of the cellular automata. The
lattice consists of cell. Each cell is an own object and it is occupied by a plant
or not. Furthermore the class Cell controls the competitions, therefore each cell
is associated with one object of the class CompetitionList. The competition list
only stores all seedlings that want to occupy the cell in the same period. Once
the period over, the list will be exhausted, but the object will be reused for the
next period.
The cell is also attributed with a temperature and a humidity. The values will
be determined by a digital picture of a map or by random values (see also sec-
tion 5.2.1).
Objects of the class Species are individual plants. They store information about
the plants preferred humidity and temperature, as well as the life expectancy
and the maturity. These values are also determined by a gaussian function (see
also section 5.2.2). The current age, of course, is also an attribute of all species
objects. Basically all parameter values of the species are part of the correspon-
dent class. Hence the name, the number, the setup ratio, the color, and the
competition strength are part of it.
Setup is the class for the management of the syntax – for the species and the
environmental settings – and is sent to an object of FileOperator. FileOperator
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stores and reads the data.
Furthermore the setup consists of n objects from the class SetupSpeciesControl
and one object from the class SetupEnvironmentControl. Therefore n is the
number of different species.
The class PictureView is used by Cell to read the RGB-Code and it gives Setup
the possibility to represent the maps graphically in the setup view. Additionally
PictureView is responsible for the scaling of the maps’ size to the dimensions of
the current lattice.
Each object of the class SetupSpeciesControl consists of the graphical represen-
tation of one species for the setup mask (see figure 5.6). It also provides the
syntax for the data for one species and gives it back to Setup.
OutputCreator creates an output into CSV-file (see section 5.4) and stores it on
the hard disk. OutputCreatorDetailed is responsible for the Excel-file that con-
tains detailed output (see also section 5.4). The function for creating a detailed
output can be executed as often as required.
Each of the objects from Counter is used to count the amount for one species.
This amount is written and read from TussockSimulator. The counter for the
time steps is directly implemented in the TussockSimulator.
The class Plot receives information about the amount of plants for each species
and creates visual graphs. Only one object of Plot exists. The same way as
Plot works, Histogram is implemented, but it processes other information like
the age structure.
Figure 5.7 shows the most important parts of the model’s object-oriented struc-
ture as an UML-diagram.
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Figure 5.7: Simplified UML-diagram of the simulation program
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Verification of the model

6.1 Introduction to this chapter

One major part of the development process is the verification of the model. The
understanding of the results from a simulation model can be grasped as “ the
real meat of a simulation project” (Kelton 2000, p. 32). Simulation modeling
without testing it is a very dubious practice. Results from such a model can
never be trusted. Basically two arguments lead to this opinion.
Firstly, an untested program with a certain complexity cannot be presumed as
working properly in the way it should. Some behavior is unpredictable, even
for the modeler of the program and this is not just a side effect, it is further-
more the reason for simulating. Secondly, the possible results of a simulation
program can increase exponentially with its parameters, but often users want
to concentrate on only a few combinations. Therefore a plain model without
any verification is not very useful for the users. To interpret results they need
much more. A well described verification can help. Otherwise it is not possible
to distinguish between behavior that is part of model’s assumptions or results
caused by factors determined by the user.

Species’ behavior to different environmental conditions is one major part of
the verification. Another aim is to compare different species with each other.
After some basic tests, verification of parameters – regarded the environment
and species – will be implemented. Each test series will consider a certain pa-
rameter (see section 6.4). The first test series is about the setup ratio (see
section 6.4.1) and it follows after the basic and environmental tests. The goal
of the basic and environmental tests is to assure that the underlying properties
of the basic setup are correct.
The term “experimental design” indicates that more than one parameter is
changed in the relevant test series.

In summary, this chapter should provide two purposes. Firstly, a sensitivity
analysis, which evaluates the dependencies inside the model. And secondly, the
tests of this chapter should assure that the model works properly.
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Parameter Value
Species Name TestSpecies1
Setup Ratio 0.002
Humidity Mean 50.0%
Humidity Standard Deviation 5.0%
Temperature Mean 10.4◦ Celsius
Temperature Standard Deviation 1.0◦ Celsius
Maturity Mean 4 periods
Maturity Standard Deviation 1 period
Life Expectancy Mean 400 periods
Life Expectancy Standard Deviation 2 periods
Competition Strength 10.0

Table 6.1: Species parameter settings

6.2 Basic tests

The basic tests are designed to show the most simple interactions of one species
with environmental parameters. The species is not intended to be a real plant,
but the model behavior will allow a verification of the system implementation.
To achieve this, a map with a temperature of 10.4◦ Celsius, and another map
with 50% humidity, for each cell of the lattice are created and applied. Table
6.1 shows the species paramaters for this and most of the following tests, but
for this, and all other basic tests, the life expectancy mean is determined to
200 periods (and not to 400 periods as shown in the table). The setup ratio
is not applied, but a single entitiy of the species will be placed. Therefore the
opportunity to determine fixed amounts and localizations for plants are used.
The results of the first runs were as expected. The propagation of the descen-
dants from the initially entity builds a roundly shaped population island, due to
the Moore neighborhood. After 70 time steps a certain area is homogeneously
covered with vegetation, that means no unoccupied gaps are inside this cluster.
For a graphical impression of the clustered offspring from origin individual see
figure 6.1. So ˜14.5% of total space is covered with the species.
At almost 200 time steps the plants have taken 100% of the space provided by
the model. About this time the first plants have reached their life expectancy
and they die. These plants are the oldest and they are located close to the initial
plant – or more precisely: These are the initial plants and their first descen-
dants. For that reason some gaps – that means unoccupied cells – appear, but
because of the perfect conditions for the species these gaps are refilled directly.
By watching the model in elapsing time it seems that these gaps are moving
from the center to the border (see also figure 6.2). This seems to be obvious,
by considering the allocation of the plants and their age.

The result of a Monte-Carlo-Simulation with 20 runs is a fully occupied lattice
after circa 211 time steps. A graph (figure 6.3) shows the growth with an ex-
ponential phase followed by a saturated stage. The saturation is caused by the
decreasing amount of unoccupied cells.
By including wind in the model the population grows significantly faster. Also
20 runs are executed. On average, after 37 periods the lattice fully populated.
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Figure 6.1: Offspring spreading of one plant at time step 70

Figure 6.2: Vegetation gaps at time step 503 reasoned due dying of plants
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Figure 6.3: Growth of population dependent on time

6.3 Exploration of environmental conditions

First – before exploring the species parameters – it can be useful to change some
environmental conditions and therefore increase the difficulty of survival for the
current species. The first test includes the application of a temperature map
which consists of a life friendly region and some areas with too hot or too cold
temperatures for the species. To operationalize this, the most extreme temper-
atures are chosen (−2.3◦ and +23.2◦ Celsius) for the not life friendly areas of
the map. The ratio for the amount of species at initialization – the setup ratio
– is defined to be 10%. So approximately every tenth cell is occupied at time
step zero.
The model behaves again without surprises. The plants spread on the cells of
the region with the supportive temperature and in the cold and hot areas no
establishment of seedlings or long-term survival happens.
Replacing the temperature map with the old one (with optimal conditions for
the species) and changing the humidity map to an area with partly extreme
conditions (0% and 100%) shows similar results.
Also the combination of maps for extreme temperature and extreme humid-
ity shows that only the areas are populated where both conditions fitting with
species needs. That shows that the model satisfies Liebig’s Law (see also chap-
ter 4).

A series with 20 repetition of the runs with changed temperature and humidity
maps does not falsify that impression.
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6.4 Exploration of species parameters

To focus the verification to the species itself it is useful to change every single pa-
rameter. The tests will be carried out with respect to the ceteris paribus clauses
which means that the same conditions for each test will be applied. Therefore,
only the value for the examined parameter will be changed. All other values
will stay constant (Zahar 2007). With some exceptions the design of the tests
will stick to this statement. At each time where a change of more than one pa-
rameter, or the species amount is implemented, a comment and a justification
will be given.

The basic setting for the parameters of the plants is the – already known –
data from table 6.1. In the first test, information of environmental conditions
will be determined randomly, so without usage of any maps.

6.4.1 Exploration of the setup ratio

The lowest tested setup ratio is 0.01%. Lower values often lead to completely
empty surfaces at initialization.
In the first run of this experiment random values for temperature and humidity
are applied. The setup creates two plants and after a short while (the maturity
mean is four periods) the plants start to breed. The reproduction leads to three
individuals after five periods, four after six periods, and after ten periods to five
plants. After 13 periods there are six plants on the surface, and the last breed
for the moment happens after 18 periods to the total amount of seven plants.
Until the life expectancy of the first plants has not yet lapsed (this happens
after about 400 periods) nothing changes regarding the amount of individuals.
An observation of this test, is that two population-islands arise on the surface.
Each individual from the initialization creates one point from where its succes-
sors propagate. This concentration is reasoned by the fact that more distant
cells are out of range for the successors of the plant1.
Two things can be recognized as a result. Firstly, it seems that a use of the
random values to determine the environmental conditions is improper. It does
not support the propagation of the plants and therefore it is hard to estimate
how the behavior under other conditions would be. The cells conditions around
the islands of plants are not fitting to the plants needs, either temperature is too
low or too high or the humidity does not suit. Aside from that it is to assume
that these conditions are not very natural. Such heterogeneous conditions seem
to be untypical for the small size of the modeled area. Also climate variables
are generally smoothly varying. Moreover a regional clustering of environmen-
tal conditions is more realistic. Temperatures and humidities are influenced by
the neighbor areas. Hence, environmental conditions are not independent from
closely located cells.
The second observation is that the low setup ratio (accompanied by for the
plants survival not supportive environmental conditions) leads to the estab-
lishment of islands. These islands are insulated from each other. Death of
individuals result in empty cells. These cells will be reoccupied very soon. The
reasons are obvious, because of the former occupation the cell must provide a

1Wind is not part of the test series.
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supportive environment for the species needs. And because of the establishment
of islands, the likelihood of an occupied neighbor cell is high, the individual of
the neighbor cell can be the ancestor of the new plant.
Other tests under the same conditions, but with wind lead also to the estab-
lishment of islands, but their quantity is higher. Theoretically every cell can be
occupied via wind, no matter how far the distance from the occupied cell is.

The first results lead to an additional test with maps for temperature and hu-
midity. These maps will provide optimal conditions for the current species,
homogeneously, that means for all cells. With that experiment it is possible to
get results about the speed of propagation.
Again individuals are created for the initialization.
The result is now that two islands with a cyclic shape emerge (similar to figure
6.1).
Measuring the growth’s speed shows that it is faster (see figure 6.4) compared
to the basic test (see section 6.2, especially figure 6.3). To occupy all cells of
the lattice only 175 time steps are necessary.

Figure 6.4: Growth of population depending on time

The reason for the increasing speed compared to the basic test (see section 6.2)
is obvious. Starting with two plants means double amount of individuals from
the basic test with only one plant.
However, the speed is not exactly double. To understand this behavior the po-
sition of the two cells must be considered. An assumption – deriving from the
observation that the speed of propagation increases with the amount of plants
at setup time – is that the farther the both plants are located from each other,
the faster the spreading occurs.
To test this assumption two more runs of the model are carried out. Each run
under same condition, with two plants at initialization. The difference of both
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runs is their location. In the first test both individuals will be placed on two
cells next to each other. In the second run both cells will be placed as far as
possible from each other. Of course, the torus shape of the lattice is consid-
ered). So in a 100 x 100 torus the maximum distance is 50 cells. For instance,
the position x=25 and y=25 is in maximum distance to cell x=75 and y=75.
In the first run – where the two cells are neighbors – all cells are occupied after
209 time steps. In the second run – with the maximum distance – only 170 time
steps are necessary for the a fully occupation of the lattice. Several repetitions
– five for each of both settings – show an average of circa 208 time steps for the
setting with neighbored individuals, and circa 171 periods for the plants with
the distance in between.
For a more detailed analysis every location between the two extrema – neigh-
borhood and most remote – will be measured. Plant one (P1) will stay at the
same position (x=75 and y=75) during the whole experiment. Plant two (P2)
will be located concerning to the values in the first column (with x=y) of table
6.2.

Position of P2 run 1 run 2 run 3 run 4 run 5 Average
25 170 170 169 173 172 170.8
26 171 173 173 175 174 173.2
27 173 170 172 169 169 170.6
28 173 170 170 168 171 170.4
29 171 171 172 173 170 171.4
30 172 176 172 173 177 174.0
31 171 172 173 174 172 172.4
32 175 172 171 169 175 172.4
33 176 172 170 174 175 173.4
34 173 174 172 177 174 174.0
35 174 172 172 171 171 172.0
36 173 176 176 169 174 173.6
37 175 173 172 170 172 172.4
38 174 172 175 175 174 174.0
39 174 176 177 178 174 175.8
40 175 177 177 177 173 175.8
41 172 174 172 175 171 172.8
42 176 176 174 178 179 176.6
43 175 180 175 174 175 175.8
44 179 178 177 173 177 176.8
45 174 175 176 181 180 177.2
46 175 173 179 174 174 175.0
47 179 180 172 177 176 176.8
48 177 177 178 179 176 177.4
49 176 178 178 180 181 178.6
50 179 183 177 175 179 178.6
51 183 177 178 181 180 179.8
52 185 179 178 180 180 180.4
53 183 180 177 181 182 180.6
54 183 183 182 181 181 182.0
55 182 182 184 187 177 182.4
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56 182 182 183 187 183 183.4
57 186 188 182 186 182 184.8
58 186 185 188 185 186 186.0
59 186 188 187 187 188 187.2
60 191 186 187 190 186 188.0
61 187 188 184 188 190 187.4
62 190 188 191 189 190 189.6
63 195 194 191 190 191 192.2
64 189 192 191 192 189 190.6
65 195 195 194 190 192 193.2
66 194 197 194 192 202 195.8
67 198 194 196 199 194 196.2
68 199 198 198 198 197 198.0
69 197 197 198 196 199 197.4
70 200 196 198 199 198 198.2
71 201 202 203 201 202 201.8
72 202 202 201 201 201 201.4
73 207 206 206 205 209 206.6
74 209 208 206 210 206 207.8

Table 6.2: Growing speed for different positions of two plants

Result, of the more detailed analysis, is that the decrease in time – that is
needed for a completely occupation of the lattice – by an increment of distance,
is not proportional to the distance of both individuals. With a higher distance
the increment of speed per cell declines (see figure 6.5). The limiting value, is of
course, zero. That means that the increase of occupation speed is non-negative
on each position change of P2 related to P1. The volatility in figure 6.5 is rea-
soned by noise. It is an empirical investigation with only five measurements per
setting. With more repetitions the variance would reduce.
The reason for the declining increase with more distance is explicable by think-
ing about two overlapping circles. Because of the optimal and homogeneous
conditions, the plants are spreading in all directions with a very similar speed,
therefore we can compare the islands of plants with circles. The amount of
overlapping space inside two circles is higher when the centers of the circles are
close together(a); the opposite is the case when there is a higher distance (b) (in
figure 6.6). Therefore the spreading possibilities are restricted. For an islands
of plants it is solely possible to breed at its edge. Shortly after the fusion of
both islands happens the growth of total circumference slows down. Hence, the
growth of population slows down as well.

The next step will be a switching back to random positions and numbers for
the plants at setup time while increasing the value for setup ratio.
The setup ratio determines the amount of a species at the initialization for a
simulation run (see table 5.1). It is the probability for each cell whether a plant
will be placed there or not. Table 6.3 shows the average amount of individuals
for ten runs at initialization (right column) linked to the setup ratio (left col-
umn). Again a lattice with 100 x 100 cells is used.

A proportional correlation between the setup ratio and total amount of plants
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Figure 6.5: Growth of species amount dependent on time

Figure 6.6: Overlapping space correlates with distance
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Setup ratio Average amount
0.001 9.0
0.002 18.3
0.003 32.6
0.004 40.7
0.005 47.2
0.006 62.2
0.007 71.4
0.008 84.2
0.009 89.4
0.010 99.4
0.020 203.5
0.030 301.8
0.040 389.2
0.050 505.9
0.060 605.0
0.070 697.5
0.080 792.3
0.090 904.1
0.100 994.0
0.200 2011.7
0.300 3002.5
0.400 3998.4
0.500 4975.7
0.600 5999.7
0.700 6985.5
0.800 8008.6
0.900 9001.5
1.000 1000.0

Table 6.3: Setup ratio of one species correlating with total amount at time step
zero

55



Chapter 6. Verification of the model

Figure 6.7: Amount of plants depending on setup ratio for one species

at initialization of the program is given2 (see also figure 6.7). The allocation of
the plants on the surface seems to be random.
This behavior changes, of course, with more than one species. Competition for
cells is the reason. At initialization the same competition rules apply as by
competition during a simulation run. To test the dependency of the amount
of plants on the number of species, another species (S2) is added to the model
(see table 6.4) and a third one S3 subsequently (see table 6.6). The new species
have the same parameter values (exception is the setup ratio according to the
tables) as the original one (S1).

Figure 6.8 shows the declining but positive margin of the average amount of
plants for both species by an increase of setup ratio. The data is the same as
the content out of table 6.4 (except the last two rows where the setup ratio from
S1 is not equal to the one of S1). It is generated from a Monte-Carlo-Simulation
experiment with five runs for each configuration of the setup ratio. Compared
with scenario for one species (see figure 6.7), the dependency between setup
ratio and amount of plants is now under proportional.
The last two rows of table 6.4 expose a dissimilar value for setup ratio for both
species. One configuration is S1 with a ratio of 5% and S2 with 100%. Its result
shows that S1 has an amount of only 243 plants on average after the initializa-
tion of the model. Compared to the setting of the fourteenth row of table 6.4
(where both species have the ratio of 5%) the total amount of plants is lower
(than 505 for S1 and 481 for S2, repectively).
To explain this result the structure of the setup ratio is crucial. The setup ratio
is not directly oriented to the amount of cells which a species occupies at time

2This is actually no property of models behavior, it is more likely to show that the model
works correctly.
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Setup ratio S1 Setup ratio S2 Average amount of S1 Average amount of S2

0.001 0.001 9.8 10.2
0.002 0.002 20.2 19.4
0.003 0.003 29.2 33.6
0.004 0.004 38.6 43.0
0.005 0.005 52.8 47.2
0.006 0.006 62.8 56.2
0.007 0.007 78.2 75.4
0.008 0.008 75.8 78.6
0.009 0.009 86.4 79.6
0.010 0.010 103.6 100.2
0.020 0.020 192.4 202.2
0.030 0.030 291.8 287.4
0.040 0.040 389.4 386.6
0.050 0.050 505.0 481.0
0.060 0.060 591.8 568.4
0.070 0.070 683.0 680.4
0.080 0.080 749.8 773.4
0.090 0.090 863.4 862.8
0.100 0.100 963.2 950.2
0.200 0.200 1796.6 1806.0
0.300 0.300 2537.6 2551.6
0.400 0.400 3195.6 3214.4
0.500 0.500 3734.0 3773.6
0.600 0.600 4206.2 4181.2
0.700 0.700 4580.2 4524.2
0.800 0.800 4791.2 4805.6
0.900 0.900 4952.8 4946.2
1.000 1.000 4994.4 5005.6
0.050 1.000 243.0 9757.0
0.100 0.200 893.0 1901.8

Table 6.4: Setup ratios of two species correlating with total amounts

57



Chapter 6. Verification of the model

Figure 6.8: Amount of plants depending on setup ratio for two species

of initialization. Furthermore it is directed to every single cell. So, some cells
are aimed by both species to be occupied and in that case the competition rules
are intervening. With low setup ratios for both species the intervening of com-
petition rules are rare. However, with an increase of the setup ratio else cells are
aimed for occupation and therefore more competition happens. More competi-
tion leads to more lost competition games. Of course, it leads also to more won
competitions games, but these wins are nothing more than what would happen
if there is no competitor at all. So it is obvious – and again not surprising –
that the total amount of individuals at initialization of a species is not only de-
pending on its own setup ratio, but also on the setup ratios of all other species.
To develop an equation to explain this observation two elements must be consid-
ered. Basically the setup ratio of the considered species (Sa(sr)) and the proba-
bility that the other species Sb tries to occupy a cell that Sa also strives for, are
crucial. The probability for such an incidence is (Sa(sr) · Sb(sr)). Equation 6.1
follows the presumption that the cases of competition must be subtracted from
the basic probability, but only half of it, because half of the competitions wins
Sa on average. A necessary assumption is that the competition strength is equal
for both species. The terms width and height mean the width and the height of
the whole lattice measured in number of cells.

TA(Sa) = with · height · (Sa(sr)− Sa(sr) · Sb(sr)
2

) (6.1)

Using different values for competition strengths is basically not different from
the statement of equation 6.1. Only the ratio of 1

2 must be replaced with ratio of
both competition strengths (see equation 6.2, with Sx(cs) as competition strength
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Sa(sr) Sb(sr) Avg. TA(Sa) measured TA(Sa) calculated Relative error
0.200 0.400 1615.2 1600 0.9%
0.300 0.400 2394.2 2400 -0.2%
0.200 0.020 1975.8 1980 -0.2%
0.001 0.200 8.0 9 -12.5%
0.020 0.300 169.4 170 -0.4%
0.070 0.060 662.6 679 -2.5%
0.500 0.200 4498.2 4500 -0.1%
1.000 0.020 9900.2 9900 0.0%
0.800 0.400 6393.6 6400 -0.1%
0.001 0.800 4.8 6 -25.0%
0.100 0.500 762.2 750 1.6%
0.500 0.700 3245 3250 -0.2%

Table 6.5: Comparison of empirical data with results from an equation for setup
ratio for two species

for any species).

TA(Sa) = with · height · (Sa(sr)− Sa(sr) · Sb(sr) · Sa(cs)
2 · Sb(cs)

) (6.2)

To see how exact the formula (equation 6.1) works, new empirical values are
created by application of the simulation model, and compared with the results
of the equation (see table 6.53). The values for the setup ratios are chosen ran-
domly, but under consideration of inequality. For the measurement the mean of
five single runs is used. Again all other species and environmental parameters
are unchanged.
Table 6.5 shows an acceptable accordance of the equation (6.1) with empirical
data. Exceptions are low setup ratios for one of two species. However, this is
reasoned by the fact that for minor values even a small divergence leads to a
large relative error.
In summary, it is possible to argue a certain correctness of equation 6.1. How-
ever, it can be useful to adapt the equation for the application of more than two
species.

Designing an experiment with three species, can help to find out whether a
mathematical model can describe the dependency from the setup ratio to the
total amount of plants, at time step zero. Because of the infinite number of
possible combinations, it is necessary to find an acceptable solution for that
experiment.
With three species it may be useful to double the setup ratio for the second
species (S2) from the first species (S1) and triple it for the third species (S3). So
the differences between the setup ratios are not too small. Table 6.6 shows in
the first three columns all applied values and the consequential results, or to be
more precise, the average results for five runs. Of course, all species parameters

3The abbreviation sr stands for setup ratio; and TA(Sx) means the average total amount
of plants for a certain species at initialization.
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S1(sr) S2(sr) S3(sr) TA(S1) TA(S2) TA(S3)
0.001 0.002 0.003 9.6 17.6 30.6
0.002 0.004 0.006 19.4 38.0 58.4
0.010 0.020 0.030 95.6 209.8 293.2
0.020 0.040 0.060 189.2 415.2 563.0
0.100 0.200 0.300 759.8 1841.2 2566.8
0.200 0.400 0.600 1101.0 2903.2 4444.0
0.015 0.030 0.045 137.0 324.2 444.0
0.150 0.300 0.450 973.6 2429.2 3606.6
0.030 0.060 0.090 278.8 629.0 844.2
0.300 0.600 0.900 1158.8 3423.2 5736.6
0.033 0.066 0.099 304.6 692.2 951.2
0.333 0.666 0.999 1109.2 3480.0 6102.4

Table 6.6: Setup ratio correlation with total amount of plants for three species

are the same (except the setup ratio). The environmental parameters are also
unchanged.
The supposition is that the total amount of a species depends on the setup ra-
tios of all species and the size of the lattice. This is not new, but important
is how the dependency between all setup ratios works. Equation 6.3 shows an
approach to model it mathematically and it is basically reasoned on the equa-
tion for two plants (equation 6.1). (The term size means only width · height
and stands again for the dimension of the lattice. It better fits into the length
of the equation.)

TA(Sa) = size·(Sa(sr)− Sa(sr) · Sb(sr)
2

− Sa(sr) · Sc(sr)
2

+
Sa(sr) · Sb(sr) · Sc(sr)

3
)

(6.3)

Equation 6.3 is very similar to equation 6.1. The difference is the consideration
of two competitors, therefore the probability for competition with all other
species is minded (Sa(sr)·Sb(sr)

2 and Sa(sr)·Sc(sr)
2 ). It is possible to shorten equation

6.3 to equation 6.4 and argue the last part of it.

TA(Sa) = size · (Sa(sr)− Sa(sr) · (Sb(sr) + Sc(sr))
2

+
Sa(sr) · Sb(sr) · Sc(sr)

3
)

(6.4)

The last part (Sa(sr)·Sb(sr)·Sc(sr)
3 ) possibly seems to be against intuition. It has to

do with the competition game of plants. If plants of three different species are
trying to occupy one cell then the chances for each of the species are basically
the same. The competition game does not work the way that the first plant
has to compete against the second one, and the winner of this game has to
prevail over the third one. This would be an advantage of the third, because it
would have to fight only once. So the implemented algorithm assures the same
chances in one game for all (in the current case three). However, an equation
without adding the shared set of all setup ratios, must be wrong – for more
than two species – , because it would assume that cells that are sought by two
other species (out of the view of the considered species (Sa(sr)) triggering two
separate competition games.
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Sa(sr) Sb(sr) Sc(sr) TA(Sa) m. TA(Sa) c. Rel. error
0.001 0.002 0.003 30.6 29.95502 2.1%
0.002 0.004 0.006 58.4 59.82016 -2.4%
0.010 0.020 0.030 293.2 295.52000 -0.8%
0.020 0.040 0.060 563.0 582.16000 -3.4%
0.100 0.200 0.300 2566.8 2570.0000 -0.1%
0.200 0.400 0.600 4444.0 4360.00000 1.9%
0.015 0.030 0.045 444.0 439.94250 0.9%
0.150 0.300 0.450 3606.6 3555.00000 1.4%
0.030 0.060 0.090 844.2 860.04000 -1.9%
0.300 0.600 0.900 5736.6 5490.00000 4.3%
0.033 0.066 0.099 951.2 941.71374 1.0%
0.333 0.666 0.999 6102.4 5738.51574 6.0%

Table 6.7: Comparison of empirical data with equation calculations for three
species

The exact structure of the added part (Sa(sr)·Sb(sr)·Sc(sr)
3 ) is designated because of

the fact that the probability of all cases, where three species are trying to occupy
the same cell must be treated separately. Therefore the term Sa(sr)·Sb(sr)·Sc(sr)
– which expresses exact this probability – is added, or rather: Is not subtracted
from the setup ratio of the considered species. (All probabilities of occupation
attempts of different species are subtracted from the setup ratio (see equa-
tion 6.3 or 6.4).) Thereafter the probability for losing competition games with
three species participated must be subtracted. The term 2·(Sa(sr)·Sb(sr)·Sc(sr)

3 ex-
presses that. Eventually, the summarizing calculation leads to the added term:
Sa(sr) · Sb(sr) · Sc(sr)− 2·(Sa(sr)·Sb(sr)·Sc(sr)

3 = Sa(sr)·Sb(sr)·Sc(sr)
3 .

Of course equation 6.4 also based on the assumption of equal values for compe-
titions strengths.

An experiment should test equation 6.4 empirically. Again everything is un-
changed from the beginning of this chapter. The exception is the use of three
equate species, but with dissimilar setup ratios. Table 6.74 illustrates the results
with a measurement of errors. The empirical data is the same as in table 6.6.
The considered species is S3 (Sa = S3).
The results are acceptable. Of course, it is impossible to find an exact method,
which predicts the total amount of plants at initialization of the program by
using randomly influenced values like the setup ratio. Therefore the equations
for two and three species (equation 6.1 and 6.4) provide a useful heuristic for
the user and show that the model does not behave unpredictably because of
software errors, programming mistakes or the like.

The last step related to the setup ratio should be a generalization of equation
6.4 for any species numbers. The model basically provides an infinite number of
species. The models application in practice with higher amount of species may
be rare. However, a heuristic can be useful.
Cases for more than three species are just a generalization of the three species

4“TA(Sa) m.” stands for the average total amount of Speciesa measured and “TA(Sa) c.”
is the calculated result.
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case. Therefore an abstract expression of equation 6.4 with k species is equation
6.5.

TA(Sa) = size · (Sa(sr)−
k∑

i=2

Sa(sr) · Si(sr)
2

+
Sa(sr)
k
·

k∏
i=2

Si(sr)) (6.5)

6.4.2 Exploration of the humidity mean

Humidity mean is the next parameter to test. It determines the optimal humid-
ity for an individual of a species (see table 5.1). For these tests it is possible
to speculate that a change of the mean at constant environmental conditions5

leads to decreasing breeding abilities of the species. At the moment the humid-
ity mean of the species is 50% (see table 6.1). The humidity map determines
the same value to all cells.
A basic assumption of the model is the existence of a certain degree individu-
ality for the plants. Each species has only a mean and standard derivation for
humidity and temperature. The same is true for life expectation and maturity.
On level of entity, concrete values for theses parameters are calculated. That
means as soon as a seedling reaches a cell, the birth happens and an exact life
expectancy, maturity, preferential temperature, and – needless to say – also a
preferential humidity will be determined. This happens even before the com-
petition for the cell starts. This assumption is based on the point of view that
each individual plant is unique and slightly different from other entities of its
species6. Reason can be mutation or similar effects that differentiate individ-
uals. So a basic rule for propagation is that the characteristics of the parent
plant determine whether a cell is eligible for its successors or not.
An experiment is designed to figure out what relationship between propagation
and humidity mean exists. It is predictable that not all runs of the experiment
will lead to a full occupation of the whole lattice. Therefore the dynamics over
a certain amount of time will be measured. The humidity mean will be changed
in steps of 5%. All other conditions and parameters are unchanged (see table
6.1). Also the humdity standard deviation is still 0.05%. The time step when
the measurement happens is 50. For each setting of the parameter, ten runs are
carried out. The results of this experiment are shown in table 6.8.
A verification, based only on the percentage from time step zero to 50 show
that the number of plants increase, however this is slightly confusing (see right
column in table 6.8). This is reasoned by the fact that the amount of plants
at time step zero is crucial for the resulting percentage. For instance at a hu-
midity mean of 50% a relative high average amount of plants initially occurs.
This circumstance has a strong influence on the percentage of increase. For
the mathmatical result it is crucial, but it does not show the model’s behavior
regarding the change of humidity mean without bias. Hence, it is useful to con-
sult the absolute values at time step 50 to get an overview of the influence (see
figure 6.9).
The absolute numbers are more realistic for the purpose of that experiment.
Alternatively it could be useful to repeat the experiment with fixed numbers of
plants at the model’s initialization. However, this would be an intervention in

5The map for humidity is still the same (and also the temperature map).
6By discussing the standard deviations for humidity, temperature, maturity, and life ex-

pectancy it becomes clear how the user can lever out this assumption.
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Humidity mean TA(Sa) at t=0 TA(Sa) at t=50 increase
0% 21.6 21.6 0.0%
5% 19.2 19.2 0.0%

10% 21.0 21.0 0.0%
15% 16.8 16.8 0.0%
20% 19.5 24.3 24.6%
25% 20.5 142.6 595.6%
30% 17.4 3286.9 18790.2%
35% 19.1 6799.1 35497.4%
40% 19.2 7444.1 38671.4%
45% 19.7 7692.3 38947.2%
50% 22.3 8113.2 36282.1%
55% 20.5 7766.2 37783.9%
60% 19.3 7176.4 37083.4%
65% 19.5 6777.3 34655.4%
70% 19.4 1647.5 8392.3%
75% 18.8 69.7 270.7%
80% 20.8 22.4 7.7%
85% 21.2 22.0 3.8%
90% 19.5 19.5 0.0%
95% 20.4 20.4 0.0%

100% 18.5 18.5 0.0%

Table 6.8: Results of a changing humidity mean

the basic settings of the model without a big advantage. The repetition of ten
times for each run should be enough to avoid volatility based on noise.
The plant’s tolerance regarding humidity is ±20%. The data from table 6.8
(see also figure 6.9) shows a strong reproduction exaclty for values inside the
tolerance interval. Therefore the model behaves appropriately regarding the
humdity mean.
It is certainly possible to change this tolerance interval in both directions, broad-
ening or reducing. For the experiments, however, it can be useful to leave it as
it is for the moment.
The sharp rise from 25% to 30% is surely also dependend on the humdidty stan-
dard deviation of species. A higher standard deviation would probably dimish
this rise. This is the next part of the verification.

6.4.3 Exploration of the humidity standard deviation

The humidity standard deviation influences the deviation of the individual plants
preferred humidity. While a high humidity standard deviation leads to more in-
dividuality of a species entities, results a low deviation in more unitary plants
of a species. The assumption that each plant is slightly unique can be leveraged
out by a value of zero. If the humidity standard deviation is zero, the plant’s
value for optimal humidity is exactly equal to the humidity mean.
By testing the humidity standard deviation a concentration on relative high val-
ues combined with borderline values for humidity mean seems to be the most
interesting experimental design. Borderline values for humidity mean are values
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Figure 6.9: Average amount at time step 50 depending on humidity mean

that permit both, entities that are unable to breed as well as individual plants
that are capable of breeding, because of their humidity preferences. In the next
section (6.4.4) a combination of both parameters (humidity mean and humidity
standard deviation) will be implemented.
However, the current experiment is only concerned with humidity standard de-
viation. Basically there is no upper limit for the preferred humidity.
Table 6.9 shows the results of the experiment, that consists again of ten runs
for each parameter setting. The main criteria, to estimate the influence of hu-
midity standard deviation to the model’s behavior, is again (see section 6.4.2)
the amount after 50 time steps. The humidity mean is constant by 50% during
the whole experiment and all other parameters are unchanged from the basic
configuration, that means, in particular, the humidity map determines the en-
vironment to 50% humidity for all cells. Because of the fact that it does not
matter which standard deviation for humdity is chosen, there is always a prob-
ability for an optimal humidity fitting to the environmental conditions. The
spectrum of tested values is 0% to 120%.
Figure 6.10 shows a decreasing total amount of plants by an increase of humidity
standard deviation, and therefore the model behaves as expected. The predic-
tion from the last section (6.4.2) that the sharp rises in figure 6.9 will flatten is
demonstrated by this experiment. An increasing standard deviation leads to a
more wide spread of the values for optimal humidity. Therefore less plants are
characterized with value inside the optimal spectrum.
Another observation is shown at the leveling off of the graph, at about 45% and
more for humidity standard deviation (see figure 6.10). This may be understood
by the fact that the flatten of the gauss function itself. The higher the standard
deviation the flatter the graph. The increase of the amount of plants that does
not fit into the environmental conditions is almost saturated at this point.
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Humidity TA(Sa) at t=0 TA(Sa) at t=50 increase
standard deviation

0% 21.7 7981.5 36681.1%
5% 20.4 7458.1 36459.3%

10% 20.1 7394.7 36689.6%
15% 20.5 6625.5 32219.5%
20% 19.7 4990.1 25230.5%
25% 19.9 3546.6 17722.1%
30% 21.0 2362.9 11151.9%
35% 20.4 1953.8 9477.5%
40% 20.6 1085.6 5169.9%
45% 19.8 525.9 2556.1%
50% 20.2 443.7 2096.5%
55% 20.0 325.1 1525.5%
60% 20.0 206.1 930.5%
65% 19.6 140.3 615.8%
70% 20.2 137.4 580.2%
75% 19.7 93.3 373.6%
80% 19.6 89.8 358.2%
85% 19.7 92.0 367.0%
90% 19.4 92.1 374.7%
95% 20.2 98.1 385.6%

100% 20.2 74.0 266.3%
105% 20.2 66.5 229.2%
110% 19.9 65.6 229.6%
115% 20.3 56.7 179.3%
120% 20.1 56.0 178.6%

Table 6.9: Results of a changing humidity standard deviation
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Figure 6.10: Average amount at time step 50 depending on humidity standard
deviation

With support of the user interface – that allows the observation of the plants
on the cellular automata’s lattice – it is possible to notice which plants have the
right preferred humidity to breed. These plants breed, and islands arise. Others
with unfitting preferred humidity cannot reproduce and are isolated until they
die (see figure 6.11).

6.4.4 Experimental design: Humidity mean and humidity
standard deviation

By doing experiments with optimal humidity an opportunity is given to test
how accurate the gaussian function works. Therefore five runs with a humidity
mean of 50% and a humidity standard deviation of 0.1% are carried out. All of
the five runs show at measure time a fully occupied surface. So data of 10,000
entities per run is available. The average of all plants humidity is 0.500174687%
and the standard deviation amounts 0.099795991% this means a divergence of
only 0.02% for each of both values.

More interesting are experiments that – as mentioned before (see section 6.4.3)
– combine values for humidity mean, with an almost equal likelihood for fitting
and unfitting plants, and a high humidity standard deviation. A fast occupation
of the “fittest” entities is to presume, but the optimal humidity for a plant is
determined individually, so there will occur delays. Some plants will not succeed
when they try to spread to neighbor cells, but possibly successors from more
remote plants may vegetate them after a while.
The parameter values regarding the preferred humidity for one species are shown
in table 6.10. Each line is one test. All other parameter values are unchanged.
The results of the first test of table 6.10 are relatively unspectacular. Only one
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Figure 6.11: Different propagation behavior by a humidity standard deviation
of 40%

Test humidity mean humidity standard deviation
1 70% 100%
2 70% 20%
3 30% 100%
4 30% 20%

Table 6.10: Parameter values for testing behavior regarding the preferred hu-
midity

67



Chapter 6. Verification of the model

Figure 6.12: Test two at time step 311

plant can breed and occupies its Moore neighborhood completely in one time
step, thereupon nothing more happens, except for the dying of all plants at
about time step 400.
Test number two is more interesting, because of the smaller standard deviation
more plants are able to breed. Growth happens relatively fast. However, a few
cells remain unoccupied (see figure 6.12).
Directly after the death of some plants new occupations happen. The reason
is that some of the plants that are close to the cells, formerly occupied, are
likely to have the right humidity preferences to breed. Consequently they can
reoccupy these cells. Furthermore, they and their successors have the chance
to occupy the cells that had been free for the whole time. Some changes are
visible on the visualization of the lattice (see figure 6.13). Because of relative
low standard deviation for life expectancy – with a value of just two periods –
plenty of plants die at the same – or almost at the same – time.
If a plant, which is located directly to an area of unoccupied cells, dies, and its
cell will be reoccupied by a new plant, then it is also very likely that parts of –
or even the whole – unoccupied area will be vegetated. This has been mentioned
before and it is reasoned by another – possibly fitter – plant’s humidity pref-
erence that is now located directly to the unoccupied cells. The better fitting
individuals succeed. Comparing the figures 6.12 and 6.13 shows that some of
the unoccupied areas have been vegetated, but that happens not until the first
plants have died. Only the reoccupation of formerly vegetated cells leads to new
individuals and these new plants can fit into the environment.
However, this is a slow process. The mean life expectancy is 400 periods, there-
fore it takes about 400 time steps until a new generation of individuals comes.
Even after 7543 time steps the lattice is not fully occupied by vegetation (see
figure 6.14).

68



Chapter 6. Verification of the model

Figure 6.13: Test two at time step 564

Figure 6.14: Test two at time step 7543
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Test three shows similar results as test one and the same is true for test four
and two.

6.4.5 Exploration of the temperature mean

Temperature – by its similar character and definition – behaves like humidity.
Both are deviated according to the gaussian function. Humidity and temper-
ature are combined regarding Liebig’s Law. That means, as mentioned before
that they are in a non-substitutive relationship.
By verifying the temperature, similar experimental designs as by humidity can
be applied.
The individuality for the plants preferences for temperature are basically the
same as for humidity. Also a temperature mean and a temperature standard
deviation can be determined for each species. Based on both parameters an
optimal (or preferred) temperature is calculated at initialization of the plant
(see also section 6.4.2).
The map that determines the environmental temperature is still the same as
before. It appoints a temperature of 10.4◦ Celsius homogeneously to all cells.

To test the dependency between temperature mean and the propagation, the
temperature is changed in 1.0◦ Celsius steps7. The other conditions remain
constant, particularly the temperature standard deviation is still 1.0◦ Celsius.
Five runs for each setting are carried out and the times of measurement are
time step zero and 50. The criteria is the amount of plants at these times, in
particular at time step 50.
The tolerance for temperature swings is currently – and also in all other tests
– ±4◦ Celsius. The measured deviation fits into that interval (see figure 6.15).
From about 6◦ Celsius to about 15◦ Celsius for temperature mean the plants
are able to breed.

6.4.6 Exploration of the temperature standard deviation

The temperature standard deviation determines the plants preferred tempera-
ture in the same way as the humidity standard deviation influences the optimal
humidity. Therefore the test design is similar to that in section 6.4.3. The ex-
periment consists of 29 different settings and each setting is repeated five times.
The temperature standard deviation changes in steps of 0.1◦ Celsius. After 21
different settings the step is increased to 0.5◦ Celsius and eight more values are
tested (see table 6.12). The average amount of plants out of the five runs is
measured at time step zero and 50. All parameters have the values of table 6.1
– except, of course – the temperature standard deviation.
The results of the test for the temperature standard deviation show that the
breeding capabilities of the species depends on the standard deviation. How-
ever, the dependency is not as strong as species breeding depends on humidity
standard deviation. That is probably reasoned by the rather big tolerance in-
terval of ±4◦ Celsius. Figure 6.16 shows a quite successful behavior, measured
by amount of plants at time step 50, until a temperature standard deviation of
5.5◦ Celsius. Therefore the question comes up whether this tolerance interval

7The highest temperature value (see last row of table 6.11) of 23.2◦ Celsius is an exception
of this stepping, reasoned by the limited spectrum for temperature.
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Temperature mean TA(Sa) at t=0 TA(Sa) at t=50 increase
−2.3◦ Celsius 20.0 20.0 0.0%
−1.3◦ Celsius 20.2 20.2 0.0%
−0.3◦ Celsius 21.4 21.4 0.0%

0.7◦ Celsius 19.8 19.8 0.0%
1.7◦ Celsius 20.4 20.4 0.0%
2.7◦ Celsius 21.0 21.0 0.0%
3.7◦ Celsius 21.0 22.6 7.6%
4.7◦ Celsius 19.8 29.4 48.5%
5.7◦ Celsius 19.8 159.6 706.1%
6.7◦ Celsius 19.6 4097.2 20804.1%
7.7◦ Celsius 19.8 7088.2 35699.0%
8.7◦ Celsius 20.6 7533.6 36470.9%
9.7◦ Celsius 20.2 7572.8 37389.1%

10.7◦ Celsius 20.6 7804.0 377.8%
11.7◦ Celsius 20.2 7792.0 38474.2%
12.7◦ Celsius 20.2 7670.8 37874.3%
13.7◦ Celsius 19.8 6118.4 30801.0%
14.7◦ Celsius 20.2 1400.2 6831.7%
15.7◦ Celsius 20.4 57.0 179.4%
16.7◦ Celsius 20.4 22.0 7.9%
17.7◦ Celsius 20.2 20.2 0.0%
18.7◦ Celsius 19.8 19.8 0.0%
19.7◦ Celsius 20.0 20.0 0.0%
20.7◦ Celsius 19.4 19.4 0.0%
21.7◦ Celsius 19.8 19.8 0.0%
22.7◦ Celsius 19.6 19.6 0.0%
23.2◦ Celsius 20.2 20.2 0.0%

Table 6.11: Results of a changing temperature mean
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Temperature TA(Sa) at t=0 TA(Sa) at t=50 increase
standard deviation

0.0◦ 20.6 7686.6 37213.6%
0.1◦ 20.4 7698.4 37637.2%
0.2◦ 20.4 7644.8 37374.5%
0.3◦ 20.2 7440.6 36734.7%
0.4◦ 20.2 7937.2 39193.1%
0.5◦ 20.4 7845.4 38357.8%
0.6◦ 20.2 7621.0 37627.7%
0.7◦ 20.2 7769.2 38361.4%
0.8◦ 19.4 7411.4 38103.1%
0.9◦ 20.0 7659.0 38195.0%
1.0◦ 20.0 7708.0 38440.0%
1.1◦ 19.8 8018.4 40397.0%
1.2◦ 19.8 7699.2 38784.9%
1.3◦ 20.2 7777.0 38400.0%
1.4◦ 20.4 7230.2 35342.2%
1.5◦ 19.8 7558.4 38073.7%
1.6◦ 20.0 7080.2 35301.0%
1.7◦ 19.8 7501.8 37787.9%
1.8◦ 19.6 7266.2 36972.5%
1.9◦ 20.0 7632.0 38060.0%
2.0◦ 20.2 7089.6 34997.0%
2.5◦ 20.2 7002.8 34567.3%
3.0◦ 20.0 6438.0 32090.0%
3.5◦ 20.4 5947.6 29054.9%
4.0◦ 19.8 5124.2 25779.8%
4.5◦ 20.0 4239.2 21096.0%
5.0◦ 19.8 4058.4 20397.0%
5.5◦ 19.8 3583.8 18000.0%
6.0◦ 19.8 2399.4 12018.2%

Table 6.12: Results of a changing temperature standard deviation
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Figure 6.15: Average amount at time step 50 depending on temperature mean

is close to reality or not. This can only be answered for real existing and well
researched plant species.
The volatile part in figure 6.16 is more reasoned by random influences than by
the change of temperature standard deviation.

6.4.7 Experimental design: Temperature mean and tem-
perature standard deviation

The temperature standard deviation works similar to the humidity standard de-
viation. A high standard deviation leads to more individuality. It implies that
the likelihood for the survival of a plant species is higher if its temperature mean
does not fit to the environmental temperature. On the other hand, a low temper-
ature standard deviation leads to better survival chances if it is combined with
a fitting temperature mean. For instance a temperature mean of 10.4◦ Celsius is
combined with the current map optimal, but a very high standard deviation for
temperature can scatter the value for preferred temperature and a few plants
are not able to breed in that environment. Of course, in nature it is not very
likely that plants from one generation to the next change significantly, but for
the verification it can be an interesting point.
Therefore a test is realized. A temperature mean of 10.4◦ Celsius and a tem-
perature standard deviation of 50◦ Celsius are applied. All other parameter
values are again unchanged, except for the setup ratio. The setup ratio is 1.0
for this experiment. The reason for choosing the maximum setup ratio is that
the analysis can be conducted without running the simulation program. The
initialization is enough. It is very likely that the species is not very successful
in breeding with those parameters, but it is useful to get as many plants as
possible. For summary of the important parameter values see test one in table
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Figure 6.16: Average amount at time step 50 depending on temperature standard
deviation

Test humidity mean humidity standard deviation setup ratio
1 10.4◦ Celsius 50.0◦ Celsius 1.00
2 14.4◦ Celsius 0.0◦ Celsius 0.05
3 6.4◦ Celsius 0.0◦ Celsius 0.05
4 14.4◦ Celsius 0.1◦ Celsius 0.01

Table 6.13: Parameter values for testing behavior regarding the preferred tem-
perature

6.13.
Another test is a combination of the optimal temperature (on the basis of the
temperature of the environment, that is 10.4◦ Celsius) plus the tolerance inter-
val (that is ±4◦ Celsius) and a low temperature standard deviation, for example
0◦ Celsius (see test two and three in table 6.13).

Test one shows a very heterogeneous scattering regarding the preferred tem-
perature of the individual plants. The values are between −181.44◦ Celsius and
+189.16◦ Celsius. Of course, the mean preferred temperature of all plants is
about 10.4◦ Celsius (exactly at 10.38◦ Celsius) and the standard deviation is
50.95◦ Celsius8.
Running the model with that configuration can be interesting, although it was
not planned. The plants on the fully occupied lattice start to die after about
400 periods. When the first plants are dead, free space for the next generation
is available and the plants with a slightly higher life expectancy start to breed.
Of course, they breed only in the case of fitting the temperature preferences.

8For this test only one run was executed. Hence, the values are not as close to the parameter
inputs. In contrast see the results in section 6.4.4 where five runs were carried out.
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At time step 462 a surprisingly high quantity of plants (2413) are living on the
lattice (see figure 6.17).

Figure 6.17: Test one at time step 462

At time step 860 all plants of the second generation are dead and the new pop-
ulation has an amount of 453 (see figure 6.18). From the beginning two phases
of dying happens until this point. At each time less than one quarter of the
population could create one successor on average. The test will go to the next
dying phase and about 100 plants should exist thereafter.
The presumption that circa 100 plants are existent, after the third generation
is completely disappeared, fits more or less to the empirical result. After 1298
time steps 76 plants are on the surface. The allocation on the lattice shows that
only a few plants bred, the concentration on certain areas is obvious (see figure
6.19). After the fourth phase of dying only seven plants are left, and at time
step 2009 the species is extinct.
The result of test one is explainable by a closer look to the underlying gaussian
distribution. The most interesting point is the probability, that the distribution
provides for breeding. Each plant needs a preferred temperature that fits into
the tolerance interval of ±4◦ Celsius to the environmental conditions. That
are circa 10.4◦ Celsius for each cell. From the view point of the environment,
it means a plant must prefer an interval of [6.4◦ Celsius, 14.4◦ Celsius]. The
values for mean (µ) and for standard deviation (σ) are 10.4◦ Celsius and 50◦

Celsius. An integral of the gaussian distribution shows that just a probability
of about 6.4% is left for each plant to achieve this interval (see equation 6.6 and
figure 6.20). ∫ 14.3

6.3

1√
2π · 50

· e
−(x−10.3)2

2·502 = 0.0637627 (6.6)
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Figure 6.18: Test one at time step 860

Figure 6.19: Test one at time step 1298
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Figure 6.20: Tolerance interval for test one

Test number two uses a zero standard deviation and a setup ratio of 0.05 (see
table 6.13). It is to assume that a growing of species’ population occurs at this
test, hence, a small setup ratio is applied.
The growth of population in test two is enormous. All plants breed. That be-
havior is reasoned by the fact that all values for preferred temperature are still
inside the tolerance interval. Because of this behavior a new test is designed.
The test has the same configuration as test number two, but the temperature
standard deviation is increased to 0.1◦ Celsius and the setup ratio is decreased
to 0.01 to get a better overview (see test four in table 6.13).
The result of test four is that only circa 19 out of 118 plants start to breed
(see figure 6.21). These are exactly the plants that had a preferred temperature
inside the tolerance interval. Repetitions of this test show a strong fluctuation
of the amount of plants that are breeding.
Test three shows a very similar behavior to test two and a separate discussion
is not needed.

6.4.8 Exploration of the maturity mean

Maturity is the state that enables a plant to breed. Hence, it is a fundamental
parameter. An assumption of the simulation model is that plants cannot loose
their ability to breed once it is achieved. The argumentation is that, firstly,
for plants it makes no sense to stay alive and secondly, many examples exist of
plants that die very soon after their reproduction.
A plant that cannot breed, because it lost for example its reproductiveness
through age, is useless from an evolutionary view point. Social species – like
humans or great apes – can still support their relatives or other members of
their species in many different ways, but plants cannot.
Examples for plants that are dying even directly after their breeding are Tozzia
alpina an alpine plant (Abderhalden and Schmidt 1924), or Ficaria verna (Es-
dorn 1961).
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Figure 6.21: Test four at time step 50

However, fluctuations of plants’ breeding ability over time are certainly possible.
Therefore this is incorporated in the model, but not included in the tests.

The maturity mean is the average age for plants of a species to become able to
breed. The maturity is based on a gaussian distribution, as well as the preferred
humidity, temperature and the life expectancy.
The test design, that has been already used for humidity and temperature mean
(see section 6.4.2 and 6.4.5) can be a simple and useful start for testing the ma-
turity mean. One would expect a fast growth at small values for maturity mean,
hence, the amount of species will be already measured after 25 periods. A fixed
amount of ten plants at fixed positions is used for this test. The maturity mean
will increase during the experiment by steps of 0.5 periods. All other conditions
are unchanged (see table 6.1). The experiment is five times repeated for each
configuration and the average results are structured in table 6.14.

Maturity mean TA(Sa) at t=0 TA(Sa) at t=25 increase
0.0 periods 10.0 10000.0 99900.0%
0.5 periods 10.0 9966.8 99568.0%
1.0 periods 10.0 9357.4 93474.0%
1.5 periods 10.0 7686.2 76762.0%
2.0 periods 10.0 5905.0 58950.0%
2.5 periods 10.0 4514.6 45046.0%
3.0 periods 10.0 3222.4 32124.0%
3.5 periods 10.0 2273.0 22630.0%
4.0 periods 10.0 1720.0 17100.0%
4.5 periods 10.0 1324.0 13140.0%
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5.0 periods 10.0 1042.0 10320.0%
5.5 periods 10.0 851.8 8418.0%
6.0 periods 10.0 721.2 7112.0%
6.5 periods 10.0 607.4 5974.0%
7.0 periods 10.0 518.4 5084.0%
7.5 periods 10.0 480.8 4708.0%
8.0 periods 10.0 427.6 4176.0%
8.5 periods 10.0 351.4 3414.0%
9.0 periods 10.0 279.2 2692.0%
9.5 periods 10.0 256.2 2462.0%

10.0 periods 10.0 250.0 2400.0%
10.5 periods 10.0 249.8 2398.0%
11.0 periods 10.0 248.6 2386.0%
11.5 periods 10.0 240.6 2306.0%
12.0 periods 10.0 226.6 2166.0%
12.5 periods 10.0 164.4 1544.0%
13.0 periods 10.0 130.4 1204.0%
13.5 periods 10.0 108.0 980.0%
14.0 periods 10.0 93.8 838.0%
14.5 periods 10.0 90.0 800.0%
15.0 periods 10.0 90.0 800.0%
15.5 periods 10.0 90.0 800.0%
16.0 periods 10.0 90.0 800.0%
16.5 periods 10.0 90.0 800.0%
17.0 periods 10.0 90.0 800.0%
17.5 periods 10.0 90.0 800.0%
18.0 periods 10.0 90.0 800.0%
18.5 periods 10.0 90.0 800.0%
19.0 periods 10.0 90.0 800.0%
19.5 periods 10.0 90.0 800.0%
20.0 periods 10.0 90.0 800.0%
20.5 periods 10.0 90.0 800.0%
21.0 periods 10.0 90.0 800.0%
21.5 periods 10.0 90.0 800.0%
22.0 periods 10.0 90.0 800.0%
22.5 periods 10.0 90.0 800.0%
23.0 periods 10.0 85.2 752.0%
23.5 periods 10.0 80.4 704.0%
24.0 periods 10.0 74.0 640.0%
24.5 periods 10.0 61.2 512.0%
25.0 periods 10.0 45.2 352.0%
25.5 periods 10.0 32.4 224.0%
26.0 periods 10.0 22.8 128.0%
26.5 periods 10.0 14.8 48.0%
27.0 periods 10.0 10.0 0.0%
27.5 periods 10.0 10.0 0.0%
28.0 periods 10.0 10.0 0.0%

Table 6.14: Results of a changing maturity mean
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Figure 6.22: Average amount at time step 25 depending on maturity mean

Table 6.14 gives an interesting overview of the dependency from maturity
mean and the amount of plants. The plants of the runs that are summarized
in the first row have all achieved a number of 10,000 at time step 25 but not
earlier. All in all it seems that the amount of plants decreases disproportionally
with a raise of the maturity mean. That is reasoned by the exponentially growth
of plants. The delay of reproduction – reasoned by an increasing maturity mean
– does not affect only the direct successors of the current generation. It also
influences the generation after that. The successors of the successors have to
wait on average double the time of the delay. To get a better overview figure
6.22 represents the data of table 6.14 graphically.
A more detailed observation shows that there are some plateaus when the ma-
turity mean is increased. Figure 6.23 shows an extraction of the data from table
6.14, that means only the results from a maturity mean of nine periods and
more are shown. This allows a smaller scaling and therefore a better resolution
and discovers some plateaus.
The plateaus are in the interval 10 to 12 periods and 14 to 22.5 periods for
maturity mean. They are reasoned by the fact that the individuals, that are
mature, after their first breeding are not neighbored by free cells. The optimal
environmental conditions give them the opportunity to breed directly after their
maturity. Then the circled expansion happens (see section 6.2) and the mature
individuals are surrounded by their own successors. The younger plants that
surround the older ones are not able to breed, yet. Therefore all plants have to
wait until the plants on the periphery are mature.
Hence, the reason for the first plateau is that the plants can propagate only
twice during the whole simulation run. In the time span of 25 periods the
plants have only two phases of breeding, it does not matter whether the plants
wait ten, eleven or twelve periods on average. In other words: The plants have
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Figure 6.23: Average amount at time step 25 depending on maturity mean
(extraction)

no additional benefit regarding their amount, if they have two and a half phases
of breeding compared to only two phases.
With a short maturity mean there is no delay in breeding and hence no plateau
occurs. The longer the time to maturity takes, the longer is the plateau. This
can be explained by dividing the average duration, until a plant is able to breed
– and that is nothing else than the maturity mean – by the length of the run,
and that is in this experiment 25 time steps. An example can be a comparison
of values of both plateaus. The maturity mean of eleven is part of the first
plateau. Dividing eleven by 25 gives the idea that about two breeding phases
happen and three periods remain.
A maturity mean of 15 inside the second – the longer – plateau (see figure 6.23)
is another example. The rest of 15 divided by 25 is ten, but in ten periods
no further breeding is possible. Hence, with an increasing maturity mean the
plateaus are longer, because of the increasing amount of time for waiting.
The emergence of plateaus can only happen because of the relative low maturity
standard deviation of one period.

6.4.9 Exploration of the maturity standard deviation

The maturity standard deviation embodies the deviance from the average age
when a plant is enabled to breed.
To test the maturity standard deviation the criterion of the amount of indi-
viduals is used again. The point of time to measure is 50 time steps and all
parameter settings are reset to default, except for maturity standard deviation
and the setup ratio. Hence, the maturity mean has the value of four periods
during the whole experiment. The setup ratio is used the same way as in the
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Maturity TA(Sa) at t=0 TA(Sa) at t=50 increase
standard deviation

0.0 periods 10.0 5000.0 49900.0%
0.5 periods 10.0 4971.6 49616.0%
1.0 periods 10.0 5491.4 54814.0%
1.5 periods 10.0 6193.8 61838.0%
2.0 periods 10.0 7266.8 72568.0%
2.5 periods 10.0 8088.6 80786.0%
3.0 periods 10.0 8858.0 88480.0%
3.5 periods 10.0 9448.8 94388.0%
4.0 periods 10.0 9837.2 98272.0%
4.5 periods 10.0 9897.8 98878.0%
5.0 periods 10.0 9990.8 99808.0%
5.5 periods 10.0 9979.6 99696.0%
6.0 periods 10.0 9987.6 99776.0%
6.5 periods 10.0 9997.4 99874.0%
7.0 periods 10.0 9998.8 99888.0%
7.5 periods 10.0 10000.0 99900.0%
8.0 periods 10.0 10000.0 99900.0%

Table 6.15: Results of a changing maturity standard deviation

experiment for maturity mean (see section 6.4.8).
The experiment is implemented in half period steps for the maturity standard
deviation. And for each setting the simulation program runs five times. Table
6.15 shows the results of this experiment, but figure 6.24 makes the positive
dependency more obvious. With an increasing standard deviation for maturity,
the amount of plants at 50 time steps increases, too.

This can be surprising, because the maturity mean is four periods and with an
increasing standard deviation the probability spreads in both direction. Higher
as well as lower ages than the mean for maturity are supported. Some plants
get a maturity of more than four periods, and about the same amount become
mature before they have reached the fourth period of life. Therefore the chances
should be balanced.
However, the shape of the islands that the plants develop is much more jagged
(see figure 6.25) than the non-jagged shapes by a small standard deviation for
maturity. With a low maturity standard deviation the propagation happens
more steady. The jagged shape allows the occupation of more empty cells in
one period, because more empty cells are in the neighborhood, as shown in (b)
in figure 6.26. Vegetation of a non-jagged island is limited in its breeding (see
(a) in figure 6.269). Therefore the amount of empty cells, neighbored by existing
individuals is higher than in a non-jagged island by the same amount of plants
and hence, the propagation can occur faster.

Another reason for the increasing amount of plants with an increasing maturity
standard deviation is the possibility of negative values for the maturity. If the
standard deviation for maturity is relative high, and the maturity mean low

9Both examples in figure 6.26 have an equal amount of plants.
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Figure 6.24: Average amount at time step 50 depending on maturity standard
deviation

Figure 6.25: Scatter of plants at time step 14 depending on maturity standard
deviation
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Figure 6.26: Shape of island as crucial factor for propagation

(for instance, four periods as in this experiment), then some plants get negative
values for their maturity age. Therefore they are able to breed directly after
they are born (more precisely one period later, because of the model’s process
(see section 5.2.3)). Hence, by an increasing maturity standard deviation many
plants exist that take a long time until they develop their ability to breed. On
the other hand, many other plants can breed directly.
Combining both findings – firstly, the heterogeneous pattern regarding matu-
rity, and secondly, the realization that a more riven shape of vegetation triggers
an increase of reproduction speed – leads to the explanation of the positive de-
pendency between maturity standard deviation and the amount of plants. The
breeding capacity of plants, that are slow in achieving maturity are easily com-
pensated by those plants that have matured fast. The reason is that after a
short while a jagged structure of islands is established, and the fast plants are
able to substitute the slow ones lack of breeding with ease.

6.4.10 Exploration of the life expectancy mean

The value for life expectancy is determined at the time when a plant is born
(see also section 5.2.2). According to table 6.1 the currently applied value of
the mean of life expectancy is 400 periods. When we assume that one period is
equal to a year’s length, it seems to be an unrealistic value10. The application
of such a high value is reasoned by the argumentation that a ceteris paribus
approach has advantages for the analysis. If the plants’ death happen too early
a disadvantageous intervention occurs and the results of measurements for other
parameters are influenced (see section 6.4).
By testing the influence of life expectancy mean, however, lower values should
by applied. It can be even useful to start with a value of zero. Table 6.16 shows
in the left column the applied values for this experiment. All other values are

10The indications in botany literature, for instance, estimate that the maximum age for
tussocks of Eriophorum vaginatum (Alaska) is about 16 years (Fetcher and Shaver 1983).
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shown in table 6.1, hence, the life expectancy standard deviation is two periods.
An exception is again the setup ratio. The initial amount of species is exactly
20, and the time step to measure is 25. Each setting runs five times and the
average is used as result.

Life expectancy mean TA(Sa) at t=0 TA(Sa) at t=25 increase
0.0 periods 20.0 1.4 -93.0%
0.5 periods 20.0 4.2 -79.0%
1.0 periods 20.0 11.2 -44.0%
1.5 periods 20.0 30.8 54.0%
2.0 periods 20.0 142.2 611.0%
2.5 periods 20.0 348.6 1643.0%
3.0 periods 20.0 591.2 2856.0%
3.5 periods 20.0 1032.4 5062.0%
4.0 periods 20.0 1423.8 7019.0%
4.5 periods 20.0 1854.6 9173.0%
5.0 periods 20.0 2007.4 9937.0%
5.5 periods 20.0 2291.6 11358.0%
6.0 periods 20.0 2313.8 11469.0%
6.5 periods 20.0 2534.2 12571.0%
7.0 periods 20.0 2795.6 13878.0%
7.5 periods 20.0 2930.6 14553.0%
8.0 periods 20.0 2988.0 14840.0%
8.5 periods 20.0 3157.0 15685.0%
9.0 periods 20.0 3125.2 15526.0%
9.5 periods 20.0 3115.6 15478.0%

10.0 periods 20.0 3190.6 15853.0%
10.5 periods 20.0 3254.2 16171.0%
11.0 periods 20.0 3287.0 16335.0%
11.5 periods 20.0 3298.6 16393.0%
12.0 periods 20.0 3301.2 16406.0%
12.5 periods 20.0 3285.4 16327.0%
13.0 periods 20.0 3313.0 16465.0%
13.5 periods 20.0 3325.6 16528.0%
14.0 periods 20.0 3360.4 16702.0%
14.5 periods 20.0 3334.6 16573.0%
15.0 periods 20.0 3304.8 16424.0%
15.5 periods 20.0 3254.8 16174.0%
16.0 periods 20.0 3368.6 16743.0%
16.5 periods 20.0 3368.0 16740.0%
17.0 periods 20.0 3439.8 17099.0%
17.5 periods 20.0 3254.8 16174.0%
18.0 periods 20.0 3385.2 16826.0%
18.5 periods 20.0 3401.6 16908.0%
19.0 periods 20.0 3368.8 16744.0%
19.5 periods 20.0 3386.0 16830.0%
20.0 periods 20.0 3424.2 17021.0%
20.5 periods 20.0 3378.4 16792.0%
21.0 periods 20.0 3412.6 16963.0%
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21.5 periods 20.0 3328.6 16543.0%
22.0 periods 20.0 3401.0 16905.0%
22.5 periods 20.0 3452.2 17161.0%
23.0 periods 20.0 3402.8 16914.0%
23.5 periods 20.0 3480.8 17304.0%
24.0 periods 20.0 3407.0 16935.0%
24.5 periods 20.0 3375.8 16779.0%
25.0 periods 20.0 3404.0 16920.0%
25.5 periods 20.0 3404.0 16920.0%
26.0 periods 20.0 3364.8 16724.0%

Table 6.16: Results of a changing life expectancy mean

The results of the experiment with a changing life expectancy mean discover
a dependency to the amount of plants in a positive relationship. An increase of
the life expectancy mean leads to more individuals. This is absolutely obvious,
and it only shows that the model works right regarding the parameter life ex-
pectancy mean.
Much more interesting is the diminishing marginal growth, easier to recognize
in figure 6.27. By a raise of the life expectancy mean of circa ten periods and
more, the amount of plants does not increase any more. Even with a value
of 400 periods there is only an average amount of 3402.8 plants at time step
25. That is less than the maximum from the experiment (see the row for life
expectancy mean of 23.5 in table 6.16). Spreading is still constrained by other
parameters, in particular the maturity mean.
The diminishing marginal growth is reasoned by the high probability of reoccu-
pation inside the islands. Older plants are principally located inside the islands
and not at the borders. When they die, the released cells are very close to
cells occupied with mature plants and therefore a reoccupation is very likely.
However, this does not increase the whole population. The growing of the cir-
cumference (and also the diameter) of the islands stagnates. It seems to be
independent from life expectancy mean. It depends much more on the maturity
(see also section 6.4.8 and 6.4.9).
However, at lower values for life expectancy mean many plants cannot breed,
because their maturity is higher than their life expectancy. Figure 6.28 shows
that a sparsely declining marginal population growth happens by an increase of
life expectancy mean for values of 4.5 periods and higher. That is in the first
view contra intuitive, because this is almost exactly the same time for matu-
rity (the maturity mean is four periods). By considering the concentration of
plants, however, it is explainable. It is reasoned by substitution that happens,
because of the dense coexistence in islands. Early dying plants can be replaced
by successors of long living plants. The life expectancy standard deviation is, of
course, crucial for this behavior. In this experiment its value is two periods.

The next section will provide new information about the behavior concerning a
change of the standard deviation for life expectancy.

86



Chapter 6. Verification of the model

Figure 6.27: Average amount of plants depending on life expectancy mean at
time step 25

Figure 6.28: Average amount of plants depending on life expectancy mean at
time step 25 (extraction)
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Life expectancy TA(Sa) at t=0 TA(Sa) at t=25 increase
standard deviation

0.0 periods 20.0 3050.0 15150.0%
0.5 periods 20.0 3062.6 15213.0%
1.0 periods 20.0 2874.6 14273.0%
1.5 periods 20.0 2713.8 13469.0%
2.0 periods 20.0 2492.4 12362.0%
2.5 periods 20.0 2467.8 12239.0%
3.0 periods 20.0 2666.8 13234.0%
3.5 periods 20.0 2060.0 10200.0%
4.0 periods 20.0 1926.2 9531.0%
4.5 periods 20.0 1683.2 8316.0%
5.0 periods 20.0 1843.6 9118.0%
5.5 periods 20.0 1836.2 9081.0%
6.0 periods 20.0 1698.4 8392.0%
6.5 periods 20.0 1827.6 9038.0%
7.0 periods 20.0 1631.6 8058.0%
7.5 periods 20.0 1634.2 8071.0%
8.0 periods 20.0 1494.6 7373.0%

Table 6.17: Results of a changing life expectancy standard deviation

6.4.11 Exploration of the life expectancy standard devia-
tion

In the table (6.1) for basic parameter settings, the life expectancy standard devi-
ation is two periods. Changing that, provides possibly, a better understanding
of the data from the experiment concerning life expectancy mean (see section
6.4.10).

Again five runs for each setting are executed and aggregated to an average
value. The life expectancy mean should not be as high as in table 6.1, but on
the other hand, not too low. So a value of six periods could be useful. The
amount of plants at time step zero is 20, exactly as in the experiment for life
expectancy mean (see section 6.4.10). Hence, it is easier to combine the results
from the different experiments for standard deviation and mean.
All other parameters are set to the values of table 6.1. Table 6.17 shows the
average total amount of plants after 25 periods.
The result is a declining amount of plants if the life expectancy standard devia-
tion is increased. Figure 6.29 graphically shows that dependency.
The dwindling population, with an increase of life expectancy standard devia-
tion, is triggered by the fact, that too many plants are dying early, often before
they are mature. A high standard deviation for life expectancy leads to a small
number of plants that are able to breed, and the more it is increased, the lower
are the chances that this amount of plants is big enough to keep the population
alive.
The life expectancy mean, of course, is crucial. Weakened is the dependency of
life expectancy standard deviation with a considerably higher value for the mean.

88



Chapter 6. Verification of the model

Figure 6.29: Average amount of plants at time step 25 depending on life ex-
pectancy standard deviation

The last four sections (6.4.8, 6.4.9, 6.4.10, and this section) are showing a strong
interdependence of the researched values. These are the maturity mean, matu-
rity standard deviation, life expectancy mean, and life expectancy standard devi-
ation. The dependency between these parameters is realistically implemented.
In section 6.5 we will see an experimental design, which considers changes of all
parameters at the same time, and hence, also settings, that seems to be natural
for these four parameters. For example, the maturity mean should be lower
than the life expectancy mean.

6.4.12 Exploration of species competition

Competition strength is an abstract value. The higher it is, the more likely the
plant wins a competition. It is not the only determinant for the result of a
competition game. Each competition consists of at least of two values. That
is the case for a competition of two plants. For a competition between three
plants, three values exist, and for n plants n values determine the winner.
Hence, the relative competition strength is crucial. Always the strength of all
involved plants must be considered.
The competition strength is multiplied with a random value and the result is the
current strength of a certain plant. The plant with the highest current strength
wins the competition, and this individual occupies the considered cell.
By applying that algorithm the competition strength is much less important
than it could be. For instance a solution without the random value – that only
uses the competition strength to determine the winner – would be much simpler,
but would also give species with a higher competition strength – even it is a very
small difference – the absolute advantage. The strongest species would always
win and the others would have not the slightest chance to win a competition.
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Competition TA(Sa) TA(Sb) TA(Sa) TA(Sb)
strength Sb at t=0 at t=0 at t=25 at t=25

0 16.2 25.2 1980.8 3174.0
1 20.4 15.8 2620.4 2017.4
2 17.6 20.6 2244.0 2580.0
3 20.6 23.8 2260.8 2742.4
4 18.8 16.0 2453.6 2028.8
5 22.4 22.0 2848.8 2702.4
6 19.0 18.2 2383.0 2326.6
7 16.4 16.6 2156.0 2262.4
8 17.0 18.0 2193.8 2240.4
9 17.0 18.6 2247.8 2334.4

10 19.8 20.0 2571.0 2475.4

Table 6.18: Results of a changing competition strength for two species at time
step 25

This cannot be seen as a realistic behavior.
The solution with the random value, on the other hand, leads to weakening of
the factor competition strength. Is the random value for one plant only slightly
above the random value for the rival plant, than the first plant can win, even
with a relative low competition strength. The multiplication of both values –
competition strength and random value – by the algorithm is the reason.
However, in a long term the plants of the strongest species will prevail, but
the random characteristic of the value that is multiplied with the competition
strength leads to a compensation of extreme results. With the algorithm a
fair11 and realistic mixture out of random determination and user influence is
provided.

To measure effects of competition strength at least two species are needed. Of
course, competition happens in simulation runs with only one species, too. If
more than one plant tries to place a seedling on the same cell at the same time
step, the plants are competing, and following the same rules, even though they
are from the same kind of species. If plants from the same species compete, they
have an equal competition strength, because the parameter is a characteristic of
the species and not specific for the individual.
For the experiment two species (Sa and Sb) with equal parameter settings are
used. The only difference is the value for competition strength. While species
Sa has a constant competition strength of exactly ten, changes the competition
strength of Sb in steps of one. Table 6.18 shows the values for competition
strength of Sb and the average results of five runs for the different settings at
time step 25 analogously.
The results are surprising, it is not possible to recognize a tendency or depen-
dency. The reason is that competition between plants of different species did
not happen often enough to show a significant influence. The low setup ratio of
0.002 and the short time of only 25 periods does not lead to many cases where
plants of different species are approaching each other locally. So the influence

11If more extreme competition is requested, it is still possible to set the values for competition
strength with such extreme differences, that a certain species always prevails and another loses.
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Competition TA(Sa) TA(Sb) TA(Sa) TA(Sb)
strength Sb at t=0 at t=0 at t=25 at t=25

0 497.5 498.4 5366.2 4622.8
1 497.8 489.8 5375.3 4624.7
2 485.8 484.1 5306.5 4694.0
3 497.5 481.2 5286.4 4713.6
4 490.6 491.4 5262.3 4737.7
5 485.5 485.6 5081.2 4918.8
6 483.9 484.0 5073.0 4927.0
7 486.4 487.5 5061.6 4938.4
8 481.0 481.3 5047.1 4952.9
9 496.2 496.3 5038.4 4961.6

10 478.0 475.0 4999.6 5000.4

Table 6.19: Results of a changing competition strength for two species at time
step 25 (setup ratios=0.05)

of the competition strength is only important in the case of a certain density of
populations or by allowing wind borne seedings.
Hence, it is necessary for the next experiment to increase the measure time or
the setup ratio. An increase of setup ratio seems to be a useful method. If
it is high enough, competition will happen from the first time steps on. By
repeating the last experiment all conditions are unchanged, but the setup ratio
is increased to 0.05 for both species (Sa and Sb). In this experiment the model
runs for each setting ten times.
The result (see table 6.19 and figure 6.30) of the second experiment is a clearly
dependency between competition strength and the breeding. The amount of all
plants (from Sa and Sb) is always 10,000 at time step 25. That is the size of the
whole lattice. Because of the relative high setup ratio of 0.05 the occupation
of all cells happens very fast and both different species come into conflict. The
competition strength supports Sa (except of the last setting, when both species
have a competition strength of ten (see table 6.19)). Sa is superior, but with a
declining difference in competitive strength the edge decreases as well. Figure
6.30 shows Sb and its increasing amount of plants with an elevation of its com-
petitive strength. The analysis of Sa is actually only the opposite of the one for
Sb, because of the total amount of 10,000 individuals.
To test how sensitive species behave, a long term experiment is useful. It is
crucial for that experiment that one species occupies the whole lattice. That
means it has to crowd out all plants of the other species and occupy 10,000 cells.
If a species is eliminated once, it can never come back in the same run, hence
the decision is clear and the point of time is recorded. All conditions are equal
for both species, only the competition strength is for Sa exactly ten and 9.999
for Sb. Table 6.20 shows that the behavior of the model is not sensitive enough
to trigger a visible effect from the slightly different competition strengths in ten
runs.
The difference of the competition strengths must be increased. For the next
experiment Sb has a value of 9.99.
This time a reaction is measured. Table 6.21 shows, that in six of ten runs Sa

is predominant.
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Figure 6.30: Average amount at time step 25 depending on competition strength

Number of run survived species time step of fully occupation
1 Sb 124043
2 Sa 125288
3 Sa 1704932
4 Sa 463491
5 Sb 293482
6 Sb 373846
7 Sa 234948
8 Sa 411197
9 Sb 175573

10 Sb 465710

Table 6.20: Results of a difference in competition strength of 0.001

Number of run survived species time step of fully occupation
1 Sb 426799
2 Sb 737911
3 Sa 208366
4 Sa 278573
5 Sa 452110
6 Sa 537616
7 Sb 409201
8 Sb 404235
9 Sa 77528

10 Sa 181945

Table 6.21: Results of a difference in competition strength of 0.01
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Number of run survived species time step of fully occupation
1 Sa 110000
2 Sa 84760
3 Sa 129306
4 Sa 92814
5 Sa 300888
6 Sa 231642
7 Sa 79930
8 Sa 153460
9 Sa 180251

10 Sa 55862

Table 6.22: Results of a difference in competition strength of 0.1

Sa(competition strength) mode survived species average time step
of full occupation

9.999 Sa, Sb 437251.0
9.99 Sa 371428.4
9.9 Sa 141891.3

Table 6.23: Summary of the detailed experiments regarding the competition
strength

Additionally a third experiment is implemented. The difference of both species
competition strength is 0.1, hence the value for Sb is changed to 9.9. It is not
only expected that in the most – or probably even in all – runs Sa will prevail;
additionally the time that is needed for Sa to occupy the whole lattice will be
clearly shorter than in the both experiments before. The results in table 6.22
show the realization of both predictions.
Table 6.23 summarizes the values of the last three experiments. To get an
overview, the mean for the amount of periods until full occupation is achieved,
and the mode of the survived species is shown.
The very sensitive reaction of the model – shown by the last experiments – is
reasoned by the enormous number of competition that happen in each run. On
average each 400 time steps all cells are unoccupied, because that is the mean
for life expectancy for both species. Therefore 10,000 competitions happen each
400 time steps. Of course, only a small amount of that is competition between
plants of different species. However, the more plants of different species are
neighbored to each other, the more effective is the competition strength.

Regarding competition strength the assumption has been made that the compe-
tition between different species is a one-dimensional construct. A species with
the value ten for competition strength always has that value and it is an immate-
rial fact which species is the competitor. Because of different natural aspects of
breeding it can be useful to define a competition strength for each possible com-
bination of species competition. If there are n species, each species can compete
with all other species. Therefore n2 combinations are possible. It can be that
a species is quite weak in competing with a second species, but compared with
a third species it is relatively strong. A medium value for species one (S1(cs)),
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Sa Sb Sc ... Sn

Sa 0 Sb to Sa Sc to Sa ... Sn to Sa

Sb 0 Sc to Sb ... Sn to Sb

Sc 0 ... Sn to Sc

... ... ... ... ... ...
Sn 0

Table 6.24: Competition strength as matrix

a high value for species two (S2(cs)), and low value for species three (S3(cs))
is only useful if S3 is weaker than S2. Thinking in one dimension for species
competition determines exactly this result (see also equation 6.7).

S2(cs) > S1(cs) > S3(cs) (6.7)

However, it might be possible that S3 is stronger than S2. For example, S3 is
weaker than S1 because a plant seedling of S1 can establish itself and develop
roots before a plant of S3 can settle. Hence, S1 supplants the seedling of S3 and
therefore the competition strength of S1 is higher than the one of S3. Addition-
ally, S2 is even faster in seedling than S1. However, lets assume that S3 is the
only of the three species that has the ability to store much water12. That gives
it a competitive advantage only over S2, if an additionally assumption is, that
the seedling of S2 needs a lost of water to establish, but the seedling of S1 does
not.
In that example two dimensions for competing are mentioned, water and speed
of establishment. Examples for much more dimensions are possible, but basi-
cally it is enough to enable the opportunity to define a competition strength for
all combinations of species. That can be solved by using a n2 matrix (see table
6.24 as a scheme). Reading the matrix works from row to column, that means
the value, for instance, of Sb to Sa is the strength of Sb in a competition with
Sa. If the Sa is stronger than Sb the value is negative. The competition matrix
for the model can be changed via an Excel-file which is called “competitionMa-
trix.xls” and stored in the same folder as the files for the maps.

Eventually both opportunities for defining competition strength are provided
by the model’s framework. Firstly, the way that has been tested before, with
absolute values for each species’ competition strength and secondly the matrix
solution. In the simulation program basically the solution with absolute values
is activated, but a change to the matrix solution is simple.
Controlling the content of the matrix – and therefore the values for competition
for the matrix solution – is possible by using Microsoft Excel or StarOffice.

6.5 Experimental design: Experiments with maps
for environmental parameters

The framework of the simulation model provides the opportunity to decide freely
over the environmental conditions (see section 5.2.1). Using different maps in

12Like Agaves and Cacti (Nobel 2003).
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some experiments gives the chance for gaining new insights into the models
behavior. The “perfect” maps that provided homogeneously a temperature of
exact 10.4◦ and a humidity of 50% have been used in all of the tests before,
except in section 6.3. With the achieved knowledge about the model by the
completed test series, it is now time to roll out experiments with heterogenous
environmental conditions and different plant species. Creating maps for this
purpose is quite simple. It can be done with a simple drawing tool or by scanning
maps. In that test series drawn maps are applied.

Experiment one: Heterogeneous landscape

For the fist experiment, the humidity and the temperature map are showing
a dry and hot area in the north west. An average humidity of 10% and a
temperature of 21◦ Celsius characterizes this “desert”. Close to that area a
small and lathy “valley” is denoted with a high humidity (about 80%) and
slightly a lower temperatures (19◦ Celsius) than in the desert. In the east a
hilly area has very cold temperatures (4◦ Celsius) and is also relatively dry
(30% humidity). A mountain range is placed inside the hills with most cold and
arid climate (−2.3◦ Cesius and 0%). The south west is an area that is similar
to the maps that has been used in the test series before. It has an average
temperature and humidity of 10.4◦ Celsius and 50%, respectively. Figure 6.31
shows the map to get an overview about these areas, but it is not the map that is
used for the experiment to directly determine temperature and humidity. The
input maps for the model will be created separately, based on this overview
map. The values for temperature and humidity are not as homogeneous inside
the areas, as the overview map may suggests. This landscape is, of course, quite
variable for such a small space. However, it can be a useful test environment.

Figure 6.31: Overview map for environment

Different plant species are placed randomly at initialization of the first run. The
exact description of these species are represented by their parameter values (see
table 6.25). The setup ratio for all species has exactly the same value. The
competition strength is also equal for each species. Competition should happen
on the basis of the different environmental conditions, but not by different values
for competition strength. The goal of that experiment is to figure out, whether
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Sd St Sh Sv

Setup Ratio 0.05 0.05 0.05 0.05
Humidity Mean 0.1 0.5 0.3 0.8

in%
Humidity Standard 0.05 0.05 0.1 0.05

Deviation in%
Temperature Mean 21.0 10.4 4.0 19.0

in ◦ Celsius
Temperature Standard 1.0 1.0 1.5 1.0

Deviation in ◦ Celsius
Maturity Mean 6.0 4.0 4.0 4.0

in periods
Maturity Standard 1.0 1.0 1.0 1.0

Deviation in periods
Life Expectancy Mean 20.0 30.0 30.0 30.0

in periods
Life Expectancy Standard 2.0 2.0 2.0 2.0

Deviation in periods
Competition Strength 10.0 10.0 10.0 10.0

Table 6.25: Species parameter for experiment one

the plants are seeding in the regions that provide the specific conditions for their
species.
The first species (Sd) fits best into the desert region in the north west, it likes
aridness and warmth. However, to get mature it needs a relatively long time
(its maturity mean is six periods) and also the life expectancy is just 20 periods
on average. The second species is basically the test species (St) from table 6.1.
The values for temperature mean and humidity mean are the same as in most of
the implemented tests (see section 6.4). It is to presume that this species will
occupy the south west. The third species (Sh) will probably achieve the hilly
area. It prefers cold and arid environments. However, it is not highly specialized
on that clime (hence, it has relative high standard deviations for temperature
and humidity). Sv is an organism that fits very well into the valley. However,
it can be difficult to survive for that species, because the valley is a small area,
and it is surrounded by a dry desert and cold hills.
The results of the first run show almost exactly the predicted behavior. Already
after 50 periods no plant is left at an area where it does not fit into regarding the
prediction. The only exception is a small stripe east of the valley, the western
part of the hilly land. Here St is established after a while (see figure 6.32).
The maps are modeled with continuous transitions from one area to another.
Hence, on this stripe over 60% of the cells have a humidity between 40% and
60%. Furthermore, the temperature is at the same cells between 11.9◦ Celsius
and 13.6◦ Celsius. Hence, St is in that small stripe between hills and valley in
advantage to the hill preferring species Sh, because of the temperature; and in
terms of humidty to Sv, that fits best into the valley.
Additionally, figure 6.32 shows also, that the mountains and some borderland
are completely unoccupied by any species.
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Figure 6.32: Vegetation distribution at time step 50 (blue: Sd; green: St; red:
Sh; black: St)

Experiment two: Wind borne seeding in a heterogeneous landscape

Testing the wind – which is implemented in the model – gives a reason to
repeat experiment one, but with a very low setup ratio for all species. Hence,
the chances are not high that a plant of a species in its preferred area starts by
initialization of a simulation run.
A setup ratio of 0.0002 is applied for all species. All other conditions are the
same as in experiment one, except of the wind. Each mature plant gets the
chance to send one seed per period with the wind. To compare the results, the
experiment is repeated, but without wind.
Each run, where a species survives for 100 periods is counted (see table 6.26).
For each of both settings – with and without wind – 50 runs are executed.

Sd St Sh Sv

with wind 48 44 47 42
without wind 19 16 33 12

Table 6.26: Species survival in 50 runs, experiment with wind

The advantage of the possibility to use the wind is enormous. The survival of
the plants is much higher with wind, than without assuming remote breeding.
St and particularly Sv seem to be the species with the lowest success. This is
reasoned by the size of areas that they are specialized for (see figure 6.31).
Another interesting observation of experiment two is the occupation of free cells
with plants of “foreign species”, if the “domestic species” is completely dead.
For example, in some runs Sh does not survive and St starts to breed on some
cells in the middle of the hilly area. However, if both plants survive St has no
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chances to populate the hills.
If Sh survives, but St does not, the opposite happens. Sh occupies some cells
of the area in the south west. That behavior is reasoned by the similarity of
both species. They are more specialized for their own area, but if the other
species is not existent any more, they have chances, because of the lack of
competition. This effect also depends on the standard deviations for humidity
and temperature. The higher the values for these parameters, the more likely
the considered species occupies cells in a foreign region. On the other hand, the
smaller the value for both parameters, the more effective a species defends its
region against invaders.

Experiment three: Evolution in a heterogeneous landscape

The results from the last experiment – considering the possibility for wind borne
seeding – lead to the idea for a test design regarding the trade-off between spe-
cialization and diversification in a heterogeneous landscape. Therefore only two
species are necessary. Table 6.27 shows a specialized species (Ss) and a relatively
diversified (or non-specialized) species (Sn). The species are quite similar, but
Ss is more specialized regarding the temperature. Sn is characterized by a tem-
perature standard deviation of 2.5◦ Celsius, but Ss has a value of 0.05◦ Celsius.
for this parameter. The maps from experiment one and two are used for this
experiment. Therefore Ss will probably populate the hilly area. This species has
similar preferences as Sh from the experiments one and two13. Sn does not fit in
a certain region on the map. However, with its relative high standard deviation
for temperature is could have a chance to compete with Ss.

Ss Sn

Setup Ratio 0.03 0.03
Humidity Mean in% 0.3 0.3
Humidity Standard Deviation in% 0.05 0.05
Temperature Mean in ◦ Celsius 4.0 8.0
Temperature Standard Deviation in ◦ Celsius 0.05 2.5
Maturity Mean in periods 6.0 6.0
Maturity Standard Deviation in periods 0.05 0.05
Life Expectancy Mean in periods 30.0 30.0
Life Expectancy Standard Deviation in periods 1.0 1.0
Competition Strength 10.0 10.0

Table 6.27: Species parameter for experiment three

Sn survived in the hilly area in all of the 50 runs with these setting for more than
100 periods. The number of plants from Sn at time step 100 in the hilly area is
relative small (on average 788.7) compared with the number of entities from Ss

(on average 2744.3). Hence Ss is predominant in the hilly region. However, the
benefit of diversification is obvious. Other regions can be achieved additionally.
So occupies Sn also large parts of the area in the south east.
Another 50 runs with the same species and conditions, but a warmer temper-
ature in the hills (an increase by 4◦ Celsius to 8◦ Celsius) leads to a prevail of

13Both species (Ss and Sh) are characterized by the same values for the mean of humidity
and temperature.
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Sn. Ss does not survive for 100 periods in 88% of the 50 runs.
In summary, it is possible to argue that the advantages far outweigh the dis-
advantages of specialization, if the considered species can find a region with its
preferred conditions. On the other hand, is diversification of species much more
useful, if such conditions are not existent.

Experiment four: Climate change in a heterogeneous landscape

The possibility to change the conditions of the environment, while a simulation
runs, is implemented in the model and an experiment can possibly discover some
new behavior. The heterogeneous landscape that has been designed for the last
three experiments can also be applied for this test. The species from the first
experiment (see table 6.25) are also useful.
The first test assumes a warming of all regions. Therefore an increase of 3.0◦

Celsius is simulated steadily over the time of 300 periods. So a warming of 0.01◦

Celsius per period characterizes the regions of the map. Wind borne seeding is
allowed.
During the first 50 periods the simulation run behaves not differently from ex-
periment one. However, thereafter St invades some parts of the hilly area, but
the hills seem to be too arid to allow St an occupation of large amounts of space
in this region. More significant is the propagation of Sh. This species occupies
almost 30% of the mountains after 100 time steps. Only an increase of 1.0◦

Celsius occurred so far. At time step 300 Sh has populated more than 85% of
the mountain area.

The same experiment will be repeated with an unlimited increase of humid-
ity, additionally. The humidity increase is 0.1% per period. The temperature
increase is also without limit. That mean that the increase will continue until
the defined limit of 23.2◦ Celsius. One would expect that in a long term Sv will
prevail. This species prefers hot and humid environments (see table 6.25).
Figure 6.33 shows that the propagation of Sv is not as significant as other ob-
servations. The invading of Sh into the mountain area is more obviously; as
well as the spreading of St into the hills. The most disadvantaged species by
the environmental change is Sd. It loses its biosphere because of the increase
of humidity, not the warming is the reason for the decreasing number of this
species.

The last test regarding the verification of the model is an experiment with
decreasing temperature and humidity. Therefore the last test setting is used,
but the environment cools by 0.01◦ Celsius period and it becomes also more
arid (0.1% per period).
Figure 6.34 shows the vegetation distribution after 300 periods. The not-
vegetated mountain area enlarges. The number of plants of Sv and St declines.
Sh displaces St almost completely from the south west. This is not surpris-
ing, because the warmth preferring species (Sv and St) need also humidity. An
exception is Sd. This species needs warm and arid conditions. Hence, its num-
ber declines because of the cooling. Sv and Sh are affected most extremely –
one negatively and the other positively – from the decrease of temperature and
humidity. Sv becomes almost extinct, but Sh is propagating successfully.
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Figure 6.33: Vegetation distribution with increasing temperature and humidity
at time step 300 (blue: Sd; green: St; red: Sh; black: St)

Figure 6.34: Vegetation distribution with decreasing temperature and humidity
at time step 300 (blue: Sd; green: St; red: Sh; black: St)
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Chapter 7

Criticism and conclusion

The computer-based simulation model for grassland in the Southern Island of
New Zealand has been explored and some interesting details discovered.
However, computer-based simulation is only a research method and has some
disadvantages that should be mentioned – in particular against the backdrop
of the fact that probably users with little or no experiences in computer-based
simulation will apply the model – to facilitate the right use.
From a certain point of view computer-based simulation seems to be outlandish,
but in the same way fascinating. To develop a little universe consisting of plain
information, and consequently trying to rebuild a part of the real world, which
consists of matter and energy, or sometimes even living organisms, is in the first
view very peculiar. However, the field of information science provides powerful
capabilities, and results from simulation models are often (surprisingly) exact.
One indicator for this are the enormous research activity. Another one is the
numerous attempts in business to support decision-making, even in conservative
fields like finance.
However, for the interpretation of results it must always be kept in mind that,
if a model is applied, the results are always influenced by it1. Comparison with
observations of reality is important, even though data is rarely availability for
vegetation, in particular for longer terms.
The critique of computer-based simulation approaches applies basically to all
computer-based simulation models and therefore for the general grassland dis-
tribution model for the Southern Island of New Zealand, too.
However, the model for New Zealand is developed on a conceptual base. Its
research results are exclusively from an academic interest until an application
with empirical data occurs.
Because of the detailed verification, the model’s dynamics are documented. Be-
havior of population – like the establishment of plants at locations very close
to each other – are natural and can also be noticed in the real world. Also
the observation that a population of plants cannot grow anymore when they
are surrounded by plants that are too young to breed can be reconsidered by
botany scientists.

1A sound and basic example for the influence of each computer-based simulation model on
its result is the fact, that random values – and these are very often used – are not random
in a strict sense. They are always influenced by the deterministic algorithms of finite-state
machines and therefore they have periodical properties (Hellekalek 1998).
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The ability to send seedlings to distant locations changes this behavior. What
is called wind borne seeding allows the population of remote places. The ad-
vantages are shown by the results of the experiments. In nature plenty of plant
species are able to send their seeds with wind, water, or by animal species to
populate new areas and this has also strong advantages on a regional base (Soons
and Ozinga 2005). The developed model shows exactly this behavior.
The assumption that each individual of a species is different from the other
plants of same the species brings useful and interesting dynamics into the
model’s behavior. An adaption of the species to environmental conditions is
possible and therefore properties of evolution are included. Two extremes can
be found in the experiments’ results. One is, that specialization has the advan-
tage to populate regions with appropriate environmental conditions effectively.
In this case it is possible to talk about the “survival of the fittest”. On the other
hand, the population of unsuitable environments is easier for species that are
not specialized. This is particularly important in a changing environment.
Specialization and generalizations regarding the environment in the simulation
model is determined by the standard deviation of temperature and humidity.

Further research opportunities are given by an application of empirical data.
Additionally further development of the model is desired, so different special-
ized successors of the model can be developed. This can only happen, if the
mentioned empirical data is available and therefore an involvement of botanists
or ecologists is essential.
Propagation of invading species can be examined by simulate them and syn-
chronously considering indigenous plants. Therefore the model is eligible as
invasion model (see section 3.2.5).
The simulation model developed in this thesis should enhance further develop-
ment. That means further research with empirical data as input for this model,
but also advancement of the model itself by using it and enhancing its functions.
Further development of the model for more specialized applications is enabled
because of the documentation.
In chapter 3 a lack of application of simulation models in some fields of botany,
in particular grassland vegetation, has been shown. However, vegetation mod-
eling is an appropriate field for computer-based simulation. Empirical research
as input for such models is possible. The effort for collecting empirical data
seems to be very large in botany2. However, the scientific gain is relatively
high. Social aspects, by comparison, are always in some manner vague. Hence,
compensation by assumptions are often necessary. Of course, vegetation mod-
eling also needs some assumptions, but plants characteristics seem not to be
as complicated as social interactions. Latent variables seem to be no big issue
for botany. Therefore it might be possible to compensate the assumptions by
detailed research.
Another – and more important – argument for the fit of botany and simulation
science is the scaling of variables in botany. The quality of (almost) all variables
can be scaled highly. The data collection methods allow this to be achieved. In
social science often interviews are applied as method for data collection and the
answers of the important questions are often ordinally scaled. Plants responses

2For details of data collection see some studies of botany (Smale, Ross, and Arnold 2005),
(Sullivan, Timmins, and Williams 2005), (Dickinson, Mark, and Lee 1992).
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to experiments and data from observations can be encoded metrically. This
provides a high data quality and that is an indispensable condition for reliable
and valid research.

In conclusion vegetation research is a field with plenty of opportunities to apply
computer-based simulation. Both fields, computer science and botany would
benefit from it.
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import java . awt . BorderLayout ;
import java . awt . Color ;
import java . awt . Graphics ;
import java . awt . GridLayout ;
import java . awt . event . ActionEvent ;
import java . awt . event . Act i onL i s t ene r ;
import java . awt . Dimension ;

import javax . swing . JButton ;
import javax . swing . JComponent ;
import javax . swing . JFrame ;
import javax . swing . JPanel ;
import javax . swing . JLabel ;
import javax . swing . JCheckBox ;
import javax . swing . J S l i d e r ;

import java . awt . Image ;
import java . i o . F i l e ;
import java . i o . IOException ;
import javax . imageio . ImageIO ;

pub l i c c l a s s TussockSimulator extends JComponent
implements Act ionLi s tener , Runnable {

p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID
= −681953814763757147L ;

//BASIC CONFIGURATION:

boolean dynamicEnvironmentYes = f a l s e ;

1The source code is available in digital form. Contact: mzaggl@uni-koblenz.de
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// Should the environment be dynamic ( or s t a t i c ) ??

i n t amountOfWindBorneSeedings = 0 ;

boolean competit ionMatrixYes = f a l s e ;
// Should the matrix compet i t ion be app l i ed
// ( or the i n d i v i d u a l va lue s ) ??

i n t x , y ;
// number o f c e l l s in x− and y−d i r e c t i o n

i n t stepCounter ;
// Counts the Steps

Ce l l [ ] [ ] g r i d ;

Spec i e s [ ] e x i s t i n g S p e c i e s ;
// Array o f a l l e x i s t i n g s p e c i e s

Counter [ ] spec i e sCounter ;

JButton buttonChangeView =
new JButton (” Vegetat ion (1/3) ” ) ;

JButton buttonSymbols =
new JButton (” Symbols on ” ) ;

JButton buttonOneStep =
new JButton (” OneStep ” ) ;

JCheckBox checkBoxGraphic =
new JCheckBox (”Show Animation ” , t rue ) ;

JCheckBox checkBoxPlot =
new JCheckBox (”Show Plot ” , t rue ) ;

JCheckBox checkBoxHistogram =
new JCheckBox (”Show Histogram ” , t rue ) ;

J S l i d e r s l i d e r S p e e d =
new J S l i d e r ( J S l i d e r .HORIZONTAL, 0 ,

300 , 1 0 0 ) ;

i n t viewLevel = 1 ;
// which view , Plant (1 ) or Humidity ( 2 ) , . .

boolean symbols = f a l s e ;
//Symbols f o r p lant s w i l l be shown , or not

JFrame mainFrame =
new JFrame (” Tussock Simulat ion 1 . 0 ” ) ;

JLabel labe lCounter =
new JLabel (” Step Count : ”+stepCounter

+” ” ) ;
JPanel pane lSpec iesCounter =

new JPanel ( ) ;
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Plot p l o t S p e c i e s ;
Histogram histogram ;

Fi l eOperator f i l eOperato r InTussockS imula to r =
new Fi l eOperator ( ) ;

boolean useTemperatureMap , useHumidityMap ;

OutputCreator output = new OutputCreator ( ) ;
S t r ing speciesCounterForOutput = ”” ;

S t r ing path = ”C:\\Programme\\TussockSimulator ” ;

Thread thread ; // Thread f o r running
i n t s l e e p t i m e ;

pub l i c TussockSimulator ( i n t x , i n t y ) {

t h i s . x = x ;
t h i s . y = y ;

g r id = new Ce l l [ x ] [ y ] ;

// Create L a t t i c e :

SetupEnvironmentControl r eadPic ture =
new SetupEnvironmentControl ( ) ;

PictureView picTemperature =
new PictureView
( readPic ture .
getPathTemperature ( ) ) ;

PictureView picHumidity =
new PictureView
( readPic ture . getPathHumidity ( ) ) ;

t h i s . checkUsageOfMaps ( ) ;

f o r ( i n t i = 0 ; i < x ; i++) {
f o r ( i n t j = 0 ; j < y ; j++) {

Ce l l a = new Ce l l ( i , j ,
useTemperatureMap ,
useHumidityMap ,
picTemperature ,
picHumidity ) ;

g r i d [ i ] [ j ] = a ;

i f ( g r i d [ i ] [ j ] == n u l l ) System . e r r
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. p r i n t l n (” Error in TussockSimul
ator . java ! ! ! ”+ i+” ”+j+” Empty
array f i e l d . ” ) ;

}
}

// Create Spec i e s :
t h i s . c r e a t e G e n e r i c S p e c i e s ( ) ;

// Create Counters :
spec i e sCounter =
new Counter
[ e x i s t i n g S p e c i e s . l ength ] ;

f o r ( i n t k = 0 ;
k < e x i s t i n g S p e c i e s . l ength ;

k++) {

spec i e sCounter [ k ] =
new Counter ( e x i s t i n g S p e c i e s [ k ] ) ;

}

p l o t S p e c i e s =
new Plot ( e x i s t i n g S p e c i e s ) ;
histogram = new Histogram ( ) ;
histogram . setHistogram ( gr id ) ;

t h i s . s e t F i r s t C o n f i g u r a t i o n ( ) ;

}

pub l i c void s e t F i r s t C o n f i g u r a t i o n ( ) {

stepCounter = 0 ;

// Finding Candidates f o r C e l l s ;
f o r ( i n t i = 0 ; i < x ; i++) {

f o r ( i n t j = 0 ; j < y ; j++) {

g r id [ i ] [ j ] . s e t S p e c i e s ( n u l l ) ;

f o r ( i n t k = 0 ;
k < e x i s t i n g S p e c i e s . l ength ;
k++) {

i f (Math . random ( ) <
e x i s t i n g S p e c i e s [ k ]
. s t a r t R a t i o ) {
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// i f ( ( i == 74 && j == 74) | | ( i == 75 && j == 75)) {

Spec i e s tmp =
e x i s t i n g S p e c i e s [ k ] . c l one ( ) ;
tmp . i n i t i a l i z e S p e c i e s ( ) ;
g r i d [ i ] [ j ] . addCompetingSpecies
(tmp ) ;

}
}

}
}
// Competition
f o r ( i n t i = 0 ; i < x ; i++) {

f o r ( i n t j = 0 ; j < y ; j++) {

i f ( g r i d [ i ] [ j ] . i sOccupied ( )

i f ( competit ionMatrixYes ) {

g r id [ i ] [ j ]
. competeUsingMatrix ( ) ;

} e l s e {

g r id [ i ] [ j ] . compete ( ) ;

}

}

}
}

t h i s . count ( ) ;

S t r ing head l ine = ” StepCounter : ”+” ,”;

f o r ( i n t i = 0 ;
i < e x i s t i n g S p e c i e s . l ength ; i++) {

head l ine +=
e x i s t i n g S p e c i e s [ i ]
. getSpeciesName ()+” ,” ;
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}
output . saveOutput ( head l ine+”\n ” ) ;

}

pub l i c void c r e a t e G e n e r i c S p e c i e s ( ) {

St r ing a l l
= f i l eOperato r InTussockS imula to r
. r eadSpec i e s ( ) ;

i f ( a l l != n u l l ) {

St r ing [ ] l i n e =
a l l . s p l i t (” end l ine2 ” ) ;
e x i s t i n g S p e c i e s =
new Spec i e s [ l i n e . l ength ] ;

f o r ( i n t i =0; i<l i n e . l ength ; i++) {

e x i s t i n g S p e c i e s [ i ] =
new Spec i e s ( ) ;

S t r ing [ ] column =
l i n e [ i ] . s p l i t (” ; ” ) ;

e x i s t i n g S p e c i e s [ i ]
. number = i ;
e x i s t i n g S p e c i e s [ i ]
. name = column [ 0 ] ;
e x i s t i n g S p e c i e s [ i ]
. s t a r t R a t i o = Double
. parseDouble
( column [ 1 ] ) ;
e x i s t i n g S p e c i e s [ i ]
. optimalHumidityMean
= Double . parseDouble
( column [ 2 ] ) ;
e x i s t i n g S p e c i e s [ i ]
. optimalHumidityStdDev
= Double . parseDouble
( column [ 3 ] ) ;
e x i s t i n g S p e c i e s [ i ]
. optimalTemperatureMean
= Double . parseDouble
( column [ 4 ] ) ;
e x i s t i n g S p e c i e s [ i ]
. optimalTemperatureStd
Dev = Double . parse
Double ( column [ 5 ] ) ;
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e x i s t i n g S p e c i e s [ i ]
. maturityMean =
Double . parseDouble
( column [ 6 ] ) ;
e x i s t i n g S p e c i e s [ i ]
. maturityStdDev =
Double . parseDouble
( column [ 7 ] ) ;
e x i s t i n g S p e c i e s [ i ]
. dieMean = Double
. parseDouble ( column [ 8 ] ) ;
e x i s t i n g S p e c i e s [ i ]
. dieStdDev = Double
. parseDouble ( column [ 9 ] ) ;
e x i s t i n g S p e c i e s [ i ]
. compet i t ionStrength
= Double . parseDouble
( column [ 1 0 ] ) ;

e x i s t i n g S p e c i e s [ i ] . specColor
= new Color ( I n t e g e r . pa r s e In t ( column [ 1 1 ] ) ,
I n t e g e r . pa r s e In t ( column [ 1 2 ] ) , I n t e g e r
. pa r s e In t ( column [ 1 3 ] ) , 2 55 ) ;

}

} e l s e {

System . e r r . p r i n t l n
(”No Spec i e s con f i gu r ed ! ” ) ;

}
}

pub l i c void checkUsageOfMaps ( ) {

St r ing a l l =
f i l eOpera to r InTussockS imu la to r
. readEnvironment ( ) ;

i f ( a l l != ””) {

St r ing [ ] column
= a l l . s p l i t ( ” ; ” ) ;

i f ( column [ 0 ] . charAt (0 ) == ’ t ’ )

{

useTemperatureMap = true ;
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} e l s e {

useTemperatureMap = f a l s e ;

}

i f ( column [ 1 ] . charAt (0 )
== ’ t ’ ) {

useHumidityMap = true ;

} e l s e {

useHumidityMap = f a l s e ;

}
}

}

// Counter :
pub l i c void count ( ) {

f o r ( i n t k = 0 ;
k < e x i s t i n g S p e c i e s . l ength ; k++) {

i n t tmpCounter = 0 ;

f o r ( i n t i = 0 ; i < x ; i++) {
f o r ( i n t j = 0 ; j < y ; j++) {

i f ( g r i d [ i ] [ j ] . i sOccupied ( ) ) {

i f ( g r i d [ i ] [ j ]
. getSpeciesNumber ( ) ==
spec i e sCounter [ k ]
. g e t S p e c i e s ( )
. getSpeciesNumber ( ) ) {

tmpCounter++;

}
}

}
}

spec i e sCounter [ k ]
. setAmountOfSpecies ( tmpCounter ) ;

}
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// Counter Exposure :
i n t l a r g e s t = spec i e sCounter [ 0 ]
. g e t S p e c i e s ( ) . getSpeciesNumber ( ) ;

f o r ( i n t i = 0 ;
i < spec i e sCounter . l ength ; i++) {

i f ( spec i e sCounter [ i ]
. getAmountOfSpecies ( ) >
spec i e sCounter [ l a r g e s t ]
. getAmountOfSpecies ( ) ) {

l a r g e s t = spec i e sCounter [ i ]
. g e t S p e c i e s ( ) . getSpeciesNumber ( ) ;

}
}

pane lSpec iesCounter . removeAll ( ) ;

f o r ( i n t i = 0 ;
i < spec i e sCounter . l ength ; i++) {

JLabel tmp =
new JLabel ( spec i e sCounter [ i ]
. g e t S p e c i e s ( ) . getSpeciesName ( )
+”: ”+spec i e sCounter [ i ]
. getAmountOfSpecies ( ) ) ;

tmp . s e t P r e f e r r e d S i z e
(new Dimension (100 , 2 0 ) ) ;
tmp . setForeground ( spec i e sCounter [ i ]
. g e t S p e c i e s ( ) . g e tSpec i e sCo lo r ( ) ) ;

i f ( i == l a r g e s t ) {

tmp . setText (tmp . getText ( )
. toUpperCase ( ) ) ;

}

pane lSpec iesCounter . add (tmp ) ;

}
pane lSpec iesCounter . v a l i d a t e ( ) ;

// Plot s :

p l o t S p e c i e s . s e t P l o t
( stepCounter , spec i e sCounter ) ;
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i f ( checkBoxPlot . i s S e l e c t e d ( ) ) {
p l o t S p e c i e s . r epa in t ( ) ;

}

i f ( checkBoxHistogram
. i s S e l e c t e d ( ) ) {

histogram
. setHistogram ( gr id ) ;
histogram . r epa in t ( ) ;

}

}

// change o f s t a t e s .
pub l i c void changeConf igurat ion ( ) {

// AGEING
f o r ( i n t i = 0 ; i < x ; i++) {

f o r ( i n t j = 0 ; j < y ; j++) {

i f ( g r i d [ i ] [ j ] . i sOccupied ( ) ) {

g r id [ i ] [ j ] . ag ing ( ) ;

}
}

}

//SPREADING:

double abs t rac tMatur i tyProbab i l i t y = 0 . 0 ;
//add . p robab i l i t y , with 0 .0 no e f f e c t s

f o r ( i n t i = 0 ; i < x ; i++) {
f o r ( i n t j = 0 ; j < y ; j++) {

i n t iBorde rLe f t = ( i−1+x)%x ;
i n t iBorderRight = ( i +1)%x ;
i n t jBorderTop = ( j−1+y)%y ;
i n t jBorderBottum = ( j+1)%y ;

i f ( g r i d [ i ] [ j ] . i sOccupied ( )
== true ) {
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i f ( g r id [ i ] [ jBorderTop ]
. g e t S e d d l i n g P o s s i b i l i t y ( g r id [ i ] [ j ]
. g e t S p e c i e s ( ) ) && gr id [ i ] [ j ]
. maturity ( ) && Math . random ( )
> abs t rac tMatur i tyProbab i l i t y ) {

Spec i e s tempSpecies = gr id [ i ] [ j ]
. g e t S p e c i e s ( ) . c l one ( ) ;
tempSpecies . i n i t i a l i z e S p e c i e s ( ) ;
g r i d [ i ] [ jBorderTop ]
. addCompetingSpecies ( tempSpecies ) ;
}

i f ( g r i d [ iBorderRight ] [ jBorderTop ]
. g e t S e d d l i n g P o s s i b i l i t y ( g r id [ i ] [ j ]
. g e t S p e c i e s ( ) ) && gr id [ i ] [ j ]
. maturity ( ) && Math . random ( )
> abs t rac tMatur i tyProbab i l i t y ) {

Spec i e s tempSpecies = gr id [ i ] [ j ]
. g e t S p e c i e s ( ) . c l one ( ) ;
tempSpecies . i n i t i a l i z e S p e c i e s ( ) ;
g r i d [ iBorderRight ] [ jBorderTop ]
. addCompetingSpecies ( tempSpecies ) ;
}

i f ( g r i d [ iBorderRight ] [ j ]
. g e t S e d d l i n g P o s s i b i l i t y ( g r id [ i ] [ j ]
. g e t S p e c i e s ( ) ) && gr id [ i ] [ j ]
. maturity ( ) && Math . random ( )
> abs t rac tMatur i tyProbab i l i t y ) {

Spec i e s tempSpecies = gr id [ i ] [ j ]
. g e t S p e c i e s ( ) . c l one ( ) ;
tempSpecies . i n i t i a l i z e S p e c i e s ( ) ;
g r i d [ iBorderRight ] [ j ]
. addCompetingSpecies ( tempSpecies ) ;
}

i f ( g r i d [ iBorderRight ] [ jBorderBottum ]
. g e t S e d d l i n g P o s s i b i l i t y ( g r id [ i ] [ j ]
. g e t S p e c i e s ( ) ) && gr id [ i ] [ j ]
. maturity ( ) && Math . random ( )
> abs t rac tMatur i tyProbab i l i t y ) {

Spec i e s tempSpecies = gr id [ i ] [ j ]
. g e t S p e c i e s ( ) . c l one ( ) ;
tempSpecies . i n i t i a l i z e S p e c i e s ( ) ;
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g r id [ iBorderRight ] [ jBorderBottum ]
. addCompetingSpecies ( tempSpecies ) ;
}

i f ( g r i d [ i ] [ jBorderBottum ]
. g e t S e d d l i n g P o s s i b i l i t y ( g r id [ i ] [ j ]
. g e t S p e c i e s ( ) ) && gr id [ i ] [ j ]
. maturity ( ) && Math . random ( )
> abs t rac tMatur i tyProbab i l i t y ) {

Spec i e s tempSpecies = gr id [ i ] [ j ]
. g e t S p e c i e s ( ) . c l one ( ) ;
tempSpecies . i n i t i a l i z e S p e c i e s ( ) ;
g r i d [ i ] [ jBorderBottum ]
. addCompetingSpecies ( tempSpecies ) ;
}

i f ( g r i d [ iBorde rLe f t ] [ jBorderBottum ]
. g e t S e d d l i n g P o s s i b i l i t y ( g r id [ i ] [ j ]
. g e t S p e c i e s ( ) ) && gr id [ i ] [ j ]
. maturity ( ) && Math . random ( )
> abs t rac tMatur i tyProbab i l i t y ) {

Spec i e s tempSpecies = gr id [ i ] [ j ]
. g e t S p e c i e s ( ) . c l one ( ) ;
tempSpecies . i n i t i a l i z e S p e c i e s ( ) ;
g r i d [ iBorde rLe f t ] [ jBorderBottum ]
. addCompetingSpecies ( tempSpecies ) ;
}

i f ( g r i d [ iBorde rLe f t ] [ j ]
. g e t S e d d l i n g P o s s i b i l i t y ( g r id [ i ] [ j ]
. g e t S p e c i e s ( ) ) && gr id [ i ] [ j ]
. maturity ( ) && Math . random ( )
> abs t rac tMatur i tyProbab i l i t y ){

Spec i e s tempSpecies = gr id [ i ] [ j ]
. g e t S p e c i e s ( ) . c l one ( ) ;
tempSpecies . i n i t i a l i z e S p e c i e s ( ) ;
g r i d [ iBorde rLe f t ] [ j ]
. addCompetingSpecies ( tempSpecies ) ;
}

i f ( g r i d [ iBorde rLe f t ] [ jBorderTop ]
. g e t S e d d l i n g P o s s i b i l i t y ( g r id [ i ] [ j ]
. g e t S p e c i e s ( ) ) && gr id [ i ] [ j ]
. maturity ( ) && Math . random ( )
> abs t rac tMatur i tyProbab i l i t y ){

Spec i e s tempSpecies = gr id [ i ] [ j ]
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. g e t S p e c i e s ( ) . c l one ( ) ;
tempSpecies . i n i t i a l i z e S p e c i e s ( ) ;
g r i d [ iBorde rLe f t ] [ jBorderTop ]
. addCompetingSpecies ( tempSpecies ) ;

}

//wind :
i n t i terat ionsForWind = 0 ;
//amount o f remote spread ing
i n t north , south , east , west ;

i n t l a t i t u d e , l ong i tude ;

f o r ( i n t w = 0 ;
w < i t e rat ionsForWind ; w++) {

north = ( i n t ) (Math . random ( ) ∗ 1 0 0 ) ;
south = ( i n t ) (Math . random ( ) ∗ 1 0 0 ) ;
west = ( i n t ) (Math . random ( ) ∗ 1 0 0 ) ;
ea s t = ( i n t ) (Math . random ( ) ∗ 1 0 0 ) ;

north = north %100;
south = south %100;
west = west %100;
ea s t = eas t %100;

i f ( north > south ) {

l a t i t u d e = north − south ;

} e l s e {

l a t i t u d e = south − north ;

}

i f ( west > ea s t ) {

l ong i tude = west − ea s t ;

} e l s e {

l ong i tude = eas t − west ;

}

i f ( l ong i tude <= 100
&& long i tude >= 0
&& l a t i t u d e <= 100
&& l a t i t u d e >= 0) {
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i f ( g r id [ l ong i tude ] [ l a t i t u d e ]
. g e t S e d d l i n g P o s s i b i l i t y ( g r id [ i ] [ j ]
. g e t S p e c i e s ( ) ) && gr id [ i ] [ j ]
. maturity ( ) && Math . random ( )
> abs t rac tMatur i tyProbab i l i t y ){

Spec i e s tempSpecies = gr id [ i ] [ j ]
. g e t S p e c i e s ( ) . c l one ( ) ;
tempSpecies . i n i t i a l i z e S p e c i e s ( ) ;
g r i d [ l ong i tude ] [ l a t i t u d e ]
. addCompetingSpecies
( tempSpecies ) ;

}
}

}

}
}

}

f o r ( i n t i = 0 ; i < x ; i++) {
f o r ( i n t j = 0 ; j < y ; j++) {

i f ( g r i d [ i ] [ j ] . i sOccupied ( )
== f a l s e ) {

i f ( competit ionMatrixYes )

{

g r id [ i ] [ j ]
. competeUsingMatrix ( ) ;

} e l s e {

g r id [ i ] [ j ] . compete ( ) ;

}

}
}

}

//DYING:
f o r ( i n t i = 0 ; i < x ; i++) {

f o r ( i n t j = 0 ; j < y ; j++) {
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g r id [ i ] [ j ] . d i e ( ) ;

}
}

//ENVIRONMENT CHANGE
i f ( dynamicEnvironmentYes ) {

double tempHumidity
, tempTemperature ;

f o r ( i n t i = 0 ; i < x ; i++) {
f o r ( i n t j = 0

; j < y ; j++) {

tempHumidity = gr id [ i ] [ j ]
. getHumidity ( ) ;
// change o f Humidity :

tempHumidity −= 0 . 0 0 1 ;

g r id [ i ] [ j ] . setHumidity
( tempHumidity ) ;

tempTemperature
= gr id [ i ] [ j ]
. getTemperature ( ) ;
// change o f Temperature :

tempTemperature −= 0 . 0 1 ;

g r id [ i ] [ j ]
. setTemperature
( tempTemperature ) ;

}
}

}

// Counters :
stepCounter++;

labe lCounter . setText
(” Step Count : ”+stepCounter+” ” ) ;

t h i s . count ( ) ;
// updates the Spec i e s Counter ( s )

// F i l e Output :
f o r ( i n t i = 0 ;
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i < spec i e sCounter . l ength ; i++) {

speciesCounterForOutput +=
spec i e sCounter [ i ]
. getAmountOfSpecies ( )+” ,” ;

}

output . saveOutput ( stepCounter +”,”
+speciesCounterForOutput ) ;
speciesCounterForOutput = ”” ;

// Histogram :
histogram . setHistogram ( gr id ) ;

}

// s imu la t i on proce s s
pub l i c void begin ( ) {

i f ( thread == n u l l ) {
thread = new Thread ( t h i s ) ;
thread . s t a r t ( ) ;

}
}

pub l i c void oneStep ( ) {
// stepp ing

t h i s . changeConf igurat ion ( ) ;
// redrawing

super . r epa in t ( ) ;
}

// break
pub l i c void pause ( ) {

thread = n u l l ;
buttonOneStep . setEnabled ( t rue ) ;

}

// run
pub l i c void run ( ) {

buttonOneStep . setEnabled ( f a l s e ) ;

whi l e ( thread != n u l l ) {
s l e e p t i m e = s l i d e r S p e e d
. getValue ( ) ;
t h i s . oneStep ( ) ;

t ry {
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Thread . s l e e p ( s l e e p t i m e ) ;
} catch ( Inter ruptedExcept ion e ) {

System . e r r . p r i n t l n ( e ) ;
}

}
}

pub l i c void act ionPerformed ( ActionEvent ae ) {
St r ing ac = ae . getActionCommand ( ) ;
i f ( ac . equa l s (” Star t ” ) ) {

t h i s . begin ( ) ;
} e l s e i f ( ac . equa l s (” OneStep ”) ) {

t h i s . oneStep ( ) ;
} e l s e i f ( ac . equa l s (” Pause ”) ) {

t h i s . pause ( ) ;
} e l s e i f ( ac . equa l s (” Reset ” ) ) {

t h i s . s e t F i r s t C o n f i g u r a t i o n ( ) ;
i f ( thread == n u l l ) {

l abe lCounter . setText
(” Step Count : ”+stepCounter ) ;

}
t h i s . r epa in t ( ) ;
} e l s e i f ( ac . equa l s (”End”) ) {

t h i s . pause ( ) ;
System . e x i t ( 0 ) ;
} e l s e i f ( ac . equa l s (” Setup ”) ) {

t h i s . pause ( ) ;
Setup mainSetup = new Setup ( ) ;

mainSetup . draw ( ) ;
} e l s e i f ( ac . equa l s

(” Symbols on ”) ) {
symbols = true ;
buttonSymbols . setText
(” Symbols o f f ” ) ;
t h i s . r epa in t ( ) ;

} e l s e i f ( ac . equa l s
(” Symbols o f f ” ) ) {
symbols = f a l s e ;
buttonSymbols . setText
(” Symbols on ” ) ;
t h i s . r epa in t ( ) ;

} e l s e i f ( ac . equa l s (” Pr int Grid ”) ) {
t h i s . pause ( ) ;
OutputCreatorDetai led
outputDeta i l ed =
new OutputCreatorDetai led ( path ) ;
outputDeta i l ed
. createDeta i l edOutput
( gr id , stepCounter ) ;
outputDeta i l ed = n u l l ;
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// t h i s . begin ( ) ;
} e l s e i f ( ac . equa l s
(” Humidity (2/3) ” ) ) {
buttonChangeView . setText
(” Temperature ( 3 / 3 ) ” ) ;
v iewLevel = 3 ;
t h i s . r epa in t ( ) ;

} e l s e i f ( ac . equa l s
(” Temperature ( 3/3 )” ) ) {
buttonChangeView . setText
(” Vegetat ion (1/3) ” ) ;
v iewLevel = 1 ;
t h i s . r epa in t ( ) ;

} e l s e i f ( ac . equa l s
(” Vegetat ion (1/3) ” ) ) {
buttonChangeView . setText
(” Humidity (2/3) ” ) ;
v iewLevel = 2 ;
t h i s . r epa in t ( ) ;

}

}

pub l i c void paintComponent ( Graphics g ) {

// Measurement : ds∗ds
i n t ds = ( i n t ) (Math . min ( ( double ) super
. getWidth ( ) / ( double ) x , ( double ) super
. getHeight ( ) / ( double ) y ) + 0 . 5 ) ;

Color tmp ;
Color backgroundColor =
new Color ( 1 . 0 f , 1 . 0 f , 1 . 0 f ) ;
// a l l c e l l s i j : c o l o r i n g

//Output Vegetat ion :
i f ( v iewLevel == 1 && checkBoxGraphic
. i s S e l e c t e d ( ) ) {

f o r ( i n t i = 0 ; i < x ; i++) {
f o r ( i n t j = 0 ; j < y ; j++) {

i f ( g r i d [ i ] [ j ] . i sOccupied ( ) ){

tmp = gr id [ i ] [ j ]
. g e tSpec i e sCo lo r ( ) ;
g . s e tCo lo r (tmp ) ;
g . f i l l R e c t
( i ∗ ds , j ∗ ds , ds , ds ) ;

}
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i f ( ! g r i d [ i ] [ j ] . i sOccupied ( ) ){

g . s e tCo lo r
( backgroundColor ) ;
g . f i l l R e c t
( i ∗ ds , j ∗ ds , ds , ds ) ;

}
}

}
}
//Output Humidity :
i f ( v iewLevel == 2) {

Color tmpColor ;
f o r ( i n t i = 0 ; i < x ; i++) {

f o r ( i n t j = 0 ; j < y ; j++) {

tmpColor = new Color
( 0 . 0 f , 0 . 0 f , g r i d [ i ] [ j ]
. getCellsHumidityAsRGB ( ) ) ;

g . s e tCo lo r ( tmpColor ) ;
g . f i l l R e c t ( i ∗ ds , j ∗ ds , ds , ds ) ;

}
}

}
//Output Temperature :
i f ( v iewLevel == 3) {

Color tmpColor ;
f o r ( i n t i = 0 ; i < x ; i++) {

f o r ( i n t j = 0 ; j < y ; j++) {

tmpColor = new Color ( g r id [ i ] [ j ]
. getCellsTemperatureAsRGB ( )
, 0 . 0 f , 0 . 0 f ) ;

g . s e tCo lo r ( tmpColor ) ;
g . f i l l R e c t
( i ∗ ds , j ∗ ds , ds , ds ) ;
}

}
}

i f ( v iewLevel >= 4) {
System . e r r . p r i n t l n
(” Error in TussockSimulator ! ! !
The value o f the v a r i a b l e view
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(”+ viewLevel +”) i s not de f ined . ” ) ;
}

//Output Symbols :
i f ( symbols ) {

Image [ ] i con =
new Image [ e x i s t i n g S p e c i e s . l ength ] ;

f o r ( i n t i = 0 ;
i < e x i s t i n g S p e c i e s . l ength ; i++) {

t ry {

i con [ i ] = ImageIO . read
(new F i l e ( path+”\\ i c on s \\”+
e x i s t i n g S p e c i e s [ i ]
. getSpeciesNumber ()+”. g i f ” ) ) ;

} catch ( IOException e ) {

e . pr intStackTrace ( ) ; }

}
f o r ( i n t i = 0 ; i < x ; i++) {

f o r ( i n t j = 0 ; j < y ; j++) {

i f ( g r i d [ i ] [ j ] . i sOccupied ( ) ) {

i f ( i con [ g r id [ i ] [ j ]
. getSpeciesNumber ( ) ]
!= n u l l ) {

g . drawImage ( i con
[ g r id [ i ] [ j ]
. getSpeciesNumber ( ) ] ,
( i ∗ ds )
, ( j ∗ ds ) , n u l l ) ;

}

}
}

}

}
}

//Frame :
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pub l i c JFrame draw ( i n t width , i n t he ight ) {

mainFrame . s e t S i z e ( width , he ight ) ;
mainFrame . s e tDe fau l tC lo seOperat i on
( JFrame .EXIT ON CLOSE ) ;

JPanel upperPanel = new JPanel ( ) ;
JPanel lowerPanel = new JPanel ( ) ;
JPanel r i ghtPane l = new JPanel ( ) ;
JPanel s l i d e r P a n e l = new JPanel ( ) ;

// upperPanel ( Buttons ) :
JButton buttonStart =
new JButton (” Star t ” ) ;
JButton buttonPause =
new JButton (” Pause ” ) ;
JButton buttonReset =
new JButton (” Reset ” ) ;
JButton buttonSetup =
new JButton (” Setup ” ) ;
JButton buttonEnd =
new JButton (”End ” ) ;
JButton buttonPrintDetai ledOutput =
new JButton (” Pr int Grid ” ) ;

// S l i d e r :
s l i d e r P a n e l . add (new JLabel
(” Speed Delay ” ) ) ;
s l i d e r P a n e l . add ( s l i d e r S p e e d ) ;
s l i d e r S p e e d . setMajorTickSpacing ( 1 0 0 ) ;
s l i d e r S p e e d . setMinorTickSpacing ( 2 5 ) ;
s l i d e r S p e e d . s e tPa intT icks ( t rue ) ;
s l i d e r S p e e d . s e tPa in tLabe l s ( t rue ) ;

// upperPanel ( Control ) :
upperPanel . add ( buttonSetup ) ;
upperPanel . add ( buttonStart ) ;
upperPanel . add ( buttonPause ) ;
upperPanel . add ( buttonOneStep ) ;
// upperPanel . add ( buttonReset ) ;
upperPanel . add ( buttonChangeView ) ;
upperPanel . add ( buttonSymbols ) ;
upperPanel . add ( buttonEnd ) ;
upperPanel . add ( checkBoxGraphic ) ;
upperPanel . add ( checkBoxPlot ) ;
upperPanel . add ( checkBoxHistogram ) ;
upperPanel . setBackground ( Color .GRAY) ;

// lowerPanel ( Counters ) :
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lowerPanel . add ( s l i d e r P a n e l ) ;
lowerPanel . add
( buttonPrintDetai ledOutput ) ;
lowerPanel . add
(new JLabel (” ” ) ) ;
lowerPanel . add ( labe lCounter ) ;
lowerPanel . add ( pane lSpec iesCounter ) ;
lowerPanel . setBackground ( Color .GRAY) ;

// r i ghtPane l :
r i ghtPane l . setLayout
(new GridLayout (2 , 1 ) ) ;
r i ghtPane l . setBackground
( Color .LIGHT GRAY) ;
histogram . setBackground ( Color .WHITE) ;
r i ghtPane l . add ( histogram . getHistogram ( ) ) ;

p l o t S p e c i e s . s e t S i z e
( p l o t S p e c i e s . getSizeOfX ( ) , 4 0 0 ) ;
p l o t S p e c i e s . setBackground ( Color .WHITE) ;
r i ghtPane l . add ( p l o t S p e c i e s . ge tP lo t ( ) ) ;

//Adding everyth ing to the JFrame :
mainFrame . getContentPane ( ) . add
( th i s , BorderLayout .CENTER) ;
mainFrame . getContentPane ( ) . add
( upperPanel , BorderLayout .NORTH) ;
mainFrame . getContentPane ( ) . add
( lowerPanel , BorderLayout .SOUTH) ;
mainFrame . getContentPane ( ) . add
( r ightPane l , BorderLayout .EAST) ;

mainFrame . s e t V i s i b l e ( t rue ) ;

buttonSetup . addAct ionListener ( t h i s ) ;
buttonStart . addAct ionListener ( t h i s ) ;
buttonOneStep . addAct ionListener ( t h i s ) ;
buttonPause . addAct ionListener ( t h i s ) ;
buttonReset . addAct ionListener ( t h i s ) ;
buttonSymbols . addAct ionListener ( t h i s ) ;
buttonChangeView . addAct ionLis tener ( t h i s ) ;
buttonEnd . addAct ionListener ( t h i s ) ;
buttonPrintDetai ledOutput
. addAct ionLis tener ( t h i s ) ;

r e turn mainFrame ;

}
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pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {
i n t he ight = 100 ;
i n t width = 100 ;
TussockSimulator mainEntity =
new TussockSimulator ( width , he ight ) ;
mainEntity . draw (1026 , 840)
. s e t V i s i b l e ( t rue ) ;

}
}

Listing A.1: TussockSimulator.java
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import java . awt . Color ;
// import u t i l i t i e s . U t i l ;

pub l i c c l a s s Ce l l {

i n t x ;
i n t y ;

double humidity ; / / 0 ; . . ; 2 5 5 [ 0 ; . . ; 1 ]
double temperature ; / / 0 ; . . ; 2 5 5 [ − 2 . 3 ; . . ; + 2 3 . 2 ]

double meanTemperature = 1 0 . 4 ;
double stdDevTemperature = 3 . 0 ;

Compet i t ionList compet i t i onL i s tOfTh i sCe l l ;

Spec i e s occupiedBy ;

pub l i c Ce l l ( i n t x , i n t y ,
boolean useTemperatureMap , boolean useHumidityMap ,
PictureView temperatureMap ,
PictureView humidityMap ) {

t h i s . x = x ;
t h i s . y = y ;

// c o r r e c t i o n s :
x++; y++; i n t subt ra c to r = 2 ;

i f ( useTemperatureMap == true
&& x <= temperatureMap
. getScaledImageWidth ( )
−subt rac to r && y <=
temperatureMap . getScaledImageHeight ( )
−subt rac to r )
{

temperature = convertCel l sTemperature
I n C e l s i u s ( temperatureMap
. readTemperatureScaledPicture (x , y ) ) ;

} e l s e {

temperature =
conver tCe l l sTemperature InCe l s ius
( ( i n t ) ( Math . random ( ) ∗ 2 5 5 ) ) ;

i f ( useTemperatureMap == true ) {
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System . out . p r i n t l n (” Temperature map
i s sma l l e r than gr id ( subs i tu t ed by
random value ) ( x=”+x+” y=”+y +”) . ” ) ;

}

/∗
temperature = U t i l .RAND. random gaussian
( meanTemperature , stdDevTemperature ) ;
whi l e ( temperature < 0 | | temperature > 20)
{ // as sure the spectrum
temperature = U t i l .RAND. random gaussian
( meanTemperature , stdDevTemperature ) ;
}
∗/

}

i f ( useHumidityMap == true && x <=
humidityMap . getScaledImageWidth ( )
−subt rac to r && y <=
humidityMap . getScaledImageHeight ( )
−subt rac to r ) {

humidity =
convertCel lsHumidityToDoubleScale
( humidityMap . readHumidityScaledPicture
(x , y ) ) ;

} e l s e {

humidity = Math . random ( ) ;

i f ( useHumidityMap == true ) {
System . out . p r i n t l n (” Humidity
map i s sma l l e r than gr id
( subs i tu t ed by random value )
( x=”+x+” y=”+y +”) . ” ) ;

}
}

// Create compet i t ion l i s t f o r t h i s c e l l :
compet i t i onL i s tOfTh i sCe l l =
new Compet i t ionList ( ) ;

}

pub l i c void s e t S p e c i e s ( Spec i e s spec ) {

occupiedBy = spec ;
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}

pub l i c Spec i e s g e t S p e c i e s ( ) {

re turn occupiedBy ;

}

pub l i c i n t getSpeciesNumber ( ) {

re turn occupiedBy . getSpeciesNumber ( ) ;
}

pub l i c S t r ing getSpeciesName ( ) {

re turn occupiedBy . name ;

}

pub l i c Color ge tSpec i e sCo lo r ( ) {

re turn occupiedBy . ge tSpec i e sCo lo r ( ) ;

}

pub l i c f l o a t getCellsTemperatureAsRGB ( ) {

f l o a t asF loat = ( f l o a t ) (10 ∗
temperature + 2 3 ) ;

r e turn asFloat / 256 ;

}

pub l i c f l o a t getCellsHumidityAsRGB ( ) {

re turn ( f l o a t ) ( humidity ) ;

}

p r i v a t e double conver tCe l l sTemperature InCe l s ius
( i n t temperatureAsRGB ) {

re turn 0 .1 ∗ temperatureAsRGB − 2 . 3 ;

}

p r i v a t e double convertCel l sHumidityToDoubleScale
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( i n t humidityAsRGB) {

double humidityRGBDouble = humidityAsRGB ;

return humidityRGBDouble / 256 ;

}

pub l i c boolean isOccupied ( ) {

i f ( occupiedBy == n u l l ) {
re turn f a l s e ;

} e l s e {
re turn true ;

}
}

pub l i c void aging ( ) {

occupiedBy . age ing ( ) ;

}

pub l i c boolean g e t S e d d l i n g P o s s i b i l i t y
( Spec i e s po t en t i a lAnce s to r ) {

i f ( t h i s . i sOccupied ( ) ) {

re turn f a l s e ;

}

double lowerLimitPlantsHumidity =
poten t i a lAnce s to r . getOptimalHumidity ( )
− 0 . 2 ;
double upperLimitPlantsHumidity =
poten t i a lAnce s to r . getOptimalHumidity ( )
+ 0 . 2 ;
double lowerLimitPlantsTemperature =
poten t i a lAnce s to r . getOptimalTemperature ( )
− 4 . 0 ; // in C e l s i u s
double upperLimitPlantsTemperature =
poten t i a lAnce s to r . getOptimalTemperature ( )
+ 4 . 0 ; // in C e l s i u s

i f ( ! ( lowerLimitPlantsHumidity <= t h i s
. humidity && upperLimitPlantsHumidity
>= t h i s . humidity ) ) {
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return f a l s e ;
}
i f ( ! ( lowerLimitPlantsTemperature
<= t h i s . temperature &&
upperLimitPlantsTemperature >=
t h i s . temperature ) ) {

re turn f a l s e ;
}

re turn true ;
}

pub l i c boolean maturity ( ) {

i f ( t h i s . i sOccupied ( ) ) {
// t h i s i f c l a u s e i s j u s t f o r l o g i c ,
a c t u a l l y i t i s redundant

re turn occupiedBy . getMaturity ( ) ;

} e l s e {

re turn f a l s e ;
}

}

pub l i c void d i e ( ) {

i f ( t h i s . i sOccupied ( ) ) {

i f ( occupiedBy . getDying ( ) == true ) {

occupiedBy = n u l l ;

}
}

}

pub l i c void addCompetingSpecies
( Spec i e s compet i tor ) {

compet i t i onL i s tOfTh i sCe l l
. addSpec ies ( compet i tor ) ;

}
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pub l i c void compete ( ) {

Spec i e s winner ;
i n t amountOfCandidates =
compet i t i onL i s tOfTh i sCe l l
. g e tL i s tLengths ( ) ;

switch ( amountOfCandidates ) {

case 0 :
winner = n u l l ;
break ;

case 1 :
winner =
compet i t i onL i s tOfTh i sCe l l
. g e t S p e c i e s ( 0 ) ;
break ;

d e f a u l t :
Spec i e s [ ] l i s t =
compet i t i onL i s tOfTh i sCe l l
. g e t S p e c i e s L i s t ( ) ;

// Competition :

winner =
compet i t i onL i s tOfTh i sCe l l
. g e t S p e c i e s ( 0 ) ;

f o r ( i n t i = 0 ;
i < compet i t i onL i s tOfTh i sCe l l
. g e tL i s tLengths ( ) ; i++) {

i f ( l i s t [ i ]
. getCompet i t ionStrength ( ) ∗
Math . random ( ) > winner
. getCompet i t ionStrength ( ) ∗
Math . random ( ) ) {

winner =
compet i t i onL i s tOfTh i sCe l l
. g e t S p e c i e s ( i ) ;

}
}

}
occupiedBy = winner ;

/∗ i f ( occupiedBy != n u l l ) {
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occupiedBy . i n i t i a l i z e S p e c i e s ( ) ;

}∗/

compet i t i onL i s tOfTh i sCe l l . emptyList ( ) ;
}

pub l i c double getTemperature ( ) {

re turn temperature ;

}

pub l i c void setTemperature
( double newTemperature ) {

i f ( newTemperature <= 23.2
&& newTemperature >= −2.3) {

t h i s . temperature = newTemperature ;

}

}

pub l i c double getHumidity ( ) {

re turn humidity ;

}

pub l i c void setHumidity ( double newHumidity ) {

i f ( newHumidity >= 0.0
&& newHumidity <= 1 . 0 ) {

t h i s . humidity = newHumidity ;

}

}

pub l i c void competeUsingMatrix ( ) {

F i l e matr ixSource = new F i l e ( path
+”\\ compet it ionMatr ix . x l s ” ) ;
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Spec i e s winner ;
i n t amountOfCandidates

= compet i t i onL i s tOfTh i sCe l l
. g e tL i s tLengths ( ) ;

switch ( amountOfCandidates ) {

case 0 :
winner = n u l l ;
break ;

case 1 :
winner =
compet i t i onL i s tOfTh i sCe l l
. g e t S p e c i e s ( 0 ) ;

break ;

d e f a u l t :

t ry {

Workbook matrix =
Workbook
. getWorkbook
( matrixSource ) ;

Sheet matr ixSheet
= matrix . getSheet ( 0 ) ;

winner =
compet i t i onL i s tOfTh i sCe l l
. g e t S p e c i e s ( 0 ) ;

i n t row , column ;
St r ing f i g h t ;

f o r ( i n t i = 0 ;
i < amountOfCandidates
; i++) {

row = winner
. getSpeciesNumber ()+1;
column =
compet i t ionLi s tOfThi s
Ce l l . g e t S p e c i e s ( i )
. getSpeciesNumber ()+1;
f i g h t = matrixSheet
. g e t C e l l ( column , row )
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. getContents ( ) ;

i f ( f i g h t . charAt (0 )
== ’− ’) {

winner =
compet i t i onL i s tOf
Thi sCe l l
. g e t S p e c i e s ( i ) ;

}

}

} catch ( Exception IOE) {

System . e r r . p r i n t l n
(” Error read ing compet i t ion

matrix ”+ IOE ) ;
winner = n u l l ;

}
}
occupiedBy = winner ;

compet i t i onL i s tOfTh i sCe l l . emptyList ( ) ;

}

}

Listing A.2: Cell.java
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pub l i c c l a s s Compet i t ionList {

i n t p o s i t i o n ;
Spec i e s l i s t [ ] ;

pub l i c Compet i t ionList ( ) {

p o s i t i o n = 0 ;
l i s t = new Spec i e s [ 9 ] ;

}

pub l i c void addSpec ies ( Spec i e s a ) {

l i s t [ p o s i t i o n ] = a ;
p o s i t i o n ++;

}

pub l i c i n t ge tL i s tLengths ( ) {

re turn p o s i t i o n ;

}

pub l i c Spec i e s g e t S p e c i e s ( i n t pos ) {

re turn l i s t [ pos ] ;

}

pub l i c Spec i e s [ ] g e t S p e c i e s L i s t ( ) {

re turn l i s t ;

}

pub l i c void emptyList ( ) {

f o r ( i n t i =0; i < l i s t . l ength ; i++) {

l i s t [ i ] = n u l l ;

}
p o s i t i o n = 0 ;

}
}

Listing A.3: CompetitionList.java
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pub l i c c l a s s Counter {

p r i v a t e Spec i e s count ingSpec i e s ;
p r i v a t e i n t amountOfSpecies ;

pub l i c Counter ( Spec i e s countingSpec ) {

count ingSpec i e s = countingSpec ;
amountOfSpecies = 0 ;

}

pub l i c void setAmountOfSpecies ( i n t amount ) {

amountOfSpecies = amount ;

}

pub l i c i n t getAmountOfSpecies ( ) {

re turn amountOfSpecies ;

}

pub l i c Spec i e s g e t S p e c i e s ( ) {

re turn count ingSpec i e s ;

}

pub l i c void r e s e t ( ) {

amountOfSpecies = 0 ;

}

}

Listing A.4: Counter.java
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import java . i o . BufferedReader ;
import java . i o . F i l e ;
import java . i o . Fi leReader ;
import java . i o . Buf feredWriter ;
import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;

pub l i c c l a s s F i l eOperator {

St r ing path = ”C:\\Programme\\TussockSimulator ” ;
p r i v a t e S t r ing f i l e S p e c i e s C o n f i g u r a t i o n
= ” c o n f i g u r a t i o n . txt ” ;
p r i v a t e S t r ing f i l eEnv i ronmentCon f i gura t i on
= ”mapConfig . txt ” ;
p r i v a t e Buf feredWriter w r i t e r ;
p r i v a t e BufferedReader reader ;
p r i v a t e F i l e c r ea t eD i r ;
p r i v a t e F i l e c r e a t e F i l e ;

pub l i c void save ( S t r ing a l l ) {

t ry {
// Save Conf igurat ion to f i l e to harddisk :

w r i t e r = new Buf feredWriter (new Fi l eWr i t e r
( path+”\\”+ f i l e S p e c i e s C o n f i g u r a t i o n ) ) ;
w r i t e r . wr i t e ( a l l ) ;

}

catch ( IOException e ) {

System . e r r . p r i n t l n
(” Error ( F i l eOperator ) wr i t i ng f i l e . ” ) ;

}

f i n a l l y {
i f ( w r i t e r != n u l l )

t ry {w r i t e r . c l o s e ( ) ; }

catch ( IOException e ) { }

}

}

pub l i c S t r ing r eadSpec i e s ( ) {
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St r ing content = ”” ;

t ry {

c r ea t eD i r = new F i l e ( path ) ;
c r e a t e F i l e = new F i l e
( path+”\\”+ f i l e S p e c i e s C o n f i g u r a t i o n ) ;

i f ( ! c r e a t e F i l e . e x i s t s ( ) ) {

c r ea t eD i r . mkdirs ( ) ;
c r e a t e F i l e . createNewFi le ( ) ;

t h i s . save (” Defau l t ; 0 .002 ;
0 . 5 ; 0 . 2 ; 0 . 5 ; 0 . 2 ; 7 . 0 ;
1 . 0 ; 15 .0 ; 2 . 0 ; 10 .0 ; 0 ;
0 ; 255 end l ine2 ” ) ;

System . out . p r i n t l n (” Defau l t
Conf igurat ion F i l e has been
created . ” ) ;

}

//Read Conf igurat ion out o f f i l e on harddisk :
r eader = new BufferedReader (new Fi leReader
( path+”\\”+ f i l e S p e c i e s C o n f i g u r a t i o n ) ) ;

content = reader . readLine ( ) ;

}

catch ( IOException e ) {

System . e r r . p r i n t l n (” F i l e not found ,
f i l e c r e a t i o n has been f a i l e d . ” ) ;

}

f i n a l l y {
i f ( r eader != n u l l )

t ry { reader . c l o s e ( ) ; }

catch ( IOException e ) { }
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}

re turn content ;

}

pub l i c void saveEnvironment
( boolean mapTemperature , boolean mapHumidity ) {

t ry {
// Save Map−Use to f i l e to d i sk :

w r i t e r = new Buf feredWriter
(new Fi l eWr i t e r ( path+”\\”
+f i l eEnv i ronmentCon f i gura t i on ) ) ;

w r i t e r . wr i t e
( mapTemperature+”;”+mapHumidity ) ;

}

catch ( IOException e ) {

System . e r r . p r i n t l n (” Error
( F i l eOperator ) wr i t i ng f i l e . ” ) ;

}

f i n a l l y {
i f ( w r i t e r != n u l l )

t ry {w r i t e r . c l o s e ( ) ; }

catch ( IOException e ) { }

}

}

pub l i c S t r ing readEnvironment ( ) {

St r ing content = ”” ;

t ry {

c r ea t eD i r = new F i l e ( path ) ;
c r e a t e F i l e = new F i l e ( path
+”\\”+f i l eEnv i ronmentCon f i gura t i on ) ;

i f ( ! c r e a t e F i l e . e x i s t s ( ) ) {
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c r ea t eD i r . mkdirs ( ) ;

c r e a t e F i l e . createNewFi le ( ) ;

t h i s . save (” f a l s e ; f a l s e ” ) ;

System . out . p r i n t l n
(” Defau l t Conf igurat ion
F i l e has been crea ted . ” ) ;

}

//Read Conf igurat ion out o f f i l e on harddisk :
r eader = new BufferedReader (new Fi leReader
( path+”\\”+f i l eEnv i ronmentCon f i gura t i on ) ) ;

content = reader . readLine ( ) ;

}

catch ( IOException e ) {

System . e r r . p r i n t l n
(” F i l e not found , f i l e c r e a t i o n
has been f a i l e d . ” ) ;

}

f i n a l l y {
i f ( r eader != n u l l )

t ry { reader . c l o s e ( ) ; }

catch ( IOException e ) { }

}

re turn content ;

}

}

Listing A.5: FileOperator.java
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import java . awt . Canvas ;
import java . awt . Color ;
import java . awt . Dimension ;
import java . awt . Graphics ;

pub l i c c l a s s Histogram extends Canvas {

p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID
= 2054056283306194251L ;

Ce l l [ ] [ ] copyOfGrid ;

pub l i c void setHistogram ( Ce l l [ ] [ ] g r i d ) {

t h i s . copyOfGrid = gr id ;

}

pub l i c void pa int ( Graphics g ) {

i n t he ight = t h i s . getHeight ( ) ;

i n t age ;

i n t sma l l e r5 = 0 , sma l l e r10 = 0
, sma l l e r15 = 0 , sma l l e r20 = 0
, sma l l e r25 = 0 , sma l l e r30 = 0
, sma l l e r35 = 0 , sma l l e r40 = 0
, sma l l e r45 = 0 , sma l l e r50 = 0
, h igher50 = 0 ;

f o r ( i n t i =0; i<copyOfGrid . l ength ; i++) {
f o r ( i n t j=0

j<copyOfGrid . l ength ; j++) {

i f ( copyOfGrid [ i ] [ j ]
. g e t S p e c i e s ( ) != n u l l ) {

age = copyOfGrid [ i ] [ j ]
. g e t S p e c i e s ( ) . getAge ( ) ;

i f ( age < 5)
sma l l e r5++;

e l s e i f ( age < 10)
sma l l e r10++;

e l s e i f ( age < 15)
sma l l e r15++;
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e l s e i f ( age < 20)
sma l l e r20++;

e l s e i f ( age < 25)
sma l l e r25++;

e l s e i f ( age < 30)
sma l l e r30++;

e l s e i f ( age < 35)
sma l l e r35++;

e l s e i f ( age < 40)
sma l l e r40++;

e l s e i f ( age < 45)
sma l l e r45++;

e l s e i f ( age < 50)
sma l l e r50++;

e l s e i f ( age >= 50)
higher50++;
}

}

}

g . s e tCo lo r ( Color .BLACK) ;

g . drawString
(”<5” , 28 , he ight −20);

g . drawString
(”<10” , 49 , he ight −20);

g . drawString
(”<15” , 74 , he ight −20);

g . drawString
(”<20” , 99 , he ight −20);

g . drawString
(”<25” , 124 , height −20);

g . drawString
(”<30” , 149 , height −20);

g . drawString
(”<35” , 174 , height −20);

g . drawString
(”<40” , 199 , height −20);

g . drawString
(”<45” , 224 , height −20);

153



Appendix A. Source code

g . drawString
(”<50” , 249 , height −20);

g . drawString
(”>=”, 278 , height −25);
g . drawString
(”50” , 278 , height −15);

g . s e tCo lo r ( Color .RED) ;

g . draw3DRect
(22 , height−sma l l e r5 /2 ,
25 , sma l l e r5 /2 , t rue ) ;

g . draw3DRect
(47 , height−sma l l e r10 /2 ,
25 , sma l l e r10 /2 , t rue ) ;

g . draw3DRect
(72 , height−sma l l e r15 /2 ,
25 , sma l l e r15 /2 , t rue ) ;

g . draw3DRect
(97 , height−sma l l e r20 /2 ,
25 , sma l l e r20 /2 , t rue ) ;

g . draw3DRect
(122 , height−sma l l e r25 /2 ,
25 , sma l l e r25 /2 , t rue ) ;

g . draw3DRect
(147 , height−sma l l e r30 /2 ,
25 , sma l l e r30 /2 , t rue ) ;

g . draw3DRect
(172 , height−sma l l e r35 /2 ,
25 , sma l l e r35 /2 , t rue ) ;

g . draw3DRect
(197 , height−sma l l e r40 /2 ,
25 , sma l l e r40 /2 , t rue ) ;

g . draw3DRect
(222 , height−sma l l e r45 /2 ,
25 , sma l l e r45 /2 , t rue ) ;

g . draw3DRect
(247 , height−sma l l e r50 /2 ,
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25 , sma l l e r50 /2 , t rue ) ;

g . draw3DRect
(272 , height−higher50 /2 ,
25 , h igher50 /2 , t rue ) ;

i f ( h igher50 >= height ) {

g . drawString
(””+ higher50 , 268 , 1 0 ) ;

}

g . s e tCo lo r ( Color .BLUE) ;

g . drawString
(” age ” , 0 , 1 0 ) ;

g . drawString
(”200” , 0 , he ight −100);

g . drawLine
(0 , he ight −100 , t h i s
. getWidth ( ) , he ight −100);

g . drawString (”400”
, 0 , he ight −200);

g . drawLine (0 , height −200
, t h i s . getWidth ( )
, he ight −200);

}

pub l i c Canvas getHistogram ( ) {

t h i s . setMinimumSize
(new Dimension (200 , 2 0 0 ) ) ;
r e turn t h i s ;

}

}

Listing A.6: Histogram.java
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import java . i o . Buf feredWriter ;
import java . i o . F i l eWr i t e r ;
import java . i o . IOException ;

import java . u t i l . Date ;
import java . t ex t . SimpleDateFormat ;

pub l i c c l a s s OutputCreator {

Buf feredWriter w r i t e r ;

SimpleDateFormat currentDate =
new SimpleDateFormat (” yyyy−MM−dd kk−mm−s s ” ) ;

S t r ing path = ”C:\\Programme\\TussockSimulator ” ;
// the e x i s t e n c e o f t h i s f o l d e r i s assured because
// o f c o n f i g u r a t i o n . txt

S t r ing f i l eOutput ;

pub l i c OutputCreator ( ){

f i l eOutput =
”Output ”+currentDate . format
(new Date ( ) )+” . csv ” ;

}

pub l i c void saveOutput ( S t r ing outputContent ) {

t ry {

// Save Output to f i l e on harddisk :
w r i t e r = new Buf feredWriter
(new Fi l eWr i t e r
( path+”\\”+f i l eOutput , t rue ) ) ;
w r i t e r . wr i t e ( outputContent ) ;
w r i t e r . wr i t e (”\n ” ) ;

}

catch ( IOException e ) {

System . e r r . p r i n t l n
(” Error ( F i l eOperator ) wr i t i ng
output f i l e . ” ) ;
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}

f i n a l l y {
i f ( w r i t e r != n u l l )

t ry {w r i t e r . c l o s e ( ) ; }

catch ( IOException e ) { }

}

}
}

Listing A.7: OutputCreator.java
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import java . i o . Buf feredWriter ;
import java . i o . IOException ;
import java . i o . F i l e ;

import java . u t i l . Date ;
import java . t ex t . SimpleDateFormat ;

import s r c . j x l . Workbook ;
import s r c . j x l . WorkbookSettings ;
import s r c . j x l . wr i t e . Number ;
import s r c . j x l . wr i t e . NumberFormats ;
import s r c . j x l . wr i t e . WritableCel lFormat ;
import s r c . j x l . wr i t e . WritableSheet ;
import s r c . j x l . wr i t e . WritableWorkbook ;
import s r c . j x l . wr i t e . WriteException ;

pub l i c c l a s s OutputCreatorDetai led {

SimpleDateFormat currentDate =
new SimpleDateFormat (” yyyy−MM−dd kk−mm−s s ” ) ;
Buf feredWriter w r i t e r ;

p r i v a t e S t r ing path ;
p r i v a t e S t r ing f i leName ;

i n t timeStep ;
Ce l l [ ] [ ] copyOfGrid ;

pub l i c OutputCreatorDetai led ( S t r ing path ) {

t h i s . path = path ;

}

pub l i c void createDeta i l edOutput
( Ce l l [ ] [ ] copyOfGrid , i n t t imeStep ) {

t h i s . t imeStep = timeStep ;
t h i s . copyOfGrid = copyOfGrid ;

f i leName = ”Output ”
+currentDate . format (new Date ( ) )
+” ”+timeStep+” d e t a i l e d . x l s ” ;

t ry {

WorkbookSettings e x c e l S e t t i n g s =
new WorkbookSettings ( ) ;
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WritableWorkbook workbook =
Workbook . createWorkbook
(new F i l e ( path+”\\”+fi leName ) ,
e x c e l S e t t i n g s ) ;

WritableSheet sheetTemperature =
workbook . c r ea t eShee t (” Temperature ” , 1 ) ;
WritableSheet sheetHumidity =
workbook . c r ea t eShee t (” Humidity ” , 2 ) ;
WritableSheet sheetSpeciesNumber =
workbook . c r ea t eShee t (” SpeciesNo ” , 3 ) ;
WritableSheet sheetAge = workbook
. c r ea t eShee t (”Age” , 4 ) ;
WritableSheet sheetL i f eExpectancy =
workbook . c r ea t eShee t
(” Li feExpactancy ” , 5 ) ;
WritableSheet sheetMartur i ty =
workbook . c r ea t eShee t (” Marturiy ” , 6 ) ;
WritableSheet sheetOptTemperature =
workbook . c r ea t eShee t
(” OptTemperature ” , 7 ) ;
WritableSheet sheetOptHumidity =
workbook . c r ea t eShee t (” OptHumidity ” , 8 ) ;
WritableSheet shee tAna ly s i s =
workbook . c r ea t eShee t (”ANALYSIS” , 9 ) ;

// WritableFont font =
new WritableFont ( WritableFont .ARIAL,
10 , WritableFont .BOLD) ;
WritableCel lFormat format =
new WritableCel lFormat
( NumberFormats .FLOAT) ;
format . setWrap ( t rue ) ;

f o r ( i n t i = 0 ;
i < copyOfGrid . l ength ; i++) {

f o r ( i n t j = 0 ;
j < copyOfGrid . l ength ; j++) {

sheetTemperature . addCel l (new Number
( i , j , copyOfGrid [ i ] [ j ] . temperature ,
format ) ) ;
sheetHumidity . addCel l (new Number
( i , j , copyOfGrid [ i ] [ j ] . humidity ,
format ) ) ;

i f ( copyOfGrid [ i ] [ j ] . i sOccupied ( )
== true ) {

sheetSpeciesNumber . addCel l
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(new Number( i , j ,
copyOfGrid [ i ] [ j ]
. getSpeciesNumber ( ) , format ) ) ;
sheetAge . addCel l
(new Number( i , j ,
copyOfGrid [ i ] [ j ]
. g e t S p e c i e s ( ) . getAge ( )
, format ) ) ;
sheetL i f eExpectancy . addCel l
(new Number( i , j ,
copyOfGrid [ i ] [ j ]
. g e t S p e c i e s ( )
. getLi feExpectancy ( )
, format ) ) ;
sheetMartur i ty . addCel l
(new Number( i , j ,
copyOfGrid [ i ] [ j ]
. g e t S p e c i e s ( )
. getMaturityExpectancy ( ) ,
format ) ) ;
sheetOptTemperature . addCel l
(new Number( i , j ,
copyOfGrid [ i ] [ j ]
. g e t S p e c i e s ( )
. getOptimalTemperature ( )
, format ) ) ;
sheetOptHumidity . addCel l
(new Number( i , j ,
copyOfGrid [ i ] [ j ]
. g e t S p e c i e s ( )
. getOptimalHumidity ( )
, format ) ) ;

}

}

}

workbook . wr i t e ( ) ;
workbook . c l o s e ( ) ;

} catch ( IOException e ) {

System . e r r . p r i n t l n (” Error
( OutputCreatorDetai led )
wr i t i ng e x c e l f i l e . ” ) ;
e . pr intStackTrace ( ) ;

} catch ( WriteException e ) {
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System . e r r . p r i n t l n (” Error
( OutputCreatorDetai led )
wr i t i ng e x c e l f i l e . ” ) ;
e . pr intStackTrace ( ) ;

}

}

/∗
pub l i c void wr i t eSheet ( ) throws WriteException {

WritableFont font = new WritableFont
( WritableFont .ARIAL, 10 , WritableFont
.NO BOLD) ;
WritableCel lFormat format =
new WritableCel lFormat ( NumberFormats
.FLOAT) ;
format . setWrap ( t rue ) ;

f o r ( i n t i = 0 ;
i < copyOfGrid . l ength ; i++) {

f o r ( i n t j = 0 ;
j < copyOfGrid . l ength ; j++) {

sheetTemperature . addCel l (new Label
( i , j , ””+copyOfGrid [ i ] [ j ]
. temperature ) ) ;

}

}
shee t . addCel l (new Label ( ) )

// Creates Label and d i v i d e s va lue
// o f one c e l l o f shee t by 2 .5
l = new Label (6 , 0 , ” Divide ” , c f ) ;
s . addCel l ( l ) ;
n = new Number (6 , 1 , 1 2 ) ;
s . addCel l (n ) ;
f = new Formula (6 , 2 , ”F1 / 2 . 5 ” ) ;
s . addCel l ( f ) ;

}
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pub l i c void createDeta i l edOutputSt ing
( Ce l l [ ] [ ] copyOfGrid ) {

i n t x = copyOfGrid . l ength ;
i n t y = copyOfGrid . l ength ;

deta i ledOutput = ”” ;

f o r ( i n t i = 0 ; i < x ; i++) {

f o r ( i n t j = 0 ; j < y ; j++) {

i f ( copyOfGrid [ i ] [ j ]
. i sOccupied ( ) == true ) {

deta i ledOutput += ””
+copyOfGrid [ i ] [ j ]
. temperature+” ”
+copyOfGrid [ i ] [ j ]
. humidity
+” ”+copyOfGrid [ i ] [ j ]
. getSpeciesNumber ()+”
”+copyOfGrid [ i ] [ j ]
. g e t S p e c i e s ( ) . getAge ( )
+” ,”;

} e l s e i f ( copyOfGrid [ i ] [ j ]
. i sOccupied ( ) == f a l s e ) {

deta i ledOutput += ” , ” ;

}

i f ( j == y−1) {// l i n e end

deta i ledOutput += ”\n ” ;

}

}

}

// t h i s . saveOutput ( ) ;
}
/∗
pub l i c void saveOutput ( ) {
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try {

// Save Output to f i l e on harddisk :
w r i t e r = new Buf feredWriter
(new Fi l eWr i t e r ( path+”\\”
+fileName , t rue ) ) ;
w r i t e r . wr i t e ( deta i ledOutput ) ;
w r i t e r . wr i t e (”\n ” ) ;

}

catch ( IOException e ) {

System . e r r . p r i n t l n (” Error
( F i l eOperator ) wr i t i ng d e t a i l e d
output f i l e . ” ) ;

}

f i n a l l y {
i f ( w r i t e r != n u l l )

t ry {w r i t e r . c l o s e ( ) ; }

catch ( IOException e ) { }

}
}

∗/
}

Listing A.8: OutputCreatorDetailed.java
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import java . awt . Graphics ;

import java . awt . Color ;
import java . awt . Image ;
import java . awt . image . BufferedImage ;
import javax . swing . JComponent ;

import java . i o . IOException ;
import java . i o . F i l e ;
import javax . imageio . ImageIO ;

pub l i c c l a s s PictureView extends JComponent {

p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID
= 8188891509337052769L ;

p r i v a t e S t r ing f i leName ;

p r i v a t e Image scaledImage ;
p r i v a t e BufferedImage bufferedMap
, scaledBufferedMap ;

p r i v a t e i n t newSize = 102 ;

pub l i c PictureView ( St r ing f i leName ) {

t h i s . f i leName = fi leName ;
t h i s . createImage ( ) ;

}

pub l i c void createImage ( ) {

F i l e p i c t u r e F i l e = new F i l e ( f i leName ) ;

t ry {

bufferedMap = ImageIO . read ( p i c t u r e F i l e ) ;

i f ( bufferedMap != n u l l ) {

sca ledImage = bufferedMap
. ge tSca l ed In s tance ( newSize , newSize ,
BufferedImage .SCALE SMOOTH) ;

scaledBufferedMap =
new BufferedImage ( newSize , newSize
, BufferedImage .TYPE INT RGB ) ;
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scaledBufferedMap . getGraphics ( )
. drawImage ( scaledImage , 0 , 0 , n u l l ) ;

// t h i s . r epa in t ( ) ;

}
}

catch ( IOException e ) { e . pr intStackTrace ( ) ; }

}

pub l i c void paintComponent ( Graphics g ) {

i f ( sca ledImage != n u l l ) {

g . drawImage ( scaledImage , 0 , 0 , n u l l ) ;

} e l s e {

g . drawString (”Map (”+ fi leName +”)
i s not a v a i l a b l e ” , 10 , 1 0 ) ;

}

}

pub l i c i n t readTemperatureScaledPicture
( i n t x , i n t y ) {

i n t red = 0 ;

i f ( x+1 <= scaledBufferedMap . getWidth ( )
&& y+1 <= scaledBufferedMap . getHeight ( ) ) {

Color c = new Color ( scaledBufferedMap
. getRGB( x+1, y +1)) ;
red = c . getRed ( ) ;

}

re turn red ;
}

pub l i c i n t readHumiditySca ledPicture
( i n t x , i n t y ) {

i n t blue = 0 ;
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i f ( x <= scaledBufferedMap . getWidth ( )
&& y <= scaledBufferedMap . getHeight ( ) ) {

Color c = new Color ( scaledBufferedMap
. getRGB(x , y ) ) ;
b lue = c . getBlue ( ) ;

}

re turn blue ;
}

pub l i c i n t getScaledImageHeight ( ) {

re turn scaledBufferedMap . getHeight ( ) ;

}

pub l i c i n t getScaledImageWidth ( ) {

re turn scaledBufferedMap . getHeight ( ) ;

}

pub l i c JComponent ge tP i c tu r e ( ) {

re turn t h i s ;

}
}

Listing A.9: PictureView.java
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import java . awt . Graphics ;
import java . awt . Canvas ;
import java . awt . Dimension ;
import java . awt . Color ;

pub l i c c l a s s Plot extends Canvas {

p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID
= −2500721455446380831L ;

i n t s izeX = 300 ;
i n t s izeY = 340 ;

i n t currentSca leY = sizeY ;
i n t cur r entD iv ide r = 1 ;

i n t plotLength = sizeX ;

i n t [ ] [ ] h i s t o r y ;
// [ SpeciesNumber ] [ amountOfSpecies ]

i n t [ ] x = new i n t [ plotLength ] ;
i n t in te rna lCounte r ;

Spec i e s [ ] a l l S p e c i e s ;
Counter [ ] spec i e sCounter ;
Counter [ ] spec iesCounterOrdered ;

pub l i c Plot ( Spec i e s [ ] a l l S p e c ) {

t h i s . a l l S p e c i e s = a l l S p e c ;
t h i s . in te rna lCounte r = 0 ;
h i s t o r y =
new i n t [ a l l S p e c i e s . l ength ] [ p lotLength ] ;

}

pub l i c void s e t P l o t ( i n t stepCounter
, Counter [ ] specCounter ) {

t h i s . spec i e sCounter = specCounter ;

f o r ( i n t i = 0 ;
i < specCounter . l ength ; i++) {

h i s t o r y [ i ] [ i n t e rna lCounte r ]
= specCounter [ i ]
. getAmountOfSpecies ( ) ;
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}

i n t e rna lCounte r++;
//x [ in te rna lCounte r ]
// = inte rna lCounte r ;

i f ( in te rna lCounte r == plotLength−1
| | stepCounter == 0) {

i n t e rna lCounte r = 0 ;

f o r ( i n t i = 0 ;
i < plotLength ; i++) {

f o r ( i n t j = 0 ;
j < spec i e sCounter . l ength ;
j++) {

h i s t o r y [ j ] [ i ] = 0 ;

}
}
}

f o r ( i n t i = 0 ;
i < a l l S p e c i e s . l ength ; i++) {

h i s t o r y [ i ] [ i n t e rna lCounte r ]
= specCounter [ i ] . getAmountOfSpecies ( ) ;

}

}

pub l i c void pa int ( Graphics g ) {

g . s e tCo lo r ( Color .BLUE) ;

g . drawString (””+ currentScaleY , 0 , 1 0 ) ;
g . drawLine (0 , 10 , sizeX , 1 0 ) ;

g . drawString (”0” , 0 , s izeY ) ;

f o r ( i n t i = 0 ;
i < spec i e sCounter . l ength ; i++) {

g . s e tCo lo r ( a l l S p e c i e s [ i ]
. g e tSpec i e sCo lo r ( ) ) ;
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f o r ( i n t p a i n t P o s i t i o n = 0 ;
p a i n t P o s i t i o n < plotLength ;
p a i n t P o s i t i o n++) {

g . drawLine ( pa in tPos i t i on ,
( sizeY−h i s t o r y [ i ] [ p a i n t P o s i t i o n ]
/ cur r entDiv ide r ) , pa in tPos i t i on ,
( sizeY−h i s t o r y [ i ] [ p a i n t P o s i t i o n ]
/ cur r entDiv ide r ) ) ;

}
}

g . s e tCo lo r ( Color .WHITE) ;
g . drawLine (0 , sizeY , sizeX , s izeY ) ;

t h i s . getNewScaleY ( ) ;
}

pub l i c Canvas getP lo t ( ) {

t h i s . setMinimumSize
(new Dimension ( sizeX , s izeY ) ) ;
r e turn t h i s ;

}

pub l i c void r e s e t ( ) {

t h i s . in te rna lCounte r = 0 ;

f o r ( i n t i = 0 ;
i < a l l S p e c i e s . l ength ; i++) {

f o r ( i n t j = 0 ;
j < plotLength ; j++) {

h i s t o r y [ i ] [ j ] = 0 ;

}
}

}

pub l i c void getNewScaleY ( ) {

i n t l a r g e s t = spec i e sCounter [ 0 ] . g e t S p e c i e s ( )
. getSpeciesNumber ( ) ;

f o r ( i n t i = 0 ;
i < spec i e sCounter . l ength ; i++) {

i f ( spec i e sCounter [ i ] . getAmountOfSpecies ( ) >

169



Appendix A. Source code

spec i e sCounter [ l a r g e s t ] . getAmountOfSpecies ( ) ) {

l a r g e s t = spec i e sCounter [ i ] . g e t S p e c i e s ( )
. getSpeciesNumber ( ) ;

}
}

i f ( currentScaleY−20 <=
spec i e sCounter [ l a r g e s t ]
. getAmountOfSpecies ( ) ) {

currentSca leY = currentSca leY ∗ 2 ;

cu r r en tD iv ide r = cur r en tD iv ide r ∗ 2 ;

}

}

}

Listing A.10: Plot.java
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import javax . swing . JFrame ;
import java . awt . BorderLayout ;
import java . awt . event . ActionEvent ;
import java . awt . event . Act i onL i s t ene r ;
import javax . swing . JPanel ;
import javax . swing . JLabel ;
import javax . swing . JOptionPane ;
import javax . swing . JButton ;
import javax . swing . JScro l lPane ;
import javax . swing . JCheckBox ;
import java . awt . GridLayout ;
import java . awt . Dimension ;

pub l i c c l a s s Setup implements Act i onL i s t ene r {

p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID
= −4745006927865007642L ;

JFrame setupFrame = new JFrame (” Spec i e s Setup ” ) ;
s t a t i c JButton buttonSave =
new JButton (” Save and Exit a l l ” ) ;
s t a t i c JButton buttonCancel =
new JButton (” Cancel and back ” ) ;

i n t amountOfSpiecies = 8 ;
// at best i s an even number ;

SetupSpec i e sContro l [ ] l i s t O f S p e c i e s =
new SetupSpec ie sContro l [ amountOfSpiecies ] ;

F i l eOperator f i l e O p e r a t o r = new Fi l eOperator ( ) ;

SetupEnvironmentControl environment =
new SetupEnvironmentControl ( ) ;

JCheckBox checkBoxTemperature =
new JCheckBox (” Use t h i s map (”+environment
. getPathTemperature ()+”) f o r temperature . ” ) ;
JCheckBox checkBoxHumidity =
new JCheckBox (” Use t h i s map (”+environment
. getPathTemperature ()+”) f o r humidity . ” ) ;

pub l i c void act ionPerformed ( ActionEvent ae ) {
St r ing ac = ae . getActionCommand ( ) ;

i f ( ac . equa l s (” Save and Exit a l l ” ) ) {

f i l e O p e r a t o r . save ( t h i s
. a l l S p e c i e s S t r i n g C r e a t o r ( ) ) ;
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f i l e O p e r a t o r . saveEnvironment
( checkBoxTemperature . i s S e l e c t e d ( )
, checkBoxHumidity . i s S e l e c t e d ( ) ) ;

System . e x i t ( 0 ) ;

} e l s e i f ( ac . equa l s (” Cancel and back ”) ) {

setupFrame . d i spo s e ( ) ;

}
}

pub l i c S t r ing a l l S p e c i e s S t r i n g C r e a t o r ( ) {

St r ing a l l = ”” ;

f o r ( i n t i =0; i<l i s t O f S p e c i e s . l ength ; i++) {

i f ( l i s t O f S p e c i e s [ i ]
. c r e a t e S t r i n g ( ) . l ength ( ) > 0) {

a l l += l i s t O f S p e c i e s [ i ]
. c r e a t e S t r i n g ( ) + ” end l ine2 ” ;

}
}
re turn a l l ;

}

pub l i c void r ead InSpec i e sCon f i gu ra t i on ( ) {

St r ing a l l = f i l e O p e r a t o r
. r eadSpec i e s ( ) ;

i f ( a l l != ””) {

St r ing [ ] l i n e = a l l
. s p l i t (” end l ine2 ” ) ;

f o r ( i n t i =0; i<l i n e . l ength ; i++) {

St r ing [ ] column =
l i n e [ i ] . s p l i t (” ; ” ) ;

l i s t O f S p e c i e s [ i ]
. textFieldSpecName
. setText ( column [ 0 ] ) ;
l i s t O f S p e c i e s [ i ]
. t ex tF i e ldSpecSta r tRat i o
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. setText ( column [ 1 ] ) ;
l i s t O f S p e c i e s [ i ]
. t e x t F i e l d S pe c P re f e r r e d
HumidityMean . setText
( column [ 2 ] ) ;
l i s t O f S p e c i e s [ i ]
. t e x t F i e l d S pe c P re f e r r e d
HumidityStdDev . setText
( column [ 3 ] ) ;
l i s t O f S p e c i e s [ i ]
. t e x t F i e l d S pe c P re f e r r e d
TemperatureMean . setText
( column [ 4 ] ) ;
l i s t O f S p e c i e s [ i ]
. t e x t F i e l d S pe c P re f e r r e d
TemperatureStdDev . setText
( column [ 5 ] ) ;
l i s t O f S p e c i e s [ i ]
. textFieldSpecMaturityMean
. setText ( column [ 6 ] ) ;
l i s t O f S p e c i e s [ i ]
. textFie ldSpecMaturityStdDev
. setText ( column [ 7 ] ) ;
l i s t O f S p e c i e s [ i ]
. textFieldSpecDieMean
. setText ( column [ 8 ] ) ;
l i s t O f S p e c i e s [ i ]
. textFie ldSpecDieStdDev
. setText ( column [ 9 ] ) ;
l i s t O f S p e c i e s [ i ]
. t extFie ldSpecCompet i t ion
Strength . setText ( column [ 1 0 ] ) ;
l i s t O f S p e c i e s [ i ]
. textFie ldSpecColorRed
. setText ( column [ 1 1 ] ) ;
l i s t O f S p e c i e s [ i ]
. t extFie ldSpecColorGreen
. setText ( column [ 1 2 ] ) ;
l i s t O f S p e c i e s [ i ]
. t extF ie ldSpecCo lorBlue
. setText ( column [ 1 3 ] ) ;

}

}

}

pub l i c void readInEnvironmentConf igurat ion ( ) {
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St r ing a l l = f i l e O p e r a t o r
. readEnvironment ( ) ;

i f ( a l l != ””) {

St r ing [ ] column =
a l l . s p l i t ( ” ; ” ) ;

i f ( column [ 0 ] . charAt (0 ) == ’ t ’ ) {

checkBoxTemperature
. s e t S e l e c t e d ( t rue ) ;

} e l s e {

checkBoxTemperature
. s e t S e l e c t e d ( f a l s e ) ;

}

i f ( column [ 1 ] . charAt (0 ) == ’ t ’ ) {

checkBoxHumidity
. s e t S e l e c t e d ( t rue ) ;

} e l s e {

checkBoxHumidity
. s e t S e l e c t e d ( f a l s e ) ;

}

}
}

pub l i c void checkPicturesSameSize ( ) {

i f ( environment . getWidthTemperatureMap ( )
!= environment . getWidthHumidityMap ( )
| | environment . getHeightTemperatureMap ( )
!= environment . getHeightHumidityMap ( ) ) {

JOptionPane . showMessageDialog ( nu l l ,
”Warning : The map f o r temperature has
not the same s i z e as the map f o r
humidity ! ( compensated by s c a l i n g )” ,
” S i z e Problem ” , JOptionPane .OK OPTION) ;

}

}
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pub l i c JFrame draw ( ) {

JPanel pane lL i s tOfA l l = new JPanel ( ) ;

pane lL i s tOfA l l . setLayout (new GridLayout
( ( amountOfSpiecies /2+1) , 2 , 10 , 1 0 ) ) ;

f o r ( i n t i = 0 ;
i < l i s t O f S p e c i e s . l ength ; i++) {

SetupSpec i e sContro l a =
new SetupSpec ie sContro l ( i ) ;
l i s t O f S p e c i e s [ i ] = a ;

pane lL i s tOfA l l
. add ( l i s t O f S p e c i e s [ i ] ) ;

}

t h i s . r ead InSpec i e sCon f i gu ra t i on ( ) ;
t h i s . readInEnvironmentConf igurat ion ( ) ;

JPanel panelTemperature = new JPanel ( ) ;
panelTemperature . setLayout
(new GridLayout (3 , 1 ) ) ;
PictureView picViewTemp =
new PictureView ( environment
. getPathTemperature ( ) ) ;
panelTemperature . add
(new JLabel (”Map f o r Temperature : ” ) ) ;
panelTemperature . add ( picViewTemp ) ;
panelTemperature
. add ( checkBoxTemperature ) ;

JPanel panelHumidity = new JPanel ( ) ;
panelHumidity . setLayout
(new GridLayout (3 , 1 ) ) ;
PictureView picViewHum =
new PictureView ( environment
. getPathHumidity ( ) ) ;
panelHumidity . add
(new JLabel (”Map f o r Humidity : ” ) ) ;
panelHumidity . add ( picViewHum ) ;
panelHumidity . add ( checkBoxHumidity ) ;

pane lL i s tOfA l l . add ( panelTemperature ) ;
pane lL i s tOfA l l . add ( panelHumidity ) ;
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JScro l lPane s c r o l l P a n e =
new JScro l lPane ( ) ;
s c r o l l P a n e
. setViewportView ( pane lL i s tOfA l l ) ;

JPanel panelButton = new JPanel ( ) ;
panelButton . add ( buttonSave ) ;
panelButton . add ( buttonCancel ) ;

setupFrame . s e tDe fau l tC lo seOperat ion
( JFrame .EXIT ON CLOSE ) ;
setupFrame . setMinimumSize
(new Dimension (1060 , 8 0 0 ) ) ;
setupFrame . getContentPane ( )
. add ( sc ro l lPane , BorderLayout .CENTER) ;
setupFrame . getContentPane ( )
. add ( panelButton , BorderLayout .SOUTH) ;

t h i s . checkPicturesSameSize ( ) ;

setupFrame . s e t V i s i b l e ( t rue ) ;

buttonSave . addAct ionListener ( t h i s ) ;
buttonCancel . addAct ionListener ( t h i s ) ;

r e turn setupFrame ;

}
}

Listing A.11: Setup.java
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import java . awt . image . BufferedImage ;
import java . i o . IOException ;
import java . i o . F i l e ;
import javax . imageio . ImageIO ;

pub l i c c l a s s SetupEnvironmentControl {

p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID
= −7938562760323006747L ;

p r i v a t e S t r ing path
= ”C:\\Programme\\TussockSimulator ” ;
p r i v a t e S t r ing temperaturePictureFi leName
= ”temperatureMap . jpg ” ;
p r i v a t e S t r ing humidityPictureFileName
= ”humidityMap . jpg ” ;

p r i v a t e BufferedImage imageTemperature
, imageHumidity ;

p r i v a t e i n t widthAbsolute = 100 ; // d e f a u l t va lue
p r i v a t e i n t he ightAbso lute = 100 ; // d e f a u l t va lue

p r i v a t e i n t widthTemp , heightTemp
, widthHum , heightHum ;

pub l i c SetupEnvironmentControl ( ) {

t ry {

imageTemperature = ImageIO . read
(new F i l e ( path+”\\”
+temperaturePictureFi leName ) ) ;
imageHumidity = ImageIO . read
(new F i l e ( path+”\\”
+humidityPictureFileName ) ) ;

heightTemp =
imageTemperature . getHeight ( ) ;
widthTemp = imageTemperature . getWidth ( ) ;
heightHum = imageHumidity . getHeight ( ) ;
widthHum = imageHumidity . getWidth ( ) ;

i f ( imageTemperature . getHeight ( )
> imageHumidity . getHeight ( ) ) {

he ightAbso lute =
imageTemperature . getHeight ( ) ;
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} e l s e {

he ightAbso lute =
imageHumidity . getHeight ( ) ;

}

i f ( imageTemperature . getWidth ( )
> imageHumidity . getWidth ( ) ) {

widthAbsolute =
imageTemperature . getWidth ( ) ;

} e l s e {

widthAbsolute =
imageHumidity . getWidth ( ) ;

}

}
catch ( IOException e ) {

System . e r r . p r i n t l n (” Error
( SetupEnvironmentControl )
read ing f i l e ( s ) . ” ) ;

}
}

pub l i c i n t getHeightAbso lute ( ) {

re turn he ightAbso lute ;

}

pub l i c i n t getWidthAbsolute ( ) {

re turn widthAbsolute ;

}

pub l i c i n t getWidthTemperatureMap ( ) {

re turn widthTemp ;

}

pub l i c i n t getHeightTemperatureMap ( ) {
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return heightTemp ;

}

pub l i c i n t getWidthHumidityMap ( ) {

re turn widthHum ;

}

pub l i c i n t getHeightHumidityMap ( ) {

re turn heightHum ;

}

pub l i c S t r ing getPathTemperature ( ) {

re turn path+”\\”
+temperaturePictureFi leName ;

}

pub l i c S t r ing getPathHumidity ( ) {

re turn path+”\\”+humidityPictureFileName ;

}

pub l i c BufferedImage getScaledTemperatureMap ( ) {

re turn imageTemperature ;

}

pub l i c BufferedImage getScaledHumidityMap ( ) {

re turn imageHumidity ;

}

}

Listing A.12: SetupEnvironmentControl.java
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import javax . swing . JPanel ;
import javax . swing . JLabel ;
import javax . swing . JTextFie ld ;
import javax . swing . JCheckBox ;

import java . awt . Dimension ;

import java . awt . GridLayout ;

pub l i c c l a s s SetupSpec ie sContro l extends JPanel {

p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID = 1L ;

JLabel l abe lSpecAct ive =
new JLabel (” Spec i e s Active : ” ) ;

JCheckBox checkBoxSpecActive =
new JCheckBox ( ) ;

JLabel labelSpecNumber =
new JLabel (” Spec i e s Number : ” ) ;

JTextFie ld textFieldSpecNumber =
new JTextFie ld ( ) ;

JLabel labelSpecName =
new JLabel (”Name : ” ) ;

JTextFie ld textFieldSpecName =
new JTextFie ld ( ) ;

JLabel l abe lSpecS ta r tRat i o =
new JLabel (” Setup Ratio : ” ) ;

JTextFie ld t ex tF i e ldSpecSta r tRat i o =
new JTextFie ld ( ) ;

JLabel labelSpecPreferredHumidityMean =
new JLabel (” Humidity Mean : ” ) ;

JTextFie ld
textFie ldSpecPreferredHumidityMean =
new JTextFie ld ( ) ;

JLabel labe lSpecPreferredHumidityStdDev =
new JLabel
(” Humidity Standard Deviat ion : ” ) ;
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JTextFie ld
textFie ldSpecPreferredHumidityStdDev =
new JTextFie ld ( ) ;

JLabel labelSpecPreferredTemperatureMean =
new JLabel (” Temperature Mean : ” ) ;

JTextFie ld
textFie ldSpecPreferredTemperatureMean =
new JTextFie ld ( ) ;

JLabel labelSpecPreferredTemperatureStdDev
= new JLabel
(” Temperature Standard Deviat ion : ” ) ;

JTextFie ld
textFie ldSpecPreferredTemperatureStdDev =
new JTextFie ld ( ) ;

JLabel labelSpecMaturityMean =
new JLabel (” Maturity Mean : ” ) ;

JTextFie ld textFieldSpecMaturityMean =
new JTextFie ld ( ) ;

JLabel labelSpecMaturityStdDev =
new JLabel
(” Maturity Standard Deviat ion : ” ) ;

JTextFie ld textFie ldSpecMaturityStdDev
= new JTextFie ld ( ) ;

JLabel labelSpecDieMean =
new JLabel (” L i f e Expectancy (Mean ) : ” ) ;

JTextFie ld textFieldSpecDieMean =
new JTextFie ld ( ) ;

JLabel labelSpecDieStdDev =
new JLabel (” L i f e Expectancy
( Standard Deviat ion ) : ” ) ;

JTextFie ld textFie ldSpecDieStdDev =
new JTextFie ld ( ) ;

JLabel labe lSpecCompet i t ionStrength =
new JLabel (” Competition Strength : ” ) ;

JTextFie ld
textFie ldSpecCompet i t ionStrength =
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new JTextFie ld ( ) ;

JLabel l abe lSpecCo lo r =
new JLabel (” Color (RGB) : ” ) ;

JTextFie ld textFie ldSpecColorRed =
new JTextFie ld ( ) ;

JTextFie ld textFie ldSpecColorGreen =
new JTextFie ld ( ) ;

JTextFie ld textF ie ldSpecCo lorBlue =
new JTextFie ld ( ) ;

JPanel pane lColor = new JPanel ( ) ;

pub l i c SetupSpec i e sContro l
( i n t speciesNumber ) {

t h i s . setLayout
(new GridLayout ( 1 4 , 2 ) ) ;
t h i s . s e t S i z e (200 , 4 0 0 ) ;

t h i s . add ( l abe lSpecAct ive ) ;
t h i s . add ( checkBoxSpecActive ) ;

t h i s . add ( labelSpecNumber ) ;
textFieldSpecNumber . setText
( speciesNumber +””);
textFieldSpecNumber . s e t E d i t a b l e
( f a l s e ) ;
t h i s . add ( textFieldSpecNumber ) ;

t h i s . add ( labelSpecName ) ;
t h i s . add ( textFieldSpecName ) ;

t h i s . add ( l abe lSpecS ta r tRat i o ) ;
t h i s . add ( t ex tF i e ldSpecSta r tRat i o ) ;

t h i s . add
( labelSpecPreferredHumidityMean ) ;
t h i s . add
( t e x tF i e l dS p e cP r e f e r r e d
HumidityMean ) ;

t h i s . add ( l a b e l S p e c P r e f e r r e d
HumidityStdDev ) ;
t h i s . add ( t e x t F i e l d Sp e c Pr e f e r r e d
HumidityStdDev ) ;
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t h i s . add ( l a b e l S p e c P r e f e r r e d
TemperatureMean ) ;
t h i s . add ( t e x t F i e l d Sp e c Pr e f e r r e d
TemperatureMean ) ;

t h i s . add ( l a b e l S p e c P r e f e r r e d
TemperatureStdDev ) ;
t h i s . add ( t e x t F i e l d Sp e c Pr e f e r r e d
TemperatureStdDev ) ;

t h i s . add ( labelSpecMaturityMean ) ;
t h i s . add
( textFieldSpecMaturityMean ) ;

t h i s . add ( labelSpecMaturityStdDev ) ;
t h i s . add
( textFie ldSpecMaturityStdDev ) ;

t h i s . add ( labelSpecDieMean ) ;
t h i s . add ( textFieldSpecDieMean ) ;

t h i s . add ( labelSpecDieStdDev ) ;
t h i s . add ( textFie ldSpecDieStdDev ) ;

t h i s . add
( labe lSpecCompet i t ionStrength ) ;
t h i s . add
( t ex tF i e ldSpec
Competit ionStrength ) ;

t h i s . add ( l abe lSpecCo lo r ) ;
textFie ldSpecColorRed
. s e t P r e f e r r e d S i z e
(new Dimension (30 , 2 0 ) ) ;
textFie ldSpecColorGreen
. s e t P r e f e r r e d S i z e (new Dimension
(30 , 2 0 ) ) ;
t extF ie ldSpecCo lorBlue
. s e t P r e f e r r e d S i z e (new Dimension
(30 , 2 0 ) ) ;
pane lColor . add
( textFie ldSpecColorRed ) ;
pane lColor . add
( textFie ldSpecColorGreen ) ;
pane lColor . add
( textF ie ldSpecCo lorBlue ) ;
t h i s . add ( pane lColor ) ;

}
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pub l i c S t r ing c r e a t e S t r i n g ( ) {

St r ing a l l I n f o r m a t i o n O f S p e c i e s
= ”” ;

i f ( textFieldSpecName . getText ( )
. l ength ( ) > 0 &&
textF i e ldSpecSta r tRat i o
. getText ( ) . l ength ( ) > 0 &&
textFie ldSpecPre fe r redHumid i ty
Mean . getText ( ) . l ength ( ) > 0 &&
textFie ldSpecPre fe r redHumid i ty
StdDev . getText ( ) . l ength ( ) > 0
&& te x t F i e l d Sp e c Pr e f e r r e d
TemperatureMean . getText ( )
. l ength ( ) > 0 &&
t e x t F i e l d S pe c P r e f e r r e d
TemperatureStdDev . getText ( )
. l ength ( ) > 0 &&
textFieldSpecMaturityMean
. getText ( ) . l ength ( ) > 0 &&
textFie ldSpecMaturityStdDev
. getText ( ) . l ength ( ) > 0 &&
textFieldSpecDieMean
. getText ( ) . l ength ( ) > 0 &&
textFie ldSpecDieStdDev
. getText ( ) . l ength ( ) > 0 &&
textFie ldSpecCompet i t ion
Strength . getText ( ) . l ength ( )
> 0)

{

a l l I n f o r m a t i o n O f S p e c i e s
= textFieldSpecName
. getText ( ) + ” ; ”
+ tex tF i e ldSpecSta r tRat i o
. getText ( ) + ” ; ”
+ t e x t F i e l d S pe c P re f e r r e d
HumidityMean . getText ( )
+ ” ; ”
+ t e x t F i e l d S pe c P re f e r r e d
HumidityStdDev . getText ( )
+ ” ; ”
+ t e x t F i e l d S pe c P re f e r r e d
TemperatureMean . getText ( )
+ ” ; ”
+ t e x t F i e l d S pe c P re f e r r e d
TemperatureStdDev . getText ( )
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+ ” ; ”
+ textFieldSpecMaturityMean
. getText ( ) + ” ; ”
+ textFie ldSpecMaturityStdDev
. getText ()+ ” ; ”
+ textFieldSpecDieMean
. getText ( ) + ” ; ”
+ textFie ldSpecDieStdDev
. getText ( ) + ” ; ”
+ textFie ldSpecCompet i t ion
Strength . getText ( ) + ” ; ”
+ textFie ldSpecColorRed
. getText ( ) + ” ; ”
+ textFie ldSpecColorGreen
. getText ( ) + ” ; ”
+ textF ie ldSpecCo lorBlue
. getText ( ) ;

}

re turn a l l I n f o r m a t i o n O f S p e c i e s ;

}

}

Listing A.13: SetupSpeciesControl.java
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import java . awt . Color ;
import u t i l i t i e s . U t i l ;

pub l i c c l a s s Spec i e s implements Cloneable {

St r ing name ;
i n t number ;

double s t a r t R a t i o ;

double optimalHumidityMean , optimalHumidityStdDev ;
double optimalTemperatureMean
, optimalTemperatureStdDev ;

p r i v a t e i n t age ;

double maturityMean , maturityStdDev ;
double dieMean , dieStdDev ;

double compet i t ionStrength ;

Color specColor ;

p r i v a t e double maturityExpectancy ;
p r i v a t e double l i f eExpec tancy ;

p r i v a t e double optimalHumidity
, optimalTemperature ;

pub l i c Spec i e s c l one ( ) {

t ry {
re turn ( Spec i e s ) super . c l one ( ) ;

} catch ( CloneNotSupportedException cnse ) {
cnse . pr intStackTrace ( ) ;

r e turn n u l l ;
}

}

pub l i c void i n i t i a l i z e S p e c i e s ( ) {

t h i s . ca lcu lateMatur i tyExpectancy ( ) ;
t h i s . c a l cu l a t eL i f eExpec tancy ( ) ;
t h i s . setOptimalTemperature ( ) ;
t h i s . setOptimalHumidity ( ) ;
t h i s . age = 0 ;
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}

pub l i c i n t getAge ( ) {

re turn age ;

}

pub l i c i n t getSpeciesNumber ( ) {

re turn number ;

}

pub l i c Color ge tSpec i e sCo lo r ( ) {

re turn specColor ;

}

pub l i c S t r ing getSpeciesName ( ) {

re turn name ;

}

pub l i c void age ing ( ) {

age++;
}

p r i v a t e void setOptimalTemperature ( ) {

double gaussValueForTemperature =
U t i l .RAND. random gaussian
( optimalTemperatureMean ,
optimalTemperatureStdDev ) ;
optimalTemperature =
gaussValueForTemperature ;

}

// accord ing to L i e b i g s law in two independence o f
// Temperature and Humidity e t c .

p r i v a t e void setOptimalHumidity ( ) {

double gaussValueForHumidity =
U t i l .RAND. random gaussian
( optimalHumidityMean ,
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optimalHumidityStdDev ) ;
optimalHumidity = gaussValueForHumidity ;

}

p r i v a t e void ca lcu lateMatur i tyExpectancy ( ) {

maturityExpectancy =
U t i l .RAND. random gaussian ( maturityMean ,
maturityStdDev ) ;

}

p r i v a t e void ca l cu l a t eL i f eExpec tancy ( ) {

l i f eExpec tancy =
U t i l .RAND. random gaussian ( dieMean ,
dieStdDev ) ;

}

pub l i c double getOptimalTemperature ( ) {

re turn optimalTemperature ;

}

pub l i c double getOptimalHumidity ( ) {

re turn optimalHumidity ;

}

pub l i c boolean getMaturity ( ) {

i f ( t h i s . age >= t h i s . maturityExpectancy ) {

re turn true ;

} e l s e {

re turn f a l s e ;

}

}

pub l i c double getLi feExpectancy ( ) {

re turn t h i s . l i f eExpec tancy ;
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}

pub l i c double getMaturityExpectancy ( ) {

re turn t h i s . maturityExpectancy ;

}

pub l i c boolean getDying ( ) {

i f ( t h i s . age >= t h i s . l i f eExpec tancy ) {

re turn true ;

} e l s e {

re turn f a l s e ;

}

}

pub l i c double getCompet i t ionStrength ( ) {

re turn compet i t ionStrength ;

}

}

Listing A.14: Species.java
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