
The STOR Component SystemThe STOR Component System
Interim ReportInterim Report

Kerstin Kerstin FalkowskiFalkowski
JJüürgenrgen EbertEbert

Nr. 14/2009Nr. 14/2009

Arbeitsberichte aus demArbeitsberichte aus dem
Fachbereich InformatikFachbereich Informatik

Die Arbeitsberichte aus dem Fachbereich Informatik dienen der Darstellung
vorläufiger Ergebnisse, die in der Regel noch für spätere Veröffentlichungen
überarbeitet werden. Die Autoren sind deshalb für kritische Hinweise dankbar. Alle
Rechte vorbehalten, insbesondere die der Übersetzung, des Nachdruckes, des
Vortrags, der Entnahme von Abbildungen und Tabellen – auch bei nur
auszugsweiser Verwertung.

The “Arbeitsberichte aus dem Fachbereich Informatik“ comprise preliminary results
which will usually be revised for subsequent publication. Critical comments are
appreciated by the authors. All rights reserved. No part of this report may be
reproduced by any means or translated.

Arbeitsberichte des Fachbereichs Informatik

ISSN (Print): 1864-0346
ISSN (Online): 1864-0850

Herausgeber / Edited by:
Der Dekan:
Prof. Dr. Zöbel

Die Professoren des Fachbereichs:
Prof. Dr. Bátori, Prof. Dr. Beckert, Prof. Dr. Burkhardt, Prof. Dr. Diller, Prof. Dr. Ebert,
Prof. Dr. Furbach, Prof. Dr. Grimm, Prof. Dr. Hampe, Prof. Dr. Harbusch,
Prof. Dr. Sure, Prof. Dr. Lämmel, Prof. Dr. Lautenbach, Prof. Dr. Müller, Prof. Dr.
Oppermann, Prof. Dr. Paulus, Prof. Dr. Priese, Prof. Dr. Rosendahl, Prof. Dr.
Schubert, Prof. Dr. Staab, Prof. Dr. Steigner, Prof. Dr. Troitzsch, Prof. Dr. von
Kortzfleisch, Prof. Dr. Walsh, Prof. Dr. Wimmer, Prof. Dr. Zöbel

Kontaktdaten der Verfasser

Kerstin Falkowski, Jürgen Ebert
Institut für Softwaretechnik
Fachbereich Informatik
Universität Koblenz-Landau
Universitätsstraße 1
D-56070 Koblenz
EMail: falke@uni-koblenz.de, ebert@uni-koblenz.de

mailto:falke@uni-koblenz.de

The STOR Component System
Interim Report

Kerstin Falkowski, Jürgen Ebert

Contents

1 Introduction 2

2 STOR foundations 3
2.1 Java-related technologies . 3
2.2 Java-related component systems . 4

2.2.1 JavaBeans . 5
2.2.2 ConQAT . 7

2.3 Image processing libraries . 10
2.4 Graph processing API JGraLab . 10

3 STOR entities 11
3.1 STOR Activities . 11

3.1.1 Image processing . 12
3.1.2 Feature processing . 12
3.1.3 Model processing . 13
3.1.4 Product-line view . 13
3.1.5 Example: Domino tile recognition . 14

3.2 STOR Data Structures . 14
3.2.1 Images . 17
3.2.2 Features . 19
3.2.3 Integrated models . 20

3.3 STOR Components . 21
3.3.1 STOR components in general . 21
3.3.2 STOR JavaBeans components . 23
3.3.3 STOR ConQAT components . 25
3.3.4 Domino tile recognition intermediary result images 27
3.3.5 Native library wrappers . 27

4 Conclusion and future work 29

A STOR development environment 30
A.1 Folder structure . 30
A.2 Build environment . 30

1

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

Abstract. The STOR project aims at the development of a scientific component system
employing models and knowledge for object recognition in images. This interim report
elaborates on the requirements for such a component system, structures the application
area by identifying a large set of basic operations, and shows how a set of appropriate
data structures and components can be derived. A small case studies exemplifies the
approach.

1 Introduction

This paper reports on the interim results of the software engineering part of the project Software tech-
niques for object recognition (STOR)1 2 whose goal is the development of a Component-based Concept
Employing Models and Knowledge for Object Recognition in Images and Image Sequences. STOR is joint
work with the Work Group Active Vision3 of the University of Koblenz-Landau.

On the software engineering side, there are two main research areas tackled in STOR. The first one is
the development of an adequate component concept for the area of object recognition. The second one
is the development of an integrated modeling approach for this domain.

The work done in STOR is triggered by two different case studies. The first case study deals with
the recognition of domino tiles in images. The second one concentrates on the generation of urban object
models from images. The second case study has already been described in two publications focussing
on schema development for integrated urban object models and on the generation of such models
from images [11, 10]. This paper focusses on the component concept and uses the domino recognition
case study for explanation.

Example: Domino tile recognition. The scenario addressed in this case study is the recognition
of domino tiles in twodimensional images. All kinds of intensity images are given as input. The
problem to be solved is to identify correctly as many tiles as precisely as possible.

This small case study gives rise to a large number of problems in object recognition including dis-
torted and overlapping objects and calls for a broad range of experiments - using recognition algo-
rithms ranging from concrete special purpose deterministic algorithms to general AI-based meth-
ods.

This report has two goals: firstly the interim results shall be recorded as a snapshot of the project
status, and secondly it should serve as a short introduction to the software engineering part of the
STOR project for new members of team.

Chapter 2 shortly introduces the basic concepts and foundational work used in STOR. Then, chapter 3
describes the different entities developed in STOR forming the base for a component concept (namely
activities, data structures, components and native library wrappers). Finally, appendix A describes
the current development environment used.

1This work is funded by Deutsche Forschungsgemeinschaft under grants PA 599/8-1 and EB 119/3-1.
2http://er.uni-koblenz.de
3http://www.uni-koblenz-landau.de/koblenz/fb4/institute/icv/agpaulus

2

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

http://er.uni-koblenz.de
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/icv/agpaulus

2 STOR foundations

STOR aims at a scientific component system that can be used to experiment with different techniques
and data structures for object recognition. A scientific component system supplies an experimen-
tal environment for a research area that can be employed to easily reuse and combine existing as-
sets (components and/or data structures) to construct, analyze and evaluate solutions for exemplary
problems. In the case of STOR, object recognition is the area to be explored.

Since the Java language supports many concepts needed for such an environment, it was decided to
use Java for the front-end and some parts of the back-end and C++ for the image processing part
of the back-end of the component system. Though such a two-language approach is quite unusual
in the image recognition community, it has been chosen here since Java offers several important fea-
tures (reflection, serializability, multi-threading) that would have to be implemented explicitly in C++
environments. The probable loss in efficiency seems to be tolerable, since (i) for image processing ac-
tivities only the main coordinating code on a coarse-grained level is supposed to be written in Java
while the image processing algorithms stay in C++, and (ii) real-time requirements are less urgent in
experimental environments since quality of the results is primarily in focus.

Section 2.1 shortly cites the Java-related technologies that lead to this decision and are used in STOR.
Section 2.2 introduces the background and terminology from the area of component concepts, and sec-
tion 2.3 comments on the state of the art of image processing libraries for STOR. Section 2.4 contains
pointers to the JGraLab API that is used for graph-based modeling and knowledge representation in
STOR.

2.1 Java-related technologies

Java and Java-related technologies are used for the realization of the STOR component system. Those
language features that have been added to Java are shortly introduced in the following for the reader’s
convenience.

Java assertions. An assertion [14] is a Java statement that enables testing of assumptions about
programs at runtime. An assertion contains a boolean expression that is expected to evaluate to
true during program execution. If it is false, the runtime system throws an error and terminates the
program. Assertions are disabled by default, but they can globally be enabled by configuration of the
Java runtime environment.

Java annotations. An annotation [14] is a Java language element that enables the integration of
metadata in Java programs. Annotations can be interpreted during compile time by an annotation
processor or at runtime via reflection. There are seven predefined annotation types, but one can also
create domain-specific annotation types.

Java covariant return types. Covariant overriding is a Java language feature that helps to increase its
type safety. Java prohibits to override a method by a new method in a derived class which possesses
identical parameter and return types, but it allows to override a method by a new method in a derived
class whose return type is proper a subtype of the overridden method’s return type.

3

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

Java reflection. Java reflection [12] is a Java core concept and an appropriate API, that enables the
access to and the restricted modification of class instances stored in the Java Virtual Machine (JVM)
memory as well as the creation of new class instances at runtime. It is used in meta programming
techniques like JavaBeans (Section 2.2.1), for example, if the existence and/or specification of a class is
not known at compile time. In contrast to static Java programs, Java programs using reflection can be
unsave, because there is no static type checking for class instances modified or created at runtime.

Java Native Interface. The Java Native Interface (JNI) [19] is a standardized concept and an appro-
priate API, that enables the communication between Java programs and native libaries written in
other languages. It enables the use of native (e.g. C++) methods by a Java program as well as the exe-
cution of a full Java virtual machine or the use of Java methods via reflection from a native program.
In contrast to plain Java programs, Java programs using native libraries via JNI are not necessarily
platform independent anymore.

2.2 Java-related component systems

The STOR component concept will be based on existing component concepts or at least will work in
accordance with them. The two most interesting Java-based component concepts for STOR and their
related software are introduced in the following.

Three main phases can be identified for component-based development

• component development
- consisting of component specification and component implementation - is the phase of identi-
fying the relevant activities and constructing the corresponding components as building blocks;
• component assembly

- consisting of component registration, component instantiation, component adaptation, and
component composition - is the phase of constructing a solution from these building blocks in
an assembly environment;
• (composed) system execution

is the phase of executing the composed solution on sample data.

Scientific component systems shall support all three phases in a seamless manner and facilitate all
kinds of analysis, profiling, and tracing.

Currently, STOR uses a JavaBeans-like approach which is incrementally refined and extended accord-
ing to the needs of the project. For the first experiments, also the environment ConQAT was used.
Both component approaches are shortly explained in the following and their terms are compared in
Table 1.

General component concept terms JavaBeans terms ConQAT terms
component bean analysis

atomic component bean processor / analysis (step)
composed component (composit) design block / (composed) analysis / configuration

component without context simple bean /
component with context nested/participant bean /

component container .jar-archive bundle
program design (composed) analysis / configuration

input datum: parameter property input datum
input datum: argument / input datum

output datum property output datum
service any public method process-method
event event /

assembly environment builder tool editor

Table 1: Component concept term comparison.

4

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

2.2.1 JavaBeans

JavaBeans4 is a Java-based component concept and an appropriate API of Sun Microsystems. The
JavaBeans specification [16, 4, 3, 5] describes requirements to beans and their development as well
as JavaBeans-specific functionality. Most of this functionality is part of the Java core SDK (packages
java.beans and java.beans.beancontext).5

A bean is defined as a ”reusable software component that can be visually manipulated in builder
tools” [16]. Although such builder tools, called assembly environments in this report, are not part of the
Java programming language, there are reference implementations from Sun Microsystems as well as
further proprietary tools for that purpose. Unfortunately, most of them are only ”visual” in the sense
that they visually support the adaptation of beans. A visual support for composition is not supplied
or can only be achieved with some additional (manually programmed) connection code.

The bean concept was originally developed for the simplification of graphical user interface (GUI)
development. In contrast to the received opinion, a JavaBean does not need to have a GUI repre-
sentation. According to the specification a bean can be either visible, invisible or both [16]. But most
JavaBeans applications use visible beans.6

JavaBean components. Structure and behavior of a bean are described by the set of properties it
possesses, the set of services it offers, and the set of events it fires. Technically a bean is represented
by a single Java class fulfilling some conventions, so that structure and behavior can automatically be
examined and used via reflection (Section 2.1).

A bean class must offer a public parameterless constructor so that any bean can automatically be
instantiated at runtime. Furthermore it must implement the interface java.io.Serializable so
that the internal state of any instantiated bean can be (de-)serialized at runtime.

A property is a private attribute that is accessible via a public get-method and potentially a public
set-method if the property is changeable; both methods have to fulfill some naming conventions. If a
bean is able to register other beans for receiving its events, the methods for (de-)registration also have
to fulfill some naming conventions. All services of a bean are public methods, including those for
property and event handling.

Beans that shall have a GUI representation have to extend java.awt.Component directly or via
inheritance. To be usable by an assembly environment, the .class-file of a bean has to be packed
into a .jar-archive. A .jar-archive can contain more than one bean and therefore it must include a
.xml-manifest-file that explicitly identifies all contained beans.

Bean-API. The Bean-API (package java.beans) provides additional functionality for JavaBeans.
Firstly, it contains a special introspector (Introspector) for bean examination via reflection (Section
2.1). Secondly, it offers classes providing further information about bean properties and their possible
adaptation, namely bean info classes (BeanInfo), property editors (PropertyEditor) and customizers
(Customizer). Moreover it offers an interface for the more specific definition of a bean’s visibility
(Visibility).

4http://java.sun.com/beans
5Only the JavaBeans Activation Framework (JAF) is a standard extension.
6For example the Eclipse Visual Editor Project http://www.eclipse.org/vep or Matisse4MyEclipse http://www.
myeclipseide.com/module-htmlpages-display-pid-5.html.

5

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

http://java.sun.com/beans
 http://www.eclipse.org/vep
http://www.myeclipseide.com/module-htmlpages-display-pid-5.html
http://www.myeclipseide.com/module-htmlpages-display-pid-5.html

BeanContext-API. The BeanContext-API (package java.beans.beancontext) provides addi-
tional functionality for JavaBeans packed in a .jar-archive. A .jar-archive can contain a specific
bean context (BeanContext), that provides specific services for its contained beans (for example a
printing or a debugging service). A bean can use a bean context, if it is a bean context child via
implementing the interface BeanContextChild. A bean whose .jar-archive has no bean context
or that even does not use this bean context is called simple bean; a bean that uses the context of its
.jar-archive is called nested bean (or participant bean).

Bean assembly. Beans can be adapted by changing their properties and composed by connecting
them via events. Since an event may contain additional data, this mechanism offers the possibility
to pass data between beans. Both steps of bean assembly can be visually supported by an assembly
environment or manually by a programmer.

Most existing assembly environments offer visually supported adaptation using the Bean-API function-
ality. But there seem to be different ideas about what visually supported bean composition means.

Normally event-based composition should be the registration of the target bean at the source bean.
This can only be done, if the target bean is an event listener for a kind of event, that the source bean is
able to fire and for which the source bean offers (de-)registration methods conforming to the listener
pattern. In this case the connection can be done without additional connection code.

An assembly environment can examine properties, services and events of source and target beans
via reflection in order to explore which event-based connections are possible. A mature visually
supported bean composition environment should offer the possibility to connect beans by drawing
an arc between source and target bean.

In this context, the ability of components to deliver all kinds of information about themselves is the
key feature for the capability of the assembly environment with respect to analysis, profiling, and
tracing.

Assembly environments. The Bean Development Kit (BDK, also called BeanBox) [26, 18] and its suc-
cessor the BeanBuilder7 are reference implementations for assembly environments. They are supplied
by Sun Microsystems providing simple ”test containers” for JavaBeans. Their official successor is
NetBeans8, an integrated development environment (IDE) – similar to Eclipse, that (among other fa-
cilities) can work as an assembly environment. JBeanStudio9 10 [24, 25] is a proprietary assembly envi-
ronment from the Visualisation and High-Performance Computing Laboratory (ViSLAB), University
of Sydney, hosted at Sourceforge.

NetBeans seems to be the only tool up to date, and therefore not all information could be detected
for the other assembly environments. It was not possible to get running versions of BDK and Bean-
Builder, but for both one can still find some documentation. Although there is a running version of
JBeanStudio, there is no tool documentation at all.

All mentioned tools are Java-based. From the mentioned assembly environments only NetBeans can
be uses for bean development. All of them offer the registration of existing beans (.jar-archives), the in-
stantiation of registered beans via drag-and-drop into a GUI (an instance of java.awt.Container)
and the visually supported adaptation of selected instantiated beans. The tools differ in their possi-
bilities for visually supported bean composition, system execution, persistent storage of composed beans
and reuse of stored systems as components. Except BDK all other assembly environments are able to
handle invisible beans.

7http://bean-builder.dev.java.net
8http://www.netbeans.org
9http://www.vislab.usyd.edu.au/moinwiki/JBeanStudio

10http://sourceforge.net/projects/jbeanstudio

6

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

http://bean-builder.dev.java.net
http://www.netbeans.org
http://www.vislab.usyd.edu.au/moinwiki/JBeanStudio
http://sourceforge.net/projects/jbeanstudio

Table 2 compares the mentioned assembly environments and CqEdit (below). Information for the
BDK and the BeanBuilder that could not be detected is marked with a questionmark. A screenshot of
JBeanStudio can be seen in Figure 16.

assembly environment BDK BeanBuilder NetBeans JBeanStudio CqEdit
currently up to date (version) no no yes (6.5.1) no yes (2.0)
Java-based yes yes yes yes yes
component development no no yes no yes
visual component registration yes yes yes yes yes
visual component instantiation yes yes yes yes yes
visual component adaptation yes yes yes yes yes
visual component composition (- programming) ? ? no yes yes
visual component composition (+ programming) ? ? yes no no
system execution ? ? yes yes yes
persistent system storage ? ? yes yes yes
reuse of stored system as component ? ? no no yes
invisible bean handling no yes yes yes /

Table 2: Assembly environment comparison.

2.2.2 ConQAT

The Continuous Quality Assessment Toolkit (ConQAT)11 builds on a Java-based open source compo-
nent concept and an appropriate IDE developed at of the Competence Center Software Maintenance,
Technical University of Munich. ConQAT was originally developed as an academic research prototype
for a quality assessment tool [8, 7]. It provides an environment for the development of quality analysis
procedures and their composition (e.g. clone detection).

ConQAT is quite generic in the sense, that its component support can also be used for other applica-
tion domains.

ConQAT has a plugin architecture, consisting of the ConQAT core, some plugins and the assembly en-
vironment CqEdit. There are different variants of ConQAT; this description is based on the current
version 2.0 of the platform-independent Eclipse-based variant.

ConQAT components. ConQAT supports three kinds of active entities: processors, blocks and bun-
dles.

A ConQAT processor is an atomic component. The authors claim that it is working similar to a math-
ematical function, that accepts an arbitrary number of inputs and produces a single output. Techni-
cally it is a public Java class implementing the interface IConQATProcessor, from which it inherits
the methods process and init being annotated with the annotation @AConQATProcessor that
provides a parameter description, and offering a parameterless public constructor. The process-
method defines the output type of the processor. The method is also parameterless and its return type
is originally java.lang.Object, but can be refined by any of its subclasses (covariant return type).
The init-method has no return type but a parameter of type IConQATProcessorInfo that can
provide information for a processor instance about itself (e.g. its instance name) and its environment
(e.g. the current driver version) at runtime.

A processor can have any number of input data changeable from the outside, but there is no distinc-
tion between input data that affect the procedure of a component and those being processed by a
component. For all input data a processor has to offer a set-method. A set-method has no return
type and offers the changeable input data as its own parameters. It can change more than one in-
put datum. A set-method must be annotated with the annotation AConQATParameter that pro-
vides the parameters description and name and every parameter must be annotated with the
11http://conqat.cs.tum.edu

7

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

http://conqat.cs.tum.edu

annotation AConQATAttribute that provides the parameters description, name and optionally
defaultValue. There are no ConQAT specific naming conventions for set-methods. Input data can
be of arbitrary type (java.lang.Object). An input datum that is changed in-place can be anno-
tated with the annotation @APipelineSource.

A ConQAT block is a component composed of at least one processor/block. The authors claim that it
works similar to a mathematical function, but is able to produce more than one output. Technically it is
a file in a special XML-format (suffix ”.cqb”) describing the contained processors/blocks and their
interconnection in a declarative manner. A processor’s implementation is referenced by the name of
its Java .class file. The output of a source processor/block is referenced by its name with an ”@” as
prefix.

A ConQAT bundle is a container for processors/blocks that can be opened as ConQAT bundle projects
in CqEdit or are referenced from other bundle projects. Technically it is a folder in the file system.
The folder name is also the identifier used to reference the bundle, by convention it is the name of
the top package used by the Java code it contains. A bundle folder has the following structure and
contents:12

• blocks: subfolders and blocks
• bundle.html: bundle documentation main page
• bundle.xml: bundle description
• classes: subfolders and processors (.class)
• lib: libs used by processors
• resources: any resources
• src: subfolders and processors (.java)
• test-data: any test data
• test-src: any test sources

The file bundle.xml contains information about the bundle’s name, its provider, a bundle description,
the current bundle version, the required ConQAT version and the bundles, this bundle relies on. A
bundle can have a bundle context (a class inherited from BundleContextBase), providing informa-
tion about the bundle itself and the access to its resource folder. A bundle’s context has to be placed
in the top-level package of the bundle and is typically a singleton.

A minimal executable ConQAT component is a block that contains one processor where both are stored
in the same bundle. The bundle can be loaded as a ConQAT bundle project in CqEdit where the block
can be executed calling its processor instance internally.

Component assembly. Using ConQAT, component assembly is the equivalent to block development.
It can be done manually in a .cqb-file or visually supported using the assembly environment CqEdit.

Processors and/or blocks can be composed to a new block in a pipes-and-filter style that determines
the program data flow. They can be interconnected by taking an output datum of a source proces-
sor/block as input datum for a target processor/blocks.

Assembly environment. CqEdit is the Eclipse-based assembly environment of the ConQAT IDE,
offering support for all important component life cycle activities. Table 2 lists these activities and
compares CqEdit to the JavaBean assembly environments. A screenshot of CqEdit can be seen in
Figure 18.

CqEdit supports the import of an existing bundle project or the creation of a new bundle project [New
→ Other→ cq.edit→ Create Bundle Project]. Opened bundles are listed in the Project Explorer
view. Inside an opened bundle one can develop new processors/blocks. For processor development a
JRE and the archive conqat.jar have to be included as libs into the bundle-projects buildpath.13.

12The src, test-data and test-src folders may only be required during processor development.
13The archive is in the Eclipse folder: /plugins/edu.tum.cs.cqedit.core_2.0.0/conqat.jar

8

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

/plugins/edu.tum.cs.cqedit.core_2.0.0/conqat.jar

Then a processor class with the above described properties can be created. As mentioned before block
development complies with component assembly. One can create a new empty block [New→ Other→
cq.edit → New ConQAT Block]14, add instances of integrated processors/blocks to it, and adapt and
compose them.

When the first block is opened with the Block editor after opening a bundle project, the Con-
QAT driver loads instances of all processor classes via reflection (Section 2.1) and lists all integrated
processors and blocks in the ConQAT Library view. Then CqEdit offers the (multiple) instantia-
tion of processors/blocks by dragging them from the ConQAT Library view to a block opened in
the ConQAT block editor. There, instantiated processors/block are visualized as rectangles with
rounded corners and ports for input and output data. After its instantiation a processor has one
output value port and no input value port.

CqEdit offers the adaptation of focussed instantiated processors/blocks by changing their names as
well as by adding, changing and deleting their input data ports in the Properties view. An input
datum can be instantiated multiple times for the same processor. Moreover it offers the visually
supported composition of instantiated processors/blocks in the block editor by drawing an arc from
the output port of a source processor/block to an input port of a target processor/block, provided the
ports have matching types. This type checking is done using the loaded processor classes mentioned
before based on the Java type system.

Lastly, CqEdit offers the execution of a focussed block via the (context) menu [Run as → ConQAT
Analysis]. During runtime the ConQAT driver computes a topological execution order for the pro-
cessors, calls them one after another in this order and passes the data between them. If an output
datum is used more than once, the driver is responsible for cloning it. For every processor it col-
lects all required input values, instantiates the processor using the parameterless constructor, calls
the init-method, calls the set-methods, calls the process-method and stores the result.

JavaBeans versus ConQAT

In this section the similarities and differences between the two component concepts JavaBeans and Con-
QAT are shortly compared.

Both component concepts have special requirements, that Java classes have to observe to become a
component. A JavaBeans component has to inherit the interface Serializable and has to fullfill a lot of nam-
ing conventions. A ConQAT component has to inherit a component base class and has to use annotations.
ConQATs requirements seem to be tougher than those from JavaBeans.

The JavaBeans component concept is pure Java-based but there seems to be no possibility to
store a composed component so that it can be used as atomic component later on. Using ConQAT it is
possible to use a composed component as atomic component, but this requires the use of XML beside
Java to create and store composed components.

For JavaBeans there are some assembly environments, but there seems to be a big interpretation scope
for the JavaBeans requirements and only the JBeanStudio supports nearly all component life cycle
activities. For ConQAT there is only the one assembly environment CqEdit, but this one supports all
important component life cycle activities.

Both component concepts allow the assembly of components using a data flow metapher. Using Jav-
aBeans one has to implement the data transfer indirectly via registration possibilities and events. Using
ConQAT one can directly connect the output port of a component with the input port of another component
and the ConQAT core realizes the data exchange.

14Block creation functions only, if the focus is on the block folder of an opened ConQAT bundle project.

9

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

2.3 Image processing libraries

Since the objective of STOR-components is object recognition in images, there is definitely a need for
image processing. There are a lot of image processing libraries available, two of them being developed
at the University of Koblenz-Landau.

Haas [15] explored the state of the art for image processing libraries in the context of STOR. She
inspected fifteen different libraries, selected the four most suitable ones, described them in detail
from a software engineering point of view and evaluated them using the domino tile recognition case
study. Three of them are shortly described in the following.

Haas concluded that all good image processing libraries are written using C/C++. In STOR they
are integrated into a Java-based component concept using JNI (Section 2.1 and 3.3.5). According to
Haas, OpenCV (Section 2.3) seems to be the image processing library best-suited for STOR. Therefore,
at present OpenCV is the default library for STOR image processing activity components (Section
3.1.1).

OpenCV. The Open Computer Vision Libary (OpenCV)15 [2, 15] is a widely-used API offering a com-
prehensive collection of algorithms, data structures and example programs for realtime image pro-
cessing and computer vision. It is developed in C/C++ and available for Mac OS X, Linux and Win-
dows, but only for 32 bit systems. OpenCV was foremost developed by Intel. Since 2008 it is an open
source project supported by Willow Garage and hosted at SourceForge. The following descriptions
and developments are based on the OpenCV pre-version 1.1 of October 2008.

PUMA. The Programmierumgebung für die Musteranalyse (PUMA)16 [21, 22, 23, 15] is an internal API
of the Work Group Active Vision, University of Koblenz-Landau, offering algorithms, data structures
and small executable programs for pattern recognition, image processing and computer vision. It is
developed in C/C++, based on Koblenz-NIHCL (KONIHCL) a variant of the National Institute of Health
Class Library (NIHCL) [13] and available for Mac OS X, Linux and Windows. PUMA was mainly
developed by Dietrich Paulus and some staff and students since 1992 at the University of Erlangen-
Nürnberg and since 2002 at the University of Koblenz-Landau.

KIPL. The Koblenzer Image Processing Library (KIPL) [23, 15] is an internal API of the Image Recog-
nition Laboratory, University of Koblenz-Landau, offering algorithms and data structures for image
processing and object recognition. It is developed in C/C++ and is available for Mac OS X, Linux
and Windows. KIPL was developed by Frank Schmitt and Patrick Sturm and some students under
the direction of Lutz Priese. KIPL is used in a Plugin-Framework [1] developed by Dirk Balthasar,
that encapsulates KIPL’s algorithms so that they can be activated in several frontends, for example an
own plugin environment or the open source software GIMP17.

2.4 Graph processing API JGraLab

The Java Graph Laboratory (JGraLab)18 is a Java class library developed by the Work Group Software Tech-
nology, University of Koblenz-Landau, offering a highly efficient API for the processing of TGraphs.
TGraphs are directed graphs whose vertices and edges are typed, ordered and attributed. TGraphs
are supported by JGraLab in combination with a graph query language (GReQL) and a corresponding

15http://opencv.willowgarage.com and http://sourceforge.net/projects/opencvlibrary
16English: ”Programming environment for pattern recognition”, http://www.uni-koblenz-landau.de/koblenz/

fb4/institute/icv/agpaulus/agas-projekte/puma
17http://www.gimp.org
18http://jgralab.uni-koblenz.de

10

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

http://opencv.willowgarage.com
http://sourceforge.net/projects/opencvlibrary
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/icv/agpaulus/agas-projekte/puma
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/icv/agpaulus/agas-projekte/puma
http://www.gimp.org

«Package»
STOR

«Package»
STOR compone nt s

«Package»
STOR dat a st ruct ure s

«Package»
STOR nat ive library wrappe r

«Dynamic loadable library»
st orope ncvjni

«Dynamic loadable library»
st orpumajni

«Dynamic loadable library»
st orkipljni

«Library»
Ope nCV

«Library»
PUMA

«Library»
KIPL

«Package»
STOR int e grat e d mode l

«Java Library»
JGraLab

«Component software»
ConQAT

«Package»
STOR proce ssors

«use» «use» «use»

«use» «use» «use»

«use»

«use» «use»

«use»

«use»

Figure 1: STOR entities. Internal entities are colored gray with a black font, external entities are col-
ored dark gray with a white font.

UML-based metamodeling approach (grUML). grUML is a subset of UML class diagrams which allows
the specification of classes of TGraphs on the schema level. [9]

3 STOR entities

This chapter describes different STOR entities forming the base for the STOR component concept. Sec-
tion 3.1 gives an overview on the main activities that have to be carried out for model-based object
recognition in images and thereby introduces the field. These activities form the development base
for the components. Section 3.2 describes the data structures used by these activities, and Section 3.3
introduces the components derived from the activities and processing the data structures. Subsection
3.3.5 introduces the wrapper concept used to integrate native library functionality from image pro-
cessing libraries into the components. Figure 1 gives an overview on the developed entities and their
relationships to each other as well as to some of the used libraries.

3.1 STOR Activities

This section gives an overview on the activities needed for model-based object recognition in images.
It focusses on the domino tile case study. The activities described here are candidates for components
that may be assembled to form a solution for a given problem (Section 3.3). The recognition process
is explained top down and visualized using UML 2.0 activity diagrams, which describe the dataflow
between activities. The basic activities appear as actions in these diagrams. The types of the input and
output data are appended to the ports of the actions, extended by a list of state constants that give
even more detailed information about the data. These states are written in brackets, if there is more
than on possible state at one time, the alternatives are separated using a comma.

11

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

obje ct re cognit ion in image s

image processing

images : IntensityImage
[original]

features : List<Feature>
[extracted]

«datum»
images : Image

model processing

features : List<Feature>
[extracted,processed]

semanticObjects : List<SemanticObject>
[recognized]

«datum»
semanticObjects : List<SemanticObject>

feature processing

features : List<Feature>
[extracted]

features : List<Feature>
[processed]

Figure 2: Object recognition in images.

image proce ssing

general image preprocessing

image : IntensityImage
[original]

image : IntensityImage
[gpp]

task specific image preprocessing

image : IntensityImage
[original,gpp]

image : IntensityImage
[tspp]

image conversion

image : IntensityImage
[original,gpp,tspp]

image : Image

feature extraction

image : Image

features : List<Feature>
[extracted]

Figure 3: Image processing.

Model-based object recognition in images comprises three phases (Figure 2). Firstly, one has to process
a given input image to extract relevant features from it. Then, one can process the features to prepare
them for insertion into a model. Lastly, one has to insert the features into the model such that recognition
of objects is possible by processing the model. This leads to three main activities which are further
explained in the following: image processing (Section 3.1.1), feature processing (Section 3.1.2) and model
processing (Section 3.1.3).

3.1.1 Image processing

Image processing deals with all activities performed on images (Section 3.2.1). It can be split into
four sub-activities (Figure 3). First of all one can generally preprocess the image (gpp) to correct errors
typically evolving during image creation and/or loading. Furthermore one can specifically preprocess
the image with respect to the actual task (tspp). Then one can convert the image into a form suitable for the
specific task, and at last one has to extract the relevant features from the image.

In the domino tile case study the specific task is extraction of rectangles and circles. Typical prepro-
cessing tasks for feature extraction are noise reduction and edge reinforcement, typical image types for
feature extraction are binary images and/or edge images, but any other image type could be used as
well.

Besides the mentioned activities there are further management activities concerning images (for sim-
plification not visualized in the diagram). Before an image can be used, it has to be loaded from a file
and converted into an internal format, or it might even be generated from other sources. Moreover an
(intermediary) result image might be visualized and/or stored persistently.

3.1.2 Feature processing

A feature (Section 3.2.2) is a piece of information that can be extracted from an image. Examples
are points, lines, or circles, but also other kinds of characteristic data. Feature processing deals with

12

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

fe at ure proce ssing

feature approximation

features : List<Feature>
[extracted,approximated,filtered]

features : List<Feature>
[approximated]

feature filtering

features : List<Feature>
[extracted,approximated,filtered]

features : List<Feature>
[filtered]

Figure 4: Feature processing.

model processing

feature supplement

features : List<Feature>
[extracted,processed]

model : IntegratedModel
[supplemented]

model creation

model : null
[original]

model improvement

model : null
[original,supplemented]

model : null
[improved]

model analysis

model : null
[original,supplemented,improved]

semanticObjects : List<SemanticObject>
[recognized]

Figure 5: Model processing.

all activities performed on the features extracted from images. It can be split into two different sub-
activities (Figure 4).

There are features that can be approximated by more special features and there are sets of features where
one can filter features with specific properties from. Both activities can be carried out more than once and
in any order, highly depending on the concrete features.

3.1.3 Model processing

All problem-relevant knowledge including relevant parts of the extracted features are stored in an
integrated model (Section 3.2.3). This model is a problem-specific TGraph (Section 2.4). Model processing
deals with all activities that are performed on such an integrated model (Section 3.2.3). It can be split
into four different sub-activities (Figure 5).

First of all one has to create a model. This can be done by loading an existing model from a file or
by generating a model. Afterwards one has to supplement the model with the features extracted from
the image. Furthermore one can improve the model, where we distinguish between topology improve-
ment, geometry improvement and/or semantics improvement. At last one has to analyze the model by an
analyzer which is specific for the object(s) to be recognized.

Besides the mentioned activities there are also further management activities concerning models (for
simplification reasons not visualized in the diagram). Although the results of model-based object
recognition in images are the recognized objects, the model used for object recognition can also be
stored persistently (again) in different formats for further experiments.

Further model processing activities concerning the urban object model generation case study can be found
in [10].

3.1.4 Product-line view

The exemplary overview on object recognition activities given in the Sections 3.1.1-3.1.3 can also be
viewed as a sketch of a software product line. The activity diagrams contain the basic actions and all
non-refined activities may be implemented using concretely implemented software components.

13

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

Figure 6 visualizes the mentioned activities as well as further refinements and specifications in the
form of a feature19 diagram [6]. Here, for instance, image creation, image visualization and image
storage are subsumed by the superfeature image management, and similarly, general and task specific
image preprocessing are combined to a common feature image preprocessing.

In contrast to an activity diagram, a feature diagram shows a static view to the activities. Therefore,
it can work as a pattern for a package hierarchy for the components derived from the identified
activities (Section 3.3).

3.1.5 Example: Domino tile recognition

As an example, we show a recognition process for the domino tile case study - containing a choice of
the before-mentioned activities in a specific order. Using the reference feature diagram of Figure 6 a
specialized solution for the domino tile recognition problem is given in Figure 7. The corresponding
dataflow is displayed in Figure 8 which visualizes the whole action as UML 2.0 activity diagram.

For domino recognition in images one can carry out the following activities. First of all one can open
an existing intensity image with an image reader, for example the AWT image reader. After that
one can task-specifically preprocess the image, for example using the OpenCV Median operator to
reduce noise. Then one can convert the intensity image into a binary image with an image converter
like the OpenCV intensity to binary converter. Afterwards one can extract contours from
the binary image with the OpenCV contour extractor, approximate these contours by polygons us-
ing the OpenCV polygon approximator and filter rectangles from these polygons using the OpenCV
rectangle filter. Concurrently one can filter circles from the extracted contours using the OpenCV
circle filter. Following one can generate an initial integrated model with the Initial model
generator and supplement the extracted rectangles and circles into the initial integrated model using the
Face supplementor. Afterwards one can improve the integrated model by supplementing topologi-
cal relations between the supplemented rectangles and circles using the Topology supplementor.
Then on can add domino tiles and their semantical parts for every existing rectangle in the model using
the Domino tile supplementor. At last on can analyse the model and return the contained domino
tiles as semantic objects using the Domino analyser.

The solution has been implemented and assembled by ConQAT processors in the STOR ConQAT
component variant (Section 3.3.3).

3.2 STOR Data Structures

The different activities for image recognition work on several data, like images, features, and the
integrated model. This section introduces these data structures for model-based object recognition in
images that have been developed in STOR. The data structures are visualized using UML 2.0 class
diagrams which were extracted directly from the source code.

A STOR data structure consists of a specification noted as a Java interface and an implementation given by
a non-abstract Java class. All STOR data structure interfaces extend the general interface STORData-
Structure. All interfaces are usually implemented more than once, i.e. the interface works as a spec-
ification for different variants of a data structure with the same semantics but different non-functional
properties. A STOR data structure class implements at least one STOR data structure interface. It
must have at least one public constructor. In general the name of a data structure class is the name of
its interface extended with the suffix Impl.

The specification and implementation of the STOR data structures develops in line with the specifi-
cation of the activities for model-based object recognition in images (Section 3.1). Currently, there are
three important groups of data structures, which are explained in the following: images (Section 3.2.1),

19Here, the term feature refers to a distinguishing characteristic of a software product line. It must not be confused with the
term feature used in image recognition

14

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

M
od

el

pr
o

ce
ss

in
g

M
od

el

im
pr

ov
em

e
nt

M
od

el

cr
ea

tio
n

M
od

el

im
po

rt

T
g

m
od

el

re
ad

er

M
od

el

ge
ne

ra
tio

n

M
od

el

ex
po

rt

T
g

 m
od

e
l

w
rit

e
r

T
op

ol
og

y
im

pr
o

ve
m

en
t

S
em

an
tic

s
im

pr
ov

em
en

t

G
eo

m
et

ry

co
rr

ec
tio

n
T

op
ol

o
gy

su

pp
le

m
en

to
r

G
eo

m
et

ry
/t

op
o

-
lo

gy
 s

up
pl

em
en

t
G

e
o

m
e

tr
y

im
pr

ov
em

en
t

D
ot

 m
od

e
l

w
rit

e
r

M
od

el

m
an

ag
em

en
t

F
ac

e

su
pp

le
m

en
to

r

In
iti

a
l m

o
d

e
l

ge
ne

ra
to

r

D
om

in
o

til
e

su
pp

le
m

en
to

r

M
o

d
e

l
an

al
ys

is

D
om

in
o

til
e

an

a
ly

se
r

Im
a

ge

cr
ea

tio
n

Im
ag

e
pr

e-
pr

oc
es

si
ng

N
oi

se

re
du

ct
io

n
E

dg
e

re
in

fo
rc

em
en

t

G
a

us
s

op
er

at
or

K
uw

ah
ar

a
op

er
at

or
La

pl
ac

e
op

er
at

or

A
W

T
 im

ag
e

re
ad

er

Im
ag

e
ex

po
rt

A
W

T
 I

m
ag

e
w

rit
e

r

Im
ag

e
P

ro
ce

ss
in

g

M
ed

ia
n

op
er

at
or

Im
ag

e
m

an
ag

em
en

t

Im
ag

e
vi

e
w

in
g

A
W

T
 I

m
ag

e
vi

ew
er

R
G

B
 im

ag
e

ge
ne

ra
to

r
gr

ay
sc

al
e

im
ag

e
ge

ne
ra

to
r

Im
ag

e
co

nv
er

si
on

O
bj

ec
t r

ec
og

ni
tio

n
in

 im
a

g
e

s

F
ea

tu
re

pr

oc
es

si
ng

R
G

B
 t

o
gr

ay
-

sc
al

e
co

nv
er

te
r

F
ea

tu
re

se

le
ct

io
n

F
ea

tu
re

fit

tin
g

Im
ag

e
ge

ne
ra

tio
n

Im
ag

e
im

po
rt O

p
e

n
C

V

im
ag

e
re

ad
er

E
xc

lu
si

ve
 o

r
su

bf
ea

tu
re

s
In

cl
us

iv
e

or

su
bf

ea
tu

re
s

M
an

da
to

ry

su
bf

ea
tu

re
O

pt
io

na
l

su
bf

ea
tu

re

O
p

en
C

V
 g

au
ss

op

er
at

or
P

U
M

A
 g

au
ss

op

er
at

or

O
pe

nC
V

 m
e-

d
ia

n
op

er
at

or

O
p

e
n

C
V

 R
G

B

to
 g

ra
ys

ca
le

co

nv
er

te
r

O
pe

nC
V

 g
ra

y-
sc

al
e

to
 R

G
B

co

nv
er

te
r

G
ra

ys
ca

le
 t

o
R

G
B

 c
on

ve
rt

er
In

te
ns

ity
 t

o
bi

n
ar

y
co

nv
er

si
on

O
pe

nC
V

in

te
n

si
ty

 to

bi
na

ry
 c

on
ve

rt
er

R
an

k
or

de
r

op
er

at
or

G
ra

ys
ca

le
 t

o
ed

g
e

co
nv

er
si

on

S
o

b
e

l
op

e
ra

to
r

C
an

ny

op
er

at
or

O
p

e
n

C
V

 S
ob

el

op
e

ra
to

r
O

p
e

n
C

V

C
an

ny
 o

pe
ra

to
r

F
ea

tu
re

e

xt
ra

ct
io

n

P
o

in
t

ex
tr

ac
tio

n
C

on
to

ur

ex
tr

ac
tio

n
F

a
ce

ex

tr
a

ct
io

n

R
ec

ta
ng

le

ex
tr

ac
tio

n
C

irc
le

ex

tr
ac

tio
n

O
pe

nC
V

co

nt
ou

r
ex

tr
ac

to
r

O
p

e
n

C
V

re

ct
a

ng
le

ex

tr
ac

to
r

P
U

M
A

re

ct
an

gl
e

ex
tr

ac
to

r

O
pe

nC
V

ci

rc
le

ex

tr
ac

to
r

P
U

M
A

ci

rc
le

e

xt
ra

ct
or

O
p

e
n

C
V

 p
o

ly
-

g
on

 a
pp

ro
xi

m
at

or
O

pe
nC

V
 r

ec
t-

an
gl

e
fil

te
r

O
pe

nC
V

ci

rc
le

 fi
lte

r

C
ap

tio
n

F
ea

tu
re

su

pp
le

m
en

t

S
em

an
tic

s
su

pp
le

m
en

t

A
ct

iv
ity

 /
 a

bs
tr

ac
t

or

co
m

po
se

d
co

m
po

ne
nt

A
ct

iv
ity

 /
 a

to
m

ic

co
m

po
ne

nt

Figure 6: Feature diagram for STOR.

15

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

Model
processing

Model
improvement

Model
creation

Model
generation

Topology
improvement

Semantics
improvement

Topology
supplementor

Geometry/topo-
logy supplement

Model
management

Face
supplementor

Initial model
generator

Domino tile
supplementor

Model
analysis

Domino tile
analyser

Image
creation

Image pre-
processing

Noise
reduction

Rank order
operator

AWT image
reader

Image
Processing

Image
management

Image
conversion

Object recognition
in images

Feature
processing

Feature
selection

Feature
fitting

Image
import

OpenCV me-
dian operator

Intensity to binary
conversion

OpenCV
intensity to

binary converter

Feature
extraction

Contour
extraction

OpenCV
contour

extractor

OpenCV poly-
gon approximator

OpenCV rect-
angle filter OpenCV

circle filter

Feature
supplement

Median
operator

Figure 7: Domino tile recognition case study features.

AWT image reader

image : IntensityImage
[original]

image : IntensityImage
[original]

OpenCV median operator

image : IntensityImage
[tspp]

image : IntensityImage
[tspp]

OpenCV intensity to binary converter

binaryImage : BinaryImagebinaryImage : BinaryImage

OpenCV contour extractor

contours : OpenCVContourSequencecontours : OpenCVContourSequence

OpenCV polygon approximator

polygons : OpenCVPolygonSequencepolygons : OpenCVPolygonSequence

OpenCV rectangle filter

rectangles : List<Recangle>rectangles : List<Recangle>

OpenCV circle filter

circles : List<Circle>circles : List<Circle>

initial model generator

model : IntegratedModel
[original]

model : IntegratedModel
[original]

face supplementor

model : IntegratedModel
[supplemented]

model : IntegratedModel
[supplemented]

topology supplementor

model : IntegratedModel
[supplemented]

model : IntegratedModel
[supplemented]

domino tile supplementor

model : IntegratedModel
[improved]

model : IntegratedModel
[improved]

domino tile analyser

«datum»
image : IntensityImage

«datum»
dominoTiles : List<DominoTile>

Figure 8: Domino tile recognition case study activities.

16

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

«Java Interface»
STORDataSt ruct ure

«Java Interface»
Image

Pos : Class

«Java Interface»
BinaryImage

Pos : Class
«Java Interface»
Int ensit yImage

Pos : Class

«Java Interface»
Grayscale Image

Pos : Class

«Java Interface»
RGBImage

Pos : Class

«Java Interface»
EdgeImage

Pos : Class

«Java Interface»
ColorImage

Pos : Class

«Java Interface»
TwoDImage

«Java Interface»
TwoDInt ensit yImage

«Java Interface»
TwoDColorImage

«Java Interface»
TwoDBinaryImage

«Java Interface»
TwoDGrayscale Image

«Java Interface»
TwoDRGBImage

«Java Interface»
TwoDEdgeImage

Figure 9: STOR image hierarchy.

features (Section 3.2.2) and integrated models (Section 3.2.3). Except native objects (a subclass of features),
all other data structures are serializable and therefore implement the Java interface Serializable.

All data structure interfaces are collected in the package de.uni koblenz.stor.datastructures
and its subpackages. The corresponding data structure classes are kept in appropriate sub-packages
with suffix .impl.

There is one kind of data structure that can occur in two different variants: geometric objects (a sub-
group of features). It can occur as independent data structures and/or as parts of an integrated model.
Inside an integrated model it is represented as a graph node or even split into different parts and rep-
resented as a set of related graph nodes, that can be related to other nodes. Outside an integrated model
a geometric object is completely independent from other data structures, or contains only attributes
from other data structures types.

3.2.1 Images

An image is defined as a mapping from a domain to a range. In STOR the 2d domain and the four
ranges binary, grayscale, RGB and edge are supported. Thus, at present there are four different kinds
of images: 2d binary images, 2d grayscale images, 2d RGB images and 2d edge images. But the image data
structures are flexible enough so that any domains or ranges can easily be added.

Figure 9 shows the STOR image hierarchy. One can see the strict separation of domains and ranges at
the higher hierarchy levels. Every possible domain and every possible range has its own interface. In
lower hierarchy levels a domain and a range are combined to a concrete image type, where the range
is parameterized with a position Pos of the same dimension as the domain. In this way one can
easily add domains and/or a ranges and combine them with existing ones to create new concrete
image types. Examples could be a 3d domain and/or a HSV range. Moreover one can see that some

17

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

«Java Interface»
TwoDInt ensit yImage

«Java Interface»
TwoDImage

getWidth() : int
getHeight() : int

«Java Interface»
TwoDColorImage

«Java Interface»
Int ensit yImage

Pos : Class

«Java Interface»
ColorImage

Pos : Class

«Java Interface»
Image

getName() : String
setName(String) : void
getNumberOfDimensions() : int
getNumberOfChannels() : int
getNumberOfPositions() : int
getNumberOfValues() : int
getValue(Pos, int) : byte
setValue(Pos, int, byte) : void
getImageData() : byte[]
setImageData(byte[]) : void

Pos : Class

«Java Interface»
TwoDRGBImage

«Java Interface»
RGBImage

getRed(Pos) : byte
setRed(Pos, byte) : void
getGreen(Pos) : byte
setGreen(Pos, byte) : void
getBlue(Pos) : byte
setBlue(Pos, byte) : void

Pos : Class

«Java Class»
ImageImpl

serialVersionUID : long = 5773588103948194844L;
imageName : String
numberOfDimensions : int
numberOfChannels : int
imageData : byte [*]
ImageImpl(int, int)
getName() : String
setName(String) : void
getNumberOfDimensions() : int
getNumberOfChannels() : int
getImageData() : byte[]
setImageData(byte[]) : void

Pos : Class

«Java Class»
TwoDImageImpl

serialVersionUID : long = -4676287996524164365L;
width : int
height : int
TwoDImageImpl(int, int, int)
getWidth() : int
getHeight() : int
getNumberOfPositions() : int
getNumberOfValues() : int
getValue(TwoDIntegerPosition, int) : byte
setValue(TwoDIntegerPosition, int, byte) : void

«Java Class»
TwoDRGBImageImpl

serialVersionUID : long = 3969504855128846922L;
TwoDRGBImageImpl(int, int)
getRed(TwoDIntegerPosition) : byte
setRed(TwoDIntegerPosition, byte) : void
getGreen(TwoDIntegerPosition) : byte
setGreen(TwoDIntegerPosition, byte) : void
getBlue(TwoDIntegerPosition) : byte
setBlue(TwoDIntegerPosition, byte) : void

Figure 10: STOR 2d RGB image.

interfaces are only added for grouping concrete image types: RGBImage is a subclass of ColorImage,
GrayscaleImage and ColorImage are subclasses of IntensityImage.

Note, that this elaborate hierarchy significantly helps to structure the recognition process. Since na-
tive data are used in the respective image processing libraries, this elaborate typing does not lead to
additional efficiency problems.

As an example the 2d RGB image is explained in detail (Figure 10). Every Image has the change-
able property name and the read-only properties numberOfDimensions, numberOfChannels,
numberOfPositions and numberOfValues. Moreover it has get- and set-methods for a single
image value as well for all image values. Every TwoDImage has the read-only properties width
and height. Every RGBImage has get- and set-methods for a single red, green or blue value. A
2d RGB image combines all mentioned properties and methods. The 2d RGB image implementation
TwoDRGBImageImpl is derived from the two abstract classes ImageImpl and TwoDImageImpl,
where some more general properties of (2d) images are implemented.

Currently, all image implementations store the image values interleaved in a one-dimensional byte array.
This is a storage style which is well-suited for the exchange of image data between Java and native
C++-libraries (Section 3.3.5).

18

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

«Java Interface»
Geomet ricObject Feature

getNumberOfDimensions() : int
getBelieve() : double
setBelieve(double) : void

Pos : Class

«Java Interface»
Point Feature

getPosition() : Pos
setPosition(Pos) : void

Pos : Class
«Java Interface»
LineFeature

getFirstPoint() : PointFeature<Pos>
setFirstPoint(PointFeature<Pos>) : void
getSecondPoint() : PointFeature<Pos>
setSecondPoint(PointFeature<Pos>) : void

Pos : Class
«Java Interface»
FaceFeature

Pos : Class

«Java Interface»
PolygonalFaceFeature

getNumberOfPoints() : int

Pos : Class
«Java Interface»
Circ leFeature

getRadius() : double
setRadius(double) : void

Pos : Class

«Java Interface»
Rect angleFeature

Pos : Class

«Java Interface»
TwoDCirc leFeature

getCenter() : TwoDPointFeature
setCenter(TwoDPointFeature) : void

«Java Interface»
TwoDLineFeature

«Java Interface»
TwoDPoint Feature

getXCoordinate() : double
setXCoordinate(double) : void
getYCoordinate() : double
setYCoordinate(double) : void

«Java Interface»
TwoDPolygonalFaceFeature

getPoints() : List<TwoDPointFeature>
setPoints(List<TwoDPointFeature>) : void

«Java Interface»
TwoDRect angleFeature

«Java Interface»
Feature

«use»

«use»

«use»

Figure 11: STOR geometric objects (features).

3.2.2 Features

In STOR any piece of information that can be extracted from an image and that is not part of an
integrated model (yet) is called a feature. There are two different kinds of features explained in the
following: geometric objects and native objects.

Geometric objects. A geometric object is a feature that represents some piece of geometric informa-
tion extracted from an image. Geometric objects in general can be represented in different dimensions.
Geometric objects that are extracted from a single image are two-dimensional.

In the domino tile recognition case study, there are three different kinds of geometric objects in STOR
(Figure 11): points, lines and faces. Faces are specialized into polygonal faces and circles, polygonal
faces are specialized into rectangles. There are variants of the described geometric objects as part
of an integrated model (Section 3.2.3). Therefore all independent geometric objects have the suffix
Feature.

Native objects. A native object is a data structure that has as properties only references to the memory
(in Java stored as long). Native objects are always specific for one native library, and they are the
only data structures that are not serializable.

19

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

«Java Interface»
Feature

«Java Interface»
Nat iveObject

getNumberOfPointers() : int

«Java Interface»
ContourSequenceOpenCV

getMemoryPointer() : long
setMemoryPointer(long) : void
getContourPointer() : long
setContourPointer(long) : void

«Java Interface»
PolygonSequenceOpenCV

getMemoryPointer() : long
setMemoryPointer(long) : void
getPolygonPointer() : long
setPolygonPointer(long) : void

Figure 12: STOR native objects (features).

In native libraries, especially in function-oriented image processing libraries, there are often data that
are represented as a nested memory area providing pointers to access it. The internal library functions
are optimized to process these structures, but it is difficult to interpret them from the outside. There-
fore those data are wrapped in native library specific objects on the Java layer. In this way they can be
exchanged between Java components, but only those using the according native library functions can
process them.

In the case study there are two different kinds of native objects (Figure 12). ContourSequence-
OpenCV wraps an OpenCV specific sequence of contours, PolygonSequenceOpenCV wraps an OpenCV
specific sequence of polygons. Both native objects have two pointers to the OpenCV data type CvSeq [2].

3.2.3 Integrated models

Integrated models are TGraphs (Section 2.4), whose structure, types and attributes help to model the
different aspects (topology, geometry, semantics, and appearance) of the features recognized in a com-
mon integrated data structure. Their structure is defined by GrUML diagrams, which are exported to
an .xmi-file from which the corresponding TGraph schema and the corresponding Java classes are
generated automatically.

The schema of an integrated model and especially of its semantics part strongly depends on the ap-
plication domain. Figure 13 shows a very simple integrated model used for the domino tile recognition
case study with a 2d geometry. A more elaborate integrated model for the urban object model creation case
study based on a 3d geometry can be found in [10].

In the integrated model for domino tile recognition there are currently seven geometry/topology nodes
(left part of the figure) and six semantics nodes (right part of the figure). There are two different geo-
metric/topologic objects: 2d points and 2d faces. A 2d face can be a 2d polygonal face or a 2d circle,
a specialization of a 2d polygonal face is a 2d quadrangle and a specialization of a 2d quadrangle is
a 2d rectangle. A 2d polygonal face contains four to any number 2d points, and a 2d circle has a 2d
point as center.

There is one important semantic object, consisting of different parts: a domino tile. A domino tile con-
sists of two domino tile parts and every domino tile part contains zero to six pips. A domino tile
part is represented by a 2d quadrangle and has a layout. A pips20 is represented by a 2d circle and
has a layout position on its corresponding domino tile part. There are seven possible layouts and six
possible layout positions.

20There is no singular for the word pips.

20

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

TwoDPoint

xCoordinate : Double
yCoordinate : Double

TwoDPolygonalFace

TwoDFace

name : String

TwoDGeometricObject

believe : Double

TwoDCirc le

radius : Double

TwoDQuadrangle

TwoDRect angle

DominoTile

DominoTilePart

layout : LayoutEnum

Pips

layoutPosition : LayoutPositionEnum

SemanticObject

*

- polygonalFace

3..*
- polygonPoint

*

- rectangle

4
- rectanglePoint

*

- quadrangle

4

- quadranglePoint
*

- circle

1
- center

cont ains
*

* - innerFace

isRepresent edBy

*

1

- twoDQuadrangle

1

2- dominoTilePart

isRepresent edBy

1

*

- twoDCircle 1

0..6- pips

Figure 13: Integrated model for domino tiles.

3.3 STOR Components

STOR will supply a versatile scientific component system that supports the experimental construction
of object recognition solutions. In this section the current form of STOR components is introduced. In
the long run the component concept is still going to be refined. Currently, experiments with two
existing component approaches are conducted: JavaBeans components and ConQAT components. Both
variants have been chosen, since concrete assembly and execution environments are existing, though
they do not fulfill all requirements of the final STOR assembly environment.

Section 3.3.1 describes STOR components in general, Section 3.3.2 specializes on the STOR JavaBeans
component variant and Section 3.3.3 introduces the STOR ConQAT component variant.

3.3.1 STOR components in general

Like STOR data structures, STOR components consist of a specification in terms of a Java interface and an
implementation in the form of a non-abstract Java class. A component interface extends the interface
STORComponent. An interface usually is implemented more than once by different variants with
the same functionality but different non-functional properties. A component class implements the
STORComponent interface. It must have exactly one public parameterless constructor. A component
class can use a native library wrapper (Section 3.3.5) to implement its functionality, but it should not
use other components internally.

Component input data. STOR components strictly differentiate between two kinds of input-data:
parameters and arguments. A parameter is a datum that configures a component and therefore affects its
behavior. An argument is a datum that is processed by a component as its actual input. Parameters are
stored as private global attributes of a component. They are handled by public get- and set-methods

21

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

defined in the component interface and usually have a default value. Arguments are passed to a com-
ponent via an execute-method also defined in the component interface. Parameters of a component
can already be set at assembly time, arguments are passed to a component at runtime. Preconditions for
parameters and arguments besides their data type can be tested at runtime using assertions (Section
2.1).

Component output data. A STOR component can change its arguments and/or create new output
data. If a component only changes its arguments, its execute-method has no return value. If it
creates new output data, one output datum is the return value of the component’s execute-method
and more results can be accessed via further get-methods.

Component hierarchy. The set of STOR components is organized and grouped by the identified
set of activities for model-based object recognition in images (Section 3.1). Components with comparable
functionality have the same signature for their execute-methods and similar parameters. Therefore
they implement the same or similar interfaces and are stored in the same or a similar location in the
package hierarchy.

Currently, there are three main kinds of components: image processing components, feature
processing components and model processing components. The feature diagram in Figure 6
shows the whole component hierarchy. All component interfaces are collected in the package
de.uni koblenz.stor.components and its subpackages. The corresponding component classes
are kept in appropriate sub-packages with suffix .impl.

Example: median operator component. As an example the STOR median operator component and
its interface/class hierarchy are explained in more detail (Figure 14).

The median operator [17, 22] in general is an image preprocessing operator for noise reduction with edge
preservation. It is a rank-order operator and therefore it is non-linear and works channel-wise in a local
neighborhood. It is a typical preprocessing step for edge detection and can be used for the removal of
extreme values like salt and pepper noise or defective pixels. The median operator replaces every value
of a channel by the median of a defined neighborhood. Usually the used neighborhood is squared
(typically 3×3 or 5×5), but in general it can have any shape. If the neighborhood has an even number
of values, the median is the arithmetic average of the two median values.

Every component has a method setDefaultValue, that sets all parameters of a component to their
default values. Many image preprocessing components should be applicable to an image more than
once. Therefore every image preprocessing component has a parameter numberOfPasses that de-
cides how often the operator is applied to an image during one call of a components service, and a
defaultNumberOfPasses with value 1. Moreover image preprocessing components should be ap-
plicable for all intensity images (Section 3.2.1). Therefore every image preprocessing component has
an execute-method that gets an intensity image and returns an intensity image, which implies, that
the component works out-of-place. Operators that are able to work in-place can define an additional
execute-method without return value. A median operator component has a parameter maskSize, that
decides the size of the squared neighborhood for median computation, and a defaultMaskSize
with value 3.

The implemented median operator variant MedianOperatorImpl implements the described
attributes and methods. Because the used OpenCV operator (cvSmooth() with parameter
smoothtype=CV MEDIAN) is only able to apply a median operator with an odd squared mask [2],
the set-method of the maskSize-attribute accepts only odd values.

22

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

«Java Interface»
MedianOperat or

defaultMaskSize : int = 3;
getMaskSize() : int
setMaskSize(int) : void

«Java Interface»
NoiseReduction

«Java Interface»
ImagePreprocessing

defaultNumberOfPasses : int = 1;
getNumberOfPasses() : int
setNumberOfPasses(int) : void
execute(TwoDIntensityImage) : TwoDIntensityImage

«Java Class»
OpenCVMedianOperat orImpl

serialVersionUID : long = -8013078186205137098L;
numberOfPasses : int
maskSize : int
OpenCVMedianOperatorImpl()
setDefaultValues() : void
getNumberOfPasses() : int
setNumberOfPasses(int) : void
getMaskSize() : int
setMaskSize(int) : void
execute(TwoDIntensityImage) : TwoDIntensityImage
eventOccured(STOREvent) : void

«Java Interface»
RankOrderOperator

«Java Interface»
ImageProcessing

«Java Class»
MedianOperat orOpenCVWrappe r

executeNative(TwoDIntensityImage, int) : TwoDIntensityImage
executeNative(byte[], KindOfImage, int, int, int) : byte[]

«Java Interface»
STORComponent

setDefaultValues ()

«use»

Figure 14: Median operator component hierarchy.

3.3.2 STOR JavaBeans components

The current STOR components (Section 3.3.1) already fulfill a lot of the JavaBeans requirements. They
possess a parameterless public constructor and all attributes visible to the environment are private
and have public get-methods and where applicable public set-methods. To make them fully comply
with the JavaBeans specification they firstly are to be made serializable. Therefore we let the super

23

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

«Java Class»
STORJavaBean

serialVersionUID : long = 5850355832341476719L;
eventListener : java.util::Vector<STOREventListener> [*] = new Vector<STOREventListener>();
addSTOREventListener(STOREventListener) : void
removeSTOREventListener(STOREventListener) : void
notifySTOREventListeners(Object) : void
eventOccured(STOREvent) : void

«Java Interface»
STOREvent List ene r

eventOccured(STOREvent) : void

«Java Class»
STOREvent

serialVersionUID : long = -3942894675688042348L;
eventDatum : Object
STOREvent(Object, Object)
getEventDatum() : Object

«Java Class»
OpenCVMedianOperat orImpl

serialVersionUID : long = -8013078186205137098L;
numberOfPasses : int
maskSize : int
OpenCVMedianOperatorImpl()
setDefaultValues() : void
getNumberOfPasses() : int
setNumberOfPasses(int) : void
getMaskSize() : int
setMaskSize(int) : void
execute(TwoDIntensityImage) : TwoDIntensityImage
eventOccured(STOREvent) : void

«use» «use»

«use»

Figure 15: STOR JavaBeans Median operator component.

interface STORComponent extend the Java interface Serializable and add a generated serial ver-
sion id to all implementing component classes.

Secondly as an experiment a simple event concept was developed so that STOR components can
be assembled in a JavaBeans style. The idea is that every component has to be an event listener
as well as an event producer so that every component can register itself by another one. This is
achieved by the superclass STORJavaBean that has to be extended by every STOR component class.
STORJavaBean implements the interface STOREventListener defining a method eventOccured
with a parameter STOREvent that contains an attribute eventDatum of type Object. At the same
time it offers methodes for the (de-)registration of stor event listeners and the notfication of registered
stor event listeners, fullfilling the JavaBeans naming conentions. Every component has to implement
the method eventOccured in the same way. It tests (via cast), if it is able to process the events
eventDatum attribute. If this is the case and the component has all required input data, it processes
the eventDatum with its execute method and offers the result to its registered components via
firing a new STOREvent containing the result as eventDatum. As an example Figure 15 shows a
class diagram containing a STOR JavaBeans Median operator component in form of its implementation
OpenCVMedianOperatorImpl, the component superclass STORJavaBean as well as their relations
to STOREventListener and STOREvent.

Figure 16 presents a screen shot of the whole domino tile recognition case study (Section 3.1.5) in
JBeanStudio. The JBeanStudio frame above shows beside the menu a palette STORPalette
containing a folder STORFolder that contains all existing STOR beans. Unfortunately the bean
names are only visible during the mouse is moved about their icons. The WireDesignFrame be-
low on the left shows the currently assembled bean instances. The DefaultGUIFrame below on
the right shows the GUI that is currently defined by the assembled bean instances. The Frame
Properties (accessible via the context menu of a focused bean) currently shows in its Property
tab the changeable properties of the OpenCVMedianOperatorImpl bean but there are more tabs
(namely Customize, Input, Output and CallBack).

As one can see there is one additional bean to the domino tile recognition case study, the
JBeanStudioStartButton bean. This is because there seems to be no possibility to start the execu-

24

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

Figure 16: STOR JavaBeans domino tile recognition components assembled in JBeanStudio.

tion of a composit in JBeanStudio from the (conext) menu. Therefore this special bean was developed
that has the same properties as a STOR bean but additionally extends JButton that has a graphical
representation. The JBeanStudioStartButton fires a STOREvent to its registered beans if the
mouse is clicked on it in the DefaultGUIFrame. In this way the execution of a composit can be
started.

3.3.3 STOR ConQAT components

As an experiment a STOR ConQAT bundle was developed containing ConQAT processors for all re-
quired components for the domino tile recognition case study, where each processor wraps one of the

25

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

«Java Class»
STORProcessor

init(IConQATProcessorInfo) : void

«AConQATProcessor, Java Class, AConQATProcessor»
OpenCVMedianOperat orProcessor

inputImage : TwoDIntensityImage = null;
numberOfPasses : int = -1;
defaultNumberOfPasses : int = 1;
maskSize : int = -1;
defaultMaskSize : int = 3;
setNumberOfPasses(int) : void
setMaskSize(int) : void
setInputImage(TwoDIntensityImage) : void
process() : TwoDIntensityImage

«Java Interface»
IConQATProcessor

«Java Interface»
MedianOperat or

«Java Class»
OpenCVMedianOperat orImpl

«use»

«use»

Figure 17: STOR ConQAT Median operator component.

Figure 18: STOR ConQAT domino tile recognition block in CqEdit.

26

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

original STOR components. Technically the current STOR sources are packed in a Java archive so that
they can be used by the processors. In this way ConQAT’s development and assembly environment
could be tested using the current STOR components without changing the project structure and/or
the component syntax.

The mentioned bundle (named de.uni koblenz.stor.processors) was created automatically
using CqEdit, the jar archive was also generated automatically (Section A.2). But of course the pro-
cessors (named like the used component with suffix Processor) had to be created manually. As an
example Figure 17 shows a class diagram containing a STOR ConQAT Median operator component in
form of its interface MedianOperator, its implementation OpenCVMedianOperatorImpl and its
processor MedianOperatorProcessor as well as their relations to each other and to some ConQAT
core classes.

Figure 18 presents a screen shot of the whole domino tile recognition case study (Section 3.1.5) in
CqEdit. The Project Explorer on the left side shows the src-folder containing all existing pro-
cessors, the blocks-folder containing among others the DominoTileRecognition-block and the
lib-folder containing the Java archive stor.jar and the dynamically loadable OpenCV library
libstoropencvjni.dylib. The ConQATLibrary view on the right side displays all available
processors and blocks. In the ConQAT Block Editor above in the middle one can see the opened
DominoTileRecognition-block containing the assembled processors. In the menu item Params
of the Properties view below the current parameters of the MedianOperatorProcessor in-
stance are shown.21

3.3.4 Domino tile recognition intermediary result images

This section presents some intermediary result images from the domino tile recognition case study,
described in Section 3.1.5 and implemented with JavaBeans (Section 3.3.2) as well as with ConQAT
(Section 3.3.3).

Figure 19 shows an original RGB image containing a domino tile, the RGB image smoothed via me-
dian operator, the smootehd RGB image converted to a grayscale image22, the grayscale image con-
verted to a binary image and the rectangle as well as the circles that are extracted from the given
image.

3.3.5 Native library wrappers

This section introduces the so-called native library wrappers that wrap parts of a native library’s func-
tionality to be usable from Java-based STOR components via JNI.

In the context of STOR a native library wrapper is a Java class containing one or more native methods
for a specific native library. A native method is a Java method with the modifier native and without
any body.

There are native library wrappers for OpenCV, PUMA and KIPL (Section 2.3). The wrappers for each
native library are packed in their own subpackage containing a common superclass the wrappers have
to extend (Figure 20). During project build (Section A.2) the task generateC++headers generates
a C++ header for every existing native library wrapper. Such a generated C++ header contains the
same method signatures as the native library wrapper class, but in C++ syntax instead of Java syn-
tax. Now, a corresponding C++ source file can be programmed. Also during project build the task
buildexternallibraries generates one dynamically lodadable library for every native library,
containing the corresponding header and source files. During runtime (more precisely during the
first initialization of a native library wrapper instance for a specific native library) the corresponding
dynamically loadable library is loaded and the native methods can be called.

21The block name for identification can only be seen in the menu item General of the Properties view.
22This activity was not mentioned before.

27

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

Original RGB image.

Grayscale image.

Extracted rectangle.

RGB image smoothed via median.

Binary image.

Extracted circles.

Figure 19: Intermediary result images during domino tile recognition.

Figure 21 shows an example for a MedianOperatorOpenCVWrapper. It is used by the STOR
component class OpenCVMedianOperatorImpl and inherits the class OpenCVWrapper. The
wrapper class contains two different native methods. The first method has the STOR image type
IntensityImage (Section 3.2.1) in its signature, the second one reduces its signature to atomic data
types and a byte array. Using the first method, the corresponding C++ program has to access the Java
object of type IntensityImage via JNI. Using the second method, the corresponding C++ program
can directly work on the given data. The first variant is more adequate, but the other variant is needed
for testing, as well. For this native library wrapper a header file MedianOperatorOpenCV.h was
generated and a corresponding source file MedianOperatorOpenCV.cpp was programmed that
calls the corresponding C++-methods.

28

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

«Java Interface»
STORWrapper

(from Domino::de.uni_koblenz.stor.wrapper)

«Java Class»
KIPLWrapper

(from Domino::de.uni_koblenz.stor.wrapper.kipl)

«Java Class»
OpenCVWrapper

(from Domino::de.uni_koblenz.stor.wrapper.opencv)

«Java Class»
PUMAWrapper

(from Domino::de.uni_koblenz.stor.wrapper.puma)

Figure 20: Native library wrapper.

«Java Class»
OpenCVMedianOperat orImpl

«Java Class»
MedianOperat orOpenCVWrappe r

executeNative(TwoDIntensityImage, int) : TwoDIntensityImage
executeNative(byte[], KindOfImage, int, int, int) : byte[]

«file»
MedianOperat orOpenCV.h

«file»
MedianOperat orOpenCV.cpp

«Java Class»
OpenCVWrapper

«use»

Figure 21: STOR median operator OpenCV wrapper.

4 Conclusion and future work

In this technical report the software engineering part of the STOR project was introduced. After some
state of the art the main activities for model-based object recognition in images were described, and
based thereon the used data structures and the derived components, that are implemented in two dif-
ferent two-language variants, were explained. These entities and the experiences and requirements
collected during development are forming a base for the STOR scientific component system.

Further research tasks are the construction of a general STOR scientific component system and its ap-
plication to the (model-based) object recognition in images domain. This includes the development
of a coherent component concept, an own assembly environment, a component library, containing compo-
nents for the most important activities for all facets of object recognition in images (image process-
ing, feature processing and model processing) and the implementation in a prototype. Component
concept and assembly environment development includes the definite specification of a components
interface and a general type system containing the described states as well as an assembly concept
offering support for all component life cycle activities, especially the assembly of components with-
out manual programming and the use of composed components as components again. Component
library development includes the refinement of the identified activities, data structures and compo-
nents (including used wrappers) and the identification and development of new ones to complete the
described data structure and component hierarchies. Moreover it contains the development of com-
posed components for reference solutions of specific object recognition activities. Of course another
research task is the evaluation of the whole system.

Acknowledgements. The work reported here was done in tight cooperation with the Work Group
Active Vision (Dietrich Paulus, Stefan Wirtz, Peter Decker) and the Image Recognition Laboratory
(Lutz Priese, Frank Schmitt) and was supported by our students Judith Haas [15] and Sabine Orth
[20].

29

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

A STOR development environment

Since STOR aims at experimental work, a first STOR development environment hast been created to
support the experiments. Section A.1 describes the STOR folder structure, and Section A.2 introduces
the STOR build environment.

A.1 Folder structure

All data for a concrete STOR case study are kept together in a project folder. Such a folder has the
following contents.

• build: generated files (described below)
• lib: external and generated internal libraries (described below).
• models: integrated model files.
• src: Java and C++ sources.
• testdata: any test data.
• testsrc: any test sources.
• build.xml: ANT file

The build folder consists of some more specific folders containing the generated artifacts, e.g.

• build/classes: generated Java .class files.
• build/doc: generated Javadoc documentation files.
• build/jar: the generated .jar archive.
• build/objects: generated C/C++ .o files.
• build/temp: temporarily generated files.

The lib folder contains the libraries needed for the project, e.g.

• cpptasks.jar: ANT-Contrib jar-archive.
• jama.jar: JAMA jar-archive.
• jgralab.jar: JGraLab jar-archive.
• libstorkipljni.dylib: KIPL dynamically loadable library.
• libstoropencvjni.dylib: OpenCV dynamically loadable library.
• libstorpumajni.dylib: PUMA dynamically loadable library.

The src and the build/classes folder structures contain the package structure.

Following common practice in Java development, all STOR source files are packed in a package hi-
erarchy beginning with the package de.uni koblenz.stor23. The package contains the following
sub-packages:

• beans: JavaBeans specific source code (Section 3.3.2).
• components: STOR components (Section 3.3).
• datastructures: STOR data structures (Section 3.2).
• wrapper: STOR native library wrappers (Section 3.3.5).

A.2 Build environment

There is a STOR specific build environment based on the Java-based build tool Apache ANT24 and the
additional project ANT-Contrib25, providing a collection of specific ANT tasks for C++ development.
The STOR ANT file build.xml contains a lot of tasks responsible for all development steps that can
be carried out automatically. The tasks can be executed individually or combined (Figure 22).

23Since a hyphen is not allowed in Java package names, an underscore is used between uni and koblenz.
24http://ant.apache.org
25http://ant-contrib.sourceforge.net

30

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

http://ant.apache.org
http://ant-contrib.sourceforge.net

generateschema

buildjava

javah

buildexternallibs

buildjar

document

Figure 22: STOR build tasks.

The task converteschema converts the integrated model schema from an .xmi-file to a .tg file,
generatejavaschema generates the according Java classes and both tasks are combined in the
task generateschema (Section 3.2.3). buildjava compiles all Java files. javah generates header
files for native methods and buildexternallibs compiles C++ source files and generates dynam-
ically loadable libraries for the used native libraries (Section 3.3.5). It can be divided into the tasks
buildkipl, buildpuma and buildopencv. For all of these tasks there are three platform specific
tasks (Mac OS X, Linux and Windows) and ANT automatically calls the right tasks per platform. The
task unjar unpacks the required library jar archives, jar packs all required files in a new STOR jar
archive and both tasks are combined in the task buildjar. Last but not least document documents
all Java sources using Javadoc. The task buildall executes all other tasks described before.

31

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

References

[1] D. Balthasar. Drei neue Verfahren zum Matching und zur Klassifikation unter Echtzeitbedingungen. PhD thesis,
Universität Koblenz, Verlag Fölbach Koblenz, 2006.

[2] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media, 10
2008.

[3] L. P. G. Cable. Extensible Runtime Containment and Server Protocol for JavaBeans. Technical report, Sun
Microsystems, 12 1998. Version 1.0.

[4] L. P. G. Cable. Proposal for a Drag and Drop subsystem for the Java Foundation Classes. Technical report,
Sun Microsystems, 08 1998. Final draft: 0.96.

[5] B. Calder and B. Shannon. JavaBeans Activation Framework Specification. Technical report, Sun Microsys-
tems, 05 1999. Version 1.0a.

[6] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools and Applications. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

[7] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. Mas y Parareda, and M. Pizka. Tool Support for
Continuous Quality Control. IEEE Software, 25(5):60–67, 2008.

[8] F. Deissenboeck, M. Pizka, and T. Seifert. Tool Support for Continuous Quality Assessment. In 13th IEEE In-
ternational Workshop on Software Technology and Engineering Practice (STEP’05), pages 127–136, Los Alamitos,
CA, USA, 9 2005. IEEE Computer Society.

[9] J. Ebert, V. Riediger, and A. Winter. Graph Technology in Reverse Engineering, The TGraph Approach. In
R. Gimnich, U. Kaiser, J. Quante, and A. Winter, editors, 10th Workshop Software Reengineering (WSR 2008),
volume 126 of GI Lecture Notes in Informatics, pages 67–81, Bonn, 2008. GI.

[10] K. Falkowski and J. Ebert. Graph-based urban object model processing. In City Models, Roads and Traffic
(CMRT’09): Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms
and Evaluation, Paris, France, 09 2009. International Society for Photogrammetry and Remote Sensing (IS-
PRS). Accepted for publication.

[11] K. Falkowski, J. Ebert, P. Decker, S. Wirtz, and D. Paulus. Semi-automatic generation of full CityGML
models from images. In Geoinformatik 2009, volume 35 of ifgiPrints, pages 101–110, Osnabrück, Germany, 4
2009. Institut für Geoinformatik Westfälische Wilhelms-Universität Münster.

[12] I. Forman and N. Forman. Java Reflection in Action. In Action series. Manning Publications, 11 2004.
[13] K. E. Gorlen, S. M. Orlow, and P. S. Plexico. Data Abstraction and Object-Oriented Programming in C++. Wiley,

1990.
[14] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. The Java series. Addison-Wesley

Longman, 3 edition, 6 2005.
[15] J. Haas. Analyse, Evaluation und Vergleich von Bildverarbeitungsbibliotheken aus Sicht der Softwaretech-

nik. Master’s thesis, Universität Koblenz-Landau, Institut für Softwaretechnik, Arbeitsgruppe Soft-
waretechnik, 4 2009.

[16] G. Hamilton (Editor). JavaBeans. Technical report, Sun Microsystems, 08 1997. Version 1.01-A.
[17] T. Huang, editor. Two-Dimensional Digital Signal Prcessing II, volume 43/1981 of Topics in Applied Physics.

Springer Berlin / Heidelberg, 1981.
[18] M. Johnson. The beanbox: Sun’s javabeans test container. Java World, 1997.
[19] S. Liang. Java Native Interface: Programmer’s Guide and Reference. The Java series. Prentice Hall, 1 edition, 6

1999.
[20] S. Orth. Entwicklung eines Konzepts zur Selbstauskunftsfähigkeit für STOR-Komponenten. Master’s the-

sis, Universität Koblenz-Landau, Institut für Softwaretechnik, Arbeitsgruppe Softwaretechnik, 2009. In
Process.

[21] D. Paulus. Objektorientierte und wissensbasierte Bildverarbeitung. PhD thesis, Universität Erlangen-Nürnberg,
1992.

[22] D. Paulus and J. Hornegger. Applied Pattern Recognition. Vieweg, 2003.
[23] M. Rivera-Malpica. Analyse und vergleich computervisualistischer softwarebausteine aus sicht der soft-

waretechnik. Master’s thesis, Universität Koblenz-Landau, Institut für Softwaretechnik, Arbeitsgruppe, 7
2006.

[24] M. Takatsuka. Jbeanstudio: A component-oriented visual software authoring system for a problem solving
environment - supporting exploratory visualization. In P. M. A. Sloot, D. Abramson, A. V. Bogdanov,
J. Dongarra, A. Y. Zomaya, and Y. E. Gorbachev, editors, International Conference on Computational Science,
volume 2659 of Lecture Notes in Computer Science, pages 985–994. Springer, 2003.

[25] M. Takatsuka. A component-oriented software authoring system for exploratory visualization. Future
Gener. Comput. Syst., 21(7):1213–1222, 2005.

[26] G. Voss. Java Beans, Pt 3: Testing Beans in the BDK BeanBox. Tutorial, Sun Microsystems, 02 1997.

32

The STOR Component System Interim Report, Fachbereich Informatik Nr. 14/2009

Bisher erschienen

Arbeitsberichte aus dem Fachbereich Informatik
(http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte)

Kerstin Falkowski, Jürgen Ebert, The STOR Component System, Interim Report,
Arbeitsberichte aus dem Fachbereich Informatik 14/2009

Sebastian Magnus, Markus Maron, An Empirical Study to Evaluate the Location of
Advertisement Panels by Using a Mobile Marketing Tool, Arbeitsberichte aus dem
Fachbereich Informatik 13/2009

Sebastian Magnus, Markus Maron, Konzept einer Public Key Infrastruktur in iCity,
Arbeitsberichte aus dem Fachbereich Informatik 12/2009

Sebastian Magnus, Markus Maron, A Public Key Infrastructure in Ambient Information and
Transaction Systems, Arbeitsberichte aus dem Fachbereich Informatik 11/2009

Ammar Mohammed, Ulrich Furbach, Multi-agent systems: Modeling and Virification using
Hybrid Automata, Arbeitsberichte aus dem Fachbereich Informatik 10/2009

Andreas Sprotte, Performance Measurement auf der Basis von Kennzahlen aus betrieblichen
Anwendungssystemen: Entwurf eines kennzahlengestützten Informationssystems für einen
Logistikdienstleister, Arbeitsberichte aus dem Fachbereich Informatik 9/2009

Gwendolin Garbe, Tobias Hausen, Process Commodities: Entwicklung eines
Reifegradmodells als Basis für Outsourcingentscheidungen, Arbeitsberichte aus dem
Fachbereich Informatik 8/2009

Petra Schubert et. al., Open-Source-Software für das Enterprise Resource Planning,
Arbeitsberichte aus dem Fachbereich Informatik 7/2009

Ammar Mohammed, Frieder Stolzenburg, Using Constraint Logic Programming for Modeling
and Verifying Hierarchical Hybrid Automata, Arbeitsberichte aus dem Fachbereich Informatik
6/2009

Tobias Kippert, Anastasia Meletiadou, Rüdiger Grimm, Entwurf eines Common Criteria-
Schutzprofils für Router zur Abwehr von Online-Überwachung, Arbeitsberichte aus dem
Fachbereich Informatik 5/2009

Hannes Schwarz, Jürgen Ebert, Andreas Winter, Graph-based Traceability – A
Comprehensive Approach. Arbeitsberichte aus dem Fachbereich Informatik 4/2009

Anastasia Meletiadou, Simone Müller, Rüdiger Grimm, Anforderungsanalyse für Risk-
Management-Informationssysteme (RMIS), Arbeitsberichte aus dem Fachbereich Informatik
3/2009

Ansgar Scherp, Thomas Franz, Carsten Saathoff, Steffen Staab, A Model of Events based on
a Foundational Ontology, Arbeitsberichte aus dem Fachbereich Informatik 2/2009

Frank Bohdanovicz, Harald Dickel, Christoph Steigner, Avoidance of Routing Loops,
Arbeitsberichte aus dem Fachbereich Informatik 1/2009

Stefan Ameling, Stephan Wirth, Dietrich Paulus, Methods for Polyp Detection in Colonoscopy
Videos: A Review, Arbeitsberichte aus dem Fachbereich Informatik 14/2008

Tassilo Horn, Jürgen Ebert, Ein Referenzschema für die Sprachen der IEC 61131-3,
Arbeitsberichte aus dem Fachbereich Informatik 13/2008

http://www.uni-koblenz.de/fb4/publikationen/arbeitsberichte

Thomas Franz, Ansgar Scherp, Steffen Staab, Does a Semantic Web Facilitate Your Daily
Tasks?, Arbeitsberichte aus dem Fachbereich Informatik 12/2008

Norbert Frick, Künftige Anfordeungen an ERP-Systeme: Deutsche Anbieter im Fokus,
Arbeitsberichte aus dem Fachbereicht Informatik 11/2008

Jürgen Ebert, Rüdiger Grimm, Alexander Hug, Lehramtsbezogene Bachelor- und
Masterstudiengänge im Fach Informatik an der Universität Koblenz-Landau, Campus
Koblenz, Arbeitsberichte aus dem Fachbereich Informatik 10/2008

Mario Schaarschmidt, Harald von Kortzfleisch, Social Networking Platforms as Creativity
Fostering Systems: Research Model and Exploratory Study, Arbeitsberichte aus dem
Fachbereich Informatik 9/2008

Bernhard Schueler, Sergej Sizov, Steffen Staab, Querying for Meta Knowledge,
Arbeitsberichte aus dem Fachbereich Informatik 8/2008

Stefan Stein, Entwicklung einer Architektur für komplexe kontextbezogene Dienste im
mobilen Umfeld, Arbeitsberichte aus dem Fachbereich Informatik 7/2008

Matthias Bohnen, Lina Brühl, Sebastian Bzdak, RoboCup 2008 Mixed Reality League Team
Description, Arbeitsberichte aus dem Fachbereich Informatik 6/2008

Bernhard Beckert, Reiner Hähnle, Tests and Proofs: Papers Presented at the Second
International Conference, TAP 2008, Prato, Italy, April 2008, Arbeitsberichte aus dem
Fachbereich Informatik 5/2008

Klaas Dellschaft, Steffen Staab, Unterstützung und Dokumentation kollaborativer Entwurfs-
und Entscheidungsprozesse, Arbeitsberichte aus dem Fachbereich Informatik 4/2008

Rüdiger Grimm: IT-Sicherheitsmodelle, Arbeitsberichte aus dem Fachbereich Informatik
3/2008

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik 2/2008

Markus Maron, Kevin Read, Michael Schulze: CAMPUS NEWS – Artificial Intelligence
Methods Combined for an Intelligent Information Network, Arbeitsberichte aus dem
Fachbereich Informatik 1/2008

Lutz Priese,Frank Schmitt, Patrick Sturm, Haojun Wang: BMBF-Verbundprojekt 3D-RETISEG
Abschlussbericht des Labors Bilderkennen der Universität Koblenz-Landau, Arbeitsberichte
aus dem Fachbereich Informatik 26/2007

Stephan Philippi, Alexander Pinl: Proceedings 14. Workshop 20.-21. September 2007
Algorithmen und Werkzeuge für Petrinetze, Arbeitsberichte aus dem Fachbereich Informatik
25/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS – an Intelligent Bluetooth-
based Mobile Information Network, Arbeitsberichte aus dem Fachbereich Informatik 24/2007

Ulrich Furbach, Markus Maron, Kevin Read: CAMPUS NEWS - an Information Network for
Pervasive Universities, Arbeitsberichte aus dem Fachbereich Informatik 23/2007

Lutz Priese: Finite Automata on Unranked and Unordered DAGs Extented Version,
Arbeitsberichte aus dem Fachbereich Informatik 22/2007

Mario Schaarschmidt, Harald F.O. von Kortzfleisch: Modularität als alternative Technologie-
und Innovationsstrategie, Arbeitsberichte aus dem Fachbereich Informatik 21/2007

Kurt Lautenbach, Alexander Pinl: Probability Propagation Nets, Arbeitsberichte aus dem
Fachbereich Informatik 20/2007

Rüdiger Grimm, Farid Mehr, Anastasia Meletiadou, Daniel Pähler, Ilka Uerz: SOA-Security,
Arbeitsberichte aus dem Fachbereich Informatik 19/2007

Christoph Wernhard: Tableaux Between Proving, Projection and Compilation, Arbeitsberichte
aus dem Fachbereich Informatik 18/2007

Ulrich Furbach, Claudia Obermaier: Knowledge Compilation for Description Logics,
Arbeitsberichte aus dem Fachbereich Informatik 17/2007

Fernando Silva Parreiras, Steffen Staab, Andreas Winter: TwoUse: Integrating UML Models
and OWL Ontologies, Arbeitsberichte aus dem Fachbereich Informatik 16/2007

Rüdiger Grimm, Anastasia Meletiadou: Rollenbasierte Zugriffskontrolle (RBAC) im
Gesundheitswesen, Arbeitsberichte aud dem Fachbereich Informatik 15/2007

Ulrich Furbach, Jan Murray, Falk Schmidsberger, Frieder Stolzenburg: Hybrid Multiagent
Systems with Timed Synchronization-Specification and Model Checking, Arbeitsberichte aus
dem Fachbereich Informatik 14/2007

Björn Pelzer, Christoph Wernhard: System Description:“E-KRHyper“, Arbeitsberichte aus dem
Fachbereich Informatik, 13/2007

Ulrich Furbach, Peter Baumgartner, Björn Pelzer: Hyper Tableaux with Equality,
Arbeitsberichte aus dem Fachbereich Informatik, 12/2007

Ulrich Furbach, Markus Maron, Kevin Read: Location based Informationsystems,
Arbeitsberichte aus dem Fachbereich Informatik, 11/2007

Philipp Schaer, Marco Thum: State-of-the-Art: Interaktion in erweiterten Realitäten,
Arbeitsberichte aus dem Fachbereich Informatik, 10/2007

Ulrich Furbach, Claudia Obermaier: Applications of Automated Reasoning, Arbeitsberichte
aus dem Fachbereich Informatik, 9/2007

Jürgen Ebert, Kerstin Falkowski: A First Proposal for an Overall Structure of an Enhanced
Reality Framework, Arbeitsberichte aus dem Fachbereich Informatik, 8/2007

Lutz Priese, Frank Schmitt, Paul Lemke: Automatische See-Through Kalibrierung,
Arbeitsberichte aus dem Fachbereich Informatik, 7/2007

Rüdiger Grimm, Robert Krimmer, Nils Meißner, Kai Reinhard, Melanie Volkamer, Marcel
Weinand, Jörg Helbach: Security Requirements for Non-political Internet Voting,
Arbeitsberichte aus dem Fachbereich Informatik, 6/2007

Daniel Bildhauer, Volker Riediger, Hannes Schwarz, Sascha Strauß, „grUML – Eine UML-
basierte Modellierungssprache für T-Graphen“, Arbeitsberichte aus dem Fachbereich
Informatik, 5/2007

Richard Arndt, Steffen Staab, Raphaël Troncy, Lynda Hardman: Adding Formal Semantics to
MPEG-7: Designing a Well Founded Multimedia Ontology for the Web, Arbeitsberichte aus
dem Fachbereich Informatik, 4/2007

Simon Schenk, Steffen Staab: Networked RDF Graphs, Arbeitsberichte aus dem Fachbereich
Informatik, 3/2007

Rüdiger Grimm, Helge Hundacker, Anastasia Meletiadou: Anwendungsbeispiele für
Kryptographie, Arbeitsberichte aus dem Fachbereich Informatik, 2/2007

Anastasia Meletiadou, J. Felix Hampe: Begriffsbestimmung und erwartete Trends im IT-Risk-
Management, Arbeitsberichte aus dem Fachbereich Informatik, 1/2007

„Gelbe Reihe“
(http://www.uni-koblenz.de/fb4/publikationen/gelbereihe)

Lutz Priese: Some Examples of Semi-rational and Non-semi-rational DAG Languages.
Extended Version, Fachberichte Informatik 3-2006

Kurt Lautenbach, Stephan Philippi, and Alexander Pinl: Bayesian Networks and Petri Nets,
Fachberichte Informatik 2-2006

Rainer Gimnich and Andreas Winter: Workshop Software-Reengineering und Services,
Fachberichte Informatik 1-2006

Kurt Lautenbach and Alexander Pinl: Probability Propagation in Petri Nets, Fachberichte
Informatik 16-2005

Rainer Gimnich, Uwe Kaiser, and Andreas Winter: 2. Workshop ''Reengineering Prozesse'' –
Software Migration, Fachberichte Informatik 15-2005

Jan Murray, Frieder Stolzenburg, and Toshiaki Arai: Hybrid State Machines with Timed
Synchronization for Multi-Robot System Specification, Fachberichte Informatik 14-2005

Reinhold Letz: FTP 2005 – Fifth International Workshop on First-Order Theorem Proving,
Fachberichte Informatik 13-2005

Bernhard Beckert: TABLEAUX 2005 – Position Papers and Tutorial Descriptions,
Fachberichte Informatik 12-2005

Dietrich Paulus and Detlev Droege: Mixed-reality as a challenge to image understanding and
artificial intelligence, Fachberichte Informatik 11-2005

Jürgen Sauer: 19. Workshop Planen, Scheduling und Konfigurieren / Entwerfen, Fachberichte
Informatik 10-2005

Pascal Hitzler, Carsten Lutz, and Gerd Stumme: Foundational Aspects of Ontologies,
Fachberichte Informatik 9-2005

Joachim Baumeister and Dietmar Seipel: Knowledge Engineering and Software Engineering,
Fachberichte Informatik 8-2005

Benno Stein and Sven Meier zu Eißen: Proceedings of the Second International Workshop on
Text-Based Information Retrieval, Fachberichte Informatik 7-2005

Andreas Winter and Jürgen Ebert: Metamodel-driven Service Interoperability, Fachberichte
Informatik 6-2005

Joschka Boedecker, Norbert Michael Mayer, Masaki Ogino, Rodrigo da Silva Guerra,
Masaaki Kikuchi, and Minoru Asada: Getting closer: How Simulation and Humanoid League
can benefit from each other, Fachberichte Informatik 5-2005

Torsten Gipp and Jürgen Ebert: Web Engineering does profit from a Functional Approach,
Fachberichte Informatik 4-2005

Oliver Obst, Anita Maas, and Joschka Boedecker: HTN Planning for Flexible Coordination Of
Multiagent Team Behavior, Fachberichte Informatik 3-2005

Andreas von Hessling, Thomas Kleemann, and Alex Sinner: Semantic User Profiles and their
Applications in a Mobile Environment, Fachberichte Informatik 2-2005

Heni Ben Amor and Achim Rettinger: Intelligent Exploration for Genetic Algorithms –
 Using Self-Organizing Maps in Evolutionary Computation, Fachberichte Informatik 1-2005

http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/mitarbeiter.html
http://www.uni-koblenz.de/%7Eag-pn/html/mitarbeiter/apinl.html
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Emurray/
http://fstolzenburg.hs-harz.de/
http://www.uni-koblenz.de/%7Ebeckert/
http://www.uni-koblenz.de/FB4/Institutes/ICV/AGPaulus/Members/paulus
http://www.uni-koblenz.de/%7Edroege/
http://www.uni-koblenz.de/%7Ewinter/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.er.ams.eng.osaka-u.ac.jp/user/asada/asada.html
http://www.uni-koblenz.de/%7Etgi/
http://www.uni-koblenz.de/%7Eebert/
http://www.uni-koblenz.de/%7Efruit/
http://www.uni-koblenz.de/%7Emaas/
http://www.uni-koblenz.de/%7Ejboedeck/
http://www.cc.gatech.edu/grads/a/avh/
http://www.uni-koblenz.de/%7Etomkl/
http://www.uni-koblenz.de/%7Esinner/
http://www.uni-koblenz.de/%7Eamor/
http://www.uni-koblenz.de/%7Eachim/

	plakatform_st.pdf
	Foliennummer 1

	Impressum
	stortechnicalreport
	Introduction
	STOR foundations
	Java-related technologies
	Java-related component systems
	JavaBeans
	ConQAT

	Image processing libraries
	Graph processing API JGraLab

	STOR entities
	STOR Activities
	Image processing
	Feature processing
	Model processing
	Product-line view
	Example: Domino tile recognition

	STOR Data Structures
	Images
	Features
	Integrated models

	STOR Components
	STOR components in general
	STOR JavaBeans components
	STOR ConQAT components
	Domino tile recognition intermediary result images
	Native library wrappers

	Conclusion and future work
	STOR development environment
	Folder structure
	Build environment

	Bisher erschienen
	Bisher erschienen

