
Fachbereich 4: Informatik

Interactive Simulation of Clouds
Based on Fluid Dynamics

Diplomarbeit
zur Erlangung des Grades eines Diplom-Informatikers

im Studiengang Computervisualistik

vorgelegt von

Oliver Koehler

Erstgutachter: Prof. Dr.-Ing. Stefan Müller
(Institut für Computervisualistik, AG Computergraphik)

Zweitgutachter:

Koblenz, im Juni 2009

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und kei-
ne anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Unterschrift)

i

Contents

1 Introduction 1

2 Related Works 3
2.1 Cloud Modeling . 3

2.1.1 Procedural Techniques 3
2.1.2 Physics-Based Cloud Simulation 8

2.2 Rendering Techniques for Volumetric Data 13
2.3 Summary . 13

3 Cloud Formation in the Atmosphere 14
3.1 Air Parcels . 14
3.2 Water and Humidity . 14
3.3 Pressure and Temperature . 16
3.4 Atmospheric Stability . 17

3.4.1 Stable Atmosphere . 17
3.4.2 Unstable Atmosphere 18

3.5 Cloud Classification . 19
3.5.1 Classification according to WMO 19
3.5.2 Classification according to formation process 20

4 The Physics of Cloud Formation 23
4.1 Fluid Dynamics . 23

4.1.1 Momentum Equation 24
4.1.2 Continuity Equation 25
4.1.3 Dropping Viscosity . 26
4.1.4 Other Quantities . 26

4.2 Thermodynamics . 27
4.2.1 Ideal Gases . 27
4.2.2 Temperature Lapse Rate 27
4.2.3 Air Pressure . 28
4.2.4 Temperature . 28
4.2.5 Buoyancy . 29
4.2.6 Saturation . 30
4.2.7 Latent Heat . 31

4.3 Water Continuity . 31

5 Implementation 33
5.1 Developing the Cloud Model 33

5.1.1 Initial Conditions . 33
5.1.2 Solving the Navier-Stokes Equations 34
5.1.3 Thermodynamics and Water Continuity 39
5.1.4 Boundary Conditions 40

ii

5.1.5 Simulation Loop . 41
5.2 Rendering . 41

5.2.1 Rendering the Clouds 41
5.2.2 Visualizing Velocity 42
5.2.3 Temperature . 43

5.3 User Interface . 43

6 Results 46
6.1 Convective Clouds . 46
6.2 Stratus Clouds . 48
6.3 Performance . 49

7 Conclusion and Future Work 50
7.1 Summary . 50
7.2 Limitations of the Proposed Cloud Model 51

7.2.1 Visual Quality . 51
7.2.2 Physical plausibility 51
7.2.3 Final Conclusion . 52

iii

List of Figures

1 Fractal Sphere created with a noise function, image courtesy
of Perlin [17] . 4

2 Cumulus (left) and cirrostratus clouds (right) rendered with
Ebert’s method, images courtesy of Ebert [3] 5

3 Cumulus clouds rendered with Schpok’s GPU-assisted method,
images courtesy of Schpok [19] 5

4 A cloudscape combining 2D- and 3D-clouds by Gardner, im-
age courtesy of Gardner [7] 6

5 Noise textures as used by Gardner (left) and Elinas/Stuerzlinger
(right), courtesy of Elinas/Stuerzlinger [4] 7

6 Real-time static clouds created by Lastra et al., image taken
from [13] . 7

7 A screen shot from Foster & Metaxas work on fluid simula-
tion, image courtesy of Foster & Metaxas [6] 9

8 A cloud and smoke simulated with Stam’s method, images
courtesy of Stam [20] . 9

9 A picture from Fedkiw’s smoke simulation that preserves
small scale details, images courtesy of Fedkiw et al. [5] . . . 10

10 Image computed with Kajiya’s method, courtesy of Kajiya/von
Herzen [12] . 10

11 Cumulus (left) and stratus clouds (right) generated with Overby’s
method. The red dots in the left image represent heat and
vapor sources. Image courtesy of Overby [16]. 11

12 Static, particle-based clouds rendered with Harris’ method,
courtesy of Harris [8] . 11

13 Binary values represent the state values in Dobashi’s method
based on cellular automatons. Image taken from [2] 12

14 Clouds created by Dobashi et al., images taken from [15] . . 12
15 The dew point curve. It specifies the relation between dew

point (in red) and temperature, as well as the correspondent
water vapor mixing ratios . 16

16 Stable and unstable atmospheric conditions. The black line
describes the temperature gradient of the atmosphere. 19

17 Cloud classification according to altitude, with official abbre-
viations and symbols . 20

18 Schematic view of a warmfront 21
19 Schematic view of a cold front 22
20 Use of the Nabla-operator in fluid dynamics, courtesy of Mark

Harris [8] . 25
21 The air pressure decreases exponentially with altitude, fig-

ure taken from [16] . 29

iv

22 Tracing a pseudo-particle backwards through the velocity
field and interpolating between the surrounding cells(left),
copying the interpolated value to the grid position (right) . . 36

23 The divergence-free velocity field (left) consists of a diver-
gent velocity field (middle) minus the pressure gradient field
(right), courtesy of Stam [21] 37

24 This image shows how the clouds are rendered (in 2D). The
red dots correspond to the centers of the grid cells. 42

25 The user interface . 44
26 Cumulus clouds developing under stable conditions, and

the corresponding velocity fields. Images were taken after
340 iterations (left) and 760 iterations (right). The bottom
image shows the temperature distribution. 47

27 Cumulus clouds developing under unstable conditions, and
the corresponding velocity fields. Images were taken after
300 iterations (left) and 600 iterations (right). 48

28 Stratus clouds develop as humid air is blown in from the
boundary of the simulation space. 49

v

1 Introduction

Humankind has always been fascinated by clouds. It seems amazing how
these enormous and seemingly solid structures just float around in the sky
and how they appear and disappear out of nothing. The work of count-
less poets, authors and songwriters has been influenced by the observation
of clouds and the phenomena associated with them. From the menacing
atmosphere transmitted by an approaching thunderstorm to the colorful
and soothing display of clouds at sunset, they can evoke a wide variety
of emotions. Painters of all styles and epochs have tried to capture these
spectacular scenes in their paintings.

Before today’s scientific weather forecast came to be, looking at the skies
was the only possible way to get an indication of how the weather might
be in the near future. In pre-industrialized, rural society, the ability to rec-
ognize and interpret cloud patterns was of vital importance. Today, even
though the understanding about cloud formations is not necessary for sur-
vival anymore, it can still be useful to complement the official weather fore-
cast with local details.

In the computer science community, and especially in computer graph-
ics, a lot of research has been done in order to achieve realistic renditions
of clouds, because they are an indispensable element of any outdoor scene.
However, most cloud models developed did not simulate the actual phys-
ical processes but took a more artistic approach, since a physically moti-
vated simulation of clouds is computationally very expensive. Only re-
cently has sufficient computational power become available to use physics-
based cloud simulation in computer graphics. Still, certain assumptions
have to be made and some concepts have to be simplified in order to keep
frame rates at interactive levels.

The cloud model developed in this thesis attempts to correctly model
the physical processes involved in cloud formation. It incorporates con-
cepts from fluid dynamics and thermodynamics, and renders the results to
the screen using techniques from computer graphics.

The goal is to achieve a simulation that runs at interactive frame rates
and that allows the user to visually experience the basic processes involved
in cloud formation. It should also be possible to interactively change im-
portant parameters of the simulation and observe the consequences in near
real-time. It was therefore necessary to develop visual representations of
different aspects of the cloud simulation, such as the velocity or tempera-
ture.

This thesis is organized as follows: Chapter 2 introduces the most im-
portant works and approaches for the modeling and rendering of clouds.
Both procedural and physics based approaches are presented.

In chapter 3, the most important quantities and mechanisms involved
in cloud formation in the atmosphere are presented in a comprehensible

1

manner, while chapter 4 puts these principles on a more formal basis. It
describes the models and equations used in the cloud model, based on at-
mospheric physics, and also explains where and why certain aspects were
simplified. Chapter 5 then describes how the aforementioned equations
and concepts are solved on the computer. It also sheds some light on the
rendering method that has been employed, as well as explaining the vi-
sual helps that were developed for the visualization of the cloud dynamics.
The results are presented in chapter 6, also discussing the limitations and
shortcomings of the proposed cloud model and simulation method.

2

2 Related Works

Clouds are omnipresent in any outdoor scene and it therefore comes as no
surprise that a lot of research has been done with the aim of creating re-
alistically looking clouds. Many of these techniques are not intended for
a physically accurate simulation but rather focus on the visual aspects of
clouds. However, in order to achieve an exhaustive description of previous
works related to the problem at hand, the following section will provide an
overview over most of the techniques that have been used for the simula-
tion and rendering of clouds.

When simulating clouds, two distinct fields of research have to be taken
into account. First, there is the simulation of the physical processes that
govern the formation of clouds. These processes can be described by the
laws of atmospheric fluid dynamics. While these laws have been known
in meteorology for quite some time, only lately (e.g. Since the end of the
1990s) do consumer class workstations dispose of sufficient computational
power to perform the required calculations at interactive rates. Especially
the advent of programmable graphics processors (GPUs) has fueled this
development, since they are designed for parallel execution of several cal-
culations at once.

The second important aspect of cloud simulation is rendering. A cloud
dynamics simulation typically delivers a three-dimensional density distri-
bution, and therefore requires a method to render this volumetric data.

2.1 Cloud Modeling

The modeling of clouds is a challenge for every developer due to their
amorphous nature. Since they constantly appear, disappear, and change
shape, clouds cannot easily be modeled using solid geometric primitives,
although such approaches do exist. The distinction that is taken here in or-
der to classify different cloud modeling techniques differentiates between
procedural approaches and physically motivated techniques. While the
first tackle the problem more from an artist’s perspective and focus on
visually convincing cloud modeling and rendering techniques, physically
motivated approaches try to capture and simulate the underlying physical
processes that are responsible for the formation of clouds. It should how-
ever be noted, that the different techniques presented here are by no means
mutually exclusive. In fact, most works use a combination of several meth-
ods.

2.1.1 Procedural Techniques

Throughout the history of computer graphics, procedural approaches have
been very popular for the modeling of natural phenomena such as clouds,

3

fire, smoke, or for the creation of textures that are intended to resemble
natural materials like marble, wood, or stone. Procedural techniques use
algorithms to specify the properties of the desired materials (for exam-
ple its color or opacity value), and therefore don’t rely on photographs or
handmade images as input. This reduces memory requirements and elimi-
nates the need to have an artist manually design these models and textures.
Another advantage of procedural techniques is that they usually specify
a number of parameters (such as a value for the ’roughness’ of a mate-
rial) that offer an increased level of flexibility to the animator/modeler [3].
In fact, most professional animating software suites (like Maya or 3D Stu-
dio Max) offer some procedural methods to model natural phenomena like
smoke or fire.

Noise One procedural technique that has been used in several works in
cloud modeling is procedural noise. Noise is an adequate method for mod-
eling seemingly “chaotic” phenomena like clouds or smoke, and it is also
useful to represent the irregularities that many natural materials like stone
or wood typically exhibit. It can also be employed to give materials a more
“rugged” or “used” look.

In 1989, Ken Perlin [17] presented a method to create continuous ran-
dom volumetric data based on procedural noise, which is applicable not
only to clouds, but to a wide array of materials. His methods extends the
idea of procedural solid textures to three dimensions. Clouds are modeled
as density fields that are then modulated by the sum of a series of pseudo-
random noise functions at different amplitudes and frequencies [17]. Fig-
ure 1 shows a sphere that has been contorted with a fractal sum of noise
functions.

Figure 1: Fractal Sphere created with a noise function, image courtesy of Perlin
[17]

In 2004 Ebert presented an approach to modeling clouds that also re-
lies on noise and turbulence [3]. He models the cloud macro structure as

4

a union of implicit geometric primitives like spheres, cylinders, or ellip-
soids. These are placed by the user, who thus directly influences the basic
shape of the clouds to be. Comparable to Perlin, the macro structure of the
clouds is then perturbed by procedural noise and turbulence functions that
account for the small-scale details, the cloud’s micro structure. Depending
on the primitives used for the cloud’s macro structure and several param-
eters like thickness, falloff, or density, different cloud types can be created.
Coupled with a physically based volume renderer that accounts for the ef-
fects of light scattering, very realistic images and animations of clouds can
be achieved, however not in real time. Figure 2 shows two examples of
different cloud types.

Figure 2: Cumulus (left) and cirrostratus clouds (right) rendered with Ebert’s
method, images courtesy of Ebert [3]

Building on Ebert’s work and using the same two-level approach, Sch-
pok et al. [19] extended the technique to draw on the additional comput-
ing power available through consumer graphics hardware. By reallocating
computationally expensive tasks to the graphics processor and using a less
refined illumination model, they were able to reach interactive frame rates,
between 5 and 30 fps [19]. See figure 3 for examples.

Figure 3: Cumulus clouds rendered with Schpok’s GPU-assisted method, images
courtesy of Schpok [19]

5

Textured Solids One significant disadvantage of volumetric cloud repre-
sentations is their computational complexity. Especially in real-time appli-
cations such as flight simulators, fast modeling and rendering techniques
are indispensable. There have been several attempts to model clouds as
textured solids, because this representation promises the best performance.

One early work following this approach was presented by Geoffrey
Gardner in 1985 [7]. His cloud model consists of three building blocks:
A two-dimensional sky plane is used to represent layer clouds and serves
as a backdrop. In this way, clouds that are further away are not explicitly
modeled in 3D, thus increasing performance. The macro structure of cu-
mulus clouds and other cloud types that cannot be adequately modeled in
two dimensions because they are relatively close to the camera, consists of
ellipsoids. In order to allow for more complex cloud shapes, several ellip-
soids can be linked together. Similar to Ebert [3], noise textures are used
to modulate the shading intensity and translucency. Given that his work
was published almost 25 years ago, the results (see figure 4) are quite im-
pressive, although it has to be noted that at the time, rendering of a single
image took between 20 and 25 minutes [7].

Figure 4: A cloudscape combining 2D- and 3D-clouds by Gardner, image courtesy
of Gardner [7]

Based on Gardner’s work, Elinas and Stuerzlinger [4] extended this ap-
proach in 2000 to make use of new technological advances like photon
maps using hardware-accelerated OpenGl. They also changed the way
their textures are created: While Gardner relied on spectral synthesis, they
used Perlin noise to create the textures that regulate transparency and color.
Figure 5 shows a comparison between different noise textures.

Particle Systems Another cloud modeling technique is based on parti-
cles. Particles are small geometric primitives (often spheres) that can be de-
scribed by their position in three-dimensional space and only a few other

6

Figure 5: Noise textures as used by Gardner (left) and Elinas/Stuerzlinger (right),
courtesy of Elinas/Stuerzlinger [4]

parameters (like radius, color, texture, etc.) [8]. As such, they are relatively
easy to implement and inexpensive to manage, and are therefore often used
in real-time applications. Many systems that model gaseous phenomena
like smoke, fire or clouds rely on particle systems, since they can be used in
conjunction with an underlying physics engine. However, the advantage
of using particle systems diminishes somewhat when a lot of small-scale
details are required, because the number of particles has to be increased
considerably.

Lastra and Harris [13] presented their cloud modeling approach in 2001.
They represent clouds as a collection of particles and render each particle as
a small, textured sprite. Building on a technique introduced by Gardner [7],
they introduced the use of impostors, 2D-textures that represent clouds that
are farther away. Since only near clouds are modeled in 3D, they achieved
very high frame rates. However, their method could only represent static
clouds and did not involve any sort physical model.

Figure 6: Real-time static clouds created by Lastra et al., image taken from [13]

7

2.1.2 Physics-Based Cloud Simulation

The procedural approaches to cloud modeling presented so far are aimed
mostly at achieving visually convincing representations of clouds, and are
less concerned with the underlying physics. In fact, from an artist’s point
of view, a procedural approach is preferable because it offers more control
over the shape and appearance of the clouds.

Physics-based cloud modeling takes a different approach. The goal here
is to accurately portray the physical processes that are responsible for the
formation of clouds in nature. The clouds that are modeled in this fashion
should come into being as the result of applying the laws of nature and
physics, combined with techniques from computer graphics to render the
results. As such, an animator has only indirect control over the process,
because he can typically only specify certain parameters that correspond to
real physical quantities and then has to “let nature do the rest”.

Fluid Dynamics Physics-based cloud dynamics are closely linked with
fluid dynamics, because the laws from fluid dynamics (namely the Navier-
Stokes equations) can be used to accurately describe the flow of air masses
in the atmosphere. All approaches to modeling the dynamics of clouds im-
plement some method to solve these equations. Since fluid dynamics and
the Navier-Stokes equations play such an integral part in the simulation
of clouds, some works that were important in the development of fluid
solvers are presented first, although these works are generally not focused
on clouds, but comparable phenomena such as smoke, fire, or liquids.

The Navier-Stokes equations have been known for more than a hun-
dred years. They model fluid flow using a set of non-linear partial dif-
ferential equations in terms of velocity and pressure (see chapter 4 for an
in-depth explanation). In 1995, Foster and Metaxas [6] described a incre-
mental method to numerically solve these equations. Their approach was
based on a rectangular grid that divides space into voxels, and the Navier-
Stokes equations were solved incrementally for each voxel. The problem
with this approach was that it suffered from instability when the time step
for the simulation became too large. Allowing only small time steps how-
ever, increases computation time.

Based on the work of Foster and Metaxas, Stam developed a method
that guaranteed unconditional stability for any time step size [20][21]. In-
stead of the previous explicit time stepping scheme, he used an implicit,
semi-Lagrangian method that borrowed ideas from particle systems. To-
day, many works in computer graphics that try to simulate some kind of
fluid flow are based on Stam’s method, and it has also been used in this
thesis (see chapter 5).

The most important drawback of Stam’s method is that it leads to dis-
sipation, thus damping out some of the small-scale swirls and turbulences

8

Figure 7: A screen shot from Foster & Metaxas work on fluid simulation, image
courtesy of Foster & Metaxas [6]

Figure 8: A cloud and smoke simulated with Stam’s method, images courtesy of
Stam [20]

typically encountered in fluid motion. Fedkiw et al. approached this prob-
lem in [5], introducing a method called “vorticity confinement” that rein-
troduces lost rotational energy back into the fluid. This method allows
more detailed fluid flows.

Cloud Dynamics The first physics based models of cloud dynamics were
developed by meteorologists and atmospheric scientists. As they were
used only as scientific tools, they were focused on accurately modeling the
physical processes, and less on performance and rendering. The enormous
computational complexity involved in simulating cloud dynamics further
hindered the application of physically motivated cloud models to any other
domain but meteorology and atmospheric sciences.

The first in developing a physically based cloud model for computer
graphics were Kajiya and von Herzen in 1984 [12]. They solved the Navier-
Stokes equations of incompressible fluid flow and also incorporated a ther-
modynamics model and a simple water continuity model [16]. With their
method they achieved solving one step of cloud evolution in about 10 sec-
onds on a 10x10x20 grid.

A similar method was presented by Overby in 2002 [16]. In this work,
the stable fluid simulation algorithm developed by Stam [20] was used to

9

Figure 9: A picture from Fedkiw’s smoke simulation that preserves small scale
details, images courtesy of Fedkiw et al. [5]

Figure 10: Image computed with Kajiya’s method, courtesy of Kajiya/von Herzen
[12]

solve the Navier-Stokes equations. Overby modeled the water in the sys-
tem in terms of relative humidity, with saturation values directly propor-
tional to pressure. The model also accounted for the existence of cloud con-
densation nuclei, small particles in the air that have can lower or raise the
saturation threshold. The user interface allowed to create different cloud
types (cumulus, stratus) by changing the initial conditions of the simula-
tion.

The volumetric data resulting from the simulation was then rendered
using alpha-blended billboards, thus achieving a performance of one itera-
tion per second on a Pentium III with a 15x50x15 grid [16].

The work presented by Mark Harris in 2003 [8] was the first that achieved
frame rates fit for real-time applications by consequently exploiting the

10

Figure 11: Cumulus (left) and stratus clouds (right) generated with Overby’s
method. The red dots in the left image represent heat and vapor
sources. Image courtesy of Overby [16].

computational power of graphics hardware. He developed a fairly com-
plicated cloud model and used Stam’s stable fluid algorithm [20] for the
dynamics, and implemented both on the GPU. In order to further enhance
performance, a technique called “simulation amortization” was developed
that spreads the dynamics calculations over several frames.

For the rendering of the clouds, algorithms were developed that simu-
late multiple forward light scattering, and that are applicable both to parti-
cle and voxel based cloud representations. In order to speed up the render-
ing process, dynamically generated impostors were used. These are basi-
cally two-dimensional textures that can be applied to represent clouds that
are so far away from the camera that they do not have to be represented in
3D. Similar techniques had already been described in [7], [22], and [13].

Harris cloud simulation achieved frame rates of up to 3.9 frames per
second on a 64x64x64 grid and using GeForce 5900 Ultra in conjunction
with a Pentium IV CPU.

Figure 12: Static, particle-based clouds rendered with Harris’ method, courtesy of
Harris [8]

Other approaches to modeling the dynamics of clouds have experi-

11

mented with simpler (and therefore faster) approximations of fluid flow.
in 2000, Dobashi et al. [2] presented a method that approximates the

behavior of clouds with cellular automatons. This method models cloud
evolution on a voxel grid, just like the other physics-based approaches.
The state values however are represented as logical (binary) values that
change according to logical transition rules that simulate evaporation, con-
densation, etc. While this method is very fast, it is not able to simulate the
processes of cloud formation accurately (see figure 13).

Figure 13: Binary values represent the state values in Dobashi’s method based on
cellular automatons. Image taken from [2]

Figure 14: Clouds created by Dobashi et al., images taken from [15]

An extension of this method was presented by Myiazaki et al. in 2001
[15]. The basic idea was to use a concept called “coupled map lattices”
(CML) instead of the cellular automatons, because they allow to use contin-
uous instead of only binary values. The transition rules were than replaced
by an approximation of the incompressible Navier-Stokes equations. The
model presented in 2001 [15] was able to depict different cloud types, while
another work presented in 2002 [14] explored more accurate ways to model
cumulus clouds. Both these models included a water continuity model and
also accounted for latent heat release due to phase changes.

All these works used volume rendering techniques using metaballs and
splatting. Their rendering also included a lighting model and could depict
shafts of light in between clouds. However, this rendering technique, al-

12

though producing very convincing images, is not suited for real-time ap-
plications.

2.2 Rendering Techniques for Volumetric Data

Virtually all works that realize a simulation of clouds based on the laws
of atmospheric physics (or an approximation of them) model clouds on a
voxel grid. Using this technique, the results of the simulation are provided
in the form of a three-dimensional distribution of state values. Therefore
they all require some volume rendering technique to visualize the results.

One possible method to render this data is ray tracing. However, since
the goal of this thesis is to achieve interactive frame rates, ray tracing is not
an option because it is too computationally expensive. The same is true for
the metaball splatting technique developed by Dobashi et al. [2].

The method used in this thesis renders alpha-blended slice from front
to back.

2.3 Summary

There is a multitude of different approaches available to render and sim-
ulate clouds. However, the selection of works presented here also reflects
the eternal dilemma of computer graphics, to choose between quality and
performance. Since the stated goal of this thesis is to achieve interactive
frame rates while as accurately as possible simulating the physics of cloud
formation, only few works could be used as orientation.

The cloud model developed in this thesis is most similar to those pre-
sented by Overby [16] and Harris [8]. Both model the physical processes
involved in cloud dynamics. While this thesis uses the more accurate dy-
namics model presented by Harris, it was also influenced by the idea of
simulating different cloud types introduced by Overby. Since the focus in
this work lies more on depicting and visualizing the physical processes in-
stead of achieving visually realistic results, a much simpler cloud rendering
method was chosen for the sake of performance (presented in chapter 5.2).

13

3 Cloud Formation in the Atmosphere

The following chapter serves as an introduction to the formation of clouds.
It focuses on the description of the most important concepts involved in the
formation of clouds, and it is designed to be as comprehensible as possible.
The ideas presented here will then be put on a more theoretical foundation
in chapter 4.

3.1 Air Parcels

In order to better understand the processes involved in cloud formation,
it is common in meteorology to study the behavior of air parcels. Such an
air parcel is a conceptual tool that can be imagined as a thermically iso-
lated volume of air that is able to expand and contract without any exterior
force, and that can be traced relative to its surroundings. Although this
idea might at first seem unrealistic, it actually matches the behavior real
volumes of air quite well[9], because air has very low thermal conductivity.

3.2 Water and Humidity

Water is the most important property in climatology and meteorology. It
occurs in all three physical states: as gas in the form of vapor, as a liquid in
the form of water and water droplets, and in its solid state in the form of
ice and snow. The weather on our planet and especially the formation of
clouds rely heavily on the state changes that water undergoes in the atmo-
sphere due to changing temperature and/or pressure. On a global scale,
it is water and air currents that are responsible for the climatic conditions
on our planet. For example, the gulf stream, a warm water current that
originates in the gulf of Mexico and extends all the way to western Europe,
is responsible for the moderate climate we enjoy in central and northern
Europe.

The air on our planet always contains some amount of water vapor that
comes into being through the process of evaporation. The majority of evap-
oration occurs over the oceans and other open waters such as lakes and
rivers, but a certain part is also due to transpiration of plants, humans, and
animals, as well as evaporation of ground water. It is estimated that the
total amount of water present on earth is about 1,4 billion km. Of this total
amount, less than 0,001%, or 13000 km is contained in the atmosphere as
humidity and clouds [9]. Although it is but a tiny fracture, this atmospheric
water is completely responsible for the formation of the clouds all over the
world. It is generally referred to as humidity. There are several commonly
used quantities that describe the relationship between air and vapor:

14

Absolute Humidity It describes the absolute amount of water vapor that
is contained in a specific volume of air. It is usually specified in grams
per cubic meter, but different units, such as pounds per cubic foot, are also
commonly used in different parts of the world. The major inconvenience
with this quantity is that it it is only constant for a certain altitude. When
an air parcel changes its altitude, its volume also changes due to different
pressure conditions. As a consequence, the absolute humidity changes as
well.

Specific Humidity This quantity specifies the humidity in grams of water
vapor per kg of air. By using mass instead of volume, specific humidity
stays constant regardless of altitude and pressure. It is therefore much more
commonly used. In the cloud model developed for this thesis, humidity is
specified in this fashion. It is also often referred to as “water vapor mixing
ratio”.

Relative Humidity The maximum amount of water vapor that air can
contain depends directly on its temperature. Warm air can contain much
more vapor than cold air. Relative humidity is calculated as the quotient
between the specific humidity and the maximum amount of vapor possible,
and it is usually expressed as a percentage. In other words, it expresses to
what percentage the air is saturated with vapor. This quantity is very useful
in weather forecast, as a high relative humidity increases the likelihood
of precipitation. On the other hand, it can be difficult to work with due
to its direct dependence on temperature. An indication of temperature is
therefore required in order to give the relative humidity any meaning.

Dew Point Another quantity that is closely related to humidity and that
is needed in order to understand and calculate the relative humidity is the
dew point. As mentioned above, the maximum amount of vapor that can
be contained in the air depends on its temperature. When an air parcel with
a given specific humidity cools down, its relative humidity rises. Eventu-
ally, the relative humidity will reach 100% and the air is thus fully satu-
rated with vapor. This point is called the dew point. Figure 15 shows the
so-called dew point curve (at sea level) that indicates how many grams of
water vapor can be contained in a kg of air at a given temperature.

Given these quantities it is now possible to describe the basic physical
process, that leads to the formation of clouds. Once a parcel of air passes
100% relative humidity/its dew point/its saturation point, some of the va-
por contained in it has to be expelled. At this point, condensation sets in. A
certain part of the water in the air changes its physical state from gaseous
to liquid and tiny water droplets begin to form. These droplets then be-
come visible as clouds and fog. The exact amount of vapor that changes its

15

physical state to water is such that the surrounding air always stays 100%
saturated. The question then is, what circumstances are responsible for air
to become saturated with vapor and therefore form clouds? The answer to
this question can be obtained by again looking at the dew point curve in
figure 15. As the diagram shows, cool air can hold much less vapor before
being saturated than warm air. Therefore, in order for clouds to form, air
has to cool beyond the dew point associated with the amount of vapor that
it holds.

Figure 15: The dew point curve. It specifies the relation between dew point (in
red) and temperature, as well as the correspondent water vapor mixing
ratios

3.3 Pressure and Temperature

There are several processes that can cause a change in the temperature of air
parcels. For the formation of clouds, the most important process consists in
a change of altitude. As is common knowledge, air temperature decreases
with increasing altitude. This is due to the decrease of air pressure.

The air pressure experienced at a certain point corresponds, roughly,
to the weight of the column of air above said point, multiplied by gravity.
This explains why the air pressure decreases with height. Since at higher
altitudes there is less air weighing down on it, the pressure at the point
is less than in lower altitudes. An important property of air is that it is
a compressible gas. Its volume thus changes according to different pres-
sure conditions. This change in volume is also responsible for the change
in temperature. Between the air molecules exists a force that draws them
together. When the air expands, energy is required to overcome this force.

16

This energy is taken from the latent energy of the air, stored as heat. The
air therefore cools as it expands. When it is compressed, the process is re-
versed. The same principle is used, for example, in diesel engines, where
the mixture of air and fuel is compressed heavily until it explodes.

3.4 Atmospheric Stability

We now know why rising air parcels tend to cool, thus causing condensa-
tion. However, in order to simulate the cloud formation process, it has to
be known at what rate rising air parcels cool down. As a rule of thumb, air
cools at a rate of just about 1◦ C per 100 meters as long as it is not saturated.
In thermodynamics, this is referred to as “dry adiabatic cooling”, and it can
be considered somewhat of a “standard behavior” [9].

When an air parcel is saturated (e.g. its relative humidity passes 100%),
some of the vapor condensates. During the process of condensation, latent
energy is released in the form of heat, thus warming the air parcel. This
can be explained as follows: The evaporation of water (the change from
liquid to gaseous form) requires energy (usually from the sun in the form
of heat). This energy remains “stored” in the vapor as latent energy. When
the vapor condensates this latent energy is released again as heat. As a con-
sequence of the release of latent heat during condensation, the cooling rate
of a saturated air parcel is lower than an unsaturated one. This is refered to
as “wet adiabatic cooling”. The wet adiabatic cooling rate however, is not
constant, since it depends on the amount of vapor that condensates and on
the temperature. An average value is 0.6 ◦C per 100 meters.

If and how far an air parcel rises does not only depend on its own tem-
perature but mostly on the temperature of the air that surrounds it. If the
surrounding air is cooler, an air parcel will rise, if it is warmer, it will de-
scend. Therefore the temperature distribution of the atmosphere plays an
essential role in the cloud formation process.

The Earth’s atmosphere is divided into several layers. Clouds can only
form in the bottom layer, the troposphere (with a few rare exceptions). It
is limited at the top by the tropopause, an imaginary line that also marks
the beginning of the ozone layer. As the ozone layer absorbs energy in the
form of ultraviolet radiation, the air temperature begins to rise again, thus
forming an impassable barrier for air parcels coming from below. Therefore
no clouds can form above the tropopause.

3.4.1 Stable Atmosphere

In the troposphere the temperature distribution can differ quite consider-
ably from the adiabatic ideal. A temperature drop of less than 1◦ C per 100
meters is referred to as underadiabatic. This is very often the case. In fact,
the International Standard Atmosphere (ISA), a standardized atmospheric

17

model of the Earth’s atmosphere, shows only a temperature lapse of 0.65 ◦

C per 100 meters. This figure can be thought of as a general average. Espe-
cially in the winter it is even possible that the temperature increases with
altitude, at least for a certain part of the troposphere. This phenomenon is
called an inversion.

As a consequence of under adiabatic stratification, the troposphere be-
comes very stable, since it impedes vertical air movements. The left hand
side of figure 16 demonstrates this: When an air parcel is lifted to a given
altitude, it cools adiabatically. However, since the surrounding atmosphere
shows an underadiabatic temperature gradient, it cools slower than the air
parcel and the air at the new altitude will be warmer. As a consequence, the
air parcel will not rise further and even move downwards until it reaches
its original altitude where its temperature is the same as the surrounding
air. Since there are therefore only very few vertical air movements, the
atmosphere and the weather become very stable. As far as clouds are con-
cerned, a stable atmosphere manifests itself in stratus or cirrus clouds (the
next section explains the different cloud types in more detail) that have
only a limited vertical extension [9].

3.4.2 Unstable Atmosphere

The atmosphere can also exhibit an overadiabatic temperature gradient.
This means that the temperature drops faster than adiabatically with in-
creasing altitude. The result is contrary to the aforementioned case of a
stable atmosphere: instead of hindering vertical air movements and tur-
bulence, an overadiabatic temperature gradient even increases them, thus
leading to an unstable atmosphere. This is shown on the right side in fig-
ure 16. Such unstable conditions often occur in hot and humid climates. In
our moderate climate zone this mostly happens in the summer: As the sun
heats the ground, the air directly above it is also heated and starts to rise.
As this process continues, the atmosphere becomes increasingly unstable as
the temperature gradient between lower and higher altitudes grows. Since
the unstable atmosphere furthers the rise of heated air parcels, clouds with
a large vertical extension, like cumulus or even nimbocumulus develop
that often lead to heavy rainfall and even thunderstorms.

It has to be noted that the temperature gradient of the troposphere is
generally not constant. The atmosphere may be unstable at low altitudes
and exhibit stable conditions further up, all at the same time. Several cloud
layers of different cloud types are often a sign that the stability conditions
vary at different altitudes. In general, the lower layers of the atmosphere
are the most susceptible to becoming unstable because the ground, heated
by the sun, can drastically change the temperature gradient.

18

Figure 16: Stable and unstable atmospheric conditions. The black line describes
the temperature gradient of the atmosphere.

3.5 Cloud Classification

When one glances at the sky and observes the myriad of different shapes
and appearances of clouds, it seems at first almost impossible to consis-
tently categorize them. From puffy summer clouds that resemble cotton
candy, to the gray-in-gray that seems to cover the entire sky on a dull winter
day, from dark, menacing thunderstorms to light, translucent high-altitude
clouds, the dazzling array of shapes and sizes that clouds exhibit seems
limitless.

The classification that is used today dates back to the beginning of the
19th century [10]. Today, it is managed and constantly updated by the
World Meteorological Organization(WMO), a sub-organization of the United
Nations. The International Cloud Atlas, published by the WMO, serves as
an international guideline for the classification and description of clouds
observed all over the world [10].

3.5.1 Classification according to WMO

In general, there are ten different types of clouds, although these types can
be further classified according to their shape.

The first criterion to distinguish different categories of clouds is the al-
titude in which they appear. Since clouds can exist in all altitudes up to
the tropopause, the distinction between different cloud families is made
according to the physical state of the water they consist of. High altitude
clouds are called “Cirrus” (from the Latin word for hair locks) and they
consist only of ice crystals. In moderate climate zones, they can appear at
altitudes between 5 and 13 km.

19

Medium altitude clouds have the prefix “Alto-” (lat. Altus = high).
They can show up between 2-7 km above the ground and contain ice crys-
tals as well as water droplets.

Low altitude clouds can be found from the ground up to altitudes of
about 2 km. They are designated with the word “Stratus” and they consist
only of water droplets.

A fourth category is that of clouds which exhibit a strong vertical ex-
tension. These clouds can span more than ten kilometers in height and are
not limited to a certain altitude. One example for this cloud type are the
impressive cumulonimbus, or thunderstorm clouds.

The second criterion in this classification refers to the general shape of
the clouds. Cumulus clouds are heap-shaped, while stratus clouds form a
more or less uniform layer. The final designation for a certain cloud type
is then a combination of these criteria: stratocumulus are low, heap-shaped
clouds consisting of condensed water, cirrostratus are a uniform layer of
high-altitude ice crystal clouds. The different cloud types are shown in
figure 17.

Figure 17: Cloud classification according to altitude, with official abbreviations
and symbols

3.5.2 Classification according to formation process

Since we are trying to simulate the formation of clouds, it is more use-
ful to categorize clouds according to the processes that are responsible for
their existence. In general, clouds form due to vertical air movements. The

20

causes for these movements differ, however.
Convective clouds form as a consequence of the heating of surface air.

This happens when the sun heats the ground. Parcels of heated air then
start to form over the heated surface and subsequently begin to rise. Their
upward velocity can be quite high, reaching up to 30m/s under very un-
stable conditions [9]. Once they reach higher altitudes, the vapor contained
in them starts to condensate and form clouds. The condensation process
releases latent heat, thus warming the parcel even further and fueling its
ascension. This is the reason why cumulus clouds always grow upwards.
If the atmospheric conditions are right, e.g. if the atmosphere is unsta-
ble and the ground temperature is high enough, as is often the case in the
summer, cumulus clouds can keep growing upwards, eventually forming
cumulonimbus clouds that can bring strong precipitations, violent gusts of
wind and thunderstorms.

Another important mechanism for cloud formation is the general tem-
perature change caused by incoming cold or warm fronts. A warm front ar-
rives first in high altitudes because the warm air glides on top of the colder
air masses. The warm front gradually pushes away the colder air, until
the warm air masses reach the ground. In profile, an approaching warm
front takes on the form of a wedge (see figure 18). As a consequence of the
warm air being lifted, an incoming warmfront usually reveals itself by an
increasing number of cirrus clouds. As time passes and the warm air grad-
ually replaces the cold air, the cloud layer eventually becomes thicker and
grows downwards, transforming into Cirrostratus, Altostratus, and finally
Nimbostratus, that can bring abundant and long lasting rainfalls.

Figure 18: Schematic view of a warmfront

In contrast, an incoming cold front changes the weather quite dramat-

21

ically and within a short period of time. The dense cold air advances near
the ground, causing the warmer air to rise rapidly. In consequence, the
atmosphere destabilizes, leading to strong vertical air movements and con-
vective clouds that eventually transform into cumulonimbus. Therefore,
a cold front often causes severe thunderstorms accompanied by torrential
rainfalls (see figure 19).

Figure 19: Schematic view of a cold front

A third important mechanism leading to cloud formation is referred to
as “orographic lifting”. This happens when air masses are pushed up by
terrain, such as mountains. Due to the forced change in altitude, vapor
condenses and clouds begin to form. This is the reason why we can often
see mountains shrouded in clouds on an otherwise cloudless day. It also
explains, why the weather situation in the mountains can change so quickly
and seemingly without warning.

22

4 The Physics of Cloud Formation

As shown in the previous chapter, the formation of clouds depends on
many different factors of different dimensions. High or low pressure sys-
tems can span thousands of kilometers, while microscopically small par-
ticles contained in the air and locally very limited turbulences play an
equally important part in cloud dynamics. The number of contributing
factors is so large and they are often so closely interrelated that certain
simplifications and approximations have to be made in order to achieve
a performance that allows interactivity.

The following chapter will identify and explain the most important
physical laws and concepts that are used in this model for cloud simula-
tion. In this, it closely follows the work of Harris [8] and Overby [16].

4.1 Fluid Dynamics

Clouds form due to movements of air in the atmosphere, and it is therefore
the most important task of any physics-based cloud simulation to model
these airflows. The physics discipline that deals with the flow of liquids
and gases - fluids - is fluid dynamics. A scientifically accepted model for
fluid flow are the Navier-Stokes equations[20], a set of nonlinear partial dif-
ferential equations. More precisely, the following equations model incom-
pressible fluid flow. This might at first appear to be an odd choice, since
air is obviously a compressible fluid: Its density changes with pressure and
temperature. In the atmosphere however, this change is very small because
the air can move freely, and it is therefore a common simplification to con-
sider air as an incompressible fluid [15]. This has also technical reasons,
since the models for compressible flow only allow small time steps in order
to maintain accuracy and stability [16].

Basically, the Navier-Stokes equations are nothing but the application
of Newton’s second law (~F = m~a) to fluids [1]. Compared to other types of
physically-based simulations such as rigid body or particle systems how-
ever, in fluid dynamics, the physical processes are modeled from a differ-
ent perspective. An intuitive approach for cloud simulation would be a
particle system, where every particle represents a small amount of water or
vapor. Each of these particles would then be characterized by its position
and velocity, and they would be tracked through simulation space as time
progresses. This is called the Lagrangian viewpoint [1]. Although being
less complicated, the problem with this approach is that it would require
a prohibitively high number of particles in order to achieve satisfactory
results. Fluids are modeled using an Eulerian approach: The simulation
space is discretized into fixed voxels and the simulated quantities are sam-
pled at discrete grid locations. This leads to the Navier-Stokes equations.
They describe the behavior of fluid at one point in a fluid volume at a given

23

time.
The most important quantity to represent is the velocity of the fluid,

because velocity determines how the fluid moves itself and the things that
are in it, like vapor, smoke, or temperature. The Navier-Stokes equations
are therefore expressed in terms of velocity, ~u. The other basic quantity
needed for the simulation of incompressible fluid flow is pressure, p . It ap-
pears in the momentum equation (see equation (1)), and it is fundamental
in ensuring the incompressibility of the fluid (see equation (2)).

The basic idea of fluid simulation is to start with an initial configuration
(t=0) and then move it forward in time. At every time step, and based on
the results of the previous time step, the velocity for every voxel has to be
determined correctly. Once the velocity field has been calculated, the other
quantities (vapor, temperature, etc...) are moved through the grid accord-
ing to the state of the velocity field. As a final step, the incompressibility of
the final velocity field has to be ensured.

4.1.1 Momentum Equation

The first Navier-Stokes equation is the momentum equation, and it de-
scribes how the velocity evolves at a sampled grid location over a time
step t . The right hand terms therefore all represent accelerations:

∂~u

∂t
= −(~u · ∇)~u− 1

ρ
∇p+ ν∇2~u+ ~f (1)

In three dimensions, ~u consists of three components, (u, v, w). ρ repre-
sents the density of the fluid. Since we assume an incompressible fluid, ρ
is actually a constant. p stands for pressure, ν is the viscosity of the fluid.
~f summarizes all other forces that affect the velocity of the fluid (such as
wind, gravity, buoyancy, etc.).

The∇-operator is called the nabla- or del-operator. It designates the gra-
dient (if applied to a scalar quantity), the divergence (if applied to a vector
quantity), or the Laplacian (if applied to the gradient of a scalar quantity).
Figure 20 shows an overview of the uses of the nabla-operator with respect
to the Navier-Stokes equations. They will be reviewed again in chapter 5.

A helpful approach to the comprehension of the Navier-Stokes equa-
tions is to look at each term separately. Each one corresponds to a physical
concept that adds to the total fluid flow.

Advection The first term on the right hand side of equation (1) is the so-
called advection term . Any quantity or object submerged in the fluid is
carried along by the fluid’s velocity field (imagine pouring milk in your
coffee). This also holds true for the velocity: it moves along itself. This ex-
plains why a fluid keeps moving even when there are no more forces being
applied. This term represents this self-advection . The fact that the velocity ~u

24

Figure 20: Use of the Nabla-operator in fluid dynamics, courtesy of Mark Harris
[8]

appears twice in the advection term makes it non-linear and therefore more
complicated to solve.

Pressure The next term is called the pressure term. As opposed to rigid
bodies, an acceleration applied to a fluid does not instantly propagate through
the entire fluid because its molecules are free to move. Instead, pressure
builds up and the areas close to the force are accelerated first. The term
“pressure” in this context can lead to confusion, since it does not refer to
air pressure, a quantity that is also used in the cloud simulation. In the con-
text of the Navier-Stokes equations, only the pressure gradient is required.
It can be thought of as “whatever it takes to keep velocity divergence-free”
[1]. It is also used to enforce boundary conditions.

Diffusion The third term of the momentum equation is the diffusion term.
A fluid in motion does not keep moving indefinitely when there are no
more forces being applied, and different fluids require different forces to
create any movement. A measure of how much a fluid resists to flow is
its viscosity, ν. In a high-viscosity fluid such as honey or ketchup, velocity
diffuses much more rapidly than in low-viscosity fluids such as water or
even air.

External Forces The last term accounts for all other forces that have an
effect on the velocity of the fluid. A distinction has to made between global
forces (such as gravity) that are applied equally to every grid cell, and local
or body forces, that only affect a limited number of voxels [8].

4.1.2 Continuity Equation

The second Navier-Stokes equation is the continuity equation. As men-
tioned before, air is assumed to be an incompressible fluid, and the mo-
mentum equation enforces this condition.

25

∇ · ~u = 0 (2)

When a fluid is incompressible, it means that its density is constant.
This is the same as saying that mass is conserved. The continuity equa-
tion states this in terms of velocity: In order to achieve incompressibil-
ity/conserve mass, the velocity ~u for every grid cell has to be such that
the total (negative) flow out of a cell and the total (positive) flow into a cell
cancel each other out. In other words, the divergence of each grid cell has to
be zero. In the next chapter, a method will be presented that removes any
divergence and solves the pressure term of the momentum equation at the
same time.

4.1.3 Dropping Viscosity

Viscosity is a measure for the thickness of a fluid. While it plays an im-
portant role in simulating highly viscous fluids like honey or when mod-
eling very small scale flows, it only contributes very little to the velocity
of an almost inviscid fluid like air. At the velocities that arise when sim-
ulating clouds, its effect is so small that it is common to neglect viscosity
entirely [1], and it is therefore assumed to be zero. Although thus introduc-
ing certain inaccuracies, it has the advantage that the entire diffusion term
of the Navier-Stokes momentum equation drops out, in turn speeding up
the computation. This leaves the simpler Euler equations of incompressible
inviscid fluid motion:

∂~u

∂t
= −(~u · ∇)~u− 1

ρ
∇p+ ~f (3)

∇ · ~u = 0 (4)

4.1.4 Other Quantities

The basic quantities that describe fluid flow are, as shown, its velocity and
pressure. While they completely describe fluid flow, what we are actually
interested in are the different quantities that are submerged in and trans-
ported by the flow. What these (scalar) quantities are depends on the ap-
plication: a smoke simulation such as [5] introduces a scalar smoke den-
sity value as well as a temperature value for each grid cell. For a cloud
simulation, the relevant parameters are temperature, water vapor and con-
densed water, with the latter being the quantity that is finally rendered to
the screen. Abstracting away from what it actually represents, the appli-
cation of the Navier-Stokes (or Euler) equations to any scalar quantity is
straightforward. Let q be a scalar quantity submerged in the fluid flow:

∂q

∂t
= −(~u · ∇)q + κ∇2q + S (5)

26

The similarity to the momentum equation (eq. (1)) is quite obvious. The
first term formulates that the quantity q is transported (or advected) along
the velocity of the fluid. The second term says that q diffuses according
to some constant rate κ, while S stands for any source that adds to the
quantity (such as a chimney or the tip of a cigarette, in the case of a smoke
simulation).

4.2 Thermodynamics

Thermodynamics is the physics discipline that concerns itself with the rela-
tion between energy and its conversion into heat and work, in dependence
on pressure and temperature.

As has been shown in chapter 3, temperature is one of the most impor-
tant quantities in cloud dynamics. The dewpoint, as well as the develop-
ment of the buoyant forces that are responsible for vertical air movements
depend directly on temperature.

4.2.1 Ideal Gases

One of the most important physical laws for the simulation of cloud dy-
namics is the ideal gas law. An ideal gas follows the ideal gas law and we
treat air as such. Although in reality air consists of a mixture of several
different gases. For the purposes of this thesis it will be assumed that the
atmosphere is composed only of water vapor and dry air. Both these com-
ponents are ideal gases[8]. The ideal gas law states the following:

p = ρRdT (6)

p is the pressure, ρ is the density of the gas, and T is temperature. Rd is the
specific gas constant for dry air, defined as 287Jkg−1K−1 [8]. This means
that if either pressure, density, or temperature is constant, the other two are
directly proportional. Since constant density is assumed, temperature has
to decreases with pressure and vice versa.

4.2.2 Temperature Lapse Rate

The stability or instability of the atmosphere (as explained in 3.4) plays
a fundamental role in the cloud formation process. It is specified by the
temperature gradient or temperature lapse rate, often denoted as Γ [8]. In
the cloud model developed for this thesis, the temperature lapse rate is a
user-specified constant that expresses how much the absolute temperature
drops per 100 m, and it is uniformly applied to the entire simulation space.
This constitutes a certain simplification, since in reality the temperature
gradient can vary considerably depending on altitude [9]. In our atmo-
sphere this value varies usually between 0.55 ◦C per 100 m and 0.95 ◦C per

27

100 m , where the former describes an extremely stable, the latter an ex-
tremely unstable atmosphere. The standard atmosphere specifies the mean
temperature lapse rate as 0.65 [9].

Based on the temperature lapse rate and the ground temperature spec-
ified by the user before starting the simulation, an initial temperature dis-
tribution for the simulation space can be computed.

4.2.3 Air Pressure

While the temperature in the atmosphere decreases more or less linearly
with height (at least, this assumption is made in the simulation), air pres-
sure reduces exponentially (see figure 21), as follows from the ideal gas
law. Furthermore, since constant density is assumed, air pressure can be
computed based on temperature only (and a few physical constants). The
formula used here for computing the air pressure was taken from [8]:

p(y) = p0

(
1− yΓ

T0

) g
ΓRd

(7)

y refers to the altitude (in meters), and p0 and T0 refer to the air pressure
and temperature (in Kelvin) on the ground. he former is assumed as 10 kPa
and the latter is a user-supplied constant. Γ is the temperature lapse rate
(see 4.2.2), g is gravitational acceleration (defined as 9.81m/s2) and Rd is
the specific gas constant (see 4.2.1).

The air pressure is needed to compute the potential temperature (see
next section) and is also required to calculate the saturation point of the air.

4.2.4 Temperature

Absolute temperature is a somewhat problematic quantity. According to
the ideal gas law, the temperature depends on the pressure. It is known
however, that air pressure reduces with height. Thus, if one wanted to
compare temperature values at different altitudes, one would always have
to consider the pressure in order to have any measure of energy. A way
around this problem is to use potential temperature instead of actual tem-
perature. The potential temperature θ of an air parcel is defined as the
temperature that it would have if it were moved adiabatically down to sea
level.

θ =
T

Π
= T

(
p̂

p

)κ

(8)

T designates the absolute temperature in Kelvin, p is the air pressure at
the current altitude (in kPa), and p̂ is the air pressure at sea level (which is
approximated as 100 kPa). Π is called the Exner function.

28

Figure 21: The air pressure decreases exponentially with altitude, figure taken
from [16]

By using potential temperature instead of absolute temperature, air parcels
of different altitudes can be compared regardless of the corresponding air
pressure. Moreover, potential temperature is better suited to describe the
behavior of rising air parcels. Air parcels rise adiabatically, which means
that they cool with a rate of 1 K/100 m. However, since the calculation of
potential temperature is based on adiabatic temperature changes, the po-
tential temperature of rising air parcels actually stays constant under adia-
batic temperature changes. Therefore potential temperature is a convenient
quantity to model temperature in the simulation.

4.2.5 Buoyancy

The change in altitude of an air parcel is the result of buoyant forces. If
the density of an air parcel is less than the surrounding air, an upwards
(positive) buoyant force will develop, causing the air parcel to rise until it
reaches an altitude where its surroundings have the same density as itself.
If the parcel’s density is greater, the opposite will occur because a down-
wards (negative) buoyant force develops.

However, this definition for buoyancy can not be applied directly to
this cloud model, because it assumes a constant density. But there is a way
around this problem. The main reason why an air parcel’s density changes
is a change in temperature. An air parcel rises if it is warmer than its sur-
roundings, and it descends if it is colder. Therefore, the development of
buoyant forces is calculated in terms of temperature, or, more precisely, vir-

29

tual potential temperature. By using this measure, the buoyancy increasing
effect of water vapor is also accounted for. Virtual potential temperature is
defined as θv = θ(1 + 0.61qv) [8].

The formula used here in order to calculate the buoyancy is based on
the works of Miyazaki et al. [14] and Harris [8].

B =
θv − θvavg

θvavg

− g · qc (9)

θv is the virtual potential temperature of the current voxel, θvavg refers to
the average virtual potential temperature of the surrounding voxels. The
second term of the equation accounts for the effect of “hydrometeors” in
the air. This refers to all kinds of non-gaseous water particles contained
in the air. These particles are affected by gravity, g (defined as 9.81m/s2),
and thus exert a downward acceleration on the air parcel that counteracts
the buoyancy. The only hydrometeors in this model are water droplets,
expressed as the amount of condensed water qc (in g/kg).

4.2.6 Saturation

Clouds form when the vapor in the air condensates. This depends on tem-
perature, pressure, the amount of vapor contained in the air, and the con-
centration of cloud condensation nuclei. The latter are tiny particles of dust,
ash, or minerals floating in the air. Since in order to condensate, water
needs a surface to adhere to, the amount of condensation nuclei can play
an important role in cloud formation. Without any, air can reach satura-
tion levels of well over 100% relative humidity, while the presence of large
amounts condensation nuclei can lead to condensation well below 100%
saturation. However, in order to keep the model simple, cloud conden-
sation nuclei are not modeled here, and it is assumed that condensation
always sets in as soon as the relative humidity passes 100%. This leaves
temperature, pressure, and vapor content as the contributing factors for
condensation.

The best measure for vapor content in the air is relative humidity. The
water vapor content in this cloud model is specified as a mixing ratio qv.
In order to calculate the relative humidity, the saturation vapor mixing ratio,
qvs, has to be calculated, which is the amount of vapor (per kg of air), that,
at a given temperature and pressure, corresponds exactly to 100% satura-
tion. Then the relative humidity can be calculated as qv

qvs
. The formula

to compute qvs was taken from [8]. It depends directly on pressure and
temperature:

qvs(T) =
380.16
p

exp
(

17.67T
T + 243.5

)
(10)

T is the local temperature in ◦C (which is uncommon, since normally tem-
perature values are defined in Kelvin), and p refers to the air pressure at the

30

current altitude.

4.2.7 Latent Heat

With the help of the saturation vapor mixing ratio, the relative humidity
can be computed and it can thus be determined when condensation oc-
curs. The amount of water that condensates is determined by the water
continuity model presented in the next section. First another important
phenomenon involved in cloud dynamics has to be explained: latent heat.
When vapor condensates, latent energy is released in the form of heat. It
is due to the release of this heat energy that the cooling rate of rising air
parcels decreases once condensation sets in. The temperature in the simu-
lation is modeled as potential temperature, θ, and therefore stays constant
as long as the air is not saturated. In order to account for the release of
latent heat however, θ has to be altered when condensation occurs. This is
done in the following way, based on [8], where dΘ is the change in potential
temperature:

dθ =
−L
cpΠ
· (−C) (11)

L is a constant describing the latent heat released in the vaporization of wa-
ter, 2.501Jkg−1. cp is the specific heat capacity for dry air, another constant
that can be found in the physics literature [8], and its value is 1005Jkg−1K−1.
C describes the condensation rate, a measure that specifies how much con-
densation/evaporation takes place during one time step (see next section).

4.3 Water Continuity

Water in the atmosphere constantly changes its physical state, from gaseous
form to liquid, from liquid to solid, and vice versa. However, the total
amount of water always stays constant. The water continuity model pre-
sented here ensures this. It also models the condensation and evaporation
that result of air becoming over- or undersaturated.

The evolution of clouds is modeled by monitoring the amounts of wa-
ter in its different states contained in the air, and by simulating the state
changes that occur due to motion and heat. These hydrometeors can be
grouped into several categories, based on particle size (if any) and physical
state. Houze [11] defines up to eight different categories, from water vapor
to hail. The problem is that it is difficult and computationally expensive to
keep track of that many categories of water. To make things worse, they
also directly depend on each other. Therefore, a simpler model is required.

The model used here to monitor and simulate the different physical
states of water assumes only two categories: water vapor and cloud wa-
ter, that is, water that has condensed into droplets. The latter represent

31

the clouds. Both quantities are represented as mixing ratios, qv for the va-
por, and qc for the cloud water. The physical processes that link these two
quantities are condensation and evaporation. They are described by a sim-
ple bulk water-continuity model presented by Houze in [11], that was also
used by Harris in [8]. It consists of two simple equations that keep the total
amount of water constant:

∂qv
∂t

= −C (12)

∂qc
∂t

= C (13)

C represents the condensation if C > 0, and evaporation if C <= 0. Both
quantities, qc and qv, are advected by the velocity of the fluid. Thus, taking
into account the advection according to equation (5) and combining both
equations into one, the water continuity is expressed as follows:

∂qv
∂t

+ (~u · ∇)qv = −∂qc
∂t

+ (~u · ∇)qc = C (14)

32

5 Implementation

5.1 Developing the Cloud Model

The cloud dynamics are modeled on a rectangular grid of dimensions dimx+
2, dimy+2, and dimz+2, that divides the simulation space into cube-shaped
voxels of equal size. The two extra spaces in each dimension are required
in order to correctly handle the boundary conditions (see 5.1.3). Translated
to real world dimensions, the simulation space corresponds to a cube of
12x12x12 km. The grid is not explicitly modeled but defined by several
equally sized three-dimensional arrays that contain the values for the dif-
ferent state variables. All state variables are defined at the center of a grid
cell. The model manages and updates a total of five fields that describe the
state of the simulation:

• Velocity and pressure gradient: These two variables result directly from
the Navier-Stokes equations. The three-dimensional velocity vectors
are instances of a Vector3d class.

• Water vapor and cloud water mixing ratios: The two quantities qv and qc
represent all occurrences of water in the the model and they are a con-
sequence of the application of the water continuity model described
in section 4.3.

• Potential temperature: Temperature in the system is represented in terms
of potential temperature, as was described in section 4.2.4.

One step of the simulation involves advection of these variables, comput-
ing buoyancy forces and updating the velocities, calculating condensation
and updating vapor, cloud water, and temperature accordingly, and com-
puting the pressure gradients and ensuring incompressibility.

Before explaining in more detail the different steps of the simulation,
the initial conditions for the simulation have to be explained.

5.1.1 Initial Conditions

Since the simulation proceeds incrementally, the initial conditions have to
be well posed. Also, by specifying different starting conditions, the user is
given the possibility to simulate different scenarios.

The initial conditions that have to be specified before the start of the
simulation concern the temperature and the humidity/water vapor distri-
bution. The fields for the velocity, pressure gradient and cloud water are
all initialized to 0. In order to compute an initial temperature distribu-
tion, the temperature lapse rate and the ground temperature have to be set.
Based on these two values, the absolute temperature for each altitude (as
defined by the grid spacing) is computed and stored in a look-up table of

33

size dimy+2. These values are then used to calculate an equally sized look-
up table for the air pressure according to equation (7). Now that the abso-
lute temperature values and air pressure are known, the field containing
the potential temperature values can be initialized according to equation
(8).

The initial water vapor distribution also needs to be set because an at-
mosphere devoid of any humidity would not be realistic. Therefore the
user specifies a value for relative humidity, that is then translated into a
value between 1 and 0. With the help of the values from the absolute
temperature look-up table used before, the saturation vapor mixing ratio
(dependent on altitude) can be computed according to equation (10). The
initial water vapor mixing ratios are then obtained by multiplying the sat-
uration vapor mixing ratio with the user-specified humidity value.

5.1.2 Solving the Navier-Stokes Equations

The Navier-Stokes equations and, derived from them, the Euler equations,
have been presented in chapter 4. The question is now how to discretize
and numerically solve them on the computer. Since analytical solutions
typically only exist for a few simple configurations, a numerical integration
technique is used to solve them incrementally [8]. The algorithm used here
is based on the works of Foster and Metaxas [6] and Stam’s “Stable Fluids”
[20], as well as the source code published by Stam in [21].

The Euler equations representing the fluid dynamics are a sum of sev-
eral terms: advection, pressure term, and external forces. As such, the easi-
est way to find a solution is to split them up and solve each term separately.
The outcome of one step can then be used as input for the following one.
One advantage of this approach is that specialized methods for each step
can be applied, thus speeding up the calculations and making the simula-
tion more stable [1].

The simulation starts in an initial configuration, t0. Based on this con-
figuration, the algorithm iterates through advection, external force applica-
tion, has to deal with the pressure term and enforce conservation of mass
(for the cloud simulation, additional steps will be needed) to produce a new
configuration at time t+∆t. This then serves as a starting point for the next
iteration. As a consequence, we need two fields/arrays for each of the state
variables: one for the results of the previous time step, and another that
holds the intermediate results of the iteration that is currently being calcu-
lated. At the end of each iteration, they are swapped, and the fields for the
current state values are reset. As a result of this double storage, the mem-
ory requirements can be quite high, depending on the dimensions of the
simulation space.

34

Solving the Advection Term The first step to solve is the advection step,
where the velocity transports itself and the other quantities through the
fluid. Although we are dealing with scalar quantities (heat, vapor, con-
densed water) as well as vector valued ones (velocity), the advection algo-
rithm is essentially the same for both, since when advecting velocity, the x-,
y-, and z-components can be dealt with separately [1].

In order to advect a quantity q through the velocity field, the advection
routine requires as input a velocity field (~u), a time step size (∆t), and the
current field quantity (qt). The routine returns a new field qt+∆t, as the
quantity q is advected through the velocity field over a time step ∆t.

One of the fastest and easiest approaches to solving partial differential
equations is the finite difference method.

The most straightforward approach to solving the advection step is to
simply write out the partial differential equation:

∂q

∂t
= −(~u · ∇)q (15)

Using an explicit forward Euler integration scheme for the time deriva-
tive and finite central differences for the spatial derivative (see figure 20),
the new value for q at grid cell i, j, k would be calculated as follows (in one
dimension):

qt+∆t
i,j,k = qti,j,k −∆tu

qti+1,j,k − qti−1,j,k

2∆x
(16)

This approach follows the same idea as moving a particle around: mul-
tiplying the position of the particle at time t with the velocity times the
timestep∆t yields the new position at time t+ ∆t.

However, this method has the significant drawback that it is unstable,
meaning that the simulation will “blow up” if the magnitude of the velocity
is greater than one grid cell [8][20]. This can happen easily if a large time
step is chosen, if the size of the grid cells is very small, or if large velocities
develop in the system.

A solution for this problem was found by Jos Stam in 1999, presented in
his paper “Stable Fluids” [20], where he describes an implicit semi-Lagrangian
advection scheme that is unconditionally stable for any time step. The basic
idea is to invert the problem and use methods borrowed from particle sys-
tems to solve the advection term. It works equally well for the advection of
velocity as for scalar values.

The basic idea is as follows: if the fluid were represented by particles,
the advection step would be very easy to solve. Multiplying the position of
the particle at time t with its acceleration times the time step∆t would then
yield the new position at time t + ∆t. However, our fluid is not defined
by particles but by a fixed grid, and the state values are all defined at the
centers of the grid cells. Therefore we assume that there is a particle for

35

each grid cell that ends up exactly in the middle of it after a time step. This
pseudo-particle can then be traced backwards in time (this is the reason why
it is called an implicit method) by multiplying the grid position with the
negated velocity times the time step. It can then safely be assumed, that
the values of the state variables at the backtraced particle position will be
the values at the current grid point. Of course, one such backtraced particle
will almost never end up exactly at the center of a grid cell, where the state
variables are defined. In that case, the values are interpolated from the
neighboring cells. Figure 22 demonstrates this process graphically in two
dimensions.

Figure 22: Tracing a pseudo-particle backwards through the velocity field and in-
terpolating between the surrounding cells(left), copying the interpo-
lated value to the grid position (right)

Stam [20] has shown that this advection scheme is unconditionally sta-
ble for any time step. Since it is using a Lagrangian concept (particles) on
an Eulerian grid, this advection scheme is called semi-Lagrangian.

Adding Velocities The calculation of the force term ~f of the Navier-Stokes
equations is straightforward. The velocity vectors that are to be added are
stored in a field of the same dimensions as the velocity field. The method
then simply iterates through all grid cells and adds the new values to the
existing velocities, multiplied by the time step. Adding scalar quantities is
done in the same way, with the corresponding scalar fields.

Enforcing Mass Conservation and solving the Pressure Term The ad-
vection step and (as we will see later) the buoyancy and water continuity
computations all alter the velocity field. The result is typically a velocity
field that is not free of divergence, thus incompressibility/conservation of
mass, as required by the continuity equation, cannot be guaranteed. As a
result, another step is required that transforms the divergent velocity field

36

into a divergence-free velocity field. Visually, this step is largely responsi-
ble for the swirls and vortices that fluids exhibit.

The method used here was developed by Stam [20]. It is based on a
mathematical concept called the Helmholtz-Hodge decomposition. It states
that any vector field ~w can be uniquely decomposed into the sum of two
other vector fields: a divergence-free vector field ~u and the gradient of a
scalar field (which is another vector field, see figure 20),∇p:

~w = ~u+∇p (17)

This concept is actually the application of a fundamental idea from vec-
tor calculus to vector fields: A vector ~v = (x, y, z) can also be written as
~v = x~i + y~j + z~k, where ~i,~j,~k are the unit basis vectors representing the
coordinate axes [8].

By rearranging equation (17), we can see how to make the intermediate
and divergent velocity field divergence-free:

~u = ~w −∇p (18)

By subtracting the pressure gradient from the divergent velocity field, we
obtain a divergence-free velocity field ~u, thus satisfying the incompressibil-
ity condition as postulated by the continuity equation. Figure 23 shows this
concept graphically.

Figure 23: The divergence-free velocity field (left) consists of a divergent veloc-
ity field (middle) minus the pressure gradient field (right), courtesy of
Stam [21]

Before showing how to calculate the pressure gradient ∇p, let us see
how the Helmholtz-Hodge decomposition can be used to solve the pres-
sure term of the momentum equation (equation (1)): Based on the Helmholtz-
Hodge decomposition one can define an operator P that projects a diver-
gent velocity field ~w onto its divergent-free component ~u [8]. Applying P
to both sides of equation (17) yields:

P ~w = P~u+ P∇p (19)

However, by definition of P , P ~w = ~u, and therefore P∇p = 0. By apply-
ing this operator to the momentum equation (equation (1)) we obtain one

37

compact formula that unites both Navier-Stokes equations into one single
formula for the velocity:

∂~u

∂t
= P (−(~u · ∇)~u− 1

ρ
∇p+ ν∇2~u+ ~f) (20)

Since P∇p = 0, the pressure term drops out. Keeping in mind that the
diffusion term also drops out (as shown in chapter 4.1.3) the one equation
that is left describing a fluid simulation step is:

∂~u

∂t
= P (−(~u · ∇)~u+ ~f) (21)

The question is now, how to compute the pressure gradient∇p. Apply-
ing the divergence operator to both sides of equation (17) yields

∇ · ~w = ∇ · (~u+∇p) = ∇ · ~u+∇2p (22)

Since the continuity equation requires that ∇ · ~u = 0, this simplifies to the
following Poisson equation:

∇2p = ∇~w (23)

There exist numerous methods to solve this equation. The method used
in this thesis follows the one used by Stam in [21]. It is a Gauss-Seidel
relaxation technique. Although there are faster methods, this method is
fairly easy to implement.

Vorticity Confinement A characteristic quality of fluids are the small scale
swirls and vortices, and, as mentioned before, enforcing the incompress-
ibility of the fluid is the step that is largely responsible for creating them.
However, the fluid and thus the clouds are simulated on a relatively coarse
grid. Also, the advection method implemented here, although being un-
conditionally stable, leads to dissipation, because the interpolation step ef-
fectively takes a weighted average of values. Small scale details do not
show up, because the advection step basically works as a low-pass filter
(essentially this is what makes it so stable). There are several solutions to
solve this problem. One possibility would be to randomly introduce rota-
tional turbulences into the velocity field. However, this does not guarantee
that the vortices are created in the right places and even viewers without
a physical background notice it as unrealistic [18]. Another method, pre-
sented by Fedkiw et al. in [5], is called “Vorticity Confinement”. The basic
idea of this method is to find out, where these small scale turbulences and
vortices have been damped out and then artificially add this lost energy
back into the system [5]. Vorticity confinement was implemented in this
thesis.

38

The first step in the calculations is to find out where vorticity occurs:

~ω = ∇× ~u (24)

, where ~ω designates a vector field describing the rotation of the velocity
field ~u, or in other words, the vorticity.

Based on the vorticity field ~ω, a gradient field containing the normalized
vorticity location vectors ~N are computed, that point from lower vorticity
concentrations to higher vorticity concentrations [5] :

~N =
η

|η|
, (η = ∇|~ω|) (25)

The gradient field thus contains normalized vectors, that point in the di-
rection of the strongest increase in vorticity [18]. In order to increase the
vorticity, a force ~f perpendicular to the vorticity has to be added:

~f = εδx(~N × ~ω) (26)

ε is a scaling parameter and δx corresponds to the grid scale. This force is
then added to the velocity field just like any other.

5.1.3 Thermodynamics and Water Continuity

The implementation of the buoyancy calculation (4.2.5), condensation (4.3)
and latent heat (4.2.7) are basically the literal translation of the presented
formulas into code. Each one of the three methods iterates through all vox-
els and applies the corresponding formula.

Water Continuity The water continuity is modeled by advecting qc and qv
through the velocity field and by applying equation (14). The new respec-
tive mixing ratios are calculated as follows [8], with q′v and q′c describing
the intermediate values after the advection step:

∆q′v = −∆C = min(qvs − q′v, q′c) (27)
qv = q′v + ∆q′v
qc = q′c + ∆q′c

This means that all the vapor qv that condenses at a fluid cell is added
to qc and vice versa. ∆C refers to the amount of condensation during one
time step. The values are stored in a three-dimensional array of the same
size as the simulation space. qvs is the saturation mixing ratio and com-
puted according to formula (10). This equation requires the the absolute
temperature T , which is computed with equation (8) (by solving for T and
converting to ◦Celsius), as well as the air pressure (equation (7)).

39

Latent Heat Based on the results for the condensation rate C, the latent
heat release can be computed and the potential temperature θ is updated
accordingly. Since the potential temperature also gets advected, the full
temperature update is calculated as follows, according to equation (11), and
with θ′ referring to the intermediate result after advection:

θ = θ′ +
−L
cpΠ
· (−C) (28)

Buoyancy The buoyancy is calculated exactly as described by equation
(9). The resulting values are stored in an array, similar to the condensation
rate. Although buoyancy adds velocity, the buoyancy values are stored as
scalar values and not as three-dimensional vectors. This is possible because
the buoyancy only exerts a force in the vertical direction (the y-component
of velocity). Since the other two components would be zero anyway, buoy-
ancy is stored as a scalar value. They buoyancy values are later converted
into appropriate vectors when they are added to the velocity field.

5.1.4 Boundary Conditions

The Navier-Stokes describe the processes that take place in the interior of a
fluid. But the space in which it is simulated is limited, and therefore special
care has to be taken at the limits of the simulation space.

As mentioned before, the voxel grid describing the simulation space
disposes of extra grid cells in order to handle the boundary conditions, one
cell in every direction. In this way, the operations that rely on values from
neighboring grid cells can be carried out correctly. However, the boundary
cells have to contain sensible values.

At the bottom and at the top of the simulation space, the boundaries are
assumed to be solid. This might appear as an odd choice for the top bound-
ary because in reality there exists no such solid boundary. Nevertheless, as
explained in section 3.4, the tropopause and the ozone layer work in fact as
a boundary as far as rising air parcels are concerned.

In terms of velocity, a solid boundary means that the velocity inside the
boundary cell has to be zero. Also it has to be made sure that nothing flows
into or out of it. For the velocity, this can be achieved by setting the normal
component of the velocity to zero, ~u · ~n = 0. In this case the normal vector
to the solid boundary is simply the y-axis.

The pressure gradient also has to be zero at a solid boundary. In order
to achieve this, the pressure values at a solid boundary is set equal to the
closest fluid cell.

At the side boundaries, the velocity is set to zero, or, if wind is activated,
to the specified wind speed. The potential temperature and water vapor
mixing ratio are set to the initial, altitude dependent values.

40

5.1.5 Simulation Loop

The entire simulation loop consists of a total of nine steps. Each one of the
steps iterates once through all voxels.

• Advection of the velocity

• Advection of θ, qv, and qc based on the new velocity field

• Add values from sources (wind, heat sources)

• Compute and add vorticity confinement forces

• Compute and add buoyancy

• Update qv and qc according to the water continuity model

• Update θ

• Set boundary values

• Ensure Incompressibility

5.2 Rendering

The outcome of the simulation loop are several fields containing the state
variables. The most important one is the cloud water mixing ratio, qc, as
it represents the condensed water and thus the clouds. However, since the
aim of this thesis is also to visualize other aspects involved in the cloud for-
mation process, the other fields, especially the velocity field and the tem-
perature field, also have to be taken into account.

5.2.1 Rendering the Clouds

The biggest difficulty in rendering clouds is accounting for the complex
interactions between light and water droplets. Complicated phenomena
such as light scattering and self-shadowing have to be simulated, thus dra-
matically increasing the computation time. The goal of this thesis is thesis
however, is not to achieve photo realistic cloud images, but to visualize the
physical processes involved. With this in mind, and also in an effort to in-
crease frame rates and thus interactivity, it was decided not to include a
lighting model into the simulation.

The chosen rendering method is very basic. In turn, it is also very fast,
and despite its visual simplicity, it is still able to capture the dynamics of
billowing clouds. The actual data that has to be rendered to represent the
clouds is provided in a three-dimensional array containing the cloud wa-
ter mixing ratios for every voxel of simulation space, qc. The clouds are

41

rendered as simple white quadratic polygons (Quads), that are oriented to-
wards the front. Each one is specified by four vertices, which correspond to
the midpoints of the four nearest voxels. The cloud water mixing ratios de-
fined at these points are then interpreted as opacity values, specified as the
alpha component of the rgba-color. While rendering, the hardware inter-
polates linearly between the values provided for the corners of each quad.
The basic principle is shown in figure 24.

Figure 24: This image shows how the clouds are rendered (in 2D). The red dots
correspond to the centers of the grid cells.

Using this rendering method, it is very important that the algorithm
proceed from back to front. Otherwise, only the foremost “slice” would be
rendered, covering all the others behind it.

5.2.2 Visualizing Velocity

The clouds that appear in the simulation are the result of the velocity trans-
porting vapor, water, and temperature through simulation space. There-
fore, in order for the user to gain an understanding of the processes in-
volved, the velocity field has to be visualized in some way. The velocity
field contains a 3-dimensional vector for every voxel. Each one is drawn as
a straight line originating from the voxel centers. The length of each line
represents the magnitude of the velocity vector. However, drawing the ve-
locities of the entire three-dimensional field would not be useful, because
there would simply be too many to deduce any meaningful information.
Instead, only the velocities of one vertical slice of the simulation space are
rendered at a time. The user interface lets the user decide which slice to
render, and allows to change it in real time and while the simulation is run-

42

ning. In this way, the vertical air movements that are so fundamental in
cloud formation can easily be recognized. As a further visual help, colors
are used to differentiate between upwards (red) and downwards velocities
(white). Upon experimenting with this technique, it turned out that the
velocities that develop in the system are usually very small. Therefore a
scaling factor was introduced in the rendering routine in order to better
recognize high-velocity areas.

5.2.3 Temperature

Another important quantity to be visualized is the temperature. Similar
to the velocity, the temperature distribution of the atmosphere is also pre-
sented as a vertical slice through simulation space. Just as with the velocity
representation, the active slice can be moved back and forth along the z-axis
of the simulation space.

The temperature is depicted in false-colors. Contrary to the simulation,
the temperature measure used here is the absolute temperature, and the
values are obtained from the potential temperature values using equation
(8). Potential temperature is not visualized directly because, as explained
above, it differs only slightly throughout the atmosphere.

The colors are stored in a look-up table that is created before the start
of the simulation. It contains 200 color values that are obtained by respec-
tively incrementing and decreasing the red, green, and blue components of
the color. The resulting color values thus gradually change from magenta
to red, orange, yellow, green, cyan, and blue, in that order. These colors are
then mapped to the temperature range of the atmosphere once the simula-
tion is initialized.

5.3 User Interface

The user interface was developed with QT, version 4.4.3. The reasons for
using this toolkit are that it is free (for non-commercial applications), its
platform independence, and the ease of integrating it with OpenGl. The
goal when designing the interface was to make it as intuitive as possible.
However, given the big amount of parameters that enter into the simula-
tion, a basic understanding of cloud formation is still required to under-
stand the significance of every parameter. It was therefore decided to facil-
itate the use of the application by letting the user choose from a series of
preset scenarios. As this is only optional, advanced users can still change
all the parameters manually.

The interface is divided into three areas. The biggest part is taken up
by the OpenGl window displaying the simulation. Directly below it are the
technical controls for the simulation, while the entire right side is reserved

43

for the controls that change the parameters used in the simulation. The
different visualization options are also found in this area.

Figure 25: The user interface

Technical Controls The technical controls comprise a series of buttons
that let the user start, pause, and reset the simulation, or advance it one
step at a time. Further buttons are supplied that rotate the camera and set
the time step size to change the speed of the simulation. A counter on the
far right keeps track of the number of iterations computed.

Simulation Parameters The topmost section offers the possibility to se-
lect from a list of different scenarios. By choosing one scenario, all the other
parameters are set accordingly and the simulation is reset.

Directly below are the controls to set the initial conditions for the simu-
lation space. They include the ground temperature, temperature lapse rate,
and relative humidity. Changing any of these parameters requires resetting
the simulation, which is done with the button below.

The following section contains technical parameters that do not corre-
spond to any physical quantity, but that are used as scaling factors for the
simulation. They are necessary to account for inaccuracies resulting from
the applied cloud model. This concerns mostly the buoyancy (as will be ex-
plained later). The other factor scales the vorticity confinement forces that
are applied to the velocity field.

44

Below the technical parameters is the section that lets the user set heat
sources at ground level. They are required for the formation of convective
clouds (see 3.5.2). The idea behind this is to simulate the heated ground
surfaces that lead to buoyancy and later to cumulus clouds. The user is
required to set these sources by hand by clicking and dragging the mouse
inside the OpenGl window and thus gains a certain control over where the
clouds will appear later on. The 2D window coordinates of the mouse posi-
tion are transformed into 3D world coordinates by reading the depth buffer
under the mouse cursor and subsequently feeding them to an unproject-
routine supplied by OpenGl that effectively reverses the steps of the ren-
dering pipeline. The resulting 3D-coordinate is then used to calculate the
corresponding grid cell below the mouse cursor. Selected cells are rendered
as red rectangles.

The strength of the heat sources is also set in this section. The value
specified here is then added at every time step to the grid cells that corre-
spond to the user-defined heat sources.

In the next section the variables relating to wind can be set. In order to
keep the interface as simple as possible, a wind direction cannot be speci-
fied and any wind therefore always blows in from the left side of the sim-
ulation space. What can be changed, however, is the wind speed, specified
in meters per second. This value is then scaled based on the grid resolution
and the chosen time step, and the result is added to the leftmost grid cells
of the simulation space at every iteration.

Two other options allow changing the properties of the wind. The first
one tries to simulate the fact that wind speeds in higher altitudes are often
much higher than near the ground. If this option is chosen, the specified
wind speed refers to the highest wind speed, applied to the topmost layer
of the simulation space. The values for the lower altitudes are linearly in-
terpolated down to zero at ground level.

The last checkbox assigns a humidity value to the incoming winds. This
is important for the development of stratus clouds. The specified humidity
value is added to the existing vapor values in the leftmost fluid cells.

The buttons on the bottom end of this section of the user interface allow
to change between the different visualization options clouds, velocity, and
temperature, as described above. The slider widget on the right is used to
specify the z-coordinate for the temperature and velocity representations.

45

6 Results

This chapter will present and discuss the results of the simulation.

6.1 Convective Clouds

The user gets to choose from a selection of preset scenarios that represent
different atmospheric conditions. The first two simulate the formation of
convective clouds, under either stable or unstable conditions. At the begin-
ning, heat sources must be placed on the ground to simulate heated terrain
that leads to buoyancy.

The set of images in figure 26 shows what happens in the simulation
under stable conditions. The temperature lapse rate was set to 0.60 and
the humidity to 50%. The images show the clouds and the corresponding
velocity field after 340 and 760 time steps. The grid resolution used in the
creation of these images was 32x32x32:

As the sequence of images in figure 26 shows, the clouds only develop
slowly. It can also be seen that clouds only develop where strong upwards
velocities are present, as denoted by the long red lines in the velocity field.

The following series of images shows how cumulus clouds develop in
the simulation under unstable conditions. The temperature lapse rate was
set to 0.75 and the strength of the heat sources was increased. Screenshots
were taken after 300 and 600 iterations.

As the images show, the results obtained with an unstable atmosphere
differ quite considerably from the first set of images. As can be expected,
the clouds develop much more rapidly and they grow much higher, be-
cause the unstable atmosphere encourages vertical air movements. The
mushroom shape of these clouds comes into being as the rising air finally
reaches an altitude of equal temperature. Since the air is not warm enough
to rise further, it is pushed aside by further air masses coming from below.
This behavior is somewhat consistent with the shape that thunderstorm
(cumulonimbus) clouds often show, however not in this magnitude.

Upon experimenting with the application, it could be observed that the
cloud simulation reacts very strongly to changes in the temperature lapse
rate. While almost no clouds at all form when it is set to 0.6 and below, the
clouds grow and rise almost unrealistically fast with values over 0.7. This is
due to the fact that the specified lapse rate is applied throughout the entire
(simulated) atmosphere, while in reality, unstable conditions usually only
form up to a few kilometers above the ground.

Another factor that strongly influences the cloud growth is the strength
of the heat sources that are specified by the user. The effect of setting the
heat sources too strong can be observed in figure 27: Due to the strong heat
sources, the buoyancy and the resulting upward velocities become very
high. Upon reaching the condensation level, the upward force is even in-

46

Figure 26: Cumulus clouds developing under stable conditions, and the corre-
sponding velocity fields. Images were taken after 340 iterations (left)
and 760 iterations (right). The bottom image shows the temperature
distribution.

creased because latent heat is released. As a result, the air rises unrealisti-
cally fast.

However, if the strength of the heat sources is set very low, another un-
pleasant effect may occur. As the cloud begins to form, whole parts of it
may oscillate between cloud and no cloud from one frame to another. This
behavior can be explained by taking a look at the water model and the
latent heat: when the vapor content in one fluid cell barely reaches satura-
tion, a small amount of vapor condensates into cloud water, which is then
rendered after the simulation loop finishes. However, the condensation
process also released latent heat. But this heat is not added to the simu-
lation until the next iteration. When it finally is added, it raises the tem-
perature in the fluid cell enough to become undersaturated, and therefore
the cloud water evaporates again, which in turn lowers the temperature.

47

Figure 27: Cumulus clouds developing under unstable conditions, and the corre-
sponding velocity fields. Images were taken after 300 iterations (left)
and 600 iterations (right).

Because of the lower temperature, the vapor content becomes enough to
start condensation again, and thus another circle begins. It was attempted
to remedy this problem in the rendering routine by averaging the rendered
cloud water values over two frames, but the problem still persists.

6.2 Stratus Clouds

Stratus clouds are one of the options in the preset scenarios. They can also
be created “by hand” by activating the wind and setting an adequate hu-
midity value for the wind.

The following images where created on a 40x40x40 grid. The wind ve-
locity was set to two meters per second and the humidity of the wind to

48

20%.

Figure 28: Stratus clouds develop as humid air is blown in from the boundary of
the simulation space.

Figure 28 shows a stratus cloud and the corresponding velocity field
created with this method. From an aesthetic point of view, it seems strange
that the clouds just appear out of nowhere. However, there is no other
way to simulate them as the simulation space is limited. The reason why
the velocity field (figure 28) shows some buoyancy is that the incoming
humidity condensates, thus releasing latent heat.

It has to be noted that in conjunction with wind, instabilities in the ve-
locity field may occur. Since these instabilities begin always at the limits
of the simulation space, it was concluded that they are caused by badly set
boundary conditions.

6.3 Performance

Performance is always a weak spot in cloud and fluid dynamics simulation,
due to the three-dimensional voxel grid. Performance drastically decreases
when larger grid sizes are chosen. While a 10x10x10 grid only contains
1000 voxels, this number rises to 64000 on a 40x40x40 grid. The routines
that solve the dynamics equations have to iterate several times through all
voxels for each step of the simulation. On the other hand, the results of
the simulation become more detailed the higher the grid resolution is set.
As a consequence, a balance has to be found between performance (which
usually varies depending on the machine that is used) and detail.

The simulation developed in this thesis achieves calculating one step
on a 60x60x60 grid in about one second on a laptop computer containing a
Pentium Mobile processor with 1.7 GHz and a Radeon 9600 graphics board.
On a 30x30x30 about 8 iterations per second are calculated. This shows that
the performance of the application changes linearly with the total number
of grid cells.

49

7 Conclusion and Future Work

7.1 Summary

The goal of this thesis was to develop an interactive cloud simulation based
on physical laws from fluid and cloud dynamics that can be used to visu-
alize the physical processes involved in the cloud formation process.

Chapter 2 showed that a great number of cloud modeling methods al-
ready exist, both procedural and physically motivated. Since the simula-
tion developed in this thesis is based on computational fluid dynamics, the
most influential works in this field in relation to computer graphics were
also identified.

Next, the cloud formation process in the atmosphere was explained,
demonstrating the connections between air pressure, temperature and hu-
midity. The temperature distribution of the atmosphere was identified as
the most significant factor in cloud formation, before two different kinds of
cloud classifications were introduced.

The following chapter was dedicated to formulating the previously de-
scribed cloud formation process in terms of physics. It presented the Navier-
Stokes equations of incompressible fluid motion as the method of describ-
ing the movement of air masses in the atmosphere and explained how they
can be simplified. Furthermore, this chapter was used to introduce con-
cepts from thermodynamics that are necessary for the description of cloud
dynamics, and to present a water continuity model that defines the state
changes of water in the atmosphere. It was also explained where and how
the presented concepts abstract from reality.

In chapter 5, it was first described how the cloud model was developed
based on the concepts evaluated before, identifying the temperature, water
vapor, cloud water, and velocity as the state variables necessary for a cloud
simulation. Next, the unconditionally stable implicit semi-Lagrangian method
for the solution of the Navier-Stokes equation was presented, and it was ex-
plained how the equations for the water continuity, latent heat, and buoy-
ant force computations are solved. All the steps were then summarized and
put into context by describing the simulation loop that is executed for ev-
ery step of the cloud simulation. In the following, details were given about
the simple rendering method for the clouds, and the visualization methods
for the velocity field and the temperature were evaluated. Finally, the user
interface that controls the parameters of the simulation was explained.

Chapter six showed the results of the simulation of convective and stra-
tus clouds and commented on the performance of the system.

50

7.2 Limitations of the Proposed Cloud Model

The cloud model proposed in this thesis also shows some points that are
unrealistic. This is mostly due to the assumptions and simplifications made
concerning the physics model, but also due to the rendering method. The
following section addresses these limitations and suggests some possible
methods of solutions that may be the goal of further research in the future.

7.2.1 Visual Quality

The rendering model was kept very simple, mostly as a consequence of
trying to achieve high frame rates. The clouds are only rendered as white
quadrilaterals, with differing degrees of translucency. Not only does this
method fail to capture the interesting interactions between clouds and sun-
light, but it also hides the fine details and the interesting three-dimensional
structures that are supplied by the simulation. By consequently exploiting
the computational power of graphics hardware, more advanced rendering
methods may be possible without sacrificing too much performance.

Another drawback of the rendering method is that it does not differ-
entiate between clouds consisting of water droplets, ice crystals, or a com-
bination of the two. In reality they show great differences in appearance.
However, even if the rendering method could differentiate between differ-
ent cloud types, the water model would first have to be adjusted.

7.2.2 Physical plausibility

Most of the limitations concerning realism result from the simplified physics
model. The most significant drawbacks are due to the water continuity
model.

The water model applied here only knows two occurrences of water
in the atmosphere, vapor and cloud water. Therefore rain cannot be sim-
ulated. As a consequence, clouds can grow much larger than in reality.
When in reality a large cloud slowly disappears as it looses its humid-
ity because of rain, in the simulation, the cloud persists and keeps grow-
ing. More advanced water models could be obtained from atmospheric
sciences. However, introducing more physical states for the water in the
simulation would also require to add further steps to the simulation loop
as more state changes would have to be simulated. A solution could be
found by, again, relying on graphics hardware to perform the cloud dy-
namics calculations. As the work of Harris shows, it is possible to simulate
clouds on the GPU.

51

7.2.3 Final Conclusion

This thesis shows that it is possible to achieve a physics-based cloud simu-
lation at interactive rates. It can also be used to visualize the most impor-
tant aspects of cloud formation, and the results are physically plausible. All
this, however, comes at the cost of a simplified physical model and a fairly
basic rendering method.

52

References

[1] R. Bridson. Fluid Simulation for Computer Graphics. A K Peters, Ltd.,
2008.

[2] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita. A sim-
ple, efficient method for realistic animation of clouds. In Proceedings of
SIGGRAPH 2000, pages 19–28, 2000.

[3] D. S. Ebert. Interactive cloud modeling and photorealistic atmospheric
rendering. In SIGGRAPH Course. The Elements of Nature: Interactive and
Realistic Techniques. Section 6, 2004.

[4] P. Elinas and W. Stuerzlinger. Real-time rendering of 3d clouds. Journal
of Graphics Tools, 5, 2000.

[5] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In
SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, page pages 1522, 2001.

[6] N. Foster and D. Metaxas. Realistic animation of liquids. In Graphical
Models and Image Processing, pages 23–30, 1995.

[7] G. Gardner. Visual simulation of clouds. In Proceedings of SIGGRAPH
’85, 1985.

[8] M. Harris. Real-Time Cloud Simulation and Rendering. PhD thesis, Uni-
versity of North Carolina at Chapel Hill, 2003.

[9] H. Häckel. Meteorologie. Verlag Eugen Ulmer, 5 edition, 1985.

[10] H. Häckel. Wetter und Klimaphänomene. Verlag Eugen Ulmer, 2 edition,
2007.

[11] R. A. Houze. Cloud Dynamics. Academic Press, 1993.

[12] J. Kajiya and B. von Herzen. Ray tracing volume densities. In Proceed-
ings of SIGGRAPH 1984, 1984.

[13] A. Lastra and M. Harris. Real-time cloud rendering. In Computer
Graphics Forum. Blackwell Publishers, 2001.

[14] R. Miyazaki, Y. Dobashi, and T. Nishita. Simulation of cumuliform
clouds based on computational fluid dynamics. In Proceedings EURO-
GRAPHICS 2002 Short Presentations, 2002.

[15] R. Miyazaki, S. Yoshida, Y. Dobashi, and T. Nishita. A method for
modeling clouds based on atmospheric fluid dynamics. In Proceedings
Pacific Graphics, page pages 363372, 2001.

53

[16] D. Overby. Interactive physically-based cloud formation. Master’s
thesis, Texas A&M University, 2002.

[17] K. Perlin. Hypertexture. CGraphics, 23, July 1989.

[18] M. Petrasch. Ein wirbelpartikel ansatz für rauch, feuer und explosio-
nen, 2005.

[19] J. Schpok, J. Simons, D. Ebert, and C. Hansen. A real-time cloud mod-
eling, rendering, and animation system. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, 2003.

[20] J. Stam. Stable fluids. In Proceedings of SIGGRAPH 1999, pages 121–
128, 1999.

[21] J. Stam. Real-time fluid dynamics for games, 2003.

[22] N. Wang. Realistic and fast cloud rendering. Journal of Graphics, GPU,
& Game Tools, pages 21–40, 2004.

54

