
Integrating TwoUse and OCL- DL

Studienarbeit

in computer science

presented by

David Saile

Advisor: Fernando Silva Parreiras, FB4

Koblenz, january 2010

Contents

1 Introduction .1
1.1 Context 1
1.2 Problem 1
1.3 Motivation 2
1.4 Scope of this work 2
1.5 Overview 2

2 Background .3
2.1 Introduction 3
2.2 The example model 3
2.3 The Object Constraint Language OCL 4

2.3.1 Overview 4
2.3.2 Basic elements in OCL 5
2.3.3 Relation to the corresponding model 5
2.3.4 Operations 5
2.3.5 OCL in eclipse 6

2.4 TwoUse. 7
2.4.1 Motivation 7
2.4.2 Problem 7
2.4.3 Idea 7
2.4.4 OCL-DL 9

3 First approach: Extending the EMF OCL implementation 13
3.1 Introduction 13
3.2 The OCL interpreter 13
3.3 Adding custom operations 14
3.4 Evaluation on the M1 level 16
3.5 Adding custom operations to a model and making them available

at runtime 16
3.5.1 Adding OCL expression to model elements 16
3.5.2 Parsing 17

v

vi Contents

3.5.3 Enable evaluation at runtime 20
3.6 Adding a metamodel binding for TwoUse 20

3.6.1 Abstract approach 20
3.6.2 Classes to implement 21
3.6.3 Concrete 21

3.7 Problems 23

4 The second approach: Extending the Dresden OCL toolkit. 25
4.1 Introduction 25
4.2 Design. 25
4.3 Adding metamodel binding 26

4.3.1 Problem binding the TwoUse metamodel 26
4.3.2 OwlAny 26

4.4 Adding OCL-DL operations. 27
4.4.1 Concrete implementation of owlIsInstanceOf 27
4.4.2 Testing 29

5 Comparison of EMF and Dresden OCL toolkit . 33
5.1 Introduction 33
5.2 Metamodel binding 33
5.3 Adding operations to the OCL standard library 33
5.4 Addressing questions 34
5.5 The plug-ins 34

6 Conclusion .. 37
6.1 Solved Problems - Added functionalities 37

6.1.1 Problems 37
6.1.2 Added functionalities for EMF 37
6.1.3 Added functionalities for dresden 38

6.2 Future Tasks 38
6.3 Conclusion 38
References 39

Chapter 1
Introduction

Abstract This section introduces the context of this work. We mentionthe problem,
and the motivation that led to the start of this research. Finally a short overview over
the scope of this work and the remaining chapters is given.

1.1 Context

OCL [1] is a modeling language to create and enhance software models. In general,
OCL is used in combination with modeling languages like theUnified Modeling
Language (UML)[2] because every OCL expression is based on a type, defined
in a diagram. Formally designed only for UML, OCL may now be used with any
Meta-Object Facility (MOF [3]) Object Management Group (OMG [4]) metamodel,
including UML. Information like specific constraints and behavioral specifications
for methods of UML classes is not expressible by UML. The taskof OCL is to
add information to object-oriented models, that is not expressible by the diagrams
themselves. The information added to a model by OCL is expressed in application-
specificconstraints. Further, OCL can be used to specify completely programming
language independent expressions on models, that can be evaluated by an interpreter
over a specific model instance.

1.2 Problem

In recent development, attempts have been made to integrateUML and OWL into
one hybrid modeling language, namely TwoUse [5]. This aims at making use of the
benefits of both modeling languages and overcoming the restrictions of each. In or-
der to create a modeling language that will actually be used in software development
an integration with OCL is needed. This integration has already been described at
the contextual level in [6], however an implementation is lacking so far.

1

2 1 Introduction

1.3 Motivation

The integration of TwoUse and OCL allows the software developer to make use
of the predefined OCL standard library with several predefined operations. Since
TwoUse introduces the integration of ontologies into UML modeling, it is obvious
to also make use of the benefits provided by the ability of ontologies to query a
reasoner. A reasoner can infer logical consequences from a model, and therefore
return information, not explicitly modeled in the diagram.This leads to the scope
of this work to not only integrate OCL and TwoUse on the programing level, but to
also extend the OCL standard library with several predefinedoperations, that make
use of ontology reasoning.

1.4 Scope of this work

[6] introduces the integration of TwoUse with OCL. The scopeof this paper is the
programatical implementation of the integration of TwoUsewith OCL. In order to
achieve this, two different OCL implementations that already provide parsing and
interpretation functionalities for expressions over regular UML, as well as an imple-
mentation of the conventional OCL standard library are introduced. The attempt of
an implementation of our goal, that extends the first OCL implementation produced
problems, that could easier be dealt with using the second OCL implementation.
This paper presents the two attempts to extend the OCL implementations, as well as
a comparison of both approaches.

1.5 Overview

The remainder of this paper is organized as follows: Chapter2 presents the back-
ground for this work, and introduces the most important concepts. Based on these
we tried to extend two different OCL implementations, that each implement OCL
including its standard library. Our aproaches to extend them are presented in chap-
ter 3 and 4 respectively. Chapter 5 compares the two approaches based on our expe-
riences, before chapter 6 finally concludes.

Chapter 2
Background

2.1 Introduction

In this section the context for thisStudienarbeitis presented. The context of the re-
sults, presented here is a new modeling approach calledTwoUse. Since the goal
of this Studienarbeitis to integrate theObject Constraint Language(OCL) and
TwoUseon the programatical level, both of these concepts are introduced. First there
will be a short description of the use of OCL inModel-driven development. Second
the concepts and ideas ofTwoUseare explained. Since there are several papers about
both of these topics, there is no need to go much into detail.

2.2 The example model

To show the new possibilities created by TwoUse and to explain several operations
and problems on an example, we chose an existing example fromthe literature, that
has already been used in the original TwoUse paper [6]. We usethe development of
an international e-commerce system that is described it in amodel as an example.
The corresponding class diagram can be seen in Figure 2.1.

This example has been elaborated in [7]. The system represents a sales order
system for Canada and the United States. The taxes and total amount a customer
has to pay is calculated depending on the country the products are delivered to. The
taxes can be divided into Government Sales Tax (GST) and Provincial Sales Tax
(PST) for sales going to Canada. Sales orders are controlledby the classTaskCtrl.
TheSalesOrder itself is either aUSSalesOrder or aCanSalesOrder, according
to theCountry the Customer lives in. The operationfreight() on which we will
focus later on queries the country of the customer and returns the corresponding
freight amount, depending on whether the order is a USSalesOrder for a citizen of
the United States or a CanSalesOrder for a citizen of Canada.Since UML class
diagrams alone are not expressive enough to demonstrate thebehavior of this oper-

3

4 2 Background

TaskCtrl
salesOrder : SalesOrder
customer : Customer

process()
getSalesOrder()

CanSalesOrder USSalesOrder

SalesOrder
price

total()
taxes()
freight()

Country

name : String

Customer

10..n

+customer

+order

1

0..n

+country

+customer

Fig. 2.1 SalesOrder

ation, a textual query language such as OCL [1] may be used to specify such a query:

con tex t Sa l esO rde r : : f r e i g h t () : I n tege r
body :

i f s e l f . o w l I s I n s t a n c e O f (CanSa lesOrder)
then 10

e l s e
i f s e l f . o w l I s I n s t a n c e O f (UsSa lesOrder)

then 5
e l s e

20
end i f

end i f

2.3 The Object Constraint Language OCL

2.3.1 Overview

OCL is a declarative language to specify expressions over models, that cannot be
expressed in a diagram. Initially it was only used in combination with UML [2],
but due to its high popularity it was extended to be used with any MOF OMG meta-
model. The OCL standard defined by the OMG [8] distinguishes the following pur-
poses for which OCL can be used:

• As a query language
• To specify invariants on classes and types in the class model
• To specify type invariant for stereotypes
• To describe pre- and post conditions on operations and methods
• To describe guards
• To specify target (sets) for messages and actions
• To specify constraints on operations

2.3 The Object Constraint Language OCL 5

• To specify derivation rules for attributes for any expression over a UML model.

For explanations of the different items, please see the OCL specification [8].

2.3.2 Basic elements in OCL

In OCL, every value has a specific type no matter if it is an object, a class or an
instance of a component or a datatype. OCL types are grouped into

• predefined types (as defined in the OCL standard library), including
basic types
collection types

• custom types (defined by users)

Integer, Real, String andBooleanare predefined basic types, comparable with
datatypes in other languages.Collection, Set, Bag, OrderedSetandSequenceare
the predefined collection types, used to specify concrete results of a navigation over
compounds of a class diagram. Custom types like the classes Customer and SalesOr-
der in our example are defined by users in an UML-diagram. Every model element
of an UML-diagram that can be instantiated is automaticallyan OCL type. A special
type that has to be mentioned specifically is OclAny, since it’s the supertype of all
the types, except for the pre-defined collection types. OclAny itself is an instance of
the metatype AnyType. All classes in an UML model inherit alloperations defined
on OclAny (you can recognize them on the prefix ’ocl’ (e.g.oclIsKindOf()).

2.3.3 Relation to the corresponding model

Each OCL expression is written in the context of an instance of a specific type. This
instance can be referred to by the variableself and is calledclassifier. Since there
already exist some predefined operations in OCL, the type of the context specifies
which operations are applicable. For example if the OCL expression is written in the
context of an instance of the typeSalesOrder(see the example model in Fig. 2.1),
only the operations corresponding toSalesOrderan its supertypes are applicable.
In this case we could use the operationfreight() because it is defined in the model,
but also operations that are defined in the supertype ofSalesOrder, namelyAnyType
(e.g.oclIsKindOf()).

2.3.4 Operations

Operations are bound to a specific OCL type, and are applicable only in the con-
text of this type. This means, that they can only be applied toinstances of this

6 2 Background

type, and to instances of subtypes of this type. Some operations are defined on the
previously mentioned OCL super typeOclAny. This makes these operations avail-
able for all types. ”In general, OCL allows the definition of additional operations
and attributes usingdef: expressions. This is very convenient for the formulation
of constraints” [9] but for the definition of complex operations that are supposed to
become a part of the OCL standard library another mechanism is used. The OCL
standard library is a collection of predefined types (as described in section 2.3.2)
and operations.

2.3.5 OCL in eclipse

2.3.5.1 EMF OCL

Many different programatical approaches to OCL have been made in the past. It is
not intended to compare these here. Since we used the Eclipsesoftware platform in
our project from the beginning, we initially used the eclipse OCL project [10]. The
eclipse OCL project provides the basic libraryorg.eclipse.oclthat provides a defini-
tion of the extensible environment API for OCL parsing and evaluation. It consists
of the basic interfaces that have to be implemented by a concrete metamodel to
create and evaluate OCL expressions.org.eclipse.ocl.ecoreandorg.eclipse.ocl.uml
are implementations of an OCL binding for a concrete metamodel. Here, the con-
crete mechanisms to parse and evaluate OCL constraints on models are imple-
mented. Further, these packages ”extend the types of the OCLTypes package to
define the generalization relationships to the ... metamodel’s counterparts to the
UML Classifier (EClassifier) and DataType (EDataType) metaclasses. This ensures
a consistent type system in the OCL binding for Ecore, so thatall types are rep-
resented as EClassifiers” [11]. An implementation of an example OCL interpreter
(org.eclipse.emf.ocl.examples.interpreter) already exists. Therefore, we would not
have to implement one ourselves from scratch but would be able to just extend this
one, since it is open source. Another nice fact is, that the TwoUse metamodel is
created under the Ecore metamodel. Since the OCL interpreter already allows to
evaluate OCL expressions on Ecore models, we should be able to extend this imple-
mentation (packageorg.eclipse.ocl.ecore).

2.3.5.2 Dresden OCL Toolkit

The Dresden OCL Toolkit is an other implementation of OCL foreclipse. It con-
sists of a collection of libraries, allowing for integrateduse of modeling languages
like UML with OCL. The toolkit is provided in several different versions, one of
which is a plug-in collection for Eclipse. The core of the toolkit is a pivot model.
This model works as an abstraction layer between the metamodel of the modeling
language and the metamodel of the OCL library. This allows for evaluation of OCL

2.4 TwoUse 7

expressions over instances of arbitrary domain-specific languages (DSL) without
adapting the OCL implementation to the DSL.
Beside the adaption of metamodels to OCL, the Dresden OCL Toolkit enables the
user to parse and interpret OCL expressions as well as generating Java code, enforc-
ing constraints specified in OCL.

2.4 TwoUse

2.4.1 Motivation

In Model-Driven Engineeringdifferent modeling approaches exist, with different
strengths and weaknesses. Therefore they become appropriate for the specification
of different aspects of software systems. Two of these modeling approaches are
UML [2] andOWL [12]. The idea of TwoUse is to combine these approaches in a
coherent framework for developing integrated models, comprising the benefits of
UML models and OWL ontologies and overcoming their restrictions. While map-
pings from one model to the other have already been established a while ago, the
goal of TwoUse is to be able to denote them in a hybrid diagram.

2.4.2 Problem

Considering the example class diagram of an e-commerce system in section 2.2, we
see that some operations need to be modeled with additional information, presented
for example in OCL. Unfortunately the declarations of the classesUSSalesOrder
andCanSalesOrder occur at least twice: ”once in the class declaration and once
implicitly, as an expression of the operationTaskCtrl.freight()” [6]. We try to avoid
such redundancy in the context of TwoUse by describing the specific type of Sale-
sOrder exactly once. For this we use the language OWL, capable of logical class
definition which is in fact more expressive than UML. The OWL diagram, corre-
sponding to our example domain would look like depicted in figure 2.2.

2.4.3 Idea

The ideal solution is a model using the advantages of both UMLand OWL mod-
els, namely a TwoUse model. TwoUse was developed in order to fulfill six basic
requirements:

1. Full Expressiveness of UML an OWL.
2. Cross-referencingfrom UML part to the OWL part and vice versa.

8 2 Background

CanSalesOrder

«owlClass»

USSalesOrder

«owlClass»

SalesOrder

«owlClass»

Customer

«owlClass»
10..n

+customer+order

10..n

+country

+customer

USCustomer
«owlRestriction»

« »owlValue {hasValue = USA} country:Country

«owlRestriction»
{someValuesFrom=USCustomer} customer
«owlValue»

CanadianCustomer
«owlRestriction»

«owlValue» {hasValue = Canada} country:Country«owlRestriction»

{someValuesFrom=CanadianCustomer} customer«owlValue»

«equivalentClass»

«equivalentClass»

Country

«owlClass»

Fig. 2.2 Ontology of the SalesOrder example.

3. Compatibility with UML Tools.
4. Concrete Syntax for Hybrid Diagrams
5. Metamodeling Support
6. Model-driven Engineering

Two use is based on four core ideas to fulfill these requirements, that were orig-
inally presented in [6]. First, a MOF based metamodel is provided that integrates
UML, OWL, and OCL. Second, anUML profile is used to provide a syntactic basis.
This choice was made in order to support standard UML2 extension mechanisms.
It also enables mappings from the profile onto TwoUse models.The third idea is
to provide a canonical set of transformation rules to the user. This aims at enabling
the integration at the semantic level. The fourth idea is themost important one from
the point of view of this paper. In order to make use of the reasoning capabilities
of OWL ontologies, an extension of the OCL basic library called OCL-DL is intro-
duced.

The TwoUse metamodel (fig. 2.3) imports the OWL, UML and OCL metamodel.

TUClass

OWLOntology
(from odm.owl)

0..*

+OWLImports

0..*

OWLClass
(from odm.owl)

TUPackage

+classes

+owner

Class
(from uml)

Package
(from uml)

*

0..1

+/nestedPackage *

+nestingPackage 0..1

Fig. 2.3 TwoUse Metamodel

2.4 TwoUse 9

A big advantage of the integration of OWL is the ability to usea reasoner. Rea-
soners can be used to check the consistency of a model, which means that it makes
sure that there are no contradictions. It can further be usedto check for concept
satisfiability. This makes sure, that a concept definition can actually be fulfilled,
for example whether a class can have an instance. Third, reasoners can be used to
classificate concepts. This allows to conclude informationabout the relationship of
different concepts to each other. An example here is the question, whether every in-
stance is automatically an instance of a certain class. Last, a reasoner can classificate
an instance, which means it can determine whether it is an instance of a certain class,
or not. To use these features provided by the possibility to use the OWL reasoner,
an extension to OCL calledOCL-DL is introduced.

2.4.4 OCL-DL

For the best use of TwoUse, existing and additional OCL expressions are needed.
So our goal was not only to implement a metamodel binding for TwoUse, but also
to provide additional, TwoUse-specific operations. Since time did not permit the ac-
tual implementation, instructions where and how to implement the operations are
given later. [6] already introduced OCL-DL, an extention ofthe OCL standard li-
brary with pre-defined operations that call the OWL reasoner. Our goal is the actual
implementation.

2.4.4.1 Problem

To demonstrate the use of OCL-DL we consider our running example, described in
section 2.2. Let us consider the case of a classCanSalesOrder, which is a subtype
of the classSalesOrder. To be more specific we state, that theSalesOrder class
must have an attributeCustomer. The object in this attribute must itself have an
attributeCountry with the value ’Canada’ to be aCanSalesOrder. There are two
predefined OCL operations for the typeOclAny, namely

1. oclIsTypeOf(typespec:OclType): Boolean
2. oclIsKindOf(typespec:OclType): Boolean

The first one,oclIsTypeOfreturnstrue if the model element it is applied to is of the
type of its argument. So applied to an instance of the classCanSalesOrder, the
operation would only evaluate totrue, if its argument is the classCanSalesOrder.
The second operationoclIsKindOf returnstrue if the model element it is applied to
is of the type of its argument or is a subtype of it. Applied to an instance of the class
CanSalesOrder, the operation would evaluate totrue, if its argument is the class
CanSalesOrder or it’s supertypeSalesOrder, or any supertype ofSalesOrder
(e.g. OclAny). The problem here is the scenario, if we have aninstance of the class
SalesOrder and ask if it is also an instance of the classCanSalesOrder (i.e. its

10 2 Background

attributeCustomer has the value ’Canada’ in its attributeCountry). In this context,
both of the operations described above would evaluate tofalse. ”The reason is that,
in any object-oriented paradigm, the compiler cannot dynamically subtype classes
based on their descriptions” [6].

2.4.4.2 Solution

Since TwoUse-classes can be hybrids of UML and OWL-classes,thegetSalesOr-
der() operation can be specified without using complex OCL expressions, but by
taking advantage of the OWL part of TwoUse by querying anOWL reasoning ser-
vice. To decide whether a class is a subclass of an other class we introduce an OCL-
DL namedowlIsInstanceOfthat makes use of a reasoner and tests if a given in-
stance is an instance of the operation’s argument by checking if it meets the given
constraints.

con tex t T askC t r l : : g e t S a l e s O r d e r () : Sa l esO rde r
body :

s a l e s O r d e r .oclAsType (
s a l e s O r d e r . owlMostSpecNamedClass ()

)

In the context of this operation an OCL-like query may check whether the
givenSalesOrder instance fulfills all the logical requirements ofUSSalesOrder
or CanSalesOrder. The basic OCL operationoclAsType does the casting in the
subclass, referred by its parameter. To determine which subclass ofSalesOrder
is applicable, the OCL-DL operationowlMostSpecNamedClass is invoked. This
operation ”queries a reasoner to return the reference to thesuitable named subclass
according to the OWL ontology.” [6] The advantage of this kind of specification of
getSalesOrder() is the separation of two sources of specification complexity. The
specification of complex classes remains only in the OWL model and the specifi-
cation of the operations needed by the developed system remain only in the OCL
expression, and stay small, more comprehendible and easilymaintainable by the
use of the OWL class definition and the application of the reasoner. The same is the
case for theSalesOrder operationfreight which calculates the freight amount of
an order depending on the type of theSalesOrder. As presented in the listing in
section 2.2,freight can be specified using OCL including the OCL-DL operation
owlIsInstanceOf, without querying the home country of a coustomer to determine
the kind ofSalesOrder it is applied to. This avoids the redefenition of theSale-
sOrder subclasses in the body offreight.

[6] introduces four OCL-DL operations namely:

1. owlIsInstanceOf(typespec:OclType): Boolean. Evaluates totrue if the object
satisfy all the logical requirements of the OWL class description typespec.

2. owlAllNamedClass():Set(OclType). Returns all named classes classified by a
reasoner, whose the object satisfies the logical requirements.

2.4 TwoUse 11

3. owlAllInstances():Set(T). This is an introspective operation which returns all in-
stances that satisfy the logical requirements of the OWL class description of the
given object.

4. owlMostSpecNamedClass():Ocltype. Returns the intersection of owlAllNamed-
Class().

[6]

Chapter 3
First approach: Extending the EMF OCL
implementation

3.1 Introduction

In this section, the existing projects we initially based our research on are presented.
While working on this approach several problems occurred, that are described in
section 3.7 and led to the decision to choose a different approach, presented in chap-
ter 4.

3.2 The OCL interpreter

The OCL interpreter can be found in the packageorg.eclipse.emf.ocl.examples.in-
terpreter. ”This example-interpreter illustrates the usage of the generic OCL Parser
API to parse and evaluate OCL query expressions and constraints within the SDK.”
[13] It extends the Ecore example editor with a console, thatprovides two fields.
You can enter an OCL expressions in the bottom field and pressEnter to evaluate
them on the model, while output and errors are shown in the topfield.

The console provides the opportunity to choose (using aDrop-Down-Action)
whether to evaluate expressions either on an UML or an Ecore model. ”These ac-
tions automatically select the appropriate metamodel in the console.” [13] Further,
the user is able to determine the model level on which the query is ’executed’,
namely either the model-levelM1 or the metamodel-levelM2. While parsing of ex-
pressions is provided on both the M1 and the M2 level, the evaluation of expressions
is only implemented for the M2 level.

13

14 3 First approach: Extending the EMF OCL implementation

3.3 Adding custom operations

The first task was to determine how to add custom operations. In the EMF OCL
implementation, the basic steps are to create a customEnvironmentthat knows how
to look up this operation, and anEvaluationEnvironmentthat knows how it is im-
plemented. Concrete, theEnvironmenthas to extend either theAbstractEnvironment
(this means you have to do a lot of work on your own, but sometimes is inescapable)
or an existing Environment implementation (e.g. theEcoreEnvironment). The new
Environment needs a constructor and a mechanism to define thenew operations and
add them to a type. A possible solution can be seen in listing 3.1.

Listing 3.1 ”An Environment to look up the custom operationowlIsInstanceOf”

1class MyEnvironment extends EcoreEnvironment {
EOperation regexMatch;

// Initialize the root environment
5 MyEnvironment(EPackage.Registry registry) {

super(registry);
defineCustomOperations();

}
10

...

// Add our custom operation to OCLAny
private void defineCustomOperations() {

15

owlIsInstanceOf = EcoreFactory.eINSTANCE.
createEOperation();

owlIsInstanceOf.setName("owlIsInstanceOf");
owlIsInstanceOf.setEType(getOCLStandardLibrary().

20 getAnyType());

// Create and add its parameter
EParameter parm = EcoreFactory.eINSTANCE.
createEParameter();

25 parm.setName("pattern");
parm.setEType(getOCLStandardLibrary().
getAnyType());
owlIsInstanceOf.getEParameters().add(parm);

30 // Annotate it so that we will recognize it
// in the evaluation environment
EAnnotation annotation =

EcoreFactory.eINSTANCE.createEAnnotation();

3.3 Adding custom operations 15

annotation.setSource("MyEnvironment");
35 owlIsInstanceOf.getEAnnotations().add(annotation);

// define it as an additional operation on
// OCL AnyType
addOperation(getOCLStandardLibrary().getAnyType(),

40 owlIsInstanceOf);

}
}

Next the correspondingEvaluationEnvironmentneeds to be implemented. Again,
we extend theEcoreEvaluationEnvironmentso it knows how to handle calls to the
added custom operation:

Listing 3.2 ”An EvaluationEnvironment to execute the code forowlIsInstanceOf”

1class MyEvaluationEnvironment extends
EcoreEvaluationEnvironment {

MyEvaluationEnvironment() {
5

super();
}

MyEvaluationEnvironment(
10 EvaluationEnvironment<EClassifier,

EOperation, EStructuralFeature,
EClass, EObject> parent) {

super(parent);
15 }

public Object callOperation(EOperation operation,
int opcode, Object source, Object[] args) {

20 if (operation.getEAnnotation("MyEnvironment")
== null) {

// not our custom owlIsInstanceOf operation
return super.callOperation(operation, opcode,

source, args);
25

}else if ("owlIsInstanceOf".equals(
operation.getName())) {

//Here belongs the implementation of the operation

30 }else{

16 3 First approach: Extending the EMF OCL implementation

// unknown operation
throw new UnsupportedOperationException();

}
35 }
}

The final step is to create anEnvironmentFactorythat creates the custom envi-
ronments.

3.4 Evaluation on the M1 level

As mentioned in section 3.2, the original OCL console did only allow for evaluation
on the M2 level. Some of theOCL-DL operations we want to define operate on the
M1 level. For example the operationowlIsInstanceOfis applied to an instance, gets
a class as its argument, and queries, whether all constraints that need to be fulfilled
for an object to be an instance of this class can be evaluated to true. Therefore
we needed to enable evaluation on the M1 level. The first step was to alter the
OCLConsolePageclass, specifically in the case distinction of the modeling level
at caseM1, not only parsing, but also evaluation of the query had to be enabled.
Using the the same code as in caseM2 produced wrong results. So we had to make
code changes on the concrete implementation of each operation (e.g.oclIsTypeOf,
oclIsKindOf, ...). Since they are implemented differently and at different locations
for different model elements, we had to work on the implementation of every single
one.

3.5 Adding custom operations to a model and making them
available at runtime

3.5.1 Adding OCL expression to model elements

The next idea was to allow the user to create operations in themodel, and enhance
them with OCL expressions that describe their behavior. Theuser should be able
to execute these operations on instances of the model he created. TheEMF sample
editor already allows the user to addEOperationsto ecore models (and TwoUse
models, since ecore is the metamodel of TwoUse). The editor also provides the op-
portunity to addEAnnotationsto a model element. These can further be extended
with Details Entriesthat consist of aKeyand aValue. We decided to use the follow-
ing mechanism:

1. The user adds anEOperationto the metamodel.

3.5 Adding custom operations to a model and making them available at runtime 17

2. This operation is annotated with theEAnnotation”OCL” .
3. TheEAnnotationgets aDetail Entrywith thekey”body” . The OCL expression

describing the operation is written to thevaluefield.

To enhance user-defined operations with OCL expressions we chose this mech-
anism, because it sounded very convenient and intuitive to us. Of course the other
advantage was that we could use existing mechanisms. Another possibility could
have been to add a field calledbodyto the properties-view of theecore sample ed-
itor and let the user write his OCL expression there. The problem was the fact that
instead of being able to use the existing editor, we would have had to extend the
EMF sample editor, and also add the modified project as one of our plug-ins instead
of just using the version provided by theEMF plug-in. Since from the beginning
our goal was to edit as few existing plug-ins as possible, we chose to use theEAn-
notationmechanism as shown in figure 3.1.

Fig. 3.1 EAnnotation

It is important, that the OCL expression describes the operation adequately so it
can be fully evaluated at runtime. To check whether a writtenexpression is seman-
tically correct, the user has to be able to parse his OCL expression.

3.5.2 Parsing

Again, the first idea was to add this function to the existing editor, specifically to
the window into which the user writes the OCL expression. Because of the same
reasons as in the previous section, and also the dependencies this solution would
create we chose a different approach. Since this task is performed by the console,

18 3 First approach: Extending the EMF OCL implementation

the most convenient solution to us was to add a button to it, that allows the user to
parse the OCL expression of the currently chosen operation (as shown in figure 3.2).

Fig. 3.2 Parsed custom operation

We then only had to ensure that the parsing of both, M1 and M2 expressions
would succeed. This is done, by first parsing the expression as an M1 expression.
The code for this parsing (listing 3.3 lines 14 - 22) is surrounded by atry-catch
block, that catches any occurring exception (most likely aParserException).

Listing 3.3 ”Code to parse custom operations”

1else if(((EOperation)context).getEAnnotation("OCL").
getDetails().get("body") == null)

error(OCLInterpreterMessages.console_emptyOclExpr);
5

else {
String expression = ((EOperation)context).
getEAnnotation("OCL").getDetails().get("body");

10ocl = oclFactory.createOCL(ModelingLevel.M1);
OCLHelper<Object, ?, ?, ?> helper = ocl.

createOCLHelper();

boolean m1parse = false;
15try {

...

m1parse = true;
OCLEvaluationModelingLevel.modelingLevel = 1;

3.5 Adding custom operations to a model and making them available at runtime 19

20 helper.createQuery(expression);
print(OCLInterpreterMessages.console_parsed,

outputResults,
false);

25} catch (Exception e1) {
if(m1parse){

// M1 parsing already began => maybe the exception
// is a ParsingException, that occurred because the
// expression is no M1, but a M2 expression.

30 // Therefore we try to parse it as a M2 expression.

print(
OCLInterpreterMessages.except_during_M1_parsing,
colorManager.getColor(ColorManager.OUTPUT_RESULTS),

35 false);

ocl = oclFactory.createOCL(ModelingLevel.M2);
OCLHelper<Object, ?, ?, ?> helperM2 =
ocl.createOCLHelper();

40

try{
ConstraintKind kind = ModelingLevel.M2.setContext(

helperM2, context, oclFactory);
...

45

helperM2.createQuery(expression);
print(OCLInterpreterMessages.console_parsed,

outputResults,
false);

50

} catch (Exception e2){
// Both M1 and M2 parsing failed
// => expression is no valid OCL
error((e2.getLocalizedMessage() == null)

55 ? e2.getClass().getName()
: e2.getLocalizedMessage());

}
} else {

// M1 parsing didn’t begin yet, so the Exception
60 // was thrown before. Therefore there is no use in

// trying to parse it as an M2 expression.
error((e1.getLocalizedMessage() == null)

? e1.getClass().getName()
: e1.getLocalizedMessage());

20 3 First approach: Extending the EMF OCL implementation

65}
}

If the exception occurred during the parsing or evaluating of the OCL expression
(shown by them1parse flag) it is very likely that this exception occurred, because
it is actually a M2 expression. Therefore thecatch-block handles the exception by
restarting the parsing from the beginning, but this time parsing the expression as a
M2 expression. Again this part is surrounded bytry-catch block. If an exception
occurs again, the expression is not valid OCL.

3.5.3 Enable evaluation at runtime

The next idea was to let the user execute the operations he added, on the instances
of his model. Luckily the operations provided in the metamodel are available in
the OCL console, when the metamodel they are described in is registered. This
functionality (registering a model as metamodel) is already provided by the AM3
plug-in [14]. The custom functions are even available on thecontent-assist of the
console (ctrl+space). So our task was to implement the evaluation of the operation.
For this we used theEvaluationEnvironmentwe created in the process of adding
OCL-DL operations to theOCL standard library . As shown in listing 3.3 (lines 1
- 8) we only had to check, if the chosen operation has anEAnnotationwith the value
”‘OCL”’ and ensure that theDetailEntrywith the key”body” is not null. Once this
was ensured we could use the code of theOCLConsolePage’s evaluation method
to evaluate the body as a query.

3.6 Adding a metamodel binding for TwoUse

3.6.1 Abstract approach

Before the actual implementation of the new operations, a metamodel binding for
TwoUse has to be established (the TwoUse metamodel can be found in fig. 2.3).
While determining how to add custom operations, we noted that the metamodel
binding does not occur in theorg.eclipse.emf.ocl.examples.interpreterplug-in it-
self, but in the org.eclipse.ocl.ecore respectively org.eclipse.ocl.uml package. This
interfered with our original plan to just extend the interpreter plug-in. So we had to
create a package calledorg.eclipse.ocl.twousethat realizes the metamodel binding
for TwoUse and will be used by the interpreter. To create a metamodel binding ”you
need to ensure that your metamodel implements the constructs required by OCL
in some fashion: Operation, Property, etc. Your metamodel must be Ecore-based
(Ecore is the meta-metamodel).” [15]

3.6 Adding a metamodel binding for TwoUse 21

3.6.2 Classes to implement

If these requirements are satisfied, you need to create a metamodel specific plug-
in, that serves as the connection between the metamodel and OCL. This plug-in
(org.eclipse.emf.ocl.twouse) has to implement Classes for the following concepts:

• EnvironmentFactory
• Environment
• UMLReflection
• OCLStandardLibrary
• EvaluationEnvironment

An EnvironmentFactoryimplementation is needed, since it creates theEnviron-
mentand theUMLReflectionclasses. The implementation of theEnvironmentre-
quires suitable substitutions for the generic type parameters representing the meta-
modeling constructs required by OCL to provide relations between the OCL meta-
model and your metamodel. TheUMLReflectionis needed for introspecting models
(instances of the target metamodel), while the implementation of theOCLStandard-
Library as an instance of your metamodel provides the instances of the metamodel’s
Classifier metaclass that implement the OCL standard library types. AnEvalua-
tionEnvironmentis needed that knows how your metamodel ’works’ for accessing
properties of run-time instances of models. These are the basic premises to create a
metamodel binding for OCL. Our approach is presented in 3.6.3.

3.6.3 Concrete

As described in section 3.6.1, the main entry point to createa binding for a custom
metamodel is the implementation of anEnvironmentFactory, with generics that suit
your metamodel. Our approach was to create, a separate plug-in for TwoUse similar
to org.eclipse.ocl.ecore, namedorg.eclipse.ocl.twouse.

3.6.3.1 Renaming generics - the idea

The first step was to create generics belonging to our metatmodel (TUClass, TU-
Classifier, TUOperation, ...). Since in the beginning, our package should behave
exactly like the ecore package for simplicity reasons, the first idea was to copy all
the ecore generics (EClass, EClassifier, EOperation, ...) and just rename them from
E... to TU... (e.g.EClass→ TUClass). This is possible, because eclipse projects
are open-source, and their source code can be downloaded from the CVS reposi-
tory. The exact ’tuning’ of the interfaces belonging to the generics to adjust them
to the TwoUse metamodel was supposed to follow later. Since the generics were
now behaving exactly like the ecore ones, it was convenient to just copy the the
EcoreEnvironmentFactory.

22 3 First approach: Extending the EMF OCL implementation

3.6.3.2 Renaming generics - the problem

Unfortunately this caused a lot of errors, since now methodsfrom other packages,
called in method bodies in our package were not called with the correct types any
more. Some of these errors could be solved by adding casts, but some of them re-
quired code changes in the called method itself. One problemthat occurred were
methods withEList<EClass> as return-type. After changing the return-type to
EList<TUClass>, the called method itself had to be altered, so it returns anEList
of the new type, but again the same error occurred, that methods called within this
method returned ecore types and sometimes, again a cast was not enough. This lead
to some deep and very complex changes in code, that soon crossed the boarder to
other packages, imported byorg.eclipse.ocl.ecore(e.g.org.eclipse.emf.ecore). Since
we wanted to alter as few packages as possible, and the code-changes became very
complex and numerous, we had to think of a new approach.

3.6.3.3 Creating interfaces that extend the ecore generics

The next idea was to create interfaces, that simply extend the corresponding ecore
generics (EClass, EClassifier, EOperation, ...) and instantiate the TUEnvironment-
Factory with them.

import org.eclipse.emf.ecore.impl.EClass;

public interface TUClass extends EClass{
}

Again, we copied and renamed theEcoreEnvironmentFactorybut now, since we
had different argument-types and return-types for the implemented methods, their
signatures had to be changed (EClass→ TUClass). This raised another problem:
since some methods called methods that had the ’old’ ecore generics as parameter
or return-type, again there were many errors in the newTUEnvironmentFactory. In
conclusion, we came to the same problem as in the first approach and discarded this
idea as well.

3.6.3.4 Copy the ecore plug-in

Since the implementations of the model elements (EClassImpl, EClassifierImpl,
EOperationImpl,...) are located inorg.eclipse.emf.ecore, this plug-in had to be
copied as well, to allow code changes to be made here. This allowed us to create a
closed workspace (see figure 3.3), that contained the console plug-in (org.eclipse.emf.-
ocl.examples.interpreter), the plug-in providing the metamodel binding for TwoUse
(org.eclipse.ocl.twouse) and the plug-in containing the model implementations (org.-
eclipse.emf.ecore). The only other plug-in needed by the interpreter isorg.eclipse.ocl.

3.7 Problems 23

Since this plug-in provides the basic OCL concepts, there was no need to make any
changes there, and it could be added to the build-path as ajar.

Fig. 3.3 Closed workspace

3.7 Problems

Because of the problems we experienced while creating a binding for the TwoUse
metamodel we came to the conclusion, that there is no use in trying to extend or
modify theorg.eclipse.ocl.ecoreplug-in. A complete programatical implementation
of the TwoUse metamodel would be needed, that needs to be written from scratch.
Another approach, that addresses this problem in a very convenient way is the Dres-
den OCL toolkit for Eclipse. It solves the process of creating a metamodel binding
for a custom DSL in a far more elegant way. This led us to the decision to discard
the first approach using the EMF-OCL implementation, and usethe Dresden OCL
Toolkit as the platform to implement our OCL-DL operations.

Chapter 4
The second approach: Extending the Dresden
OCL toolkit

4.1 Introduction

In this section, the second approach of extending an existing OCL toolkit is pre-
sented. This involves adding a metamodel binding for TwoUseand modifying the
OCL parser in order to be able to parse the OCL-DL operations.It also comprises
implementing the method bodies of these operations to be able to interpret expres-
sions using these new standard library operations, as well as extending the java code
generation from OCL constraints, provided by the Dresden OCL toolkit. This chap-
ter presents our approach in dealing with these tasks.

4.2 Design

The Dresden OCL toolkit [16] is implemented as an eclipse plug-in, and provides
an implementation of OCL including the OCL standard library. The toolkit enables
users to parse and interpret OCL expressions over model instances, as well as gen-
erating java code for the specified expressions. The plug-inconsists of the following
parts:

• Pivot model
• OCL standard library implementation
• OCL parser
• OCL interpreter
• Java code generator

The most notable aspect of the toolkit is the pivot model, which is kind of a proxy
that is situated between the OCL metamodel and the metamodelof the target mod-
els. This provides an intermediate abstraction layer, to allow the user to connect any
custom metamodel to the toolkit. Instantiation of the OCL standard library types be-
comes independent of the used metamodel, and therefore the only necessary steps
are the suitable implementation of the pivot model interfaces.

25

26 4 The second approach: Extending the Dresden OCL toolkit

4.3 Adding metamodel binding

4.3.1 Problem binding the TwoUse metamodel

4.3.1.1 Idea

Adding a metamodel binding, allowing to use the OCL implementation with a cus-
tom DSL is very easy using the Dresden OCL toolkit. Since the EMF approach
caused us a lot of problems creating the metamodel binding, this was the main mo-
tivation to choose this OCL implementation. In the Dresden OCL toolkit, binding
the metamodel only requires establishing bindings from thecustom DSL classes to
the corresponding pivot classes [17].

4.3.1.2 Problem

The difficult part here is the fact, that the TwoUse metamodelcontains two types, i.e.
UMLClassand TwoUse Class (TUClass), where the second one is a subclass of the
first one, but also inherits from OWL ontologies (as described in [6]). The problem
is, that both of these classes must have a corresponding OCL metaclass, allowing
for the newly implemented special OCL-DL operations to be applied to instances of
TUClasses, but not to instances of regularUMLClasses. This stems from the fact,
that the OCL-DL operations make use of an ontology reasoner that requires the
queried model instance to inherit from OWL. The problem is, that the existing OCL
metamodel only has one supertype for all types, namelyOclAny. As described in
section 2.3, all operations owned byOclAny(e.g.oclIsKindOf) are applicable to all
instances that are subtypes ofOclAny, i.e. all types. As can be seen in figure 4.1,
the typeUMLClassis connected to the pivot classType, which is on the other hand
connected to the OCL typeAnyType. To make the distinction betweenUMLClass
andTUClasswhile parsing the OCL expressions, a mechanism to decide whether an
object is an instance of aTUClass, and therefore applicable to OCL-DL operations
is needed in the OCL engine.

4.3.2 OwlAny

Our idea was to add a subclass toOclAny, calledOwlAny, as well as adding a sub-
class toPivot:TypecalledTuTypeand finally connectingTuTypewith OwlAnyon one
side, andTUClasson the other (as depicted in figure 4.1). After trying to modify the
existing Dresden OCL toolkit implementation in order to addthese new classes we
experienced a lot of errors that were difficult to resolve. Therefore we contacted the
developers of the toolkit who were very doubtful regarding the possibility to make
these changes without rewriting huge parts of the toolkit. Since the only need for

4.4 Adding OCL-DL operations 27

this modification is the ability to throw parsing errors whenOCL-DL operations are
applied to UML classes, we decided to move this error detection to the code gener-
ation and interpretation process, and leave the task to implement a suitable parsing
error detection for this case for the future.

Fig. 4.1 Idea how to bind the TwoUse metamodel to the pivot model

4.4 Adding OCL-DL operations

For dresden an approach is described in [18], that is similarly simple as the adding
of a metamodel, described in the previous section. This approach relies on simply
modeling the new operations in a model of the standard library, namelyoclstandard-
library.types, which can be found in the packagetudresden.ocl20.pivot.modelbus.
After adding a new operation to the model, a rebuild of the whole project is sup-
posed to add the necessary code to parse and interpret the newoperation. Unfortu-
nately this is not fully implemented yet, so in praxis methods to parse and interpret
a new operation have to be added to several classes of the toolkit.

4.4.1 Concrete implementation of owlIsInstanceOf

This section describes how to exemplarily implement one of the OCL-DL opera-
tions. Due to the fact that a metamodel binding for TwoUse is still missing, and
therefore the bridge from UML class specifications to the OWLreasoner cannot be
established yet, the scope of this work does not allow to include a complete im-
plementation of one of the OCL-DL operations. However, we enabled parsing for
owlIsInstanceOf, and the following describes where exactly the respective changes
have to be made in order to add and implement the OCL-DL operations. This should
serve as kind of a manual for future implementation of the operations. The imple-
mentations of the operations differ only very little. In fact, there are only very few
places where the code for the other operations will be different than the code for

28 4 The second approach: Extending the Dresden OCL toolkit

owlIsInstanceOf. Mainly, this will be the actual implementation of the respective
operation (discussed in section 4.4.1.2) and the template code for the java code gen-
eration from OCL expressions (discussed in section 4.4.1.3).

4.4.1.1 Parsing

The main entry point is the ’.types’ model of the OCL standardlibrary. It can be
found in thetudresden.ocl20.pivot.modelbus.resourcesfolder and is calledoclstan-
dardlibrary.types. In order to enable parsing for an operation that is supposedto be
added to the standard library, the operation needs to be modeled here. As described
in the beginning of this section, it is not implemented yet toautomatically generate
the rest of the code from here, but mechanisms to parse the operation have to be
added to several java classes.
First of all, the operations signature has to be added to thetudresden.ocl20.pivot.-
sessentialocl.standardlibrary.OclRootinterface. This was done by by creating an-
other interface calledOclRootTuin the same package, that extends theOclRoot
interface and implements the operation’s signature. Next,several files in thetu-
dresden.ocl20.pivot.ocl2parser.gen.parserfilespackage have to be modified in or-
der to enable parsing. This can be done accordingly to other,already implemented
operations (e.g.oclIsKindOf). Finally the actual parser fileocl2.parserin the tu-
dresden.ocl20.pivot.ocl2parserplug-in is automatically generated by running the
ant-script [19].

4.4.1.2 Interpreting

The actual implementation of the operations themselves hasto be done intudres-
den.ocl20.pivot.standardlibrary.java.internal.library.JavaOclRoot.As mentioned pre-
viously, what keeps us from implementing the operations, isa missing connection
between the (UML) Class and the ontology. This connection isneeded, in order to
allow a reasoner to infer knowledge about a class, which is the main idea behind the
OCL-DL operations [6]. A possible approach has been discussed in section 4.3.2,
however a working implementation is lacking so far.

4.4.1.3 Code generation

To make use of the ability of theDresden OCL Toolkitto generateAspectJ code, the
templates which are responsible for generating the code have to be extended. The
template that needs to specify what kind of code needs to be generated for a certain
operation istudresden.ocl20.pivot.ocl2java.resources.template.java.operations.stg.
Here an entry for the respective operation that is supposed to be added has to be
included, along with the code specifying the AspectJ code that will be generated.

4.4 Adding OCL-DL operations 29

4.4.2 Testing

In order to test the implementation ofowlIsInstanceOfthe example model that has
been introduced in section 2.2 can been used. We created an Ecore model of the
WebShopand, generated model code from this model. This can simply bedone by
using the EMF functionality to generate java code from agenmodel. After creating
the model code, an OCL query using the newly added OCL-DL operationowlIsIn-
stanceOfhas been created as described in section 2.2 (the OCL query can be seen
in section 2.2). Since we added the signature ofowlIsInstanceOfto the standard
library, the query is now successfully parsed (as can be seenin figure 4.2).

Fig. 4.2 A parsed OCL impression that uses the newly added owlIsInstanceOf operation

We used the Dresden OCL toolkit functionality to generate AspectJ code (as de-
scribed in [20]) to create code from the parsed OCL constraint. This example can be
used together with themain-methodshown in listing 4.2 to test the implementation
of owlIsInstanceOf, once it is implemented. So far, it only shows that the AspectJ
template code forowlIsInstanceOfhas been added in the right places.

Listing 4.1 ”The generated AspectJ code for the OCL body offreight”

1package WebShop.constraints;

@Generated
public privileged aspect BodyAspect1 {

5

/**
* <p>Pointcut for all calls on

30 4 The second approach: Extending the Dresden OCL toolkit

* {@link WebShop.SalesOrder#freight()}.</p>

*/
10 protected pointcut freightCaller(

WebShop.SalesOrder aClass):
call(* WebShop.SalesOrder.freight())
&& target(aClass);

15 /**
* <p>Defines the body of the method freight()

* defined by the constraint

* <code>context SalesOrder::freight(): Integer

* body: if self[].owlIsInstanceOf(
20 * CanSalesOrder[])

* then 10

* else if self[].owlIsInstanceOf(

* UsSalesOrder[])

* then 5
25 * else 20</code></p>

*/
Integer around(WebShop.SalesOrder aClass):

freightCaller(aClass) {
Integer ifExpResult2;

30

if (aClass.owlIsInstanceOf(
WebShop.CanSalesOrder)) {

ifExpResult2 = new Integer(10);
} else {

35 Integer ifExpResult1;

if (aClass.owlIsInstanceOf(
sWebShop.UsSalesOrder)) {

ifExpResult1 = new Integer(5);
40 } else {

ifExpResult1 = new Integer(20);
}
ifExpResult2 = ifExpResult1;

}
45

return ifExpResult2;
}

}

Listing 4.2 ”The main-methodto test the generated AspectJ code forowlIsInstanceOf”

1package WebShop.testing;

4.4 Adding OCL-DL operations 31

import WebShop.Country;
import WebShop.Customer;

5import WebShop.SalesOrder;
import WebShop.impl.CanSalesOrderImpl;
import WebShop.impl.CountryImpl;
import WebShop.impl.CustomerImpl;

10public class WebShopTest {

public static void main(String[] args) {
Country canada = new CountryImpl();

15 canada.setName("Canada");
Country usa = new CountryImpl();
usa.setName("USA");

Customer david = new CustomerImpl();
20 david.setHomeCountry(canada);

SalesOrder ord1 = new CanSalesOrderImpl();
ord1.setOwner(david);
ord1.setPrice(50);

25

float fr = 0;
fr = ord1.freight();
assert(fr == 10);
float total = ord1.getPrice() + fr;

30

System.out.println("Total amount is ",total);
}

}

Chapter 5
Comparison of EMF and Dresden OCL toolkit

5.1 Introduction

The EMF implementation of OCL with the example interpreter (emf) and the Dres-
den OCL toolkit (dresden) are two useful, but diverse approaches of implementing
OCL for eclipse and providing means to parse and interpret expressions. This sec-
tion aims at comparing these approaches, since we used both of them in trying to
implement OCL-DL. Several aspects that distinguish the twoapproaches are de-
scribed in the following.

5.2 Metamodel binding

The first aspect that was important to us, is the way the two approaches enable the
binding of a customized metamodel. As described in section 3.6.1,emf requires the
user to implement several classes in a way that is specific to the metamodel. This
requires deep understanding of the architecture of theemfplug-ins and is quite com-
plicated.Dresdensolved this in a far more elegant approach. As described in [17],
the user can bind his metamodel by only mapping the elements of his metamodel,
to the corresponding pivot model elements. This does not require any programming,
and can be done by simply following the provided tutorial with only very little meta-
modeling knowledge.

5.3 Adding operations to the OCL standard library

Since the main goal of this work was to add new operations to the OCL standard
library, the way to do this was similarly important as addinga metamodel binding.
For dresden, several changes have to be made to various classes, as explained in

33

34 5 Comparison of EMF and Dresden OCL toolkit

section 4.4. This cannot be done in a clear and cohesive way. The developer must
explore which classes and packages to alter, since no actualdescription of how to do
this could be found. Emf on the other hand also requires code changes to be made,
but a clear description of the classes that need to be modified, and a description of
the changes that need to be performed in order to add new operations can be found
in [9]. This has already been elaborated in section 3.3.
So in theory,dresdenoffers a more elegant approach as described in 4.4, which in
praxis has not been fully implemented yet. The mechanism provided byemf on the
other hand is well documented and easy to implement.

5.4 Addressing questions

Another aspect that led us to the decision to choose thedresdenimplementation
is the way questions and problems can be addressed. The Dresden OCL toolkit
has been developed at theTechnische Universität Dresden, therefore a team of de-
velopers can directly be contacted. Further, an OCL Discussion list exists under
Dresden-ocl-discussion@lists.sourceforge.net. For emf on the
other hand an eclipse newsgroup exists [15], where problemscan be discussed. Un-
fortunately there is very little participation in this newsgroup.

5.5 The plug-ins

The different layouts and ways to use the plug-ins are worth to be discussed as
well. In dresdenthe model, and an instance of the model if needed, can be loaded.
Each of them is opened in its own tab in the eclipse view (see figure 4.2).Xmi-files
containing OCL expressions and constraints can then be loaded and parsed. The
successfully parsed constraints are displayed in the modelinstance tab. The user
can then choose a specific constraint, and evaluate it over the model instance. The
results are displayed in an additional tab.
Emf offers a different approach. The model and model instances are opened as sep-
arate windows in the EMF model editor. The OCL interpreter console is opened as
a view tab, providing a section for entering expressions anda section displaying the
results of an evaluated expression (see figure 5.1). Like thedresdenplug-in the con-
sole allows the import of xmi-files containing OCL expressions. Further, direct input
of expressions over the input field is possible. By pressingreturn, the user parses
and evaluates the query over a selected model object, and theresults are displayed
in the upper section of the console.

5.5 The plug-ins 35

Fig. 5.1 The EMF OCL console to parse and interpret OCL expression

Chapter 6
Conclusion

6.1 Solved Problems - Added functionalities

6.1.1 Problems

In order to extend the OCL standard library we had to overcomea number of prob-
lems. One that posed itself during the research for this work, was the decision which
existing implementation should be extended. In fact two toolkits existed that were
suitable candidates for our work, i.e. the EMF OCL implementation with the exam-
ple interpreter, and the Dresden OCL toolkit. This paper presented both approaches,
the work we did trying to extend them, their differences, andthe reasons that led us
to chose the Dresden implementation. The most important aspect in our decision,
and also the task that presented the most problems was the adding of a metamodel
binding for the TwoUse metamodel. Unfortunately we were only able to solve this
task partly, as discussed in the previous chapters.

6.1.2 Added functionalities for EMF

For the EMF example interpreter we enabled M1 model level interpreting (in addi-
tion to the existing M2 model level interpreting). We also added the functionality to
enhance the ecore-model-elementEOperationwith OCL definitions that implement
the behavior of this operation. These OCL definitions can be parsed and evaluated,
which enables the user to use these operations in OCL expressions he enters into
the console. Further we added the signature of one of the OCL-DL operations to the
OCL standard library (i.e.owlIsInstanceOf), enabling parsing but not interpreting
expressions using this operation. Interpretation could not be implemented since we
had problems adding a metamodel binding for TwoUse for this approach.

37

38 6 Conclusion

6.1.3 Added functionalities for dresden

For the Dresden OCL toolkit we also added the the signature ofthe operation
owlIsInstanceOfto the OCL standard library as an example of one of the OCL-DL
operations. This allows for parsing OCL expressions makinguse of this operation
as one of the new standard library functions. Unfortunatelywe were not able to
fully implement interpretation and code generation for this function. This is due to
the problems we had in finding a connection between the TwoUsemetamodel and
the OCL metamodel. However we gave instructions how and where to add future
implementations for the OCL-DL operations, in order to enable interpreting as well
as code genration, once these problems have been overcome.

6.2 Future Tasks

Because of several problems that occurred during this work that have been elab-
orated in previous sections, we were unable to add a proper metamodel binding
for TwoUse. Fortunately this was tolerable in our final implementation that extends
the Dresden OCL toolkit. TwoUse Models can simply be imported as UML mod-
els, leaving TwoUse classes as simple UML classes. The disadvantage here is, that
OCL-DL operations can be added to, and parsed with simple UMLclasses that do
not have reasoning ability. An error wont be thrown before interpretation of the OCL
query or the execution of generated aspectj code. As a futuretask, a concrete meta-
model binding for TwoUse should be added, that allows the differentiation between
UML and TwoUse classes as well as error detection of OCL-DL operations that are
applied to UML classes.
As a result of the numerous problems we were not able to implement one of the
OCL-DL operations. While this is left as a future task, this paper offers instructions
on how exactly to to this.

6.3 Conclusion

In the scope of this work we explored two approaches that implement the OCL stan-
dard library, compared both of them and tried to enable the use of OCL with TwoUse
models. This posed several problems that could be partly overcome by extending the
Dresden OCL toolkit. We also tried to add one of the OCL-DL operations introduced
in [6], enabling users to create OCL expressions for TwoUse models, that use this
operation. The advantage of these operations is, that they make use of the reasoning
ability of TwoUse models. OCL expressions containing the added OCL-DL oper-
ation can be parsed, but not interpreted and used to generateAspectJ code yet. In
order to enable users to make use of the complete OCL-DL library, some more work
needs to be done in the future.

References 39

References

1. Group, O.M.: Object Constraint Language Specification, version 2.0. Object Modeling Group.
(June 2005)

2. Group, O.M.: Uml resource page.http://www.uml.org/
3. Group, O.M.: Official mof specification from omg.http://www.omg.org/spec/MOF/

2.0/
4. Group, O.M.: Official website of the object management group. http://www.omg.org/
5. Koblenz-Landau, U.: Transforming and weaving ontologies and uml in software engineer-

ing (twouse).http://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/
Projects/twouse

6. Parreiras, F., Staab, S., Winter, A.: Using ontologies with uml-based modeling: The twouse
approach. (2007)

7. Shalloway, A., Trott, J.R.: Design Patterns Explained: ANew Perspective on Object-Oriented
Design (2nd Edition) (Software Patterns Series). Addison-Wesley Professional (2004)

8. Group, O.M.: OCL specification
9. Foundation, T.E.: Ocl developer guide→ programmer’s guide→ advanced topics→ cus-

tomizing the environment.http://help.eclipse.org/ganymede/index.jsp
10. Foundation, T.E.: The eclipse foundation. the object constraint language (ocl) project.http:

//www.eclipse.org/modeling/mdt/?project=ocl (2007)
11. Foundation, T.E.: Ocl developer guide→ reference → ocl api reference→

org.eclipse.ocl.ecore.http://help.eclipse.org/ganymede/index.jsp
12. Consortium, W.W.W.: OWL Web Ontology Language Reference
13. Foundation, T.E.: Ocl developer guide→ examples guide→ ocl interpreter example.http:

//help.eclipse.org/ganymede/index.jsp
14. Foundation, T.E.: The eclipse foundation. atlas megamodel management (am3) project.

http://www.eclipse.org/gmt/am3/ (2007)
15. Foundation, T.E.: Subject: ’other model backends’.http://www.eclipse.org/

newsportal/thread.php?group=eclipse.modeling.mdt.ocl
16. Dresden, T.U.: Project pages of the dresden ocl toolkit.http://dresden-ocl.

sourceforge.net/
17. Dresden, T.U.: Pivot model adapter generation. http://dresden-ocl.

sourceforge.net/papers/pivotAdapterGen.pdf
18. Bräuer, M., Demuth, B.: Model-level integration of theocl standard library using a pivot

model with generics support. (2008) 182–193
19. Dresden, T.U.: Readme. tudresden.ocl20.pivot.ocl2parser.README.txt
20. Dresden, T.U.: How to use the java code generator ocl2java. http://dresden-ocl.

sourceforge.net/4eclipse_usage.html

