
Fachbereich 4: Informatik

Verifying Dijkstra's Algorithm with
KeY

Diplomarbeit
zur Erlangung des Grades eines Diplom-Informatikers

im Studiengang Informatik

vorgelegt von

Volker Klasen

Erstgutachter: Prof. Dr. Bernhard Beckert
Institut für Theoretische Informatik, Karlsruher Institut für Technologie

Zweitgutachter: Prof. Dr. Ulrich Furbach
Institut für Informatik, AG Künstliche Intelligenz, Universität Koblenz

Koblenz, im März 2010

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

Der Verö�entlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Unterschrift)

Deutsche Zusammenfassung

Die Entwicklung von Algorithmen im Sinne des Algorithm Engineering ge-
schieht zyklisch. Der entworfene Algorithmus wird theoretisch analysiert und
anschlieÿend implementiert. Nach der praktischen Evaluierung wird der Ent-
wurf anhand der gewonnenen Kenntnisse weiter entwickelt. Formale Veri�-
zierung der Implementation neben der praktischen Evaluierung kann den
Entwicklungsprozess verbessern.

Mit der Java Modeling Language (JML) und dem KeY tool stehen eine
einfache Spezi�kationssprache und ein benutzerfreundliches, automatisiertes
Veri�kationstool zur Verfügung. Diese Arbeit untersucht, inwieweit das KeY
tool für die Veri�zierung von komplexeren Algorithmen geeignet ist und wel-
che Rückmeldungen für Algorithmiker aus der Veri�kation gewonnen werden
können.

Die Untersuchung geschieht anhand von Dijkstras Algorithmus zur Be-
rechnung von kürzesten Wegen in einem Graphen. Es sollen eine konkrete Im-
plementation des Standard-Algorithmus und anschlieÿend Implementationen
weiterer Varianten veri�ziert werden. Dies ahmt den Entwicklungsprozess des
Algorithmus nach, um in jeder Iteration nach möglichen Rückmeldungen zu
suchen.

Bei der Veri�zierung der konkreten Implementation merken wir, dass
es nötig ist, zuerst eine abstraktere Implementation mit einfacheren Daten-
strukturen zu veri�zieren. Mit den dort gewonnenen Kenntnissen können wir
dann die Veri�kation der konkreten Implementation fortführen. Auch die
Varianten des Algorithmus können dank der vorangehenden Veri�kationen
veri�ziert werden.

Die Komplexität von Dijkstras Algorithmus bereitet dem KeY tool ei-
nige Schwierigkeiten bezüglich der Performanz, weswegen wir während der
Veri�zierung die Automatisierung etwas reduzieren müssen. Auf der anderen
Seite zeigt sich, dass sich aus der Veri�kation einige Rückmeldungen ableiten
lassen.

i

ii

Contents

1 Introduction 1

1.1 Java Modeling Language . 2

1.1.1 A Speci�cation Example 3

1.2 KeY . 4

1.2.1 Veri�cation with KeY 4

1.2.2 Settings . 5

1.3 Dijkstra's Shortest Path Algorithm 6

2 Concrete Implementation 8

2.1 Code . 8

2.1.1 Graph . 9

2.1.2 PriorityQueue . 10

2.1.3 Dijkstra . 11

2.2 Speci�cation . 13

3 Abstract Implementation 13

3.1 Code . 14

3.2 Speci�cation . 16

3.2.1 run(s) . 19

3.2.2 outerLoop(s) . 22

3.2.3 innerLoop(s, u, i) . 25

3.3 Veri�cation . 27

4 Abstract Implementation with T-Optimization 28

4.1 Code . 28

4.2 Speci�cation . 29

4.3 Veri�cation . 32

5 Concrete Implementation, cont'd 32

5.1 Code . 32

5.2 Speci�cation . 34

5.2.1 Graph . 34

5.2.2 PriorityQueue . 36

5.2.3 Dijkstra . 39

5.2.4 init(s, t) . 40

5.2.5 run(s, t) . 41

5.2.6 outerLoop(s, t) . 43

5.2.7 innerLoop(s, t, u, i) 46

5.3 Veri�cation . 48

iii

6 Variations of the Algorithm 48

6.1 Bidirectional . 49
6.1.1 Code . 49
6.1.2 Speci�cation . 50
6.1.3 Veri�cation . 51

6.2 With Precalculation (Arc Flags) 51
6.2.1 Code . 52
6.2.2 Speci�cation . 55
6.2.3 Veri�cation . 60

7 Results 60

7.1 Veri�cation Summary . 61
7.2 Issues with KeY . 63
7.3 Feedback for Algorithm Engineers 65

8 Conclusion 66

8.1 Future Work . 67

iv

1 Introduction

The DFG Priority Programme Algorithm Engineering1 focuses on a four
stage cycle in the development of algorithms, consisting of design, analy-
sis, implementation and experiment. Following the design stage, the (ab-
stract) algorithm is formally analyzed and then implemented. The resulting
concrete implementation is examined experimentally and with the obtained
knowledge the cycle is started over again. The inclusion of a new stage, the
formal analysis of the concrete implementation, which runs in parallel to the
experimental stage, can improve the development process.

In particular, formal veri�cation (as part of the formal analysis) of the
concrete implementation can help the development process in several ways.
On the one hand, the veri�cation of a highly optimized implementation is less
di�cult with the knowledge gained by the iterative veri�cation of previous
cycles. On the other hand, the veri�cation can point out spots where the
algorithm can be further improved.

Because the formal veri�cation is part of the development process, algo-
rithm engineers, who are in general no experts in formal veri�cation, should
be able to perform the veri�cation as well. Therefore, we are in need of tools
that are highly automated and provide proper feedback if a proof attempt
does not succeed. Also, those tools have to support a formal speci�cation
language which is easy to use.

The Java Modeling Language (JML)2 [LBR06] is a speci�cation language
for Java. It uses a Java-like syntax and can be written in Java source �les,
which makes it easy to use. We will take a more detailed look at JML in
section 1.1.

A tool for the veri�cation of Java programs that can be used in conjunc-
tion with JML is the KeY tool [BHS07] (from now on called KeY). It is a
highly automated interactive theorem prover for �rst-order Dynamic Logic
for Java. JML speci�cations can be used to produce proof obligations to
show the correctness of Java programs. More details can be found in section
1.2.

We want to determine, whether KeY is suitable for verifying algorithms
as they occur in algorithm engineering, and what feedback can be given to
algorithm engineers by evaluating the veri�cation. For this, we will mimic
the development process of a chosen algorithm by verifying implementations
of several variants of that algorithm. We will use JML for the speci�cation
and KeY to verify the implementations.

The algorithm should already be well-known, so that we can concentrate
more on �nding a proof with KeY than on �nding the right speci�cation for
the algorithm. We chose Dijkstra's Shortest Path Algorithm, which is used

1http://www.algorithm-engineering.de/
2http://www.jmlspecs.org/

1

http://www.algorithm-engineering.de/
http://www.jmlspecs.org/

in research and teaching in Prof. Dr. Dorothea Wagner's group Algorithmics
I at the Karlsruhe Institute of Technology3. It is available in several variants,
so that we can mimic the development process.

We start with the veri�cation of a concrete implementation of Dijkstra's
Algorithm and continue with some variants later on. Besides the evaluation
of the veri�cation with KeY, we also explore possible feedback for algorithm
engineers.

In the following sections we will give a short introduction of the speci-
�cation language JML, the theorem prover KeY and Dijkstra's Algorithm.
Readers who are familiar with these topics may skip the remainder of this
section.

1.1 Java Modeling Language

The Java Modeling Language (JML) is a formal behavioral interface speci-
�cation language tailored to Java. It allows to specify the behavior of Java
programs using pre- and postconditions and invariants.

The behavior of a method is given by a method contract consisting of
preconditions, postconditions and a modi�es clause. A method is correct
with respect to its speci�cation if after its execution the postconditions hold,
provided it was called while the preconditions were true. Additionally, the
method may only modify memory locations referenced in the modi�es clause,
except for local variables. It is permitted that a method has more than
one contract. While multiple contracts are independent of each other, the
method must ful�ll each of them.

Properties of �elds in a Java class can be speci�ed by class invariants.
All constructors must put these invariants in place and every non-helper
method, i.e. every non-private method, has to preserve them. Only during
the execution of a method the invariants can be temporarily violated. At the
end of the execution and before calls to non-helper methods the invariants
have to be restored again.

Though loop invariants are not needed for the interface speci�cation,
they can be given to support the veri�cation and for a better understanding
of the program code.

To check whether a program satis�es its speci�cation, there are several
tools available; one of them is KeY (see section 1.2).

JML speci�cations can be either written in an additional �le or included
as special annotation comments in the Java �les themselves. To ease the
handling, JML syntax is based upon Java syntax with the addition of some
new expressions and keywords.

3http://i11www.iti.uni-karlsruhe.de/en/

2

http://i11www.iti.uni-karlsruhe.de/en/

1.1.1 A Speci�cation Example

In listing 1 a small example of a JML speci�cation is shown. The code con-
sists of an integer �eld n, a setter set(m) and a getter get(). Comments whose
�rst non-whitespace character is an @, are interpreted as JML speci�cations.

Listing 1: A speci�cation example

1 public class Example {
2
3 //@ invariant n >= 0;
4 int n ;
5
6 /∗@ pub l i c normal_behavior
7 @ requires m >= 0;
8 @ ensures n == m;
9 @ modifies n;
10 @∗/
11 void s e t (int m) {
12 n = m;
13 }
14
15 /∗@ pub l i c normal_behavior
16 @ ensures \ resu l t == n;
17 @ ensures \ resu l t >= 0;
18 @∗/
19 /∗@ pure @∗/ int get () {
20 return n ;
21 }
22
23 }

In line 3 the keyword invariant is given to de�ne the class invariant that
the integer n is never smaller than 0.

In lines 6�10 a method contract for the method set(m) is speci�ed. It is
started in line 6 with the keywords public, which speci�es the visibility of the
contract, and normal_behavior, which states that the method will throw no
exception (if the preconditions were holding). The keyword requires in line
7 begins a precondition stating that the parameter m may not be smaller
than 0. In line 8 a postcondition is started with ensures and states that
after the exectuion of the method the value of �eld n equals the value of
the parameter m with which the method was called. In line 9 the keyword
modi�es is given to de�ne the modi�es clause consisting of n. Thus, the
method is only allowed to modify the value of n, as well as local variables.
Termination of the method is required implicitly.

In lines 15�19 a method contract for the method get() is given. Again, the
method is declared to throw no exception. The postcondition in line 16 states
that the return value of the method, which can be accessed by the keyword
\result, equals the value of n. Another postcondition is speci�ed in line 17
requiring the return value to not be smaller than 0. Multiple postconditions
(as well as preconditions) are conjunctively linked, i.e. all postconditions
have to be true after the execution of the method. The keyword pure in line
19 declares the method to be pure, meaning it modi�es nothing besides local
variables. Declaring a method as pure is equivalent to specifying an empty
modi�es clause (modi�es \nothing).

There are still several other keywords in JML, which we will intro-
duce when needed. The complete documentation of JML can be found in

3

[LPC+03].

1.2 KeY

The KeY tool (also called KeY system or just KeY) results from the KeY
Project4. This project was founded in November 1998 at the University of
Karlsruhe. In the meantime it became a joint project of the University of
Karlsruhe, Chalmers University of Technology, Gothenburg, and the Univer-
sity of Koblenz. Besides much theoretical research in the �eld of software
veri�cation, an interactive theorem prover for �rst-order Dynamic Logic for
Java was developed: the KeY tool.

KeY allows the veri�cation of Java programs and is written in Java itself.
The Dynamic Logic that KeY uses was developed for Java Card, a subset of
Java. However, it supports some more features and thus can be used for the
veri�cation of almost any sequential Java program without dynamic class
loading and �oating point types.

To produce derivations, a sequent calculus is used. By application of
rules (called taclets) a proof tree is built. The leaves are called goals and
can be either open or closed. If all goals are closed, the proof is complete
and the proof obligation is shown.

The application of taclets can be done automatically, for which KeY has
an auto mode, or by hand. For this, KeY comes with a graphical user inter-
face which is quite intuitive. Besides options to direct the automated proof
search, which can be changed on-the-�y, the whole proof tree is displayed
and every node with its sequent can be examined closely, including open
goals for taclet application.

KeY provides an interface to JML (see section 1.1), so that proof obliga-
tions can be automatically generated using JML speci�cations.

1.2.1 Veri�cation with KeY

To prove the correctness of a Java program annotated with JML speci�ca-
tions there are several proof obligations.

For every constructor and every non-helper method we must verify that
after its execution (in case of a constructor this is after a new object was
created) all class invariants hold. This proof obligation is called PreserveInvs.

Then we have to show that every method ful�lls each of its contracts.
On the one hand, the postconditions of the method must hold after its exe-
cution. On the other hand, the method may only modify memory locations
referenced in the modi�es clause. The former proof obligation is called En-
suresPost, the latter RespectsModi�es.

For proof obligations for non-helper methods we can assume that the class
invariants hold before the method call, making them additional preconditions

4http://www.key-project.org/

4

http://www.key-project.org/

for the method.

In the veri�cation of a method its body is symbolically executed, i.e. the
e�ect of a statement is evaluated in the Dynamic Logic according to its se-
mantics. While for basic statements like assignments this is straightforward,
there are some special cases.

The handling of method calls can be done in two ways. A simple solution
is to inline the method and symbolically execute its body. For modularization
purposes however, it is better to use a contract of the called method. We
can then use the postconditions and hide the method body, which reduces
the proof size. In the proof tree the use of a method contract results in the
three branches Pre, Post and Exceptional Post. In Pre we have to show that
the method's preconditions hold. In Post and Exceptional Post we can use
the postconditions to continue the veri�cation. Post covers the method's
execution without throwing an exception, Exceptional Post the execution
with throwing an exception. Using a normal_behavior contract lets the
branch Exceptional Post be closed right away, since no exception is thrown.

Loops in programs can be handled either by induction or loop invariants.
Since we will only use loop invariants here we omit an introduction to in-
duction. The use of a loop invariant leads to the four branches Invariant
Initially Valid, Body Preserves Invariant, Use Case and Termination in the
proof tree. In Invariant Initially Valid we must show that the loop invariant
is valid before the loop is executed. Then, when the loop condition is true,
an execution of the loop's body must preserve the invariant (Body Preserves
Invariant). In Use Case we can use the loop invariant and the negation of
the loop condition to show the postconditions. In the branch Termination
we have to show that the loop condition will eventually be false, so that the
loop terminates.

In another variation of the loop invariant we can replace the branch
Termination by a variant. This variant must be non-negative and every
execution of the loop body has to decrease it. Furthermore, if the variant
is decreased to 0, the loop condition must evaluate to false. With these
properties termination is shown.

The proof obligation RespectsModi�es can be shown using weak loop in-
variants and method contracts. We also use only simple invariants, such that
both RespectsModi�es and PreserveInvs can be easier shown than Ensures-
Post. Therefore we will only detail the veri�cation of the proof obligation
EnsuresPost in this work.

1.2.2 Settings

For the veri�cation tasks in this work a version of KeY that was not released
o�cially was used. The current release, KeY 1.4, lacks the ability to deal
with loop invariants with variants, which we employed when dealing with
loops. Therefore KeY was used in the version of July 17th 2009. Newer

5

versions should work as well, but di�erences in the proofs are possible.

For such complex proof obligations as we have here we were not able to
complete the proofs with the default settings due to some performance issues
KeY has (see section 7.2).

Normally, KeY would check for null pointers in cases where a NullPoint-
erException could be raised, e.g. when accessing an array. This generates
some overhead in the proof, so we deactivated these checks by setting null-
PointerPolicy to noNullCheck. In principle the proofs could be done with
null pointer checks, too.

The options for the proof search strategy control which rules can be
automatically applied. Some of them had to be changed as well. For KeY to
use method contracts instead of inlining method bodies, the option Method
treatment was set to Contracts. We also set the option Quanti�er treatment
to No splits, which reduces the amount of quanti�er instantiations KeY does
automatically.

Though these are our default settings, in several cases we had to limit
the automated rule application further for a successful veri�cation.

1.3 Dijkstra's Shortest Path Algorithm

Dijkstra's Shortest Path Algorithm is an algorithm to �nd shortest paths in
a graph with weighted edges. It was developed by Dutch computer scientist
Edsger Wybe Dijkstra in 1959 [Dij59] and is still widely used today, e.g. in
the network routing protocol OSPF [Moy98].

In its basic form it computes the shortest paths from a source node to
all reachable nodes. It only requires all edge weights to be non-negative,
and works for undirected as well as directed graphs. If the graph is not
connected, i.e. there are unreachable nodes, their distances are set to∞ and
they are thus marked as not reachable. In listing 2 the algorithm for a graph
G = (nodes, edges) is shown in pseudocode.

Listing 2: Dijkstra's Algorithm in pseudocode

1 for each node n in nodes
2 distance[n] := in�nite
3 distance[s] := 0
4 visited := {}
5
6 while exist nodes not in visited
7 n := node with smallest distance[n] which is not in visited
8 if distance[n] = in�nite
9 break
10 visited := visited union {n}
11
12 for each node m with (n, m) in edges which is not in visited
13 d := distance[n] + weight(n, m)
14
15 if d < distance[m]
16 distance[m] := d

The set nodes contains all nodes of the graph, the edges are stored as
tupels of nodes in the set edges. The function weight(n, m) returns the
weight of the edge between nodes n and m and is de�ned if the tupel (n,

6

m) is contained in edges. The array distance stores for all nodes the current
distance from the source node. A distance of ∞ for a node n means that
n is not (yet) reachable. A node becomes reachable, when a predecessor m
is visited and the distances of m's successors are updated. The set visited
contains nodes for which the shortest distance is found; those nodes are
called visited.

The algorithm is initialized by setting the distance for every node to ∞
(lines 1�2), except for the source node s, whose distance is set to 0 (line 3).
The set visited is initialized with the empty set (line 4). In this state only
the source node is reachable and no node is visited.

While there exist unvisited nodes (line 6, the outer loop), the unvisited
node n with the smallest distance (line 7) is set visited (line 10). For every
unvisited successor m of node n (line 12, the inner loop) the distance d to
node m via n is calculated (line 13) and compared to the current distance for
m (line 15). If the new distance is shorter, the current distance is updated
(line 16).

After one execution of the outer loop's body one more node is visited and
that node's successors are reachable with updated distances (where applica-
ble). By choosing to visit the node with the smallest distance it is ensured
that there is no shorter path to this node.

When all nodes are visited, all shortest paths are found and the algorithm
terminates. Since in every iteration of the outer loop one unvisited node
is set visited and the number of nodes is �nite, the algorithm terminates
eventually.

If the graph is not connected, there are some nodes which can not be
reached from the source node. At some iteration of the outer loop there are
only those unreachable nodes left unvisited. Thus, if the node n with the
smallest distance has a distance of∞, the algorithm can be terminated (lines
8�9) prematurely.

The main invariant responsible for the correct computation of the short-
est paths is that every visited node u, i.e. u is contained in the set visited,
has a distance which is smaller than or equal to the distance of every unvis-
ited node v. In the beginning, visited is empty and the invariant holds. By
always adding the node with the smallest distance to visited, the invariant is
preserved. Furthermore, when updating the successors m of node n, due to
non-negative edge weights, m's updated distance is never smaller than the
distance of n. Because n has the largest distance amongst all visited nodes,
the invariant can not be violated.

Subsequently, if a node is visited, there can not exist a shorter path to
that node.

We have to distinguish between di�erent meanings of the term unreach-
able node. When speaking about the graph a node is unreachable if there
exists no path from the source node to that node. When speaking about
Dijkstra's Algorithm, which we do from now on if not stated otherwise, we

7

talk about the current iteration of the algorithm's outer loop. A node is
reachable if one of its predecessors is visited or if it is the source node, which
is reachable from the beginning. For the current iteration all other nodes
are unreachable. However, those can become reachable in a later iteration.
Only when the algorithm has terminated, both meanings are identical.

2 Concrete Implementation

The implementation of Dijkstra's Algorithm provided by Prof. Wagner's
group was written in C++. Since we want to use JML and KeY for the
speci�cation and veri�cation, we ported the implementation to Java. As the
Java implementation was done as close as possible to the provided C++ code,
the original code is not shown in this work. Both implementations include
a framework for running and testing the algorithm, which we will not show
as well. However, the complete Java implementation and the original C++
code can be found on the enclosed CD.

The implementation uses a small optimization we call t-optimization.
The standard variant of Dijkstra's Algorithm computes the shortest paths
from a source node to all reachable nodes. In cases where a shortest path
from a source node to only one node (the target node) is sought, we can
modify the algorithm slightly. We know that when a node is set visited, its
shortest path is found (see section 1.3). With this knowledge we can stop
the algorithm when the target node is set visited. This optimization was
already described by E. W. Dijkstra in his original paper [Dij59].

2.1 Code

The code consists of three classes, Graph, PriorityQueue and Dijkstra. Class
Dijkstra contains the algorithm itself, Graph is the representation of the
graph and PriorityQueue helps in �nding the node with the smallest distance.

While there are two inner classes Node and Edge, we identify nodes and
edges by their index in the corresponding array of class Graph (see section
2.1.1). The classes Node and Edge are only used to store additional informa-
tion for nodes and edges. When we talk about a node or an edge, we always
mean its index, which is an integer between 0 and the array's length.

The algorithm is started by calling the main method run(s, t) (see section
2.1.3) with the source node s and the target node t as parameters. It then
computes the shortest path from the source node to the target node. If t
is an invalid node, i.e. an invalid index of the node array, the algorithm
computes the shortest distances from the source node to all reachable nodes.
The implementation is optimized for subsequent runs of the algorithm with
the same graph, only di�erent source and target nodes.

8

2.1.1 Graph

The graph is stored in a Forward and Reverse Star Representation [AMO93]
using an adjacency array as it is presented for static graphs in conjunction
with bidirectional techniques by D. Delling [Del09]. It consists of two arrays,
one for the nodes, the other for the edges. Every node n has a pointer to its
�rst edge in the edge array. The edges are ordered by their source node, so
all following edges up to the �rst edge of the next node belong to node n,
too. A dummy node at the end of the node array works as an upper bound
for the last node's edges by pointing to the edge array's �rst invalid index.
Accordingly, the number of nodes is the length of the node array minus 1.
Every edge has a pointer to its target node and a weight. Additionally,
since this data structure is also used for bidirectional techniques, edges have
�ags indicating an outgoing and/or an incoming edge. In this representation
an edge is stored twice, as an outgoing edge for its source node and as an
incoming edge for its target node. Figure 1 demonstrates the use of this data
structure with a small example.

0

1

7

2
3

5

5

0 2 4 6

1 2 0 2 0 1 1

7 5 7 3 5 3

1 1 0 1 1 0

0 1 1 0 1 1

�rstEdge

targetNode

weight

forwardFlag

backwardFlag

Figure 1: An example graph with its representation in the adjacency array

Listing 3: The data structure of the graph

1 public class Graph {
2 Node [] nodes ;
3 Edge [] edges ;
4
5 int numberOfNodes () {
6 return nodes . l ength − 1 ;
7 }
8
9 stat ic class Node {
10 int f i r s tEdge ;
11 }
12
13 stat ic class Edge {
14 int targetNode ;
15 boolean forwardFlag ;
16 boolean backwardFlag ;
17 int weight ;
18 }
19
20 }

Listing 3 shows the source code of the class Graph. In line 2 the node
array nodes is declared. It is of type Node (lines 9�11), which points with the
integer �rstEdge to that node's �rst edge. Line 3 introduces the edge array

9

edges of type Edge (lines 13�18). Edge stores the additional information
for an edge: the integer targetNode points to the target node of this edge,
the boolean �ags forwardFlag and backwardFlag indicate, whether the edge
is an outgoing and/or an incoming edge, and the integer weight stores the
edge weight. The method numberOfNodes() (lines 5�7) returns the number
of nodes of the graph, which is, due to the dummy node at the end of the
node array, nodes. length − 1.

2.1.2 PriorityQueue

In the abstract algorithm (see section 1.3) a set visited was used for the nodes
whose shortest paths are determined. From the other (unvisited) nodes the
one with the shortest distance was selected in the next iteration of the outer
loop. Thus, only the complementary set of visited is interesting for the
progression of the algorithm. We don't need to consider unreachable nodes,
i.e. nodes with a distance of ∞, either.

Hence, this implementation only stores the set of nodes which are reach-
able and unvisited. This is done using a priority queue to easily access the
node with the smallest distance. In the original code the queue was backed by
a binary heap, while the Java implementation is simpler, but not as e�cient.

Because the simple implementation does not correspond to the original
implementation and the priority queue is not part of the algorithm itself, we
refrain from verifying the priority queue. In this work, we only consider its
interface, which is shown in listing 4.

Listing 4: The interface of the priority queue

1 public class Prior i tyQueue {
2 int [] nodes ;
3 int [] d i s t an c e s ;
4 int s i z e ;
5
6 void c l e a r () ;
7 boolean empty () ;
8 int deleteMin () ;
9 void i n s e r t (int n , int d) ;
10 void decreaseKey (int n , int d) ;
11 }

The array nodes (line 2) holds the nodes that are contained in the queue.
Their distances are stored in the array distances (line 3) using the same
indices. The number of nodes currently in the queue is indicated by the
integer size (line 4).

The method clear() (line 6) removes all nodes from the queue and the
method empty() (line 7) tests for the empty queue. deleteMin() (line 8) re-
turns the node with the smallest distance currently in the queue and removes
that node from it. A node is added to the queue by the method insert(n, d)
(line 9) where n is the node and d its distance.

If the distance of a node which is in the queue changes, the distance
known to the queue needs to be updated, as well. Because the distance of a
node is only getting smaller and is used in the queue as the key to order by,

10

the method to update the distance is called decreaseKey(n, d) (line 10). n
is the node with the changed distance and d its new distance.

2.1.3 Dijkstra

The implementation of the algorithm, which is located in class Dijkstra,
di�ers from the abstract algorithm described in section 1.3 in several points.
Some are the results of implementing in an actual programming language
and of using the graph's data structure and the priority queue described in
the sections 2.1.1 and 2.1.2.

One di�erence is the implementation of the value ∞. Since there is no
such value in Java (and also in C++), another approach had to be used. In
this implementation the value ∞ is modeled by an additional reachability
function. If a node's distance is smaller than∞ it is �agged reachable and its
distance is stored in the array distance. Otherwise it is �agged unreachable
and the value of distance at that nodes' index can be arbitrary.

The reachability function is implemented using a counter which is in-
creased in each run of the algorithm. If a node becomes reachable, the value
of the array runs at the node's index is set to the value of the counter.
Hence, a node is reachable if the value of runs for that node equals the value
of the counter. For the next run the reachability of all nodes can be reset by
increasing the counter.

Listing 5: Implementation of the algorithm without the method run(s,t)

1 public class Di jk s t r a {
2 Graph graph ;
3 Prior i tyQueue queue ;
4 int counter ;
5 int [] runs ;
6 int [] d i s t ance ;
7 int se t t l edNodes ;
8 int re laxedEdges ;
9 int t a r g e t ;
10
11 void i n i t (int s , int t) {
12 counter++;
13 queue . c l e a r () ;
14 d i s t ance [s] = 0 ;
15 queue . i n s e r t (s , 0) ;
16 runs [s] = counter ;
17 ta rg e t = t ;
18 re laxedEdges = 0 ;
19 se t t l edNodes = 0 ;
20 }
21
22 int getDis tance () {
23 return d i s t ance [t a r g e t] ;
24 }
25
26 }

In listing 5 the code of class Dijkstra is shown � without the main method
run(s, t) which we present for itself. The graph is stored in the �eld graph
(line 2), the priority queue in the �eld queue (line 3). Line 4 declares the
counter to use for the values of the array runs (line 5) to indicate reachability.
In the array distance (line 6) the distances of the nodes are stored. In lines
7�8 the integers settledNodes and relaxedEdges are declared, which are used

11

for statistical purposes. settledNode holds the number of nodes which are
visited, relaxedEdges holds the number of edges which were considered for a
shortest path, i.e. the distances via those edges were computed and compared
to the distances known before. The target node with which the algorithm
was called is stored in target (line 9).

For the initialization the method init(s, t) (lines 11�20) is called in the
beginning of the main method run(s, t). It increases the counter, thus setting
all nodes unreachable and removes all nodes from the queue (lines 12�13).
It then sets the distance of the source node s to 0, adds s to the queue und
sets it reachable (lines 14�16). Finally, the target node is stored in target
and settledNodes and relaxedEdges are reset to 0 (lines 17�19).

The method getDistance() (lines 22�24) returns the distance to the target
node computed in the last run of the algorithm.

Listing 6: The algorithm's main method run(s, t)

1 void run (int s , int t) {
2 i n i t (s , t) ;
3
4 while (! queue . empty ()) {
5 int u = queue . deleteMin () ;
6 se t t l edNodes++;
7
8 i f (u == t) {
9 return ;
10 }
11
12 for (int i = graph . nodes [u] . f i r s tEdge ;
13 i < graph . nodes [u + 1] . f i r s tEdge ; i++) {
14
15 i f (! graph . edges [i] . forwardFlag) {
16 continue ;
17 }
18
19 re laxedEdges++;
20 int v = graph . edges [i] . targetNode ;
21 int d = d i s tance [u] + graph . edges [i] . weight ;
22
23 i f (runs [v] != counter) {
24 d i s t ance [v] = d ;
25 queue . i n s e r t (v , d) ;
26 runs [v] = counter ;
27 } else i f (d < d i s tance [v]) {
28 d i s t ance [v] = d ;
29 queue . decreaseKey (v , d) ;
30 }
31
32 }
33
34 }
35
36 }

Listing 6 shows the method run(s, t), which is called to start the algo-
rithm. Parameter s is the source node, t is the target node. The algorithm
starts with the initialization by calling init(s, t) (line 2).

Then the outer loop (lines 4�34) is executed as long as there are nodes
in the priority queue (line4). This corresponds to the abstract algorithm as
the queue contains the nodes that are reachable and unvisited (see section
2.1.2). With a call to the queue's method deleteMin() the node with the
smallest distance is removed from the queue and it is stored in u (line 5).
The number of visited nodes is then incremented (line 6).

12

If node u is the target node, the algorithm is stopped (lines 8�10). Oth-
erwise, the inner loop (lines 12�32) iterates over every edge of node u. It
starts with the �rst edge of u in the graph's edge array edges and stops at
the �rst edge of the next node (u + 1). In lines 15�17 we check, whether
the current edge is an outgoing edge. In this case the rest of the loop body
is executed. Otherwise, i.e. when forwardFlag is not set for this edge, the
body is skipped.

If the current edge i is outgoing, the number of considered edges is in-
cremented (line 19). In the variable v the target node of edge i is stored and
the distance d to node v via edge i is computed (lines 20�21).

In line 23 it is checked if v is unreachable until now. In this case, it
is added to the queue, it is set reachable and its distance is set to d (lines
24�26). If v is already reachable, the new distance d is compared to the
current and updated, if necessary � both in the array distance and in the
priority queue (lines 27�29).

After the inner loop has iterated over all edges, the outer loop continues
with its next iteration. When there are no more nodes in the queue, the
algorithm terminates.

2.2 Speci�cation

In the beginning of the speci�cation and veri�cation process it became clear
that working directly with the concrete implementation would not work.
Although the implementation has only 20 lines of code (method run(s, t)
without blank lines and closing brackets), initial veri�cation attempts showed
that the task had a higher complexity than expected. The (partial) proof
became so large that we could not work with it to �nd the right speci�cation.
We decided to start with a simpler implementation.

We will present an abstract implementation without t-optimization and
with simpler data structures in section 3 and add the t-optimization again
in section 4. We will then continue with the speci�cation and veri�cation of
the concrete implementation in section 5.

3 Abstract Implementation

We developed the abstract implementation to start the speci�cation and
veri�cation with a simpler implementation. It uses no priority queue and a
simpler data structure for the graph. We also omitted the t-optimization.

The algorithm's main method run(s, t) of the concrete implementation
(see section 2) is now split into three methods. The method innerLoop(s, u, i)
contains the body of the inner loop and is called by the method outerLoop(s)
which contains the body of the outer loop. outerLoop(s) is called by the
method run(s) which starts the algorithm and does not need the parameter
t anymore.

13

3.1 Code

The abstract implementation consists of only the class DijkstraAbstract.
Besides the three main methods run(s), outerLoop(s) and innerLoop(s, u,
i) there is the initialization method init(s) and two abstract methods ex-
istsMin() and getMin() which assume the role of the priority queue.

The graph's data structure is implemented using an adjacency matrix
with the nodes being the indices of the matrix. Edges are identi�ed by their
source and target nodes. In contrast to the concrete implementation there
cannot be two edges connecting the same nodes.

Listing 7: The abstract implementation without the methods run(s), outerLoop(s)
and innerLoop(s, u, i)

1 public abstract class Di jks t raAbst rac t {
2 int nodeCount ;
3 boolean [] [] edge ;
4 int [] [] weight ;
5 int [] d i s t ance ;
6 boolean [] r eachab le ;
7 boolean [] v i s i t e d ;
8 int v i s i t edNodes ;
9
10 abstract boolean ex i s t sMin () ;
11 abstract int getMin () ;
12
13 void i n i t (int s) {
14
15 for (int i = 0 ; i < nodeCount ; i++) {
16 reachab le [i] = fa l se ;
17 v i s i t e d [i] = fa l se ;
18 }
19
20 reachab le [s] = true ;
21 d i s t ance [s] = 0 ;
22 v i s i t edNodes = 0 ;
23 }
24
25 }

Listing 7 shows the code of the abstract implementation � without the
methods run(s), outerLoop(s) and innerLoop(s, u, i) which are presented
for themselves. The graph is declared in lines 2�4, nodeCount indicates the
number of nodes and the arrays of array edge and weight implement the
adjacency matrix. An edge between two nodes n and m exists if the value
of edge[n][m] is true. In this case, the value of weight[n][m] denotes the
weight of the edge.

As in the concrete implementation the array distance (line 5) stores the
computed distances for all nodes. The reachability function is implemented
here by the array reachable (line 6). A node n is reachable if the value of
reachable at index n is true. Otherwise, n is unreachable. The same holds
for the array visited which indicates whether a node is visited (line 7). The
number of visited nodes is stored in visitedNodes (line 8) and corresponds to
settledNodes of the concrete implementation.

The abstract method existsMin() (line 10) checks whether a node ex-
ists that is reachable and unvisited. It corresponds to the queue's method
empty() of the concrete implementation. getMin() (line 11) corresponds to
the queue's method deleteMin() and returns the node with the smallest dis-

14

tance which is reachable and unvisited. As with the queue's implementation
(see section 2.1.2) we do not present the implementations of both methods
because they are not part of the algorithm itself.

The initialization method init(s) in lines 13�23 sets all nodes unreachable
and unvisited (lines 15�18). Then the source node is set reachable with a
distance of 0 (lines 20�21) and the number of visited nodes is reset (line 22).

Listing 8: The main methods run(s), outerLoop(s) and innerLoop(s, u, i) of the
abstract implementation

1 void run (int s) {
2 i n i t (s) ;
3
4 while (ex i s t sMin ()) {
5 outerLoop (s) ;
6 }
7
8 }
9
10 void outerLoop (int s) {
11 int u = getMin () ;
12 v i s i t e d [u] = true ;
13 v i s i t edNodes++;
14
15 for (int i = 0 ; i < nodeCount ; i++) {
16
17 i f (! edge [u] [i]) {
18 continue ;
19 }
20
21 innerLoop (s , u , i) ;
22 }
23
24 }
25
26 void innerLoop (int s , int u , int i) {
27 int d = d i s tance [u] + weight [u] [i] ;
28
29 i f (! r eachab le [i]) {
30 reachab le [i] = true ;
31 d i s t ance [i] = d ;
32 } else i f (d < d i s tance [i]) {
33 d i s t ance [i] = d ;
34 }
35
36 }

The main methods of the abstract implementation are presented in listing
8.

With the method run(s) (lines 1�8) the algorithm is started. After the
call to init(s) (line 2) the outer loop (lines 4�6) starts. As long as there are
reachable and unvisited nodes, which is checked by existsMin(), outerLoop(s)
is executed.

The method outerLoop(s) (lines 10�24) stores the node with the smallest
distance which is reachable and unvisited in the variable u, sets it visited and
increases the number of visited nodes (lines 11�13). The inner loop (lines 15�
22) checks for every node i whether i is a successor of u and continues with
the next iteration if it is not (lines 17�19). If it is, the method innerLoop(s,
u, i) is executed.

For every successor i of node u, innerLoop(s, u, i) (lines 26�34) is exe-
cuted. It computes the distance d to node i via node u (line 27). If i is not
yet reachable, it is set reachable and its distance is set to d (lines 29�31).
Otherwise, if the new distance d is smaller than the current distance to i,

15

the distance is updated (lines 32�33).

3.2 Speci�cation

We start the speci�cation process with the class invariants. In this abstract
implementation they mostly deal with the lengths of arrays and aliasing.
We need to specify the lengths of the used arrays in order to show that no
IndexOutOfBoundsException will be thrown when accessing an array.

Aliasing in Java occurs not only when dealing with normal objects, but
when dealing with arrays, too. If we have two variables a and b of type array
of integer, where both point to the same array, changing the value of a at
index i results in the same change of the value of b at index i. Thus, we
have to specify that every array where a value gets changed is not the same
array as any other array of the same type.

Listing 9: Class invariants for the abstract implementation

1 //@ invariant nodeCount >= 1;
2 int nodeCount ;
3
4 /∗@ invariant edge . length == nodeCount ;
5 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ;
6 @ edge [n] . length == nodeCount) ;
7 @∗/
8 boolean [] [] edge ;
9
10 /∗@ invariant weight . length == nodeCount ;
11 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ;
12 @ weight [n] . length == nodeCount) ;
13 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ;
14 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount ;
15 @ weight [n] [m] >= 0)) ;
16 @∗/
17 int [] [] weight ;
18
19 //@ invariant distance . length == nodeCount ;
20 int [] d i s t ance ;
21
22 //@ invariant reachable . length == nodeCount ;
23 boolean [] r eachab le ;
24
25 //@ invariant v i s i t ed . length == nodeCount ;
26 boolean [] v i s i t e d ;
27
28 int v i s i t edNodes ;
29
30 /∗@ invariant reachable != v i s i t ed ;
31 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ;
32 @ reachable != edge [n] && v i s i t ed != edge [n]) ;
33 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ;
34 @ distance != weight [n]) ;
35 @ invariant (\ f o r a l l DijkstraAbstract d ; \created (d) && t h i s != d ;
36 @ reachable != d . reachable && reachable != d . v i s i t ed &&
37 @ (\ f o r a l l in t n; 0 <= n && n < d . nodeCount ; reachable != d . edge [n])) ;
38 @ invariant (\ f o r a l l DijkstraAbstract d ; \created (d) && t h i s != d ;
39 @ vi s i t ed != d . v i s i t e d && v i s i t ed != d . reachable &&
40 @ (\ f o r a l l in t n; 0 <= n && n < d . nodeCount ; v i s i t ed != d . edge [n])) ;
41 @ invariant (\ f o r a l l DijkstraAbstract d ; \created (d) && t h i s != d ;
42 @ distance != d . distance && (\ f o r a l l in t n; 0 <= n && n < d . nodeCount ;
43 @ distance != d . weight [n])) ;
44 @∗/

The class invariants for the abstract implementation are shown in listing
9. Because we require a start node for the algorithm, the number of nodes
in the graph must be at least 1, which is stated in line 1.

Lines 4�7 deal with the 2-dimensional boolean array edge. It is speci�ed
that the length of edge must be equal to the number of nodes. Otherwise, an

16

IndexOutOfBoundsException could be raised. Also, every inner array of edge
must have this length, too. Iteration over all indices of an array is done with
a universal quanti�er. It begins with the keyword \forall followed by the
type and name of the variable to iterate over. Optionally a range restriction
can be given as we have done here. At last, the formula which should hold
follows.

For the 2-dimensional integer array weight we have the same requirements
(lines 10�12). Additionally, every value of edge must be at least 0 (lines 13�
16), because the algorithm requires non-negative edge weights.

For the arrays distance, reachable and visited we only need to specify the
lengths (lines 19�26). The rest is handled in the speci�cation of the main
methods. For visitedNodes (line 28) no speci�cation is needed, because it is
initialized in the algorithm itself.

In lines 30�44 we state that arrays where values are modi�ed do not equal
other arrays of the same type. E.g. the array reachable is not identical to
the array visited (line 30), or the array distance does not equal the array
distance or any inner array of weight in any other DijkstraAbstract instance
(lines 41�44).

We will now present the method contracts for the six methods. We begin
with existsMin(), getMin() and init(s). The main methods will be dealt with
in separate sections, run(s) in section 3.2.1, outerLoop(s) in section 3.2.2 and
innerLoop(s, u, i) in section 3.2.3.

The method existsMin() checks whether there are reachable and unvisited
nodes. It returns true if there is such a node, and false if there is none. The
method contract is shown in listing 10.

Listing 10: Speci�cation for the abstract method existsMin()

1 /∗@ pub l i c normal_behavior
2 @ ensures \ resu l t <==> (\ ex i s t s in t n; 0 <= n && n < nodeCount ;
3 @ reachable [n] && ! v i s i t ed [n]) ;
4 @ ensures visitedNodes == nodeCount ==> !\ resu l t ;
5 @∗/
6 /∗@ pure @∗/ abstract boolean ex i s t sMin () ;

The method contract is started in line 1 stating no exception will be
thrown. existsMin() requires no precondition, but has two postconditions.

The �rst postcondition in lines 2�3 speci�es that the return value \result
is true if and only if there exists a node, i.e. a valid index between 0 and
nodeCount, that is reachable and unvisited. The existential quanti�er is
started with the keyword \exists and uses the same syntax as the universal
quanti�er.

The second postcondition (line 4) is needed for KeY to �nd a proof for
the termination of the while loop in method run(s), see section 3.2.1. It
states that if the number of visited nodes equals the number of all nodes,
existsMin() will return false. Because in this case there are no unvisited
nodes left, the method behaves according to the �rst postcondition.

17

Since existsMin() should not modify any values, it is declared pure in
line 6.

If the method existsMin() returns true, then the method getMin() should
return the node with the smallest distance which is reachable and unvisited.
Otherwise, there is no node with this property and getMin() cannot return
the minimum. Therefore, getMin() can only be called when existsMin()
returns true.

When it is executed, it should return a reachable and unvisited node.
This node must also be the one with the smallest distance among all nodes
which are reachable and unvisited. In contrast to the method deleteMin() of
the queue in the concrete implementation, it does not modify anything and
the algorithm needs to set the returned node visited. The method contract
is presented in listing 11.

Listing 11: Speci�cation for the abstract method getMin()

1 /∗@ pub l i c normal_behavior
2 @ requires existsMin () ;
3 @ ensures 0 <= \ resu l t && \ resu l t < nodeCount ;
4 @ ensures reachable [\ resu l t] && ! v i s i t ed [\ resu l t] ;
5 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] &&
6 @ ! v i s i t ed [n] ; distance [\ resu l t] <= distance [n]) ;
7 @∗/
8 /∗@ pure @∗/ abstract int getMin () ;

Line 2 shows the precondition that the method existsMin() has to return
true. The postconditions in lines 3�4 ensure that the return value is a valid
index, i.e. a node, and that it is reachable and unvisited.

With the postcondition in lines 5�6 we ensure that of all reachable and
unvisited nodes the returned node has the smallest distance. Finally, get-
Min() is declared pure in line 8.

The method init(s) is called in the beginning of the algorithm. Every
node has to be set unreachable and unvisited. Accordingly, visitedNodes is
set to 0. Only the source node s is set reachable with a distance of 0. Because
the source node s must be valid node, we add this as a precondition. For this
method the modi�es clause is not empty, because it modi�es some values.
Listing 12 shows the contract for init(s).

Listing 12: Speci�cation for the method init(s)

1 /∗@ pub l i c normal_behavior
2 @ requires 0 <= s && s < nodeCount ;
3 @ ensures distance [s] == 0;
4 @ ensures reachable [s] ;
5 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && n != s ; ! reachable [n]) ;
6 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount ; ! v i s i t e d [n]) ;
7 @ ensures visitedNodes == 0;
8 @ modifies visitedNodes , v i s i t e d [∗] , reachable [∗] , distance [s] ;
9 @∗/
10 void i n i t (int s) {
11
12 for (int i = 0 ; i < nodeCount ; i++) {
13 reachab le [i] = fa l se ;
14 v i s i t e d [i] = fa l se ;
15 }
16
17 reachab le [s] = true ;
18 d i s t ance [s] = 0 ;
19 v i s i t edNodes = 0 ;
20 }

18

Line 2 requires the parameter s to be a valid node. Then in lines 3�4 it is
ensured that s is reachable and its distance is set to 0. Every other node will
be unreachable (line 5). The postconditions in lines 6�7 states that all nodes
are set unvisited and visitedNodes is reset. init(s) modi�es visitedNodes, all
values of the arrays visited and reachable and the value of distance at index
s (line 8).

For the loop in init(s) we add a loop invariant with variant as brie�y
described in section 1.2.1. In an iteration of the loop, all nodes up to node
i are already unreachable and unvisited. Then node i is set unreachable
and unvisited, and i is incremented, making the invariant hold for the next
iteration. The variant is nodeCount − i, which is equal to nodeCount in the
beginning and 0 at the end and gets decremented in every iteration. When
it is 0, the loop condition is false, because i equals nodeCount, and the loop
terminates. Listing 13 presents the speci�cation for the loop.

Listing 13: Loop invariant for the method init(s)

1 /∗@ loop_invariant
2 @ (\ f o r a l l in t n; 0 <= n && n < i ; ! reachable [n] && ! v i s i t ed [n]) &&
3 @ 0 <= i && i <= nodeCount ;
4 @ decreases nodeCount − i ;
5 @ modifies i , reachable [∗] , v i s i t e d [∗] ;
6 @∗/
7 for (int i = 0 ; i < nodeCount ; i++) {
8 reachab le [i] = fa l se ;
9 v i s i t e d [i] = fa l se ;
10 }

With the keyword loop_invariant (line 1) the loop invariant, which ends
in line 3, is started. It states that every node up to node i is unreachable and
unvisited (line 2), and that the value of i ranges between 0 and nodeCount.
We need the latter to show termination.

The variant is given in line 5 beginning with the keyword decreases. The
modi�es clause in line 5 speci�es which values the loop modi�es. This is i
and the values of the arrays reachable and visited.

3.2.1 run(s)

The method run(s) is the starting method for the algorithm and expects the
source node as parameter s. The result is the shortest path from s stored in
distance for each node, if that node is reachable. The reachability is stored
in reachable.

The postconditions are based on the speci�cation by Böhme, Leino and
Wol� for a high-level implementation of Dijkstra's Algorithm [BLW08]. They
can be split into two parts, the �rst one talks about the reachability of nodes,
the second one about the distances of the reachable nodes.

A node is reachable, if it has a reachable predecessor. This chain starts
with the source node, which is reachable by de�nition. Then, for all reachable
nodes n all nodes m are reachable, if there is an edge between nodes n and
m.

19

The distance of the source node is 0. The distance of every other node m
is computed by the distance of one of its predecessors and the weight of the
edge between the two nodes. So there exists a predecessor n such that the
distance of n plus the weight of the edge between n and m is the distance
of m.

Additionally, the distance must be the minimum distance, so for all two
nodes n and m holds that, if n is reachable and there is an edge from n to m,
then the distance of n plus the edge weight is not smaller than the distance
of m. Otherwise a shorter path would exist.

Listing 14: Speci�cation for the method run(s)

1 /∗@ pub l i c normal_behavior
2 @ requires 0 <= s && s < nodeCount ;
3 @ ensures reachable [s] ;
4 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] ;
5 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
6 @ reachable [m])) ;
7 @ ensures distance [s] == 0;
8 @ ensures (\ f o r a l l in t m; 0 <= m && m < nodeCount && reachable [m] && m != s ;
9 @ (\ ex i s t s in t n; 0 <= n && n < nodeCount && reachable [n] && edge [n] [m] ;
10 @ distance [m] == distance [n] + weight [n] [m])) ;
11 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] ;
12 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
13 @ distance [m] <= distance [n] + weight [n] [m])) ;
14 @ modifies visitedNodes , v i s i t e d [∗] , reachable [∗] , distance [∗] ;
15 @∗/
16 void run (int s) {
17 i n i t (s) ;
18
19 while (ex i s t sMin ()) {
20 outerLoop (s) ;
21 }
22
23 }

The complete method contract is shown in listing 14. The only precondi-
tion is that s is a valid node (line 2). In lines 3�6 the reachability is speci�ed:
s is reachable, as well as every successor of a reachable node.

The postconditions for the distances are given in lines 7�13. The distance
of the source node is 0 (line 7) and all other distances are computer by the
distance of a predecessor (lines 8�10). Lines 11�13 specify that the distances
are minimal.

run(s) modi�es the value of visitedNodes and the values of the arrays
visited, reachable and distance (line 14). It does this not by itself, but through
the methods init(s) and outerLoop(s).

The loop invariant for the loop in run(s) consists of several parts. Since
the loop is the last piece of code in the method run(s), the postconditions
have to be derivable from the invariant. Another part provides formulae,
which are needed as preconditions for the call to outerLoop(s). At last, the
termination requires some formulae, as well.

To conclude the postconditions of run(s) we use similar formulae in the
loop invariant. In an iteration of the loop not all successors of reachable
nodes are reachable yet. Only the successors of visited nodes are reachable.
The same holds for the distances. So for the loop invariant we require the
predecessors to be visited, too. Because all visited nodes are reachable,

20

as well, we introduce an invariant, such that we can omit a visited node's
reachability. In the loop body a reachable node becomes visited and its
successors are updated. When the loop terminates, all reachable nodes are
visited and thus we can derive the postconditions.

The method outerLoop(s) requires two additional invariants in order to
be called. All distances must be at least 0 and the distances of visited nodes
must not be greater than the distances of reachable and not visited nodes
(see section 3.2.2).

To show the termination of the loop we again use a variant. In every iter-
ation of the loop one unvisited node becomes visited; and a visited node never
becomes unvisited again. So when all nodes are visited, no node is unvisited
and the loop terminates. Hence, the variant is nodeCount − visitedNodes,
with nodeCount being the number of all nodes and visitedNodes the number
of visited nodes. visitedNodes starts being 0 and is incremented in every
iteration of the loop. So its value ranges from 0 to nodeCount, as does the
value of the variant, only descending. That the loop indeed terminates, when
the variant becomes 0, i.e. visitedNodes equals nodeCount, cannot be proven
with KeY using this knowledge only. A feature is needed that can count the
visited nodes and deduce from there that if this number equals the number
of all nodes, there cannot be an unvisited node. Though such a feature is
implemented in KeY, it is not yet powerful enough for this purpose. We help
ourselves by including a postcondition in the contract of existsMin(), as men-
tioned in section 3.2, stating that the method returns false, if visitedNodes
equals nodeCount, thus terminating the loop.

Listing 15: Loop invariants for the method run(s)

1 /∗@ loop_invariant
2 @ reachable [s] &&
3 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
4 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
5 @ reachable [m])) &&
6 @ distance [s] == 0 &&
7 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && reachable [m] && m != s ;
8 @ (\ ex i s t s in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && edge [n] [m] ;
9 @ distance [m] == distance [n] + weight [n] [m])) &&
10 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
11 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
12 @ distance [m] <= distance [n] + weight [n] [m])) &&
13 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ; reachable [n]) &&
14 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] ;
15 @ distance [n] >= 0) &&
16 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && v i s i t ed [m] ;
17 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] && ! v i s i t ed [n] ;
18 @ distance [m] <= distance [n])) &&
19 @ 0 <= visitedNodes && visitedNodes <= nodeCount ;
20 @ decreases nodeCount − visitedNodes ;
21 @ modifies visitedNodes , v i s i t e d [∗] , reachable [∗] , distance [∗] ;
22 @∗/
23 while (ex i s t sMin ()) {
24 outerLoop (s) ;
25 }

The loop's speci�cation is given in listing 15. The source node s is
reachable and all successors m of visited nodes n, as well (lines 2�5). The
distance of s is 0 and for every other reachable node m a visited predecessor
n exists, such that the distance of m is the distance of n plus the weight of

21

the edge between n and m (lines 6�9). For any two nodes n and m, where
n is visited and an edge exists between n and m, the distance of n plus the
edge weight is not smaller than the distance of m (lines 10�12).

Line 13 states that every visited node is reachable, too. For every reach-
able node the distance is at least 0 and every visited node has a distance
that is not greater than the distance of an unvisited node (lines 14�18). For
termination it is speci�ed that the value of visitedNodes ranges from 0 to
nodeCount (line 19).

The variant, declared in line 20, is the number of unvisited nodes, i.e.
nodeCount − visitedNodes; and the loop modi�es visitedNodes and the values
of the arrays visited, reachable and distance (line 21), which it does by calling
outerLoop.

3.2.2 outerLoop(s)

The method outerLoop(s) represents the body of the outer loop and is thus
called in the loop body of the method run(s). The speci�cation must be
designed such that it allows the veri�cation of the loop. It must be shown
that outerLoop(s) preserves the loop invariants. Hence, we can assume the
loop invariants as preconditions and we need to ensure them as postcondi-
tions, which leads to partly identical pre- and postconditions. Additionally,
we must prove that the variant is decreased and stays non-negative.

The variant of the loop in run(s) is nodeCount − visitedNodes. In out-
erLoop(s) we increase visitedNodes by 1, so that the variant gets smaller.
For the variant to not get smaller than 0, visitedNodes must be smaller
than nodeCount. The loop invariant states that visitedNodes can be equal
to nodeCount, however, in this case outerLoop(s) is not executed, because
existsMin() returns false and the loop is terminated.

Another precondition is existsMin() to return true because getMin(),
which is called in outerLoop(s), requires it. outerLoop(s) requires two more
preconditions which we already added as invariants to the loop in run(s)
(see section 3.2.1). The distances of reachable nodes must be non-negative
and the distances of visited nodes must not be greater than the distances
of unvisited nodes. The latter is needed to conclude that the node u has
the greatest distance amongst visited nodes, which we need for the method
innerLoop(s, u, i) (see section 3.2.3). That the distances are at least 0 is also
needed for innerLoop(s, u, i), which we propagate through the loop invariant
to the precondition of innerLoop(s, u, i).

The rest of the pre- and postconditions are known from the invariants of
the loop in run(s). The complete contract can be found in listing 16.

In line 2�3 is is required that the method existsMin() returns true and
visitedNodes is between 0 and nodeCount.

The loop invariants of run(s) are assumed in lines 4�21. The source node
is reachable (line 4) and successors of visited nodes are reachable (lines 5�7).

22

Listing 16: Speci�cation for the method outerLoop(s)

1 /∗@ pub l i c normal_behavior
2 @ requires existsMin () ;
3 @ requires 0 <= visitedNodes && visitedNodes < nodeCount ;
4 @ requires reachable [s] ;
5 @ requires (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
6 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
7 @ reachable [m])) ;
8 @ requires distance [s] == 0;
9 @ requires (\ f o r a l l in t m; 0 <= m && m < nodeCount && reachable [m] && m != s ;
10 @ (\ ex i s t s in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && edge [n] [m] ;
11 @ distance [m] == distance [n] + weight [n] [m])) ;
12 @ requires (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
13 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
14 @ distance [m] <= distance [n] + weight [n] [m])) ;
15 @ requires (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
16 @ reachable [n]) ;
17 @ requires (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] ;
18 @ distance [n] >= 0);
19 @ requires (\ f o r a l l in t m; 0 <= m && m < nodeCount && v i s i t ed [m] ;
20 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] && ! v i s i t ed [n] ;
21 @ distance [m] <= distance [n])) ;
22 @ ensures reachable [s] ;
23 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
24 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
25 @ reachable [m])) ;
26 @ ensures distance [s] == 0;
27 @ ensures (\ f o r a l l in t m; 0 <= m && m < nodeCount && reachable [m] && m != s ;
28 @ (\ ex i s t s in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && edge [n] [m] ;
29 @ distance [m] == distance [n] + weight [n] [m])) ;
30 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
31 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
32 @ distance [m] <= distance [n] + weight [n] [m])) ;
33 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
34 @ reachable [n]) ;
35 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] ;
36 @ distance [n] >= 0);
37 @ ensures (\ f o r a l l in t m; 0 <= m && m < nodeCount && v i s i t ed [m] ;
38 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] && ! v i s i t ed [n] ;
39 @ distance [m] <= distance [n])) ;
40 @ ensures visitedNodes <= nodeCount ;
41 @ ensures visitedNodes > \old (visitedNodes) ;
42 @ modifies visitedNodes , v i s i t e d [∗] , reachable [∗] , distance [∗] ;
43 @∗/
44 void outerLoop (int s) {
45 int u = getMin () ;
46 v i s i t e d [u] = true ;
47 v i s i t edNodes++;
48
49 for (int i = 0 ; i < nodeCount ; i++) {
50
51 i f (! edge [u] [i]) {
52 continue ;
53 }
54
55 innerLoop (s , u , i) ;
56 }
57
58 }

23

The distance of s is 0 and the distances of every other node are computed
via a visited predecessor (lines 8�11). There are also no shorter distances via
visited nodes (lines 12�14). Then, all visited nodes are reachable, too, all
distances of reachable nodes are at least 0 and visited nodes have distances
not greater than unvisited nodes (lines 15�21).

For the loop body to preserve the invariants, we use the preconditions
of lines 4�21 as postconditions in lines 22�39. Additionally, it is stated that
visitedNodes is not greater than nodeCount (line 40), so that the variant is
non-negative, and that the new value of visitedNodes is greater than its old
value (line 41), so that the variant is decreased.

outerLoop(s) modi�es visitedNodes and the values of the arrays visited,
reachable and distance (line 42).

The inner loop iterates over all successors of node u and updates their
reachability and distances. In an iteration of the loop for all visited nodes
except u, which was set visited just before the loop, holds that their suc-
cessors have the same properties as speci�ed in the preconditions. They are
reachable, their distances are computed via a visited predecessor and there
is no shorter path via a visited predecessor without u. For successors of u
up to the current successor i, those properties hold as well. That a reachable
node's distance is computed via a visited predecessor is independent of the
current iteration and node u, so we can reuse this precondition unchanged.

We also take the preconditions that a visited node is also reachable,
visited nodes have not greater distances than unvisited nodes and distances
of reachable nodes are at least 0. We also need to state that the distance
of node u is not smaller than the distance of any visited node. This is true
because u was the unvisited node with the smallest distance.

At last we need a variant for the loop. In this case, this is nodeCount − i,
with the value of i ranging from 0 to nodeCount.

In listing 17 the complete speci�cation for the inner loop is shown. Lines
2�5 state that the source node is reachable and that every successor with a
visited predecessor di�erent from u is reachable, too. Also node u's succes-
sors up to the current node i are reachable (lines 6�7).

For the distances holds that the distance of the source node is 0 and the
distances of all other nodes are computed via a visited predecessor (lines
8�11). For every node m there is no shorter path via a visited predecessor
di�erent from u (lines 12�14) or via node u, if m was updated already, i.e.
m is smaller than i (lines 15�16).

As previously known, visited nodes are reachable, as well (line 17), and
visited nodes have not greater distances than unvisited nodes (18�20). Also
all distances are at least 0 and u's distance is not smaller than that of any
visited node (lines 21�24).

The loop's variable i is bounded by 0 and nodeCount, with the variant
being nodeCount − i, and the loop modi�es i and the values of the arrays
reachable and distance (lines 25�27).

24

Listing 17: Loop invariants for the method outerLoop(s)

1 /∗@ loop_invariant
2 @ reachable [s] &&
3 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && n != u ;
4 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
5 @ reachable [m])) &&
6 @ (\ f o r a l l in t m; 0 <= m && m < i && edge [u] [m] ;
7 @ reachable [m]) &&
8 @ distance [s] == 0 &&
9 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && reachable [m] && m != s ;
10 @ (\ ex i s t s in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && edge [n] [m] ;
11 @ distance [m] == distance [n] + weight [n] [m])) &&
12 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && n != u ;
13 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
14 @ distance [m] <= distance [n] + weight [n] [m])) &&
15 @ (\ f o r a l l in t m; 0 <= m && m < i && reachable [m] && edge [u] [m] ;
16 @ distance [m] <= distance [u] + weight [u] [m]) &&
17 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ; reachable [n]) &&
18 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && v i s i t ed [m] ;
19 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] && ! v i s i t ed [n] ;
20 @ distance [m] <= distance [n])) &&
21 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] ;
22 @ distance [n] >= 0) &&
23 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
24 @ distance [n] <= distance [u]) &&
25 @ 0 <= i && i <= nodeCount ;
26 @ decreases nodeCount − i ;
27 @ modifies i , reachable [∗] , distance [∗] ;
28 @∗/
29 for (int i = 0 ; i < nodeCount ; i++) {
30
31 i f (! edge [u] [i]) {
32 continue ;
33 }
34
35 innerLoop (s , u , i) ;
36 }

3.2.3 innerLoop(s, u, i)

The method innerLoop(s, u, i) is called from the method outerLoop(s) for
every node i which is a successor of the visited node u. It updates the
reachability and distance of i, if necessary. The parameters u and i have
to be valid nodes and an edge must exist between them; u also has to be
visited.

innerLoop(s, u, i) has to preserve the invariants of the inner loop, which
we speci�ed in section 3.2.2. Again, we can assume the loop invariants and
must ensure them. However, because innerLoop(s, u, i) only changes few
values we do not need to include all invariants as postconditions. For the
preconditions, we also do not need all of them.

We require that the source node is reachable and that all successors of
visited nodes di�erent from u are reachable, too. Since in this method we
only deal with node i as successor of u, we do not need to know about its
other successors. For the distances the same holds, the source node must
have a distance of 0, the distance of every other reachable node is computed
via a visited predecessor and for every reachable node there is no shorter path
via a visited node di�erent from u. Whether a shorter path via u exists, is,
as well as the reachability, of no concern for the method. We also need the
invariants that visited nodes are reachable and that the distance of every

25

visited node is not greater than the distance of any unvisited node.

To prove that the source node has a distance of 0 we need the information
that all distances of reachable nodes are at least 0, what we are propagat-
ing starting in the loop invariant of the outer loop (see section 3.2.1). To
show that the distance of a visited node is not changed we require that the
distance of u is not smaller than the distance of any visited node. Because
edge weights are non-negative, distances via u cannot be smaller than the
distances of visited nodes and thus get changed.

For the postconditions, innerLoop(s, u, i) ensures that node i is reach-
able. Since it does not modify other values of reachable, we do not need to
state the reachability for other nodes. If i is visited, its distance will not
change. To preserve the invariants we ensure that the source node's distance
is 0 and that for every other reachable node the distance is computed via
a visited node. Again, for every node there is no shorter path via a visited
node di�erent from u. We ensure that the distance of i via node u is not
smaller than the known distance of i.

At last, we state that again all distances of visited nodes are not greater
than distances of unvisited nodes and that the method only modi�es the
values of reachable and distance at the index i.

Listing 18: Speci�cation for the method innerLoop(s, u, i)

1 /∗@ pub l i c normal_behavior
2 @ requires 0 <= u && u < nodeCount ;
3 @ requires 0 <= i && i < nodeCount ;
4 @ requires edge [u] [i] ;
5 @ requires v i s i t ed [u] ;
6 @ requires reachable [s] ;
7 @ requires (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && n != u ;
8 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
9 @ reachable [m])) ;
10 @ requires distance [s] == 0;
11 @ requires (\ f o r a l l in t m; 0 <= m && m < nodeCount && reachable [m] && m != s ;
12 @ (\ ex i s t s in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && edge [n] [m] ;
13 @ distance [m] == distance [n] + weight [n] [m])) ;
14 @ requires (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && n != u ;
15 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
16 @ distance [m] <= distance [n] + weight [n] [m])) ;
17 @ requires (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
18 @ reachable [n]) ;
19 @ requires (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] ;
20 @ distance [n] >= 0);
21 @ requires (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] ;
22 @ distance [n] <= distance [u]) ;
23 @ requires (\ f o r a l l in t m; 0 <= m && m < nodeCount && v i s i t ed [m] ;
24 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] && ! v i s i t ed [n] ;
25 @ distance [m] <= distance [n])) ;
26 @ ensures reachable [i] ;
27 @ ensures v i s i t ed [i] ==> distance [i] == \old (distance [i]) ;
28 @ ensures distance [s] == 0;
29 @ ensures (\ f o r a l l in t m; 0 <= m && m < nodeCount && reachable [m] && m != s ;
30 @ (\ ex i s t s in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && edge [n] [m] ;
31 @ distance [m] == distance [n] + weight [n] [m])) ;
32 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && n != u ;
33 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
34 @ distance [m] <= distance [n] + weight [n] [m])) ;
35 @ ensures distance [i] <= distance [u] + weight [u] [i] ;
36 @ ensures (\ f o r a l l in t m; 0 <= m && m < nodeCount && v i s i t ed [m] ;
37 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] && ! v i s i t ed [n] ;
38 @ distance [m] <= distance [n])) ;
39 @ modifies reachable [i] , distance [i] ;
40 @∗/
41 void innerLoop (int s , int u , int i) {
42 int d = d i s tance [u] + weight [u] [i] ;
43
44 i f (! r eachab le [i]) {

26

45 reachab le [i] = true ;
46 d i s t ance [i] = d ;
47 } else i f (d < d i s tance [i]) {
48 d i s t ance [i] = d ;
49 }
50
51 }

The speci�cation can be seen in listing 18. Lines 2�5 require u and i to
be valid nodes, an edge to exist between the two and u to be visited. Lines
6�16 state the reachability for nodes and that the distances are computed
via a visited node and that they are minimal for visited nodes di�erent from
u.

It follows that visited nodes are also reachable (lines 17�18), that reach-
able nodes have distances not smaller than 0 (lines 19�20), that u has the
greatest distance among visited nodes (lines 21-22) and that visited nodes
have not greater distances than unvisited nodes (lines 23-25).

innerLoop(s, u, i) ensures that i is reachable and if it visited, its distance
is not changed (lines 26�27). Also, the distance of the source node is 0 and
the distance of every other node is computed via a visited predecessor (lines
28�31). There exists no shorter path to any node via a visited node di�erent
from u and the distance of i is not greater than the distance via u (lines
32�35).

Lines 36�38 ensure that visited nodes have not greater distances than
unvisited nodes and in line 39 the modi�es clause is given.

3.3 Veri�cation

Of the three proof obligations EnsuresPost, RespectsModi�es and Preserve-
Invs we introduced in section 1.2.1 we will only demonstrate the proofs for
EnsuresPost. The other proof obligations can be shown in a similar way. By
using weaker loop invariants and method contracts those proofs will even be
simpler.

For EnsuresPost we have to show that with the preconditions and in-
variants holding at the beginning of a method, the postconditions hold when
that method �nishes. The abstract implementation consists of six methods.
existsMin() and getMin() are abstract methods, i.e. they have no implemen-
tation, so that we can not (and do not need to) prove their correctness.

The proof obligation for the method init(s) can be automatically proven
by KeY with our default settings (see section 1.2.2). All other methods
require user interaction to some extent. We will give some proof statistics
for all proofs in section 7.1.

When we use our default settings in the proof for the method run(s) the
proof becomes very large and much user interaction is required. To reduce
the proof size and minimize user interaction we guide the proof search. In
the beginning we limit the rule applications KeY does automatically to avoid
unnecessary splits. Later, we lift some restrictions. For this, the option

27

Logical splitting is set to O� and Quanti�er treatment to None. After the
auto mode has run with these settings we need to manually apply some
rules regarding the method call to existsMin(). Then we can start the auto
mode again. Thereafter we let the auto mode run with the option Quanti�er
treatment reset to No splits, and then again with Logical splitting reset to
Delayed. In the end we need to instantiate some quanti�ers by hand before
KeY �nds the proof.

The veri�cation of the method outerLoop(s) is done in a similar way
to that of run(s), we also restrict KeY in the rule application. However, we
only need to apply rules by hand when the auto mode has run with the three
di�erent settings (1. Logical splitting : O�, Quanti�er treatment : None; 2.
Quanti�er treatment : No splits; 3. Logical splitting : Delayed). The required
user interactions are quantifer instantiations similar to the ones in the proof
of run(s).

innerLoop(s, u, i) requires the least user interaction and the auto mode
can be started with our default settings from the beginning. Before the
proof is found, we have to instantiate three quanti�ers, again similar to the
instantiations of the other proofs.

4 Abstract Implementation with T-Optimization

Before we transfer the speci�cation of the abstract implementation on to
the concrete implementation, we include the t-optimization in the abstract
implementation, because the concrete implementation uses it, too.

According to the main invariant of Dijkstra's Algorithm (see section 1.3)
once a node is set visited there cannot be a shorter path for that node.
When searching for a shortest path from a source node to a target node, the
algorithm can be stopped, after the target node is set visited. In the case
that the target node is, in the graph, unreachable from the source node, or
that the target node is not a valid node, it cannot be set visited and thus
the algorithm behaves as without t-optimization.

4.1 Code

We modify the abstract implementation so that the t-optimization is imple-
mented similar as in the concrete implementation. So we add an integer �eld
target to store the target node of the algorithm's current run and also add a
parameter t to the methods. Then we have to modify the code to stop the
algorithm when the target node is set visited. The new class name for the
abstract implementation with t-optimization is DijkstraAbstractT.

In listing 19 the modi�cations for the t-optimization are shown. We add
an integer �eld target to store the target node (line 3). For the method
init(s, t) (lines 6�9) we add a parameter t for the target node and store it
in target (line 8).

28

Listing 19: Modi�cations for the t-optimized abstract implementation

1 public abstract class DijkstraAbstractT {
2 . . .
3 int t a r g e t
4 . . .
5
6 void i n i t (int s , int t) {
7 . . .
8 t a r g e t = t ;
9 }
10
11 void run (int s , int t) {
12 i n i t (s , t) ;
13
14 while (ex i s t sMin () && (t < 0 | | t >= nodeCount | | ! v i s i t e d [t])) {
15 outerLoop (s , t) ;
16 }
17
18 }
19
20 void outerLoop (int s , int t) {
21 . . .
22
23 i f (u == t) {
24 return ;
25 }
26
27 for (int i = 0 ; i < nodeCount ; i++) {
28 . . .
29 innerLoop (s , t , u , i) ;
30 }
31
32 }
33
34 void innerLoop (int s , int t , int u , int i) {
35 . . .
36 }
37
38 }

The method run(s, t) (lines 11�18), with which the algorithm is started,
has an additional parameter t, too, which is propagated in the calls to init(s,
t) (line 12) and outerLoop(s, t) (line 15). To stop the algorithm, when the
target node is visited, we modify the loop condition of the outer loop (line
14). It now checks whether the target node is visited, but only if it is a valid
node to avoid an IndexOutOfBoundsException. If the target node is visited,
the loop terminates.

The method outerLoop(s, t) (lines 20�32), besides having the target node
as additional parameter, checks if the node u, which it just set visited, is
the target node, and exits in this case (lines 23�25). In line 29 the call to
innerLoop(s, t, u, i) includes the new parameter t.

For the method innerLoop(s, t, u, i) (lines 34�36) no changes are neces-
sary, we only included the target node as parameter, as well, for consistency
reasons.

4.2 Speci�cation

The inclusion of the t-optimization does not lead to any changes for the class
invariants apart from the correction of the class name. However, the method
contract for the method init(s, t) changes that it now sets the value of target

29

to its parameter t. The modi�es clause is changed accordingly.

Listing 20: Modi�ed speci�cation for the method init(s, t)

1 /∗@ pub l i c normal_behavior
2 @ . . .
3 @ ensures target == t ;
4 @ modifies target , visitedNodes , v i s i t e d [∗] , reachable [∗] , distance [s] ;
5 @∗/
6 void i n i t (int s) {
7 . . .
8 t a r g e t = t ;
9 }

Listing 20 shows the modi�ed method contract for init(s, t). In line 3
the new postcondition that target is assigned the target node is added. The
modi�es clause in line 4 additionally includes target.

Assuming the target node is a valid node and can be reached from the
source node, stopping the algorithm when the target node is set visited,
means that not all nodes are set reachable by the algorithm. Only those
nodes are reachable that have at least one reachable predecessor with a dis-
tance smaller than that of the target node. The same holds for the minimal
distances, so that for nodes there is no shorter path via a reachable node
whose distance is smaller than that of the target node. Of course, for the
target node the shortest path is found, as well.

However, if the target node is not a valid node or cannot be reached from
the source node, its shortest path is not found, and for all other nodes the
reachability and the distances are as before.

Listing 21: Modi�ed speci�cation for the method run(s, t)

1 /∗@ pub l i c normal_behavior
2 @ . . .
3 @ ensures target == t ;
4 @ . . .
5 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] &&
6 @ (t < 0 | | t >= nodeCount | | ! reachable [t] | | distance [n] < distance [t]) ;
7 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
8 @ reachable [m])) ;
9 @ . . .
10 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] &&
11 @ (t < 0 | | t >= nodeCount | | ! reachable [t] | | distance [n] < distance [t]) ;
12 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
13 @ distance [m] <= distance [n] + weight [n] [m])) ;
14 @ ensures (0 <= t && t < nodeCount && reachable [t]) ==>
15 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] && edge [n] [t] ;
16 @ distance [t] <= distance [n] + weight [n] [t]) ;
17 @ modifies target , visitedNodes , v i s i t e d [∗] , reachable [∗] , distance [∗] ;
18 @∗/
19 void run (int s , int t) {
20 i n i t (s , t) ;
21
22 while (ex i s t sMin () && (t < 0 | | t >= nodeCount | | ! v i s i t e d [t])) {
23 outerLoop (s , t) ;
24 }
25
26 }

The modi�cation of run(s, t)'s speci�cation can be seen in listing 21. Line
3 shows the new postcondition that target stores the target node, which is
done in init(s, t). For reachable nodes n all successors m are reachable, if
n's distance is smaller than that of the target node t or t cannot be reached
or is not a valid node (lines 5�8).

30

Lines 10�13 state that for nodes m there is no shorter path via a prede-
cessor n, that has a smaller distance than the target node t or t cannot be
reached or is not a valid node. If the target node t is a valid node and can
be reached, there is no shorter path to t (lines 14�16).

The modi�es clause in line 17 is changed so that it now includes target
as well, which is modi�ed in init(s, t).

The loop invariants of run(s, t) are modi�ed in a similar way. Because
only the target node and nodes with a smaller distance are visited, we need
to modify the invariants such that just all successors of visited nodes di�er-
ent from the target node are reachable. The same is done for the minimal
distances.

Listing 22: Modi�ed loop invariants for the method run(s, t)

1 /∗@ loop_invariant
2 @ . . .
3 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && n != t ;
4 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
5 @ reachable [m])) &&
6 @ . . .
7 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && n != t ;
8 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
9 @ distance [m] <= distance [n] + weight [n] [m])) &&
10 @ . . .
11 @∗/
12 while (ex i s t sMin () && (t < 0 | | t >= nodeCount | | ! v i s i t e d [t])) {
13 outerLoop (s , t) ;
14 }

Listing 22 presents the modi�ed loop invariants for run(s, t). Nodes m
are reachable if they have a visited predecessor n which is not the target
node t (lines 3�5). And for nodes m there is no shorter path via a visited
predecessor n di�erent from t (lines 7�9).

In the contract of the method outerLoop(s, t) we only need to modify the
postconditions as we have done for the loop invariants of run(s, t). Listing
23 shows the modi�cations.

Listing 23: Modi�ed speci�cation for the method outerLoop(s, t)

1 /∗@ pub l i c normal_behavior
2 @ . . .
3 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && n != t ;
4 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
5 @ reachable [m])) ;
6 @ . . .
7 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && v i s i t ed [n] && n != t ;
8 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] ;
9 @ distance [m] <= distance [n] + weight [n] [m])) ;
10 @ . . .
11 @∗/
12 void outerLoop (int s , int t) {
13 . . .
14
15 i f (u == t) {
16 return ;
17 }
18
19 for (int i = 0 ; i < nodeCount ; i++) {
20 . . .
21 innerLoop (s , t , u , i) ;
22 }
23
24 }

31

Lines 3�5 state that nodes with a visited predecessor di�erent from t
are reachable. Also, for nodes there is no shorter distance via a visited
predecessor which is not t (lines 7�9).

Changes in the loop invariants of outerLoop(s, t) or in the method con-
tract of innerLoop(s, t, u, i) are not necessary.

4.3 Veri�cation

The proofs for the four methods init(s, t), run(s, t), outerLoop(s, t) and
innerLoop(s, t, u, i) are largly the same as without t-optimization (see sec-
tion 3.3). The method init(s, t) can be automatically veri�ed, again, and
innerLoop(s, t, u, i) requires the same instantiations.

For the methods run(s, t) and outerLoop(s, t), for which the auto mode
is again run with the three di�erent settings, most instantiations are similar
as before. However, there are now more branches where quanti�ers have to
be instantiated by hand. Consequently, the proofs are bigger.

5 Concrete Implementation, cont'd

With the t-optimized abstract implementation speci�ed and veri�ed (see sec-
tion 4), we can get back to the speci�cation of the concrete implementation.
However, in the abstract implementation we split the main method up into
three. Therefore, we do the same with the concrete implementation.

5.1 Code

The di�erence to the code as we described it in section 2.1 is that we have
split the method run(s, t) up into the three methods run(s, t), outerLoop(s,
t) and innerLoop(s, t, u, i) the same way as we did for the abstract imple-
mentation. Also, we added a method to the priority queue to check whether
a node is contained in the queue. We need this method because of the split
and for the speci�cation, as well. So, the class Graph remains unchanged,
PriorityQueue has got a new method contains(n) and in class Dijkstra we
added the methods outerLoop(s, t) and innerLoop(s, t, u, i) and modi�ed
the method run(s, t).

Listing 24: The modi�ed interface of the priority queue

1 public class Prior i tyQueue {
2 . . .
3 boolean conta ins (int n) ;
4 . . .
5 }

The new method in class PriorityQueue is shown in listing 24. con-
tains(n) (line 3) returns true, if the node n is contained in the queue. Oth-
erwise, it returns false.

32

Listing 25: Modi�cations in Dijkstra for the concrete implementation

1 void run (int s , int t) {
2 i n i t (s , t) ;
3
4 while (! queue . empty () && (t < 0 | | t >= d i s tance . l ength | |
5 runs [t] != counter | | queue . conta ins (t))) {
6 outerLoop (s , t) ;
7 }
8
9 }
10
11 void outerLoop (int s , int t) {
12 int u = queue . deleteMin () ;
13 se t t l edNodes++;
14
15 i f (u == t) {
16 return ;
17 }
18
19 for (int i = graph . nodes [u] . f i r s tEdge ;
20 i < graph . nodes [u + 1] . f i r s tEdge ; i++) {
21
22 i f (! graph . edges [i] . forwardFlag) {
23 continue ;
24 }
25
26 innerLoop (s , t , u , i) ;
27 }
28
29 }
30
31 void innerLoop (int s , int t , int u , int i) {
32 re laxedEdges++;
33 int v = graph . edges [i] . targetNode ;
34 int d = d i s tance [u] + graph . edges [i] . weight ;
35
36 i f (runs [v] != counter) {
37 d i s t ance [v] = d ;
38 queue . i n s e r t (v , d) ;
39 runs [v] = counter ;
40 } else i f (d < d i s tance [v]) {
41 d i s t ance [v] = d ;
42 queue . decreaseKey (v , d) ;
43 }
44
45 }

In listing 25 the three main methods are presented. In method run(s,
t) (lines 1�9) the body of the outer loop is replaced by a call to the new
method outerLoop(s, t) (line 6). Additionally, the loop condition is modi�ed
to stop the loop when the target node t is set visited (lines 4�5). Since the
priority queue stores the nodes that are reachable and unvisited (see section
2.1.2), a node is visited if it is reachable and not in the queue. Thus, the
loop condition checks whether t is in the queue, if it is reachable and a valid
node.

The method outerLoop(s, t) (lines 11�29) represents the body of the
outer loop. In line 16, when the newly set visited node u is the target node,
the break-statement had to be replaced by a return-statement, because there
is no loop to break. In order to stop the algorithm, we modi�ed the loop
condition of the outer loop, as previously described. As with the outer
loop the body of the inner loop is replaced by a call to the new method
innerLoop(s, t, u, i) (line 26).

The body of the inner loop is contained in the new method innerLoop(s,
t, u, i) (lines 31�43). For this method no modi�cation of the code was
necessary.

33

5.2 Speci�cation

Because the abstract and the concrete implementation implement the same
algorithm, we can �nd correlations for key elements of the algorithm between
both implementations.

In the abstract implementation reachable[n] denotes a reachable node
n. In the concrete implementation a node n is reachable, if runs[n] equals
counter. For visited nodes n in the concrete implementation, n must be
reachable (runs[n] == counter) and contained in the priority queue (con-
tains(n)); in the abstract implementation it su�ces to check for visited[n].

Checking for an edge between two nodes n and m is di�erent in the im-
plementations, too, due to the data structures of the graph. In the abstract
implementation we only need to test edge[n][m], in the concrete implemen-
tation we have to iterate over all of n's edges and look for m as target node
of outgoing edges.

With the speci�cation of the t-optimized abstract implementation at
hand (see section 4.2), it would be best to use that speci�cation and verify
the concrete implementation using the correlations between both implemen-
tations. For this, there exists a feature called model �elds in JML.

Model �elds are used to specify the behavior of an interface without im-
plementation. They behave as normal Java �elds, however, they are only
accessible in the speci�cation. When the interface is implemented, the cor-
relations between the implementation and the model �elds is declared with
so-called represents clauses. A represents clause indicates the counterpart
of a model �eld in the implementation. With the speci�cation (referencing
the model �elds), the implementation and the correlation, a prover can then
verify the implementation.

Because KeY does not support model �elds, especially represents clauses,
yet, we have to change the speci�cation of the abstract implementation to
reference the concrete implementation. We do this using the correlations
between the implementations, e.g. we translate the term reachable[n] (ab-
stract) with runs[n] == counter (concrete).

Besides the translation we can use for the methods init(s, t), run(s,
t), outerLoop(s, t) and innerLoop(s, t, u, i), we have to specify the class
invariants for class Dijkstra and give a full speci�cation for the classes Graph
and PriorityQueue.

5.2.1 Graph

For the graph we have to specify class invariants concerning the lengths of
the used arrays, as we did for the abstract implementation, too. Aliasing
cannot occur, because there are no objects or arrays of the same type. But
additionally, we have to specify some constraints concerning valid values for
nodes' �rstEdge and edges' targetNode.

34

The node array nodes has a length of at least 1 because of the dummy
node at the end of the array. The length of the edge array edges can be
arbitrary. For a node to point to a valid edge, its �rstEdge must have a
value that lies between 0 and edges.length. Though edges.length is not a
valid index of edges, it is a valid pointer to the �rst edge of a node, meaning
this node (and every following node) has no edges. The �rst edge of the
dummy node always points to edges.length to indicate the end of edges. The
�rst edge of the �rst node always has the value 0.

Because the edges are ordered by their source node the �rst edge of a
node is not greater than the �rst edge of the next node. The target node of
edges must point to a valid node, i.e. an index of nodes except nodes.length
- 1, which represents the dummy node.

Finally, we have to state that all edge weights are non-negative, and we
have to provide a method contract for the method numberOfNodes(), which
returns the number of nodes, which is the length of nodes minus 1 because
of the dummy node.

Listing 26: Speci�cation for the graph of the concrete implementation

1 public class Graph {
2 Node [] nodes ;
3 Edge [] edges ;
4
5 /∗@ invariant nodes . length >= 1;
6 @ invariant (\ f o r a l l in t i ; 1 <= i && i < nodes . length − 1;
7 @ 0 <= nodes [i] . f i rs tEdge && nodes [i] . f i rs tEdge <= edges . length) ;
8 @ invariant nodes [nodes . length − 1] . f irs tEdge == edges . length ;
9 @ invariant nodes [0] . f i rs tEdge == 0;
10 @ invariant (\ f o r a l l in t i ; 0 <= i && i < nodes . length − 1;
11 @ nodes [i] . f i rs tEdge <= nodes [i + 1] . f irs tEdge) ;
12 @ invariant (\ f o r a l l in t i ; 0 <= i && i < edges . length ;
13 @ 0 <= edges [i] . targetNode && edges [i] . targetNode < nodes . length − 1);
14 @∗/
15
16 /∗@ pub l i c normal_behavior
17 @ ensures \ resu l t == nodes . length − 1;
18 @∗/
19 /∗@ pure @∗/ int numberOfNodes () {
20 return nodes . l ength − 1 ;
21 }
22
23 stat ic class Node {
24 int f i r s tEdge ;
25 }
26
27 stat ic class Edge {
28 int targetNode ;
29 boolean forwardFlag ;
30 boolean backwardFlag ;
31
32 //@ invariant weight >= 0;
33 int weight ;
34 }
35
36 }

Listing 26 shows the complete speci�cation for the class Graph of the
concrete implementation. The length of the array nodes must be at least 1
(line 5) and its values range between 0 and edges.length (lines 6�7). While
the dummy node points for its �rst edge behind the array edges (line 8), the
�rst node has its �rst edge at index 0 of edges (line 9).

Lines 10�11 state that the �rst edge of node i is not greater than that
of the next node i + 1. The edges' target nodes must be valid nodes, i.e.

35

targetNode must be between 0 and nodes.length - 1.

The method contract for numberOfNodes() is shown in lines 16�19. With
no preconditions it ensures that the return value equals nodes.length - 1.
numberOfNodes() modi�es nothing and is thus declared pure.

That all edge weights are non-negative, is required by line 32.

5.2.2 PriorityQueue

The number of nodes contained in the priority queue is indicated by size
whose value is at least 0. The queue stores the contained nodes in the array
nodes beginning at index 0 up to index size - 1. Thus, the length of nodes
is at least equal to size. To be able to insert another node, the length must
be greater than size. The same holds for the array distances in which the
distances of the nodes are stored.

Because the arrays nodes and distances have the same type we have to
state that they are not the same array. We also do this for other instances
of class PriorityQueue.

Listing 27: Class invariants for the priority queue

1 public class Prior i tyQueue {
2 int [] nodes ;
3 int [] d i s t an c e s ;
4 int s i z e ;
5
6 /∗@ invariant nodes . length > s i ze ;
7 @ invariant distances . length > s i ze ;
8 @ invariant nodes != distances ;
9 @ invariant s i ze >= 0;
10 @ invariant (\ f o r a l l PriorityQueue q1 ; \created (q1) ;
11 @ (\ f o r a l l PriorityQueue q2 ; \created (q2) ; (q1 != q2) ==>
12 @ (q1 . nodes != q2 . nodes && q1 . distances != q2 . distances &&
13 @ q1 . nodes != q2 . distances))) ;
14 @∗/
15 }

The class invariants for the priority queue are presented in listing 27.
The length of nodes and distances are greater than size (lines 6�7), which is
not smaller than 0 (line 9).

The array nodes is not the same array as distances (line 8) and for two
di�erent instances q1 and q2 of type PriorityQueue, the arrays nodes and
distances are pairwise di�erent (lines 10�13).

The method clear() removes all nodes from the queue resulting in size
being 0. To check whether the queue is empty, the method empty() returns
true if size equals 0.

The method contains(n) checks whether the node n is contained in the
queue. It returns true, if there is an index in the array nodes with the value
being equal to n. The index must be smaller than size.

Listing 28 shows the method contracts for the methods clear(), con-
tains(n) and empty(). The method clear() (lines 1�5) removes all nodes
from the queue by at least setting size to 0 (line 2). Optionally, it can
additionally modify the values of nodes and distances (line3).

36

Listing 28: Speci�cation for the queue's methods clear(), contains(n) and empty()

1 /∗@ pub l i c normal_behavior
2 @ ensures s i ze == 0;
3 @ modifies size , nodes [∗] , distances [∗] ;
4 @∗/
5 void c l e a r () ;
6
7 /∗@ pub l i c normal_behavior
8 @ ensures \ resu l t == (\ ex i s t s in t i ; 0 <= i && i < s i ze ; nodes [i] == n) ;
9 @∗/
10 /∗@ pure @∗/ boolean conta ins (int n) ;
11
12 /∗@ pub l i c normal_behavior
13 @ ensures \ resu l t == (s i ze == 0);
14 @∗/
15 /∗@ pure @∗/ boolean empty () ;

The method contains(n) (lines 7�10) modi�es nothing (line 10) and re-
turns true if an index i between 0 and size exists, where nodes[i] equals the
parameter n.

The method empty() (lines 12�15), which is also pure (line 15), returns
true if size is 0.

The speci�cation of the method deleteMin() consists of several aspects.
To delete and return the node with the smallest distance in the queue, there
must be a node in the queue, i.e. size must be greater than 0. After the
execution size is decremented by 1.

The returned node must be a node which was in the queue before the
method call. Also, the distance of the returned node must not be greater
than the distance of every other node in the queue. After the execution the
returned node must not be in the queue, anymore.

Other than that, no other node can be deleted and no new node can be
inserted. The distances of the remaining nodes have to be the same, also.
Therefore, we declare that only a permutation is allowed. So for every node
in the queue (except the returned node) before the execution, there exists
an index for this node after the execution and the distance is the same as
before. Furthermore, every node in the queue after the execution had to
have an index with the same distance before the execution.

Listing 29: Speci�cation for the queue's method deleteMin()

1 /∗@ pub l i c normal_behavior
2 @ requires s i ze > 0;
3 @ ensures s i ze == \old (s i ze) − 1;
4 @ ensures (\ ex i s t s in t i ; 0 <= i && i < \old (s i ze) ;
5 @ \ resu l t == \old (nodes [i]) && (\ f o r a l l in t j ; 0 <= j &&
6 @ j < \old (s i ze) ; \old (distances [i]) <= \old (distances [j]))) ;
7 @ ensures (\ f o r a l l in t i ; 0 <= i && i < \old (s i ze) &&
8 @ \ resu l t != \old (nodes [i]) ; (\ ex i s t s in t j ; 0 <= j && j < s i ze ;
9 @ \old (nodes [i]) == nodes [j] &&
10 @ \old (distances [i]) == distances [j])) ;
11 @ ensures (\ f o r a l l in t j ; 0 <= j && j < s i ze ; (\ ex i s t s in t i ; 0 <= i &&
12 @ i < \old (s i ze) ; nodes [j] == \old (nodes [i]) &&
13 @ distances [j] == \old (distances [i]))) ;
14 @ ensures ! contains (\ resu l t) ;
15 @ modifies size , nodes [∗] , distances [∗] ;
16 @∗/
17 int deleteMin () ;

37

The method contract for deleteMin() can be found in listing 29. It re-
quires size to be greater than 0 (line 2). Then it ensures that size is decre-
mented by 1 (line 3) and the returned node is not in the queue, anymore
(line 14). Lines 4�6 state that the returned node had to be at some index i
and that its distance was the smallest in the queue.

The permutation is declared in lines 7�13. Lines 7�10 ensure that every
node except the returned node is still in the queue at some index j with the
same distance. Lines 11�13 ensure that every node was in the queue at some
index i before, with the same distance.

deleteMin() modi�es size and the values of the arrays nodes and distances
(line 15).

Inserting a node n with a distance d by a call to insert(n, d) requires
that n is not in the queue already. Also, the length of the array nodes
and distances must be greater than size, which we already stated as class
invariant. After the execution size is incremented by 1 and n is stored
with its distance d at some index in the queue. Besides adding n only a
permutation is allowed.

Listing 30: Speci�cation for the queue's method insert(n, d)

1 /∗@ pub l i c normal_behavior
2 @ requires ! contains (n) ;
3 @ ensures s i ze == \old (s i ze) + 1;
4 @ ensures (\ f o r a l l in t i ; 0 <= i && i < \old (s i ze) ;
5 @ (\ ex i s t s in t j ; 0 <= j && j < s i ze ; \old (nodes [i]) == nodes [j] &&
6 @ \old (distances [i]) == distances [j])) ;
7 @ ensures (\ f o r a l l in t j ; 0 <= j && j < s i ze && nodes [j] != n;
8 @ (\ ex i s t s in t i ; 0 <= i && i < \old (s i ze) ;
9 @ nodes [j] == \old (nodes [i]) &&
10 @ distances [j] == \old (distances [i]))) ;
11 @ ensures (\ ex i s t s in t j ; 0 <= j && j < s i ze && nodes [j] == n;
12 @ distances [j] == d) ;
13 @ modifies size , nodes [∗] , distances [∗] ;
14 @∗/
15 void i n s e r t (int n , int d) ;

Listing 30 shows the method contract for insert(n, d). It requires n not
to be contained in the queue (line 2) and then ensures that size is increased
by 1 (line 3). Node n can be found at some index j with the distance d (lines
11�12).

Lines 4�10 declare the permutation as for deleteMin(), only that every
node i must still be in the queue and all nodes j except n had to be in the
queue before. The method modi�es size and the values of the arrays nodes
and distances (line 13).

The last method decreaseKey(n, d) updates the distance in the queue
for a given node n. n has to be in the queue and after the execution its
distance is set to the parameter d. Further changes are only allowed for a
permutation.

The contract for the method decreaseKey(n, d) is presented in listing 31.
Line 2 requires n to be in the queue before the execution. After the execution
it is still there at some index j with the new distance d (lines 10�11).

Lines 3�9 declare the permutation. All nodes i except n are still in the

38

Listing 31: Speci�cation for the queue's method decreaseKey(n, d)

1 /∗@ pub l i c normal_behavior
2 @ requires contains (n) ;
3 @ ensures (\ f o r a l l in t i ; 0 <= i && i < \old (s i ze) && \old (nodes [i]) != n;
4 @ (\ ex i s t s in t j ; 0 <= j && j < s i ze ; \old (nodes [i]) == nodes [j] &&
5 @ \old (distances [i]) == distances [j])) ;
6 @ ensures (\ f o r a l l in t j ; 0 <= j && j < s i ze && nodes [j] != n;
7 @ (\ ex i s t s in t i ; 0 <= i && i < \old (s i ze) ;
8 @ nodes [j] == \old (nodes [i]) &&
9 @ distances [j] == \old (distances [i]))) ;
10 @ ensures (\ ex i s t s in t j ; 0 <= j && j < s i ze && nodes [j] == n;
11 @ distances [j] == d) ;
12 @ modifies nodes [∗] , distances [∗] ;
13 @∗/
14 void decreaseKey (int n , int d) ;

queue with their old distances and all nodes j were in the queue before with
their current distances. The modi�es clause indicates, that the values of the
arrays nodes and distances are changed (line 12).

5.2.3 Dijkstra

The class invariants for class Dijkstra are mostly dealing with the lengths of
the arrays and aliasing.

The arrays runs and distance have a length of graph.nodes. length − 1,
which is the graph's node count. Also the queue's arrays nodes and distances
have that length to be able to insert all nodes of the graph.

The values of runs must not be greater than counter. Otherwise, by
incrementing counter a node could become reachable in the initialization of
the algorithm, while it should be unreachable.

The arrays runs and distances should not be the same array and for every
instance of class PriorityQueue their arrays nodes and distances should be
pairwise di�erent from the arrays runs and distance.

Listing 32: Class invariants for class Dijkstra of the concrete implementation

1 public class Di jk s t r a {
2 Graph graph ;
3 Prior i tyQueue queue ;
4 int counter ;
5 int [] runs ;
6 int [] d i s t ance ;
7 int se t t l edNodes ;
8 int re laxedEdges ;
9 int t a r g e t ;
10
11 /∗@ invariant runs . length == graph . nodes . length − 1;
12 @ invariant distance . length == graph . nodes . length − 1;
13 @ invariant distance != runs ;
14 @ invariant (\ f o r a l l in t n; 0 <= n && n < distance . length ;
15 @ runs [n] <= counter) ;
16 @∗/
17
18 /∗@ invariant (\ f o r a l l PriorityQueue q1 ; \created (q1) ;
19 @ q1 . nodes != runs && q1 . distances != runs) ;
20 @ invariant (\ f o r a l l PriorityQueue q1 ; \created (q1) ;
21 @ q1 . nodes != distance && q1 . distances != distance) ;
22 @ invariant queue . nodes . length == graph . nodes . length − 1;
23 @ invariant queue . distances . length == graph . nodes . length − 1;
24 @∗/
25 }

39

The class invariants of class Dijkstra can be found in listing 32. The
lengths of the arrays runs, distance and the queue's arrays nodes and dis-
tances are required to equal graph.nodes. length − 1 (lines 11�12, 22�23).

All values of runs must not be greater than counter (lines 14�15). The
arrays distance and runs must be di�erent from each other (line 13) and
di�erent from the arrays nodes and distances of any instance of class Priority-
Queue (lines 18�21).

5.2.4 init(s, t)

With the method init(s, t) we can begin to translate the existing speci�ca-
tion of the t-optimized abstract implementation. The source node s must
be a valid node, i.e. s must be between 0 and distance . length , which is the
counterpart to nodeCount from the abstract implementation. The distance
of s must be 0 and s must be reachable. In the concrete implementation s
is reachable if the value of runs at index s equals the value of counter. All
other nodes must be unreachable (their values of runs must be smaller than
counter) and all nodes must be unvisited. The queue contains reachable
nodes that are not visited, so a node is unvisited if it is unreachable or con-
tained in the queue. settledNodes, which is the counterpart to visitedNodes,
must be 0. target uses the same name as in the abstract implementation
and must be equal to the parameter t denoting the target node. Because
we don't need relaxedEdges for the speci�cation, we do not include it in the
postconditions.

Listing 33: Speci�cation for the method init(s, t)

1 /∗@ pub l i c normal_behavior
2 @ requires 0 <= s && s < distance . length ;
3 @ ensures distance [s] == 0;
4 @ ensures runs [s] == counter ;
5 @ ensures (\ f o r a l l in t n; 0 <= n && n < runs . length && n != s ;
6 @ runs [n] < counter) ;
7 @ ensures (\ f o r a l l in t n; 0 <= n && n < runs . length ;
8 @ runs [n] < counter | | queue . contains (n)) ;
9 @ ensures sett ledNodes == 0;
10 @ ensures target == t ;
11 @ modifies counter , target , relaxedEdges , settledNodes , distance [∗] , runs [∗] ,
12 @ queue . size , queue . nodes [∗] , queue . distances [∗] ;
13 @∗/
14 void i n i t (int s , int t) {
15 counter++;
16 queue . c l e a r () ;
17 d i s t ance [s] = 0 ;
18 queue . i n s e r t (s , 0) ;
19 runs [s] = counter ;
20 ta rg e t = t ;
21 re laxedEdges = 0 ;
22 se t t l edNodes = 0 ;
23 }

In listing 33 the contract for the method init(s, t) is shown. The only
precondition is s being a valid node (line 2). The method ensures that only s
is reachable (lines 4�6) and its distance is 0 (line 3). Lines 7�9 state that no
node is visited and settledNodes is reset to 0 accordingly. The target node
is stored in target (line 10). In lines 11�12 the modi�es clause indicates the
modi�cation of counter, target, relaxedEdges, settledNodes, the queue's size

40

and the values of the arrays distance and runs, as well as the values of the
queue's arrays nodes and distances.

5.2.5 run(s, t)

The speci�cation for the method run(s, t) can be translated as we have done
for the method init(s, t) (see section 5.2.4). Only the quanti�cation over
successors and predecessors looks slightly di�erent.

Instead of quanti�ying over each two nodes n and m with edge[n][m]
being true, we quantify over each node n and all of its edges e for which
graph.edges[e]. forwardFlag is set.

For the existential quanti�cation that each node m has a predecessor n
with some properties, we have to use one more quanti�er. For all nodes m
exists a node n for which there exists an outgoing edge which has m as target
node and n has some additional properties.

Listing 34: Speci�cation for the method run(s, t)

1 /∗@ pub l i c normal_behavior
2 @ requires 0 <= s && s < distance . length ;
3 @ ensures target == t ;
4 @ ensures runs [s] == counter ;
5 @ ensures (\ f o r a l l in t n; 0 <= n && n < distance . length &&
6 @ runs [n] == counter && (t < 0 | | t >= distance . length | |
7 @ runs [t] != counter | | distance [n] < distance [t]) ;
8 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
9 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
10 @ runs [graph . edges [e] . targetNode] == counter)) ;
11 @ ensures distance [s] == 0;
12 @ ensures (\ f o r a l l in t m; 0 <= m && m < distance . length &&
13 @ runs [m] == counter && m != s ;
14 @ (\ ex i s t s in t n; 0 <= n && n < distance . length && runs [n] == counter ;
15 @ (\ ex i s t s in t e ; graph . nodes [n] . f irs tEdge <= e &&
16 @ e < graph . nodes [n + 1] . f irs tEdge &&
17 @ graph . edges [e] . targetNode == m && graph . edges [e] . forwardFlag ;
18 @ distance [m] == distance [n] + graph . edges [e] . weight))) ;
19 @ ensures (\ f o r a l l in t n; 0 <= n && n < distance . length &&
20 @ runs [n] == counter && (t < 0 | | t >= distance . length | |
21 @ runs [t] != counter | | distance [n] < distance [t]) ;
22 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
23 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
24 @ distance [graph . edges [e] . targetNode] <= distance [n] +
25 @ graph . edges [e] . weight)) ;
26 @ ensures (0 <= t && t < distance . length && runs [t] == counter) ==>
27 @ (\ f o r a l l in t n; 0 <= n && n < distance . length && runs [n] == counter ;
28 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
29 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag &&
30 @ graph . edges [e] . targetNode == t ;
31 @ distance [t] <= distance [n] + graph . edges [e] . weight)) ;
32 @ modifies counter , target , relaxedEdges , settledNodes , distance [∗] , runs [∗] ,
33 @ queue . size , queue . nodes [∗] , queue . distances [∗] ;
34 @∗/
35 void run (int s , int t) {
36 i n i t (s , t) ;
37
38 while (! queue . empty () && (t < 0 | | t >= d i s tance . l ength | |
39 runs [t] != counter | | queue . conta ins (t))) {
40 outerLoop (s , t) ;
41 }
42
43 }

The method contract for run(s, t) is shown in listing 34. It requires the
parameter s to be a valid node (line 2) and ensures that the target node is
stored in target (line 3).

The source node s is reachable (line 4) and the target nodes of outgoing

41

edges e originating from reachable nodes n are reachable, too, if n's distance
is smaller than the distance of the target node t or t is not reachable or not
a valid node (lines 5�10). Simpli�ed, successors of reachable nodes with a
distance smaller than that of the target node are reachable, as well.

Line 11 states that the distance of the source node is 0. The distances
of other reachable nodes m is computed via reachable predecessors n. So for
each reachable node m except s there exists a predecessor n with an outgoing
edge e such that m's distance is equal to n's distance plus e's weight (lines
12�18).

Also to a node there is no shorter path via a node n which has a smaller
distance than the target node. So for each node n with a distance smaller
than that of t and for each of n's outgoing edges e the distance of e's target
node is not greater than the distance via n and e (lines 19�25).

If the target node t is reachable and a valid node, there is no shorter
path to it (lines 26�31). As the method init(s, t), run(s, t) modi�es counter,
target, relaxedEdges, settledNodes, the queue's size and the values of the
arrays distance and runs, as well as the values of the queue's arrays nodes
and distances.

Listing 35: Loop invariants for the method run(s, t)

1 /∗@ loop_invariant
2 @ runs [s] == counter &&
3 @ (\ f o r a l l in t n; 0 <= n && n < distance . length && runs [n] == counter &&
4 @ ! queue . contains (n) && n != t ;
5 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
6 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
7 @ runs [graph . edges [e] . targetNode] == counter)) &&
8 @ distance [s] == 0 &&
9 @ (\ f o r a l l in t m; 0 <= m && m < distance . length && runs [m] == counter &&
10 @ m != s ;
11 @ (\ ex i s t s in t n; 0 <= n && n < distance . length &&
12 @ runs [n] == counter && ! queue . contains (n) ;
13 @ (\ ex i s t s in t e ; graph . nodes [n] . f irs tEdge <= e &&
14 @ e < graph . nodes [n + 1] . f irs tEdge &&
15 @ graph . edges [e] . targetNode == m && graph . edges [e] . forwardFlag ;
16 @ distance [m] == distance [n] + graph . edges [e] . weight))) &&
17 @ (\ f o r a l l in t n; 0 <= n && n < distance . length && runs [n] == counter &&
18 @ ! queue . contains (n) && n != t ;
19 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
20 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
21 @ distance [graph . edges [e] . targetNode] <= distance [n] +
22 @ graph . edges [e] . weight)) &&
23 @ (\ f o r a l l in t n; 0 <= n && n < distance . length && queue . contains (n) ;
24 @ runs [n] == counter) &&
25 @ (\ f o r a l l in t n; 0 <= n && n < distance . length && runs [n] == counter ;
26 @ distance [n] >= 0) &&
27 @ (\ f o r a l l in t m; 0 <= m && m < distance . length && runs [m] == counter &&
28 @ ! queue . contains (m) ;
29 @ (\ f o r a l l in t n; 0 <= n && n < distance . length &&
30 @ runs [n] == counter && queue . contains (n) ;
31 @ distance [m] <= distance [n])) &&
32 @ 0 <= sett ledNodes && sett ledNodes <= distance . length ;
33 @ decreases distance . length − sett ledNodes ;
34 @ modifies relaxedEdges , settledNodes , distance [∗] , runs [∗] , queue . size ,
35 @ queue . nodes [∗] , queue . distances [∗] ;
36 @∗/
37 while (! queue . empty () && (t < 0 | | t >= d i s tance . l ength | |
38 runs [t] != counter | | queue . conta in s (t))) {
39 outerLoop (s , t) ;
40 }

The loop invariants can be translated the same way. visited[n] is here
translated with runs[n] == counter && !queue.contains(n). Because vis-
ited is de�ned by being reachable and not in the queue, we do not need

42

the invariant from the abstract implementation that visited nodes are also
reachable. In exchange, we need a new invariant stating that if a node is in
the queue, that node is reachable.

Listing 35 shows the loop invariants of the method run(s, t). The source
node is reachable (line 2) and successors of visited nodes di�erent from the
target node t are reachable, too (lines 3�7).

The distance of the source node is 0 (line 8) and the distances of other
nodes are computed via a visited predecessor (lines 9�16).

To a node there is no shorter path via a visited node n di�erent from
t (lines 17�22), and all nodes contained in the queue are reachable (lines
23�24). Also all distances are at least 0 (lines 25�26) and every visited node
has a distance that is not greater than the distance of any unvisited node
(27�31).

For the termination the value of settledNodes lies between 0 and the
number of nodes, which equals distance.length (line 32). The variant is
distance . length − settledNodes, i.e. the number of unvisited nodes (line
33), and the loop modi�es relaxedEdges, settledNodes, the queue's size and
the values of the arrays distance and runs, as well as the values of the queue's
arrays nodes and distances.

5.2.6 outerLoop(s, t)

For the method outerLoop(s, t) the speci�cation can also be translated as
before and is in parts identical to the loop invariants of run(s, t).

Listing 36: Speci�cation for the method outerLoop(s, t)

1 /∗@ pub l i c normal_behavior
2 @ requires ! queue . empty () ;
3 @ requires 0 <= sett ledNodes && sett ledNodes < distance . length ;
4 @ requires runs [s] == counter ;
5 @ requires (\ f o r a l l in t n; 0 <= n && n < distance . length &&
6 @ runs [n] == counter && ! queue . contains (n) ;
7 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
8 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
9 @ runs [graph . edges [e] . targetNode] == counter)) ;
10 @ requires distance [s] == 0;
11 @ requires (\ f o r a l l in t m; 0 <= m && m < distance . length &&
12 @ runs [m] == counter && m != s ;
13 @ (\ ex i s t s in t n; 0 <= n && n < distance . length &&
14 @ runs [n] == counter && ! queue . contains (n) ;
15 @ (\ ex i s t s in t e ; graph . nodes [n] . f irs tEdge <= e &&
16 @ e < graph . nodes [n + 1] . f irs tEdge &&
17 @ graph . edges [e] . targetNode == m && graph . edges [e] . forwardFlag ;
18 @ distance [m] == distance [n] + graph . edges [e] . weight))) ;
19 @ requires (\ f o r a l l in t n; 0 <= n && n < distance . length &&
20 @ runs [n] == counter && ! queue . contains (n) ;
21 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
22 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
23 @ distance [graph . edges [e] . targetNode] <= distance [n] +
24 @ graph . edges [e] . weight)) ;
25 @ requires (\ f o r a l l in t n; 0 <= n && n < distance . length &&
26 @ queue . contains (n) ; runs [n] == counter) ;
27 @ requires (\ f o r a l l in t n; 0 <= n && n < distance . length &&
28 @ runs [n] == counter ; distance [n] >= 0);
29 @ requires (\ f o r a l l in t m; 0 <= m && m < distance . length &&
30 @ runs [m] == counter && ! queue . contains (m) ;
31 @ (\ f o r a l l in t n; 0 <= n && n < distance . length &&
32 @ runs [n] == counter && queue . contains (n) ;
33 @ distance [m] <= distance [n])) ;
34 @ ensures runs [s] == counter ;
35 @ ensures (\ f o r a l l in t n; 0 <= n && n < distance . length &&

43

36 @ runs [n] == counter && ! queue . contains (n) && n != t ;
37 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
38 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
39 @ runs [graph . edges [e] . targetNode] == counter)) ;
40 @ ensures distance [s] == 0;
41 @ ensures (\ f o r a l l in t m; 0 <= m && m < distance . length &&
42 @ runs [m] == counter && m != s ;
43 @ (\ ex i s t s in t n; 0 <= n && n < distance . length &&
44 @ runs [n] == counter && ! queue . contains (n) ;
45 @ (\ ex i s t s in t e ; graph . nodes [n] . f irs tEdge <= e &&
46 @ e < graph . nodes [n + 1] . f irs tEdge &&
47 @ graph . edges [e] . targetNode == m && graph . edges [e] . forwardFlag ;
48 @ distance [m] == distance [n] + graph . edges [e] . weight))) ;
49 @ ensures (\ f o r a l l in t n; 0 <= n && n < distance . length &&
50 @ runs [n] == counter && ! queue . contains (n) && n != t ;
51 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
52 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
53 @ distance [graph . edges [e] . targetNode] <= distance [n] +
54 @ graph . edges [e] . weight)) ;
55 @ ensures (\ f o r a l l in t n; 0 <= n && n < distance . length &&
56 @ queue . contains (n) ; runs [n] == counter) ;
57 @ ensures (\ f o r a l l in t n; 0 <= n && n < distance . length &&
58 @ runs [n] == counter ; distance [n] >= 0);
59 @ ensures (\ f o r a l l in t m; 0 <= m && m < distance . length &&
60 @ runs [m] == counter && ! queue . contains (m) ;
61 @ (\ f o r a l l in t n; 0 <= n && n < distance . length &&
62 @ runs [n] == counter && queue . contains (n) ;
63 @ distance [m] <= distance [n])) ;
64 @ ensures sett ledNodes <= distance . length ;
65 @ ensures sett ledNodes > \old (sett ledNodes) ;
66 @ modifies relaxedEdges , settledNodes , distance [∗] , runs [∗] , queue . size ,
67 @ queue . nodes [∗] , queue . distances [∗] ;
68 @∗/
69 void outerLoop (int s , int t) {
70 int u = queue . deleteMin () ;
71 se t t l edNodes++;
72
73 i f (u == t) {
74 return ;
75 }
76
77 for (int i = graph . nodes [u] . f i r s tEdge ;
78 i < graph . nodes [u + 1] . f i r s tEdge ; i++) {
79
80 i f (! graph . edges [i] . forwardFlag) {
81 continue ;
82 }
83
84 innerLoop (s , t , u , i) ;
85 }
86
87 }

Listing 36 shows the complete method contract for the method outer-
Loop(s, t). The priority queue is not allowed to be empty and the value of
settledNodes must lie between 0 and distance.length (lines 2�3).

The source node s must be reachable (line 4) and successors of visited
nodes di�erent from the target node t are reachable, as well (lines 5�9). The
distance of s is 0 (line 10) and the distances of all other nodes are computed
via a visited node (lines 11�18). Again, to a node there is no shorter path
via a visited node di�erent from t (lines 19�24).

All nodes contained in the queue are reachable (lines 25�26), all distances
are not smaller than 0 (lines 27�28) and the distances of visited nodes are
not greater than that of an unvisited node (lines 29�33).

Those preconditions of lines 4�33 are also there as postconditions in lines
34�63. Additionally, settledNodes will be increased, but it will not be greater
than distance.length (lines 64�65), because it is only incremented by 1. The
modi�es clause of lines 66�67 holds the same locations as the modi�es clause
of the outer loop in run(s, t).

44

For the loop invariants, there are some di�erences between the imple-
mentations. While in the abstract implementation the loop iterated over all
nodes i and checked for an edge between nodes u and i, here, due to the data
structure of the graph, the loop only iterates over all edges i of node u and
checks if edge i is an outgoing edge. Besides the di�erent bounds of i, the
target node of an edge, which was represented by i in the abstract imple-
mentation, is represented here by graph.edges[i]. targetNode, which results
in a slightly di�erent speci�cation. The rest of the speci�cation, however,
can be translated as usual.

Listing 37: Invariants for the method outerLoop(s, t)

1 /∗@ loop_invariant
2 @ runs [s] == counter &&
3 @ (\ f o r a l l in t n; 0 <= n && n < distance . length && runs [n] == counter &&
4 @ ! queue . contains (n) && n != u ;
5 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
6 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
7 @ runs [graph . edges [e] . targetNode] == counter)) &&
8 @ (\ f o r a l l in t e ; graph . nodes [u] . f irs tEdge <= e && e < i &&
9 @ graph . edges [e] . forwardFlag ;
10 @ runs [graph . edges [e] . targetNode] == counter) &&
11 @ distance [s] == 0 &&
12 @ (\ f o r a l l in t m; 0 <= m && m < distance . length && runs [m] == counter &&
13 @ m != s ;
14 @ (\ ex i s t s in t n; 0 <= n && n < distance . length &&
15 @ runs [n] == counter && ! queue . contains (n) ;
16 @ (\ ex i s t s in t e ; graph . nodes [n] . f irs tEdge <= e &&
17 @ e < graph . nodes [n + 1] . f irs tEdge &&
18 @ graph . edges [e] . targetNode == m && graph . edges [e] . forwardFlag ;
19 @ distance [m] == distance [n] + graph . edges [e] . weight))) &&
20 @ (\ f o r a l l in t n; 0 <= n && n < distance . length && runs [n] == counter &&
21 @ ! queue . contains (n) && n != u ;
22 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
23 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
24 @ distance [graph . edges [e] . targetNode] <= distance [n] +
25 @ graph . edges [e] . weight)) &&
26 @ (\ f o r a l l in t e ; graph . nodes [u] . f irs tEdge <= e && e < i &&
27 @ graph . edges [e] . forwardFlag ;
28 @ distance [graph . edges [e] . targetNode] <= distance [u] +
29 @ graph . edges [e] . weight) &&
30 @ (\ f o r a l l in t m; 0 <= m && m < distance . length && runs [m] == counter &&
31 @ ! queue . contains (m) ;
32 @ (\ f o r a l l in t n; 0 <= n && n < distance . length &&
33 @ runs [n] == counter && queue . contains (n) ;
34 @ distance [m] <= distance [n])) &&
35 @ (\ f o r a l l in t n; 0 <= n && n < distance . length && queue . contains (n) ;
36 @ runs [n] == counter) &&
37 @ (\ f o r a l l in t n; 0 <= n && n < distance . length && runs [n] == counter ;
38 @ distance [n] >= 0) &&
39 @ (\ f o r a l l in t n; 0 <= n && n < distance . length && runs [n] == counter &&
40 @ ! queue . contains (n) ; distance [n] <= distance [u]) &&
41 @ graph . nodes [u] . f irs tEdge <= i && i <= graph . nodes [u + 1] . f irs tEdge ;
42 @ decreases graph . nodes [u + 1] . f irs tEdge − i ;
43 @ modifies relaxedEdges , distance [∗] , runs [∗] , queue . size , queue . nodes [∗] ,
44 @ queue . distances [∗] ;
45 @∗/

The loop invariants for outerLoop(s, t) can be found in listing 37. The
source node is reachable (line 2) and all nodes with a visited predecessor
which is not u are visited (lines 3�7). Also, the target nodes of u's outgoing
edges up to edge i are reachable (lines 8�10).

The distance of the source node is 0 (line 11) and the distance of every
other node is computed via a visited predecessor (lines 12�19). Again, to
a node there is no shorter path via a visited predecessor which is di�erent
from u (lines 20�25). And for all target nodes of u's outgoing edges up to
edge i there is no shorter path via u (lines 26�29).

45

The distances of visited nodes are not greater than the distances of un-
visited nodes (lines 30�34), nodes which are contained in the queue are also
reachable (lines 35�36), and all distances are not smaller than 0 (lines 37�
38). Also, the distances of visited nodes are not greater than the distance of
u (lines 39�40).

The value of the loop variable i ranges from u's �rst edge to the �rst
edge of the next node, which is u + 1 (line 41). The variant for the inner
loop is graph.nodes[u + 1]. �rstEdge − i (line 42) and the modi�es clause is
given in lines 43�44.

5.2.7 innerLoop(s, t, u, i)

As for the loop invariants of outerLoop(s, t) the meaning of the parameter
i for innerLoop(s, t, u, i) has changed in this implementation, from the
target node of an edge to the edge itself. Therefore, the translation of the
speci�cation results in a slightly di�erent method contract.

Listing 38: Speci�cation for the method innerLoop(s, t, u, i)

1 /∗@ pub l i c normal_behavior
2 @ requires 0 <= u && u < distance . length ;
3 @ requires graph . nodes [u] . f irs tEdge <= i && i < graph . nodes [u + 1] . f irs tEdge ;
4 @ requires graph . edges [i] . forwardFlag ;
5 @ requires runs [u] == counter && ! queue . contains (u) ;
6 @ requires runs [s] == counter ;
7 @ requires (\ f o r a l l in t n; 0 <= n && n < distance . length &&
8 @ runs [n] == counter && ! queue . contains (n) && n != u ;
9 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
10 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
11 @ runs [graph . edges [e] . targetNode] == counter)) ;
12 @ requires distance [s] == 0;
13 @ requires (\ f o r a l l in t m; 0 <= m && m < distance . length &&
14 @ runs [m] == counter && m != s ;
15 @ (\ ex i s t s in t n; 0 <= n && n < distance . length &&
16 @ runs [n] == counter && ! queue . contains (n) ;
17 @ (\ ex i s t s in t e ; graph . nodes [n] . f irs tEdge <= e &&
18 @ e < graph . nodes [n + 1] . f irs tEdge &&
19 @ graph . edges [e] . targetNode == m && graph . edges [e] . forwardFlag ;
20 @ distance [m] == distance [n] + graph . edges [e] . weight))) ;
21 @ requires (\ f o r a l l in t n; 0 <= n && n < distance . length &&
22 @ runs [n] == counter && ! queue . contains (n) && n != u ;
23 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
24 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
25 @ distance [graph . edges [e] . targetNode] <= distance [n] +
26 @ graph . edges [e] . weight)) ;
27 @ requires (\ f o r a l l in t n; 0 <= n && n < distance . length &&
28 @ queue . contains (n) ; runs [n] == counter) ;
29 @ requires (\ f o r a l l in t n; 0 <= n && n < distance . length &&
30 @ runs [n] == counter ; distance [n] >= 0);
31 @ requires (\ f o r a l l in t n; 0 <= n && n < distance . length &&
32 @ runs [n] == counter && ! queue . contains (n) ; distance [n] <= distance [u]) ;
33 @ requires (\ f o r a l l in t m; 0 <= m && m < distance . length &&
34 @ runs [m] == counter && ! queue . contains (m) ;
35 @ (\ f o r a l l in t n; 0 <= n && n < distance . length &&
36 @ runs [n] == counter && queue . contains (n) ;
37 @ distance [m] <= distance [n])) ;
38 @ ensures runs [graph . edges [i] . targetNode] == counter ;
39 @ ensures ! queue . contains (graph . edges [i] . targetNode) ==>
40 @ distance [graph . edges [i] . targetNode] ==
41 @ \old (distance [graph . edges [i] . targetNode]) ;
42 @ ensures distance [s] == 0;
43 @ ensures (\ f o r a l l in t m; 0 <= m && m < distance . length &&
44 @ runs [m] == counter && m != s ;
45 @ (\ ex i s t s in t n; 0 <= n && n < distance . length &&
46 @ runs [n] == counter && ! queue . contains (n) ;
47 @ (\ ex i s t s in t e ; graph . nodes [n] . f irs tEdge <= e &&
48 @ e < graph . nodes [n + 1] . f irs tEdge &&
49 @ graph . edges [e] . targetNode == m && graph . edges [e] . forwardFlag ;
50 @ distance [m] == distance [n] + graph . edges [e] . weight))) ;
51 @ ensures (\ f o r a l l in t n; 0 <= n && n < distance . length &&

46

52 @ runs [n] == counter && ! queue . contains (n) && n != u ;
53 @ (\ f o r a l l in t e ; graph . nodes [n] . f irs tEdge <= e &&
54 @ e < graph . nodes [n + 1] . f irs tEdge && graph . edges [e] . forwardFlag ;
55 @ distance [graph . edges [e] . targetNode] <= distance [n] +
56 @ graph . edges [e] . weight)) ;
57 @ ensures distance [graph . edges [i] . targetNode] <= distance [u] +
58 @ graph . edges [i] . weight ;
59 @ ensures (\ f o r a l l in t n; 0 <= n && n < distance . length &&
60 @ queue . contains (n) ; runs [n] == counter) ;
61 @ ensures (\ f o r a l l in t m; 0 <= m && m < distance . length &&
62 @ runs [m] == counter && ! queue . contains (m) ;
63 @ (\ f o r a l l in t n; 0 <= n && n < distance . length &&
64 @ runs [n] == counter && queue . contains (n) ;
65 @ distance [m] <= distance [n])) ;
66 @ modifies relaxedEdges , distance [graph . edges [i] . targetNode] ,
67 @ runs [graph . edges [i] . targetNode] , queue . size , queue . nodes [∗] ,
68 @ queue . distances [∗] ;
69 @∗/
70 void innerLoop (int s , int t , int u , int i) {
71 re laxedEdges++;
72 int v = graph . edges [i] . targetNode ;
73 int d = d i s tance [u] + graph . edges [i] . weight ;
74
75 i f (runs [v] != counter) {
76 d i s t ance [v] = d ;
77 queue . i n s e r t (v , d) ;
78 runs [v] = counter ;
79 } else i f (d < d i s tance [v]) {
80 d i s t ance [v] = d ;
81 queue . decreaseKey (v , d) ;
82 }
83
84 }

The method contract of innerLoop(s, t, u, i) is presented in listing 38. u
must be a valid node (line 2) and i must be an edge of u that is outgoing
(lines 3�4). u must also be visited (line 5).

The source node must be reachable (line 6) and every other node which
has a visited predecessor that is not u is reachable, as well (lines 7�11). The
distance of the source node is 0 (line 12) and the distances of the other nodes
are computed via a visited predecessor (lines 13�20). Also, to a node there
is no shorter path via a visited predecessor di�erent from u (lines 21�26).

All nodes in the queue must also be reachable (lines 27�28) and all dis-
tances are not smaller than 0 (lines 29�30). The distances of visited nodes
are not greater than the distance of u (lines 31�32) and they are not greater
than the distances of unvisited nodes (lines 33�37).

With these preconditions the method ensures that the target node of
edge i is reachable (line 38) and if that target node is visited, its distance
is not changed (lines 39�41). Then the distance of the source node is again
0 (line 42) and the distances of the other nodes are computed via a visited
predecessor (lines 43�50).

To a node there is no shorter path via a visited predecessor di�erent from
u (lines 51�56) and the distance of the target node of edge i is not greater
than the distance via u (lines 57�58).

All nodes contained in the queue are reachable, as well (lines 59�60) and
the distances of visited nodes are not greater than the distances of unvisited
nodes (lines 61�65). The modi�es clause is given in lines 66�68 and includes
the values of the arrays runs and distance at the index of the target node of
edge i, as well as relaxedEdges and the queue's �elds.

47

5.3 Veri�cation

The veri�cation of this implementation is considerably more di�cult than
the veri�cation of the abstract implementation. Though the speci�cation is
more or less the same, the use of the di�erent data structure leads to an
increase of complexity, as the following example demonstrates.

The expression distance [graph.edges[i]. targetNode] appears (with the
help of the local variable v) in the method innerLoop(s, t, u, i). Checking
this expression for the occurrence of an IndexOutOfBoundsException requires
to check the subexpression graph.edges[i] �rst. Regarding the bounds of i
we have given as a precondition that i lies between graph.nodes[u]. �rstNode
and graph.nodes[u + 1]. �rstNode . We have to deduce with the help of the
invariants of the graph that i is in fact a valid index for the array edges. We
can then show that the complete expression will not raise an IndexOutOf-
BoundsException, because an edge's targetNode is always a valid index for the
array distances. In the abstract implementation, however, the corresponding
expression is distance [i] for which a check is trivial.

The use of the priority queue is another major contributor to the complex-
ity. Every method call leads to several new goals (Pre, Post and Exceptional
Post), which increase the number of needed steps for the prover.

As we will illustrate in detail in section 7.2, KeY has performance issues
with more complex proof obligations. With the proof tree becoming larger
and larger, the performance decreases rapidly, i.e. the time KeY needs for a
rule application increases. Eventually, KeY crashes with an OutOfMemory-
Error. To reduce the number of nodes in the proof we can further limit the
rules that KeY is allowed to apply automatically. This avoids unnecessary
rule applications, especially those that split the proof. However, this makes
it much more di�cult for the user, who has to do a lot more rule applications
by hand.

For the method init(s, t) this is not yet an issue. With some user inter-
action the method can be veri�ed using our default settings. For the other
methods, however, we were not able to �nd a proof due to those reasons.
We only succeeded in the veri�cation of the method innerLoop(s, u, i) in a
version of the concrete implementation without t-optimization with respect
to an earlier speci�cation. Because the methods run(s, t) and outerLoop(s,
t) had had considerably more complex proofs than innerLoop(s, t, u, i), we
stopped trying to verify the concrete implementation.

6 Variations of the Algorithm

In this section we shall take a look at two further variants of Dijkstra's Al-
gorithm. So far we veri�ed the standard algorithm and the variant with
t-optimization in abstract implementations. Because of the problems in ver-
ifying the concrete implementation (see section 5.3), we will present the new

48

variants in an abstract implementation only. The �rst variant is a bidi-
rectional version of the algorithm allowing backward searches. The second
variant is an optimization with so-called Arc Flags, which requires some pre-
calculation but provides a faster search. For both variants, we build upon
the abstract implementation with t-optimization from section 4.

6.1 Bidirectional

In the standard algorithm we only have forward search. This means, we start
from the source node and follow outgoing edges to compute the distance from
the source node to the target node (or every other node when the target node
is omitted). If the graph is undirected, an edge between two nodes has the
same weight in both directions, so the distance from the target node to
the source node is equal to the distance from the source node to the target
node. A backward search is here the same as a forward search regarding the
distance, only with inverted meanings of source node and target node.

In directed graphs, however, the distance from the target node to the
source node can be di�erent. This distance can be computed by swapping
the target node and the source node or by performing a backward search. The
backward search begins at the source node � which now has the meaning of
the target node � and follows incoming edges. So, the distance to the source
node is computed.

Although swapping the nodes is easier than implementing a backward
search, the latter is needed in some situations. If the distance from every
node to a certain target node n is to be computed, the forward search cannot
be used, since there is no source node which, however, is required. There-
fore, a backward search must be used with n as source node and no target
node, which computes the distance to n from each node. For example, the
backward search is used for the precalculation in the variant with Arc Flags
(see section 6.2).

In true bidirectional search algorithms the shortest distance from a source
node n to a target node m is computed by starting a forward search from
n and a backward search from m at the same time ([Poh71]). The simple
variant we present here, however, can only start a forward or a backward
search selectable through an additional parameter.

6.1.1 Code

The implementation of the backward search is simple. Instead of following
outgoing edges from a node u to nodes i, represented in the implementation
by edge[u][i], we follow incoming edges from nodes i to a node u, repre-
sented by edge[i][u]. Thus we only need to �ip the edges and use the corre-
sponding edge weights. To be able to use both forward search and backward
search, we add a boolean parameter forward to the methods' signatures. It

49

Listing 39: Modi�cations for the bidirectional variant

1 public abstract class Di jks t raAbst rac tB i {
2 . . .
3
4 void i n i t (int s , int t , boolean forward) {
5 . . .
6 }
7
8 void run (int s , int t , boolean forward) {
9 i n i t (s , t , forward) ;
10
11 while (ex i s t sMin () && (t < 0 | | t >= nodeCount | | ! v i s i t e d [t])) {
12 outerLoop (s , t , forward) ;
13 }
14
15 }
16
17 void outerLoop (int s , int t , boolean forward) {
18 . . .
19
20 for (int i = 0 ; i < nodeCount ; i++) {
21
22 i f (! (forward ? edge [u] [i] : edge [i] [u])) {
23 continue ;
24 }
25
26 innerLoop (s , t , forward , u , i) ;
27 }
28
29 }
30
31 void innerLoop (int s , int t , boolean forward , int u , int i) {
32 int d = d i s tance [u] + (forward ? weight [u] [i] : weight [i] [u]) ;
33 . . .
34 }
35
36 }

indicates which search should be performed. Depending on forward we use
either outgoing or incoming edges, which we implemented with the help of
if expressions.

Listing 39 presents the modi�cations to the t-optimized abstract imple-
mentation for a bidirectional search. The Java class is now called DijkstraAb-
stractBi (line 1). The four methods init(s, t, forward), run(s, t, forward),
outerLoop(s, t, forward) and innerLoop(s, t, forward, u, i) have an additional
parameter forward and the method calls are modi�ed accordingly (lines 4�
17, 26, 31). outerLoop(s, t, forward) now checks in the inner loop for an
outgoing or incoming edge depending on forward (line 22). Also depending
on forward the method innerLoop(s, t, forward, u, i) uses the corresponding
edge weight (line 32).

6.1.2 Speci�cation

The speci�cation is modi�ed in the same way. We replace occurrences of
edge[x][y] and weight[x][y] with corresponding if expressions. We present
the modi�ed speci�cation only for the method contract of run(s, t, forward),
the remaining speci�cation is modi�ed identically. The class invariants are
not modi�ed other than to use the new class name.

The modi�ed speci�cation for the method run(s, t, forward) is shown in

50

Listing 40: Modi�ed speci�cation for the method run(s, t, forward)

1 /∗@ pub l i c normal_behavior
2 @ . . .
3 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] &&
4 @ (t < 0 | | t >= nodeCount | | ! reachable [t] | | distance [n] < distance [t]) ;
5 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount &&
6 @ (forward ? edge [n] [m] : edge [m] [n]) ;
7 @ reachable [m])) ;
8 @ . . .
9 @ ensures (\ f o r a l l in t m; 0 <= m && m < nodeCount && reachable [m] && m != s ;
10 @ (\ ex i s t s in t n; 0 <= n && n < nodeCount && reachable [n] &&
11 @ (forward ? edge [n] [m] : edge [m] [n]) ;
12 @ distance [m] == distance [n] +
13 @ (forward ? weight [n] [m] : weight [m] [n]))) ;
14 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] &&
15 @ (t < 0 | | t >= nodeCount | | ! reachable [t] | | distance [n] < distance [t]) ;
16 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount &&
17 @ (forward ? edge [n] [m] : edge [m] [n]) ;
18 @ distance [m] <= distance [n] +
19 @ (forward ? weight [n] [m] : weight [m] [n]))) ;
20 @ ensures (0 <= t && t < nodeCount && reachable [t]) ==>
21 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] &&
22 @ (forward ? edge [n] [t] : edge [t] [n]) ;
23 @ distance [t] <= distance [n] +
24 @ (forward ? weight [n] [t] : weight [t] [n])) ;
25 @ . . .
26 @∗/
27 void run (int s , int t , boolean forward) {
28 i n i t (s , t , forward) ;
29
30 while (ex i s t sMin () && (t < 0 | | t >= nodeCount | | ! v i s i t e d [t])) {
31 outerLoop (s , t , forward) ;
32 }
33
34 }

listing 40. Successors or predecessors (depending on forward) of reachable
nodes that have smaller distances than the target node are reachable, too
(lines 3�7). The distances of all nodes except the source node are computed
via a reachable predecessor (in a forward search) or successor (in a backward
search) (lines 9�13).

For nodes there is no shorter path via a reachable predecessor or successor
(depending on forward) that has a distance smaller than the target node
(lines 14�19). Lines 20�24 ensure that if the target node is reachable, there
is no shorter path to the target node.

6.1.3 Veri�cation

In comparison to the veri�cation of the t-optimized abstract implementation
(see section 4.3), the proofs for the four methods are considerably bigger
and require much more user interaction. This is due to the case distinction
for the value of forward. Only the proof for init(s, t, forward) is almost the
same, since its speci�cation was not modi�ed.

6.2 With Precalculation (Arc Flags)

To reduce the e�ort needed for a computation of a shortest path we can do
some precalculation. Of course, this only pays o� if enough queries are made

51

where the precalculated data can be used. In general, when the graph is
static, this is the case.

In an extreme case we could compute the shortest distances from and
to all nodes. When a search is started, we only need to look up the right
distance. However, this costs much memory (O(n2)) to store the computed
information.

We use the approach presented in [Lau04], which partitions the graph
into regions and computes for each edge e and each region r whether e is
part of a shortest path into r. If e is not part of a shortest path into r we
do not need to consider this edge e when searching for a shortest path to a
target node belonging to region r.

In the precalculation we run a backward search for the nodes of every
region. If an edge e is used in a shortest path to a node in region r, we set
its arc �ag for r. Otherwise, its arc �ag for r remains unset. In the search
for the shortest distance to some node in region r we only consider edges
with an arc �ag set for r. Opposed to the t-optimized implementation, the
target node must here be a valid node, because we need the target region.

An inner, or non-boundary, node is a node which belongs to region r and
has only predecessors that belong to r, as well. A path from a di�erent region
to an inner node will always go through a boundary node. Therefore, in the
precalculation it su�ces to compute the shortest paths to only boundary
nodes of each region. Additionally, for each edge that connects nodes of the
same region r we have to set its arc �ag for r. Otherwise, an inner node
would not be reachable.

How the graph is partitioned only has an impact on the amount of pre-
calculation and on the performance of the algorithm. In the worst case the
algorithm performs as the standard t-optimized algorithm � here all arc �ags
are set � and the precalculation was wasted. The only requirement is that
every node belongs to exactly one region.

6.2.1 Code

For the implementation we build upon the t-optimized abstract implemen-
tation from section 4 and change the class name to DijkstraAbstractArc. As
with the nodes, regions only exist implicitly through the declaration of re-
gionCount, which represents the number of regions. The array region assigns
each node a region, identi�ed by a number between 0 and regionCount. The
array boundary indicates whether a node is a boundary node or an inner
node. Inner nodes have no predecessor in a di�erent region.

Because we identify edges by their source and target node, we store the
arc �ags for each edge and each region in the 3-dimensional boolean array
arcFlag. The edge between two nodes n and m has its arc �ag for region r
set if arcFlag[n][m][r] is true. For the algorithm to respect the arc �ags, i.e.
only consider edges where the arc �ag is set, we do not call innerLoop(s, t,

52

u, i) in outerLoop(s, t) if the arc �ag of the edge between u and i for the
target region (region[t]) is not set.

The precalculation is done by the method setArcFlags(). It �rst computes
for each node whether it is a boundary node and also sets the arc �ag for
edges between two nodes of the same region.

In the second part setArcFlags() performs a backward search to each
boundary node v and sets the arc �ag for v 's region for every edge that is
used in a shortest path to v.

The backward search is done by the bidirectional abstract implementa-
tion of section 6.1, whose four methods init(s, t, forward), run(s, t, forward),
outerLoop(s, t, forward) and innerLoop(s, t, forward, u, i) are copied into
this implementation. To distinguish them from the methods of the arc-�ag-
optimized algorithm and to mark them as being used in the precalculation,
we modify their names by appending the su�x Pre.

Listing 41: Modi�cations for the variant with arc �ags

1 public abstract class Dijkst raAbstractArc {
2 . . .
3 int regionCount ;
4 int [] r eg i on ;
5 boolean [] [] [] arcFlag ;
6 boolean [] boundary ;
7
8 void setArcFlags () {
9
10 for (int i = 0 ; i < nodeCount ; i++) {
11 boundary [i] = fa l se ;
12 }
13
14 for (int n = 0 ; n < nodeCount ; n++) {
15
16 for (int m = 0; m < nodeCount ; m++) {
17
18 i f (! edge [n] [m]) {
19 continue ;
20 }
21
22 for (int t = 0 ; t < regionCount ; t++) {
23 arcFlag [n] [m] [t] = fa l se ;
24 }
25
26 i f (r eg i on [n] != reg ion [m]) {
27 boundary [m] = true ;
28 } else {
29 arcFlag [n] [m] [r eg i on [n]] = true ;
30 }
31
32 }
33
34 }
35
36 for (int v = 0 ; v < nodeCount ; v++) {
37
38 i f (! boundary [v]) {
39 continue ;
40 }
41
42 runPre (v , −1, fa l se) ;
43
44 for (int n = 0 ; n < nodeCount ; n++) {
45
46 for (int m = 0; m < nodeCount ; m++) {
47
48 i f (! edge [n] [m]) {
49 continue ;
50 }
51
52 i f (r eachab le [n] && reachab le [m] &&
53 d i s t ance [n] − d i s t ance [m] == weight [n] [m]) {
54 arcFlag [n] [m] [r eg i on [v]] = true ;

53

55 }
56
57 }
58
59 }
60
61 }
62
63 }
64
65 . . .
66
67 void run (int s , int t) {
68 i n i t (s , t) ;
69
70 while (ex i s t sMin () && ! v i s i t e d [t]) {
71 outerLoop (s , t) ;
72 }
73
74 }
75
76 void outerLoop (int s , int t) {
77 . . .
78
79 for (int i = 0 ; i < nodeCount ; i++) {
80
81 i f (! edge [u] [i]) {
82 continue ;
83 }
84
85 i f (! arcFlag [u] [i] [r eg i on [t]]) {
86 continue ;
87 }
88
89 innerLoop (s , t , u , i) ;
90 }
91
92 }
93
94 . . .
95
96 void i n i tP r e (int s , int t , boolean forward) ;
97 void runPre (int s , int t , boolean forward) ;
98 void outerLoopPre (int s , int t , boolean forward) ;
99 void innerLoopPre (int s , int t , boolean forward , int u , int i) ;
100 }

Listing 41 shows the modi�ed code for the arc-�ag-optimized implemen-
tation. The number of regions is stored in regionCount (line 3) and the array
region indicates to which region a node belongs (line 4). The 3-dimensional
boolean array arcFlag holds whether an edge between a source and a target
node must be considered for a target region (line 5). Boundary nodes, i.e.
nodes with a predecessor from a di�erent region, are marked by the array
boundary (line 6).

The method setArcFlags() (lines 8�63) does the precalculation. It begins
with setting all nodes to non-boundary (lines 10�12). For all nodes n and m
with an edge between them (lines 14�20), it unsets the arc �ags for all regions
(lines 22�24). If the nodes n and m are from di�erent regions, m is marked
as boundary node, because it has a predecessor from a di�erent region (lines
26�27). Otherwise the edge connects nodes from the same region and its arc
�ag for that region is set (line 29).

After all boundary nodes are found, setArcFlags() performs a backward
search to each boundary node v (lines 36�42). For all nodes n and m with
an edge between them (lines 44�50), it checks if that edge was used in a
shortest path to v and sets its arc �ag for the region of v (lines 52�55). An
edge from n to m was used in a shortest path to v if the di�erence of n's

54

and m's distance is equal to the weight of that edge.
Because the target node t must be a valid node, we can omit to test this

in the loop condition of run(s, t) (line 70).
For the algorithm to respect the arc �ags only a modi�cation of outer-

Loop(s, t) (lines 76�92) is necessary. Besides the check in the inner loop for
an edge between nodes u and i, it now also tests whether the arc �ag of that
edge is set for the target region (lines 85�87). Only when it is set, that edge
is considered and innerLoop(s, t, u, i) is called.

In lines 96�99 the signatures of the methods for the bidirectional algo-
rithm are given, which are only used for the precalculation. Their imple-
mentation is identical to that we described in section 6.1.1.

6.2.2 Speci�cation

The speci�cation for the arc-�ag-optimized algorithm is almost the same
as for the t-optimized algorithm. We only have to add another condition
for edges. There must not only be an edge between two nodes x and y
(edge[x][y]), but also the arc �ag of that edge has to be set for the target
region (arcFlag[x][y][region[t]]).

Since the target node has to be a valid node we can omit the check for
it. Additionally, we want the precalculation to be done before the algorithm
is started. Therefore we use a boolean ghost �eld arcFlagsSet that indicates
whether setArcFlags() was already called. Ghost �elds are �elds that can
only be used in the speci�cation. We will detail this below when we specify
the class invariants and the precalculation.

Listing 42: Modi�ed speci�cation for the method run(s, t)

1 /∗@ pub l i c normal_behavior
2 @ requires arcFlagsSet ;
3 @ . . .
4 @ requires 0 <= t && t < nodeCount ;
5 @ . . .
6 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] &&
7 @ (! reachable [t] | | distance [n] < distance [t]) ;
8 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] &&
9 @ arcFlag [n] [m] [region [t]] ;
10 @ reachable [m])) ;
11 @ . . .
12 @ ensures (\ f o r a l l in t m; 0 <= m && m < nodeCount && reachable [m] && m != s ;
13 @ (\ ex i s t s in t n; 0 <= n && n < nodeCount && reachable [n] &&
14 @ edge [n] [m] && arcFlag [n] [m] [region [t]] ;
15 @ distance [m] == distance [n] + weight [n] [m])) ;
16 @ ensures (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachable [n] &&
17 @ (! reachable [t] | | distance [n] < distance [t]) ;
18 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [n] [m] &&
19 @ arcFlag [n] [m] [region [t]] ;
20 @ distance [m] <= distance [n] + weight [n] [m])) ;
21 @ ensures reachable [t] ==> (\ f o r a l l in t n; 0 <= n && n < nodeCount &&
22 @ reachable [n] && edge [n] [t] && arcFlag [n] [t] [region [t]] ;
23 @ distance [t] <= distance [n] + weight [n] [t]) ;
24 @ . . .
25 @∗/
26 void run (int s , int t) {
27 i n i t (s , t) ;
28
29 while (ex i s t sMin () && ! v i s i t e d [t]) {
30 outerLoop (s , t) ;
31 }
32
33 }

55

The speci�cations of the four methods are modi�ed in the same way, so
we only present the modi�cations in the method contract of run(s, t).

Listing 42 shows the modi�cations in the method contract of run(s, t). It
is required that the precalculation is done which is indicated by arcFlagsSet
(line 2) and that the target node t is a valid node (line 4). Nodes m are
reachable if they have a reachable predecessor n that has a smaller distance
than t and the arc �ag of the edge is set (lines 6�10).

The distances of nodes except the source node s are computed via a
predecessor where the arc �ag of the edge is also set (lines 12�15). For nodes
there is no shorter path via a predecessor with a smaller distance than that
of t and where the arc �ag of the edge is set (lines 16�20). If t is reachable,
there is no shorter path to it via a predecessor where the arc �ag of the edge
is set (lines 21�23).

The four methods of the bidirectional algorithm for the precalculation
already have their speci�cations (see section 6.1.2).

The existing class invariants need only to be modi�ed to use the new class
name. For the new �elds we have to specify some new invariants. There must
be at least one region such that a node can be assigned to one. And for all
nodes to assign a region to the array region must have a length equal to the
number of nodes. The values of this array must be valid regions, i.e. they
must lie between 0 and regionCount.

The 3-dimensional boolean array arcFlag must allow the �rst index to
be a node, i.e. the length must equal nodeCount. The same holds for the
second index. The third is used for regions, so the innermost arrays must
have a length equal to regionCount. At last, the array boundary has a length
of nodeCount to mark every node as boundary or inner.

As mentioned, for the speci�cation of run(s, t) we needed a boolean value
to indicate whether the precalculation has already been done, for which we
used a ghost �eld. Ghost �elds can be used as normal Java �elds, but are
invisible to Java and only accessible in the speci�caton. They are declared
in the speci�cation with the keyword ghost and can be assigned a value with
the keyword set.

To specify how the values of arcFlag are set we need to store the results
of each backward search. We use two ghost �elds, reachables and distances.
For each boundary node v, reachables[v][n] stores the reachability of node n
in the backward search to node v. distances[v][n] holds the corresponding
distance for n. Accordingly, the lengths of the arrays and the inner arrays
must be equal to nodeCount. We will specify what values those arrays must
have, later.

Because we added some more arrays we have to address aliasing, again.
For the arrays reachable, visited, boundary, edge, arcFlag and reachables, as
well as for distance, region, weight and distances, we have to state that they
all are di�erent from each other.

56

Listing 43: Additional class invariants for the implementation with arc �ags

1 //@ invariant regionCount >= 1;
2 int regionCount ;
3
4 /∗@ invariant region . length == nodeCount ;
5 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ;
6 @ 0 <= region [n] && region [n] < regionCount) ;
7 @∗/
8 int [] r eg i on ;
9
10 /∗@ invariant arcFlag . length == nodeCount ;
11 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ;
12 @ arcFlag [n] . length == nodeCount && (\ f o r a l l in t m; 0 <= m &&
13 @ m < nodeCount ; arcFlag [n] [m] . length == regionCount)) ;
14 @∗/
15 boolean [] [] [] arcFlag ;
16
17 //@ invariant boundary . length == nodeCount ;
18 boolean [] boundary ;
19
20 //@ ghost boolean arcFlagsSet ;
21
22 /∗@ invariant reachables . length == nodeCount ;
23 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ;
24 @ reachables [n] . length == nodeCount) ;
25 @∗/
26 //@ ghost boolean [] [] reachables ;
27
28 /∗@ invariant distances . length == nodeCount ;
29 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ;
30 @ distances [n] . length == nodeCount) ;
31 @∗/
32 //@ ghost in t [] [] distances ;
33
34 /∗@ invariant reachable != v i s i t ed && reachable != boundary &&
35 @ vi s i t ed != boundary ;
36 @ invariant reachables != edge ;
37 @ invariant distance != region ;
38 @ invariant distances != weight ;
39 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ; reachable != edge [n] &&
40 @ vi s i t ed != edge [n] && boundary != edge [n] &&
41 @ reachable != reachables [n] && v i s i t ed != reachables [n] &&
42 @ boundary != reachables [n] && (\ f o r a l l in t m; 0 <= m && m < nodeCount ;
43 @ reachables [n] != edge [m] && n != m ==>
44 @ (reachables [n] != reachables [m] && edge [n] != edge [m]))) ;
45 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ; arcFlag [n] != edge &&
46 @ arcFlag [n] != reachables && (\ f o r a l l in t m; 0 <= m && m < nodeCount ;
47 @ arcFlag [n] [m] != reachable && arcFlag [n] [m] != v i s i t ed &&
48 @ arcFlag [n] [m] != boundary && (\ f o r a l l in t o ; 0 <= o && o < nodeCount ;
49 @ arcFlag [n] [m] != edge [o] && arcFlag [n] [m] != reachables [o]))) ;
50 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ; (\ f o r a l l in t m; 0 <= m &&
51 @ m < nodeCount ; (\ f o r a l l in t o ; 0 <= o && o < nodeCount ; (\ f o r a l l in t p ;
52 @ 0 <= p && p < nodeCount ; (n != o | | m != p) ==>
53 @ (arcFlag [n] [m] != arcFlag [o] [p]))))) ;
54 @ invariant (\ f o r a l l in t n; 0 <= n && n < nodeCount ; distance != weight [n] &&
55 @ distance != distances [n] && region != distances [n] && (\ f o r a l l in t m;
56 @ 0 <= m && m < nodeCount ; distances [n] != weight [m])) ;
57 @ invariant (\ f o r a l l DijkstraAbstractArc d ; \created (d) && t h i s != d ;
58 @ reachable != d . reachable && reachable != d . v i s i t ed &&
59 @ reachable != d . boundary && (\ f o r a l l in t n; 0 <= n && n < d . nodeCount ;
60 @ reachable != d . edge [n])) ;
61 @ invariant (\ f o r a l l DijkstraAbstractArc d ; \created (d) && t h i s != d ;
62 @ vi s i t ed != d . v i s i t e d && v i s i t ed != d . reachable &&
63 @ vi s i t ed != d . boundary && (\ f o r a l l in t n; 0 <= n && n < d . nodeCount ;
64 @ vi s i t ed != d . edge [n])) ;
65 @ invariant (\ f o r a l l DijkstraAbstractArc d ; \created (d) && t h i s != d ;
66 @ boundary != d . boundary && boundary != d . reachable &&
67 @ boundary != d . v i s i t ed && (\ f o r a l l in t n; 0 <= n && n < d . nodeCount ;
68 @ boundary != d . edge [n])) ;
69 @ invariant (\ f o r a l l DijkstraAbstractArc d ; \created (d) && t h i s != d ;
70 @ distance != d . distance && distance != d . region && (\ f o r a l l in t n;
71 @ 0 <= n && n < d . nodeCount ; distance != d . weight [n])) ;
72 @∗/

The additional invariants for the �elds in the arc-�ag-optimized imple-
mentation are shown in listing 43. regionCount must be at least 1 (line 1).
The length of region equals nodeCount and all values must lie between 0 and
regionCount (lines 4�6). The array arcFlag has a length of nodeCount, the
inner arrays, too. Only the innermost arrays have a length of regionCount

57

(lines 10�13). boundary has a length of nodeCount (line 17).
The ghost �eld arcFlagsSet is declared in line 20, but for it no invariants

are necessary. The ghost �elds rechables and distances are declared in lines
26 and 32. They and their inner arrays have lengths of nodeCount (lines
22�24, 28�30).

In lines 34�71 the invariants concerning the inequality of the arrays are
given.

Until now we used the values of arcFlag without restricting them in any
way. For the algorithm to correctly compute the shortest paths, the arc
�ags cannot be set arbitrarily. Setting an edge's arc �ag is always allowed,
because this gives the algorithm only the possibility of using the edge for a
shortest path. However, not setting an edge's arc �ag is only allowed under
some conditions. Since an unset arc �ag forbids the algorithm to use that
edge, if the edge is part of a shortest path, the algorithm could not �nd this
shortest path, anymore.

Thus, for each two nodes n and m with an edge e between them and
each region r holds that if the arc �ag arcFlag[n][m][r] is not set, there is
no boundary node v from region r such that e is used in a shortest path to
v. This is an invariant holding after the precalculation has been done, so it
only has to hold, if arcFlagsSet is true.

That an edge from n to m is used in a shortest path to v can be deduced
from the distances and the reachability of a backward search to v. Those are
stored in distances[v] and reachables[v]. That edge is used if the di�erence
of n's and m's distance is equal to the edge weight weight[n][m].

In reachables[v] and distances[v] the shortest paths of the backward
search to every boundary node v are stored. To specify this, we use the
postconditions of runPre(s, t, forward) with v as source node, no target
node and forward set to false. So for all boundary nodes v, v is reachable
and all successors of reachable nodes are reachable, too. Also the distance
of v is 0, the distances of all other nodes are computed via a reachable pre-
decessor and there are no shorter paths. Again, this invariant has to hold,
if arcFlagsSet is true, i.e. the precalculation has been done.

Now we need to specify which nodes are boundary nodes. boundary[v] is
set only if there exists a predecessor u with u and v belonging to di�erent
regions. This invariant also only has to hold if the precalculation has been
done.

In listing 44 the invariants concerning the values of arcFlag, reachables,
distances and boundary are shown. If arcFlagsSet is set, an arc �ag of an
edge for a region may only be unset, if there exists no boundary node from
that region such that the edge is used in a shortest path to that node (lines
1�7).

Lines 9�24 specify that if arcFlagsSet is true, the values of reachables[v]
and distances[v] hold the correct values of a backward search to node v.
Adapted postconditions of run(s, t, forward) from the bidirectional imple-

58

Listing 44: Invariants for the values of arcFlag, reachables, distances and boundary

1 /∗@ invariant arcFlagsSet ==> (\ f o r a l l in t n; 0 <= n && n < nodeCount ;
2 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount ; edge [n] [m] ==>
3 @ (\ f o r a l l in t r ; 0 <= r && r < regionCount ; ! arcFlag [n] [m] [r] ==>
4 @ !(\ ex i s t s in t v ; 0 <= v && v < nodeCount && region [v] == r &&
5 @ boundary [v] && reachables [v] [n] && reachables [v] [m] ;
6 @ distances [v] [n] − distances [v] [m] == weight [n] [m])))) ;
7 @∗/
8
9 /∗@ invariant arcFlagsSet ==>
10 @ (\ f o r a l l in t v ; 0 <= v && v < nodeCount && boundary [v] ;
11 @ reachables [v] [v] &&
12 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachables [v] [n] ;
13 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [m] [n] ;
14 @ reachables [v] [m])) &&
15 @ distances [v] [v] == 0 &&
16 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount &&
17 @ reachables [v] [m] && m != v ;
18 @ (\ ex i s t s in t n; 0 <= n && n < nodeCount &&
19 @ reachables [v] [n] && edge [m] [n] ;
20 @ distances [v] [m] == distances [v] [n] + weight [m] [n])) &&
21 @ (\ f o r a l l in t n; 0 <= n && n < nodeCount && reachables [v] [n] ;
22 @ (\ f o r a l l in t m; 0 <= m && m < nodeCount && edge [m] [n] ;
23 @ distances [v] [m] <= distances [v] [n] + weight [m] [n]))) ;
24 @∗/
25
26 /∗@ invariant arcFlagsSet ==>
27 @ (\ f o r a l l in t v ; 0 <= v && v < nodeCount ; boundary [v] <==>
28 @ (\ ex i s t s in t u ; 0 <= u && u < nodeCount && edge [u] [v] ;
29 @ region [u] != region [v])) ;
30 @∗/

mentation are used for this.

If arcFlagsSet is set, a node v is marked as boundary node only if it has
a predecessor u from a di�erent region (lines 26�30).

At last, we are left with the speci�cation for the method setArcFlags(),
which does the precalculation. The only postcondition is that it must set
arcFlagsSet to true, so that those last three invariants can be used. More
postconditions are not needed.

In order to put these invariants in place, setArcFlags() sets the val-
ues of the (ghost) arrays reachables and distances accordingly. It also sets
arcFlagsSet .

Listing 45: Speci�cation of the method setArcFlags()

1 /∗@ pub l i c normal_behavior
2 @ ensures arcFlagsSet ;
3 @ modifies arcFlagsSet , reachables [∗] [∗] , distances [∗] [∗] , boundary [∗] ,
4 @ arcFlag [∗] [∗] [∗] , target , visitedNodes , v i s i t e d [∗] , reachable [∗] ,
5 @ distance [∗] ;
6 @∗/
7 void setArcFlags () {
8 . . .
9 for (int v = 0 ; v < nodeCount ; v++) {
10 . . .
11 runPre (v , −1, fa l se) ;
12
13 for (int n = 0 ; n < nodeCount ; n++) {
14 //@ set reachables [v] [n] = reachable [n] ;
15 //@ set distances [v] [n] = distance [n] ;
16 . . .
17 }
18
19 }
20
21 //@ set arcFlagsSet = true ;
22 }

59

Listing 45 presents the speci�cation of setArcFlags(). Line 2 states that
arcFlagsSet is set to true, which is indeed done in line 21. According to
the modi�es clause of lines 3�5 the method modi�es the values of arcFlags-
Set, target, visitedNodes, and the values of the arrays reachables, distances,
boundary, arcFlag, visited, reachable and distance; either by itself or through
a call to runPre(s, t, forward), which performs the backward search.

For each boundary node v and each node n, setArcFlags() stores the
reachability and the distance of n from the backward search to v in reach-
ables[v][n] and distance[v][n] (lines 14�15) to put in place the three invari-
ants.

6.2.3 Veri�cation

When we try to verify the methods, we �nd that the invariants that the
method setArcFlags() puts in place are of such complexity that a veri�cation
is not possible for KeY due to its performance issues (see section 7.2). Only
the correctness of the method init(s, t) can be shown.

However, those invariants are not needed to show the proof obligations
EnsuresPost and RespectsModi�es of the algorithm's methods (init(s, t),
run(s, t), outerLoop(s, t) and innerLoop(s, t, u, i)). For PreserveInvs we
would have to show that the invariants are preserved. Because the methods
do not modify any locations referenced by those invariants, it is clear that
they would preserve them.

Only for the veri�cation of setArcFlags() those invariants are needed,
since they implicitly represent the postconditions of that method. But, as
setArcFlags() itself is very complex � it contains several nested loops and
calls to backward searches � it would be questionable (because of KeY's
performance issues) whether the veri�cation could be done, even if there
were no problems with the complexity of the invariants.

So we remove the invariants and verify only the four methods of the arc-
�ag-optimized algorithm. Since the methods for the backward search were
already veri�ed in section 6.1.3, we don't need to verify them here again.

Without the invariants, we can verify init(s, t) and innerLoop(s, t, u, i)
the same way as before. For run(s, t) and outerLoop(s, t) we have to limit
KeY further in the application of rules. After the auto mode is started with
the settings Logical splitting : O� and Quanti�er treatment : None, and then
with Quanti�er treatment : No splits, we keep the latter settings and apply
rules for splitting the proof by hand. This keeps the proofs from bloating up
too much due to unnecessary splits KeY would make automatically.

7 Results

We will sum up the veri�cation of the di�erent implementations and give
some proof statistics in section 7.1. Then, in section 7.2, we will discuss the

60

issues we experienced with KeY during the veri�cation. Finally, we will give
some feedback for algorithm engineers in section 7.3.

7.1 Veri�cation Summary

In this work we veri�ed �ve di�erent implementations of Dijkstra's Algo-
rithm. Four of them were abstract implementations based on one another.
We began with a standard implementation (section 3) and later included the
t-optimization (section 4). Then we modi�ed that version to also allow back-
ward searches (section 6.1). In the end we presented an arc-�ag-optimized
implementation (section 6.2) which is based upon the t-optimized imple-
mentation and uses the bidirectional implementation in its precalculation.
The �fth implementation is a concrete implementation using optimized data
structures (sections 2 and 5). It corresponds to the t-optimized abstract
implementation.

For the veri�cation of each abstract implementation, except the �rst one,
we used the speci�cation of a previous implementation and modi�ed it to
incorporate the changes. Although the modi�cations to the speci�cations
were only small, there were some bigger blow-ups in the proofs. Table 1
shows proof sizes and required user interactions for the veri�cation of the
four abstract implementations.

Table 1: Proof statistics for the abstract implementations

standard t-optimized bidirectional arc �ags

init 1640 1650 1647 3241 nodes
11 11 11 11 branches
0 0 0 0 interactions

run 20974 53390 85235 51813 nodes
86 230 368 55 branches
11 54 94 47 interactions.

outerLoop 45064 48846 85745 73039 nodes
195 217 382 93 branches
8 12 19 78 interactions

innerLoop 6691 6852 12747 16455 nodes
35 37 70 43 branches
3 3 6 3 interactions

While for most methods of the t-optimized implementation the proofs
stayed almost the same in comparison to the standard implementation, there
was a de�nite blow-up for the method run, in proof size as well as in required
user interactions. We modi�ed the loop invariant and the postconditions of
run in di�erent ways. This made it more di�cult to conclude the postcon-
ditions using the loop invariant, which is the reason for the blow-up. The
pre- and postconditions of the method outerLoop were modi�ed in the same
way, so that there was no blow-up.

61

The biggest blow-ups occurred in the veri�cation of the arc-�ag-optimized
implementation. Due to the additional arc �ag condition the proof gets split
much more and thus proof size and required user interactions increase. For
the methods run and outerLoop this is not apparent from the proof statistics,
because we used more-restrictive auto mode settings in the proofs to reduce
proof size. With the same settings we used in the other implementations,
however, the proofs would be much larger.

Because of the increased proof sizes and required user interactions, the
veri�cation of an optimized implementation without a previous, simpler im-
plementation to learn from would be much harder. This was the reason
why we had to �rst implement and verify the abstract implementation be-
fore verifying the concrete implementation. By doing this we mimicked the
development cycle of the algorithm. Thus, including veri�cation in the de-
velopment process of an algorithm makes the veri�cation of an resulting,
optimized implementation less di�cult.

The proof statistics for the veri�cation of the concrete implementation,
which are shown in comparison to the t-optimized abstract implementation
in table 2, emphasize this further. The proofs for the two methods we could
verify are much larger than in the abstract implementation, especially for
the method innerLoop. Without the previous veri�cation of the abstract
implementation we wouldn't have been able to �nd the right speci�cation
and complete the proof for the method innerLoop.

Table 2: Proof statistics for the t-optimized implementations

abstract concrete

init 1650 9528 nodes
11 86 branches
0 4 interactions

run 53390 � nodes
230 � branches
54 � interactions.

outerLoop 48846 � nodes
217 � branches
12 � interactions

innerLoop 6852 166879 nodes
37 1783 branches
3 162 interactions

Even with the previous veri�cation we were not able to complete the
proofs for the methods run and outerLoop. In each implementation these
methods have had considerably larger proofs than the method innerLoop.
Because the proof for innerLoop in the concrete implementation almost
brought KeY to its limit, we expect the methods run and outerLoop to
not be provable by KeY due to its performance issues which we will detail
in section 7.2.

62

7.2 Issues with KeY

We have seen that some proof obligations couldn't be proven with KeY.
Mostly, this can be tracked back to performance issues KeY has with more
complex proof obligations. It results in rule applications getting slower and
slower, until eventually KeY crashes with anOutOfMemoryError. Depending
on the available memory KeY (or rather the Java Virtual Machine) has at
its disposal this happens sooner or later. In the standard installation KeY
is started with a Java maximum heap of 1024 MB; we modi�ed this to
use a maximum of 2048 MB of memory. In tests we found that KeY would
crash after about 150000 rule applications with the default setting. Using the
increased heap size we reached 230000 rule applications, before KeY crashed.
However, depending on the complexity of the proof obligation these numbers
change extensively.

KeY is designed to be a user-friendly interactive theorem prover. The
user shall be able to inspect every node of the proof tree and to apply rules
to open goals by hand. To have all proof nodes available can be helpful in
several ways. In the case that a user interaction is required for an open goal,
the user can take a look at the path to this goal to �nd out what formula
has to be proven and what steps have already been done for it. From this
the user can get a hint which rule he has to apply or which instantiation to
do. Also when having a completed proof, the user can check why the proof
was closed. So besides the help for the user to get a proof closed, it provides
some additional assurance that the proof can be trusted.

However, that rather high memory consumption follows from this design,
because KeY needs to store and display the information of all intermediate
proof steps. Based on 230000 rule applications with a heap size of 2048 MB
until KeY crashes, this leaves only under 10 KB of memory for each node.
With a complex proof obligation, like one for Dijkstra's Algorithm with Arc
Flags, which contains many class invariants, such a size can be reached.

Before KeY crashes, its performance decreases rapidly the larger the proof
becomes, resulting in less rule applications in a given time. In one case KeY
needed over 10 hrs for about 20000 rule applications, which it otherwise does
in only some minutes. KeY needs some free memory to create temporary
(Java) objects in order to select a rule to apply. The larger the proof becomes,
the less free memory is available, and the garbage collector needs more time
to free it. Therefore, KeY needs more time, too.

Using the standard settings for the proof search strategy can result in very
large proof trees that impact KeY's performance. One option responsible for
this behavior is Quanti�er treatment, which is set to No splits with Progs
by default. When it is set to No splits, as we have done it for all of the
veri�cation tasks, KeY is restricted in the automated application of rules.
While this setting sees to it that the size of the proof tree is not getting too big
too quickly, of course, some proof obligations cannot be proven automatically,

63

anymore.
As an example we can take the abstract implementation of the standard

algorithm and take a look at its method innerLoop(s, u, i) (see sections 3
and 7.1). In the veri�cation with the settings we used we had to do three
instantiations by hand, and the proof was closed with 6691 nodes and 35
branches. For this method we can set Quanti�er treatment to the default
value, No splits with Progs, and get a successful veri�cation without inter-
action. However, it now takes 66010 nodes and 268 branches for the proof,
which is ten times mor than in the old proof. Thus, using this setting for
other proofs is out of the question, although that means we lose automation
and require more user interaction.

The required user interaction is acceptable, as long as its amount stays
within certain limits. For the method run(s) in the abstract implementa-
tion of the standard algorithm we had to do instantiations in six open goals.
By adding the t-optimization this number was increased to 28. Most of the
additional 22 goals resulted from KeY doing unnecessary case distinctions,
and thus needed the same instantiations. In �rst veri�cation attempts with
the arc-�ag-optimized implementation KeY would do even more case dis-
tinctions and leave us with 92 open goals. Again, most of them needed the
same instantiation, but due to the case distinctions they had to be done now
several times.

Besides the performance issues, there are some features KeY misses. For
the termination of the loop in the method run(s) (in the abstract imple-
mentation of the standard algorithm, see section 3.2.1) we used the variant
nodeCount − visitedNodes. One proof obligation for this variant is to show
that if the variant is 0 the loop condition will be false. visitedNodes holds
the number of nodes which are set visited, so the variant counts the number
of unvisited nodes. The loop condition checks for the existence of an un-
visited node and thus, if the variant is 0, there are no unvisited nodes and
the loop condition will be false, as it is required. To verify this in KeY we
need to show that visitedNodes holds indeed the number of visited nodes and
that there can be no unvisited node, if it equals nodeCount. A feature that
can count visited nodes is implemented, but is not powerful enough for our
purpose.

Another feature KeY does not support are JML model �elds, which we
introduced in section 5.2. Especially when the veri�cation process is inte-
grated into the development process of an algorithm, model �elds would be
of use. While the implementation changes when the code is optimized, the
speci�cation of the interface could stay the same, because model �elds allow
to specify the interface without referencing the implementation. Without
model �elds the speci�cation needs to be changed as well to re�ect the new
implementation. The speci�cation with model �elds is typically on a higher
level of abstraction as an optimized implementation, because in general it
uses only basic data structures and no optimizations. So the semantics of the

64

speci�cation is clearer than if it was on the same level as the implementation.

A minor issue regarding the usability, but which has no impact on the
power for proving, concerns the user interface which displays a node's se-
quent. In this sequent view the formulae of the antecedent and the succedent
are not ordered. So when an interaction is required the user has to search for
a formula where he can apply a rule. In bigger sequents, as we came across
in our veri�cation tasks, the formulae span several pages of a screen and a
small formula can be overlooked easily while scrolling. An ordering which
orders the formulae according to their structure would be helpful.

7.3 Feedback for Algorithm Engineers

To provide feedback for the algorithm engineers we need to analyze the speci-
�cation and veri�cation. We can divide this into two parts, the requirements
and the conclusions. While the former only consists of the class invariants
and the preconditions of the algorithm's starting method, the latter covers
all logical consequences, including the postconditions of the starting method,
loop invariants and the speci�cation of the other methods. We do not in-
clude the preconditions (the requirements) of those other methods in the
requirements part, because they are either logical consequences of or also
requirements for the calling method.

In the requirement part we have to check if all of the requirements are
needed for the veri�cation. In our case there are only few requirements which
are interesting to us, because the rest is only dealing with the lengths and
the pairwise inequality of the used arrays. One invariant states that all edge
weights have to be non-negative. This, as already explained in section 1.3,
is necessary. Also, the precondition of the method run, stating that the
source node s must be a valid index, is needed in each implementation. In
the t-optimized implementation (see section 4) there is another parameter
t denoting the target node. In contrast to s, no array is accessed at index
t and thus, t needs not to be a valid index and so we did not include it as
precondition.

Looking at the class invariants of the graph in the concrete implemen-
tation (see section 5.2.1) there seems to be missing an invariant concerning
the relationship of outgoing and incoming edges; if there is an outgoing edge,
then an incoming edge must exist for the target node, as well, and vice versa.
However, we do not need this, because we only use outgoing edges in the
algorithm. In fact, we can modify the data structure to only store outgoing
edges, which would save time and memory.

For the second part of the analysis we take a look at the conclusions of the
standard abstract implementation (see section 3.2). In the postconditions of
the method run(s) we �nd the expression ... && edge[n][m] in the formulae
for the reachability and the distances of nodes. We can add here some other
condition, indicating whether we want the algorithm to consider the edge

65

between nodes n and m. Most generally, we can use some oracle function as
this condition. In the arc-�ag-optimized implementation (see section 6.2) we
used such a condition, where the precalculated arc �ags indicated whether
an edge is to be considered.

Another option to modify the implementation gives us the loop invariant
in the method run(s) stating that visited nodes have not greater distances
than unvisited ones. Together with the postcondition of the method inner-
Loop(s, u, i) that distances of visited nodes will not get modi�ed, we can
change the implementation to not check all successors i of node u, but only
unvisited ones. Also, when we are interested in shortest paths to only some
nodes, we can stop the algorithm once every such node is visited, because
their distances will get any smaller. A simpli�ed version, with only one
target node we are interested in, is the t-optimization of section 4.

We already used most of this feedback in the implementations. This is
due to Dijkstra's Algorithm being such a popular and old algorithm. It has
been and is still being studied and optimized, so providing new feedback
for this algorithm is harder than for a new one. But we have seen that the
feedback we got from the analysis could be used.

8 Conclusion

We presented a concrete implementation of Dijkstra's Shortest Path Algo-
rithm and its veri�cation process with KeY, which included the prior veri�ca-
tion of a more abstract implementation. We also veri�ed two more variations
of the algorithm based on the abstract implementation.

We have seen that, though there are some features KeY misses, it can
be used for algorithm veri�cation. However, the biggest issue is its per-
formance, because of which we could not complete the veri�cation of the
concrete implementation.

The performance issues of KeY are due to the complexity of the proof
obligations for the used algorithm. In the abstract implementation there
are 46 lines of code opposed to 183 lines of speci�cation. The optimized
data structure of the concrete implementation increases the complexity even
more.

Since we had to verify a more abstract implementation �rst, we mimicked
the development process of the algorithm. Thus, it makes sense to integrate
the veri�cation process into the development process from the start, when
an optimized implementation shall be veri�ed.

In the analysis of the speci�cation and veri�cation we found some points
providing feedback for algorithm engineers, which supports the integration of
formal veri�cation into the development process further. Those points were
already implemented in subsequent variations of the algorithm, but this is
due to the algorithm being so well-known.

66

8.1 Future Work

Before starting to integrate veri�cation into the development process of an
algorithm, which is the goal in the end, we should do some more evaluation
with other algorithms.

For one we need to see where the complexity of Dijkstra's Algorithm is
settled in comparison to other algorithms. Also, with other algorithms there
might be more or less issues with KeY.

Moreover, with an algorithm which is not so well-known we can evaluate
whether the veri�cation pays o� by providing new feedback.

67

68

References

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin.
Network �ows : theory, algorithms, and applications. Prentice
Hall, Upper Saddle River, NJ [u.a.], 1993.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors.
Veri�cation of Object-Oriented Software: The KeY Approach.
LNCS 4334. Springer-Verlag, 2007.

[BLW08] Sascha Böhme, K. Rustan M. Leino, and Burkhart Wol�. Hol-
boogie - an interactive prover for the boogie program-veri�er. In
Otmane Aït Mohamed, César Muñoz, and So�ène Tahar, editors,
TPHOLs, volume 5170 of Lecture Notes in Computer Science,
pages 150�166. Springer, 2008.

[Del09] Daniel Delling. Engineering and Augmenting Route Planning Al-
gorithms. PhD thesis, Universität Karlsruhe (TH), Fakultät für
Informatik, 2009.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269�271, 1959.

[Lau04] Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding
Shortest Paths in Static Networks with Geographical Background.
In Geoinformation und Mobilität - von der Forschung zur prak-
tischen Anwendung, volume 22, pages 219�230. IfGI prints, 2004.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary
design of jml: a behavioral interface speci�cation language for
java. ACM SIGSOFT Software Engineering Notes, 31(3):1�38,
2006.

[LPC+03] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David Cok, and Joseph Kiniry. Jml reference manual, 2003.

[Moy98] J. Moy. OSPF Version 2. RFC 2328 (Standard), April 1998.
Updated by RFC 5709.

[Poh71] Ira Pohl. Bi-directional Search. In Bernard Meltzer and Donald
Michie, editors, Proceedings of the Sixth Annual Machine Intelli-
gence Workshop, volume 6, pages 124�140. Edinburgh University
Press, 1971.

69

	Introduction
	Java Modeling Language
	A Specification Example

	KeY
	Verification with KeY
	Settings

	Dijkstra's Shortest Path Algorithm

	Concrete Implementation
	Code
	Graph
	PriorityQueue
	Dijkstra

	Specification

	Abstract Implementation
	Code
	Specification
	run(s)
	outerLoop(s)
	innerLoop(s, u, i)

	Verification

	Abstract Implementation with T-Optimization
	Code
	Specification
	Verification

	Concrete Implementation, cont'd
	Code
	Specification
	Graph
	PriorityQueue
	Dijkstra
	init(s, t)
	run(s, t)
	outerLoop(s, t)
	innerLoop(s, t, u, i)

	Verification

	Variations of the Algorithm
	Bidirectional
	Code
	Specification
	Verification

	With Precalculation (Arc Flags)
	Code
	Specification
	Verification

	Results
	Verification Summary
	Issues with KeY
	Feedback for Algorithm Engineers

	Conclusion
	Future Work

