
Fahbereih 4: Informatik

Collision-free path planning for aroboti arm in RoboCup �Home
Studienarbeitim Studiengang Computervisualistikvorgelegt vonKevin ReadBetreuer: Dipl.-Inform. D. Gossow, Institut für Computervisualistik,Fahbereih Informatik, Universität Koblenz-LandauErstgutahter: Dipl.-Inform. D. Gossow, Institut für Computervisualistik,Fahbereih Informatik, Universität Koblenz-LandauZweitgutahter: Prof. Dr.-Ing. Dietrih Paulus, Institut fürComputervisualistik, Fahbereih Informatik, Universität Koblenz-LandauKoblenz, im Juni 2010

KurzfassungDas Ziel dieser Studienarbeit ist es, einen Roboterarm in einen bestehenden Software-Stak zu integrieren, damit ein darauf basierender Roboter beim Wettbewerb Ro-boCup �Home teilnehmen kann.Der Haushaltsroboter Lisa (Lisa Is a Servie Android) muss für den �Home-Wettbewerb unter anderem Gegenstände aus Regalen entnehmen und an Personenweiterreihen. Bisher war dafür nur ein Gripper, also ein an der mobilen Plattformin Bodennähe angebrahter �Zwiker� vorhanden. Nun steht dem Roboter ein�Katana Linux Robot� der Shweizer Firma Neuronis zur Verfügung, ein Roboterin Form eines Arms. Dieser wird auf LISA montiert und nimmt über vershiedeneShnittstellen Befehle entgegen. Er besteht aus sehs Gliedern mit entsprehendvielen Freiheitsgraden. Im Robbie-Softwarestak muss ein Treiber für diesen Armintegriert und eine Pfadplanung erstellt werden. Letztere soll bei der Bewegung desArms sowohl Kollisionen mit Hindernissen vermeiden als auh natürlih wirkendeBewegungsabläufe erstellen.AbstratThe goal of this minor thesis is to integrate a roboti arm into an existing robotissoftware. A robot built on top of this stak should be able to partiipate suess-fully RoboCup �Home league.The robot Lisa (Lisa is a servie android) needs to manipulate objets, liftingthem from shelves or handing them to people. Up to now, the only possibility to dothis was a small gripper attahed to the robot platform. A �Katana Linux Robot�of Swiss manufaturer Neuronis has been added to the robot for this thesis. Thisarm needs a driver software and path planner, so that the arm an reah its goalobjet �intelligently�, avoiding obstales and reating smooth, natural motions.

5ErklärungIh versihere, dass ih die vorliegende Arbeit selbständig verfasst und keine an-deren als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die Ar-beit in gleiher oder ähnliher Form noh keiner anderen Prüfungsbehörde vorgele-gen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. AlleAusführungen, die wörtlih oder sinngemäÿ übernommen wurden, sind als solhegekennzeihnet.Die Vereinbarung der Arbeitsgruppe für Studien- und Abshlussarbeiten habeih gelesen und anerkannt, insbesondere die Regelung des Nutzungsrehts.Mit der Einstellung dieser Arbeit in die Bibliothek bin ih einver-standen. ja � nein �Der Verö�entlihung dieser Arbeit im Internet stimme ih zu. ja � nein �

Koblenz, den 27th July 2010

Contents
1 Introdution 131.1 The RoboCup �Home league . 131.2 The software stak . 141.3 The robot Lisa . 141.4 The Katana 450 arm robot . 152 The state of segmented robot motion planning 172.1 Potential funtions . 172.2 Roadmaps . 183 Integrating an arm into the Robbie software stak 213.1 Basis . 213.1.1 General onventions and de�nitions 213.1.2 Anatomy of the Robbie software stak 223.2 Robot arm interfae and hardware abstration 243.2.1 Restritions for Robbie Devies and Modules 243.2.2 Abstrat base lass: RobotiArmInterfae 253.2.3 Physial arm devie: KatanaM400Devie 263.2.4 Arm ontrol Module: KatanaArmModule 273.2.5 Arm path planning Module: ArmPlanModule 283.3 Foundation for path planning . 303.3.1 Forward kinematis and ollision avoidane 303.3.2 Choosing a planner . 333.3.3 About graph-based planning with motion primitives 343.3.4 On heuristi searhing . 343.4 Algorithm implementation . 353.4.1 The A-Star heuristi searh 353.4.2 Graph onstrution . 363.4.3 Path reonstrution and post-proessing 377

8 CONTENTS4 Evaluation and lessons learned 414.1 Evaluating performane and suess 414.1.1 Basi funtionality . 414.1.2 Planning time and suess rate 434.2 Evaluation of suess in the �home setting 455 Outlook 475.1 Further work . 475.2 Aknowledgments . 48

List of Tables
3.1 Path ost depending on distane to losest obstale 37

9

List of Figures
1.1 Lisa showing of the roboti arm during the RoboCup �Home 2010Open Challenge . 152.1 Di�erent kinds of roadmaps: topologial, geometri and grid-based.Soure: [CLH+05, p.108℄ . 183.1 Axis enumeration . 213.2 Shemati overview of the Robbie arhiteture 223.3 Class diagram for the hardware abstration interfae RobotiArmInter-fae and its implementations KatanaM400Devie and VirtualKatanaDe-vie . 253.4 Class diagram for the hardware Module KatanaArmModule 273.5 Class diagram for the path planningModule ArmPlanModule. Somemember variables removed for legibility. 293.6 The algorithm used for smoothing in pseudo ode. 383.7 Path smoothing: The yellow line is the unsmoothed path, the redline lose to it is the smoothed opy. 394.1 Sreenshot of debug visualization. The blue wireframe arm on theleft represents the on�guration the planner is examining. 424.2 Sreenshot of path planner having ompleted the omplex path se-nario used for evaluation . 444.3 Treemap of path planning CPU usage distribution, aquired withGoogle Performane Tools and kahegrind 45

11

Chapter 1IntrodutionIn this minor thesis a path planner for a roboti arm and neessary driver infras-truture to interfae the Katana M400 arm will be added to the robotis softwarestak developed at the Ative Vision Working Group (AGAS) at the University ofKoblenz-Landau. The goal is to partiipate in the RoboCup �Home league teststhat require objet manipulation.This hapter will give an overview of the RoboCup �Home league with aneye on the hallenges that involve objet manipulation. Next, an overview of theroboti software stak used shall be presented. Finally the hardware platform�Lisa� and the roboti arm shall be introdued.1.1 The RoboCup �Home leagueRoboCup is an international robotis ompetition that aims to further researh inrobotis and arti�ial intelligene by �providing a standard problem where widerange of tehnologies an be integrated and examined, as well as being used for inte-grated projet-oriented eduation.�1 This standard problem was originally de�nedas a football math, building on the games well-de�ned rules, its high popularityand the multitude of tehnologies that an used as the foundation for a suessfulsoer team, as in multi-agent ollaboration, autonomy, sensor fusion and otherresearh topis. RoboCup events also house onferenes and workshops.The ompetition was split into various leagues that onentrate on di�erentresearh topis or sub-problems of soer. In 2001 the �rst non-soer league�RoboCup Resue� was added to the ompetition, whih fouses on the use ofrobots in disaster reovery. In 2006 a new league was reated to researh the useof robots in a household environment, where they an help with everyday needs andtasks. This league was named �RoboCup �Home�, and has sine attrated very1soure: http://www.roboup.org/ 13

14 CHAPTER 1. INTRODUCTIONlarge interest. At this years RoboCup 2010 in Singapore, the �Home ompetitionwas attended by twenty-four teams from around the globe, whih neessitated twogames being exeuted in parallel to onserve time.Reurring topis in RoboCup �Home are objet, speeh and fae reognition,path and motion planning and Human-Computer Interation. This is re�eted inthe ompetition hallenges, alled games, that partiipants have to absolve. Anexample would be the game �Shopping Mall�, where the robot goes into saidstruture and tries to orretly identify and then ollet items from shelves. Thisgame also highlights the neessity for objet manipulation.1.2 The software stakThe Ative Vision Working Group of the University of Koblenz-Landau has beeninvolved with RoboCup sine 2006. The software stak was originally developedfor student projets and researh into roboti topis, but ould be adapted to theneeds of the RoboCup teams. It is written in C++ and has been designed withextensibility in mind and has been re-used and extended sine the �rst RoboCup.Initially used in the Resue ompetition, it serves as the basis for the �Home teamnow, too.The stak is modelled after the mediator pattern, utilizing a entral messagequeue and a subsription system. Appliation logi is partitioned into modulesthat subsribe to ertain messages and an send messages of their own. Modulesan be proative (they wake up in regular intervals and on message reeption) orreative (they wake up only on message reeption). Sensors and atuators residewithin driver modules, data proessing is done in Worker modules, whih anembed external libraries.1.3 The robot LisaLisa is a reursive aronym that stands for Lisa Is a Servie Android and is theplatform of the �Home team �Homer�. It onsists of a MobileRobots RobotisPioneer P3AT2 platform, a four-wheeled platform with a front-mounted gripper.On top of this platform the ustom-made framework designed and built by Centreof Exellene of the Chamber of Crafts in Koblenz[GWB+10℄ is mounted, whiharries most sensors and the ontrolling notebook. The framework onsists of asolid base that overs the platform, and an elongated tower-like struture towardthe read end of the platform that arries a pan-tilt unit with a sensor array.2http://www.ativerobots.om

1.4. THE KATANA 450 ARM ROBOT 15

Figure 1.1: Lisa showing of the roboti arm during the RoboCup �Home 2010 OpenChallengeThe framework houses two laser range �nders. One is mounted diretly abovethe platform and is used for navigation purposes. The seond LRF is part ofsaid sensor array, using the �exible positioning for 3-dimensional sanning. Othersensors found in the array are a amera and a time-of-�ight amera for fae orgesture detetion and reognition and a mirophone. There is a LCD touh sreenembedded into the tower part of the framework that typially shows Lisas �fae�,an ioni human fae that an show di�erent emotions and moves its lips duringspeeh output through the loudspeaker next to the sreen.The arm is mounted on the surfae in front of the tower whih slopes slightlytowards the front fae of the framework, so that the roboti arm an reah downinto the working area of the platforms gripper. Both sides are free of obstales, andthe tower slants bakwards, away from the arm, to maximize its available room.The robot is depited in �gure 1.1.1.4 The Katana 450 arm robotThe Neuronis Katana 4503 is a standalone, segmented arm-shaped robot thatonsists of a ontroller box running an embedded Linux system and three joinedarm segments with a maximum operation radius of 517mm ending in a on�gurable3http://www.neuronis.h/

16 CHAPTER 1. INTRODUCTIONappendage, in our ase a two-pronged gripper. There are six motors built into therobot, leading to six degrees of freedom (inluding one in the gripper). The robotan be interfaed via USB or Ethernet. More information on the robot an be foundat http://www.neuronis.h/ms_en/web/index.php?id=244&s=katana.

Chapter 2The state of segmented robotmotion planningMotion planning for robots is not a young �eld of researh, and there are manywell-understood and doumented approahes in use today. A good overview anbe found in [CLH+05℄. Most general-purpose motion planning algorithms applyto segmented robots, although their high dimensionality makes some approahesless feasible or even infeasible.I will present the state of robot motion planning algorithms with a fous onthose that work well for robots with at least six degrees of freedom, whih is avery ommon on�guration for segmented robots.2.1 Potential funtionsA well-understood group of algorithms are potential funtions. They are not suitedfor high-dimensional searh problems. Intuitively, if a robot where a positivelyharged partile, potential funtions employ gradients that at as a negative foreto attrat this partile to the goal. Obstales at as positively harged foresto repel the robot. �The ombination of repulsive and attrative fores hope-fully direts the robot from the start loation to the goal loation while avoidingobstales.�[CLH+05, p. 77℄A logial approah to this problem would be gradient desent: �Starting at theinitial on�guration, take a small step in the diretion opposite the gradient. Thisgives a new on�guration, and the proess is repeated until the gradient is zero.�[CLH+05, p. 84℄ To alulate the repelling fore from obstales, the distane tothese must be established. [CLH+05, p. 86℄ introdue the Brush�re algorithm asan e�ient algorithm to ompute this distane. Intuitively, a map is reated inform of a grid of pixels. All non-oluded pixels are initialized with zero, all other17

18CHAPTER 2. THE STATE OF SEGMENTED ROBOTMOTION PLANNING
Figure 2.1: Di�erent kinds of roadmaps: topologial, geometri and grid-based. Soure:[CLH+05, p.108℄pixels with one. Now all zero-valued pixels that have a neighbour with a value ofone are set to two. In the next step, all zero-valued pixels with a neighbouringpixel of two are set to three, and so on. When a four-point onnetivity is usedas basis for the neighbour searh, the pixel value orresponds to the Manhattandistane to the next obstale.One problem of potential funtions is that the searh an easily end in nestledin a onave obstale or a set of onvex obstales that are too lose together,essentially beoming onave. Beause the repelling fore of the obstales and theattrative fore of the goal that lies behind the obstale anel themselves out,the searh deadloks. This is known as the loal minimum problem as stated in[CLH+05, p.90℄, where the solution is given as �the wave-front planner [...℄ a�ordsthe simplest solution to the loal minima problem, but an only be implementedin spaes that are represented as grids.� A good visualization of the wave-frontplanner is a wave front that starts from the goal and expands outwards, endingwhen it hits the start position. When the wave passes over a grid ell, it storesthe distane to the goal in this ell. Oluded ells are avoided by the wave. Thegradient desent then uses this distane in the ells as the gradient funtion. �Thewave-front planner essentially forms a potential funtion on the grid whih has oneloal minimum and thus is resolution omplete�[CLH+05, p.91℄.2.2 RoadmapsMaps form the basis of many path planning approahes. They are used wheninrementally building a map of the environment based on sensor information,or to pre-alulate planning information for an environment that an be reusedoften. [CLH+05, p.107℄ distinguishes between topologial, geometri and grid-based maps.Topologial maps onsist of a graph with the nodes representing sensor infor-mation and the edges showing possible transitions between these nodes. Geomet-ri maps try to �t sensor observations into geometri shapes and note these onthe map. Line segments or triangles are often used here. Grid-based maps note

2.2. ROADMAPS 19the �likelihood that its orresponding portion of workspae or on�guration spaeis oupied�[CLH+05, p.108℄ in eah grid ell. These oupany grids are usedthroughout the Robbie stak for navigation and mapping. Di�erent kinds of mapsfor the same physial loation are shown in �gure 2.1.Of partiular interest for high-dimensional problems are roadmaps: Think ofa map of railway stations, like a standard London underground map - a graphwith the nodes representing phyisal loations and the edges showing possibletransitions between these loations. [CLH+05, p.108℄ on roadmaps:Robots use roadmaps in muh the same way people use highway sys-tems. Instead of planning every possible side-street path to a desti-nation, people usually plan their path to a network of highways, thenalong the highway system, and �nally from the highway to their des-tination. The bulk of motion ours on the highway system, whihbrings the motorist from near the start to near the goal.Many roadmap planners expet an expliit representation of obstales in form oftheir geometry. Given expliit geometry, these planners are powerful. Examples ofsuh planners are Visibility Maps[CLH+05, p.110℄, Deformation Retrats[CLH+05,p.117℄ or Pieewise Retrats[CLH+05, p.138℄. The underlying approah is to om-pute valid paths from obstale geometry. As our on�guration spae is at leastfour-dimensional, deriving the geometry of obstales in the on�guration spae Qfrom R3 is not straightforward. Eah point on the onvex hull of the obstale in
R3 might orrespond to an unlimited number of points in Q, thereby renderingthese planners impratial for our needs. [CLH+05, p.197℄.[CLH+05, p.197℄ propose an alternative approah by sampling the on�gura-tion spae and thereby generating a graph of on�gurations and interonnetingpaths that lie in Qfree, the non-oluded part of on�guration spae. It is, ine�et, a spae-time tradeo�, investing omputational power in advane to save itlater. Researh into this area launhed after Canny showed that the generalizedmovers problem (in whih a robot onsists of a olletion of polyhedra freely linkedtogether at various verties) was PSPACE-omplete (polynomial omplexity), soa less omplex approah was needed.The �rst suh algorithm was PRM, the Probabilisti RoadMap planner. Theassumption is that heking if a given on�guration q is in Qfree or not is heap.�It uses rather oarse sampling to obtain the nodes of the roadmap and very �nesampling to obtain the roadmap edges, whih are free paths between node on�g-urations.� [CLH+05, p.198℄ To answer a query, only the onnetion from the startposition to the roadmap and from there to the goal need to be heked against
Qfree. The path through the roadmap from the start entry point to the goal exitpoint an be omputed by doing graph searh. The roadmap an be re-used for sub-sequent planning work as long as the environment does not hange. The approah

20CHAPTER 2. THE STATE OF SEGMENTED ROBOTMOTION PLANNINGan also be used for one-shot planning, where the starting and goal positions arealso added to the map and the planning stops as soon as the goal is reahed.Speial are has to be taken when hoosing a sampling strategy. Using a ran-dom distribution of q ∈ Q might produe an even overage, but if the majorityof planning work takes plae in ertain area of Q some of the work is wasted. In-reasing the sampling resolution leads to longer planning times. Alternate strate-gies are to sample lose to obstales to enable lose-quarter movement withoutollision[CLH+05, p.216℄. Another approah is to reate a sparse graph by build-ing on the onept of visibility by only adding new nodes that are oluded byobstales from the vantage point of all other nodes, i.e. they �lie in the shadow� ofobstales.[CLH+05, p.218℄ Grid-based planners sample the spae along the pointsof a grid, reating a very uniform distribution. Using hierarhial data struturesthe resolution an be inreased spatially.The strategy to onnet adjaent nodes should also be seleted with are. Astandard approah is to onnet eah node to k losest neighbours, whih wouldlead to short onnetions but luttered graphs. The opposite approah would betrying to reate a sparse roadmap, where edges are only reated if this inreasesthe onnetivity of the graph [CLH+05, p.225℄. Using a lazy evaluation approah,heking for ollisions only when neessary an lead to very e�ient planning. Theonnetions to the k neighbours are assumed free of ollisions. One the query isstarted, these paths are tested on-the-�y.Advaned sampling-based planners exist, most of them reated spei�ally forone-shot planning. An example of suh a planner would be Expansive-Spae Trees(EST), that lends itself to kinodynami planning too. In e�et, the planner growstwo trees, Tinit growing from the start point and Tgoal, growing from the goalposition. They grow towards eah other until they an be merged into one. Theadvantage over PRM is that with this approah only the part of Qfree is overedthat is really needed for the query.The algorithm employed in this thesis shares ertain aspets with roadmaps,espeially the onept of lazy evaluation.

Chapter 3Integrating an arm into the Robbiesoftware stak
3.1 Basis3.1.1 General onventions and de�nitionsAll �le names are relative to the root of the Robbie software stak as found in theuniversity subversion repository. The Robbie stak is not generally aessible tothe publi, so the setions disussing Robbie-spei� hanges might not be help-ful to external readers. Also all Robbie omponents (Modules, Workers, Deviesand Messages) are written in upper ase to di�erentiate them from the oneptsassoiated with these terms.File names are written in bold, variable,

Figure 3.1: Axis enumeration

lass and method names in italis. Membervariables begin with �m_�. All angles arestored internally as the data type double (withdouble preision). The term �on�guration�is used as follows: A robot on�guration ofa robot system is �a omplete spei�ationof the position of every point of that system.The on�guration spae, or C-spae, of therobot system is the spae of all possible on-�gurations of the system [...℄ The number ofdegrees of freedom of a robot system is thedimension of the on�guration spae, or theminimum number of parameters needed tospeify the on�guration.�[CLH+05, p. 40℄.21

22CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACK
System

Core

Device

Message queue

Worker

Device
driver

Hard-
ware

Third-
party

software

Application

Device

Worker

Hard-
ware

Glue code

Technical software

Application indep. software

Application software

Module

ModuleModule

Figure 3.2: Shemati overview of the Robbie arhitetureWhen referring to the anatomy of the Katana arm, the axes are enumeratedfor simpliity's sake, starting from the base and asending to the gripper. Figure3.1 depits the enumeration. The following desription assumes the viewer looksat the bak of the arm, with the arm sitting on top of a table. The �rst or lowestaxis is the rotational base embedded into the �foot� of the robot, whih rotatesaround the y-axis. The seond axis sits on top of the �rst and rotates around thex-axis. The third and fourth axes onnet the �rst and seond or respetively theseond and third limb and rotate around the x-axis. The �fth axis rotates thegripper around the z-axis, while the sixth axis opens and loses the gripper.3.1.2 Anatomy of the Robbie software stakAs mentioned brie�y in setion 1.2, the Robbie software stak is designed to behighly modular. The same ode base should be usable for simulating a robot, mak-ing a Resue league robot autonomously explore a maze, monitoring the Resuemission over a network, playing bak a sensor log �le to test software hanges inthe lab without using a real robot and, of ourse, partiipating in the �Homeleague.This requirement leads to �ve basi building bloks of stak omponents thatinterat in a well-de�ned manner. The system is modelled after the Mediatordesign pattern, whose intent is de�ned in [GHJV95, p. 305℄ as �De�ne an objetthat enapsulates how a set of objets interat. Mediator promotes loose ouplingby keeping objets from referring to eah other expliitly, and it lets you vary theirinteration independently�. This is realized as a message passing system where

3.1. BASICS 23a entral ore will store subsription requests from omponents and allow eahomponent to send messages to all other omponents that have subsribed to thiskind of message. This system an be implemented e�iently in C++ through theuse of pointers to messages. The arhiteture is shown shematially in �gure 3.2.Eah partiipant of the message system is alled a Module. A Module runsin its own thread of exeution and sublasses Module or AtiveMessageModule. Itan send messages at any time after initialization, whih will be reeived by theore and distributed to other Modules. During initialization, the Module tells theore what message types it wants to subsribe to, and if it wants to reeive onlythe latest message of eah type, or eah message. The Module has an inbox, intowhih inoming messages are sorted. On reeption of a new message, the methodproessMessages is alled, whih an query the inbox for eah message type. Aftera message has been ated upon, it an be �agged for deletion.These messages are implemented as sublasses of Message, whih lays the foun-dations for serialization. Serializability is an important aspet espeially for sensordata, as these an be logged to disk and then deserialized at a later stage in log�le playbak. In the sope of this doument, a sublass of Message will be termed(upper ase) Message. Eah Message has an assoiated type. Types are de�nedin a entral registry and form the identi�er for the subsription proess. To fa-ilitate arhiving log �les, Message instanes inlude a version number, and thedeserialization ode must be able to unthaw older versions.The next omponent is the Worker, a ode blok that an be re-used fromdi�erent Modules. Generally all shared ode is to be grouped into a Worker.The last omponent type is the Devie, driver ode for talking to hardware. BothDevies and Workers are onepts of the semanti level and do not sublass spei�lasses or implement ertain interfaes. Coneptually, Workers an be instantiatedoften and used within any Module, Devies should only be instantiated one andused from within a Module that is spei� for this Devie, typially found inModules/Hardware.The system is on�gured via an XML on�g �le. Here we de�ne pro�les to setvariables that the stak an read at run time. Pro�les an inlude other pro�lesand overwrite ertain settings in the proess, providing inheritane. So a log�leplaybak proess will load the same on�guration as the real game, but will ad-ditionally load the playbak module. Also on�gurable via XML is the model ofthe robots physial geometry, the senegraph. The Module SeneGraphModulealways keeps an up-to-date version of the senegraph, inorporating any hangeslike rotation of appendages or the pan-tilt-unit or movement of the platform. Thissenegraph is broadast periodially via a Message. Other Modules an load theirprivate opy of the senegraph at any time, whih will then re�et the initialon�guration of the robot, not the up-to-date one.

24CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKIntegrating a roboti arm into the stak neessitated hanges and additions toModules, Devies, Workers and Messages.3.2 Robot arm interfae and hardware abstrationIntegrating the arm into the robot onsists of several, loosely oupled tasks.The most obvious of these is the installation of the atual hardware onto theroboti platform Lisa. In the ourse of development, this was shifted bak as faras possible, so that work on the arm would not stall other ativities that needthe robot. Beause the RoboCup team needed the arm mounted on the platformmid-way through the projet, a virtual roboti arm needed to be implemented sothat development was not bound by time onstraints of sharing the robot betweendi�erent projets.So the �rst ation was to write a hardware Devie, virtual arm Devie andhardware abstration layer for the stak, as all other aspets depend on this. Thena ontrol Module for roboti arms was implemented, followed by a graphial userinterfae and a path planning Module. The last ation item was hooking theontrol Module into the sensor data and Message system and the integration ofthe arm into the �Home games.It should be pointed out that ertain restritions exist for Robbie Devies ingeneral and Human-Computer Interation restritions for RoboCup, both of whihin�uened the software design proess. These shall be glossed over �rst.3.2.1 Restritions for Robbie Devies and ModulesDevies in the Robbie stak are run in the ontext of a Devie-spei� Moduleand hene in their own thread of exeution. They typially have full aess to thehardware and need to maintain little to no state. Their interation with the rest ofthe stak is limited to whatever API they want to o�er to their Module. Still, theDevie ode that sits between the stak and the hardware needs to ful�ll ertainrequirements that the stak imposes on hardware drivers:1. Non-bloking: Calls into Devie ode should not blok unless absolutely ne-essary, so that the alling Module an ful�ll periodi tasks.2. Emergeny stop:The hardware needs to be able to respond to the emergenystop Message if it is an atuator by stopping the motion of all movable parts,i. e. by exposing a pause method to the Module. This is assumed to bean important rule in robotis in general and also a rule for RoboCup, whihwill be enfored and tested by the jury. The movement should ontinueseamlessly one the un-pause ommand is alled.

3.2. ROBOT ARM INTERFACE AND HARDWARE ABSTRACTION 25
RoboticArmInterface

+connect(ip:const char *): bool
+reset(): bool
+motorOn(): bool
+motorOff(): bool
+getNumMotors(): int
+readAxes(lastMovementResult:MoveResultT
+getMaxAngles(): vector<double>
+getMinAngles(): vector<double>
+getID(): string
+setAngles(newpos:const vector<double>
+readDefaultAxes(): vector<double>
+doPath(path:ArmPlanner::Path): void
+freeze(): void
+unfreeze(): void
+axesToString(axes:vector<T>): string

KatanaM400Device

#m_MovementTarget: vector<int>
#m_MovementAngle: vector<double>
#m_PathNodes: deque<ArmPlanner::PathNode>
-m_MovementStartTime: uint
#m_MotorFrozen: bool
#m_MotorPower: bool

VirtualKatanaDevice

#m_Path: deque<ArmPlanner::PathNode>
#m_T: int
#m_IsFrozen: bool
#m_MotorPower: boolFigure 3.3: Class diagram for the hardware abstration interfae RobotiArmInterfaeand its implementations KatanaM400Devie and VirtualKatanaDevie3. Error robustness:The driver should not throw exeptions or leave the hard-ware in an unknown state and must reover graefully from any error ondi-tions.4. Safety:The Devie should move atuators in a way that annot harm humansor damage the robot or environment.These items will be referened whenever orresponding ode is examined.To enable an easy transition between the virtual and physial arm, a pro-gramming interfae Devies/KatanaArm/RobotiArmInterfae for roboti armdrivers needed to be reated. This is not a generi interfae for all possible robotiarms, but only for arms that are similar to the Katana M400 arm, hene the foldername.3.2.2 Abstrat base lass: RobotiArmInterfaeThe interfae is implemented as an abstrat virtual lass and is the base lassfor KatanaM400Devie and VirtualKatanaDevie, as shown in �gure 3.3. Thephysial devie driver shall be examined more losely, as the virtual driver merelymimis behaviour of the physial one.

26CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACK3.2.3 Physial arm devie: KatanaM400DevieThe Devie for the Katana 400 series uses the o�ial driver from Neuronis, the�Katana Native Interfae� 1 (KNI). For this implementation version 4.2.0 was used.KNI onsists of a low-level wrapper for motor ontroller ommand submission, ahigh-level interfae whih aepts movement ommands, and a kinematis library.Apart from the kinematis library the soure ode is available under the GNUPubli liense. An analysis of the o�ered solutions showed that the high-levellibrary is a good foundation. The low-level ode requires in-depth knowledge ofmotor ontroller ommands and o�ers no advantage over the high-level interfae.In the onnet() method, the Devie onnets to the roboti arm and readsthe hardware revision. The Module will next all reset(), whih will reset thehardware into a known state, read the number of axes and alibrate the motors ifneessary. Calibration is required after the Katana was powered down. The proessinvolves moving all motors to their mehanial stops and reading minimum andmaximum enoder positions. The Katana will not exeute move ommands untilit is alibrated. Unonditionally exeuting alibrations takes too muh time if therobot appliation needs a restart during a ompetition, so the Devie exeutes avery small movement of the gripper axis in the reset() method, and if this fails(KNI throws an exeption when an unalibrated motor reeives a move ommand),alibrates the arm.A very entral method is the setAngles ommand, whih tells the Devie tomove the arm into the given goal on�guration. The position is passed as a vetorof angles, one for eah axis. If the goal on�guration is not within the on�gurationspae as established during arm alibration, false will be returned as error ode.Due to restritions �non-bloking� and �emergeny stop� from hapter 3.2.1 thesetAngles all annot blok. The non-bloking version of the orresponding KNIommand moveRobotToEn is alled to start the movement. The goal on�gura-tion is stored in the member variable m_MovementTarget so we an hek if thegoal on�guration has been reahed.Conversely, the getAngles method does not only read the on�guration of thearm, but also heks if the last movement has �nished. It is the ideal andidate forthis hek, as it is alled periodially from its Module. If the last movement ouldnot be ompleted, the referened variable lastMoveResult will be set to �FAILED�.This typially happens when the goal on�guration annot be ahieved by the armalthough it is within the on�guration spae. Polling the movement state is arequirement for restrition �non-bloking�.The Devie also has the apability to exeute omplex movement operationsalled paths. A path onsists of an ordered list of on�gurations. The assoiated1Available from http://www.neuronis.h/ms_de/web/index.php?identifier=downloads

3.2. ROBOT ARM INTERFACE AND HARDWARE ABSTRACTION 27
ActiveMessageModule

-m_IdleInterval: uint

-m_LastIdleTime: uint

+idleProcess(): void
+processMessages()(): set<Message*>
+run(): void

#setIdleInterval(sleepTime:uint)

#getSleepTime(): uint

#lastIdleTime(): uint

KatanaArmModule

-m_ModuleMachine: StateMachine<ModuleStateT>

-m_CurrentPos: uint

-m_InitToIdle: std::vector<std::vector<double> >

#m_Katana: RoboticArmInterface*

#m_NumMotors: int

#m_AxisMin: vector<double>

#m_AxisMax: vector<double>

#broadcastArmInfo(): void

#checkAxesLimits(): void

#setInstance(inst:RoboticArmInterface*)

+()Figure 3.4: Class diagram for the hardware Module KatanaArmModulemethod is doPath. The all does not blok either, to observe restritions �non-bloking� and �emergeny stop�. Hene, the aller should regularly poll the stateby alling isMoving(), whih returns true if the arm is still moving.3.2.4 Arm ontrol Module: KatanaArmModuleA Devie is always interfaed by a ontrol module, in this aseKatanaArmModule. A lass diagram is shown in �gure 3.4. Upon onstrution, itheks the entral Robbie on�g �le to see if the physial or virtual arm shouldbe used for the running pro�le and instantiates the member m_Katana orre-spondingly. Also a state mahine is initialized that traks the arm state fromdisonneted over initialized to idle, and osillates between this state, moving and,as a worst ase, ollided in ase of a motor rash.After initializing a Module, the ore alls its init() method. Here the Devie isprobed, onneted to and then reset. If no error ourred during reset, minimumand maximum angles are read. An arm information Message of type RobotArmIn-foM is sent, ontaining the number of axes and minimum/maximum angles. Thearm an also exeute a set of initial movements to get into a known starting on-�guration. This proess is started here if requested by the pro�le.

28CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKNext, the Module waits for inoming Messages and ats upon these. It sub-sribes to Messages of types RobotArmMoveM (sets a ertain on�guration forall axes), RobotArmMoveAxisM (hanges the angle of one axis), RobotArmPathM(exeute a movement path) and PioneerDataM (hek for emergeny stop). Itbasially exposes the Devie API to the rest of the stak, doing sanity hekingand error handling in the proess.As a so-alled ative Module, it will periodially wake up and exeute theidleProess method. Here, the on�guration of the arm and its state is read andbroadast in a RobotArmStateM. If the arm was moving and has either sueededin attaining the on�guration or failed to do so, a RobotArmMoveFinishedM issent with the status of the movement.3.2.5 Arm path planning Module: ArmPlanModuleThe ArmPlanModule is responsible for path planning and proessing. It is notspei� to roboti arms similar to the Katana M400, so the word is omitted in thislass name. The algorithms used are the topi of hapter 3.4, the disussion herewill fous on the interfae.The path planning Module is quite omplex, as an be seen in the lass diagramin �gure 3.5. During onstrution it reads its on�guration values and initializesa private opy of the senegraph. A state mahine is initialized, too. The Modulethen subsribes to the Messages SeneGraphM (opy of the up-to-date senegraph),RobotArmInfoM (information on the roboti arm hardware like min/max angles),RobotArmStateM (on�guration of the urrent roboti arm and movement state),RobotArmPlanM (path planning request), PointCloudM (three-dimensional sensordata for obstale avoidane).Before aRobotArmInfoM is reeived, no work an be done by the Module. Afterreeiving suh a Message, the ontained minimum and maximum angles are used topre-alulate a set of transformation matries needed for the Forward Kinematis,one eah for all possible rotational angles for the �rst four axes (ounting fromthe base, so the gripper axes are ignored). The reeption of a RobotArmStateMtriggers the alulation of the Forward Kinematis, transforming the urrent armon�guration into the loation of the end e�etor in working spae, along withthe distane to the losest obstale. This data is sent in a RobotArmPoseM forvisualization.The real work of the planner starts after reeption of a RobotArmPlanM, thepath planning request. It ontains a starting on�guration and the goal e�etorposition. Originally planned but not implemented was a way to tell the planner toadd an item into the senegraph, plaing it in the gripper. This is needed when anatual item is held by the gripper, as otherwise the planner might propose a paththat will ause this item to ollide with obstales. This item is always modelled as

3.2. ROBOT ARM INTERFACE AND HARDWARE ABSTRACTION 29
ArmPlanModule

#m_Segments: vector<ArmPlanner::ArmSegment>

#m_GripperSegments: vector<ArmPlanner::ArmSegment>

#m_GrippedObjects: vector<CapsuleObstacle>

#m_CapsuleObstacles: vector<CapsuleObstacle>

#m_BoxObstacles: vector<BoxObstacle>

#m_GripperHasItem: bool

#m_KatanaToRobot: BaseLib::Math::Mat4d

#m_HardwareLimitsMin: vector<double>

#m_HardwareLimitsMax: vector<double>

#m_Seg4ToSeg3: BaseLib::Math::Mat4d

#m_EndEffectorToSeg4: BaseLib::Math::Mat4d

#m_TransMiddleToItemUp: BaseLib::Math::Mat4d

#m_TransMiddleToItemDown: BaseLib::Math::Mat4d

#m_MaxGoalDist: float

#m_DesiredGoalDist: float

#m_TargetPos: BaseLib::Math::Vec3d

#m_DoObstacleDetection: bool

#m_KDTree: KDTree::Node*

#m_PlanningStarted: time_t

#m_BestNode: ArmPlanner::PlanNode*

#m_BestNodeGoalDist: float

#m_CurrentAxesPos: vector<double>

#m_ObstacleCollisions: double[3]

#m_CapsuleCollisions: double[4]

#m_BoxCollisions: double[4]

#m_SelfCollisions: double

-m_ModuleMachine: StateMachine<ModuleStateT>

-m_CurrentSceneGraph: SceneGraph

#getObstaclesFromScenegraph(): void

#calculateForwardKinematics(): void

#requestLaserscan(): void

#angleToIndex(angle:double,axis:uint): int

#indexToAngle(index:int,axis:int): double

#indicesToAngles(indices:vector<int>): vector<double>

#anglesToIndices(angles:vector<double>): vector<int>

#doPlan(): void

#forwardKinematics(angleIndexes:const vector<int>,

dist:double

collisionDetected:bool

jointSkew:double

distToGoal:double=50000,

sendPoints:bool=false)

#calculateEuclidianDistance(fromNode:ArmPlanner::PlanNode*,

goal:BaseLib::Math::Vec3d

#calculateEuclidianDistance(effectorPos:BaseLib::Math::Vec3d

goal:BaseLib::Math::Vec3d

#calculateEuclidianDistance(fromNode:ArmPlanner::PlanNode*,

toNode:ArmPlanner::PlanNode*): double

#addNeighbor(config:vector<int>,nodeStore:set<ArmPlanner::PlanNode*,

ArmPlanner::angleComp>

vector<ArmPlanner::PlanNode*>,

ArmPlanner::fComp>

thisNode:ArmPlanner::PlanNode,

goal:BaseLib::Math::Vec3d

#skewTransform(skew:double): double

#distanceTransform(dist:double): double

#reconstructPath(node:ArmPlanner::PlanNode*,

pathPoints:vector<BaseLib::Math::Vec3d>

path:ArmPlanner::Path

#pathSmoothing(fromNode:ArmPlanner::PlanNode*,

toNode:ArmPlanner::PlanNode*): double

#smoothPath(path:ArmPlanner::Path

#processData(laserscanDirectedM:LaserscanDirectedM*,

kdTree:KDTree::Node*,aabbItem:BaseLib::Geometry::AABBd*): void

#processData(laserscanDirectedM:LaserscanDirectedM*,

kdTree:KDTree::Node*,aabbItem:BaseLib::Geometry::AABBd*): void

ActiveMessageModule

-m_IdleInterval: uint

-m_LastIdleTime: uint

+idleProcess(): void
+processMessages()(): set<Message*>
+run(): void

#setIdleInterval(sleepTime:uint)

#getSleepTime(): uint

#lastIdleTime(): uint

Figure 3.5: Class diagram for the path planning Module ArmPlanModule. Some mem-ber variables removed for legibility.

30CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKa apsule, a ylinder with half-spheres at both ends. The length of this boundingapsule an be spei�ed in the Message. This is not implemented yet.After this Message is reeived, the path is alulated as per the algorithmsshown in hapter 3.4. The resulting path will be the shortest possible, but mightbe omposed of many path points that only ause a slight hange in the on�gura-tion of the arm. The path is smoothed to reate a less omplex opy that deviatesonly by a �xed distane from the original path, so that ollision avoidane is notjeopardized. This path is then sent in a RobotArmPathM, whih the KatanaArm-Module reeives and passes on to the Devie for exeution. The ompletion of theplanning proess is signalled to the software stak by broadasting a RobotArm-PlanFinishedM Message. If an error ourred during planning, the error onditionis signaled in this Message too.3.3 Foundation for path planningMost path planners need utility funtions for Forward Kinematis and ollisionavoidane. Before diving into the spei�s of the hosen path planner, these generifuntions and their implementations need to be investigated.3.3.1 Forward kinematis and ollision avoidaneForward kinematis are used to alulate the pose of the robot from the on�gu-ration.Roboti arms fall under the ategory of hain-linked segmented robots. The for-ward kinematis for these an be alulated using Denavit-Hartenberg parameters[HD64℄. These lead to a matrix that an transform a parameter in on�gurationspae into the working spae. For this projet the working spae oordinate foreah segment was needed to re-use this information during ollision avoidane.Collision avoidane and forward kinematis are exeuted in the same ode blok.To aquire oordinates for the start and end points of eah segment, a transfor-mation matrix is aumulated. The matrix is initialized with the transformationneeded to transform the oordinate system of the �rst axis into the robot oordi-nate system. This onsists of a rotation taken from the on�guration for this axis,and a transformation along the length of the �rst segment:
MSegment1 to ArmBase = MRotation Segment 1 ∗MTranslation length Segment 1Using this transformation matrix, we an translate a point in the oordinatesystem of the �rst arm segment into the oordinate system of the arm base bymultipliation. This in turn an be transformed into the robot oordinate system

3.3. FOUNDATION FOR PATH PLANNING 31by multiplying with the transformation matrix MArmBasetoRobot. Multiplying trans-formation matries that transform from eah segment into its predeessor segment,until we arrive at a formula that translates a position in the on�guration spaeinto one in the working spae, resulting in the end e�etor position. All segmentloations are more than a by-produt, they are noted and re-used for ollisionavoidane purposes.Beause motion primitives are hanges to an axis by a �xed inrement, in ourase by one, two or three degrees, it is possible to pre-alulate these transformationmatries for all possible axis rotations and for all axes as
MSegment m to Segmentm−1[j] = MRotation by j ∗MTranslation by length Segment mwith j = minAngle...maxAngle. This optimization is used by [bo10℄ too. Theprealulation is done as soon as the minimum and maximum angles are reeivedfrom the KatanaArmModule. The robot geometry is stored entrally in thesenegraph to avoid redundany. This information naturally ontains the lengthof eah arm segment. This is used as the transformation along the arm.All obstale avoidane algorithms used need to be highly optimized, as they arealled many thousands of times in the ourse of planning. We di�erentiate threekinds of obstales. Stati obstales are �xed to the robot and remain at a �xedposition in the robot oordinate system. Dynami obstales are segments of thearm that ould ollide with other arm segments. Although attahed to the robot,these hange position dynamially, although this position is known with a highdegree of auray. Arm segments are modelled as apsules2 The biggest groupof obstales are external obstales. These are not attahed to the robot and aredetermined by on-robot sensors as a three-dimensional point loud. As with allsensors, there is a ertain amount of error through noise or alibration issues, soto be on the safe side eah measured obstale needs to be enlarged. These threekinds of obstales an have di�erent kinds of geometry. Stati obstales an bemodelled as a apsule or an axis-aligned bounding box, dynami obstales have tobe apsules and external objets ome as points.External obstales are reeived as a PointCloudM Message from the stak'ssensors. This Message ontains an unordered list of three-dimensional measure-ment points in the robot oordinate system. They are entered into a k-d tree[Ben75℄for high-speed lookups. A k-d tree is a k-dimensional binary tree whih subdividesthe working spae along a split axis when adding points. Both hildren of eahnode lie on di�erent sides of this splitting plane. The tree is sub-divided untilthe bounding box surrounding all points in all subnodes is su�iently small, in2A apsule is a ylinder of radius r with half-spheres of radius r at both ends. Visualize it asa straight sausage.

32CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKthis ase 10m, at whih point leafs are generated, whih ontain the atual datapoints. Points are only added to the tree if they lie within the arms working radiusto onserve resoures.For performane reasons, only the last arm segment and the gripper elementsare heked against obstales. The �rst and seond segments annot physiallyreah obstales before the last segment ollides with them.Ideally, obstale detetion will also give the minimum distane to the obstale.This information is very valuable for the planner to ensure that the planned routeis indeed safe, and to maximize the distane to obstales. Cheking arm segmentsagainst apsules is based on the segment-to-segment distane test by alulatingthe �Closest Point of Approah�[Sun10℄. Given two lines
L1 : P (s) = P0 + s(P1 − P0) = P0 + suand
L2 : Q(t) = Q0 + t(Q1 −Q0) = Q0 + tv[Sun10℄ explain�In any n-dimensional spae, the two lines L1 and L2 are losest at uniquepoints P (sc) and Q(tc) for whih w(sc, tc) attains its minimum length. Also, if

L1 and L2 are not parallel, then the line segment P (sc)Q(tc) joining the losestpoints is uniquely perpendiular to both lines at the same time. No other segmentbetween L1 and L2 has this property. That is, the vetor wc = w(sc, tc) is uniquelyperpendiular to the line diretion vetors u and v, and this is equivalent to itsatisfying the two equations: u ∗ wc = 0 and v ∗ wc = 0.�This an be transformed via
a = u ∗ u, b = u ∗ v, c = v ∗ v, d = u ∗ w0, e = v ∗ w0to

d(L1, L2) = |P (sc)−Q(tc)| = |(P0 −Q0) +
(be− cd)u− (ae− bd) ∗ v

ac− b2
|whih gives the minimum distane. If the distane is less then the ombinedsegment radii, a ollision has oured.When both lines are parallel (ac− b2 = 0) a �xed position on one line is hosen.Testing axis-aligned bounding boxes against apsules is omputationally ex-pensive, espeially if the losest point of approah is to be omputed. Instead ofapsules, simple line segments were used. To aount for the apsule radius, thebounding boxes were in�ated by the apsule radius, If the lipping proess lipsaway the whole line, there is no intersetion 3.3Based on http://www.gamedev.net/ommunity/forums/topi.asp?topi_id=433699&whihpage=1�

3.3. FOUNDATION FOR PATH PLANNING 33The distane between external obstales and arm segments is straightforward.The k-d tree is traversed by a reursive all to the funtion reurseTreeLineDist,whih �rst alulates the distane for eah point in this tree node to the line andsaves it if is the smallest distane found yet. Then it deides to follow only the�rst, the seond or both hildren of eah node. Both hildren are followed if theapsules segment straddles the splitting plane or if the segment does not straddlethe plane but the apsule radius means it would. Otherwise, only the hild that isloser to the segment is followed. Following means in this ontext that the funtionis alled for the spei�ed hild or hildren. As only the leaf nodes have data pointsin them, only a small perentage of all dynami obstale geometry needs to beinspeted.3.3.2 Choosing a plannerMany motion planners rely on inverse kinematis to establish a valid robot on�g-uration for the given goal e�etor position, examples would be the aformentionedWave-Front Planner or most uses of Roadmaps. The planner then onnets startingon�guration and goal on�guration within the on�guration spae. This simpli�esthe planners, as even a linear interpolation between start and goal on�gurationwill lead to a path with a ontinuos movement. A good approah to inorpo-rate obstale avoidane for high-dimensional robots are aording to [CLH+05℄roadmaps or the onversion of obstale working spae geometry into on�gurationspae geometry, whih is non-trivial.I found relying on inverse kinematis to have drawbaks that limit their use-fulness severely, the most obvious of whih is the omplexity of the algorithmsinvolved. Although Neuronis supplies a omplete Inverse Kinematis library withtheir API, the soure ode is not available. The proess beomes a blak box witha simple API that will only take a start on�guration and goal position. This is-sue would not be ritial if the proess itself where not very omplex. Convertinga three-dimensional robot pose into a six-dimensional on�guration leads is not astraight 1:1 mapping - for a given pose there an be multiple on�gurations. Avoid-ing obstales means that not all goal on�gurations that Inverse Kinematis o�erup are feasible. If the initial goal on�guration o�ered by the Inverse Kinematilibrary is insu�ient, there is no possibility of alulating other on�gurationsexept by o�ering other start on�gurations. This in turn might lead to highlysuboptimal goal on�gurations being emitted.Other drawbaks of using Inverse Kinematis are that as [bo10℄ mention, IKas a numerial approah an generate visually �awkward� paths in the sense ofnot being the path a human arm would take. It is also di�ult to inorporateadditional onstraints into the goal on�guration, like keeping a glass of water inthe e�etor gripper balaned evenly or not planning lose to joint limits.

34CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKBeause of these issues an alternate approah was investigated.3.3.3 About graph-based planning with motion primitivesThe idea of using graphs as data strutures in motion planning is not novel. Indeedmost planning algorithms use graphs internally. Roadmaps tend to use graphs veryintensely. Typially these graphs ontain nodes that signify valid on�gurationsand the edges show ollision-free paths between these on�gurations. The approahused in this projet di�ers from this usage signi�antly and should not be onfusedwith the latter.To esape the need to rely on inverse kinematis, other methods of obtaininga valid on�guration for a given e�etor position are needed. The idea of usinga graph built on simple motion primitives emerged and we found that other re-searhers where already working on similar approahes through the slides of thepresentation of Benjamin Cohens summer projet at Willow Garage, where hetalked about using motion primitives to plan in luttered environments 4. Ben Co-hen sent me a preliminary paper he was working on, where he detailed his e�ortsand results using this approah[bo10℄. The results seemed good, so we deidedon this route.The general onept is to build a direted graph with the nodes being validon�gurations and the edges representing a single, atomi on�guration hangealled a motion primitive. Typially this would be a minimal hange on one axis,although [bo10℄ uses primitives onsisting of a hange in two axes at the sametime. For this projet only simple primitives for the �rst four axes where used,as the gripper on�guration is not part of planning here. This gives a total ofeight motion primitives. The edges have a weight that desribes how optimal thison�guration is. This optimality an be based on di�erent riteria, we hose tomaximize the distane to the next obstale.Initially, the graph only ontains the start on�guration. From here all motionprimitives are expanded and added to the graph as new nodes. Con�gurationsthat would interset the arm with an obstale are not added to the graph. Thenthe edge weights are alulated. This proess will be repeated until we get loseenough to the goal position or all on�gurations have been expanded.3.3.4 On heuristi searhingThe importane of heuristi searh in robotis is highlighted in [bo10℄: �Heuristisearhes suh as A* searh [PEHR68℄ have often been used to �nd suh trajetories.There are a number of reasons for the popularity of heuristi searhes. First, most4http://www.sribd.om/do/20233019/2009-09-Ben-Cohen-SBPL

3.4. ALGORITHM IMPLEMENTATION 35of them typially ome with strong theoretial guarantees suh as ompletenessand optimality or bounds on suboptimality (...). Seond, there exist a numberof anytime heuristi searhes that �nd the best solution they an within the pro-vided time for planning (...) . Third, there exist a number of inremental heuristisearhes that an re- use previous searh e�orts to �nd new solutions muh fasterwhen previously unknown obstales are disovered [16℄, [9℄. Finally, treating aplanning problem as �nding a good quality path in a graph is advantageous be-ause it allows one to inorporate omplex ost funtions, omplex onstraints andrepresent easily arbitrarily shaped obstales with grid-like data strutures (...).�[bo10℄ ontinue by highlighting why heuristi searhes have not yet been usedfor �high-DOF roboti manipulators�, as the Katana arm is: High-dimensionalplanning problems lead to a huge and omplex graph, making even informed graphsearh infeasible. The authors suggest limiting all motion to a pre-de�ned set ofmotion primitives to limit graph growth: �...the majority of omplex motion plansan be deomposed into a small set of basi (small) motion primitives.�3.4 Algorithm implementationThe algorithm used for this projet shares the basi idea with [bo10℄. As thegoal here is to minimize planning osts as opposed to planning in luttered areasunder adverse onditions, the implementation details di�er. The di�erenes willbe denoted.3.4.1 The A-Star heuristi searh[bo10℄ use the anytime searh algorithm ARA*[LGT04℄ that an deliver subopti-mal results at any time but will improve on them as time goes on. I have foundthat, if a solution for the planning problem in our unluttered environment exists,it will be found before the time limit is reahed. Using an anytime searh wouldnot be bene�ial in these irumstanes, so a standard A* searh[PEHR68℄ wasused.The A* algorithm is an informed graph searh algorithm. Instead of searhingbreadth-�rst or depth-�rst until the goal node is found, an informed searh willhoose the next node to expand by onsulting a heuristi funtion for all andidates.Eah edge has a ost funtion assoiated with it. Resulting paths sum up all edgeosts within the path to obtain the path ost. The algorithm will �nd the pathwith the minimal path ost.Eah node is assoiated with the values f , g and h. g is the path ost ofthe optimal path from the start node to this node and h is the estimate for theost to the goal as determined by the heurist. f is g + h. For eah node, all

36CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKsuessors are plaed in the open set, where they are sorted by desending f , sotypially a priority queue is used. Eah iteration, the algorithm will remove the�rst item from the open set and hek if it is the goal node. If not, all suessorsare expanded and added to the open set if they have not been visited yet. Thealgorithm maintains a losed set of visited nodes for this hek.In this onrete implementation, eah node ontains the on�guration it rep-resents, and also stores the end e�etor position and the motion primitive thatwas exeuted to initialize this node (so the path an be reonstruted bottom-upafter ompletion). The nodes are reated on-the-�y as knowledge of the ompletestruture is not neessary for the searh to work.All nodes are of type ArmPlanner::PlanNode. One a node has been reated,it is stored in the set nodeStore, whih ompares the nodes on the basis of theiron�guration. If a node is to be in the open set, it is also added to the priorityqueue openQueue, whih orders the nodes by their m_F (f) lowest-�rst. Nodesalso have an attribute m_IsOpen to show if they are in the open set. All nodes innodeStore whih aren't in the open set are automatially in the losed set.3.4.2 Graph onstrutionThe graph initially ontains one node representing the start on�guration. Thisnode is plaed into the open set. The timestamp is stored in m_PlanningStartedto hek for timeouts.The algorithm then begins to iterate over the open set. The topmost item (theitem with the lowest f) is popped o� the open set and stored in urrentNode. Thedistane from urrentNode to the goal position is alulated. If the distane is thelosest enountered yet, this node is saved in the attribute m_BestNodeGoal asthe best node seen. If the distane is less than the lower limit m_DesiredGoalDist,then the goal has been reahed. If the timeout has oured and the distane fromthe best node to the goal is less than the upper limit m_MaxGoalDist, the goalis onsidered as reahed too, and m_BestNodeGoal will be used as urrentNode.One the goal is reahed, the path is reonstruted and smoothed as desribed in3.4.3 and then broadast via an ArmPathM Message.If the goal has not been reahed, the urrentNode is added to the losed set.Then new nodes are expanded, one for eah motion primitive. Here, we add eightnew nodes, as we inrease and derease the rotation of eah of the �rst four axesby the delta value stepSize. This value depends on the distane to the goal. Theloser the arm gets to the goal, the smaller the size of these hanges. Good resultswhere ahieved with a step size of 3 degrees of hange if the distane to the goal islarger than 10 entimeters, 2 if it is larger than 5 entimeters and 1 otherwise. Ifthe resulting on�guration of the new node is invalid (if it is not between minimumand maximum angles), it is disarded.

3.4. ALGORITHM IMPLEMENTATION 37Distane to next obstale Path ost multiplier
> 90mm 1.0
> 83mm 1.2
> 77mm 1.6
> 70mm 2.0
<= 70mm 2.2Table 3.1: Path ost depending on distane to losest obstaleAll freshly expanded nodes (vnew) are then heked against the nodeStore tosee if they exist already. Any that exist but are in the losed set are disarded. Ifa node exists but is in the open set, the path ost of the urrent path is omparedto the ost of the older node (vold). If the newer path is better i.e. if gnew < goldthen the existing node is updated to re�et the new path ost and its predeessornode is set to urrentNode.If the node annot be found in the node store, it's end e�etor position isalulated along with its distane to obstales. This alulation has not been doneat earlier stages of the algorithm to not waste this e�ort on nodes that would havebeen disarded anyway. If the node intersets an obstale, it is diretly added tothe losed set. Otherwise h, g and f are alulated, and the node is stored in thenode store and in the open set.The path ost for eah graph edge is derived from up to two parameters. Themost important is the distane to the next obstale. This obviously should bemaximized, hene small values lead to big path osts. The urrent implementationis a simple distintion based on table 3.1.The seond parameter penalizes hanges in arm veloity. If a node exeutes aertain movement primitive in the on�guration spae, suessor nodes exeutingdi�erent primitives have higher path osts. A suessor primitive that only ausesslight motion deviation would inur less ost. The goal here is to reate a paththat is as smooth as possible. The idea was pioneered by [bo10℄. In this imple-mentation it proved ounter-produtive as explained in setion 3.2.5 and urrentlyalways returns 1.0 as ost fator, thereby not hanging path osts.3.4.3 Path reonstrution and post-proessingStarting from the goal node found during searhing, the standard A* reursivealgorithm is applied to reonstrut the graph by alling reonstrutPath with thisnode as argument. The motion primitive of this node is taken along with itsend e�etor position to reate a new ArmPlanner::PlanNode instane, whih isthen pushed onto the stak pathPoints. Then reonstrutPath reursively allsitself with the predeessor node as argument. If the node has no predeessor, the

38CHAPTER 3. INTEGRATING AN ARM INTO THE ROBBIE SOFTWARE STACKm = number of path nodesp = path nodes from 0 to mstartidx = 0limit = 10.0smoothedpath = {p[startidx℄}while startidx < m-2:endidx = startidx + 2do: mididx = startidx + 1while mididx < endidx:if distbetween p[mididx℄ andline between p[startidx℄ and p[endidx℄ > limit:add p[endidx-1℄ to smoothedpathstartidx = endidx - 1mididx = endixelse: mididx = mididx + 1endidx = endidx + 1while endidx < madd p[endidx℄ to smoothedpathFigure 3.6: The algorithm used for smoothing in pseudo ode.method returns, ending the reursion. The stak pathPoints now holds all pathpoints in the orret order.This path is optimal with respet to the ost funtion thanks to the propertiesof the A* searh algorithm and the use of a valid heuristi. This an lead toine�ient paths, as skirting obstales leads to jagged edges and �spikes� in thepath. The limited number of motion primitives means that smooth irling motionsare di�ult to ahieve. Therefore, the path is smoothed before being exeuted.Path smoothing is used in [bo10℄ too, although the algorithms used di�er.The idea behind the smoothing algorithm is to reate a new path that maynot deviate from the original path by more than a maximum distane (in this ase1m) by dropping path nodes. The algorithm is shown in �gure 3.6.The smoothed path is broadast via a ArmPathM Message and then exeutedthe KatanaArmModule.

3.4. ALGORITHM IMPLEMENTATION 39

Figure 3.7: Path smoothing: The yellow line is the unsmoothed path, the red line loseto it is the smoothed opy.

Chapter 4Evaluation and lessons learnedAs the stated goal of this thesis was to partiipate suessfully in the Roboup�home league in manipulation-based games, this partiipation will be a orner-stone of the evaluation. Before robot and team travelled to Singapore, extensivetests and evaluations where performed, the results of whih shall be the fous here.4.1 Evaluating performane and suessBefore getting into a spei� setting, the overall performane and stable funtion-ality of all Devies and Modules where evaluated. Considering that higher andomplex funtions of the stak require the suessful operation of basi funtions,the simpler operations need to be very robust. Also, Roboup seurity regulationsfor the safe interation of robots and humans need to be observed, as failing thesean be harmful or result in being banned from the ompetition. These regulationswhere outlined in hapter 3.2.1.4.1.1 Basi funtionalityThe Devie KatanaM400Devie itself needs to either suessfully perform a move-ment or path, or return the error state to the stak. We found that the Katanaarm will not perform movement lose to joint limits reliably. How lose to eahjoint limit the motors will operate annot be preisely measured as the e�et iserrati and di�erent on eah joint. This was further ompliated by the fat thatmoving too lose to a limit resulted in a motor timeout, as the motor would justnot exeute the move ommand at all, but also would not rejet it out of hand.The ArmPlanModule now adds a �dead zone� around all reported joint limits,a setting that is on�gurable via the parameter fAxisDeadZone in the on�gura-41

42 CHAPTER 4. EVALUATION AND LESSONS LEARNED

Figure 4.1: Sreenshot of debug visualization. The blue wireframe arm on the leftrepresents the on�guration the planner is examining.
tion, the default value being eight degrees. After this alteration, move and pathommands exeuted �ne.Hitting the emergeny stop button on the robot should stop all arm movementas soon as possible. Initially, the KatanaM400Devie used bloking alls whenalling into the KNI library for move ommands. This was hanged to use non-bloking alls. On reeiving the emergeny stop signal, the KNI motor freezeommand is issued by the Devie. Motion is unfortunately not eased immediately,it an take several seonds to stop. In most ases, the unfreeze ommand will alsoause the arm to resume motion as planned. This goal was not reahed ompletelyand further work needs to be done in this area.In order to redue the time it takes to start an �home game, arm enoderalibration is only exeuted when neessary. This saves about 30 seonds of setuptime.

4.1. EVALUATING PERFORMANCE AND SUCCESS 434.1.2 Planning time and suess rateDuring early stages of development, the planning proess would often time out,giving no result. To get a better understanding of the proess involved, the plannerwill send status information along to the stak GUI, whih will be displayed in 3Das shown in �gure 4.1. This user interfae not only shows the on�guration thatthe planner is testing at this instant, but also allows manual movement of the arm,planning to a ertain position and reading end e�etor position and the distaneto the next obstale. The OpenGL-based sensor status display proved a great toolto understand the workings of the algorithm and how to optimize it.An in-depth analysis of the planning proess was now possible. To measureplanning performane, only the planner runtime was pro�led. Benhmarks mea-suring total planning time produed varying results that ould not be reprodued,as the omplete Robbie stak needs to be running in the bakground, onsumingCPU time. With a pro�ler, non-planner method runtime ould be disounted, andthe results proved stable. All measurements where taken on a mahine with IntelCore 2 Duo 2.4 GHz under Ubuntu Linux 9.10. A omplex senario was usedfor planning: the arm had to evade three large obstales plaed on a table. Thissenario and a valid path is shown in �gure 4.2. The log �le used is to be foundon the aompanying CD and is alled �Zwei_Hindernisse_links.log�. A path isplanned from the starting on�guration (74, 39, 132, 207, 180, -105) to the e�etorposition of 430, 374, 467.After ensuring orret algorithm exeution, the ode was pro�led to identify�hot spots�. First, the ollision avoidane was moved to the latest possible pointin time, after having eliminated dupliates and invalid on�gurations. This lazyevaluation ut time spent on ollision avoidane by 50%. Implementing the time-memory tradeo� of pre-alulating the transformation matries for the �rst fourarm axes as detailed in setion 3.3.1 dereased forwards kinematis runtime byabout 20%.The next inrease in planning speed was aomplished by removing all unne-essary square root alulations during distane funtions. All distanes are nowexpressed internally as squared distanes in millimeters. The only time this isredued to linear distane by performing a square root is when estimating thedistane between the arm and an obstale. This eliminated two alls to sqrt perloop and resulted in a derease of ollision avoidane and goal distane pu usageof about 10%. Finally, ollision avoidane was aborted as soon as possible, whihfurther redued time spent on ollision avoidane by 10 to 20 %, depending on thelength of the path.A big derease in planning time was ahieved by dereasing the amount ofobstale sensor data points. Only points that are in the operational radius of thearm are onsidered now. Initially, another experiment was to limit the density

44 CHAPTER 4. EVALUATION AND LESSONS LEARNED

Figure 4.2: Sreenshot of path planner having ompleted the omplex path senarioused for evaluationof sensor data points. Some points are positioned losely together. Avoidingone in ollision avoidane would automatially avoid the other, so the additionalinformation on obstale geometry was not helpful but inreased the number ofpoints that the Module needs to test against. A minimum distane between sensordata points was added, but pre-proessing data points took longer than an averagepath planning proess, so it was removed for now.The biggest gain was the introdution of a step size. In the initial version, theplanner always hanged an axis by the same �xed small amount when applyinga motion primitive while expanding a new node. When the e�etor was still faraway from the goal, this high resolution was not neessary. A variable step size wasintrodued as explained in setion 3.4.2. Time spent planning dropped by abouthalf. The risk of olliding with obstales does not inrease beause obstales areskirted by at least 5m as enfore by the obstale transform.In the �nal version, the planner ould examine between 1000 and 3000 nodesper seond. In the omplex example shown in �gure 4.2, a path would be foundin about two seonds. Only if additional onstraints where added would timeoutsstill our. Examples of these onstraints are keeping a glass of water that is heldby the gripper stable, or planning through very narrow gaps between obstales.Although most optimization work went into the ollision avoidane omplex,these operations still take the biggest hunk of CPU time. Figure 4.3 shows atreemap, a hierarhial distribution of CPU usage of the doPlan() method and

4.2. EVALUATION OF SUCCESS IN THE �HOME SETTING 45

Figure 4.3: Treemap of path planning CPU usage distribution, aquired with GooglePerformane Tools and kahegrindall allees and hild methods. All numbers are perentage of CPU usage relativeto doPlan() itself. Only 5% of CPU time is spent other tasks apart from ollisionavoidane.4.2 Evaluation of suess in the �home settingThe team Homer�UniKoblenz partiipated at RoboCup 2010 in Singapore in the�Home league. The apability to grab objets from shelves or tables and, via theplatform's built-in gripper from the �oor enabled us to partiipate in all gamesthat required manipulation skills.The �rst test to use the manipulator was the �Robot Inspetion Poster Ses-sion�. The idea of the game is for the robot to introdue itself to the jury and thespetators. The arm moved along a pre-de�ned path without doing dynami obsta-le avoidane. The jury was nevertheless impressed by the idea and the versatilityof our manipulation ode.

46 CHAPTER 4. EVALUATION AND LESSONS LEARNEDThe next game where the team ould show the manipulator was the OpenChallenge. This game is very important beause it has a high in�uene on theteams ranking. There is no �xed sript, the robots are supposed to show theirmost advaned features while a team member does a presentation on the tehniquesinvolved. The team homer used their seond robot �Waylon�, whih followed Lisaaround, arrying a litter box. Lisa was supposed to �nd trash on the stage �oor,pik it up and plae it into Waylons box. Although the gripping and droppingations performed well, Lisa touhed Waylon slightly at one point. The jury wasimpressed by the autonomous ooperation between both robots and the arm pathplanning ollision avoidane algorithms involved (bearing in mind that some otherteams use manually generated ollision avoidane information). Team homer wasnow ranked third out of twenty-four teams.The team made the fourth plae out of a total of all 24 teams. Homer wasawarded the �Innovation Award� for multi-robot oordination, good ollision avoid-ane during manipulation and intuitive gesture ontrol. During the ompetitionthe arm grabbed four obstales with full obstale avoidane, all of them suessful.All in all, the manipulation apabilities of the platform gave the team an ad-vantage. Gripping items and plaing them in shelves is a omplex task that never-theless an be performed by a few �home teams. Our advaned ollision avoidanefeatures proved ahead of the rae and an be seen as a suess. The goal of thisprojet is aomplished.

Chapter 5OutlookThe goal of gripping objets, plaing them on tables or shelves and avoiding om-plex obstales in real-time was aomplished by this projet. Of ourse, variousimprovements are possible.5.1 Further workThere are many parameters in the algorithm that an be tuned to inrease planningspeed or enable planning while observing a wide range of onstraints. Most of these�knobs� are already implemented in the ode and only require tuning of variablesor the on�guration �le.The stepSize parameter in the doPlan() method sets the angular movementinrement (the �stride�) for eah expansion of a new node. Inreasing this param-eter linearly inreases planning speed. At the moment an adaptive approah isused that will derease the step size as the distane to the goal dereases. Apartfrom inreasing step size generally or allowing larger steps loser to the goal, thestep size ould be attuned to the distane to the next obstale. This way, planninglose to obstales or through di�ult pathes ould be optimized.Path smoothing as part of the path ost funtion was introdued by [bo10℄,where it proved bene�ial in luttered environments. In this projet, it was imple-mented but disabled beause it did not show bene�ts to path smoothness in ourmore orderly environments. Further testing is in order to show how this oneptan aid our planning approah.The distane to the losest obstale is an important fator in the path ostfuntion. At the moment this is a non-linear funtion based on simple range-basedfuntion. A ontinuous funtion would probably result in a smoother path withless abrupt transitions. Likewise, the skew transform that is used to keep the armtip stable should be based on a linear funtion. This transform ould also use47

48 CHAPTER 5. OUTLOOKmore �exibility, like swithing between a more onstritive skew transform whenholding an objet and more lax restritions when speed is paramount.More demanding sub-projets would be to revisit the ollision avoidane ap-proah. The majority of planning run time is spent on ollision avoidane. Fur-ther limiting input data from sensors or utilizing alternate data strutures likespatially lustering trees might dramatially inrease the planner's speed. A �rstexperiment here done by only adding new nodes to the k-d tree if they was a min-imum distane to any neighbor node. Unfortunately the time taken for this hekwas longer than the runtime of the whole planning proess. A more intelligentapproah might yield good results here, espeially using the tree itself to detetthe losest neighbour.The biggest single speed improvement might result from adjusting how oftenollision detetion is performed. If the predeessor node showed that obstales arefar away, the suessor node might skip ollision avoidane ompletely and onlydo forward kinematis.All optimizations mentioned are not required for suessful path planning in theurrent setup. Adding more onstraints to the path ost funtion an dramatiallyinrease planning time and might render these optimizations neessary. Figure 4.3in setion 4.1.2 should o�er starting points for in-depth optimization and otherreworking.Alternatively, the A* searh might be replaed by an anytime algorithm likeARA*[LGT04℄. Using this algorithm, even tough onstraints ould be applied, andat the same time it would be possible to see after only a few seonds of planningif a solution exists at all.The emergeny stop solution used at the moment is insu�ient. The armmight not stop immediately and will sometime not resume the movement after theemergeny stop is removed. Further work is needed here, although this might bea limitation of the arms �rmware.A very interesting projet will also be to implement ollision avoidane withobjets residing in the gripper.5.2 AknowledgmentsThis work was made possible by the Ative Vision Working Group (AGAS) at theUniversity of Koblenz-Landau headed by Prof. Dietrih Paulus. Many thanks tothe AGAS team and to the members of the RoboCup team for their assistane inthis projet.Speial thanks to David Gossow for his work on optimizing this framework on-site at Roboup Singapore and the IJCA in Anhorage, Alaska and to SebastianVetter for supervising this thesis together with David. I am also indebted to Frank

5.2. ACKNOWLEDGMENTS 49Neuhaus who ame up with the original idea for the heuristi searh with motionprimitives as path planner. This work was also greatly helped by the ooperationof Benjamin Cohen et al, wo gave me aess to a review opy of their paper [bo10℄that they where preparing for IJCA.

Bibliography[bo10℄ Searh-Based Planning for Manipulation with Motion Primitives. An-horage, Alaska, 2010[Ben75℄ Bentley, Jon L.: Multidimensional binary searh trees usedfor assoiative searhing. In: Commun. ACM 18 (1975), Nr.9, S. 509�517. http://dx.doi.org/http://doi.am.org/10.1145/361002.361007. � DOI http://doi.am.org/10.1145/361002.361007. �ISSN 0001�0782[CLH+05℄ Choset, Howie ; Lynh, Kevin M. ; Huthinson, Seth ; Kan-tor, George A. ; Burgard, Wolfram ; Kavraki, Lydia E. ; Thrun,Sebastian: Priniples of Robot Motion: Theory, Algorithms, and Im-plementations. Cambridge, MA : MIT Press, 2005[GHJV95℄ Gamma, Erih ; Helm, Rihard ; Johnson, Ralph ; Vlissides, John:Design patterns: elements of reusable objet-oriented software. Boston,MA, USA : Addison-Wesley Longman Publishing Co., In., 1995. �ISBN 0�201�63361�2[GWB+10℄ Gossow, David ; Wojke, Niolai ; Bing, René ; Buhholz, Urs ;Shrage, Robin ; Mützel, Andreas ; Read, Kevin ; Thierfelder,Susanne ; Vetter, Sebastian ; Paulus, Dietrih: RoboCup 2010 -homer�UniKoblenz (Germany) / Universität Koblenz-Landau. 2010.� Forshungsberiht[HD64℄ Hartenberg, Rihard S. ; Denavit, Jaques: Kinemati Synthesisof Linkages. New York: MGraw-Hill, 1964[LGT04℄ Likhahev, Maxim ; Gordon, Geo� ; Thrun, Sebastian: ARA*:Anytime A* with Provable Bounds on Sub-Optimality. In: IN AD-VANCES IN NEURAL INFORMATION PROCESSING SYSTEMS16: PROCEEDINGS OF THE 2003 CONFERENCE (NIPS-03, MITPress, 2004 51

52 BIBLIOGRAPHY[PEHR68℄ P. E. Hart, N. J. N. ; Raphael, B.: A formal basis for the heuris-ti determination of minimum ost path. In: IEEE Transations onSystems, Siene, and Cybernetis, SSC-4(2):100?107 (1968)[Sun10℄ Sunday, Dan: http://softsurfer.om/Arhive/algorithm_0106/algorithm_0106.htm.2010

