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1 Introduction

In recent years ontologies have become common on the World-Wide Web to provide
high level descriptions of specific domains. These descriptions could be effectively used
to build applications with the ability to find implicit consequences of their represented
knowledge [5]. The W3C developed RDF the Resource Description Framework a lan-
guage to describe the semantics of the data on the Web and OWL the Ontology Web
Language, a family of knowledge representation languages for authoring ontologies. In
this thesis we propose an ontology Application Programm Interfaces (API) engineering
framework, that makes use of the state of the art ontology modeling technologies as well
as software engineering technologies. This system simplifies the design and implemen-
tation process of developing dedicated APIs for ontologies. Developers of semantic web
applications usually face the problem of mapping entities or complex relations described
in the ontology to object oriented representations. Mapping complex relationship struc-
tures comming with complex ontologies to an useful API requires more complicated API
representations than just mapping concepts to classes. The implementation of correct
object persistence functions in such class representations becomes complex too.
The following should show the structure of the thesis and how the different discussions
are related. In Section 2 we introduce the related work. In Section 3, we discuss the
particularities of create, read, update and delete (CRUD) for ontology based datasets.
CRUD are the four basic functions for persistence. We focus on the graph like struc-
tures of ontologies and datasets and on the influence of concept semantic on the CRUD
operations. Based on this, we propose a model driven approach aware of the complex
relationsship structures comming with ODP based ontologies. As initial model, we de-
fine the Model for Ontologies (MoOn), a UML based model for logic based ontologies
in Section 4. We discuss different requirements to the model, give a specification and
an example. This model also serves as vizualization of the ontology and gives the user
the opportunity to specialize the ontology and to customize the to-API mapping. In the
next Section 5, we discuss the particularities of APIs for ODP based ontologies. This
discussion serves us as basis for the introduction of the Ontology API Model (OAM). The
OAM serves as programming language independent intermediate model for the pattern-
based ontology API. This model gives the user (user of the model driven approach)
the opportunity to customize the API. Finally in Section 6, we describe our prototype
implementation that supports the two models defined in the previous sections.



1.1 The Running Example

In this section we present a running example. We use this example in all of our discus-
sions about ontology configurations and their influence on ontology API functionalities.
Figures 1.1 shows our running example.

Figure 1.1: Decomposition Pattern and Annotation Pattern applied to an multi-media
Presentation

The example presented here should give the reader a idea of combining multiples On-
tology Design Patterns (ODPs) in an ontology. ODPs are small ontologies design for a
particular problem type. The example consists of configurations (individual structures
based on an ODP) of different patterns of the M3O, presented in 2.4. The M3O is an
pattern based ontology for multimedia meta data. In the example we use three dif-
ferent Patterns of the M3O. The AnnotationPattern, a pattern to model annotation
of arbitrary multimedia objects. The DecompositionPattern, a pattern to model the
decomposition of complex multimedia objects and the DataValuePattern designed for
the encoding of concrete data. For a detailed explanation of the M3O and the single pat-
terns refer to Section 2.3.1 in the related work section and the explanation of the M3O
in the Appendix A.1. We have to denote here that the example represents a individual
structure. It describes the concrete individual and not the ontology schema like in the
pattern definitions. Figure 1.1 shows our example. The example describes a multimedia
object, in this case the presentation-1:Presentation, that is decomposed into two
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individuals of Image, image-1 and image-2. The second image, image-2 is subsequently
annotated with geo-coordinates based on EXIF1, represented by two xsd:decimals, the
latitude and the longitude.
The example is build of configurations of the DecompositionPattern, the DataValuePat-
tern and the AnnotationPattern from the M3O. The different individuals are differ-
ently colored according to their pattern origin. Individuals that take place in multiple
patterns are multicolored. The dark green individuals belong to the DecompositionPattern,
the light green to the AnnotationPattern and the orange individuals belong to the
DataValuePattern. The multicolored individuals, like the tricolored image-2:image
and the two colored geo-location-1:GeoPoint belong to multiple patterns. In case
of image-1:Image, the individual plays a role in the three different patterns used
here. In the DecompositionPattern it is the individual of InformationObject clas-
sified by one of the ComponentRole individuals , edcr-2:ComponentRole. One of the
components, decomposed from the Presentation. As part of the AnnotationPattern
it takes on the role of the annotated InformationObject individual classified by a
AnnotatedConcept. The third pattern, the DataValuePattern, is employed to repre-
sent the EXIF geo coordinates. The image-1 has a GeoLocationQuality attached. This
Quality has a Region. The description defines a GeoPoint individual, geo-location-1.
In the DataValuePattern this is the Region individual, that represents the data space
of the geo coordinate. The AnnotationPattern parameterizes this GeoPoint, by a
EXIFGeoParameter individual, glp-1. Attached to this are latitude and longitude using
the WGS842 vocabulary.

1.2 The Process Chain

In this section, we outline the process chain of our application. Many of the problems
discussed later, have an impact on multiple parts of our process chain. We give the
reader an idea of the single parts and their position in the process chain.

This Figure 1.2 gives you a short overview on the single elements of our the process
chain in our application. Initially, we would have an pattern based ontology, ideally
already in an UML Ontology Model (MoOn) basing on the ODM OWL profile. If not in
an UML2, the user has to create an MoOn representation of the ontology. The MoOn is a
UML Class Diagram based model providing the user a visualization of the ontology and
functionalities to customize the following transformation step. Starting from the MoOn
the first step of our work-flow is to transform it to the Ontology API Model (OAM). The
OAM is a UML Class Diagram based model. It works as initial representation of the
ontology API in the next transformation step of the workflow, the code generation. The
OAM provides a programming language independent visualization and opportunities to
customize the API structure. Between the single transformation steps the user has the
opportunity to customize the single models to adapt the ontology or the API to the
concerns of the domain or intended application.

1EXIF Exchangeable Image File Format http://www.exif.org/
2The World Geodetic System http://en.wikipedia.org/wiki/WGS84
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Figure 1.2: The process Chain of our Approach
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2 Related Work

There are different approaches and technologies for API generation. Generating ontology
APIs involves various technologies from different fields of computer science. In this
chapter, we introduce the basic terms and fundamental concepts. First, we give a short
introduction to ontologies in Section 2.1 and discuss the recent work on ontology design
patterns (ODP) in Section 2.2. Our process starts with an UML representation of an
pattern based ontology. As a general example to patterns in ontologies we introduce
some fundamental patterns taken from DOLCE in Section 2.3. These patterns are
used as basis for the patterns in the two ontologies presented in Section 2.4. Some
of those patterns are used in the running examples. We introduce common ontology
representation technologies in Section 2.5 and in Section 2.6. The first sections deals
with logic based ontology languages. Later in this work we discuss the influence of
these logic based languages on our generation process and on ontology APIs design in
general. In the second section we discuss graphical ontology representation and especially
ontologies in UML2. We present an extension to UML2, the Ontology Definition Meta-
model (ODM), for ontologies. We use ontologies defined in this language as initial models
in our approach. In the last Section 2.7 of this chapter we present existing systems for
ontology API creation and object persistence APIs for ontology data.

2.1 Ontologies in general

The idea of ontological development arose out of metaphysics, a branch of philosophy
dealing with the “fundamental nature of being and the world“ [15]. Traditionally, the
so called western metaphysics was divided into tree main branches the theology, the on-
tology and the universal science. Whereas ontology is the study of existence and being.
The universe of discourse of Ontology enfolds a semantic for basic classes of entities
(objects, properties and the nature of change) and their structural relationships. In
computer science, ontologies become more relevant in the 1990s in the field of knowledge
acquisition and management. “An ontology provides a specification of a conceptualiza-
tion of generic notions like time and space or of an application domain like knowledge
management or life science“ [36]. In the next years various definitions were developed
and lead to the in nowadays most frequently seen definition “An Ontology is a formal,
explicit specification of a shared conceptualization“ [37]. Formal refers to the fact that
an Ontology should be defined in a language with a given formal syntax and semantic
in combination with an explicit definition of all elements of an Ontology. This results
in a “machine executable and interpretable ontology description“ [36]. In the end the
ontology finally represents “consensual knowledge that has been agreed on by a group
of people, typically as a result of a social process.“ [36]



2.2 Ontology Design Patterns

Design patterns in general are proposed by the architect and mathematician Christopher
Alexander in the seventies of the last century as a shared guidelines that helps solving
design problems [2]. These basic ideas and the architectural metaphor are present for
years in the various disciplines working on computational Ontologies [2, 12]. The no-
tion of Ontology Design Patterns (ODP) and its current allocation are mainly embossed
by Aldo Gangemi and Valentina Presutti from the Institute for Cognitive Sciences and
Technology Rome, Italy. They proposed the idea of ODPs, as patterns for ontology
design to increase reusability on the design side. Adopting experiences from the field of
software engineering, they developed a group of “small (or even cleverly modularized)
ontologies with explicit documentation of design rationales, and best reengineering prac-
tices.“ [2]. These ontologies are designed under the assumption that there exist classes
of problems that can be solved by applying common solutions. [2, 27] This group of on-
tologies is used as basic building blocks in the field of ontology design. They are called
Content Ontology Design Patterns (CPs). In fact such patterns are “small ontologies
that mediate between use cases (problem types) and design solutions“ [2]. They were
suggested to increase the possible reuse in Ontology design. But not only in the design
case benefits could be achieved, also in the disciplines of Ontology evaluation, match-
ing, modularization, interoperability and in the field of API design. The predescribed
basic structure that comes with the use of ODPs, could lead to advantages in all these
disciplines. Ontologies in information systems must match both domain and task [27]
because their description of entities, entity properties and relations are relevant in the
tasks performed by the information system. Gangemi and Presutti categorize Ontology
Patterns (OP) based of their field of use and level of application. We will mention the
categories here and discuss those who are of relevance for our task.

2.2.1 Structural OPs

Structural OPs include Logical and Architectural OPs. Logical OPs are constructs that
solve expressivity problems that could occur through the restricted expressivity of the
logical formalism that is used for representation. Architectural OPs covering the over-
all shape of the Ontology. They describe how the Ontology should look like internal
and external. Whereas internal refers to the “Logical OPs that have to be exclusively
employed when designing an ontology“ [2], and external defines “in terms of meta-level
constructs, e.g. the modular architecture,..., where the involved ontologies play the role
of modules“ [2].

2.2.2 Reasoning OPs

Reasoning OPs provide reasoning engine behavior control for a certain Ontology. They
are declared on top of the ontology and give the reasoning system additional information
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about the state of the ontology and what reasoning has to be performed in order to carry
out queries, evaluation etc.

2.2.3 Correspondance OPs

Correspondance OPs include Reengineering OPs and Mapping OPs. Reengineering OPs
are described in terms of meta-model transformation rules in order to create a target
model (in this case an Ontology) from a starting model (neither an Ontology or a non-
ontological source). Gangemi et al. distinguish two different types of Reengineering
OPs, the schema reengineering patterns to start from a non OWL DL meta-model and
transform it into an OWL DL Ontology and the so called refactoring patterns that pro-
vide rules for Ontology transfromation inside of an given ontology language. Mapping
OPs provide inter-Ontology realization solutions, so that designers are able to relate two
Ontologies without changing one or both of the involved Ontologies types.

2.2.4 Content OPs

“CPs are distinguished ontologies. They address a specific set of competency
questions, which represent the problem they provide a solution for. Further-
more, CPs show certain characteristics, i.e., they are: computational, small
and autonomous, hierarchical, cognitively relevant, linguistically relevant and
best practices.“ [27]

Content OPs are small autonomous ontologies that provide solutions for domain mod-
eling problems, therefor they address content problems [2, 27]. So they deal with the
classes and properties that populates a specific ontology and provide solutions for small
use cases. Following Gangemi and Presutti, CPs are built from a domain task [27]. Due
to their transparency with respect to the concrete design of an ontology, they can addi-
tionally work as a tool for ontology evaluation, matching and modularization, etc. [27]
Evaluation tasks for example can be applied by testing a concrete ontology against the
presence of a certain pattern. Unit tests for ontologies discussed by Denny Vrandečić
and Aldo Gangemi cf. [27,38]. Mapping or composition of ontologies can also be simpli-
fied on ontologies drafted from CPs, by just using the same CPs in the ontologies or by
defining mappings between different CPs.

2.2.5 Presentation OPs

Presentation OPs facilitate the readability and usability of ontologies by the user. Ex-
amples of these are Naming OPs and Annotation OPs. Whereas annotation is meant
here as additional information in order to improve the comprehension of ontologies and
their elements. Naming OPs could, following Gangemi and Presutti be understood as
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a good naming practice, that can boost ontology readability and comprehension by hu-
mans. [2]

2.2.6 Lexico-Syntactic OPs

Lexico-Syntactic OPs are basically used to associate simple Logical or Content OPs with
natural language sentences, e.g., for didactic purpose [2, 19].

2.2.7 Leveled ODP classification

Another approach of pattern classification could be found in the publication [6] of
Blomqvist and Sandkuhl. They choose a leveled top-down approach starting from an
application level and then refine the granularity in every step down to a syntactic level.
As we can see in Figure 2.1 and the list below, the whole classification of Blomqvist et
al. focuses on the concrete ontology development process based on patterns. The Design
Level Patterns similar to the Content Patterns in the classification of Gangemi et.al.,
represent the main building blocks for the concrete development process. The first two
Pattern class layers, Application Level and Architecture Level could be seen as the glue
that sticks the Design Level Patterns together and the last two layers provide a mapping
mechanism to be language independent. Figure 2.1 displays a diagram of the five layer
classification denoted below.

• Application Level Patterns contain information about scope, usage, purpose and
context of the implemented ontologies and information about interfaces and rela-
tions to other systems

• Architecture Level Patterns supply information about the combination and ar-
rangement of all Design Level Patterns.

• Design Level Patterns are very similar to the content Patterns of Gangemi et al.
Design Level Patterns are small semantic building-blocks for constructing ontolo-
gies.

• Semantic Level Patterns deliver a language independent description of the basic
concepts, relations and axioms.

• Syntactic Level Patterns are more language specific and thus they provide a map-
ping for the Semantic Level Patterns.

2.2.8 Summary

As a part of this work we analyze the benefits in the design of an ontology API that
could be retrieved from a pattern based ontology. We will focus in this work on the

11



Figure 2.1: The classification levels as continuous increase of granularity
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definition of Gangemi et al. The patterns relevant for us are mainly the Structural OPs
and in this category especially the Logical OPs and the Content OPs. These are the
most common patterns and be found frequently in the current ontology design practice.
Nearly every adaptation of a special modeling technique for a special modeling problem
might be described as the used of a pattern based approach, even without the knowledge
of the pattern idea. Neither if it was used to compensate insufficient expressiveness or
to model a specific conceptualization. Whereas a closer formalization of patterns lead
to a higher precision and so to a higher re-usability.

2.3 Foundational Ontologies and Core Ontologies

In information science a foundational ontology is an ontology dealing with very general
concepts. These conceptual handles should be the same across a broad spectrum of
domains or even all domains. This makes it possible to support a broad semantic in-
teroperability for ontologies designed under the assumptions made in this foundational
ontology. Foundational ontologies like DOLCE [7,18] are motivated from “philosophical
considerations for the construction, comparison, organization and assessment of the on-
tologies themselves “ [7]. The strong generality of foundational ontologies and the fact
that a single content pattern could describe or use very general and basic concepts (like
object, event, quality or role) and relations (like parthood, participation or dependence)
suggest that these well founded ontologies supply a wide range of basic patterns. All
these patterns represent more or less formal and domain independent abstractions of
philosophical theories. For the designer they provide conceptual handles to carry out
coherent and structured analysis of the domain of interest and based on this a toolbox to
model this domain [7]. Because of the strong generality and the high degree of abstrac-
tion in foundational ontologies, ODPs often implement basic concepts of foundational
ontologies. But ODPs are tailored tighter to their domain. At this point we like to
mention the core ontologies defined, developed and brought into applications by Oberle
(2006), a broad introduction into Core Ontologies can be found in [3]. Core ontologies in
general make extensive use of Foundational Ontology conceptual handles and following
a pattern-oriented design approach in the ontology structure. All these patterns target
for a specific field in the area to model and refine very generic foundational ontology
patterns by adding detailed concepts and relations of their specific field [3]. Most of the
introduced design patterns (core patterns) usually base on generic foundational patterns.
Most of the classes used in the design patterns are derived from the generic classes defi-
nitions in foundational ontologies like DOLCE+DNS Ultralight (DUL). We will discuss
DUL in detail in Section 2.3.1. This ensures that these patterns can be easily applied to
express their task with respect to an arbitrary application domain. We will give a closer
introduction to two core ontologies, the Event-Model-F and the M3O in Section 2.4.
The implementation of the prototype of our system will adopt a combination of those
ontologies as testing and evaluation example. But not only the reuse of patterns defined
in the foundational ontologies leads to a cleaner, better and even more useful ontologies.
The specialization of foundational ontologies basic classes, like mentioned on page 17
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in association with Event-Model-F, can lead to a higher formalization even in domain
specific ontologies. Therefor in the work with these ontologies, one can utilize all the
benefits coming with the use of patterns and specializations of foundational conceptual
handles.

2.3.1 DOLCE+DNS Ultralight

All patterns presented here are originally from the DOLCE+DNS Ultralight (DUL) [14],
a lightweight version of the DOLCE [18] library and its extensions. The DOLCE+DNS
Ultralight ontology is a lightweight foundational ontology for modeling physical or so-
cial contexts. DUL presents multiple patterns for modeling such context. The patterns
defined in DUL are very complex and provide multiple conceptual handles used in the
philosophical definition of the modeled context. These patterns can specialized for the
use in domain specific ontologies. In specializations of DUL patterns often not all the
conceptual handles from the original patterns are of interest. Multiple specializations for
the same domain are possible from one DUL pattern. We present an example for pattern
specialization from DUL patterns in the discussion on the ontology of information object
(OIO). To avoid ambiguity, we will only introduce a set of specializations per pattern
and in order to be unambiguous we recommend to only use one form of each pattern in
one ontology. To increase inter ontology compatibility we suggest to use only one form
in all the ontologies one designs. Here we can see the strong need for a more formal
definition of ODPs to reduce ambiguity and to increase compatibility without the need
of Mapping OPs. Using the example of the Ontology of Information Object (OiO) and
its realization, the Information Realization Pattern we will also show in this section how
to simplify complex Foundational Ontologies to usable Patterns.

The D&S Patterns

The Description and Situation Pattern (D&S) is part of the DOLCE+DNS Ultralight
foundational ontology [13]. It is a commonly used pattern in core ontologies, e.g. the M30
or the Eventmodel F. “The D&S pattern allows for the representation of contextualized
views on the relations of a set of individuals“ [31].
This feature is highly required in many different domains, e.g. multimedia [31] and event
description [33]. The pattern itself consist of a Description and a Situation, whereas
the Situation satisfies the Description. The Description itself defines the roles
and types present in a concrete context, the Concepts. Such a concept classifies the
entities relevant in the given context. To make the loop complete the entities, themself
are connected to the Situation via a hasSetting relation. With the D&S Pattern it
is possible to represent required relationships, which are difficult to represent within
the commonly used infrastructures like RDF. The mechanism used therefor is called
reification. Reification projects second order entities, like relations, into the first order
space. Through that we are able to express information about this second order entities,
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which would not be possible without reification, like relationships between more than
two items. It allows us to represent contexualized views on relationsships between sets
of individuals [31]. You can see the structure of the D&S Pattern in Figure 2.2

Figure 2.2: The D&S Pattern in its simplest form

The Data Value Pattern

In DUL there exist more than one way to encode concrete data values, but all of them
using Quality and Region. Quality is a concept to represent aspects of an Entity that
inher the Entity [18]. Region represent the values of qualities and the data space they
belong to. The Data Value Pattern we propose here is taken from the M3O [31]. Figure
2.3 shows the structure of the DataValuePattern.

Figure 2.3: The Data Value Pattern

The Ontology of Information Object Pattern

Another Pattern from the DUL is the Ontology of Information Object (OIO) pattern
and the therefrom derived Information Realization Pattern. It models the disparity
between the information object and its realizations. As a concrete example we will
take a digital image and its realization. We introduce an abstract image entity called
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InformationObject. This representation is independent from the various realizations,
the InformationRealizations. As you can imagine a image could be stored in various
different formats and/or resolutions (like the image and a thumbnail). All of these are
the realizations. In an ontology all realizations refer to the same InformationObject.
“Information realization therefore represents the difference between information as an
abstract concept and its concrete realization.“ [?] We will use the Ontology of Informa-
tion Object and the therefrom derived Pattern, the InformationRealizationPattern
to show the simplification of a Foundational Ontology to a Core Ontology Pattern and
the requirements and the assumptions this process is based on. Nearly all of the Pat-
terns from DOLCE come with additional philosophically founded classes to ensure cor-
rectness in the philosophical approach of modeling the given domain. Not all of these
classes are needed in the concrete knowledge representation, especially when taking the
open world assumption into account. In case of the OIO Pattern we can easily see
that for example the agent interpreting the InformationObject is only of theoretical
use, answering the question, “exist an entity if it is not observed? “. The particular
agent or information about the Information-encoding-System are of more theoretical
use than for a clean information representation. They do not appear in the proposed
InformationRealizationPattern. In Figure 2.4 we show the Ontology of Information
Object and in Figure 2.5 the therefrom derived InformationRealizationPattern [31].
As you can see the OIO originally was also derived from the D&S pattern.

Figure 2.4: The Ontology of Information Object

2.4 Event-Model-F & M3O

In this subsection we will introduce two core ontologies, namely the M3O [31] and the
Event-Model-F [33]. Both ontologies include patterns from the preceding section and
most of the patterns in these ontologies here are derived from or make use of patterns
introduced in the DUL. For a detailed description of the patterns refer to the related
work [31,33] or to the discussion in the Appendix A.1 and A.2.
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Figure 2.5: The Information Realisation Pattern

2.4.1 The M3O

The Multimedia Metadata Ontology “provides a comprehensive modeling framework for
representing arbitrary multimedia meta-data“ [31]. The main motivation to design it was
the fact that meta-data and semantic annotations on multimedia content is the decisive
factor to improve services, like retrieval, archiving and management, on multimedia
content. Existing meta-data models and standards for multimedia data often serve
specific purposes and goals, and have different scopes and levels of detail and so they
are not combinable. Not least they are often semantically ambiguous “i.e., they do not
provide a well-defined interpretation of the meta-data“. [31] To solve these problems the
M3O provides several commonly used patterns “underlying existing meta-data models
and meta-data standards“ [31] as ODPs. We use some of the patterns from the M3O
in our running examples. For all patterns from the M3O, not covered by the previous
section refer to the Appendix A.1.

2.4.2 The Event-Model-F

This Ontology defines a formal model of events, it provides “comprehensive support
to represent time and space, objects and persons, as well as mereological, causal, and
corelative relationships between events.“ [33] With the Event-Model-F it is possible to
create ontological representations of events, event causalities and event correlations. The
design of the Event-Model-F is aligned to patterns defined in the DUL, especially the
D&S pattern is heavily used. Like in the M3O most of the first level entities in the
Event-Model-F have been specialized from the classes defined in DUL, e.g. DUL:Event
,DUL:Object or DUL:Abstract.

2.5 Ontologies in the Semantic Web

In this section we give an introduction to ontology representation in general and in the
the Semantic Web context. We start with todays standard formalism for knowledge
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representation the Description Logics(DL). Then we introduce the Resource Description
Framework (RDF) as basis for Ontology Web Language (OWL) [5,20,34] and language
of our serialization. At last we focus on OWL defined by the W3C. OWl is a family of
DL based languages designed for ontologies in the Semantic Web.

2.5.1 Description Logics

Description Logics are not a knowledge formalism designed for the Semantic Web. We
introduce them here as the formal basis for the knowledge representation techniques
use by the Semantic Web technologies. Many of our following discussions will first
focus on the DL constructs and then on the Semantic Web technologies. Description
Logics are a subset of first-order logics designed to represent the knowledge of a given
application domain. Basically logics provides two disjoint alphabets of symbols. The first
is used to denote atomic concepts, designated by unary predicate symbols, individuals
designated by constants and atomic roles, designated by binary predicate symbols - the
latter are used to express relationships between concepts. [5]. First we introduce the
basic concepts of the domain (the terminology), and then we specify properties of the
objects and individuals that occur in the domain, by using the concepts defined before.
So if we want to describe the concept of e.g. “A man that is married to a doctor and
has at least 5 children, all of whom are professors” (this and the following examples are
taken from [11]) we can use the following concept description

Human u ¬Female u ∃married.Doctor u (≥ 5hasChild) u ∀hasChild.Professor

As we can see, some commonly known operators are used in this description. In the
context of DLs these operators take on the role of constructors, e.g. the conjunction
(u) is interpreted as a set intersection constructor, the negation (¬) as a set comple-
ment constructor, the existential restriction constructor (∃R.C), the value restriction
constructor (∀R.C) and the number restriction constructor such as (≥ nR) are inter-
preted as constructors with the functionality known from common algebra [11]. These
constructors could have impact on our ontology to API mapping. In a later Chapter
we will discuss the direct influence those constructors have. Table 2.1 shows the DL
concept constructors and Table 2.2 the role constructors. Each particular DL comes
with its concept and role constructors that could be used to create expressions from the
atomic concepts and roles. These constructors determine the expressiveness of the DL
and hence also the computational complexity of services performed on the knowledge
base expressed in this DL. We will talk about the connection of computational com-
plexity and expressiveness of the language, and the impact on the design of DLs later
in this section. DLs define usually in addition to this descriptive formalism a termino-
logical and an assertional formalism. Terminological axioms are basically used to define
names for complex descriptions. Assertional formalisms otherwise could be used to state
properties of individuals. This separation of concerns between terminological definition
and assertional definition mechanisms leads us to the definition of the so called T-Box
(terminological) and the A-Box(assertional). In the T-Box new concepts can be defined
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in terms of previously defined concepts, some common assumptions about most DLs
terminologies are:

• only one definition per concept name is allowed;

• definitions are acyclic, that means that concepts are not defined in terms of them-
selves or in terms of concept that indirectly refer to them.

This restriction implies that defined “concepts can be expanded in an unique way into
complex expressions containing only atomic concepts by replacing every defined concept
with the righthand side of its definition.“ [5]. For example:

Man ≡ Person uMale

The A-Box on the other hand contains extensional knowledge about the domain. This
additional knowledge could be separated into concept assertions such as

Male u Person(Bob)

and role assertions.
hasSon(Bob, Jacob)

Whereas in assertions of the first kind general concept expressions are typically allowed,
while in role assertions they are not allowed.

Table 2.1: DL concept constructors
Name Syntax Semantics

Intersection C uD CI ∩DI

Union C tD CI ∪DI

Complement ¬C ∆I\CI

Value Restriction ∀R.C {a ∈ ∆I |∀b.(a, b) ∈ RI → b ∈ CI}
Existential quantifier ∃R.C {a ∈ ∆I |∃b.(a, b) ∈ RI ∧ b ∈ CI}
Unqualified number
restriction

6 n R
> n R
= n R

{a ∈ ∆I ||{b ∈ ∆I |(a, b) ∈ RI}| ≥ n}
{a ∈ ∆I ||{b ∈ ∆I |(a, b) ∈ RI}| ≤ n}
{a ∈ ∆I ||{b ∈ ∆I |(a, b) ∈ RI}| = n}

Qualified number
restriction

6 n R.C
> n R.C
= n R.C

{a ∈ ∆I ||{b ∈ ∆I |(a, b) ∈ RI ∧ b ∈ CI}| ≥ n}
{a ∈ ∆I ||{b ∈ ∆I |(a, b) ∈ RI ∧ b ∈ CI}| ≤ n}
{a ∈ ∆I ||{b ∈ ∆I |(a, b) ∈ RI ∧ b ∈ CI}| = n}

Equivalence
Non-Equivalence

u1 ≡ u2

u1 6≡ u2

{a ∈ ∆I |∃b ∈ ∆I .uI1 (a) = b = uI2 (a)}
{a ∈ ∆I |∃b1, b2 ∈ ∆I .uI1 (a) = b1 6= b2 = uI2 (a)}
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Table 2.2: DL role constructors
Name Syntax Sematics

Universal role U ∆I ×∆I

Intersection R u S RI ∩ SI

Union C tD RI ∪ SI

Complement ¬R ∆I ×∆I\RI

Inverse R− {(b, a) ∈ ∆I ×∆I |(a, b) ∈ RI}
Composition R ◦ S RI ◦ SI

Transitive closure R+
⋃

n≥1(RI)n

Reflexive-transitive closure R∗
⋃

n≥0(RI)n

Role restriction R|c RI ∩ (∆I × CI)
Identity id(C) {(d, d)|d ∈ CI}

Computational Complexity

DLs can be classified in different classes of expressiveness, depending on the constructors
the DLs provide for expression creation. This expressiveness has a general impact on the
computational complexity of reasoning tasks performed on the knowledge representation.
There are different kinds of reasoning that could be performed on a DL system and most
of the DL systems are especially designed to support such inferencing. The inferences
could be separated depending on what they address, the concepts alone, the T-Box, the
A-Box or T-Box and A-Box together. Interesting relationships between concepts are (all
these definitions are taken from [5]): Let T be a T-Box.

• Satisfiability: A concept C is satisfiable w.r.t T if there is a model I of T such
that CI is nonempty. In this case we say also that I is a model of C.

• Subsumption: A concept C is subsumed by a concept D w.r.t T if CI ⊆ DI for
every model I of T . In this case we write C vT D or T |= C v D.

• Equivalence: Two concepts C and D are equivalent w.r.t T if CI = DI for every
model DI for every model I of T . In this case write C ≡T D or T |= C ≡ D.

• Disjointness: Two concepts C and D are disjoint with respect to T if CI ∩DI = 0
for every model I of T .

Taking in account the fact that all actual DL systems provide the intersection opera-
tor u and most of them contain the unsatisfiable concept ⊥ the following propositions
are possible. According to Proposition 1 all the four inferences can be reduced to sub-
sumption. Additionally in DL systems that allow the negation of concepts, according
to Proposition 2 all can be reduced to the satisfiability problem.(The Proposition are
taken from [5]). Proposition 3 shows us that unsatisfiability is a special case of the other
problems.
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Proposition 1. (Reduction to Subsumption)

i C is unsatisfiable ⇔ C is subsumed by ⊥;

ii C and D are equivalent ⇔ C is subsumed by D and D is subsumed by C;

iii C and D are disjoint ⇔ C uD is subsumed by ⊥;

Proposition 2. (Reduction to Unsaticfiability)

i C is subsumed by D ⇔ C u ¬D is unsatisfiable;

ii C and D are equivalent ⇔ both (C u ¬D) and (¬C uD) are unsatisfiable;

iii C and D are disjoint ⇔ C uD is unsatisfiable;

Proposition 3. (Reducing Unsatisfiability) Let C be a concept. Then the following are
equivalent:

i C is unsatisfiable;

ii C is subsumed by ⊥

iii C and ⊥ are equivalent;

iv C and > are disjoint;

Many research has been done on this topic and especially from the viewpoint of com-
plexity assessment in the recent years. For further details and proofs refer to [5] and
the additional literature mentioned there. The point of interesting, for us, in this field
of research is, as we can see, that possible reductions and thereby the complexity of
reasoning depends on how expressive our language is. So the allowed constructors in the
ontology representation of the system has a direct impact on how efficient certain task
can be performed on the serialization from the created API representation.

2.5.2 RDF - The Resource Description Framework

The family of specifications called Resource Description Framework (RDF) defined by
the W3C were originally designed as a meta-data meta model. In the Semantic Web
RDF is used as basic model for conceptual description or modeling of information in web
resources. There are various syntax formats defined for RDF. In our examples we use
the Notation3 (N3) a shorthand serialization of RDF models. With RDF it is possible
to make statements about resources in form of subject-predicate-object triples. The
subject, a resource is represented through an URI1. The predicate expresses a particular
relationship between the subject and the object. The predicate is also an URI. The
object can be a URI or a literal. A literal is a possibly typed string. For example, a way
to express ”The dog has the color black” could be a triple: subject denoting “the dog“,
a predicate denoting “has the color“ and a object denoting “black“. In N3 the exampe
would look like this:

1Unified Resource Identifier refer to http://www.w3.org/Addressing/
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@pref ix ex : <http : //www. example . de/>
ex : thedog ex : hasColor ex : black

Multiple RDF statements form a directed labeled multigraph, wherein edges represent
predicates and the nodes subject and object. Such graph structures can be stored in one
of its serializations in files or in so called triplestores. Triplestores are the databases for
triple based data.
Some ontology languages build upon RDF such as RDF Schema (RDFS) or OWL. RD-
F/RDFS allows the user “the representation of some ontological knowledge “ [4]. RDFS
focuses on the “organization of vocabularies in typed hierarchies: subclass and subprop-
erty relationship, domain and range restrictions and instances of classes“ [4], but many
features needed for appropriate ontology description are missing. According to [4] these
are:

• Local scope of properties

• Disjointness of classes

• Boolean combinations of classes

• Cardinality restrictions

• Special characteristics of properties

For more details on RDF/RDFS refer to [?,8,26], for more details on the missing features
refer to [4].

2.5.3 OWL - The Ontology Web Language

OWL is not a single language but a hierarchy of three different sublanguages. OWL
bases on RDF/RDFS but OWL is aware of the trade-off between expressive power and
efficient reasoning. Ideally OWL would only add what is needed to support the expres-
siveness that is missing in RDF/RDFS, as identified before. In this case OWL would
be just an extension of RDF Schema and would use the RDF meanings of classes and
properties. But unfortunately, according to [4], this attempt of just extending RDF
Schema clashes with the trade-off between expressive power and computational efficient
of reasoning mentioned in Section 2.5.1. Ans so OWL restricts the very expressive mod-
eling primitives, such as rdfs:Class and rdfs:Property [4]. The W3C defined OWL,
in this case OWL 1.12, as a hierarchy of the three sublanguages, thereby each of them
aims to fulfill a specified subset:

• OWL FULL provides maximum expressiveness and full first-order logic support
there is no reasoning software that supports every feature of OWL Full.

• OWL DL is a subset of OWL FULL for those users how want maximum expres-
siveness without using any computational completeness and decidability. Most of
the ontologies, are modeled using OWL DL.

2http://www.w3.org/Submission/owl11-overview/
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• OWL Lite is a subset of OWL DL and only provides a very simple classification
hierarchy and simple constraint features.

Due to the ongoing development in the Semantic Web the W3C decided to release a new
version of OWL, namely OWL 23. OWL 2 has no longer the strict hierarchy of OWL
1.1. It rather separates into different sublanguages, in the OWL 2 context commonly
called profiles, for different concerns. A diagram of the OWL 2 profiles is shown in figure
2.6.

• OWL 2 EL: Ontologies formulated in this profile of OWL 2 all basic reasoning
services can be performed in polynominal time with respect to the size of the
ontology.

• OWL 2 QL: This profile is specialized for supporting query support, especially
using conventional relational databases.

• OWL 2 RL: This profile provides a sublanguage specialized for rule based reasoning
engines.

Constructors in OWL DL

Refering to table 2.1 all DL constructors we could find are supported in OWL DL.
Intersection as owl:intersectionOf, union as owl:unionOf e.t.c. , the number restric-
tions are represented as the different cardinalities, equivalence between individuals as
owl:sameAs, equivalence between classes owl:equivalentClass etc.

2.6 Graphical Ontology Languages

Different notations were developed by different scientific communities in the past, e.g.
conceptual graphs [35] and topic maps [32]. Generally all these logical graphs based on
the several versions of “graph-theoretic formal languages“ [25, http://en.wikipedia.
org/wiki/Logical_graph] proposed by Charles Sanders Peirce in his papers on quali-
tative logic, entitative graphs and existential graphs in the late 19th century. Because
of their logic nature a popular way to describe and design ontologies is the use of a
graphical representation. We used such graphical representation to present all of our
examples. The graphical representation of ontologies or even the design of ontologies
in a visual syntax implicates several advantages that simplify the conceptual modeling,
increases the readability of the ontologies and decreases syntactic and semantic errors [9]
made in the design process. The selection of an appropriate modeling language and the
available tools for that language could also speed up the modeling process of ontologies.
Because of the basic structure of ontologies, the UML Class Diagram and simplifications
of it became a popular way to describe Ontologies. All patterns introduced here are
displayed in a simplified form of the UML Class Diagram. In the following Sections
2.6.1 we will give an overlook over the related research work dealing with Ontologies in
UML

3http://www.w3.org/TR/owl2-profiles/
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Figure 2.6: Venn Diagram of OWL Syntactic Subsets (Profiles)

2.6.1 Ontologies in UML2

As mentioned the UML Class Diagram is a popular way to describe ontologies. If
we refer to a UML model for an ontology in the following, a UML Class Diagram
is meant. Because of the quite similar nature including classes and class attributes
(properties in UML), class/subclass hierarchies, inter class relationships and concepts
to specify constrains, UML has been successfully used to visualize ontologies. However
when UML is used in ontology design/visualization often only the inconographic part of
the language is used in a way more or less aligned to the specification. Otherwise efforts
are made to formalize a model for ontology design based on UML. Originating from the
Object Management Group (OMG)4 and Sandpiper Software5 the Ontology Definition
Metamodel (ODM) [23] was proposed first in 2004. Based on a comparison of OWL
Full and UML 2 [16] as a preliminary analysis for the design of the ODM, the OMG6

specified the ODM in version 1.0 and made it available7. In this section, we introduce
the ODM and take a closer look at how it bridges the gap between the two paradigms
of the object-oriented UML meta-model and the logic based ontology world.

4OMG website http://www.omg.org/
5Sandpiper Software website http://www.sandsoft.com/
6Defined by the Ontology Working Group in the OMG http://www.omg.org/ontology/
7Version 1.0 can be found here http://www.omg.org/spec/ODM/1.0/PDF
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2.6.2 The Ontology Definition Metamodel (ODM)

The OMG, responsible for the specification of UML2, has released the Ontology Defi-
nition Metamodel (ODM). It is a collection of meta-models and mappings, capable for
ontology design and visualization tasks. The ODM defines a collection of UML metamod-
els for different ontology languages, such as RDFS/OWL, Topicmaps, common logic and
others. The ODM should help ontology designers by giving them a graphical language to
design ontologies and transformations from the graphical representation to the different
ontology languages. As part of the ODM, the OMG defines lightweight extensions to
UML2 for several logic based languages and mappings to be able to transform ontologies
modeled in UML2 directly into one of those languages. So an ontology can be designed
using UML in combination with the ODM and then be transformed in the intended on-
tology language. The ODM includes extensions and mappings for, e.g., OWL, topicmaps
and common logic. In the case of OWL this extension consists of an UML2 profile. In
this profile multiple stereotypes are defined to enrich basic UML2 entities with their
OWL nature, such as owlOntology, owlClass or owlProperty. These stereotypes are
applicable to one or more UML elements, adequate for modeling concepts or constructors
in UML. For example owlOntology could be applied to UML:Package or UML:Model,
owlClass to UML:Class and objectProperty to UML:Properties or associations. In
some cases it is possible to model a specific semantic construct in different syntactical
ways. For example we could represent an objectProperty through an objectProperty
stereotyped UML:Property or and similarly stereotyped association connecting the class
that defines the property with the class representing the type of the property. You can
see this in Figure 2.7.

Figure 2.7: The two possible models for ObjectProperty

For some of the semantic constructs in OWL we could not find any adequate coun-
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terpart in the UML meta-model. For such a construct the ODM defines modeling con-
ventions (modeling patterns) using multiple UML elements. A good example for such
a construct, is intersectionOf. According to DL an owl:intersectionOf statement
describes an anonymous class, its extension contains all the extension of all intersected
classes. In UML it is not possible to define a class using set operations on instance sets.
The definition of the ODM in version 1.0 defines the owl:intersectionOf stereotype as
applicable to a UML:Constraint. The way to to model an intersectionOf according to
the definition looks like shown in Figure 2.8. The notation below shows an model with
three classes A, B and C, there C inherits from A and B. To denote that the generaliza-
tions between C and A, B should not be understood in the UML way but representing the
owl:intersectionOf we used an stereotyped UML:Constraint connected to both of the
generalizations. This model misses some of the specifications of owl:intersectionOf,
for instance the intersection class is not anonymous if we model intersectionOf in
this way. Additionally modeling intersection like this is not well-suited for a following
transformation. So we propose to model intersectionOf in another way, closer to the
DL meaning and more suitable to the transormation in our approach. The intended
way to model an owl:intersectionOf would be to use �intersectionOf� stereotyped
generalizations. These are used to define an anonymous class stereotyped with �inter-
sectionClass�, as shown in Figure 2.9. We also modified the models for some other
logical concepts with no matching counterpart in UML, like union. We will use these
modified modeling conventions for our Model for Ontologies (MoOn).
Others like disjointness could be modeled just through stereotyped association. Table 5.1
on Page 61 and following gives a full lists OWL constructs and their corresponding con-
struct in the ODM/UML meta-model. For all OWL constructs with more complicated
counterparts in the ODM we present a figure in the appendix.

Figure 2.8: IntersectionOf modeled according to ODM v1.0

The real intention behind the definition of the ODM was to define a graphical ap-
proach for ontology design. Most of the mappings defined in the ODM are directed
from the different UML 2 models towards other models or a ontology language. It is
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Figure 2.9: Modified IntersectionOf Model

intended to design the ontology in UML and then transform it to the intended synatx
like OWL or common logic. Currently there exists only one implementation of an OWL
to UML transformation using the inverse of the mappping defined in the ODM. This
transformation is present in a plugin for Protege48. This plugin just visualizes OWL
using UML2 and the ODM specification. It was developed at the University of Latvia
by Igor Istocnik. Unfortunately no more information about it is available.

2.7 Ontology API Frameworks and Automated Ontology API
generation

In web applications and enterprise solutions relational data bases (RDBs) and thus
object-persistence to such stores were used for years. With RDF and hence also triple
stores coming more and more into focus several persistence layers especially designed for
the non relational triple stores showed up in the last years. Most of them try to apply the
well known RDB object persistence patterns to the non relational world of triplestores.
Such an persistence API often comes with a simple ontology API generation tollkit.
These simple attempt mostly use concept-to-class mapping for generation and object-
to-statements mapping for persistence. Such mappings are suitable for simple structured
ontologies like foaf9. But for complex ontologies this simple object-to-statement mapping
leads us to multiple problems. We come to this in Chapter 5. In this section we give
the reader a short look on the most popular projects dealing with object-to-statement
persistence and ontology API generation.

8The plugin URL http://protegewiki.stanford.edu/index.php/OWL2UML last access 01.03.10
9The foaf project website http://www.foaf-project.org last access 01.03.10
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Elmo and AliBaba

Elmo is a role based Java persistent bean pool on top of a SESAME repository. SESAME
is a very popular opensource RDF triple store. Aduna Software10 is the leading company
behind SESAME, Elmo and AliBaba. They develope and maintain SESAME and other
projects based on SESAME. SESAME comes with its own database infrastructure and
provides access to multiple other databases like, jena11 and mulgara12. Elmo provides a
simple API to access ontology oriented data. The next generation of the Elmo codebase
is called AliBaba13, both are developed at Aduna Software. Elmos functionalities are
base Java-Annotations providing the metadata needed for adequate mapping. As a
further developement of Elmo, AliBaba also uses Java annotation to encode mapping
meta data. But AliBaba goes much further than Elmo did. AliBaba is a subject-oriented
client/server library providing RESTful services, distributed data and file persistence on
RDF metadata.

Som(m)er

Som(m)er14 the ”Sematic Object (Metadata) MappeR“, is a very simple library for
mapping POJOs (Plain Old Java Objects) to RDF graphs, developed by Henry Story.
Som(m)er uses Java-Annotations to add the metadata needed for mapping to Java
classes. It uses SESAME as backround repository. Based on the JAVA annotation
Som(m)er additionally provides a source code rewriting facility to simplify the use of the
API and to speed up the development. It enriches the written and annotated code with
the methods needed for mapping. Like the other solutions presented below, Som(m)er
provides only simple object-to-statement mapping functionality and thus hardly fits for
API development for complex ontologies. Some of the fundamental ideas of the imple-
mentation of Som(m)er have been taken over into the implementation of Winter.

Winter

Winter is a object-to triplestore persistence layer based on the basic ideas behind So(m)mer.
Like So(m)mer it is Annotation based. Winter provides special features targeting the
issues coming with complex ontology structures and especially with the use of ODPs.
Winter expands the standard object-to-statement approach in a way that it simplifies
the development of ontology APIs for the integration of ontology based semantics into
an application. In chapter 3 we examine ontologies and especially ODPs according to
the desired behavior in applications using, manipulating and creating ontology aligned
semantic data. Winter provides functionalities needed for such applications. Different
to other persistence APIs winter supports the mapping of objects to multiple state-
ments. In object-to-statement mapping each object is mapped to a singe statement like,

10The Aduna Software website http://www.aduna-software.com/ last access 01.03.10
11The Jena sematic web framework project website http://jena.sourceforge.net/ last access 01.03.10
12The Mulgara Sematic Store website http://www.mulgara.org/ last access 01.03.10
13AliBaba project website http://www.openrdf.org/doc/alibaba/2.0-alpha4/ last access 01.03.10
14The Som(m)er project https://sommer.dev.java.net/sommer/index.html last visit 10.01.10
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ID < rdfType > TY PE. Winter allows us to annotate classes with patterns represent-
ing multiple statements for the class. Winter uses SPARQL [28] as pattern language
in the annotation. Additionally to this Winter provides basic functionalities to solve
completeness or validity problems that could arose in the serialization. In Winter it is
possible to generate differnt mapping behavior for properties or classes according to their
relationships. Winter can distinguish between mandatory and optional relationships of
objects and can behave in different ways depending on the relevant relationships. The
Winter annotation allows us to declare special types in the declaration. Those types lead
to customized behavior in the mapping performed on the annotated class. For more on
Winter refer to Section 6.2 on Page 79.

Jena Semantic Web Framework

The Jena Semantic Web Framework (Jena)15 is a popular and powerful framework not
only providing an RDF-Store. Jena also includes an OWL API for loading and work-
ing with OWL ontologies. This API provides functionalities for basic reasoning task,
ontology modification and instance model processing. Initially the Jena framework was
developed in the HP Labs Sematic Web Programm16.

Owl2Java

Owl2Java [17] is a java code generator for OWL ontologies with support for the Jena
semantic web framework developed by Michael Zimmermann at the the Chair of Naval
Architecture at the University of Rostock. Additionally it defines another layer called
Owl2Db4o that provides a native interface to the object oriented database db4o. The
part of the framework with jena support is called Owl2Jena and it generates Java APIs
from given ontology schema. Basically it provides a java class for each owl class and data
access through methods. Internally these actions are translated to triple constructs of
the Jena DB and the mapping task are performed by Jena. OWL2Java does not provide
any CRUD behavior control and an intermediate control layer has to implemented on
top of the classes generated by OWL2Java.

SWeDE and Kazuki

SWeDE17, the Semantic Web Developement Environment is an eclipse IDE based frame-
work for the developement of sematic web tools. Currently it integrates apart from an
OWL editor with syntax highlighting, spell-checking and auto-completion, useful tools
like the OWL Validator, the DumpOnt a visualizer for Ontologies and finally Kazuki.
Kazuki is a Java API generation toolkit based on Jena. The Kazuki library provides
functionality for generating object oriented interfaces for individuals from OWL ontolo-
gies. Kazuki automatically creates Java Interfaces for concepts contained in the choosen
OWL Ontology. From each OWL class Kazuki generates two Interfaces, one standard
15The Jena sematic web framework project website http://jena.sourceforge.net/ last visit 10.01.10
16http://www.hpl.hp.com/semweb/ last visit 15.03.10
17The official Pulgin Site http://owl-eclipse.projects.semwebcentral.org/ last access 01.03.10
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implementation and one for user customization. All classes build by Kazuki are build
up on the Jena2 Ontology-API.

JenaBeans

JenaBean18 is again an approach using the Jena RDF/OWL api. Jenabean is a typical
representative of a Java annotation based object-to-statement mapper.

RDFReactor

RDFReactor19 realizes the RDF data model in the object oriented environment through
Java dynamic proxies20. It provides a code generator to generate class representations
from ontologies.

ActiveRDF

ActiveRDF21 is a data layer to access RDF data in Ruby-on-Rails, similar to ActiveRe-
cord (O/R mapping (ORM22 )for relational databases ). ActiveRDF provides a Domain
Specific Language (DSL) to define the RDF model. Through that model the user can
address RDF entities like resources, classes and properties programmatically, without
queries. ActiveRDF is store independent, adapters to multiple stores exist. If a adapter
to a specific store does not exist it could be written easily.

Topaz

Topaz23 is a object to RDF persistence library loosely based on ORM last access 01.03.10.
Topaz supports multiple different triple stores like SESAME or mulgara. Topaz allows
us to use the underlying store’s query language and/or to use its own language (OQL24).

Agogo

Agogo [24] is an approach in automated generation of ontology APIs aware of the complex
mappings coming with APIs for upper-level or core ontologies. The approach defines a
Domain Specific Language (DSL), agogo, to encode the structure of the intended API
in a platform independent manner. The agogo DSL is aligned to the SPARQL syntax
and it is possible to generate agogo code directly from an ontology definition in OWL.
From this DSL it is possible to generate APIs in arbitrary programming languages.

18The JenaBean project website http://code.google.com/p/jenabean/
19The RDFReactor project website http://semanticweb.org/wiki/RDFReactor last visit 01.03.10
20For Java Proxies see http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
21The ActiveRDF project website http://www.activerdf.org/ last visit 01.03.10
22Object-relational mapping http://www.agiledata.com/essays/mappingObjects.html last visit

01.04.10
23The Topaz project website http://www.topazproject.org last visit 01.03.10
24Object Query Language http://www.topazproject.org/trac/wiki/Topaz/Manual/Section11
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2.7.1 Summary

Investigating all these different ontology API frameworks and RDF persistence layers, we
could say that in this field multiple strategies have been developed to receive persistence
toward an ontology instance model. Many of the presented frameworks use common RDB
persistance patterns and modify the functionality towards triple based stores. We can
find frameworks using typical java bean conventions25, others are aligned to the popular
ActiveRecord26 concept in Ruby. Most of them seem to be tailored to a specific store API
like Jena or Sesame. In most cases that does not affect the compatibility to other stores
because most of the store implementations are able to integrate foreign stores. What
most of these API generation and/or store concepts have in common is the fact that they
perform an simple concept-to-class mapping and as an result an object-to-statement
mapping in object persistence. Thereby inter object relationships are realized implicite
in the active object structure. Only Winter provides explicit relationship declaration
through pattern classes, and can separates the instance relationships from the sematic
relationships. This new feature of WINTER gives as a powerful tool in implementing
a validity preserving CRUD operations for object persistence towards RDF. We discuss
this in the following chapters.

25Summary of the java bean conventions http://en.wikipedia.org/wiki/JavaBean#JavaBean_

conventions
26Ruby ActiveRecord at RubyForge http://rubyforge.org/projects/activerecord/
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3 Object Persistence and CRUD
Operations on Triple Stores

Generating valid and complete object persistence always requires validity and complete-
ness preserving CRUD, C(reate) R(ead) U(pate) D(elete), operations. Object persistence
for ontologies means that software representations of individuals (instances), are created
and serialized or read and deserialized to/from an triple store. These instances and the
corresponding serialization should be modifiable and erasable. Apart from a valid and
complete structure in the ontology API, the most important thing is that the knowledge
in the serialization is valid according to the ontology. All operations performed on in-
stances of the ontology API affect the corresponding statements in the triple store. The
operations performed on the triple store could be reduced to the CRUD operation set.
In our discussion about CRUD, we have to have both in mind, the software based rep-
resentation of the ontology API and the conceptual based knowledge in the triple store.
Only a valid and complete API representation leads to a valid and complete serialization
and vice versa. In this section we discuss the influence of the special characteristics of
conceptual knowledge in triple stores on CRUD operations. We define how an ontology
API should be structured and how it should behave to support CRUD that leads to a
valid and complete serialization.
According to our target, an API working on a ontology based dataset, we must denote
that the problems described below are situated in a closed world software environment.
And so, we must care about the completeness of the data set while performing CRUD
operations. In contrast to the logic driven world of ontologies, where undefined individ-
uals exist, we just do not know them. In the closed object-oriented world, instances that
are not declared can not be referenced and do not exist. When working on semantic
web data such completeness is often not fulfilled and this could lead to problems an
API working on them must deal with. All problems described here originate from the
concept declaration and the relationship structure of ontologies. But all of them are of
fundamental concern to the operations performed sets of individuals and must be dis-
cussed on individual level. We use our running example defined in Section 1.1 to clarify
our observations.
In the first Section 3.1, we examine the scope of ontology concepts and individuals. We
show that it is possible, especially in ODP based ontologies, to distinguish concepts and
their individuals according to the part of the ontology they are related with. In the
second Section 3.2, we discuss the underlying structures of ontologies and their influence
on CRUD operations. Section 3.3 deals with the semantic of concepts and the concept
constructors they based on. We discuss the necessity to represent complex concepts



constructors in ontology APIs and their influence on CRUD behavior. In this discussion
we take the observations made in Section 3.1 and 3.2 into account.

3.1 Global and local Scope of Concepts and Individuals

Two different ODPs in a pattern-based ontology could declare the same concept as part of
the pattern. Configurations of different ODPs or two different configurations of one and
the same ODP could refer to the same individual, whereas configuration means a indi-
vidual set fully allocated a pattern. We can see this in our running example, it represents
a pattern configuration for each of the three involved patterns, the AnnotationPattern,
the DecompositionPattern and the DataValuePattern. All of them are declaring a
concept InformationObject to be part of the pattern configuration. And as we can see
in the configuration defined by the example, all three patterns referring to the image-2.
Regarding concepts in ODPs, taking this behavior into account, let us distinguish them
into two different sets. The ones referred by multiple patterns and the ones only referred
in the declaring pattern. This observations could also be made on individual level, with
the difference that a single individual could belong to single configuration or multiple
configurations of one or more patterns. This leads us to distinguish concepts into two
sets:

Global Scope Concepts: In a pattern-based ontology we can identify concepts refer-
enced in multiple pattern specifications. A concrete individual of such a concept
could probably be referenced by pattern configurations of multiple patterns or mul-
tiple configurations of one and the same pattern. We call such a behavior global
scope, a concept with global scope could be used in multiple pattern declarations
and a individual of such a concept could play a role in multiple configuration of
the same pattern. For example the InformationObject in the M3O is used in
multiple patterns and a individual of this concept can play a role in, e.g., multiple
AnnotationPatterns (an image with multiple annotations).

Local Scope Concepts: In contrast to the concepts with global scope, such concepts
are only referenced in one pattern of a pattern-based ontology. On individual level,
individuals of such concepts have only relationships in a single pattern configura-
tion. For example the Description concepts in the different patterns are only of
relevance in the concrete pattern and each configuration of such pattern refers to
its own Description individual.

According to this the API representations of concepts could also be distinguished.
This makes sense because the concrete scope of an individual(instance) has influence on
how CRUD should be performed to preserve validity and completeness of the dataset.
For example individuals with local scope are only of concern in the declaring pattern
but unfulfilled mandatory dependencies to individuals with local scope hinders us to
instantiate the whole pattern representations. In contrast to this, the existence of an
individual from an concept with global scope is not depending on any relationships
declared inside of a pattern referencing such a concept. Concepts with global scope
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come with their own dependency structure (their properties). Otherwise the existence
of a whole pattern could depend on the existence of a individual with global scope. In
an API representation we would distinguish like this:

Global Scope Objects: An object representing an individual with local scope exists
once and is referred by every pattern instance using it. Global scope objects could
exists without being referenced in a pattern. For example an image instance could
exist without being annotated or decomposed.

Local Scope Objects: An object with local scope exists only inside a specific pattern
instance. Without the pattern object the local scope object is useless and without
the local scope object we could not instantiate the pattern object. For example
a AnnotationDescribtion instance makes only sense in a AnnotationPattern,
otherwise the AnnotationPattern is incomplete and thus useless without the cor-
responding AnnotationDescription instance.

In our example, we shown some individuals that have relationships in configurations
of multiple patterns and some individuals only having relationships inside of one pattern
configuration. Individuals like the image-1 or the geo-location-1 with relationships in
multiple patterns are individuals from concepts with a global scope. Additionally some
other concepts used in our example have a global scope, although their individuals have
only relationships in one of the pattern configurations. The second image, image-1 has
also global scope because it is individual from the Image and this concept has global
scope. If we look at Figure 1.1 all individuals with global scope have a black frame.
These observations could be generalized regarding D&S based patterns. The concepts
with local scope are often the ones defining the contextualized view provided by this
pattern. With a few exceptions, context independent classes will always have global
scope. In Figure 3.1 the basic D&S pattern with a possible class separation is shown.
We must denote that in other applications of the foundational patterns, it is possible that
concepts now denoted as of local scope, become concepts with global scope. For example
in the second introduced ontology, the Eventmodel-F, the InterpretationPattern uses
the Situation subconcepts of the different patterns. In Section A.2.3 of the Appendix,
you find a detail discussion of the interpretation pattern, Figure A.9 in the appendix
shows the interpretation pattern. In the interpretation pattern the situations are used to
refer to the pattern instance relevant in the particular interpretation. So if we want
to refer to the contextualized view declared by such a pattern from outside, it makes
sense to declare a Situation concepts with a global scope. This is shown in Figure
3.2. Such variations in concept scope can come from the different pattern applications
or with different ontologies. So the scope of a particular concept in a given ODP could
not be reliable derived only from the ontology itself. What we can do is analyzing the
concepts of all patterns. Concepts used in multiple patterns could be considered to be of
global scope. This approach fits for the example of the two different D&S based patterns
presented above and in the Figures 3.1 and 3.2. But there are multiple cases, the scope
of an given class depends on a deeper knowledge of the intended application and/or the
domain of the underlying ontology.
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As we can see, it is possible to distinguish concepts/individuals according to their scope
in the ontology, but such separation depends on several factors. With separating the
individuals into the two proposed sets, we could predict the complexity for CRUD. And
later, in Chapter 5, this information helps us designing our ontology API.

Figure 3.1: Concept scope in D&S

3.2 Ontology and ODP Structures

Considering the underlying structure of ontologies as a set of nodes, where pairs of
nodes are connected by links, leads us to an graph theoretical approach to ontology
structures. Based on this we can distinguish between different structures found in on-
tologies or ODPs. Basic ontology and ODP structures could be distinguished according
to the purpose of the structure or substructure and according to the conditions the struc-
ture satisfies. Based on the purpose we distinguish between inter-concept relationship
structures and simple declarative structures of single concepts. The two relevant basic
conditional structures we could distinguish are graph structures and tree like structures.
Tree structures could be distinguished according to the number of parent nodes for one
child into trees and rooted trees1. In rooted trees, only single parental objects are al-
lowed in trees in general multiple. By contrast to the tree structures, graphs are not
strictly directed and we could find undirected or bidirectional links and self references
in the inner structure. As a result of this graphs could contain cycles. In figure 3.3 you

1Explanation of rooted trees http://mathworld.wolfram.com/RootedTree.html
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Figure 3.2: Concept scope in Eventmodel-F D&S application

see simple examples of the three different structures that could be found in ontology
based datasets. In the rooted tree structure, every node expect the root has exactly
one parent and as a tree there exists only one path between two particular nodes. In
the tree the limitation to one single parental node was removed, so that nodes can have
multiple parents. The last example shows us a graph, in this very general structure most
of the limitations have been removed. In graphs nodes can have multiple parents, there
can be more than one path between two nodes, self references are allowed, undirected
or bidirectional links are allowed. As a result of general nature of graphs cycles in the
structure are possible.
On individual level, in datasets based on ontologies, the individual structure is always
based on the concept structure of the particular ontology. When we look at a single
configuration of an ODP, the individual structures is not dissimilar to the concept struc-
ture of the ODP. In this case we do not have to care about cross references between
different instance structures. Regarding multiple configurations of ODPs or ODP fami-
lies referring to joint individuals, the individual-structure probably expands the concept
structures. What is rooted tree on the level of a single ODP configuration could result
in a graph structure, regarding the whole ODP family or multiple configurations. That
could force us to tread a substructure in the manner of the referencing superstructure.
But due to the hierarchical order in the graph theory, based on the continually limitation
of conditions the structure has to satisfy. We could show that an solution working for a
graph will always work for a tree or a rooted tree.
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Figure 3.3: Different ontology structures

3.2.1 CRUD Operations on Individuals

Here we will examine the influence of the structure of ontology based data sets on the
different CRUD operations. We will focus in our discussion on graph like structures
and discuss in detail the particularities of such structures and their influence on CRUD.
The other two structures, tree and rooted tree, are just limited graphs. Therefor solu-
tions developed for graphs could also be applied to the simpler tree structures. In our
examination on structures we take the observations made in the previous sections into
account. CRUD operations always affect both sides the ontology API primitives and
the serialization in the triple store. Due to the closeness of the operations to ontology
API objects we use the object-oriented terms class and instance. All relationships and
properties regarded here are of mandatory nature for the existence of the class or pat-
tern. Optional dependencies have no direct influence on the existence of an instances.
We point out the problems arising from the different CRUD operations and examine
mechanisms to solve them.

Create: Creation in object persistence always involves two steps, the creation of
instances from classes and the serialization of those to the store. Regarding a
single pattern instantiation; generating a valid and complete serialization depends
on the instances representing a valid and complete configuration of the ontology
pattern. When regarding multiple instances or multiple cross referencing pattern
instantiations, we must ensure completeness and validity for the whole structure.
We recognize that a instantiation of a particular class in the dependency structure
depends only on the declarative dependencies of the class and the instantiation of
the classes connected by the outgoing links. Regarding dependencies as a hierar-
chical tree, creation is a bottom up process. First we have to instantiate from the
classes on the lowest level and only then we are able to instantiate from classes on
a higher level.
Ensuring that the created structure is valid and complete could be performed in
different ways. We can use predicated create operations, that ensure complete-
ness on creation by passing all mandatory relationships to the create operation.
Such a create operation expects all instances, mandatory to the instance to cre-
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ate, to be delivered as parameter in the create operation call. This is synony-
mous with checking all outgoing links and that is one of the biggest disadvan-
tage of predicated create operations. If we look at your example, we can easily
identify the inner loops over e.g AnnotationDescription, AnnotatedIEConcept,
InformationEntity and AnnotationDescription. The loops in our example
come with the specialization of the D&S pattern. For creating an instance in
a loop like structure, predicated create methods do not work. We run into an
infinite dependency loop. A instance of AnnotationDiscription depends on a
AnnotatedConcept instance, this depends on a InformationEntity instance, this
on a instance of AnnotationSituation and this again depends on the AnnotationDiscription
instance. Figure 3.4 shows the loop dependency. If we take a look at the An-
notation pattern in our running example we can also observe this problem. Every
instance defined there has a direct dependency to another instance. Following the
loop described above we recognize the cyclic dependency structure in the instances
of our example. As shown we are not able to instantiate from classes in loop like
structures with predicated create operations. Because in case of simple concept-to-
object mapping in combination with cyclic structures predicated create methods
do not work. We need another solution to preserve validity and completeness.
A possible solution is an independent completeness preserving process after cre-
ation. Such a process should analyze the whole created structure before serializa-
tion. This includes instance and property dependency checking. Starting from
the concept representation to create such method has to check recursively if all
outgoing mandatory dependencies are fulfilled. Methods for dependency checks
are also influenced by the underlying structure. Performing such checks on loops
forces us to a define dedicated starting point (the concept representation to create)
to ensure a proper ending of the method. From this starting point the method has
to check all mandatory dependencies and remember already checked representa-
tions. Serializations should only be possible from a valid and complete structure.
To ensure this the user of the API has to implement proper create method to
prevent or useful feedback to solve occurring incompleteness or validity.problems.
All this applies for instantiation of whole patterns and in there especially for classes
representing concepts with a local scope. Instantiation from classes representing
concepts with a global scope should be inter-concept relationship independent.
Only the declarative dependencies have to be solved when instantiating from a
class representing such a concept.

Read: The main source of problems in read operations is an invalid or incomplete
dataset to deserialize from. When working on complete data sets the read opera-
tion is quite straight forward. We can deserialize all we want. To ensure that the
instances represent a valid state, we only have to deserialize recursively all manda-
tory instances and their declarations from the store. Like in the create operation
we should be able to deserialize instances representing a concept with global scope
independently from the inter-concept relationships. We only have to take the con-
cept’s own declarative structure into account. For deserializing instances from
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Figure 3.4: A D&S Loop from the Example

a serialization representing concepts with local scope we have to instantiate the
whole pattern. Following all mandatory outgoing links defined in the concrete pat-
tern recursively. For our running example this means, we can deserialize an object
representing the image-1 at any time without being forced to deserialize anything
else. But deserializing ,e.g., the decomposition description (eddd) makes only sense
when deserializing the whole Decomposition Pattern. For that concern, we have to
deserialize objects for all individuals defines in this pattern. In case of the running
example this would be the presentation, the two images, the classifying concepts,
situation and describtion.
If we want to be able to work on data from arbitrary sources we have to be able
to deal with incomplete data sets. To preserve completeness and validity of the
instances, it is strongly recommended to develop strategies to handle deserial-
ization from incomplete data sets. Uncontrolled deserialization from incomplete
data sets always ends in an incomplete set of instances. That could constrains
us to further reduce our result set until we have a set of nodes without any missing
outgoing link. That means we have to reduce until we can fulfill every dependency.
We are not able to deserialize a pattern instance from an incomplete serialization.
Classes representing concepts with local scope within such a incomplete pattern,
could be deserialized. But because they are only of concern in the concrete pat-
tern context and the whole pattern could not be deserialized it makes not sense
to instantiate local classes from such incomplete serialization. Classes represent-
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ing concepts with global scope could be deserialized pattern independent but we
must check the pattern concepts declarative structure. So performing read on
incomplete data could lead to four different cases.

• First a serialization of an instance with local scope lacks while deserializing
a pattern. In this case we are not able to deserialize the pattern. We only
could deserialize instances with global scope. Same example as above but we
want to deserialize the annotation. In this case we are not able to deserialize
the pattern.
• In the second case a serialization of an instance with global scope lacks. In

this case we are not able to deserialize any pattern this instance is involved in.
Like in the case above we could deserialize all the other instances with global
scope and patterns this instance is not included in. If in the serialization of
our example the central instance, the image-2:image is missing non of the
patterns could be deserialized.
• In the third case the serialization of the declarative structure of an instance

with global scope is incomplete. If the incompleteness concerning a mandatory
property, this is similar to missing the whole instance in the serialization.
Consindering the geo:long and geo:lat relationships to be mandatory for
the GeoPoint concept. Now missing one of the xsd:decimals literals in
the serialization, hinders us in deserializing the geo-location-1:GeoPoint.
Thus we are not able to deserialize annotation and datavalue.

Update: In the update operation we have to modify the instances and accord-
ing to this modify/replace the statements in the serialization. Depending on the
scope of the operation we have to modify a single field in an instance, replace a
whole instance or modify/replace multiple instances. According to this we have
to modify/replace the statements representing the single value, the instances or
the instances in the serialization. The manipulation of the instances is trivial, the
interesting part is to mirror this manipulation to the triple store. So our discus-
sion in this part revers much to the serialization and the single statements in it.
Referring to the graph representations build up by the statements, we can dis-
tinguish possible changes according to the nodes involved. Changing literals or
leaf URIs, is trivial. Thereby leaf URIs are URIs that occure just as object in all
statements. We just find the right statement and change the object URI/Literal
in it. For example changing the geo:long in the geo-location-1 just involves
one statement.

geo−l o ca t i on −1 <geo : long> ” 40 ,76 ”ˆˆ xsd : decimal .

To change the longitude we have to replace this statement through a new one with
the new longitude like:

geo−l o ca t i on −1 <geo : long> ” 50 ,68 ”ˆˆ xsd : decimal .

If we want to change an inner node of the graph, a URI also present as subject
in some statements of the structure, we have to deal with the slightly different
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nature of triple stores. Such an inner node is subject in the statements in which
it declares its properties and relationships. Additionally this node is also used as
object if some other node refers to it. To perform an update operation we have
to find all statements where this particular node references or is referenced. We
have to replace each of those statement through a new one. So updating leaf nodes
that could only occur as objects is easy, but dealing with the inner nodes always
leads to replace multiple statements in the graph structure. Below we will examine
update(replace) operations on our example, that affects an inner nodes.
Replacing the GeoPoint instance geo-location-1 through another instance of
GeoPoint, e.g.geo-location-2 affects multiple statements in the serialization of
our example. First of all the particular instance and its statements in the seri-
alization changes. And with it references to the URI of geo-location-1 should
change to the one of geo-location-2. This affects all statements representing in-
coming links, like classifies and hasRegion. In such links the URI has the object
role. In all statements representing outgoing links, like hasSetting, geo:long and
geo:lat the URI represents the subject. If such a link represents a property dec-
laration, like geo:long and geo:lat, it is obvious that the Literals change with
the new GeoPoint. In this case the whole statement should be replaced through
the new ones defined by geo-location-2.
In the listings 3.1 and 3.2 we present the statement structure of the AnnotationPattern
in our example, before and after the update operation described here. As you can
see the statements affected are the type declaration in line 5 and the ones in from
line 11 to 14. Those define the concrete pattern instance. There all appearance of
geo-location-1 changes to geo-location-2. And as mentioned above the values
for longitude and latitude also changes. If optional properties or relationships are
present in the serialization, the update also affects all statements representing such
relations.

Listing 3.1: AnnotationPattern statements before update
1 eaad <rdfType> Annotat ionDescr ipt ion .
2 eaac <rdfType> AnnotatedConcept .
3 image−2 <rdfType> Image .
4 glp−1 <rdfType> EXIFGeoParameter .

5 geo−l o c a t i o n −1 <rdfType> GeoPoint .

6 eaas <rdfType> Annotat ionS i tuat ion .

7 eaas <dul : de f i n e s > eaac .
8 eaad <dul : de f i n e s > glp−1 .
9 eaac <dul : c l a s s i f i e s > image−2 .

11 g lp−1 <d u l : c l a s s i f i e s > geo−l o c a t i o n −1 .
12 geo−l o c a t i o n −1 <geo : long> ” 40 ,76 ”ˆˆ xsd : dec imal .
13 geo−l o c a t i o n −1 <geo : l a t > ”−73 ,99”ˆˆ xsd : dec imal .

41



14 geo−l o c a t i o n −1 <h a s S e t t i n g > eaas .

15 image−2 <hasSett ing> eaas .
16 eaas < s a t i s f i e s > eaad .

Listing 3.2: AnnotationPattern statements after update
1 eaad <rdfType> Annotat ionDescr ipt ion .
2 eaac <rdfType> AnnotatedConcept .
3 image−2 <rdfType> Image .
4 glp−1 <rdfType> EXIFGeoParameter .

5 geo−l o c a t i o n −2 <rdfType> GeoPoint .

6 eaas <rdfType> Annotat ionS i tuat ion .

7 eaas <dul : de f i n e s > eaac .
8 eaad <dul : de f i n e s > glp−1 .
9 eaac <dul : c l a s s i f i e s > image−2 .

11 g lp−1 <d u l : c l a s s i f i e s > geo−l o c a t i o n −2 .
12 geo−l o c a t i o n −2 <geo : long> ” 55 ,92 ”ˆˆ xsd : dec imal .
13 geo−l o c a t i o n −2 <geo : l a t > ”−24 ,68”ˆˆ xsd : dec imal .
14 geo−l o c a t i o n −2 <h a s S e t t i n g > eaas .

15 image−2 <hasSett ing> eaas .
16 eaas < s a t i s f i e s > eaad .

Delete: The delete operations is, if wrongly performed, the operation with most side-
effects on the validity and completeness of serialization. Deleting an instance and
its serialization with completeness preservation, always means to delete recursively
all instances depending on the existence of the deleted instance. We will discuss
the deletion of mandatory inner nodes and additionally the deletion of mandatory
leaf nodes. It should be clear that such mandatory relationships could be directed
or indirected. That means that both parent and child could mutually depend
on each other. Regarding delete operations, we have to ensure that performing
this operations does not violate the existential constraint through the modification
performed on the instances and their serialization. We should distinguish between
delete operations performed on whole patterns and on instances. In a pattern
based ontology delete operations often affects a whole pattern, e.g., if we want to
delete the geopoint annotation from our running example it makes sense to delete
the whole AnnotationPattern and DataValuePattern instate of just deleting the
annotation instance. Regarding the class scope recommends us to distinguish ones
more between instances with local and those with global scope. When deleteing
the AnnotationPattern/DataValuePattern instance like proposed above only the
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classes of local scope should be affected and not the image itself also member of
the two pattern instances.
The simplest case is to delete an instance with no mandatory relationship to any
other instance. Such an operation could not violate any constrains and the scope of
the object is irrelevant, thus the operation could be performed unchecked. Deleting
an instance with local scope, mandatory to the declaring pattern forces us to delete
the whole pattern. For example if we delete the eaas:AnnotationSituation in
our running example. The whole Annotation pattern becomes incomplete and thus
has to be deleted also. The instances with global scope have a special role in this
case because their existence does not depend on the pattern. This leads us to the
deletion of whole patterns.For deleting a pattern all the local instances have to be
deleted. Such an operation has no direct influence on instances with global scope
referenced by this pattern but we have to decide how to handle a global instance
if no pattern refers to it. Should it be kept or erased? This behavior should
be made controllable. And to provide a functionality dealing with such behavior
we have to count references for global instances. Last we consider the deletion
of instances with global scope. Deleting instances with global scope could affect
multiple patterns. If we delete the image-2 from our example, we have to delete
the the whole AnnotationPattern and DataValuePattern and all other patterns
referring to image-2. There is nothing to annotate anymore. The decomposition
pattern is affected in parts, the ComponentRole defining the concept of image-2
is no longer needed. The pattern itself still defines a decomposition and so should
only be touched in the parts depending on the existence of image-2.

3.3 Ontology Semantics and their influence on CRUD

Performing CRUD operations on ontology based data set, is not only affected by the
structural particularities of ontologies. The semantics of ontologies also leads to subse-
quently peculiarities of CRUD. In this section we observe what kind of concepts repre-
sentation could be useful on API side to provide a basis for valid CRUD. The concrete
representation structure strongly depends on the concepts defined in an ontology and
thus on the constructors used in the definition. We analyze concept constructors intro-
duced in 2.5.1 and complex concepts resulting from constructor combinations. In many
cases constructors or combinations of them could lead to additional problems regarding
the CRUD operations. We present some of these cases in detail and discuss how to
implement CRUD that can handle such situations.
Generally we constrain that only named concepts are allowed for concept that should be
represented in the API and more general in ontologies of which an API should be build.
In complex concept definition we only allow named concepts as role filler. We support
expressions in the form, e.g., A ≡ B t C and as role filler we support A v ∃R.B and
A v ∀R.B
Ontologies not fulfilling these limitation could easily be transformed. For example a
complex concept A defined by a constructor combination A ≡ ∃R.(∀P.(C ∪D)), could
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easily be decomposed to A ≡ ∃R.X, X ≡ ∀P.Y and Y ≡ (C t D). As you can see
we named all anonymous concepts, (C ∪D), (∀P.(C ∪D)) and ∃R.(∀P.(C ∪D)). With
naming all the anonymous concepts we build up a chain of named concepts. Approxi-
mating a API representation for A means to iterate over this concept chain and combine
the mapping instructions, if they exist, for the single constructors to a mapping for the
whole chain. Often it might be necessary when iterating over such constructor chains to
stop the iteration at a certain point. But we have to choose such a point carefully, so
that we are still able to build an API representation of the intended concept in a way,
that the out-coming serialization is still valid regarding to the declaring ontology.

3.3.1 Named Concept Representations

Generally we can denote that for every named concept, there should be some kind of
representation in the ontology API Model (OAM). Further discussion will be needed
on how those representations should look like. Regarding rudimentary named concepts
without any properties, we can denote that an individual to such a concept always
serialize to a RDF triple in the form:

IndividualIDURI <rd f : type> ConceptIDURI .

Most of the ontology API frameworks mentioned in Section ?? map their instances
(objects) in this way. These two URIs are the basic information needed in every API
representation of any concept to be able to serialize it. Based on this observation we can
distinguish between two different abstractions for concepts in our API. We can define a
class for a named concept holding the two URIs or we can just represent a individual
through two URIs without a wrapping class. In Section ?? we talked about the two
different sets of concepts, global and local. In combination with the observations made
here we denote that we represent local scope instances through two URIs an identifier
URI, unique to the single instance and an type URI unique for the concept. Otherwise sp
with global scope, who often have a property structure carrying additional information
of the particular instances, will become a full featured classes representation.

3.3.2 Concept Constructor Representations

Ontologies do not only consist of Atomic or named concepts, often constructors are used
to define the ontologies semantic. In DL we define complex concepts with concept and
role constructors in arbitrary combination. Regarding such complex concepts, it is not
enough to examine single CRUD operations performed on an class representation of a
complex concept. Sequential combinations of CRUD operations on instances of such
classes could lead to side effects and thus problems in further CRUD operatons. In this
subsection we will discuss DL constructors and their influence on CRUD. Additionaly,
we will analyze the side effects that could occur when performing CRUD on complex
concept representations. We provide basic patterns to generate API representations for
concepts.
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1. Equivalence: The equivalent (≡) to a concept A is a concept B, where the extension
of B is exactly the same as the extension of A. The axiom denoting equivalence
between the two concepts allows us to interfere that all individuals of type A are
also of type B and vice versa. In the knowledge base, especially the A-box, this
information is normally implicit. If we only have one individual x, e.g. x : A, the
information x : B could be interfered. Through the mapping to an API and the
performance of CRUD operations this implicit interferable information becomes
explicit. Regarding the following example that becomes obvious: In the T-box we
have two concepts A and B and an axiom denoting them to be equivalent A ≡ B. In
the corresponding API environment we will have two classes, classA and classB,
one for each of the concepts. In the A-box, in our case the serialization, we have
a single individual of type A, x : A. If we perform a read operation on this se-
rialization, like give me all instances of type B - getAllObjectsOfType(classB)
- we expect, according to the equivalence, to get back an instance of classB for
the A-box individual x : A (the serialization instance x:classB). So after the
read (deserialization) we will have an instance x:classB. If we now write back
(serialize) our current instance state, we will make the implicit information, that
all individuals of type A are also of type B, for x explicite. We add x : B by
serializing x:classB. This new information could lead to different problems per-
forming other CRUD operations on the knowledge base. For example deleting our
instance x:classB we could not only delete the corresponding individual x : B, we
maybe have to delete x : A from the serialization. Otherwise reading once again -
getAllObjectsOfType(classB) - will return x as instance again.
This observation makes the implementation of valid and complete CRUD more
complicated as expected. To solve the problems arising from the use of the equiv-
alence constructor we have to use reasoning services to identify all possible seri-
alizations of and instance when deleting. Such a reasoning task has to identify
all relevant individuals, so that we can perform the CRUD operation on all corre-
sponding serializations.

2. Union: The concrete creation of an instance of a class representation of an concept
defined using union depends strongly, on the mapping of the union constructor.
Independent from the concrete mapping we could observe the intended serialization
result from an union-class instance. In many cases such a union class is of no
interest in an ontology API. It is rather useful in reasoning performed on the
dataset or the ontology itself. A class representation is of interest in an ontology
API if it should be possible to perform a cast to the union class. This could happen
if other classes in the ontology API refer to the union class. If an API is mapping
the concepts to corresponding class representations, we could simulate the union
through a common supertype. This approximates the semantic of the union in
a object-oriented environment. In all cases, the serialization result is essential,
whether if an API representation of the union concept is needed or not. For
example if we start with two concepts father and mother, we could define a new
concept parent based on the other concepts as follows: parents ≡ fathertmother.
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Regarding this example of a union, an API approximation should allow us to
cast a instance of an class representing father or mother to the type of the class
representing parent. This makes sense in environments where it should be possible
to declare or reference instances of classes who are combined to define such a
union-class, as a members of the union-class. If such a behavior is not needed
we do not need a class representation for the union. Similar to the equivalence
constructor and due to the fact that in the definition of named concepts based
on an union always an equivalence constructor is involved too, e.g., parent ≡
fathertmother we could run into additional problems with use of union classes
in our API. We would be able to instanciate a instance of the union class, e.g.,
parent from serializations made from instance of father and mother. Despite from
the problems arising with the use of the union constructor in the declaration, the
abstraction of an union to a common superclass could produce its own side effects
regarding CRUD. For example a father class referenced from a parent field has
to be serialized to a father individual but we have to keep the parent nature in
mind for deserialization.

3. Intersection: In intersection like C ≡ AuB every individual of C is also individual
of A and B. For example a concept women could be defined as an intersection of
the concepts person and female, women ≡ person ∩ female. Like in the case of
union it might be useful to introduce a object-oriented representation for woman,
in our API. By contrast to union a intersection-class should be defined in
the object-oriented world by a subclass inheriting from all classes to be combined.
This would enable us to use an instance of type intersection-class everywhere
where a type is expected from which is intersected. A new class representing the
woman concept should implement both, the person and female representation.

4. Complement: The complement of concept A, ¬A represents a new concept, its
extension consists of all extensions not in the extension of concept A. The com-
plement constructor is important in the definition of concepts and their individual
sets, but in a object-oriented environment all classes and thus their extensions
are disjoint unless stated otherwise. This would make all other classes to be the
complement of a particular class. It is possible to abstract this generality in DLs
trough common supertypes but this would be very verbose and does not make
sense.

5. Number Restrictions: Cardinality based on qualified or unqualified number re-
strictions constructors strongly influences the create process. First of all cardi-
nalities let us distinguish between mandatory and optional dependences on create
time. And it denotes if we have to deal with a set of individuals in this relationship
or with a single individual. minCardinality above 0, always indicates a manda-
tory dependency, one of 0 indicates an dependency and thus the class property to
be optional. These dependencies have to be taken into account in various CRUD
operations to preserve completeness and validity of the instances and serialization.
A maxCardinalities allows us to define the maximum number of individuals a
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relation could refer to. This is a indicator how to implement such property in a
class representation. In the case of a maxCardinalities greater than one, the
property represents a set of instances. In the case of one, a maxCardinality less
then one makes no sense, the property represents a single instance. In a class
representation this leads to set property fields or single property fields, Despite of
sets one of the most usual mandatory case is a minmaxCardinality of one. This
represents a mandatory dependency to one other instance of the specified class, a
single property field in the implementing class.

6. Existential quantifier: An existential quantifier like defined in 2.5.1 provides us
with useful information about mandatory dependencies on individual existence.
On API side this information could be integrated, like the number restrictions,
into the cardinality information of properties. For example we can define mother
as a woman who has a child mother ≡ woman u ∃hasChild.person. If we create
a class representation for a concept like mother we can create it as subclass of
the class representing women. On instantiation a mother instance has to have at
least one child. This could be ensured by the class constructor with only providing
constructors for the mother class that expect a child. For sure a mother can have
more than one child. To model this the child field could become a children field
(a set of childs). In this case it is recommended to implement an additional class
constructor that expects a set of children.

7. Value Restriction: A value restriction ∀R.C defines a universal quantifier, that
allows us to define a concept, based on a set of individuals, involved in a particular
role definition. For example we could define the concept women in another way
using value restriction, women ≡ person u ∀hasGender.female. In an object-
oriented environment it is not possible to define a class in such a way. But it
is possible to restrict class properties in object-orientation, for example we could
denote a class women to have a property gender that has to be female by default.
This constructor is usually used in the definition of complex concepts, we discuss in
3.3.2. Through the versatile fields of application of this quantifier it is impossible
to define a unique mapping instruction for value restrictions. Depending on the
concrete intended semantic of the definition, multiple ways of mapping this to an
object oriented approximation are possible.

8. Disjointness: Disjointness is not one of the concept constructors of DL, but a often
used OWL restriction, cause of this we will discuss it here. In DL disjointness is
just syntactic sugar and can be reduced, e.g. to subsumption and complement or
intersection and equivalence. The fact that the classes A and B are disjoint could
be formulated like A v ¬B or A uB ≡⊥.
The disjoint to an arbitrary class A is a class A′, whereby the extension of A′

is disjoint to the extension of A. In a software environment the semantic of dis-
jointness could be used to make consistency check on the instance representation.
For this service the disjointness between classes could be approximated with the
introduction of an superclass all disjoint have in common. Such a superclass would
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be a construct with no direct effect on the serialization and thus on CRUD. It just
ensures in a programmatic way that the extension of the superclass is divided into
disjoint extensions, one for each of the disjoint subclasses.

9. Subsumption: Subsumption, like A v B means that all A are also B but not not
vice versa. In an object-oriented environment, there the definition of a class on top
of sets of individuals is not possible, exists no adequate equivalence mechanism for
the subsumption operator.
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4 The Model for Ontologies (MoOn)

In this chapter we will discuss and define our Model for Ontologies (MoOn) based on
the observations made in the previous chapter. The model itself should base on the
UML2 Class Diagram. The MoOn should serve as initial representation of the ontology
in the API generation process. This purpose requires additional functionality in the
model despite from just representing a logic based ontology. But even for mapping logic
based concepts to UML2 various problems must be solved. Because of the object oriented
nature some ontological concepts have no direct counterpart in the UML2 Class Diagram.
To be able to model ontology semantics in UML2 we need to extened the UML2 Class
Diagram meta-model. Several different options are available to extend or restrict UML2
to suit to a particular domain, from featherweight extension through keywords, via light
weight extension through profiles to heavy weight extensions customizing the behavior
of UML2 or even change the basic concepts used to define the UML2 Class Diagram
itself [10]. Most of the customizations possible for UML2 could be assigned to one of
the following classes of extensions.

1. Give a terminology that is adapted to a particular domain.

2. Give a syntax for constructs that do not have a notation in UML2.

3. Give a different notation for already existing symbols.

4. Add semantics unspecified in the meta-model.

5. Add constraints that restrict the use of the meta-model.

6. Add information that can be used when transforming a model to another model
or code.

The intended customization of the UML2 Class Diagram has to provide models for
the constructs of OWL that could not be represented directly in UML2. Different con-
structors in OWL could not be mapped to single UML2 elements because of the different
origin of the two languages families. UML2 is aligned to the object-oriented approach of
software engineering. It is closed world and provides a strong hierarchical separation in
class definition and instance information. The semantics of DL constructors, shown in
Tables 2.1 and 2.2 are defined on sets of interpretations of the used concepts. Complex
concepts in OWL are defined on top of interpretation sets of other concepts. This vio-
lates the strong separation of class definition and instance informations in UML2. We
discussed the different constructors and combinations of those in Chapter 3. For exam-
ple constructors like complement or disjointness have no similar counterparts in UML2,



so it is necessary to define modeling conventions for them. Such modeling conventions
define combinations of UML2 elements (models) to represent OWL constructs with no
direct counterpart in the UML Class Diagram. We found such an extension to UML for
OWL in the OWL profile and mapping conventions defined in the ODM. For a closer
look on the ODM take a look at Section 2.6.2 in the related wok chapter.
Despite from the mapping of OWL additional informations useful for further transfor-
mation in our API generation process should also be integrated into the MoOn. This
topic is also discussed in this chapter. Based on the observations made in Chapter 3 we
analyze what kind of informations useful for transformation should also be integrated
the MoOn and how to integrate it. We propose several extension for the UML2 class
diagram to integrate the previously identified information.

4.1 Requirements of the MoOn

We can identify two general origins of requirements to our MoOn. Requirements con-
cerning the representation of logical based ontologies in an object-oriented UML Class
Diagram and requirements concerning the needs of our model driven API generation
process. To be able to map from logic based ODPs to an UML2 Class Diagram we have
to make some assumptions regarding the ODP definition and representation to obtain a
model we could work on and we need an extension that gives us a similar expressiveness
in the MoOn as in logical ontology languages. As denoted we will use the ODM, as OWL
extension to UML2 Class Diagram for our model. In the following we will focus on OWL
DL as an ontology language and on the OWL extension for UML2 defined in the ODM.
As another source for requirements the model driven API generation process forces us
to introduce additional extension for the MoOn to be able to serve the needs of it. After
the discussion on requirements regarding the mapping, we focus on informations that
could be useful supporting the transformation and generation. Parts of such information
could be derived from the underlying ontology. Other parts of such information should
represent user driven decision regarding the intended implementation and API structure.

4.1.1 Assumptions to ODP Definition and Representation

We already denoted in Chapter 3 that we have to make some assumptions regarding the
definition of ODPs. It is difficult to define a UML2 representation and transformations
for arbitrary complex ODP definitions. To define proper mappings and transformations
we have to make some assumptions regarding the complexity in the representation of
the MoOn. Pattern based ontology design helps us, despite from other advantages, to
decompose complex ontologies into a set of more or less independent micro ontologies
with a characteristic purpose in the domain of the whole pattern family. The first
assumption regarding ODPs is that in an ODP based ontology very ODP should come
in its own OWL file. This eases the identification of the single patterns. In combinations
of role and concept constructors in the ontology, like those described in Section 3.3 we
have to make some limitations. Unlimited complexity in the concept definition could
not properly be mapped to an UML2 representation. The limitation regarding concept
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or role definitions should be that we do not allow anonymous concepts in combined
constructors or role fillers. This means that in complex concept or role definitions, inner
concepts defined by the use of constructors should be named and these named concepts
should be combined in the following. See the example in 3.3. Nearly every definition
that uses anonymous concepts could be brought in a form without anonymous concepts,
so this does not limit the expressiveness. Otherwise decomposing ontologies in this
way leads to an introduction of multiple new named concepts and we have to decide
which of the named concepts should have a direct representation in the API. We do not
need API representations for all of the newly introduced named concepts. To be able to
control this we need information in the model to control the transformation and separate
concepts with API representation from those without. Such information should also be
placed in the MoOn. In the following we discuss the different information that should
be integrated in the MoOn. Where such information came from and how to integrate it
into the MoOn.
Additional assumptions could be made regarding the degree of axiomatization made in
the ontology and ODP definitions. Often ODPs are not strong axiomatized to retain
their generality, refer to [29]. But especially cardinality informations about properties
might be very useful in an API generation process. They lead to cleaner less complex
classes. We propose to use stronger axiomatized ODPs in an API generation process We
also support lesser axiomatized ODPs but it requires more user decisions.

4.1.2 Requirements from OWL

Most of the requirements concerning the presentableness of logic based ontologies in
UML2 are covered by the ODM introduced in Section 2.6.2. But some of the map-
ping conventions made in the current version of the ODM, like those discussed in the
introduction of the ODM does not fit for our transformation process. The modeling
convention made for owl:intersectionOf, mentioned in the related work section, is a
good example for that. Denoting OWL nature of the UML constructs through the use of
UML:Constraints, like in case of owl:intersectionOf, could lead to problems because
multiple editors do not allow constraints on generalizations. Additional as mentioned,
the modeling convention for owl:intersectionOf misses some of the specification. So
we decided to use the upcoming conventions for such constructs. Namely these are
owl:intersectionOf and owl:union. You can find Figures showning the old an the
new mapping conventions of these and other constructors in the Appendix A.3.1.
Our MoOn bases on UML2 and the ODM OWL profile, modified regarding some OWL
constructors like mentioned above.

4.1.3 Additional Requirements

The MoOn serves as starting point for the following transformation and the final gener-
ation of JAVA code. The model must represent the ontology and display all information
needed for the following transformation tasks. Such information can have two differ-
ent origins, first it can come with the ontology, so we must be able to identify this

51



informations in the model. We have to prevent that we loose useful information when
representing the ontology in UML2.
Second it represents ontology independent information the user (user means the user of
the MoOn) gives. This information can control the structure of the API to be generated,
e.g., indicates if a particular concept should have an class representation in the API or
not, see Section 4.1.1. For such information we have to provide additional extensions in
the definition of the MoOn. Despite from placing it in the model, user driven informa-
tion could be defined in the transformation process through wizards triggering a user
driven transformation. In this subsection we analyze the observations made in Chapter
3, regarding informations that could be useful in our transformations. Of special interest
for us are the observations on ontology semantics, concepts scope and constructor com-
binations made in the Sections 3.1 and 3.3. In the following we list different informations
needed in the MoOn. We describe the motivation behind the decision to integrate this
information in the MoOn and we analyze their origin.

Concept information: In the MoOn it must be possible to denote for a single concept if
an API representation is required or not: As mentioned in Section 4.1.1 we have to
provide information about the relevance of concepts for the API generation. Espe-
cially regarding the named concepts newly introduced when decomposing the ODP
definition according to the procedure described in 3.3. In general we could say that
we need class representation for all the named concepts in the regarded ontology.
But with decomposing ontologies and introducing named concepts for previously
anonymous concepts we need and indicator which were the initial named concepts.
Additionally it might be useful to provide class representations for selected newly
named concepts in special cases. To derive the initial named concepts is an easy
task, we just have to remember all named concepts present before decomposition.
But even in this case it could happen that we do not want representations for some
of them and we still have to care about the newly introduced named concepts. So
signing concepts for class representation in the MoOn is a task that could be au-
tomated in parts but in some cases user decisions are needed. Sometimes,e.g., in
the case of the different Situations used in the InterpretationPattern to refer
to whole patterns, it could be necessary to take superconcepts into account. In
this special case is seams useful to add an general situation concept to the MoOn.
From this we could generate a Situation superclass. this class eases the definition
of a class representation for the InterpretationPattern.

ODP Informations: The MoOn should reflect the pattern based character of the On-
tology: The separation of concern coming with ODPs helps us in organizing the
functionalities the ontology API should provide. If we refer to our running example,
it uses different patterns with different concerns. The DecompositionPattern to
decompose the presentation into the two images. The AnnotationPattern and the
DataValuePattern to annotate image-2. These patterns could be used as indica-
tors for functionalities the API should provide. For example the AnnotationPattern
indicates that we want to have an annotation functionality in the generated API.
Additionally we can identify the main classes such a task is performed on. In
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the case of annotation this would be the InformationEntity representation to
be annotated and the Entity representation for the annotation. To preserve this
distinct advantage in the UML MoOn, we have to find a way to divide the model
representing the whole ontology into different clearly separated parts that repre-
sent the single patterns of the ontology. The concept scope information mentioned
later is also partly ODP related.

Cardinality Informations: To generate useful APIs we need further information about
the concept and their properties. A useful set of informations that should be in-
tegrated in the MoOn is the information about the cardinalities of relationships.
Cardinality informations in an ontology comes with the axiomatization of the ontol-
ogy. Through number restrictions and existential quantifiers we limit the domain
of properties of an concept. In case of OWL such cardinality information comes
with ,e.g., some, owl:maxCardinality or owl:minCardinality. Regarding a sin-
gle concept and all of its relationships, cardinality makes it possible to distinguish
these relationships into mandatory dependencies and optional dependencies. If an
relationship is mandatory or optional dependencies has direct impact on the CRUD
behavior that has to be used, as we have shown in 3.3. And thus such cardinality
information is very important in the definition of the concrete implementation of
such behavior as described in 3.2.1. As mentioned, cardinality information in on-
tologies depends on the concrete degree of axiomatization in the observed ontology
or ODP. So in weak axiomatized ontologies such cardinality information might not
be present. For a concrete application of such ontologies in APIs it is recommended
to the user to add that information to the MoOn.

Concept Scope Informations: The scope of a concept must be specified in the MoOn:
As shown in 3.1 informations about the scope of concepts and thus their extensions,
let us identify the area a CRUD operation has to be performed on. Like mentioned
above, concept scope has a connection to the idea of ODPs, but it could also be
determined in non pattern based ontologies. The separation of concepts according
to their scope benefits from the pattern based character of the ontology. For this
reason and the big impact on CRUD behavior, we mention the scope independent
from the informations derived from ODPs. To distinguish between classes repre-
senting concept with ontology wide scope and classes with pattern wide scope we
could analyze the whole ontology, to find out which classes are used in multiple
patterns an which are only used in one pattern. But this would give us only hints
about the concrete scope of an concept. In some cases concepts intended to have
global scope are only referred by a single pattern. Automated computation of such
information from the ontologies could help the user, but the single decision are
strongly influenced by application concerns and thus by the user.

Implementation Information: Implementation related information must be included
in the MoOn: The last set of useful information is strongly tailored to the tar-
geted implementation. Especially to the chosen programming language and the
persistence framework used in the implementation. The concrete implementation
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depends strongly on the used programming language. Every programming lan-
guage is limited in the features it supports. If we choose Java for example we
have to deal with the peculiarities of Java, e.g., Java does not support multiple
inheritance, it is only possible to implement multiple interfaces not to extend from
multiple classes. In cases we depend on multiple inheritance, it is useful to place
information about the intended API realization in the MoOn. What should be
interface and what class?
Another origin of implementation related information is the persistence layer or
database API that should be used by the intended ontology API. Nearly every
persistence layer needs some kind of meta infoamtion about the objects/classes
that should be mapped. Many of the introduced layers are Java annotation based.
They use meta information placed in an annotation on the concrete object or field
for mapping. In case of an ontology and a RDF serialization this meta information
reflects the particular relationships and declarations coming from the ontology con-
cept this class represents. This information can be derived from the ontology and
should be placed in the MoOn to support the implementation based on the per-
sistence layer. This information is strongly aligned to a concrete implementation
and thus it tailors the implementation independent model to a concrete program-
ming language and frameworks used in the intended implementation. For every
supported persistence layer and programming language we need an new extension
wrapping this information.

4.2 Design and Specification of the MoOn

Based on the requirements defined above we will develope the meta-model for the MoOn.
We introduce our MoOn meta-model as an UML Class Diagram based meta-model,
extended by the OWL UML Profile from the ODM. Additional to this we use ODMs set
of mapping conventions for OWL but as described we modified some of them. This builds
up the basis for our MoOn capable for the representation of Ontologies in UML2. An
overview on the mappings of OWL constructs to UML2 could be found in the Table 5.1 on
Page 61. Despite from the syntax and semantic of the model regarding the representation
of ontologies, we will focus the integration of the additional informations defined in
4.1.3 into an MoOn. Some of the information could be integrated with standard UML2
constructs, for some others we have to define additional extensions to be able to place
them into the model. Others could be modeled by defining a modeling conventions or a
specified model structure. For the first ones we give integration instructions. For those
we need additional extensions for, we define them. And for the last group we define
modeling conventions or a basic structure of our model.

ODP Information: The information about the pattern based structure of the repre-
sented ontology is modeled in the MoOn through the special structure of the
MoOn. We define a reliable structure for the MoOn. The basic UML element
of every MoOn is a model, in this model multiple packages are defined. These
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packages are stereotyped with �owlOntology�and each of these packages contains
one ODP or a non pattern based ontology.

Scope, concept and implementation Information: Informations about the concept scope
and the intended API representation could be combined in a new extension to
Model. We realize the extension through a new UML profile. This profile is
strongly aligned to the Winter API, decribed in 2.7 and 6.2. It describes the
concept scope and additional winter related information. This profile defines two
stereotypes: �WinterLocalObject�for concepts with local scope and a API repre-
sentation and �winterGlobalObject�for concepts with global scope and API rep-
resentation. Concepts without APi representation are not stereotyped in this way.

Cardinality information: For information about the axiomatization of the ontology,
through number restrictions and existential quantifiers we do not need an addi-
tional extension. We use UML cardinalities to place such information in the MoOn.
It is possible to add cardinalities to every kind of association or class property in
UML. Cardinalities give use important information about the manner of inter con-
cept relationships, optional or mandatory, in a ODP and about concept properties.

4.3 A full MoOn for our running Example

In this section we present a MoOn for our running example. The Figures 4.1 to 4.4
show the MoOn for our running example. As we know the running example consists of
three different patterns, the AnnotationPattern, the DataValuePattern and the Decom-
positionPattern. Figure 4.1 shows the basic structure of the MoOn model, we can see
three different packages one for each pattern. Unfortunately the editor does not visu-
alize stereotypes on models or packages, all packages in the figure are stereotyped with
�owlOntology�. Figures 4.2 to 4.4 show the pattern packages and the patterns models.

Figure 4.1: The MoOn for our running Example

Figure 4.2 shows the MoOn of the AnnotationPattern. Each class in this package
is stereotyped with two different stereotypes. The first one �owlClass� denotes the
UML:Class to represent an owlClass. This stereotype defines a field URIRef to define
the concept URI of the annotated class, this URI can be derived directly from the
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rdf:about statement of the corresponding owl:Class definition in the ontology. The
second annotation is Winter and mapping related, it denotes the class to be of global
or local scope and allows to define Winter related informations in the model. In the
transformation from the MoOn to the OAM, only global classes will get an class repre-
sentation in the OAM and finally in the ontology API. This would be discussed in detail
in Chapter 5. You may also recognize the cardinalities on the associations between the
UML classes. The existential and number restrictions from the pattern definition are
translated to cardinalities in the model. The associations are stereotyped, in this case
with �objectProperty�, this stereotype also defines a field URIRef for the predicate URI,
this URI could also be derived from the OWL ontology. Additionally the associations
are named according to their predicate name in the URI.

Figure 4.2: The AnnotationPattern Package

Figure 4.3 shows the DecompositionPattern MoOn and Figure 4.4 the DataValuePat-
tern MoOn. Again all the classes and associations are stereotyped in the same way as in
the AnnotationPattern MoOn and the cardinality information is present on the associa-
tions between the UML classes. In the DataValuePattern we recognize a new stereotype
on the last association connecting the Region with the Value, �datatypeProperty� and
we can also recognize that value is not stereotyped. In this case Value is not a UML:Class
it is a UML:Primitive representing a literal in the ontology.

4.4 Summary

To define the concrete meta-model of our UML MoOn, we will sum up all the state-
ments and observations made in the previous discussions. As basis we use the UML2
Class diagram in combination with the OWL profile from the ODM. With such a model
we are able to model nearly all concepts defined with OWL DL and with the stereo-
types provided by the profile we could denote the OWL origin for each UML2 entities.
We constraint the basic structure of a MoOn model to be a UML:Model containing a
collection of UML:Packages. Each of those UML:Packages contains the model for a non
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Figure 4.3: The DecompositionPattern Package

Figure 4.4: The DataValuePattern Package

pattern based ontology or a single ODP. Cardinality information from the ontology will
be placed in the MoOn using the cardinality syntax of UML2. Additionally we define
extensions to the MoOn for concept scope information and to tailor it to a concrete
implementation. Because of the strong dependency of an extension to the concrete im-
plementation we discuss such an implementation related extension in a later chapter
in combination with a concrete ontology API implementation model. The extension
regarding the scope of single concept is realized through a new UML2 profile. This
profile defines two stereotypes �global� and �local�. Those stereotypes could be used
to mark the single concepts with their scope. Another extension, also realized by an
UML2 profile, concerns the relevance of single concepts in the API generation process,
as described in Section 4.1.3. An initial automated markup with these stereotypes could
base on the analysis of the ontology structure. The concept scope we could be analyzed
through observing the occurrence of the particular concept in the different patterns. The
relevance of named concept could be figured out regarding the ontology before and after
the replacement of the anonymous concepts.
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5 Ontology APIs and the Ontology API
Model (OAM)

In the previous section, we defined the MoOn, a model for ontologies tailored to the
task of model driven ontology API generation. The generation process starts with the
MoOn and ends in an object-oriented ontology API. Generating code from an ontology
is not a new idea. We introduced some approaches in the related work Section 2.7. In
some aspects our approach builds on the previously introduced projects. For example
our prototype uses Winter as underlying persistence framework for the generated APIs
and we make use of the ontology-to-API mappings defined in [?]. In some other aspects
our approach goes a different way. Owing to multiple reasons discussed in the previous
sections, we decide to start with a model for ontologies the MoOn and transform the
MoOn to the Ontology API Model (OAM) and not directly generating an API from it.
We introduce the reasons for this decisions in this section and discuss advantages coming
with this intermediate model in the next section. Despite from the ontology data aligned
CRUD behavior, we discussed in 3, such an API should provide the user a friendly and
understandable interface to use the API in an pattern-based application. In this chapter
we will discuss strategies to build/generate APIs that work with ontology based data.
We will focus on the decisions behind the generation/mapping process that leads from
the MoOn to the OAM and discuss general strategies to build ontology APIs. Building
an APi for ontologies always means to bridge the fundamental differences inheriting from
the different natures of DL based knowledge representation and object oriented systems
like those mentioned in [16].

5.1 Mapping Complex Constructors to an API

In Section 2.5.1 and 2.5.3 we described different constructors for concepts and in Sec-
tion 3.3 we described their influence on the CRUD operations and problems arising with
API representations of such concepts in combination with object persistence and CRUD.
We introduced simple mapping schemas for DL based constructors, concepts and their
representations in the MoOn. We will use these mapping schemas to transform concept
representations from the MoOn to their object oriented models in the OAM. We describe
the strategies behind these mappings. We show that mapping such constructors to an
API model or a concrete implementation is not trivial, not unambiguous and even some-
times not necessary or valuable. Building class representations for complex concepts
could easily lead to side effects in the CRUD behavior. Especially when regarding a cou-
ple of sequentially performed operations as described in the discussion on equivalence in



Section 3.3.2. At the end, as we denoted in Section 3.3, the important thing is that the
serialization is valid according to the ontology.
Analogous to our discussions in Section 3.3, where we have already analyzed DL con-
structors according to their influence on CRUD, our focus lies again on the DL con-
structors. In this chapter we continue our discussion on mapping single constructors or
combinations of them to an ontology API or API model. Regarding the API represen-
tation of concepts we could denote that such an representation should always serve a
special purpose. The main purpose of an ontology API in general is to abstract parts of
the Knowledge Base in the software and provide persistence functionalities for these ab-
stractions. Issues regarding the persistence, we discussed in Section 3 and we gave initial
hints regarding our question for this chapter: How to abstract objects from a Knowledge
Base? In the following we discuss the single DL constructors, if it is useful representing
them and ways to represent them in an object-oriented ontology API. Additionally we
introduce strategies for combinations of multiple constructors. Based on our observa-
tions on DLs we define the mappings for OWL expressions and their representations in
MoOn in the Table 5.1 in a the following subsection.

1. Equivalence: For a concept definition including equivalence there are two possible
solutions to map it an API representation. If we declared two named concepts
to be equivalent it might be useful to have two different representations in the
object-oriented API. On the other hand when the equivalence is only used in a
concept definition involving multiple constructors, like in A ≡ B u C, the repre-
sentation of both concepts A and the anonymous B u C is not necessary. In such
a case, most of the time we only want the named concept on the left side of the
equivalence operator to have an API representation. Through the transformation
of the ontologies to a form without anonymous concepts multiple named concepts
with no direct class representation might arise. In such a case it makes sense to
remember the named concept before the ontology is decomposed like mentioned
in Section 3.3. Additionally the user has to define the MoOn carefully to avoid
unnecessary classes.

2. Union: If an API is mapping the concepts to corresponding classes representations,
we could simulate the union through a common supertype. This approximates the
semantic of the union in a object-oriented environment. Regarding the example of
a union in Section 3.3, such an approximation allows us to cast a instance of an class
representing father or mother to the type of the class representing parent. This
makes sense in environments where it should be possible to declare or reference
instances of classes who are combined to define such a union-class, as a members
of such Union-Class. E.g., referencing a father instance from a parent field.

3. Intersection: In Chapter 3.3 we denoted intersection-class should be approx-
imated in the object-oriented world by a subclass inheriting from all classes to be
combined. In programming languages without multiple inheritance we have to use
language specific concepts to inherit from multiple classes or use work-arounds like
inheritance chains. In Java for example we have the opportunity to use interfaces to
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declare the concept representations our intersection class could inherit from.
Referring again to your example from Section 3.3 we would expect two classes/in-
terfaces for human and female. Based on these we could define a class/interface
representation for women that inherits from the two classes or interfaces. In the
case of interfaces we define default implementations for such interfaces.

4. Complement: In the standard programming language it is not possible to define
a class in a way the complement operator allows it for concepts. We do not need a
strong restriction to define the class extension, like we need it for concepts. In DL
every individual that fits the restrictions of a concept is part of its extension. In
contrast to this, in the object-oriented world only what is constructed from a class is
part of the extension. The complement constructor is important in the definition of
concepts and their individual sets, but in a object-oriented environment all classes
and thus their extensions are disjoint unless stated otherwise. This would make all
other classes to be the complement of a particular class. It is possible to abstract
this generality in DLs trough common supertypes but this would be very verbose
and does not make sense.

5. Number Restrictions: It is easily possible to bring number restrictions to the
API model. But implementing them in the API needs much more work. First
of all a number restrictions gives us a hint on how to represent such restricted
property in a class. A maxCardinality of one leads us to a single value field, if the
maxCardinality is greater that one we will need a collection for the property in
the declaring class. In our case we do not use collections we use sets because each
individual is unique. But number restrictions gives us more information about
the intended behavior of the implementation. The minCardinality lets us know
if a property is mandatory or optional. All properties with a minCardinality
above null are mandatory. For minCardinality above 1 we need control functions
counting such properties and check if the restrictions are fulfilled. The could be a
listener method allocated to the concrete field counting the fields size and alert if
the number constraint is violated. Or a method that counts if a create and delete
operations is performed the particular field, to ensure the validity and completeness
of the declaring class. Counting could also be necessary if we have maximal value
restrictions, we have to ensure that they are fulfilled.

6. Existential quantifier: Existential quantifiers like ∀ or ∃ are used in DL to restrict
the extension of a class to individuals fulfilling special prerequisites. In an object-
oriented environment we define classes and all instances fulfilling the requirements.
So existential quantifiers only help us in designing the object-oriented concept
representations in the ontology API but we do not need special entities in the API
to represent them. We could derive cardinality information about properties from
existential quantifiers as mentioned in Section 3.3.

7. Value Restriction: A value restriction limits, as the name says, the value a
particular property can achieve. To reflect such behavior in an API we need
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special types or methods checking the validity of the value of the corresponding
field. We need some kind of listener methods observing the value on create and
change operations to ensure its validity according to the value. In case of strings
it might make sense to ensure this with the definition of enumerations.

8. Disjointness: In the object-oriented world classes are inherently disjoint unless
stated otherwise. If necessary, it is possible to implement common super or sub-
classes to model such a behavior. But generally there is no need for an API
representation of disjointness.

5.1.1 Mapping OWL

Several OWL expressions have no direct equivalent in the software world, especially in
the common object oriented languages. To be able to build APIs from ontologies we must
bridge this gap between the object-oriented-world an the logic based ontology-world. In
the following table we present OWL expressions as URI references and their equivalent
in the UML ontology model according to the ODM version 1.0. In the third row of the
table we define the API representations for the single OWL constructs. For complex
constructs refer to the related discussion below the table.

Table 5.1: OWL expression to API mapping
OWL expression UML Ontology

Model (ODM)
UML API
Model

Comment

owl:AllDifferent �allDiffer-
ent� UML::Constraint

see Discussion
#1.

Applies only
between

Individuals
owl:AllValuesFrom UML::GeneralizationSet

and property redefinition,
A.10

see Discussion
#2.

—

owl:Annotation �annota-
tion� UML::Element

UML
Comment or
Stereotype

Not in API
Model, maybe
Documenta-

tion see
Discussion

#16..
owl:AnnotationProperty �annotationProp-

erty� UML::Class
UML::Association

UML
Comment or

Stereotype see
Discussion

#16.

Not in API
Model, maybe
Documenta-

tion

owl:backwardCompatibleWith �backwardCompatible-
With�UML::Constraint

see Discussion
#3.

Not in API
Model

owl:cardinality apply multiplicities on
UML::Properties or
UML::Association

s. Ontology
Model

for inherited
properties
redefine

Continued on next page
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Table5.1 – continued from previous page
OWL expression UML Ontology

Model (ODM)
UML API
Model

Comment

owl:Class �owlClass� Class Stereotype
subclass of
�rdfs:Class�

owl:complementOf �comple-
mentOf�UML::Constraint

s. ??

see Discussion
#4.

—

owl:DatatypeProperty �DatatypeProp-
erty� UML::Association

or UML::Property

UML::Primitive-
Type

Stereotype

owl:differentFrom �different-
From� UML::Constraint

see Discussion
#1.

Applies only
between

Individuals
owl:disjointWith �disjoin-

tWith�UML::Constraint
s. A.12

see Discussion
#5.

—

owl:distinctMembers — see Discussion
#6.

Not in
Ontology and
API Model

owl:equivalentClass �equivalent-
Class�UML::Constraint

s. A.15

see Discussion
#7.

Applied to
OWLClass

owl:equivalentProperty �equivalentProp-
erty�UML::Constraint

between two UML::Class

see Discussion
#7.

�rdfProp-
erty�,

�owlProp-
erty�,

�objectProp-
erty�,

�datatype-
Property�

owl:FunctionalProperty �isFunctional� on
UML::Property,

UML:Association

see Discussion
#8.

Applies to
properties or
associations

owl:hasValue UML::Property
redefinition

see Discussion
#12.

—

owl:imports UML::Property of the
stereotype it describes

see Discussion
#10.

Not in API
Model

owl:incompatibleWith �incompatible-
With�UML::Constraint

see Discussion
#3.

Not in API
Model

owl:intersectionOf �intersectionOf�on
UML::Constraint s. A.16

stereotyped
subclass of all

intersected
classes

faulty see A.17
for fix

Continued on next page
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Table5.1 – continued from previous page
OWL expression UML Ontology

Model (ODM)
UML API
Model

Comment

owl:InverseFunctionalProperty �isInverseFunctional� on
UML::Property or
UML::Association

see Discussion
#8.

owl:inverseOf �in-
verseOf�UML::Association

see Discussion
#8.

—

owl:maxCardinality apply multiplicities on
UML::Properties or
UML::Association

s.Discussion
about

Cardinalities

inherited
properties
redefine

owl:maxQualifiedCardinality apply multiplicities on
UML::Properties or
UML::Association

s.Discussion
about

Cardinalities

inherited
properties
redefine

owl:minCardinality apply multiplicities on
UML::Properties or
UML::Association

s.Discussion
about

Cardinalities

inherited
properties
redefine

owl:minQualifiedCardinality apply multiplicities on
UML::Properties or
UML::Association

s.Discussion
about

Cardinalities

inherited
properties
redefine

owl:Nothing one UML:Class for
owl:Nothing

see Discussion
#11.

Not in API
Model

owl:ObjectProperty �objectProp-
erty� UML::Property
or UML::Association

Property Stereotype
subclass of

�rdfProperty�
owl:oneOf UML::Enumeration over

UML::Class
see Dicussion

#8.
—

owl:Ontology �ontol-
ogy� UML::Package

see Discussion
#13.

Not in API
Model

owl:OntologyProperty �ontologyProp-
erty� UML::Association

UML::Class

see Discussion
#13.

Not in API
Model

owl:priorVersion �priorVer-
sion�UML::Constraint

see Discussion
#14.

Not in API
Model

owl:qualifiedCardinality apply multiplicities on
UML::Properties or
UML::Association

s.Discussion
about

Cardinalities

inherited
properties
redefine

owl:Restriction �owlRestriction� on a
�anony-

mous� UML::Class

own Stereotype Special case:
Property

restr., restr.
class is

supertype of
containing

class
Continued on next page
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Table5.1 – continued from previous page
OWL expression UML Ontology

Model (ODM)
UML API
Model

Comment

owl:sameAs �sameAs�
UML::Constraint

see Dicussion
#15.

Applies only to
instances in
OWL DL

owl:someValuesFrom UML::Property
redefinition

see Dicussion
#2.

like:
owl:allValuesFrom,
owl:hasValue

owl:SymetricProperty �isSymetric� on
UML::Property

see Dicussion
#8.

—

owl:Thing one UML:Class for
owl:Thing

see Discussion
#11.

Not in API
Model

owl:TransitiveProperty �isTransitive� on
UML::Property

see Dicussion
#8.

—

owl:unionOf UML::GeneralizationSet
with isCovering = true

see Discussion
on union

similar to
owl:intersec-

tionOf
owl:versionInfo �versionInfo� String in

�rdfDocument� or
�owlOntology�

see Discussion
#16.

Applies
to UML::Package

Not in API
Model.

Discussion

Here we discuss the different OWL constructs mentioned in the table above. For a closer
look on the semantics of the single OWL constructs refer to [20, 34]. In cases where an
API representation makes sense we discuss possible API representations. In cases there
an API representation makes no sense we explain why.

1. The owl:allDifferent and owl:differentFrom mechanisms provide the opposite
effect from sameAS. The owl:differentFrom mechanism could be understood as a
not sameAs and thus like a ¬ ≡ statement in a DL. With owl:differentFrom we
can denote in opposite to sameAs that an instance is different to another instance.
With owl:allDifferent we can denote that individuals in a list (owl:distinctMembers)
are all different from each other. Due to the fact that these two constructs operate
on instances it makes no sense to map them to the class definitions in an API.

2. The owl:allValuesFrom and the owl:someValuesFrom restricts the type of the ele-
ments that make up a property. Just like to the ∀ operator in DL the owl:allValueFrom
restriction forces that for every instance of the class that has an instance of the
restricted property, the values of the property are members of the class indicted
by the clause. Just like the ∃ operator owl:someValuesFrom forces at least one
value to be of the defined type. Stronger than allValuesFrom, it enforces a min
cardinality of one for this property.
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In the object oriented environment the type of a poperty is restricted to the type in
the property definition. A restriction made in a concept with owl:AllValuesFrom
or owl:someValuesFrom gives us additional information about the specification of
properties in the class representation for the concept. The owl:someValuesFrom
statement gives us additional cardinality informations for our class representation.
As example for owl:AllValuesFrom, lets take a look at following Listing 5.1 the
wine ontology used as example in the OWLGUIDE [34]:

Listing 5.1: owl:allValuesFrom in the wine ontology
1 <owl : Class rd f : ID=”&food ; PotableLiquid ”>
2 </owl : Class>
3
4 <owl : Class rd f : ID=”PotableLiquidMaker ”>
5 . . .
6 <r d f s : subClassOf>
7 <owl : r e s t r i c t i o n >
8 <owl : onProperty rd f : ID=”#makesLiquid”>
9 <owl : al lValuesFrom rd f : r e sou r c e=”#PotableLiquid ”>

10 </owl : r e s t r i c t i o n >
11 </rd f s : subClassOf>
12 </owl : Class>
13
14 <owl : Class rd f : ID=”Winery”>
15 <r d f s : subClassOf rd f : r e sou r c e=”PotableLiquidMaker ” />
16 . . .
17 <r d f s : subClassOf>
18 <owl : r e s t r i c t i o n >
19 <owl : onProperty rd f : ID=”#makesLiquid”>
20 <owl : al lValuesFrom rd f : r e sou r c e=#Wine>
21 </owl : r e s t r i c t i o n >
22 </rd f s : subClassOf>
23 </owl : Class>
24
25
26 <owl : Class rd f : ID=”Wine”>
27 <r d f s : subClassOf rd f : r e sou r c e=”&food ; PotableLiquid ” />
28 . . .
29 <r d f s : subClassOf>
30 <owl : Res t r i c t i on >
31 <owl : onProperty rd f : r e sou r c e=”#hasMaker” />
32 <owl : someValuesFrom rd f : r e sou r c e=”#Winery” />
33 </owl : Res t r i c t i on >
34 </rd f s : subClassOf>
35 . .
36 </owl : Class>

This example could be mapped to a class representation in defining classes for
PotableLiquidMaker and PotableLiquid as superclasses for the whole category.
The classes for Winery and Wine should be defined as subclasses from the category
classes. The hasMaker and makesLiquid property are mapped as fields of the
class representation. The OWL property names are used as names for the fields
(properties) in the UML representation. These UML properties are typed by the
referencing concept representations. HasMaker is of type Winery and makesLiquid
of type Wine. Here we can see that the strong type safety in object-oriented
environments forces us to restrict the type of the field makesLiquid in the Winery
class to Wine. Acording to the ontology a Winery only has to produce at least
one liquid of type wine. It is possible to model this through an additional liquid
supertype in the API. But in this case we need checking methods ensuring that
an winery produces at least one wine. Regarding the cardinality coming with
owl:someValuesFrom the hasMaker could be mandatory to the Wine class. A
Wine object must have at least one hasMaker property of type Winery referring
to a Winery object.
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3. The owl:backwardCompatibleWith and owl:incompatibleWith denote campatibil-
ity or incompatibility to another ontology. Both indicate that the containing ontol-
ogy is a later version of the referenced ontology, in case of owl:backwardCompatible
they are compatible in case of owl:imcompatibleWith they are not backward com-
patible. In an API representation of an ontology compatibility information of the
underlying ontology is of no concern. It might be an interesting additional infor-
mation that could be places in the documentation of such an API. But it has no
direct influence on the API generation from OWL and on the functionality of the
API itself. It might have influence when trying to access data based on an older
version of the ontology the API was created with.

4. The owl:complementOf construct selects all individuals in the domain not belonging
to a certain class. The complementOf construct is just like the complement oper-
ator ¬ in DL. See the discussion of the complement operator in the DL discussion
above.

5. The owl:disjointWith constructor allows us to define disjoint sets of classes. It
guarantees that an individual is only member of one of those classes. For APi
mapping see the discussion on disjointness above.

6. The owl:distinctMembers can only be used with owl:AllDifferent. It is used
as begin and end tag for the list of pairwise different individuals. It makes no
sense to define a single to-API-mapping for this constructor. See the discussion of
owl:AllDifferent.

7. To denote equivalence between classes or properties OWL defines owl:equivalentClass
and owl:equivalentProperty. This correponds to the equivalence operator ≡ in
DL. In an API we suggest to model only one class representation for equivalent
classes, otherwise you could easily run into the described CRUD problems. In
some cases it might make sense to implement classes for each of the equivalent owl
classes. For an ontology API with multiple equivalent classes we need reasoning
services to preserve validity when performing CRUD operations. Additional to
this it is recommended to implement a common superclass for equivalent classes
to be able to use both classes in properties of other classes. For additional infor-
mation about mapping such a construct to an API refer to our discussion on DL
equivalence.

8. With the owl:FunctionalProperty, owl:inverseOf, owl:SymmetricProperty, owl:TransitiveProperty
and the owl:InverseFunctionalProperty construct we are able to further spec-
ify properties. With property characteristics we can enhance reasoning about the
specified property.
The owl:FunctionalProperty operator gives us detailed information about the
cardinalities of the property and the relationship behind. A functional property is
unique, thus it has a upper bound owl:maxCardinality of one. Such a property
could be mapped to a single field in an API class.
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The owl:inverseOf statement between two properties denoted that the one prop-
erty is the inverse of the other. For example Listing 5.2 shows us the use of
inverseOf in the wine ontology.

Listing 5.2: owl:inverseOf in the wine ontology
1 <owl : ObjectProperty rd f : ID=”hasMaker”>
2 <rd f : type rd f : r e sou r c e=”&owl ; Funct ionalProperty ” />
3 </owl : ObjectProperty>
4
5 <owl : ObjectProperty rd f : ID=”producesWine”>
6 <owl : i nver seOf rd f : r e sou r c e=”#hasMaker” />
7 </owl : ObjectProperty>

This denoted every Wine to have a maker, which is by definition a Winery. Each
Winery produces the set of wines that identify it as maker. In an API a wine class
would have one field for the hasMaker property of type winery and the winery class
would have a collection field for the producesWine property of the type wine.
The owl:SymmetricProperty denotes a property to be symmetric. Symmetric in
this context means that the property is its own inverse. In an API representation
this means that if an class X has an symmetric property field of type Y, then class
Y has to have an symmetric property field of type X.
The owl:TransitiveProperty denotes a particular property to be transitive. In
a chain of such a properties, every property has a direct relationship to all follow-
ing. It is possible to map this to an API by defining transitive property fields as
collection and adding all objects in the transitive chain or through iterative getter
methods on transitive fields descending through the object and giving back a sorted
structure. But this is more complicated to implement and we would suggest to use
reasoning services to access objects referenced through transitivity. For example
in an extra getter method for transitive property fields using reasoning services to
get back all corresponding instances.
The owl:InverseFunctionalProperty is just syntactic sugar and represents a
combination of owl:FunctioalProperty and inverseOf.

9. The owl:hasValue construct restricts a particular property to be of a particular
value. This allows us to define classes based on the existence of particular property
values. For an to-API-mapping of a class definition based on a owl:hasValue
construct, this provides useful information about the properties of the API class.
Especially it could give us informations about additional useful specializations of
the types of the property. Listing 5.3 shows us the use of hasValue in the wine
ontology.

Listing 5.3: owl:hasValue in the wine ontology
1 <owl : Class rd f : ID=”Burgundy”>
2 . . .
3 <r d f s : subClassOf>
4 <owl : Res t r i c t i on >
5 <owl : onProperty rd f : r e sou r c e=”#hasSugar ” />
6 <owl : hasValue rd f : r e sou r c e=”#Dry” />
7 </owl : Res t r i c t i on >
8 </rd f s : subClassOf>
9 </owl : Class>
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This declares that all Burgundy wines are dry. In an API this could be useful to
map it to an subclass of wine where the hasSugar property is dry by default.

10. The owl:imports statement can be used to import the entire set of assertions pro-
vided by the imported ontology into the importing one. Such an import is impor-
tant when building our MoOn because all the classes needed should be present in
the MoOn. The OAM is generated from the MoOn and thus for the OAM or API
generation the imports in the ontology should be present in the MoOn.

11. Every individual in our Ontology is member of owl:Thing and thus every named
class in our ontology definition is subclass of owl:Thing. The owl:Nothing class is
the complement to owl:Thing and thus it is the empty class with no members by
default. In the OAM or an API it is possible to produces such inheritance structure,
especially in Java where every class is subclass of Object. But that leads to no
advantages at all, it may even lead to disadvantages regarding the flexibility of
the API. We propose to not modelling owl:Thing in an API representation. For
owl:Nothing there is no proper way to represent such a construct in the OAM or
API.

12. With owl:oneOf OWL provides the opportunity to specify a class via a direct enu-
meration of its members. In UML2 or an object oriented programming language
instances are created from classes. A class definition is a named schema of proper-
ties and methods. Thus it is not possible to define a classes via a set of instances.
We still have the opportunity to approximate such a behavior in the OAM or
API by using enumerations. In Listing 5.4 we can see the use of the owl:oneOf
statement to denote wine color to be one of #White, #Rose and #Red.

Listing 5.4: owl:oneOf in the wine ontology
1 <owl : Class rd f : ID=”WineColor”>
2 <r d f s : subClassOf rd f : r e sou r c e=”#WineDescriptor ”/>
3 <owl : oneOf rd f : parseType=” Co l l e c t i on ”>
4 <WineColor rd f : about=”#White” />
5 <WineColor rd f : about=”#Rose” />
6 <WineColor rd f : about=”#Red” />
7 </owl : oneOf>
8 </owl : Class>

This could be mapped to an enumeration winecolor with the three strings, White,
Rose and Red. But this approximation only applies if we have a primitive type
property. When we are able to define the possible values using a enumeration. In
case of a property referencing a complex type we have to subclass from this type
for every preset we want to distinguish in the enumeration.

13. We assume that, in an ODP based ontology, every pattern comes in its own ontology.
Thus the owl:Ontology statement and especially the structure serves us to dis-
tinguish between the different patterns. This has a direct influence on the API by
naming the different pattern classes with the names from the pattern declaration.
owl:OntologyProperty is the class for all additional information on ontologies.
For instance an owl:imports is an instance of owl:OntologyProperty. There is
no need of the owl:OntologyProperty information in the OAM or the API.
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14. A owl:priorVersion statement identifies the specified ontology to be a prior version
of the containing ontology. Like compatibility information such version information
about ontologies is of no interesst in ontology APIs. It may make sense to include
such an information in the documentation of an API.

15. In OWL DL, with owl:sameAs we are able to denote equivalence between individ-
uals. OWL has no unique naming assumption, so two different names in an OWL
statement can refer to the same individual. So owl:sameAs is only used in the
individual describtion, the A-Box but we use the schema describtion as starting
point of our transformations. It makes no sense formulate mapping conventions
for owl:sameAs.

16. The owl:Annotation and the owl:AnnotationProperty statements in OWL1 are
constructs without any semantic in the ontology. Information provided by such
annotation could be placed in the OAM or API documentation but has no influ-
ence on the intended behavior. A owl:versionInfo statement is an instance of
owl:AnnotationProperty.

All mappings for OWL constructs defined here are optional. The decision what should
be mapped and what should not, lies in the hands of the user. For example the user
could decide to skip the owl:imports construct in the mapping process. It is easy to
exclude particular mappings by just not modeling them in the MoOn. Consequently
OWL constructs not present in the MoOn could not be mapped to the OAM or the API.
When we decide not to map single constructs we have to keep in mind that the essential
thing is a valid serialization. We have to ensure not to leave out constructs mandatory
for a valid serialization.

5.2 Mapping Models for Ontology-to-API mapping

An API working on ontology-based data-set should provide CRUD behavior as men-
tioned in Section 3. The concrete implementation of such CRUD operations depends
strongly on the chosen structure of the API and the underlying object persistence layer.
Most of the triple persistence layers and the automated ontology API generators, like
those introduced in 2.7, refer to a persistence model strongly aligned to the RDB persis-
tence models known for years. These models map each ontology concept to a matching
class on API side. Such a class would serialize to a single statement like :

IndividualIDURI <rd f : type> ConceptIDURI .

We described this behavior in Section 3.3. Generally this concept-to-class mapping fits
the requirements of ontology based object persistence. But such a mapping makes no
use of useful information coming with ODP based ontologies, like the pattern based
structure. Using simple concept-to-class mapping we have no representation of such
information in the API. But as denoted below pattern related information might be useful
for CRUD and for other concerns. Lacking such information makes the implementation
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of adequate CRUD behavior more difficult. In a structure resulting from concept-to-class
mapping we need an additional layer that cares of completeness and validity and that
abstracts the lost pattern information from the ontology. In the following we will discuss
the concept-to-class mapping and the disadvantages coming with it and in a following
section we propose a mapping model that solves these problems.

5.2.1 Concept to Class mapping

One of the general problems, regarding CRUD, coming with the use of an concept-to-class
mapping is that inter-concept-relationships are encoded in inter-class-relationships in the
resulting class structure. With using such an mapping we loose all information about
the pattern structure, that could help us to distinguish between the different services
this ontology provides for us. We will end up in one general view on a configuration
of the whole ontology. To preserve the pattern character in the API and to abstract
services requiring multiple CRUD operations, like the instantiation of an whole ODP,
we need one or multiple additional layers on top of the classes representing our ontology
entities.
So building an application on top of an ontology API generated by a process that maps
each OWL class to an API class forces us to implement multiple control mechanisms.
We need these mechanisms to ensure the validity and completeness of an extension of
such an API structure. In the end these are many tasks for just one layer, so maybe
it makes sense to use multiple layers, one for crud control one for service abstraction
e.t.c. All these layers need information about the ontology structure. Not a good way
to encapsulate the ontology structure from the application and a straight way into an
application with multiple instances of structure information, each control layer holds
parts of the ontology structure. So we can sum up the problems coming with concept-
to-class mapping as follows:

• ontological relationships encoded in object relationships.

• one view on the instance data of the whole ontology, we lost the pattern informa-
tion.

• multiple structures or one with multiple concerns to provide services and ensure
validity.

• each control structures must have ontology structure knowledge, multiple struc-
tures → multiple instances of structure information

For example the AnnotationPattern mapped with concept-to-class mapping to an API
representation will result in six classes. One class for each concept in the pattern and
each of the classes would have a property field for each outgoing relationship defined in
the pattern. So the class representing the AnnotationDescription would have 2 fields
of type AnnotatedConcept and AnnotationConcept for the outgoing dul:defines rela-
tionships. For classes that could be used in multiple patterns this would mean that they
have to declare fields for the relationships of every pattern they could probably play a

70



role in.
We solve all those problems coming with concept-to-class mapping with our new ap-
proach of pattern- to-class introduced in the next section.

5.2.2 Pattern to Class mapping

The general difference of our approach to the class-to-class mapping is what we model
the inter-object-relationships in a pattern class. Therefore we call this approach pattern-
to-class mapping. But what does that mean? In our approach every ontology concept is
also encoded in an API representation, but in difference to the concept-to-class approach,
in our mapping model each of this API representation does not know anything about
its relationships defined in the declaring pattern. These previously implicit relationships
become explicit through the implementation of the ODP structure in a pattern classes.
We implement one extra class for each pattern. Such a pattern class represents all of
the inner relationships of the pattern, so we killed two birds with one stone.
The problems occurring with implicit relationships and the lost pattern information
in ontology wide class structures. Additional to this, such an pattern class could pro-
vide methods abstracting services, like whole pattern instantiation, mapping or deletion,
and functionality for CRUD control. Like validity and completeness checking methods
or methods that could be parameterized for different intended CRUD behavior. So a
control layer, upon this, no longer needs information about the underlying ontology
structure. It just has to know which pattern classes refers to which object. This helps
us to separate the ontology from the application. Another big point in this separation is
that, in ontologies and especially in ODPs we often encounter concepts with nearly no
significance to the user or application. For instance most the concepts with only local
scope, like defined in 3.1. Often these concepts are only represented through two URIs,
the identifier and the concept URI of the class, therefore it is not even necessary to
provide a specific classes in the API, for such concepts. It is quite enough to represent
them through two wrapped URIs in the pattern class. Through that we are able to hide
them from the application and user. Summed up the advantages of such a mapping
model will be:

• explicit relationships

• pattern information in the API

• service abstraction

• interface to CRUD control layer

• encapsulation of classes with no significance to the application/user

In case of pattern-to-concept mapping the whole pattern would map to an patter class
representation encoding all inner pattern relationsships. The concepts used in the pat-
tern are represented through stand alone classes without any knowledge about their
inner pattern relationships. To express such relationship in the API a instance of the
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AnnotationPattern class would reference all involved instances of the class representa-
tions of the concepts in the AnnotationPattern.

5.2.3 Concept/Class scope and visibility

An observation made in multiple ontology APIs,e.g., API for the M3O or the eventmodel,
we developed was that some concept representations in the ontology API just consists
of two URIs as mentioned above. One URI as unique identifier of the individual and one
URI for the type provided by the instantiated concept. In Section 3.1, we distinguished
concepts in ODPs into two sets, those with ODP wide scope (local) and those with ontol-
ogy wide scope (global). In the ontology APIs we implemented we additionally observed
that most of the classes with local scope in the pattern are of no interest for the user of
an concrete API. Regarding the AnnotationPattern, concepts with local scope are those
defining the contextualized view. A user of an API working on an ontology based data
set, lets say an annotation tool for multimedia data, is not interested in the definition of
the contextualized view. An user operates on the entities with global scope, e.g., in case
of annotation the image and the annotation. He wants to annotate and thus create a
contextualized view - instantiate a whole pattern - and not instantiating the single con-
cept representations with local scope. As you can see most of the class representations
of concepts with local scope are of no interest for the user and thus should be hided.
We achieve this in combination with the pattern-to-class mapping with implementing
the representations for concepts with local scope as properties of the declaring pattern
class. Such pattern class should define two fields for each local concept in the ODP. One
field for the type and one for the unique identifier. So we do not have first level class
representations for such concepts only two different URI fields in the class representation
of the declaring pattern. These fields would be allocated on pattern creation time. It
depends on the concrete implementation if they should be created separately and passed
to the pattern constructor or generated automatically in the pattern constructor. This
approach provides possibilities to ensure completeness regarding the local scope concept
representations on create time. In such an API is would not be possible to instantiate
single instance of local scope classes. And when instantiating whole pattern instances it
is ensured that all necessary information is available.

5.3 The Ontology API Model (OAM)

In this Section we will define and discuss our API model. As an intermediate step of
the API generation process we decided to introduce the Ontology API Model (OAM)
based on the UML2 Class Diagram meta-model and several extensions. These extension
are implementation related and we will introduce one for an OAM aligned to Winter in
this section. This intermediate model enables the user to influence the generation on an
API level. A concrete OAM model is strongly tailored to an concrete implementation.
In the OAM we are able to declare specific information needed for the use of an concrete
persistence API like Winter (see Section 2.7) in the ontology API. Initially the OAM
represents the API structure generated from the ontology representation, the MoOn. We
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use the mapping conventions defined in Table 5.1 and the following discussion to generate
the OAM from the MoOn. In the previous sections we observed different mapping
models, we distinguished between concept-to-class and pattern-to-class mapping. In our
approach we provide pattern representations in the API and so such pattern information
is also present in the OAM. As a persistence layer supporting pattern representations
we tailored our OAM to Winter and include Winter related information into the OAM.
This information supports the generation of an ontology API using Winter. Winter uses
Java and because of the single inheritance restriction regarding classes in Java we use
interfaces as first level representatives for concepts. Because of their nature it is not
possible to instantiate from an interface in Java. We also provide class representations
implementing the corresponding interfaces. Defining both enables us to be flexible in
the code generation and not strongly tied to Java. With the use of interfaces we are able
to approximate multiple inheritance in Java.
Based on these mappings defined in this section, we now define a OAM for our running
example. The OAM defined here will be for a Java implementation based on the Winter
persistence layer described in Section 2.7. But with little modifications of the mapping
and/or the extensions it is easily possible to generate a OAM tailored to another language
and/or persistence API.

5.3.1 A OAM for Java and Winter

We introduced Winter in 2.7 as Java based persistence layer for RDF data. But Winter
is far more than that. With its new mapping concept Winter actively supports complex
ontologies and especially ODP based ontologies. Apart from simple object-to-statement
mapping Winter supports object-to-multiple statements mapping and complex object
mappings. As in standard object-to-statement mapping every object defines its own
object id an URI. Based on this id and the type URI, declared by the concept, each
object could be mapped to a RDF triple like:

UniqueObjectURI <rd f : type> ConceptURI .

As mentioned in the related work section 2.7, Winter provides functionalities to map
single object to multiple statements. This helps us in the implementation of pattern
classes, like those discussed in in the previous sections.
As an Example for our explanations we use our running example but this time we focus
on an API representation for the example. The figures referenced here show an API
model for the three patterns used in our running example. The model is strongly tai-
lored to the needs of our example. Especially regarding the types of some properties
in the pattern classes and the corresponding global concept representations. In a real
model we would refer to the types defined in the pattern declarations like in the M3O in
Section 2.4.1. We used this typing to show the correspondence to our running example.
Figure 5.1 shows an UML2 Class Diagram of an API representation in Java using Winter.

As we can see the OAM is organized in three different packages the interface package,
the implementation package and the pattern package. Figure 5.2 shows the interface
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Figure 5.1: The Ontology API Model for our running Example

package. In this package we find interface representations for all concepts with global
scope. Figure 5.3 shows the implementation package. In the implementation package
we define default implementations for all interfaces in the interface package.

Figure 5.2: The Interfaces Package

In the last Figure 5.4 we see the pattern package. In this package we defined the
pattern classes. If we compare this and the implementation package to the running
example we notice that we do not have direct implementations for all the concepts with
local scope. Regarding the observations made in Section 5.2.3 this becomes clear. All the
concepts with local scope are represented as properties of the declaring pattern classes. If
we take a look at the AnnotationPattern class in Figure 5.4 we can see that this class
has the two fields representing the concepts with global scope, GeoPoint and Image.
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Figure 5.3: The Implementation Package

Additional to this we find pairs of fields representing all local scope concepts. One field
for the type and the other for the identifier. The type and identifier URIs are realized
as two different java.net.URIs, the ClassURI and the IndividualURI.

Unfortunately it is not possible to inherit from java.net.URI so the two classes just
wrap the URIs and implement an interface corresponding to their type. Classes of global
scope also implement these interfaces declaring access methods for their identifier and
type.
All model entities also implement interfaces coming with Winter. Those interfaces de-
clare methods used by Winter to interact with those classes to provide mapping function-
alities. As mentioned Winter bases on Java annotations, providing the meta-information
needed for mapping for each class. In the OAM we introduce a UML2 Profile providing
the @winter stereotype for the Java annotation used in the Winter API. This annotation
stereotype is usable on interfaces, classes and fields. In the annotation stereotype we can
declare all variables of the Winter annotation, the mapping pattern, a variable name, the
object type and two variable maps to declare inter pattern mapping. Depending on what
is annotated the annotations schema changes. As you can see, the mapping pattern con-
sists of one or multiple statements, each statement is a subject-predicate-object triple.
Winter uses SPARQL syntax for these statements. In such a statement the predicate is
fix, subject and object are variables. The type declaration declares a general object type
Winter uses. Winter knows five different general types, PATTERN, GLOBALOBJECT,
LOCALOBJECT, LITERAL and MAPPING. Further informations about Winter and a
detailed discussion of the Winter annotation and the single variables in it could be found
in Section 6.2. We attached one corresponding annotation as UML comment to one class
and one property in each figure. As mentioned such annotation is realized through a
profile declaring a stereotype for the annotation. We used the comment form because
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Figure 5.4: The Pattern Package

the used UML2 Editor does not visualize the whole information in the stereotype. We
attached the comments only to single entities in the figures but as you can see all classes
are stereotyped. We attached a comment to an arbitrary class and property in each
figure to make clear how to stereotype in the OAM.

5.3.2 API Customizations in the OAM

Apart from the language independence, one of the main advantages coming with the use
of an intermediate API model like the OAM is the opportunity to customize the the API
model before code generation. Within such customization it is possible to import foreign
API classes and enrich them with semantic information. We could customize our OAM
for the running example in a way that the image class is realized as subclass of an arbi-
trary image class implementation from another API. In case of Java such an API could
be for example AWT1. When the image class in our OAM would be declared as subclass
of java.awt.image, this subclass implements the image interfaces defined in the interface
package of our OAM. Apart from that it implements all Winter related interfaces. We
suggest to encapsulate such concrete implementations in an extra package in the OAM
and later in the API. With this mechanism we are able to generate customized classes
inheriting functionality from widely used implementations and providing functionalities
for our domain, RDF persistence. Figure 5.5 shows such a scenario for an image class.

1abstract Window Toolkit a GUI API for Java http://en.wikibooks.org/wiki/Java_Swings/AWT
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In this figure you can see that the InformationRealization class inherits from an ar-
bitrary image class (this could come from any foreign java library) and implements the
InformationRealization interface. The new class InformationRealizationretains all
functionalities from the image class it inherits from and gains semantic data persistence
with implementing the methods in the interface.
But this is not the end of what is possible with customization. For images for instance
it makes sense to store the semantic information in a triple store and to store the image
itself in a RDB with the object URI as primary key. This requires additional object
persistence to RDBs. This additional persistence could also be modeled in the OAM
and a customized code generation could generate full featured APIs from such a model.

Figure 5.5: A Model of an customized Image Class
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6 Implementation

We implemented a prototype of our system as a set of plugins based the Eclipse Mod-
eling Framework (EMF)1. Here we introduction all implementation related technologies
and discuss the single parts of our implementation. The EMF and the Graphical Mod-
eling Framework (GMF), discussed in Section 6.1 build the basis of our implementation.
EMF provides the UML2 implementation for our two models and the transformation
process operates on the models in EMF. Additional to this we give a detailed introduc-
tion to Winter in Section 6.2. We discuss its features and how it works in detail because
our prototype implementation uses Winter as persistence layer underlying the generated
APIs. These Winter related information is important for the concrete transformations
and models in our prototype. This discussion of Winter becomes important in Section
6.3, where we define the concrete models and transformations in our prototype. Ad-
ditionally to the model manipulation facilities EMF also provides JET (Java Emitter
Templates) a JSP (Java Server Pages) based framework for code generation. In the last
Section 6.4 we describe how to customize the code generation step to generate a Winter
based ontology API from the OAM.

6.1 The Eclipse Modeling Framework and the Graphical
Modeling Framework

With the EMF, Eclipse provides a powerful and flexible basis for application development
through the pragmatic modeling and code generation facilities. The EMF combines
features from several different modeling projects based on Eclipse. EMF is the top
level projects of those sub projects around modeling. In EMF a model is specified in
ECore a modeling language based on XML Metadata Interchange (XMI) [21]. EMF
provides facilities for code generation, graphical diagramming, model transformations,
model validation and search, just to name a few. EMF provides tools, editors and
adapter classes to support viewing and command-based editing of such models. On
top of ECore EMF supports multiple modeling languages like UML. The UML2 project
inside of the EMF provides a full UML2 meta-model implementation based on the ECore
implementation in the EMF. The ECore and the UML mata-model both base on the
EMOF (Essential Meta-Object Facility) [22] standard of the OMG. EMF provides import
methods for ,e.g., UML based models in formats other that the XMI based format
EMF uses,e.g., IBM RationalRose. So it is possible to use multiple editors to modify
models. The GMF (Graphical Modeling Framework)2 provides basic graphical editors in

1The EMF Project website http://www.eclipse.org/modeling/emf/?project=emflast visit 03.2010
2The GMF Project website http://www.eclipse.org/modeling/gmf/ last visit 03.2010

http://www.eclipse.org/modeling/emf/?project=emf
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Eclipse for EMF models. Based on the GMF it is possible to build customized modeling
environments tailored to a specific domain. In the concrete implementation we used the
basic GMF editors but in the future it is recommended to supply customized editors
especially design for this generation process. This would increase the usability of our
approach and speed up the generation process. EMF provides two UML2 profiles for
RDF and OWL, thereby the OWL profile bases on the RDF profile. The OWL profile
is an implementation of the ODM OWL profile based on the UML2 meta-model in the
EMF. This profile consists of all OWL stereotypes defined in the ODM.
We use this UML2 implementation to work with our models and we use RDF and OWL
profile and the stereotypes to denote the OWL nature of the UML elements in our MoOn.

6.2 Winter

In this section we will give a short introduction to Winter and how it works. We already
mentioned Winter a few times and we know that it is a annotation based object-to-
statement persistence API in JAVA. In the last chapter we discussed the Winter annota-
tion and introduced the winter types. Apart from the annotation Winter needs classes to
implement some specific methods. These method build up the core functionality so that
Winter is able to work with the class. To be able to access those methods in arbitrary
Java classes Winter defines different interfaces, those classes have to implement. In the
pink area in Figure 6.1 you can see all winter related interfaces. The RDFSerializable
interface defines basic methods to register the Winter mappers in a concrete class and to
access some winter related variables in the class. All classes using Winter functionalities
have to implement this interface. The IdentifiedByURI and the HasConcept interface
define access methods to the ConceptURI field and to the IndividualURI field. These
fields are implemented by classes representing global concepts. The WrapsURI interfaces
defines general access methods to wrapped URIs. In the Winter two different wrapped
URIs are defined, the IndividualURI unique for every object and the ConceptURI unique
for every class.

6.2.1 The Winter Annotation

Additionally Winter provides the annotation already mentioned, applicable to fields and
classes.Apart from other fields the annotation declares the Winter type of the annotated
field or class. Winter knows five different internal types, they are:

• PATTERN Annotations with type PATTERN should only be assigned to classes.
They denote that this class is a ODP representation.

• GLOBALOBJECT Annotations with type GLOBALOBJECT could be applied
to classes or fields. A class annotated with GLOBALOBJECT represents an on-
tology concept with global scope and thus with its own class representation. Fields
annotated in this way refer to an object of a GLOBALOBJECT annotated class.

79



• LOCALOBJECT Annotations with type LOCALOBJECT could only be as-
signed to fields. They denote the field to contain a reference to an concept with
local scope representation. A concept with local scope is not represented through
a dedicated class, such a concept is represented through two wrapped URIs. The
ConceptURI and the IndividualURI. A LOCALOBJECT annotated field could
refer to a ConceptURI or an IndividualURI. In general these fields are always
declared in pairs.

• MAPPING A annotation with type MAPPING applies only to fields. Such a
field refers to an PATTERN annotated class.

• LITERAL A annotation with type LITERAL applies only to fields. These fields
contain values mapped to literals in the serialization.

Additional to this and depending on the Winter type multiple other declarations
could be made in the annotation. These declarations are used by Winter to serialize and
deserialize annotated objects. For this concern the Winter annotation defines different
fields. The following list gives an overview over the annotations fields and their function.

• type The type field declares the annotated to be of one of the five Winter types
described above..

• pattern This field contains a statement pattern in SPARQL. This Pattern is
used by Winter for the mapping. The pattern field applies to annotations of
type PATTERN, GLOBALOBJECT, LOCALOBJECT and LITERAL. If a class is
annotated Winter matches all variables names declared in the SPARQL statements
against the var field in the annotated fields declared in the class. Class annotations
always need an SPARQL pattern. In case of an field annotation the SPARQL
pattern is optional. If the variable name in the annotation of the field (the var
field) is present in the SPARQL Pattern of the declaring class we do not need a
SPARQL pattern in the fields annotation. This case indicates fro Winter that the
field is mandatory to the class. This has direct influence on the mapping behavior
of Winter. The field has to be set when the object should be mapped, otherwise
winter won’t map the object. Otherwise then the variable name in the annotation
of the field is not present in the SPARQL pattern of the declaring class annotation
the field is optional to Winter. We need a SPARQL pattern in the annotation of
the field. If optional fields are not set only they won’t be mapped but this does
not influence the mapping of the whole object. Only the single field is affected. If
the field is set it would be mapped according to the SPARQL pattern in its own
annotation. Variables other that the fields annotation variable will be substituted
from the corresponding fields in the object.

• var This field of the annotation defines the variable name in the SPARQL state-
ments to substitute with the content of this field. The var field only applies in
field annotations and only in LOCALOBJECT, GLOBALOBJECT and LITERAL
typed annotations.
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• src/dst The src field is strongly related to the dst field. Both are collections of var
names like in the var field. They should have the same length and it makes no sense
to define one without the other. The src and dst field represent a variable name
to variable name mapping. Each of the sequential field in one of the collections
has a corresponding field in the other collection. It is used to map variable names
between the declaring class and a field referencing a PATTERN annotated class.
The src contains the variable names of the declaring class and the dst field those
of the referenced class. The values in the referenced class are are replaced through
those of the declaring. With this functionality it is possible to declare patterns like
the ProvenanceInformationPattern, see Section 2.4

6.2.2 Winter related Interfaces and classes

As denoted Winter defines four different interfaces to be implemented by classes using
Winters mapping facilities. These interfaces declare general methods used by Winter to
access the URIs and other variables in serialization and deserialization.

• RDFSerializable The RDFSerializable interfaces defines methods to register the
different Winter mappers to a class. Additionally it defines getter/setter methods
for Winter related fields recommended to a class. Every class, global and pattern,
using Winter functionalities has to implement these interfaces.

• HasConcept The HasConcept interface a the getConcept() function to access
the concept URI in a global class.

• IdentifiedByURI The IdentifiedByURI interface defines get and set methods for
the IndividualURI of a global class.

• WrapsURI The WrapsURI interface is used in the definition of the ConceptURI
and the IndividualURI.

Additional we defined two classes representing the wrapped URIs used by Winter, the
ConceptURI and the IndividualURI. These URIs are used by global concept classes and
in the declaration of local concept fields. Both classes realize the WrapsURI interface.

• ConceptURI The ConceptURI class represents a wrapped concept/class URI.
Such an URI is the unique identifier of each concept/class.

• IndividualURI The IndividualURI class represents a wrapped individual/in-
stance URI. Such an URI is the unique identifier of each individual/instance.

6.2.3 Mapping Objects to Statements with Winter

In a concrete mapping Winter builds up a SPARQL query from the class or field annota-
tion. While mapping a whole class Winter builds this query from the pattern field in the
class annotation. Depending on the performed operation, serialization or deserialization,
Winter substitutes all or some variables in the query with values from the corresponding
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class fields. In case of serialization Winter could build RDF statements from this binded
query and add them to the triple store. In case of deserialization Winter performs the
query to get the requested values back. If we refer to the Annotation pattern in our
running example this mechanism could be understood easily. Mapping the Annotation
pattern instance described, results in these RDF statements.

Listing 6.1: AnnotationPattern RDF statements
1 eaad <rdfType> Annotat ionDescr ipt ion .
2 eaac <rdfType> AnnotatedConcept .
3 image−2 <rdfType> Image .
4 glp−1 <rdfType> EXIFGeoParameter .

5 geo−l o ca t i on −1 <rdfType> GeoPoint .

6 eaas <rdfType> Annotat ionS i tuat ion .

7 eaas <dul : de f i n e s > eaac .
8 eaad <dul : de f i n e s > glp−1 .
9 eaac <dul : c l a s s i f i e s > image−2 .

11 glp−1 <dul : c l a s s i f i e s > geo−l o ca t i on −1 .
12 geo−l o ca t i on −1 <geo : long> ” 40 ,76 ”ˆˆ xsd : decimal .
13 geo−l o ca t i on −1 <geo : l a t > ”−73 ,99”ˆˆ xsd : decimal .
14 geo−l o ca t i on −1 <hasSett ing> eaas .

15 image−2 <hasSett ing> eaas .
16 eaas < s a t i s f i e s > eaad .

These statements are build from the pattern in the annotation of the Annotation pattern
class, shown in 5.4 and Listing 6.2. For mapping Winter will substitute all variables
in the SPARQL pattern through the corresponding fields of the declaring object. As
example for a field with refering to a global scope object look at lines 33-37 of Listing
6.2, the declaration of the image field in the annotation pattern class. Local scope
concepts are represented through pair of fields declaring the ID and type. For the
AnnotationDescription you can find these field declarations in Listing 6.2 in lines 17-
29. As you can see the values in the var fields of the annotations are referring to the
corresponding variables in the SPARQL pattern. Optional fields come with their own
SPARQL pattern in the annotation. If such a field is not empty it is mapped subsequently
when the declaring object is mapped.

Listing 6.2: AnnotationPattern class annotation
1 @winter{
2 pattern = ”? Annotat ionDescr ipt ion <rdfType> ? Annotat ionDescr ipt ionType .
3 ? Annotat ionS i tuat ion <rdfType> ? Annotat ionSituat ionType .
4 ? AnnotatedRole <rdfType> ? AnnotatedRoleType .
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5 ? AnnotationRole <rdfType> ? AnnotationRoleType .
6 ? Annotat ionDescr ipt ion <dul : de f i n e s > ? AnnotatedRole .
7 ? Annotat ionDescr ipt ion <dul : de f i n e s > ? AnnotationRole .
8 ? AnnotatedRole <dul : c l a s s i f i e s > ?Image .
9 ? AnnotationRole <dul : c l a s s i f i e s > ?GeoPoint .

10 ?Image <dul : hasSett ing> ? Annotat ionS i tuat ion .
11 ?GeoPoint <dul : hasSett ing> ? Annotat ionS i tuat ion .
12 ? Annotat ionS i tuat ion <dul : s a t i s f i e s > ? Annotat ionDescr ibt ion ” ;
13 type = winter . type .PATTERN;
14 }
15 pub l i c c l a s s AnnotationPattern implements RDFSer ia l i zab le{
16

17 @winter{
18 var = ” Annotat ionDescr ipt ion ” ;
19 type = winter . type .LOCALOBJECT;
20 }
21 p r i v a t e IndividualURI annota t i onDesc r ip t i on =
22 ” http : //www. example . de/ Annotat ionDescr ipt ion#1” ;
23

24 @winter{
25 var = ” Annotat ionDescr ipt ionType ” ;
26 type = winter . type .LOCALOBJECT;
27 }
28 p r i v a t e ConceptURI annotat ionDescr ipt ionType =
29 ” http : //www. example . de/ Annotat ionDescr ipt ionType#1” ;
30 .
31 .
32 .
33 @winter{
34 var = ”Image” ;
35 type = winter . type .GLOBALOBJECT;
36 }
37 p r i v a t e Image image ;
38 .
39 .
40 .
41 }

You might recognize that the type declarations statements of the ?Image (?Image <rdfType>
?ImageType) and the ?Geopoint (?GeoPoint <rdfType> ?GeoPointType) are not present
in the SPARQL pattern of the annotation but in the statements of the serialization.
These two concepts are of global scope and thus are represented through their own
classes. Both classes are annotated and in this annotation the type declaration is de-
fined. A annotation on such a class would look like this.
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Listing 6.3: Image class annotation
1 @winter{
2 pattern = ”?Image <rdfType> ?ImageType” ;
3 type = winter . type .GLOBALOBJECT;
4 }
5 p r i v a t e c l a s s Image implements HasConcept , Identi f iedByURI , RDFSer ia l i zab le{
6

7 @winter{
8 var = ”Image” ;
9 type = winter . type .LOCALOBJECT;

10 }
11 p r i v a t e IndividualURI id =
12 ” http : //www. example . de/Image#1” ;
13

14 @winter{
15 var = ”ImageType” ;
16 type = winter . type .LOCALOBJECT;
17 }
18 p r i v a t e ConceptURI concept =
19 ” http : //www. example . de/ImageType#1” ;
20 .
21 .
22 .
23 }

For object manipulation all getter/setter methods for annotated fields refer directly to
the triple store using Winter functionalities. So performing a get on an annotated field
always results in a query against the triple store and a set results in the replacement of
one or multiple statements in the store. Listing 6.4 shows the getter/setter methods for
the local field annotationSituation in the AnnotationPattern class.

Listing 6.4: Getter/Setter for AnnotationDescription
1 @winter{
2 pub l i c IndividualURI getAnnotat ionDescr ipt ion ( ) {
3 t ry {
4 i f ( readmapper != n u l l ) readmapper . updateOBJECTField
5 ( AnnotationPattern . c l a s s . ge tDec la r edF i e ld ( ” annota t i onDesc r ip t i on ” ) , t h i s ) ;
6 } catch ( Secur i tyExcept ion e ) {
7 . . .
8 }
9 re turn annota t i onDesc r ip t i on ;

10 }
11

12 pub l i c void se tAnnotat ionDesc r ip t i on ( IndividualURI annota t i onDesc r ip t i on ) {
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13 i f ( writemapper != n u l l ){
14 t ry {
15 Fie ld f i e l d =
16 AnnotationPattern . c l a s s . ge tDec la r edF i e ld ( ” annota t i onDesc r ip t i on ” ) ;
17 i f ( annota t i onDesc r ip t i on != n u l l ){
18 Object newObj = annota t i onDesc r ip t i on ;
19 writemapper . r ep laceObjec t
20 ( f i e l d . getAnnotation ( winter . c l a s s ) , th i s , newObj ) ;
21 } e l s e {
22 writemapper . de l e t eOb j ec t ( f i e l d . getAnnotation ( winter . c l a s s ) , . . . ) ;
23 }
24 } catch ( NoSuchFieldException e ) {
25 . . .
26 }
27 }
28 t h i s . annota t i onDesc r ip t i on = annota t i onDesc r ip t i on ;
29 }

6.3 The Mapping from MoOn to OAM

For the model transformation in our prototype we decided not to use the model trans-
formation language comming with EMF, namely the Atlas Transformation Language
(ATL)3 provided by the EMF. We decided to implement our transformation on the
basis of the adapter classes for UML24 and ECore5. Because with this APIs we are
more flexible regarding the upcoming code generation process. Based on these APIs we
developed an iterative transformation process between MoOn and OAM. The transfor-
mation combines multiple iterations over the MoOn to transform it to the OAM. These
iterations are :

1. In a first iteration we generate the SPARQL patterns for every ODP and every named
global concept in the MoOn. These patterns are used in the Winter annotation of
the classes and fields in the OAM and later in the generated API.

2. In a second step we filter all global concepts and generate interface and/or class
representations for them in the OAM. We can easily identify them by the mentioned
MoOn stereotype winterGlobalObject.

3. In the last step we generate class representations for the single patterns in the MoOn.
As mentioned every single pattern resides in its own owl:ontology stereotyped

3The ATL Project inside Eclipse http://www.eclipse.org/m2m/atl/ last visit 05.03.2010
4UML2 API Javadoc http://publib.boulder.ibm.com/infocenter/rtnlhelp/v6r0m0/topic/org.

eclipse.uml2.doc/references/javadoc/org/eclipse/uml2/package-summary.html
5ECore API Javadoc http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.emf.doc/

references/javadoc/org/eclipse/emf/ecore/package-summary.html
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package in the MoOn. So we build a class representation for each of these pattern
packages.

Additional to the profiles for RDF/OWL we also provide profiles and models for
some of the Winter related features. We provide an extra profile realizing a stereotype
for the Winter annotation. All the generated classes are stereotyped with the Winter
annotation stereotype as long as they need Winters mapping functionalities. Winter
defines several interfaces implemented by classes using Winter features. We defined
models for those Winter interfaces. The generated models in the OAM implement the
corresponding Winter interfaces. All generated classes and interfaces are organized the
different package like described in Section 5.3.1.

6.3.1 The Winter Profile

To encapsulate the Java annotation needed by Winter for the mapping functionalities
we defined a new profile, the Winter profile. In the Winter profile we define a stereotype
for the Java annotation of Winter. As mentioned above this annotation consists of 5
different fields:

• The pattern field, a String field that can contain the statement pattern in SPARQL

• The var field, a String field that can contain the variable name from the query
pattern.

• The src field, a String collection containing variable names from the SPARQL
pattern for inter pattern matching in combination with the dst field.

• The dst field, in combination with the src field this field builds a name to name
map for variable matching in inter pattern matching.

• The type fields, denotes the annotated as one of the five Winter types.

According to the concrete needs of the class/interface or field the stereotype should be
attached and the appropriate fields of the annotation should be filled. For example, if
we annotate a pattern class, like the annotation Pattern in in Figure 5.4, the annotation
will consist of a pattern and a type declaration. All generated classes and fields in
the OAM are stereotyped automatically with a stereotype instance generated specially
for this class or field. In this stereotype instance we use if intended the corresponding
SPARQL pattern generated in the first step of the mapping process.

6.3.2 Winter Models

To simplify code generation we defined models for the interfaces and URI classes defined
by Winter. The interfaces models are realized by all classes using Winter, in the OAM.
We need these models in the code generation step. The URI models are used to declare
the types of local concept fields in global and pattern classes in the OAM. You can see
this in Figure 5.3 and Figure 5.4 unfortunately the editor does not visualize the interface
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implementations. In Figure 6.1 we visualize the interfaces implementation structure in
the OAM using the InformationRealisation pattern as example. In the pink area the
figure the classes and in the and in the light green area the interfaces they implement.

Figure 6.1: The Information Realization API Model

6.3.3 The Mapping for the running Example

In the previous chapter we described the OAM for our running example. Based on the
described of the MoOn and the OAM we describe the mapping between the two models
in this section. We refer to the concrete models used in our running example. Section 4.3
describes a MoOn for our running example. We start from this MoOn and discuss how
we end up in the OAM for the running example. As decribed above the transformation
process is iterative process with actually three iterations. In the first iteration we analyze
the packages in the model and generate SPARQL patterns for the patterns and classes.
We only have to generate SPARQL patterns for the classes with global scope. We
can easily identify them by the applied stereotype �winterGlobalObject�. A SPARQL
pattern for global class usually consists of an type declaration of the class and the
declarative statements for the mandatory properties of the particular class. In the case
of a whole pattern the SPARQL pattern represents all mandatory relationships in the
pattern. If we take a look at the annotation pattern, such a SPARQL pattern will look
like the one defined in Figure 5.4. We analyze the outgoing association for every class
in the pattern. If the association is mandatory and has a minimal cardinality above
null, the relationship presented by this association has to be in the SPARQL pattern for
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the whole pattern. In such a case we would add a statement in the form subject (the
class the association goes out), predicate (attached to the association) and object (the
class associated) to the SPARQL pattern. In the Annotation Pattern in our running
example In the second step we filter all global concepts from all patterns, in this case
Image, Presentation, Quality and Region. We build class representations for all these
concepts. All of these classes implement the related interfaces as defined in Section 6.3.2
and Figure 6.1. As you can see in Figure 5.3 all those classes are annotated. According to
the definitions made in Section 6.2 an annotation on a global class definition will consist
of a type declaration, here GLOBALOBJECT and the SPARQL pattern, generated in
the previous step.
In the last step we generate class models for our patterns. Similar to the global object
classes the pattern classes are annotated. In this annotation of type PATTERN we use
the SPARQL pattern generated in the first step. A pattern class defines fields for the
global objects referenced in the pattern, additionally it also defines pairs of fields for
all local objects in the pattern representation in the MoOn. All generated fields, that
should be mapped, are annotated. Mandatory fields are only annotated with type and
variable name, optional field are also annotated with a SPARQL pattern.
After this last step we have created an OAM like in Figures 5.1 to 5.4 from the MoOn
presented in Figures 4.1 to 4.4.

6.4 Code generation and Java Emitter Templates

The last step of our work-flow is the code generation. We decided to use JET (Java
Emitter Template) for code generation. JET uses a template technology which is very
closely related to the Syntax of Java Server Pages (JSPs). The JET engine in the
EMF can be used to generated any kind of output based on a model, in our case we
want to generate Java code from the OAM. According to the Jet FAQ [1] it is not a
good practice to generate code directly from the UML2 model. It is recommended to
implement a intermediate model tuned to the structure of the output. For the best
practice it is recommended to:

• Separate the concerns of abstract code representation for the user from the concerns
of code generation.

• Create an intermediate model specific to code generation, that represents concepts
needed to generate the intended code artifacts.

• Build a Jet transformation from the intermediate model to code.

• If necessary the intermediate model and the to-code transformation can be man-
aged by wizards or other UI tools.

The internal language of our UML2 models is XMI, but the model structure is very com-
plex and thus the XMI file is overloaded with information useless for our code generation
process. We decided to transform the UML2 model in a simplified XML representation
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holding all information necessary for the code generation. The Jet templates using this
intermediate model as input and generate Java code from it. So for the AnnotationPat-
tern class this XML declaration for could look like in this listing.

Listing 6.5: AnnotationPattern Class XML Declaration
1 <app c l a s s=” AnnotationPattern ”>
2 <ann isann=”True”
3 type=” winter . type .PATTERN”
4 pattern=”? Annotat ionDescr ipt ion <rdfType> ? Annotat ionDescr ipt ionType .
5 ? Annotat ionS i tuat ion <rdfType> ? Annotat ionSituat ionType .
6 ? AnnotatedRole <rdfType> ? AnnotatedRoleType .
7 ? AnnotationRole <rdfType> ? AnnotationRoleType .
8 ? Annotat ionDescr ipt ion <dul : de f i n e s > ? AnnotatedRole .
9 ? Annotat ionDescr ipt ion <dul : de f i n e s > ? AnnotationRole .

10 ? AnnotatedRole <dul : c l a s s i f i e s > ?Image .
11 ? AnnotationRole <dul : c l a s s i f i e s > ?GeoPoint .
12 ?Image <dul : hasSett ing> ? Annotat ionS i tuat ion .
13 ?GeoPoint <dul : hasSett ing> ? Annotat ionS i tuat ion .
14 ? Annotat ionS i tuat ion <dul : s a t i s f i e s > ? Annotat ionDescr ibt ion ”
15 />
16

17 <property name=” Annotat ionDescr ipt ion ” type=” IndividualURI ”>
18 <ann type=” winter . type .LOCALOBJECT” var=” Annotat ionDescr ipt ion ” />
19 </ property>
20 <property name=” Annotat ionDescr ipt ionType ” type=”ConceptURI”>
21 <ann type=” winter . type .LOCALOBJECT” var=” Annotat ionDescr ipt ionType ” />
22 </ property>
23 .
24 .
25 .
26 <property name=”Image” type=”m3o . i n t e r f a c e s . Image”>
27 <ann type=” winter . type .GLOBALOBJECT” var=”Image” />
28 </ property>
29 </app>

With the Jet template in the next listings we are able to generate Java code from XML
declaration of pattern classes.. The part of the template shown in Listing 6.6 generates
a class header with the name given in the declaration. The next part of the template in
Listing 6.7 iterates over all the properties defined in the generation an generates the field
declarations from the properties. If the fields are annotated it adds Winter annotations
to the field declaration. The next part in Listing 6.8 generates the constructor for the
class, in this case a constructor that expects all defines properties as arguments. In the
last Listing ?? you can see the part responsible for the getter setter methods.
In the first statement of this listing 6.6 we check if the concrete class in the XML
declaration should be annotated or not. For this concern we check the isann variable
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in the declaration in line 3. If the concrete class should be annotated the @winter
annotations would be created. After that line 10 creates the class header.

Listing 6.6: Jet Template Header for Class generation
1 <c : i t e r a t e s e l e c t=”/app/ c l a s s ” var=”c”>
2 <c : choose s e l e c t=$p/@isann>
3 <c : when t e s t=” ’ True ’ ”> @winter{
4 pattern = ”<c : get s e l e c t=”$p/ @pattern ” />” ,
5 type = <c : get s e l e c t=”$c/@type” /> ,
6 var = ”<c : get s e l e c t=”$c/@var” />” ,
7 s r c = ”<c : get s e l e c t=”$c/@src”>” ,
8 dst = ”<c : get s e l e c t=”$c/@dst”>”}
9 </c : when>

10 </c . choose>
11 c l a s s <c : get s e l e c t=”/app/ @class ” /> implements RDFSer ia l i zab le {

In this listing we iterate over all properties in the XML class declaration, with the
c:iterate statement in Line 11. We generate field declarations for each property. If
the property is annotated we add an @winter annotation to the field declaration. Line
22 generates the concrete field declaration from the current property in the XML class
description.

Listing 6.7: Jet Template Part for Field generation
12 <c : i t e r a t e s e l e c t=”/app/ property ” var=”p”>
13 <c : choose s e l e c t=$p/@isann>
14 <c : when t e s t=” ’ True ’ ”> @winter{
15 pattern = ”<c : get s e l e c t=”$p/ @pattern ” />” ,
16 type = <c : get s e l e c t=”$p/@type” /> ,
17 var = ”<c : get s e l e c t=”$p/@var” />” ,
18 s r c = ”<c : get s e l e c t=”$p/@src”>” ,
19 dst = ”<c : get s e l e c t=”$p/@dst”>”
20 </c : when>
21 </c . choose>
22 p r i v a t e <c : get s e l e c t=”$p/@type” /> <c : get s e l e c t=”$p/@name” />;
23 </c : i t e r a t e>

This listing generates the constructor for the class. Line 24 generates the header of
the constructor. The following lines 25-28 iterate over all properties and add them as
arguments to the constructor. In lines 30-32 the body of the constructor is created by
iterating over all properties again and add the corresponding assignments.

Listing 6.8: Jet Template Part for Constructor generation
24 pub l i c <c : get s e l e c t=”/app/ @class ” />(
25 <c : i t e r a t e s e l e c t=”/app/ property ” var=”p”>
26 <c : get s e l e c t=”/$p/@type” />
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27 <c : get s e l e c t=”/$p/@name” /> ,
28 </c : i t e r a t e>
29 ){
30 <c : i t e r a t e s e l e c t=”/app/ property ” var=”p”>
31 t h i s .<c : get s e l e c t=”$p/@name” /> = <c : get s e l e c t=”$p/@name” />;
32 </c : i t e r a t e>
33 }

In this last listing we generate getter/setter methods. Line 34-39 generates the setter,
lines 34-36 the header of the setter method and line 37-39 the assignment in the body of
the setter method.Lines 41-44 are for the the getter method. As you can see line 41 and
42 are for the header of the method and line 43 the body with the return statement.

Listing 6.9: Jet Template Part for Getter/Setter generation
34 pub l i c void s e t<c : get s e l e c t=\”camelCase ($p/@name) ” />(
35 <c : get s e l e c t=”$p/@type” />
36 <c : get s e l e c t=”$p/@name” />) {
37 t h i s .<c : get s e l e c t=”$p/@name”/> =
38 <c : get s e l e c t=”$p/@name” />;
39 }
40

41 pub l i c <c : get s e l e c t=”$p/@type”>
42 get<c : get s e l e c t=\”camelCase ($p/@name) ” />( ) {
43 re turn <c : get s e l e c t=”$p/@name” />;
44 }
45 }

We use different Jet templates for the different class and interface types. One of
the pattern classes, one for the implementation and one for the interface definitions.
The concrete generation process is evoked from a Eclipse plugin. Initially this plugin
generates the different XML class declarations for all the classes present in the OAM.
Then the plugin provides a wizard driven generation process that gives the user the
possibility to generate all classes based on the XML class declarations. It is intended
to generate interfaces, pattern classes and concrete implementations to different java
packages.
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7 Conclusion and further work

7.1 Conclusion

Our goal was to develop an model-driven API generation process to support the imple-
mentation of ontology APIs from the schema description in pattern based ontology. To
fulfil this and to enable the process to support ODPs we analyse ontology/ODP related
object persistence in Section 3 and the influence of ontology/ODP structures and tech-
nologies on the intended API implementation. For the generation process we decided
to introduce two intermediate models, the MoOn and the OAM, these two models are
UML2 based.
The motivation to introduce the MoOn as starting point for our generation process was
to give the user a visualization and easy to manipulate view on his ontology. The Moon
enables the user to specialize and customize the ontology or single ODPs in order to
adapt them to the intended domain. Less axiomatized ontologies could lead to problems
in the API generation because the object.oriented world is strongly axiomatization. The
MoOn also enables us to implements APIs from less axiomatized ontology. We discuss
this in Section 4.
In next Section 5, we describe the motivation and specification behind the OAM. The
OAM is an extended UML2 Class Diagram used to visualize, customize and manipulate
the structure of the API to generate. The OAM serves us as programming language and
persistence layer independent model of the API to generate. Additional to this we discuss
the design of ontology APIs in general and define mappings from the MoOn to the OAM.
From the OAM we are able to generate the intended API in multiple programming lan-
guages. We are able to specialize the OAM to support a specific programming language.
Additionally the OAM supports the customization of the API. With this customization
we are able to support the special needs of specific persistence layer. Additionally we
can specify single classes to derive from classes in other programming libraries.
The last Section 6 describes the implementation of a prototype of our system. We
introduce relevant technologies and describe the implementation related decisions.

7.2 Further work

Our approach could benefit from the ongoing research in the multiple fields of software
and ontology engineering used. In the fields of ontology engineering and especially the
field of ODP based ontologies we could benefit from research on:

• A stronger formalization of the definition of ODPs. Based on an analysis of popular
ontologies and patterns the idea of ODPs should be generalized and best practice



for multiple ontology design problems and domains should be developed. This
leads us directly to the next point.

• An ODP library for common use-cases and domains. Such a library should provide
general ODPs and documentations regarding the specialization and customization
for multiple design problems. It would be desirable to provide multiple domain
independent ODPS. For popular domains it might make sense to provide special-
ization too.

• To-API mapping conventions for selected very popular ODPs, e.g., D&S based
patterns. These conventions should represent the best practice in mapping such
ODPs.

• Guided pattern specialization for library ODPs. This could help the untrained
user in specialize a ontology suitable to his domain from general pattern he could
find in a ODP library.

• Pattern origin recognition in pattern based ontologies to automatically support
such to-API mapping conventions. If we are able to recognize specific patterns
or their origin in a pattern based ontology, we are able to generate suggestions
about a possible API structure to the user. Additional to this we would be able
to support guided pattern specialization.

• Pattern recognition in non-pattern-based ontologies to support more structured
and cleaner APIs for such ontologies. To recognize patterns in a non-pattern
based ontology, helps us generating useful APIs for such ontologies. We would be
able to abstract the differnt services that an API should provide from the ontology.
Additionally we could patternize an ontology.

• Mappings for OWL constructs not covered in this work. It might be useful to sup-
port constructs like owl:imports or owl:incompatibleWith in the API generation
process or even in an ontology API.

•

The research in many of the fields mentioned here is ongoing. For example, under
the NeOn1 project for example a website http://ontologydesignpatterns.org/wiki/
Main_Page was started to collect ontologies and ODPs to build up an ontology/ODP
library on the web. In the field of software engineering useful further research could care
about:

• Software Design Patterns for non relational database persistence, especially triple
based data. As in RDBs, where from the best practice in object persistence several
patterns arose, like ORM. We suggest to develop patterns for triple persistence,
especially regarding ontological data. Such a pattern should be able to deal with
the problems described in our discussions about object persistence.

1The NeOn Project Website http://www.neon-project.org/nw/Welcome_to_the_NeOn_Project
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• Combined Patterns to support semantic data to-triple and data to RDB mapping.
Often, due to performance reasons it might be very useful to store semantic data
and relational data in different stores. So it might be useful to have a combined
pattern supporting triple persistence for semantical data and relational persistence
for the rest. For example if we have a image class with semantic data we want the
semantic in the triple store and the image in a relational data base.

• Research on best practice regarding ontology API design. Formal models for effi-
cient ontology APIs and their use could help in developing such API in the future.

The implementation of our approach could also be improved in multiple ways.

• Develope plugins for ontology editors like Protégé 42 or the NeOn Toolkit3.

• A UML2 modeling toolkit especially aligned to the visual ontology language used
in the MoOn could significantly speed up the API generation process and could
help users not so common to ontology engineering in developing or customizing
their ontologies.

• Wizards that help the user through the generation process and support user-driven
decisions. These wizards should guide users not familar with ontologies through
the generation process and especially support him in ontology related questions.
The implementation of such wizards could benefit from the ongoing research in the
fields of ODP and especially ODP recognition.

• Mappings and generators for multiple programming languages and multiple per-
sistence layers. This would make our application more flexible and useful.

• Automated model generation from code to simplify the integration of existing for-
eign APIs in the OAM. If we are able to generate an class/interface model adequate
to customize the OAM directly from the class declaration in the concrete program-
ming language, this would simplify and speed up the process of API customization.

Conceivably, in the future a developer with the need of representing semantic data in
his application could visit such an ontology/ODP library in the net or his development
tool includes such a library. There he gets some suitable ontologies or ODPs for his
task and domain. Then he modifies them a bit with a visual and easy to use ontology
development toolkit or editor. Finally he generates an API suitable for his application.
But such a work-flow needs strong formalization of the underlying technologies to avoid
misunderstandings, especially if the user is untrained in ontology related technologies.

2The Protég’e Project Website http://protege.stanford.edu/
3NeOn Toolkit Project Website http://neon-toolkit.org/wiki/Main_Page
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A Appendix

A.1 The M3O Patterns

We want to give the reader a more concrete look on the M3O. This should give you
an idea what we mean with our explanations of patterns and where they come from.
Especially this should help you to understand how the declarations we made in 2.2 and
the abstract patterns we introduced in 2.3.1 are translated to concrete ODPs. In the
graphical representation of the patterns below all the classes coming from other ontolo-
gies, like DUL and are not specialized for their use in the pattern are white, only the
blue classes are newly derived for the M3O or Event-Model-F and usually inherit from
general DUL concepts.

A.1.1 The Provenance Information Pattern

The Provenance Information Pattern (PIP) was not defined in the original proposal
of M3O [30], it is rather an result of the continuous evolution which these ontologies are
subjected to. As you easily can see in figure A.1, taken from the original proposal of
the M3O, the provenance information is modeled inside of the pattern. Due to the fact
that this is common to many of the patterns, we decided to demerge this provenance
information structure to an independent pattern. The Provenance Information Pattern
bases on the D&S Pattern shown in 2.3.1. This pattern could be attached to other
D&S based patterns. Via appending the Provenance Information Pattern we achieve an
detailed representation of provenance information about the contextualized view of the
enriched pattern. Such provenance information could be a description of the method
used to create the view or the creator. As in the D&S Pattern, the Provenance Infor-
mation Pattern classifies method and creator the by the concepts. In the Provenance
Information Pattern the role and the concept are defined by the Description. This De-
scription could be unique to the Provenance Information Pattern or can come with the
enriched pattern depending on the use of the Provenance Information Pattern. The
method itself and the entities have their settings in the Situation. Depending on the
concrete realization, like in the case of the Description, the Situation in the PIP and
the enriched pattern are equivalent or not. Now that we have defined the Provenance
Information Pattern, shown in A.2, we have two different scenarios on how to tailor it
to an other Pattern. On the one hand provenance information could be understood as
additional information depending on the conceptualized view, on the relations of the set
of individuals. Under this assumption the Provenance Information Pattern always refers
to a specific other Pattern, which is enriched by it. In this case there is no possibility of



an stand-alone existence of a Provenance Information Pattern and the Description and
Situation in the Provenance Information Pattern are congruent with the Description
and Situation of the enriched Pattern, see figure A.3.
On the other hand the provenance information can be modeled in an independent pattern
and attached to the pattern to enrich by using the mechanism described in the Interpre-
tation Pattern. Thereby the Provenance Information Pattern brings its own conceptual-
ized view there only the ProvenanceSituation of the Pattern isObjectIncludedin in
the Situation of the enriched Pattern. There might be cases there this kind of modeling
makes sense and there is an ongoing discussion on this issue in our workgroup. In most
cases we want the dependency between the Provenance Information Pattern and the
conceptualized view of the enriched pattern, like it is shown the first case in A.4. It has
to be said that the attachment of the independent Provenance Information Pattern to
the Annotation Pattern, like in A.4 does not makes real sense and should only be seen
as an example of the underlying mechanism.

Figure A.1: The original Annotation Pattern

Figure A.2: The Provenance Information Pattern
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Figure A.3: The Annotation Pattern enriched with dependent Provenance Information

Figure A.4: The Annotation Pattern enriched with independent Provenance Information
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A.1.2 The Annotation Pattern

The Annotation Pattern allows us to assign any annotation to an information ob-
ject considering the context. It is specialized from the D&S Pattern, see Figure 2.2,
and consists of an AnnotationDescription and a AnnotationSituation, whereas the
Description defines at least one AnnotatedInformationEntityConcepts that classi-
fies the InformationEntity to be annotated. The annotation itself is realized by an
Entity that is classified by an AnnotationConcept, also defined by the Description.
Both InformationEntity and the metadata have their settings (hasSetting) in the
AnnotationSituation and they are sticked together through the Information Real-
ization Pattern, shown in figure 2.5. This part of the pattern works as a stand-alone
Annotation Pattern without provenance information, because it already gives us a con-
ceptualized view on annotations. The relation between the InformationEntity and the
meta–data modeled by the use of the Information Realization Pattern is also optional
and the pattern could be used without this additional information. Furthermore as men-
tioned it is possible to enrich the pattern with provenance information by adding the
Provenance Information Pattern. In this case both Description and Situation of the
Annotation Pattern and of the Provenance Information Pattern are congruent. You can
see the original Annotation Pattern figure, like it was proposed in [30], in A.1 and the
pattern modified under the assumption of an existing Provenance Information Pattern
in A.5. [31]

Figure A.5: The Annotation Pattern

A.1.3 The Decomposition Pattern

The Decomposition Pattern, like the Annotation Pattern is derived from the D&S
Pattern. The Annotation Pattern and the Decomposition Pattern have a pretty simi-
lar layout. The pattern consists of a DecompositionDescription defining exactly one
CompositeConcept and at leastone ComponentConcept. The ComponentConcept classi-
fies the whole and the CompositeConcept classify the parts, whereas both are represented
by InformationObjects. Both objects have their settings in the Situation as well as
in the Annotation Pattern. Provenance information and the use of the Information
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Realization Pattern can be added in the same way as it was added in the Annotation
Pattern. The figure A.6 shows the modified Decomposition Pattern without provenance
information according to our discussion in the previous section. [31]

Figure A.6: The Decomposition Pattern in the M3O

A.2 The Eventmodel F Patterns

The following Patterns are all taken from the Event-Model-F [33]. Most of the definitions
in Event-Model-F [33] have been specialized from the generic classes defined in DUL,
e.g. Event, Object, Abstract, Quality, etc. With the concrete implementation of the
Decomposition Pattern and by comparing it to the M3O implementation of the same
pattern, we will show in an exemplary manner different appearances of similar patterns.
These different forms are owed to the fact, that the concrete characteristics of one and
the same pattern can differ in different domains, or to the evolution in pattern design
specially when the patterns are designed by the same group of persons. This shows again
that there is not unique solution in the design of Ontologies and Ontology Patterns, even
if the domain is the same and the design process is fully underpinned with state of the
art theory. There have always choices to be made for which there is no clear answer
available in theory.

A.2.1 The Decomposition Pattern

The Decomposition Pattern in the Event-Model-F, shown in figure A.7 deals with the
(de)composition of a event. This decomposition may appear as temporal, spatiotempo-
ral or as spatial decomposition. As the nomenclature indicates temporal decompositions
divides by time and spacial by space, spatiotemporal decompositions divides the given
event by both time and space. This Pattern uses the mechanism of reification through
a specialization of the D&S Pattern. It defines a EventDecompositionDescription
and a EventDecompositionSituation that satisfies the Description. The event itself
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is classified by a EventRole in which the event may play neither the composite role
(the whole) or the component role (the part).A concrete component EventRole has a
parameter set by an EventCompositionConstrain, that can be spatial, temporal or
spatiotemporal, depending on the concrete appearance of the decomposition. These
EventCompositionConstrains are defined by the DecompositionDescription and pa-
rameterize the Region in the Data Value Pattern of the concrete Event. The event and
its concrete regions are all included in the DecompositionSituation. [33]

EventCompositionDescription

Description

Concept Parameter

EventType

Component

EventCompositionConstraint

TemporalConstraint

SpatioTemporalConstraint

Situation

Event

Quality

TimeIntervalsatisfies

defines

classifies

parametrizes

classifies

isEvent
IncludedIn

isTime
IncludedIn

isParameterFor

SpatialConstraint

SpatioTemporalRegion

SpaceRegion

parametrizes

parametrizes

Object

isSpaceTime
IncludedIn

isSpace
IncludedIn

hasParticipant

hasRegion

EventCompositionSituation

Composite

hasQualityhasQuality

defines

Figure A.7: The Decomposition Pattern in the Event-Model-F

A.2.2 The Participation Pattern

The Participation Pattern deals with the aspect of the constitutional declaration of
events by giving the objects, e.g. persons, participating in such a event. In Figure
A.8 we can see that this participation is modeled through a specialization of the D&S
Pattern. Therefor the pattern defines a ParticipationDescription that is satisfied
by a ParticipationSituation. The concrete Situation includes the event and the
objects participating in this event. The Description defines the concepts of event and
participant, as in the D&S Pattern. Different types of events or objects participating,
are represented as instances of the related concepts. With this mechanism it is possible
to model the instantiation relationship between a concrete Event and its super concept,
e.g. if we talk about the hurricane katrina only in this way the relationship can be
reified. The object itself can be described more precisely using a domain Ontology or
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with the Data Value Pattern of DUL presented before. [33]

EventParticipationDescription

Description

EventParticipationSituation

RoleEventType

Situation

Event
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Object

Place

DesignedArtifact

Concept
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ParticipantDescribedEvent

Parameter

LocationParameter
isParameterFor

parameterizes

Figure A.8: The Participation Pattern

A.2.3 The Interpretation Pattern

Due to the fundamental design decision of identification and clear separation of aspects
of events, different context-dependent views on an event can be described using the In-
terpretation Pattern. Each instance models a single, independent view (interpretation)
on an event by joining the different Patterns relevant in the context of the interpretation.
This pattern is based on the D&S Pattern, thus it defines a EventInterpretationDescription
and an EventInterpretationSituation. This Description defines a interpretant,
the entity that specifies how the event is interpreted, and a RelevantSituation as a
Situation that satisfies the Patterns Description relevant in this interpretation.

A.3 OWL to UML Mappings

A.3.1 Figures
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Figure A.9: The Interpretation Pattern

Figure A.10: owl:AllValuesFrom in UML

Figure A.11: owl:appcomplementOf model in UML

Figure A.12: owl:disjointWith in UML
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Figure A.13: Using owl:disjointWith between multiple Classes in UML

Figure A.14: Using owl:disjointWith with Common Supertype in UML

Figure A.15: owl:equivalentClass in UML
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Figure A.16: ODM current Version owl:intersectionOf in UML

Figure A.17: ODM next Version owl:intersectionOf in UML
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Figure A.18: ODM current Version owl:unionOf in UML

Figure A.19: ODM next Version owl:unionOf in UML
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