Ammar Mohammed Ammar

Hybrid Multi-agent Systems:
Modeling, Specification and
Verification

Dissertation

Department of Computer Science
University of Koblenz-Landau

Ammar Mohammed Ammar

Hybrid Multi-agent Systems: Modeling, Specification andifeation

Vom Promotionsausschuss des Fachbereichs 4: Informatlirdeer-
sitat Koblenz-Landau zur Verleihung des akademischernl&&x&®ok-
tor der Naturwissenschaften (Dr. rer. nat.) genehmigteddtation.

Vorsitzender des Promotionsausschusses: Prof. Dr. Diétezl

\orsitzender der Promotionskommission: Prof. Dr. DidtriRaulus

Berichterstatter: Prof. Dr. Ulrich Furbach
Prof. Dr. Frieder Stolzenburg

Die wissenschaftliche Aussprache fand am 27. Oktober 210 s

Acknowledgements

No man is an island. This thesis would not have been possibl®ut the
support and encouragement of many people to whom | woulddilexpress
my deep gratitude here.

First of all, | would like to express my deep and sincere grdé to my su-
pervisor, Prof. Dr. Ulrich Furbach the head of Artificialéltgence Research
Group (AGKI), for giving me the opportunity to work in his grp and for his
valuable support and guidance throughout doing this thebsve learned a
lot from his discussion during our regular group-meetingisers.

I'm thankful to Prof. Dr. Frieder Stolzenburg not only fovrewing thesis,
but also for his precious ideas that helped me to do work beget

| am also grateful to my current and previous colleagues atABGKI.
In particular, i would like to thank Prof. Dr. Bernhard Beckéor support-
ing me with questions and suggestions at many meeting. &kanks goes
to Christian Schwarz for his feedback on drafts of the thasid for good
collaboration on related topics. Further, | would like tank Claudia schon
and Bjorn Pelzer for their help in proof-reading some of napgrs. Special
thanks goes to Beate Koner who helped me and my family tdedoks of
obstacles. | would like also to extend my thanks to the falhgvmembers
and ex-members of the group who helped me directly or inthreturing
working in AGKI (in no particular order) Markus Maron, Chieph Glad-
isch, Ekaterina Pek, Thorsten Bormer, Gerd Beuster, Maf@ress-Hardt
and Jan Murray.

Outside of AGKI, | owe thanks to all my friends in Germany. Amgo
of them | am indebted to Safiye llhan, Gokhan Er, Fatih Gided Jessica
Gulen.

Finally, the greatest encouragement was given to me by myilyzamy
mother, wife and children. They provided me with emotionabmort and
patience. Without them, this work wouldn’t be complete.

| gratefully acknowledge the support of my work by Egyptiambgtry of
higher education as well as university of Koblenz-landau.

Koblenz, November 2010 Ammar Mohammed Ammar

Abstract

Specifying behaviors of multi-agent systems (MASS) is a aeding task,
especially when applied in safety-critical systems. Inldiger systems, the
specification of behaviors has to be carried out carefullprioier to avoid
side effects that might cause unwanted or even disastrduasvioes. Thus,
formal methods based on mathematical models of the systel@r wesign
are helpful. They not only allow us to formally specify thessgm at different
levels of abstraction, but also to verify the consistencyhef specified sys-
tems before implementing them. The formal specificationsaamprecise and
unambiguous description of the behavior of MASs, whereasvérification
aims at proving the satisfaction of specified requirements.

A behavior of an agent can be described as discrete changjssstdites
with respect to external or internal actions. Whenever diomaoccurs, the
agent moves from one state to another one. Therefore, aiepffiwvay to
model this type of discrete behaviors is to use a kind of statgsition dia-
grams such as finite automata. One remarkable advantagelotramsition
diagrams is that they lend themselves formal analysis tgaba usingnodel
checking The latter is an automatic verification technique whictedaines
whether given properties are satisfied within a model ugaegrla particular
system.

In realistic physical environments, however, it is necgssa consider
continuous behaviors in addition to discrete behaviors ASg. Examples of
those type of behaviors include the movement of a soccert agduick off
or to go to the ball, the process of putting out the fire by a fiigdule agent
in a rescue scenario, or any other behaviors that dependyotinaed physi-
cal law. The traditional state transition diagrams are ntitgent to combine
these types of behaviokéybrid automateoffer an elegant method to capture
such types of behaviors. Hybrid automata extend regulée stansition di-
agrams with methods that deal with those continuous acgach that the
state transition diagrams are used to model the discret@elkaf behaviors,
while differential equations are used to model the contisuchanges. The
semantics of hybrid automata make them accessible to forengication by
means of model checking.

The main goal of this thesis is to approach hybrid automatagecifying
and verifying behaviors of MASs. However, specifying andl arrifying
behaviors of MASs by means of hybrid automata raises seisgaés that
should be considered. These issues include the complexagiularity, and
the expressiveness of MASs’ models. This thesis addrekses tssues and
provides possible solutions to tackle them.

Zusammenfassung

Die Beschreibung des Verhaltens eines Multi-Agentene®gst (MAS) ist
eine fordernde Aufgabe, besonders dann, wenn es in sidtsiriiteschen
Umgebungen eingesetzt werden soll. Denn in solchen Umgeloumuss die
Beschreibung besonders sorgfaltig ausgefuhrt werderSaiteneffekte zu
vermeiden, die ungewiinschte oder sogar zerstorisclyggirtlaben konnten.
Deshalb sind formale Methoden nitzlich, die auf mathesnhgén Modellen
des zu entwerfenden Systems basieren. Sie erlauben esuaidids System
formal auf verschiedenen Abstraktionsebenen zu spezd#iziesondern auch
seine Konsistenz noch vor der Implementation zu verifineas Ziel der
formalen Spezifikation ist eine prazise und eindeutigecBesbung des Ver-
haltens des Multi-Agenten-Systems, wahrend die Verifikatlarauf abzielt,
geforderte Eigenschaften dieses Systems zu beweisen.

Ublicherweise wird das Verhalten eines Agenten als diskbeiderung
seines Zustands im Bezug auf externe oder interne Aktionfgetasst. Jedes
mal, wenn eine Aktion auftritt, andert sich der Zustand Algenten. Deshalb
sind Zustandsiibergangsdiagramme bzw. endliche Autoneaenaheliegen-
der Ansatz das Verhalten zu modellieren. Ein weiterer Moeieer solchen
Beschreibung ist, dass sie sich fir das sogenabiugel Checkingeignet.
Dabei handelt es sich um eine automatische Analysetecti@iyestimmt,
ob das Modell des Systems spezifizierten Eigenschaftemggen”

Allerdings muss in realistischen, physikalischen Umgegammneben dem
diskreten auch das kontinuierliche Verhalten des MulteAign-Systems be-
trachtet werden. Dabei konnte es sich beispielsweise @rSdhussbewe-
gung eines Fussballspieler-Agenten, den Prozess dehérbsiurch einen
Feuerwehr-Agenten oder jedes andere Verhalten handedraudaeitlichen
physikalischen Gesetzen basiert. Die Ublichen Zustdmetgjangsdiagramme
sind nicht ausreichend, um diese beiden Verhaltensartkambinieren Hy-
bride Automaterstellen jedoch eine elegante Losung dar. Im Wesentlichen
erweitern sie die Ubliche Zustandsiibergangsdiagramurehdiethoden, die
sich mit kontinuierlichen Aktionen befassen. Die Zustdrimggange mod-
ellieren weiterhin die diskreten Verhaltenswechsel, gt Differentialgle-
ichungen verwendet werden um das kontiniuierliche Veematu beschreiben.

vi

Besonders geeignet erscheinen Hybride Automaten, waedl filnmale Se-
mantik die Verfikation durch Model Checking erlaubt.

Deshalb ist das Hauptziel dieser Arbeit, Hybride Automdigrie Mod-
ellierung und die Verifikation des Verhaltens von Multi-Agen-Systemen
einzusetzen. Jedoch bringt ihr Einsatz mehrere Problemsichi die betra-
chtet werden sollten. Zu diesen Problemfeldern zahlen pexitat, Mod-
ularitat und die Aussagestarke der Modelle. Diese Arbeftsst sich mit
diesen Problemen und liefert mogliche Losungen.

Contents

[Introduction] 1
[1.1 Overview and Motivationovvereernennn. 1
2 Convintiods AR p
[1.3 PUblicationsoovoeeee e 5

viii Contents

4.3.1 RUNNING EXAMEIE . ..o ovoeeee oo
4.3.2 SVYNAX ..o 42

Contents ix

[7.2.2_Deliberative ACHOMSccovvveeeenn., 101
[2.3 Planning Scenalio 102
7.4 Planning ModBl 104
[2.5_Planning as Reachability Analysis . 106

I8 Hierarchical Modelc.ooviiiiiii ... 109
[B.1 INtroductionoooe e 109
8.2 Statechans BasiCso.vveeeeeeiineennn 111

I&s_’g%ihﬂts 112
8.3 1 SyntaXx ... 113

List of Figures

[1.1 A description of a simple agent as a transition diagram.... 2

4.2 The parallel composition of Fig. 4.1 as a black-box. 41

4.3 Exact composed automaton of @4.1 41

List of Figures 1

1

Introduction

In this Chapter, we motivate our work, outline the thesis amehmarize its
contributions.

1.1 Overview and Motivation

Multi-Agent Systems (MASS) is the subfield of Artificial Itligence that
aims at providing principles for building complex systemgalving several
interacting agents. An agent is an autonomous decision muakeehalf of
some real world entity. It is generally agreed that therecisiniversally ac-
cepted definition of the term agent, but the one presentdtsiitesis is taken

from [Wooldridge and Jennings, 1995]:
An agent is as an encapsulated computer system that is esituat

some environment, and that is capable of flexible, autonsraction
in that environment in order to meet its design objectives.

Generally, the agent acts in its environment according teasoning
process that relies on its internal behaviors/states amdttmulus received
thereof. An abstract relation between the agent and its@mvients is de-
scribed in [LRu&s_ell_e_t_bL._ZdOS]. In this abstract, the ageseen as a reactive
component which monitors its environment through sensadsagts upon it
through effectors.

When several agents operate and interact in an environ Jform
what is called a Multi-Agent System (MAS). According m"[?@
2002], an MAS is defined as a distributed system containinglieation
of agents that work together in order to solve problems. Aggenan MAS
should be able to interact through communication and c@b@én order to
fulfill certain tasks.

2 1 Introduction

simple player J

line up

defend '

game over

game over

Fig. 1.1.A description of a simple agent as a transition diagram.

The development of MAS applications to be applied in sateitjeal
systems—a critical system is a system that must satisficariproperties,
such as safety, real-time and security properties—asksecifying their
behaviors cautiously in order to avoid side effects thathmiiging about un-
wanted or even disastrous behaviors. To tackle this clgdletne use of rig-
orous techniques in specification and analysis of the MA3edsired. For
this purpose, formal techniques based on mathematical Isnotihe system
under design are helpful. They allow not only us to formafiedfy the sys-
tem at different levels of abstraction, but also to analyweconsistency of the
specified systems before implementing them. The formalipaiton aims
at presenting a precise and unambiguous behavior descripfian MAS,
whereas the formal verification looks at proving the commd&with speci-
fied requirements.

An agent behaves with respect to the occurrence of externakernal
actions. Whenever an action occurs, the agent moves fronstaite to an-
other. Therefore, an efficient way to model agents’ behavieito use state
transition diagrams. Fid. 1.1 shows the behavior of a sinaplgtract agent
playing soccer modeled as a state transition diagram. Hlyrrasstate tran-
sition diagram is defined by a set of states and a set of pesisénisitions.
Each transition is labeled by the name of an action or evense/loccurrence
triggers the change of state.

One remarkable advantage of state transition diagramsigtiay allow
for formal analysis usingnodel checkingechniquesL[Qla.LKe_e_t_hL_lQ99].
Model checking is an automatic verification technique, Whitetermines
whether given properties of a system are satisfied by a masarithed as
a transition system. A model checker takes both a model anojeery spec-
ified by using temporal logics and automatically checksegitivhether the
property is correct or a counter-example falsifying thatgarty.

1.1 Overview and Motivation 3

Although state transition diagrams can describe the desdehaviors of
agents in terms of how the agents act in certain scenari@snécessary to
consider continuous behaviors too. Examples of such typbslaviors in-
clude the movement of a robot to kick off or to go to the balg grocess of
putting out the fire by a fire brigade agent in a rescue scertagapproach-
ing of a train to a gate controlling a road intersection, or atmer behaviors
that depend on any continuous physical law. This asks fortagdehat can
capture both types of behaviotdybrid automataﬂl:l_euzing_drl_l&%] offer an
elegant method to model such types of behaviors. They ateglifferential
equations within regular state transition diagrams. Thgestransition dia-
grams are used to model the discrete changes of the ageh&s/ibes, while
differential equations are used to model the continuous@ds The seman-
tics of hybrid automata make them accessible to formal eetifin by means
of model checking. Thus, it is possible to prove desirabbduiees and the
absence of unwanted properties for those systems, whicmedeled using
hybrid automata. Hybrid automata cannot only be used toifypeehaviors
of MASSs, but also to prove their properties.

Specifying and verifying behaviors of MASs by means of hghaiu-
tomata, however, reveal several issues that should be itaticeconsideration.
The first issue deals with the main challenge of applying rhodecking to
MASs. Within hybrid automata, the team of agents is desdrdseconcurrent
automata. It is known that the major problem in applying matiecking is
the potential combinatorial explosion of the state spatsengr from analyz-
ing concurrent systems. The problem becomes more compler warmit-
ting continuous dynamics within systems. This is why a mathelcker keep
tracks not only of the part of the explored state space, lsat @il the timing
and continuous evolution associated with each state, whittine and spac-
consuming. This requires techniques that help to cope Wwishproblem.

Another important issue deals with the modularity of hybsistomata
models. Hybrid automata lack support for modularity beingraportant as-
pect when we model complex MASs containing similar subesyst There-
fore, the description of the internal behavior of each agentvell as the
external interactions among agents are equally visibleaaedonsidered to
be at the same level of abstraction. Models of MASs can béeckd and il-
legible as a result. This asks for structured and systemstbods to support
modularity and to analyze the behaviors of complex systems.

A further issue deals with the expressiveness of hybridraata to spec-
ify behavior of MASs. When the behaviors of agents are defirsiag hybrid
automata, their decision making relies on the evolutiorhefdontinuous dy-

4 1 Introduction

namics. However, there are still favorable situations fgrds to make deci-
sions depending on some utility/payoff functions, e.grsdst distance, max.
or min. values that might appear during the continuous éolwf agents.
Neither hybrid automata nor their support tools can modeh sype of be-
haviors.

An additional issue deals with the expressiveness of thedatd tools
of hybrid automata to specify and verify those propertied/éfSs that de-
pend on the occurrences of events. The importance of eviemts $rom their
ability to not only construct the overall model of an MAS thgh the com-
position of agents, but also to reason about behaviors oMA& through
communication among agents. The standard tools of hybiiohzata, e.g.
Hytech Mil 7] and PHAVer [Fréhise, 2008dvide little
support to verify properties of events directly. In orderdtmso, these tools
have to indirectly re-specify those properties into an ptatde form to the
verification engine in a way that may add further complexitytite original
model. Let us assume that one wants to specify and prove tenaever an
agent sends a request, it will be acknowledged withime units in a model
M of an MAS. A typical solution to verify this with standard hythautomata
tools is to translate the previous specification into a médélhen, the orig-
inal goal to verify the specification is to check whether theafiel model of
AandM can reach a designated statedoft is an advantage if one can verify
such types of properties directly from the original modethwut the process
of composition.

1.2 Contributions

The expected main contribution of this thesis is to apprdaditid automata
for specifying and verifying behaviors of MASs and to pravidays for ad-
dressing the challenging issues, which have been preyioushtioned. More
precisely, this thesis provides a novel framework to speaifd to verify
MASSs based on hybrid automata. The framework presents aaqip that
addresses the complexity raised by the composition of aggntonstruct-
ing the composition of agents’ behaviors dynamically dgitime verification
process such that the only necessary parts of state spacersidered.

Additionally, the framework presents a novel variant of pamal logics,
called RCTL (Region Computation Tree Logic) which extendd.Gn or-
der to specify both qualitative and quantitative propserti systems under
consideration.

1.3 Publications 5

The thesis provides various aspects to extend hybrid ad¢orfRmstly, the
thesis presents a slight extension to hybrid automata migpagents to have
control over their behaviors in a way that they can react ¢octange of the
environment based on their preferences. Secondly, in tod=pe with com-
plex multi-agent structures, the thesis shows how to iategihe hierarchical
notations of UML statecharts together with the formal setcarof hybrid
automata. This integration is advantageous. On the one hardrchical no-
tations allow specifying MASs with different levels of atasttion. On the
other hand the formal semantics of hybrid automata allowafalyzing the
behaviors of those MASs.

Graphical modeling languages are used extensively to fypeehaviors
of systems, particularly MASs. Although they do not requxperts and are
favored by a lot of users, they provide little support forniad analysis of
those systems. For bridging this gap, the thesis proposeseaaqraphical
notations for specifying behaviors of MASs and formal vesfion to support
analysis of those MASSs.

1.3 Publications

Almost results presented in this thesis have already bebtishad in the
proceedings of various international conferences, wanstand in a book.
The following is a full list of these publications.

e Mohammed, A. and Furbach, U. (2010a). Extending CTL to Syeci
Quantitative Temporal Requirements. In Sopena, J. G. arCapel-
Tunon, M., editors, In Proceedings of the 8th Internatidivarkshop on
Modeling, Simulation, Verication and Validation of Entege Informa-
tion Systems, MSVVEIS 2010, pages 70-79, Funchal, Madewoeugal.
INSTICC PRESS. Held in conjunction with 11th Internatioi@nfer-
ence on Enterprise Information Systems (ICEIS 2010).

e Mohammed, A. and Furbach, U. (2010b). Multi-agent systemsdel-
ing and verification using hybrid automata. In Lars BrauhdctP. B. and
Thangarajah, J., editors, Post-Proceedings of 7th Inierad Workshop
on Programming Multi-Agent Systems at 8th Internationahtl@€on-
ference on Autonomous Agents and Multi-Agent Systems, LE®19,
pages 49—-66. Springer, Berlin, Heidelberg.

e Mohammed, A., Furbach, U., and Stolzenburg, F. (2010). iMakot sys-
tems: Modeling, specification, and model checking. In Payiceditor,

1 Introduction

Robot Soccer, chapter 11, pages 241-265. IN-TECH.

Schwarz, C., Mohammed, A., and Stolzenburg, F. (2010). Adnairon-
ment for specifying and verifying multi-agent systems. llipE, J., Fred,
A., and Sharp, B., editors, Proceedings of the 2nd InteynatiConfer-
ence on Agents and Articial Intelligence, volume 2, page3-326. IN-
STICC Press.

Mohammed, A. and Schwarz, C. (2009). Hieromate: A graphical
for specification and verification of hierarchical hybridi@mata. In B.
Mertsching, M. H. and Aziz, Z., editors, Kl 2009: AdvancesArticial
Intelligence, Proceedings of the 32nd German Conferend&riicial In-
telligence, LNAI 5803, pages 695—702.Springer.

Mohammed, A. and Furbach, U. (2009). From reactive to dediibes

multi-agent planning. In Ultes-Nitsche, U., Moldt, D., aAdgusto, J. C.,
editors, In Proceedings of the 7th International Workshopgvmdelling,

Simulation, Verication and Validation of Enterprise Infration Systems,
MSVVEIS 2009, pages 67-75, Milan, Italy. INSTICC PRESS. Hiel

conjunction with 11th International Conference on Entisgtinforma-
tion Systems (ICEIS 2009).

Mohammed, A. and Stolzenburg, F. (2008). Implementinganaical
hybrid automata using constraint logic programming. Inv&atz, S., ed-
itor, Proceedings of 22nd Workshop on (Constraint) LogimgPamming,
pages 60—71, Dresden. University Halle Wittenberg, luigtibf Computer
Science. Technical Report 2008/08.

Mohammed, A. and Furbach, U. (2008a). Modeling multi-adegistic
process system using hybrid automata. In Ultes-NitscheMdldt, D.,
and Augusto, J. C., editors, In Proceedings of the 7th latenal Work-
shop on Modelling, Simulation, Verication and ValidatiohEnterprise
Information Systems, MSVVEIS 2008, pages 141-149, BanzelSpain.
INSTICC PRESS. Held in conjunction with 10th Internatiol@bnfer-
ence on Enterprise Information Systems (ICEIS 2008).

Mohammed, A. and Furbach, U. (2008b). Using CLP to modelidygys-
tems. In Proceedings of Annual ERCIM Workshop on Constiaoiving

1.4 Structure of the Thesis 7

Programming (CSCLP2008), Rome, Italy. Published onlitMpst.istc.cnr.ity CSCLPO08/program/inde

1.4 Structure of the Thesis

The rest of the thesis is organized as follows:
Part |

Chaptef® provides introductory material on hybrid aut@mat

Chapter B shows how to use hybrid automata to model behawviors
MASSs. It demonstrates that by modeling an MAS scenario thbdws a
standard interaction protocol. With one of the standardehcoleckers of hy-
brid automata, the Chapter shows how several propertiast &is scenario
can be investigated. The contribution of this Chapter ha&s lmblished in
[Mohammed and Furbach, 2008a].

Part 11

Chaptef# discusses the syntax and semantics of the newsgppproach,
which aims at constructing behaviors of MASs on-the-fly dgithe verifica-

tion phase. The Chapter also shows how to implement the pealapproach
using constraint logic programming. The main core of thigyathr has been

published in[[Mohammed and Furbath, 2010b; Mohammed @G10]. An

early implementation of the model has been published in fsfemed and Furbach,
12008b; Mohammed and Stolzenburg, 2008].

Chaptefb introduces the syntax and semantics of the qatweitemporal
logic RCTL. It demonstrates how several RCTL requiremeatshe verified
using the model presented in Chayter 4. In addition, the €haprveys the
other quantitative temporal logics related to RCTL. Thetdbuation of this
Chapter has been published in [Mohammed and Furbach, 2010a]

Chaptei’b evaluates the proposed approach with severalasthexam-
ples taken from the context of hybrid automata. The Chaetfers to those
works that are related to our proposed approach as well. Hie rasults of

this Chapter are presented iin [Mohammed and Furbach, 2009a]

Part 111

Chaptel V¥ shows that hybrid automata can be used as a coakcemtdel
for planning the behavior of MASs. The Chapter focuses onktherela-
tion between planning problems and model checking. Furtbes, it looks

8 1 Introduction

at extending the decision making of the hybrid automata nsoiecontain
preferences of agents. The main contribution of this Chdpds been pub-
lished in [Mohammed and Furbach, 2009a].

Chapte 8 presents an approach to extend hybrid automatahieitar-
chical notations. It discusses the formal syntax and sdosaof this exten-
sion. It also implements a prototype of this approach usmgstaint logic
programming. Furthermore, the Chapter supports the aeiafuaf this ap-
proach with several examples and discusses other relatdd Wwoe contri-
bution of this Chapter is presented in [Mohammed and Stolze| 2008;
IMohammed et all, 2010].

Chaptef ® presents a tool environment that integrates thiementations
of those models which are presented in Chdgdter 4hnd 8. Tdliaitns at sim-
plifying the specification process by incorporating graahinotations within
the models. The Chapter demonstrates the tool on an MAS rsocdaken
from the Robocup Rescue. Additionally, the Chapter showsroivork re-
lated to this tool. The contribution of this Chapter has beablished in

[Mohammed and Schwarz, 2009; Schwarz ét al., 2010].

Part 1V

Chaptef ID summarizes the thesis and shows some futures work

Part |

Background

2

Background literature

This chapter displays background material on hybrid autama

2.1 Introduction

Reactive systenae coined in[Harel and Pnueli, 1985] to describe those sys-
tems that react to inputs from an environment by generatomgesponding
responses. Typical examples of such systems include erifltaractive sys-
tems, such as automatic teller machines (ATMs) and fliglgrvasion sys-
tems; computer-embedded systems, such as automotivelaodnenunica-
tion systems; and control systems, such as chemical andfatémuing sys-
tems.

A special class of systems which belongs to reactive sysiethg class
of real-time systemsn such systems, the reaction to a certain stimulus should
be done within given time bounds. For example, a gate cdimiga rod cross-
ing tracks of trains should be forced to close the rod witki@sonable time
during the approaching of any train.

Another important class of systems which belongs to readpstems is
the class of those systems which react to their environmerdrding to the
evolution of their own physical rules. Such types of systemwe known as
Hybrid systemsA hybrid system is defined as a reactive system consisting of
continuous and discrete components [Olderog and Dierle§]2The contin-
uous components are time-dependent physical variablgingover a con-
tinuous value set, like speed, temperature, pressure drgoos he discrete
components are controllers that alter the physical vasabl a desired way.
An example for such type of hybrid systems is a heating systbose objec-
tive is to keep the room temperature within certain limitsaRtime systems
can be considered as hybrid systems with at least one conmsnvariable

12 2 Background literature

e A
Reactive Systems

4 N

Real-time Systems

Hybrid Systems

Fig. 2.1.Classes of systems

representing time. Real-time systems are often obtainabsigactions of the
more detailed hybrid systems. The main relation betweectiveasystems
and their special classes are summarized in [Fig. 2.1 [Ojdend Dierks,
3].

Reactive systems often appear in safety-critical apptinatwhere fail-
ure is unacceptable. Therefore, they must be carefullygdesi with a high
degree of precision. For this purpose, the use of rigorotrmdbmethods in
specification and verification of such systems are helpful.

When formal methods are taken in consideration to specity \arify
reactive systems, the classes of Eigl 2.1 are reversedyas #hFig[2.2. One
can conclude that formal methods of hybrid systems can be asgeneral
methods to analyze real-time systems as well as reactitersgs We will
concentrate on the formal methods of hybrid systems.

Formal methods provide ways to formally specify and verigtems.
Specification is the process of describing a particularesysind its desired
requirements/properties. Formal specification is a teglenusing a language
with a mathematically defined syntax and semantics. A foispatification
of a system can help to obtain a better description and utaheliang of sys-
tems’ abstraction. Formal verification provides an analysethod to verify
the behavior of systems regarding their compliance withiireqnents.

Hybrid automataare mathematical formalisms that can formally capture
the behavior of hybrid systems. Their formal semanticswallais to prove
desirable features and the absence of unwanted propartige ispecified
systems. In the following, we will concentrate on hybridauata as a formal
model of specifying systems.

2.2 Hybrid Automata 13

s - N
methods forhybrid systems

methods forreal-time systems

methods forreactive systems

Fig. 2.2.Formal methods for systems

The rest of this chapter is organized as follows: [Sekt.2.2iges a back-
ground on hybrid automata and their classes[Séc.2.3 binéfyduces reach-
ability analysis as an automatic approach for verificatwirtsybrid automata.

2.2 Hybrid Automata

It is generally agreed that finite automata are a natural mnedo describe

dynamic behaviors of reactive systems. They are not suifitiemodel real-

time or continuous dynamical systems. Therefore, finiteraata have been
extended in ways to integrate the real-time or continuousanhics. The most
successful model of real-time systems is the timed auto Ada and Dill
@1]. Timed automata are finite automata equipped with tefmimber of
variables/clock representing time. The most successfualainar hybrid sys-
tems are hybrid automata—they are also a natural gendrafizaf timed

automata—in which the finite automata are equipped withaldes that rep-
resent the dynamical parts of systems.

x=M (@ J) tum.on X=m_
[— iix>m
fix=—Kx

N umoffx=M

Fig. 2.3.A simple hybrid automaton.

14 2 Background literature

2.2.1 What is Hybrid Automaton ?

A hybrid automaton| [Henzinger, 1996] is a formal model toctlié® reac-

tive systems with discrete and continuous components. Aithyutomaton

H = (X,Q,Flow, Inv,Init,E,Jump ¥ ,syng consists of the following compo-
nents:

e Afinite setX = {x1,x2,..., X} of real-valued variables that represent the
continuous dynamics.

e A finite setQ of control locations or modes. It should be noted that in
the classical automaton, these control locations areccsiiges; however,
that term is defined differently for hybrid automata.

e Flow (continuous activity) is a labeling function that assigmg&ch con-
trol locationq € Q a flow conditionsFlow(q) whose free variables are
from XUX, where the dotted variablé§= {X;,%y, .., %,} denote the first
derivative of the variableX. When the control of hybrid automaton is
in a locationq, the variables evolve according to differentiable funasio
which satisfy the flow conditiofrlow(q).

e Aninvariantinvis a labeling function that assigns to each control location
g € Q an invariant conditiodnv(q) whose free variables are ¥

e A labeling functionlnit that assigns to each control locatigre Q an
initial condition Init (q) whose free variables are fros

e EC QxQis a finite set of discrete transitions— also called control
switches— among control locations. Each transition,gz) € E has a
source locatiory; and target location.

e An edge labeling functiodumpthat assigns a jump condition— also called
guard action—jump(e) to each transitiore € E. The jump condition
jump(e) is a predicate whose free variables are frm X', where the
primed variablesX’ = {x,%,,....,X,} are used to represent values at the
conclusion of discrete change.Consequently, any jumpitondelates
the values of the variables before a discrete transitiohggbssible val-
ues after the discrete transition.

e A finite sety of events which are used to synchronize concurrent au-
tomata.

e A labeling functionsyncE — S that assigns to each transitiere E an
event.

A hybrid automaton can be represented graphically, asadi@agrams of
a finite state automaton augmented with flows, invariantj@amps. Each lo-
cationqis drawn as a circle or rectangle shape labeled with a nanreugh-
out this thesis, locations are drawn conventionally asaregies with rounded

2.2 Hybrid Automata 15

corners. Furthermore, inside each locatgrboth the invariantnv(q) and
the flow Flow(q) are labeled with the symbols andf: respectively. Set-
ting an invariant in a locatiorg to be true—i.e. i:true in the graphical
representation—means that the invariant is always adblievat that loca-
tion. On the other hand, setting flow to tree—i.e. f:true means that noth-
ing changes continuously. An edge- (q1,0y) € E is represented graphically
as an arrow from location; to locationqg, labeled with the jump condition
and the action event. We use guarded assignments to repjesgncondi-
tions; for example, assuming we have only a variabld the jump condi-
tion x = 10,x := 0 is declared on a transition, it stands for the jump con-
dition x = 10A X = 0. On the other hand, the jump condition of the form
x = 10,x := x stands for the jump conditian= 10A X = X, which means that
the value ofx does not change before and after the discrete transitiamce{e
we omit this type of assignments in the graphical represienta

Let us give an example of a hybrid automaton. Consider theidhydu-
tomaton of Figl 2.8, which models a thermostate. This hydwitmaton con-
sists of two locations; and gy, and the variable, which evolves under the
differential equationx = —K - x in location g1, whereas evolves under dif-
ferential equations = K(h— x) in locationq; for some constant& andh.
The invariant associated with the locatiomsandg, arex > mandx <M
respectively for some predefined constargndM. The initial location of the
automaton starts iy with x= M. There are two edges from to g, and vice
versa with guards = mandx = M respectively. In addition, the two edges
are annotated with the evertgn_on andturn_off.

The behavior of the thermostate automaton starts in latatipat which
the heater is off. The temperatuxedecreases linearly proportionally k.
The heater stays off as long as the temperature exceedsritmeumm. When
the temperature drops o, the invariant for staying in offi{> m) is violated,
and the conditiorx = mon the state transition labeled witlrn_on is met and
the control of the automaton jumps to the locatmpn In the later location,
the heater stays on as long as the temperature does not ¢keaadximum
M. As soon as the invariant condition is violated, the theatoswvitches the
heater off again and returns to locatign

A run of a hybrid automaton starts from an initial state, andsists of
infinite sequences of states, where the transition from tete $0 another
state follows one of the following transitions:

- Discrete transitions corresponding to instantaneoussifians between
control locations.

16 2 Background literature

- Flow transitions corresponding to the continuous evolutf the system at
a particular control locatioq according to the dynamics specified by the
Flow(q).

2.2.2 Automata Composition

Hybrid systems typically consist of several components dparate concur-
rently and communicate with each other. Each component eatebcribed
as a hybrid automaton. The component automata coordinate libhav-

iors through shared variables and synchronization labéls.automaton that
models the entire system is obtained from the componentreaitousing a
product construction.

Formally, letH; = (X1,Qq,Flowy, Invy, Inity, E1,Jump, $;,8yng) and
Hy = (X2, Qa, Flowy, Invy, Inity, Ex, Jump, 35, syne) be two hybrid
automata. The product automatbla x H; is a hybrid automatoi = (X3
U X2, Q1 x Qq, Flow, Inv, Init, E, Jump $; U 55, syng with the following
restrictions:

e The flow Flow(q) of each product locatiom = (g1,02) € Q1 x Q2 is
Flows (1) A Flowz(0p).
e The invariantinv(qg) of each product locatioq = (g1, 02) is Invi(gi) A
Inv2(qp).
Initial condition Init(q) is Init1(g1) U INnitz(op).
Each transitiore = ((01,0), (0},%)) € E if
1. &1 = (01, Gy) € E1, G2 = 0y, andsyna (er) ¢ 3 o; or
2. &= (02, %) € Bz, G2 = G, andsyne(ez) & 3 4; or
3. e1= (1,0} € E1.eo = (02,) € Ep, andsyng (e1) = syng(ep).

2.2.3 Classes of Hybrid Automata

In the literature of hybrid systems there are different sgasof hybrid au-
tomata, depending on the type of continuous dynamics ofybems. For
each class of dynamical laws, we obtain a class of hybridnaata. In the
following we some of these important classes.

Linear Vs. Non-linear Hybrid Automaton

A linear expressiorover a seiX of real valued variables is a linear combina-
tion of variables fronX with rational coefficients. Ainear inequalityoverX
is an inequality between a rational constant and a linearessppn. Aconvex

2.2 Hybrid Automata 17

linear predicateoverX is a finite conjunction of linear inequalities ovEr A
linear predicateis a finite disjunction of convex linear predicates.

A hybrid automatonH is called linear hybrid automatoal.,
@1] if it satisfies the following two requirements:

1. For each control location and each discrete transitf@nflow, the invari-
ant, the initial, and jump conditions are convex linear aes.

2. For each control locatiope Q, the flow conditionFlow(q) is a predicate
over the variables i only—i.e. does not contain any variables froin

A linear hybrid automata is callesimpleif the invariants and jump conditions
are of the formx < k or x > k, and all assignments are of the foxm= k or
X := X, for a variablex € X and an integer constaht

When the flow conditiorFlow(q) includes a predicate over both vari-
ables inX andX, a hybrid automaton is callegon-linear hybrid automata

[Henzinger et dl., 1998b]. For example, the automaton of[E@@ is a non-

linear hybrid automaton as it contains a flow of the fotm —K - x.

Discrete automaton

Avariablex € X is called adiscrete variableif its flow is of the formx= 0 in
each control locatioq € Q. Thus, a discrete variable changes only when the
control location changes. Biscrete automatofs a linear hybrid automaton
of whose variables are discrete.

Timed and Multirate Automaton

For a linear hybrid automatdd, A variablex € X is called askewed cloclf

at every control location, the flow ofis determined by differential equation
of the formx = k for a nonzero integet, and on each transitiome E implies
X =0 orX = x; that is, the value of the variablealways increases uniformly
with time at some fixed rate, and each transition either seset0, or leaves
it unchanged. A variable € X is called aclockif it is skewed clock with flow
of the formX = 1. A linear hybrid automatoiid is calledtimed automaton

[Alur and Dill, 1994] when the following hold:

1. Each variablex € X is a clock.

2. All invariants and jump conditions are combinations ofigie inequali-
tiesxy X cor Xg —Xo X ¢, wherexy, X, € X, ¢is a nonnegative integer and
the operatome {<,<,=,>,>}.

A linear hybrid automatort is calledmultirate automatorfAlur et all,
1994] if each variable € X is a skewed clock.

18 2 Background literature

Rectangular Hybrid Automaton

A rectangular inequality over real valued variabieis a formulax x ¢, where
c is an integer constant, andis one of{<,<,>,>}. A rectangular predi-
cateoverX is a conjunction of rectangular inequalities.

A Rectangular Automatois a hybrid automaton, in which all the initial
conditions, invariants, flows, and jump conditions areargtilar predicates
whose flow conditions refer only to variables ¥ Thus, each continuous
variablex € X satisfies nondeterministic differential equatiar< x < b—
also written ax = [a, b|—wherea andb are integer constants.

It is worth mentioning that adding several restrictions t@etangle au-
tomaton can lead to further subclasses. A simple form of &mngalar au-
tomaton can be obtained from adding rectangular flow to a Isirfipear
hybrid automaton. Arinitialized rectangular automatoﬂm%l.,
] can be obtained from rectangular automaton prowgedollowing
constraints are met: if each edge- (g1, 02) and for allx € X flowing in both
01 andap, then the value ok is nondeterministically reinitialized.

2.3 Reachability of Hybrid Automata

Automatic verification through model checking [Clarke €l2999] has been
proven as a powerful technique for verifying finite-statsteyns Reachabil-
ity analysisis a variant of model checking, which amounts to computeaiter
tively all the reachable states of the systems from an irsitéde until reaching
a fixed point. This can be done either enumeratively or syiodld). Reach-
ability analysis has been motived to prove safety propehat is verifying
that somethindpad never happens in a model underlying some systems. This
property is encoded as: can a bad state be reached fromiahdtate by ex-
ecuting a model ? Technically, reachability analysis ofréaie model can be
performed by either forward or backward reachability. Fanmvreachability
starts with an initial stateand checks if a run exists which can reach a target
T. Backward reachability starts in a targetand checks if a run exists which
can reach to the the initial state

Recently reachability analysis of model checking has begended to
deal with hybrid systems. Ttaecidability problenof such systems is one of
the central issues. Given a class of hybrid systems, thelaleitity problem
is to determine whether a certain property can be verifiedrbglgorithm
that terminates in a finite number of steps. Decidabilityasam issue in the
verification of purely finite state systems, since in the Wweese the veri-
fication can be performed by exhaustively searching the evitdte space.

2.3 Reachability of Hybrid Automata 19

In the case of hybrid systems, the decidability is a critisalie in algorith-
mic analysis because of the unaccountability of the stadeespAlthough
the reachability problem of hybrid automata is undecidathlere are several
classes for which the reachability is decidable.| In [Alud &ill, 1994], the
first decidability result for hybrid automata has been oigdifor timed au-
tomata. Inml.@% it has been proven that theheaility problem
overmultirate automatas not decidable in general. By imposing a restriction
on dynamics by what so callesimplicity conditior— i.e. the invariants and
jump conditions are of the form < k or x > k, and all assignments are of
the formx := k or x := X, for a variablex € X and an integer constakt—
decidability for reachability problem can be achievabre,], it
has been also proven that the reachability of rectangulanidvgutomata is in
general undecidable, but it has been shown that the redithalbinitialized
rectangular automata is decidable.

Although the reachability problem for linear hybrid autde& undecid-
able, there are some algorithms for the analysis of timenaata that have
been extended to obtain semi-decision procedures forrgplie verifica-
tion problem of linear hybrid automata [Alur et al., 1994 drder to analyze
the behavior of nonlinear hybrid automata, there are teglas that approxi-
mate the non-linear linear hybrid automata with linear dhs
11998b]. Hytech|[Henzinger etlal., 1997] and PHAVer[Frei2g05] are e

amples of model checking tools supporting the previousqatores.

3

Multi-agent Scenario as Hybrid Automata

This chapter illustrates the use of hybrid automata to §pdxhaviors of
Multi-agent systems (MASS). It describes a simple MAS sdertaken from
the transportation logistic domain. The communication agnthe agents
follows a well-known standard agent interaction protodtlth the help of
Hytech, a standard model checker for hybrid automata, akpeoperties of
the MAS can be investigated. The contribution of this chapte been pre-

sented in[[Mohammed and Furbhch, 2(b08a].

3.1 Introduction

The increasing interest in Multi-Agent Systems (MASS) legstb the devel-
opment of new modeling languages and methodologies—a yswivihose
efforts are presented in [Wood and DeLdach, 2001]. The mampgse of
these modeling languages is to offer notations to devedoiat are used to
analyze, design, and implement MASSs. In fact, most of thessthodologies
have emerged from Unified Modeling Lan u009]. Argaohose
methodologies, Agent UMLHW.&LG%AE%@M] has gainedevedceptance
to model MASs. Agent UML basically extends UML with specifiatures
including the sequence diagram, which has been chosen Wyothedation
for Intelligent Physical Agents association (FIP] as an accept-
able standard language to model interactions among agenthai is the
so-called Agent Interaction Protocol (AIP). Currentlyeasf the key features
of any agent-based product has to be FIPA-compliant. Feraim, people
working on agent development tools and libraries increggimterested in
offering the possibility to realize FIPA-compliant agdsased products.
Although methodologies of MASs are clear to understand asgl & de-
velop, they are unable to verify the properties of MASs beeanf their lack

22 3 Multi-agent Scenario as Hybrid Automata

of formal semantics or their ambiguous and vague semarficsope with

this limitation, formal modeling approaches are helpfdédlly, formal mod-

eling approaches based on state transition diagrams caifyspehaviors of

MASSs. This is because behaviors of an agent can be descriltee discrete
changes of its internal states with respect to an internaxtgrnal stimu-
lus. In realistic physical environments, it is necessarydd only consider
the discrete changes of the behaviors of the agent, but lesodontinuous
changes. Therefore, hybrid automata are a suitable frarkgeoapture both
types of changes in a way that the discrete changes are modksleg a di-

alect of state transition diagrams, e.qg. finite state maghunfinite automata,
while the continuous changes are modeled using diffedleatjaations. Hy-

brid automata are equipped with formal semantics that ntaa taccessible
to formal validation of modeled behaviors. Thus, it is pblsto prove desir-

able features as well as the absence of unwanted propestitisef modeled
behavior automatically with the help of model checking noelth

To this end, this chapter aims at showing that an MAS, complia a
standard agent interaction protocol, can be modeled usihgchautomata.
In particular, the Chapter shows a model of an MAS scenaria liogistic
process. Each agent involved in the scenario is describadhgsrid automa-
ton and the communication between agents is representeg sisared vari-
ables and synchronization labels. By using the formal wation of hybrid
automata, several properties can be proven within the mddetio so, we
use Hytech([Henzinger etlal., 1997], a standard model chexfkeybrid au-
tomata.

The rest of this chapter is organized as follows: [Sek.3.2ribes the lo-
gistic scenario. Sdc.3.3 describes the model of MAS in teshis/brid au-
tomata. Finally, Selc.3.4 shows the formal verification ef thodel by means
of model checking. Sdc.3.5 shows related works.

3.2 Autonomous Logistic Processes

Getting the right products to the right place in time are tguirements in
logistics. Nevertheless, with highly dynamic markets amttéasingly com-
plex logistic networks, it is becoming more and more difficol meet these
standards with conventional methods of planning and cbrtrduture, as-
pects such as flexibility, adaptability and reactivity viaé of primary impor-
tance. The paradigm of autonomous logistic proceises [Eé&twiter et al.,
@1] addresses these aspects by decentralizing logmsticot to single lo-
gistic entities, e.g. freight items, transport containensans of transport, or

3.2 Autonomous Logistic Processes 23

storage facilities. Therefore, autonomous logistic psses aim at managing
logistics in a highly distributed way by transferring desismaking compe-

tencies to the logistic entities. MASs-engineering is aeqagite and promis-
ing technique to implement the autonomous logistic proMﬁerl.,

]. Logistic entities as well as secondary logistic m&y, e.g. traffic in-
formation, route planning and service brokerage, are sepited by software
agents interacting with each other to coordinate the lmgmbcess. Agent
communication and coordination follows standards defingdrIFPA using

Agent Communication Language (ACL) and interaction prol®dor spe-

cific agent conversations. In what follows, we will descrioe MAS in a

logistic scenario and show how this can be modeled with kydutomata.

3.2.1 Scenario Description

The MAS scenario constitutes four agents, nanezlggo, environmentand
two trucks Thecargohas the objective to be transported to a certain destina-
tion. Thetrucks may offer transportation service. Additionally, the eovir
ment agent represents an external disturbance to the taaspn process.
In the following, we will discuss the scenario in more detail

Initially, the cargotries to contact the two trucks requesting for the trans-
portation service. The two trucks are located in two diff¢igties. When the
cargo calls for a proposal, it supplies the trucks with informatiacluding
destination point of the shipment and its due time. Oncebk #ack receives
the call for proposal, it evaluates and estimates this igoamcording to de-
cision criteria—e.g. its speed limit, distance to destoratind the deadline
of delivery. The reason behind the estimation process istavkwhether the
truck can provide the transportation under certain restrictiiragy truck can
offer transportation, it accepts the proposal and iniigteintended price. In
case thecargo received multiple proposals from trucks, it makes a comtrac
with thetruck, which provides the lowest price.

Once a contract is made, thrick begins the process of transportation.
In the later case, th&ruck may be exposed to some environment condi-
tions; that is, un-anticipated environmental interacisnch as traffic or bad
weather occurs. For simplicity, we will use two differenveanment condi-
tions namely bad and good conditions. These conditionslgisimulate the
change of the environment in a way that influences the spededfuck.
Thetruck slows down to its minimum limit, whenever it is subjected tioeal
condition environment, whereas it accelerates to its mamintimit, when-
ever environment conditions are good. The effect of therenwment is seri-
ously limited in this way. In reality, these conditions arene complex than

24 3 Multi-agent Scenario as Hybrid Automata

Fl PA—contractNet—protocg

partcpan
I

1SN refuse

T

L J=n-1 propose

reject-proposey; :

B

ackept—proposds:j—

failure
inform—-done
___inform-result

Fig. 3.1.FIPA contract net protocol.

our scenario. In a more realistic model of the environmestpahastic char-
acterization of disturbances would be used. Stochasticetapowever, go
beyond the expressiveness of current framework of hybitidnaata.

At the end of the transportation process, tituek reports its delivery time
with comparison to the due time. Therefore, if tineck delivered the ship-
ment after the deadline, it informs tiargowith failure in the transportation;
otherwise, it informs theargothat the transportation was successful.

The previous scenario can be modeled using FIPA contragbrogbcol
[@,], as it is shown in Fig._3.1. In this protocol, timitiator and
participant represent thmargo andtruck respectively. The vertical lines rep-
resents the time threads from up to down. The arrows reflectdmmuni-
cation between the initiator and the participant. Eachvaiscannotated with
a communication message. Additionally, the number até¢beany arrow

3.3 Model Specification 25

indicates the number of participants in the message. As exdqusly men-
tioned that FIPA specification gains widely acceptance idefinog MASs es-
pecially for representing the interactions among the agdiiacks, however,
from proving certain properties of its model. In additioh?/& specifications
are unable to specify the internal behavior of the agentcandequently suf-
fer from the absence of decision making, which is crucial iAS4. There-
fore, we intend in the next section to model the previousagemsing hybrid
automata, and with the help of model checking we check ceféatures.

3.3 Model Specification

In this section, we show how to model the MAS scenario as aoectihybrid
automata. Each automaton represents an agent in the scenatk, cargo,
and environment disturbance automata will be describdukifallowing sub-
sections in more details.

Truck
decisiol Proposej
) p—— - Tdist= di +dy St|me2 deadling
Stime: =0 i:Tdist<d+d i i:=true :
Tdist: =0|CFP | f: Tdiste [min,max f:=true | Pricg :=u-Tdisf

e AStime= 1 — -
Refuse; Accept_proposal;
® Reject_proposal; Stime:=0

terminate) goodEnv
< i:=true iiTdist<di+d
bdeadline Done | fi=true f: Tdist= maxA Stime=

Toaean o> robed

Failurej Togood;

d (_badEnv J
i:Tdist<d +d
f: Tdist=minA Stime=

Stime> deadlin
adeadlin'

Fig. 3.2.Truck automaton.

Tdist=

check)

i:=true
ine f:=true

Tdist=g; +d

Truck Automata

Fig.[3:2 depicts the model a truck as a hybrid automaton. énsttenario,
there are two trucks having the same behaviors, but witkdifft capabilities
including the speed, total distance to travel, and the prezed to perform
the transportation. These capabilities are marked in théehaf Fig. [3.2 as,
Tdist, d; and price, fori =1, 2. Initially, the behavior of théruck starts with

26 3 Multi-agent Scenario as Hybrid Automata

locationldle, at which it waits for receiving any incoming proposal fronet
cargo. The initiation of the proposal is represented by the syoization
label CFP. Once theruck receives theCFP message, its control goes to the
locationestimate In this location, theruck estimates and evaluates that pro-
posal, in order to take the right decision; that is, whethaccepts or rejects
the proposal. There are constraints that are involved ieshination process
including the speed limit of thieuck and the expected delivery time. Once
the estimation process has been done, the control goes toctit@n deci-
sion from which the control goes to either the locatiaiminateor Wait
The former location will be chosen, whenever the expectéichason time
exceeds the deadline of delivering the shipment. Howef/érgoes to the
Wait, the truck proposes to perform the transportation, and in this case bid
its intended price. In the locatiomait, thetruck waits for the type of incom-
ing messages received from tbarga. If the cargoreplies with rejection of
the proposal, which is represented by synchronization IRegectproposal
then the control goes to the locatiterminate On the other hand, upon re-
ceiving a confirmation from theargo with the acceptance of the proposal,
thetruck starts the transportation and goes to the locagioodEnv During
performing the transportation, threick mutually alters its behavior between
the locationggoodEnvandbadEnviocation according to the disturbange-
goodandTobadreceived from the environment. In both locations, thek
either accelerates to its maximum or slows down to its mimnspeed. After
certain time passes, the control goes to the locati@tk at which thetruck
checks its destination point against the deadline; thathisther after of be-
fore the deadline. In both cases, theck has to inform thecargowith either
failure or done.

Environment Automaton

Fig.[3:3 models an environment that generates disturbamiegdransporta-
tion process. This disturbance might occur as a reasonfti€,eor a change

in weather. Theenvironmentautomaton is augmented with the variable
vtime which calculates the elapsed time at both locatjoonditonandbcon-
dition. The behavior of the environment automaton mutually cset be-
tween these two locations. The control waits fime units at the location
gcondition while it waits forbtimetime units abconditionlocation, for given
constantgtimeandbtime The effect of the disturbance is terminated upon
receiving the messadaone

3.3 Model Specification 27

Environment
(__begin J | gcondition/ Envtime= gtime Envtime= ¢(__bcondition
[— Accept.proposal i : Envtime< gtime| Tobad i : Envtime< btime
Envtime:=0 f:Envtime=1 Togood f:Envtime=1

Envtime= btime Envtime= 0
' Done

Fig. 3.3.Environment Automaton.

Cargo Automaton

The automatorargois shown in FigL3.4. The control of treargobegins at
the locationStart In this location, it initiates a call-for-proposal to dikt pos-
sible trucks in the scenario by sending the mes$age. Then, it goes to the
location wait-proposal in which it reports the incoming messages received
from the trucks. The messages are represented eithRefmseor Propose
synchronization labels far= {1,2}. Such messages indicate that a truck re-
fuses or accepts the call-for-proposal. As soon as all fridve sent their
intended messages, the control goes to the locatiafuate From this loca-
tion, the control may go to one of the locaticesminate, selector bid. The
choice among these locations depends on the number of eelgeioposals,
such that if no truck offered a proposal, the control goeféoldcationTer-
minate which means there is nouck agreed to perform the transportation.
If there is only ondruck offered a proposal, the control goes to locatiid.
However, if more than a truck offered proposals, the corgoas to the loca-
tion select At this latter location, theargo selects thdruck which provides
the minimum price, and then the control goes to the localimh At this lo-
cation, thecargoinforms the selectettuck with acceptance of the proposal.
In addition, thecargo will exclude the remaining truck by sendirReject-
proposal After that, the control goes to the locatigvait-arrive at which the
cargowaits for an incoming report from the selectedck, which is respon-
sible for the transportation process. If the incoming mgssaasDone the
mission of thecargois terminated, but if the message waslure, the control
goes to the locatiobnsafe before its terminated in the locatiderminate

Overall Model

The previous MAS scenario consists of several agents thextatgy concur-
rently and communicate with each other. A model of hybridomadton is

28 3 Multi-agent Scenario as Hybrid Automata

Cargo

Agent: =Agent+1 Npro: =Npro+1

Npro: =0
® Agent: =0
CFP

Done —
C : Selected: =i

Accept_proposalj
Agent: =Agent+1

price; < price;
Selected: =i

unsafe
i:=true

Fig. 3.4.Cargo Automaton.

given to each agent in the MAS, and the communication betwerse agents
occurs by means of shared variables and synchronizatiaislaBenerally,
analyzing the behavior of each agent individually, is ndficient to analyze
the entire behavior of the MAS. This is because, in the usase ceach agent
coordinates its behavior based on what it receives fromr @bents. There-
fore, we need a way to show how well the entire MAS behavesengtir-
forming some tasks. One way to do so is to construct a modelhwd@ptures
all the possible interleaving behaviors of all agents in M&S. However,
constructing that model manually is not an easy work, andllitoe difficult
to understand the entire behavior of the MAS, especiallynwthe number
of agents increases. Fortunately, model-checking toel$@ipful in this sit-
uation. This is because such tools can automatically aactstrmodel of the
entire behavior by means of the parallel composition. In,tthe constructed
model can be automatically analyze by asking whether aindyédnavior can
be reached in it.

3.4 Model Checking Using Hytech

Formal verification provides an effective way to check therettness of
models of systems against certain behaviors. It can deterendesign prob-
lem of a system, or improve existing one. Currently, one efrtiost success-
ful techniques used in formal verification is model chec.,
@]. Generally, model checking allows to verify autormaity whether
properties can be satisfied in the all possible evolutiona oértain model.
In the framework of model checking, both a model togethehit# specifi-

3.4 Model Checking Using Hytech 29

cations should be represented in a suitable textual foronaihodel checker
that checks automatically the satisfiability of requireitsemithin the model.

To verify properties of those systems which can be modeléugusy-
brid automata, several model checkers are existing. Amoétigem, we use
Hytech |Henzinger etall, 19|97] to verify our MAS model. WitiHytech,
model checking starts with computing the reachability cf #ntire state
space by getting the set all possible states, which can lmhedarom an
initial state. The resulting set of reachable states withfa base of the
model checking; that is, to verify certain property, a ttatial way is to
check whether the intersection of that property with thechahle states is
empty. If so, the property can be reached within the modekmtise it can
not.

Hytech provides a way that aids in design and debugging ersy$tor ex-
ample, if a system description contains design parametdrsse values are
not specified, then Hytech computes the necessary and soff@dnstraints
on the parameter values that guarantee correctness ofdtesrsyin addition,
if a system fails to satisfy a correctness requirement, tiygiech generates
an error trajectory, which contains a time stamped sequehesents that
leads to a violation of the requirement.

Hytech Code description

To start Hytech the input file representing a model and itp@nties have
be given. Typically, the input file is partitioned into tworpa The first part
describes the model, whereas the second part contain®éitestative anal
sis commands— For more details about Hytech syntax .
@]. The model description is a straightforward textwdresentation of
hybrid automata. Fid. 3.5 shows the Hytech description efethvironment
automaton of Fig[_3]3. The description of the automaton corapt starts
with the declaration of the automaton name, as it is showinénl of Fig[3.5.
Line 2 declares the synchronization labels which will bedusecommuni-
cate with other automata. Line 3 provides the initial lomatand the initial
conditions on the variables of the automaton. After this, diray of the lo-
cations of the automaton has to be defined. Lines 4-7 showetfigittbn of
the locationbegin The definition of location starts with naming the location
as it is shown in line 4. The rate conditions, as well as thariant may also
be provided as it is shown in line 5. Each location is assediatith a list
of transitions originating from it— e.g., line 6,7. Eachris#tion lists a guard
condition, synchronization label and a successor locabgaump upon the

30

3 Multi-agent Scenario as Hybrid Automata

1.
2.
to

~NOoO oA~ W

.initially begin & envTi ne=0;

.1 oc begin:

.while True wait {}

.when True sync accept_proposl do envTine’' =0 goto gcondition;
.when True sync accept_propos2 do envTine’ =0 goto gcondition;

.1 oc gcondition:

.while envTine<=2 wait {}
10.
11.
12.

13.
14.
15.
16.
17.

18.
19.
20.
21.

aut omat on Envi r onnent
syncl abs: accept _proposl, accept _propos2,
badl, t ogoodl, t obad2, t ogood2, done;

when envTi me>=2 sync tobadl do envTine’ =0 goto bcondition;
when envTi ne>=2 sync tobad2 do envTine’ =0 goto bcondition;
when True sync done goto finish;

| oc bcondition:

while envTime<=5 wait {}

when envTi mne>=5 sync togoodl do envTi me’ =0 goto gconditi on;
when envTine>=5 sync togood2 do envTine’ =0 goto gcondition;
when True sync done goto finish;

loc finish:

while True wait {}
when True goto finish;
end

Fig. 3.5. Hytech input code of the environment automaton

satisfaction of the guard condition. Additionally, thertsétion might update
some variables. Line 21, shows the end of the automatonrdéola

file

Having defined the description of the model of the first parhefinput
, the analysis commands of the second part must be givanatyze the

behavior of the model. Fi§._3.6 shows the analysis commahtseanodel.
The first line declares three regions variables, narnety freg,andreached

In line 2, the regiorireg represents the initial state of the whole model; that

is the conjunction of initial locations and initial value$ the variables of
each participating automaton. In line 3, the redimg characterizes the states
of interest to be (un)reached. In our example, it specifias ¢ither one of
the trucks will reach before the deadline. Line 4 assigneézhedthe set

of

specified byfreg, if the intersection between the set of reachable states and

states reachable from the initial state. The model sasidfie property

the regionfreg is not empty. Lines 5-8 depict this process.

3.4 Model Checking Using Hytech 31

1. var ireg,freg, reached: region;

2. ireg:=loc[Cargo]=start & |l oc[Truckl]=idle & oc[Truck2]=idle
& d=1000 & deadline=17 & sagent=0 & npro=0 & envTi ne=0 &
pricel=0 & d1=0 & stinel=0 & tdist1l=0 & agent1=0 &
price2=0 & d2=0 & stine2=0 & tdist2=0 & agent2=0;

freg: = |l oc[Truck2] =adeadl i ne | | oc[Truckl] =adeadl i ne;
reached: =reach forward fromireg endreach;

if enmpty(reached & freg)

then prints"the truck nmeets the deadline";

el se prints"deadline violation"

endi f;

NGO AW

Fig. 3.6.Analysis commands in Hytech

Checking Properties

Now after describing the model and the analysis commandtedHycan be
invoked to check the properties of interest within that niolitethe follow-
ing, we present some model checking experiments on our soekiée have
proved various properties, depending on different valdiéiseoinvolved vari-
ables in our model. Here, we will focus on some of them.

Reachability of states One of the properties, which is the general inter-
est of the presented model, is to check the reachability ofrtain state.
For example, one can check the reachability of the final iooatof the au-
tomata in the model; that is, reaching the locatidesminatein both cargo
and trucks. Using Hytech, we can show this by asking if thiefdhg region
can be reachedocationtruckl]= terminate& locationtruck2]= terminate

& locatioricargg= terminate

Is possible for any truck to perform the transportation ? In our scenario,
two trucks are involved in transportation process. We caetklthat only
one truck will be responsible for performing the transpiota Moreover,
this truck always provides the minimum price. This can beoagaished by
checking if the following can be reachddcationcargg = select

What about Deadlines One of the most important concernes in the logis-
tics domain is the question whether a deadline can be mettoCrearly, the
question if a truck will arrive before or after a given deadlidepends on a
number of factors like the condition of the environment dgrihe transporta-
tion, the distance to travel, and of course the deadlin#.itdsing Hytech we

32 3 Multi-agent Scenario as Hybrid Automata

did some experiments to answer this question for variousegabf the dead-
line as well as the timegtimeandbtimeof the environment. The speed of the
trucks in our experiments lays between 60 and 90, and thiedistance that
the trucks had to travel, was 1100 and 1150. Gilséme=0 and gtime=5
several values for the deadline have been investigatedrried out that the
truck could always reach its destination on time if the de®divas 17 time
units, while a deadline of 12 time units was impossible to tmieeorder to
determine the closest deadline for which the truck was guieea to be on the
due time, we have used the parametric analysis provided bgcHywhich
has yielded 1%5 time units as the closest deadline that could always be met

Similarly, some experiments have been done to investihatmfluence of
the environment during the transport. For a gideadline=17andbtime=5
The analysis of Hytech has shown tlgaime >0.888time units is enough
to ensure that the truck will always arrive on time. On theeothand, If
gtime=2 then deadline=17can only be met ibtime<14.33 Itis easy to see
that the knowledge of boundaries and dependencies betvestaincvalues
as we presented above will help both the transport agentrencustomer to
negotiate a contract that suits both parties.

3.5 Related work

As we said earlier that AUML, as a modeling language, lackgige seman-
tics. Consequently it does not allow to verify required mndies of MASs
based on interaction protocols. To overcome this limitatiseveral works
have been proposed. In principle, these works have beenedeto trans-
late AUML models into formal models that can be verified usexisting
verification tools. For example, Wen and Mizoguchi [1999)é&ranslated a
model of protocol based MASs into concurrent finite state hirees, which
in turn can be verified using SMV model checker [McMillan, p9Sim-
ilar approach have been presented. by Mokhatilet al. [200dh tanslate
AUML models to models that can be verified using Maud modekkbes
[|Eker_e_t_a|.,|_20_d2]. Another approach of translations hanharesented in
[Jemni Ben Ayed and Siala, 2008]. In this approach, an MA& attion pro-
tocol is initially modeled using the AUML protocol diagraifhen, the model
is translated into a model of Event-B formal specificatiomgiaagel,
@]. The resulting model is enriched with required prapstito be verified
using a B-tool B4fred [Cansell et al., 2d)04].

In contrast to hybrid automata, AUML abstract the behavicagents in
a very restrictive way, such that it can not specify the i behavior of the

3.5 Related work 33

agents. Additionally, AUML is far away from modeling, andrirging real
time properties of MASs as it focuses only to describe therdis behavior
of the interaction among agents.

Petri netsm 77] are well known forms of states baaedition
systems which have been originally devoted to model andyaealiscrete
concurrent systems. In addition to their formal and presamantics to han-
dle concurrency and synchronization, petri nets proville Mariants of finite
state machines, a graphical representation of the undgrbhysical systems.
To support modeling and formal analysis of systems usingj , avariety
of tools are existing. Accordingly, several works, for exaen l.,
2009;| Chainbi| 2004], have approached petri nets to formedehMASS.
Among of these works, there are proposed works, which givéAbrmal
semantics by translating the AUML models into petri netse-&& example
|k;abag and Moldt, 20§|)4]. However, the traditional petrisnean not spec-
ify the continuous behaviors of their underlying systems.oVercome this
limitation, various extensions have been proposed toiateghe continuous
behaviors of systems within petri nets. For exan@] presents a
framework, called hybrid petri nets, which are used to fdrepacify the be-
haviors of hybrid systems. Timed petri n@d@g%histlaer example
of these extensions in which the formal semantics of thesidakpetri nets
are augmented with real time constraints. Broadly speakhmse continu-
ous or real time extensions are useful and powerful forrmali®o model and
verify concurrent continuous systems, and hence can betoseddel MASs
like our adopted approach. However, hybrid/timed petrs na@tk of support
rigorous analysis for real time requirem&m‘ their underlying systems.
Therefore, several works have proposed to translate hyibret petri nets
into hybrid or timed automata [Cassez and Rdux, 2006; GhaniAlla,

]. Hence, one can use the powerful of the existing toofgylorid/timed
automata to analyze the behavior of the underlying syst@nsiously, this
shows that the direct use of hybrid automata to model MASsgantages
over the use of hybrid/petri nets.

1 more details about real time requirements will be discuss&haptef’

Part Il

A Noval Framework

4
The Model

We have shown that hybrid automata offer a method to modet@ndrify
the behavior of Multi-agent Systems (MASS). The main cimgjéeto specify
and verify MASs with hybrid automata is the state space groblwhich
occurs due to the construction of parallel composition al agethe infinite
state space representation of the behaviors of agentsaskssfor a method
that can simplify this type of problems. This Chapter pregica convenient
way to cope with the state space problem by constructing ¢ngposition
dynamically, i.e. during the verification phase, and by espnting the infinite
states space symbolically. The main core of this Chaptebbas published

in [Mohammed and Furbach, 2010b; Mohammed et al.,[2010].

4.1 Introduction

In Chaptef B, we have demonstrated how to use hybrid autoaseadrame-
work to formally specify and automatically verify the bef@vof MASs by
means of model checking. A team of agents is described asioent au-
tomata combined via parallel composition into a global maton responsi-
ble for coordinating the behaviors of the team to reach a comgoal. The
automatic verification of MASs’ behaviors, however, susfénom the poten-
tial combinatorial explosion of the state space caused tatlpacomposition.
This state space problem is one of the primary challengepglyimg model
checking to analyze concurrent systems. The state spabe patallel com-
position of an agent witK; states and an agent wikh states leads to a state
space ofK; x K, states. Accordingly, the parallel compositionfagents,
each with a state space éfstates, leads to a state space Withstates. This
asks for a method that deals with the parallel compositimwveniently. In the

38 4 The Model

framework of hybrid automata, the continuous dynamics awctdheer dimen-
sion to the state space problem. In particular, model chisakat only keep
track of the part of the state space, but also of the timingcamtinuous evo-
lution associated with each state. This continuous ewidgads to infinitely
reached states that should be managed by model checkensmdtaut that a
symbolic technique is needed to finitely handle these iipistates space.
In such symbolic techniques, the states are properly edaaslag clever data
structures that provide compact representation of lagge spaces and allow
their efficient manipulation.

When constructing the parallel composition of automate,pibssible in-
terleaved locations and transitions are enumerated finst tleen the com-
posed automata are given to a model checker which checksrépertes
of interest by exploring the state space of the composedraitm. Dur-
ing this verification process, the model checker symbdlicahumerates
the possibly reached state spaces and leaves out the uedesizttes that
have been formed as a result of the composition processeltatter case,
the model checker checks for any incoherent constrainteaap during
the exploration of the composed automata. Once we have lete/ledge
which allows us not to represent those unreachable contsiran advance,
then the representation can be reduced significantly. Bhise key idea of
what is the so-callean-the-flyconstruction of the state space representa-
tion [Bouajjani et al., 1997]. This helps relieve the statace in a sense that
the only possibly reached states will be activated durimgrtim of systems,
instead of checking whether the states are reached or nibislway, the un-
reached parts of the state space are removed before themsysier consid-
eration is subjected to the verification process. Applyimg an-the-fly con-
struction and symbolic methods of state space in model ahgdlave been
proven useful in practice to tackle the state explosion Ipmdm,
1993].

This chapter provides an approach based on hybrid autontath won-
veniently allows us to specify and verify MASs. The constiart of the par-
allel composition in this approach is buib-the-fly We use Constraint Logic
programming (CLP) to implement this approach. The key athganto use
constraints is that they are effective data structuresdawatmplicitly repre-
sent the infinite sets as mathematical relations. In thisesesur approach is
a symbolic representation, which helps to relieve the Sjpéee problem.

The rest of this chapter is organized as follows: [Sek.4.%vshbe influ-
ence of on-the-fly composition regarding the state spaceshyodstrating a
simple example,. Séc.4.3 shows the basic syntax and theniesnaf hybrid

4.2 lllustrative Example 39

Automaton B

Fig. 4.1.Example of concurrent automata.

state machines that constitute our proposed approactt.@stiows how to
build an executable model of the presented approach by noé&2isP.

4.2 lllustrative Example

Fig.[4.3 shows an example that demonstrates the benefit ohtiiee-flyap-
proach. Assume tha andB are two simple hybrid automata interacting my
means of shared events, naméfb}. The automatorA contains an extra
eventg which might communicate with any other automaton or indidaat
the transition between locatidhand location? is fired. The behavior of
starts at locatioril. After 10 seconds, the control has to jump to locatin
and then the everg must be fired. At locatior2, A has to wait up to 5 sec-
onds, then a transition to locatidhmust be fired, causing the eveatAt
location 3, the automaton has to wait until the concurrence of etenas
occurred. In this case, the control jumps back to locatidror automator,
the following behavior is specified. Initially3 has to wait at locatio®n until
the eventa occurs. If it occurs, the control d& goes to locatiorOff. At the
latter location B has to wait up to 20 seconds before the control goes back to
locationOnwith firing the evenb.

In the parallel composition oA and B, the two automata are synchro-
nized by shared events, that is any shared event can onlycoeitex if the
two automata can execute it simultaneously. Private/usshavents of each
automaton, e.g. the evegin the automatom, are not subject to such previ-

40 4 The Model

ous constraint, but those events can be executed whenes&bigo The con-
structed parallel composition is shown in Hig.14.2 whereitlvariance and
time constraints in each composed location are defined bgdhginction
of the invariance and time constraints of each simple looaiGlobal state-
space representations are constructed without regarddthetthe states are
reachable or not. A model checker usually performs the @dality based on
the constraints which it faces during the states’ explorati

The composed automaton of F[g.14.2 has 3 = 6 locations, but this
leaves the locatiof3,0n)isolated. If one takes into consideration those con-
straints which occur inside the locations and transiti@ng, constraints on
events, then one can show that further reduction can bevachi&inceA
andB must be synchronized with their joint eveatthen no legal transition
between the starting locatidid,On)and the locatior{1,0ff) can occur. The
location (1,0ff) will not be explored during the reachability analysis. Con-
sequently, the locatio(R,0ff), reached fron(1,0ff), will not be reached. In
this way, one can show that the exact reached locationd @a),(2,0njand
(3,0ff), as shown in Fid.4]3.

One can see in the previous example that the global state-gpare-
sentations are constructed without regard to whether #iessare reachable
or not. In the following, we present an approach aiming atstroicting the
state space during the execution of a concurrent MAS. Inapmoach we
precisely explore the possibly reached states and avoidimm®ached states
which may appear due to the traditional composition pradéssuse mathe-
matical intervals to represent the infinite states raisethbycontinuous evo-
lution of the real variables.

4.3 Hybrid State Machines

In this section, we show the basic syntax and the semantibylofd state
machined that constitute our approach. But first we will introduce Bumst
trative running example throughout this chapter.

4.3.1 Running Example

A train gate controller [Henzinger et al., 2§|)OO] is a reaetmulti-agent sys-
tem consisting of three agent components: tthe, the gate and thecon-
troller. A road crosses tracks of trains and is guarded by a gate thstt lme
closed or opened upon approaching or leaving of a train otispl. The

1 In this chapter, the term hybrid state machines and hybtiohaata are used synonymously

4.3 Hybrid State Machines 41

2

1,0ff) (" (2,0ff) (3,0ff)

Fig. 4.2.The parallel composition of Fifi.4.1 as a black-box.

Fig. 4.3.Exact composed automaton of Hig.14.1

gate is supervised by a controller that has the task to resggynals from the
train and to issue lower or raise signals to the gate. A tainifially at a dis-
tance of 1000 meters away from the gate and moves at a speeet@&Opar
second. A sensor located at 500 meters on the tracks ddiedtsin sending

a signalappto the controller. The train slows down, following the ditfatial
equationx = — 5 — 30. After a delay of five seconds modeled by the variable
t, the controller sends the sigralverto the gate, which in turn begins to de-

scend from 90 degrees to 0 degrees at a rate of -20 degreescpads After

42 4 The Model

System
(Train h
(Train__/ near)
o— x>0
x = 1000 s =—2—30 exit
x =100
X: =1000
Gate J T T
g=90 raise
to_open ®9=90

raise

lower

Controller)

app exit

Fig. 4.4.Specification of the train example as hybrid state machines.

crossing the gate, the train accelerates according to ffegatitial equation
x= £ +30. A second sensor placed 100 meters past the crossingsdtec
leaving train, sending a signakit to the controller. After five seconds, the
controller raises the gate.

The specification of the previous multi-agent system is lojigdly illus-
trated as concurrent hybrid automata in Eigl 4.4. The viriabepresents the
distance of the train from the gate. The variaibtepresents the delay time of
the controller, while the position of the gate in radius @éegris represented
by the variablay.

4.3.2 Syntax

Before we proceed in defining the syntax and semantics of ploiidh au-

tomata, we first need to define those constraints which mageaa@s guards
on transitions and invariants inside locations of hybritbenata. We addi-
tionally need to define the constraints which define the ptessiynamics in
our model.

Definition 4.3.1 (Linear Constraints) Let X be set of n real variables and
w= 75,8 %, with x € X, be a linear combination of variables frof. A

4.3 Hybrid State Machines 43

set @(X) of linear constraints ovek, with a typical elementg, is defined
by the following syntax:

¢ = w~b|p1AP2|true
wherel <i <n,g,and be R, ~€ {<,<,=,>,>}, and ¢y, ¢ € ®(X).

The continuous behaviors of hybrid automata show how phi/sjaan-
tities, e.g. position, temperature and humidity, evolvéhwespect to time.
Those behaviors are usually described by differential #ops whose solu-
tions can be described as continuous functions in time.édrfdhowing, we
define the basic constraints that constitute the contingynsimics of the
variables.

Definition 4.3.2 (Dynamical Constraints) LetX be a set of nreal variables,
with a typical element x X, andX be set of first derivatives of the variables
of X with a typical elemenk € X. A setD(XUX) of dynamical constraints
over X UX with typical element d, is defined inductively by the follayvi
syntax:

d:i= X~c|x+a-x=c|diAdy|true

where a£ 0,c € R, ~€ {=,<,>}, di, th € D(XUX).

Having defined the linear and dynamical constraints, we eady to in-
troduce the syntax of a hybrid state machine, i.e. theicgiral components.

Definition 4.3.3 (basic componentsA hybrid state machine is a tuple
H = (Q,X,Inv,Flow, E,JumpResetEvent Event,qo, Vo) Where:

e Qs a finite set of control locations, which defines the pdsdidrations
of the state machine.

e X is an ordered set of n real variables.

e Inv:Q— @(X) is a function that assigns a linear constraint [y to
each location o= Q.

e Flow: Q— D(XUX) is a function that assigns a dynamical constraints
Flow(q) to each control location @ Q.

e E C QxQisafinite set of transitions among the control locations.

44 4 The Model

e Jump: E — @(X) is a function that assigns to each transitiorede a
constraints jumfe), which must hold to fire e.

e Reset E x X — Ris amapping, which assigns a real value to each vari-
able on each transition € E. A reset of a variable ¥ X on a transition
ec E is denoted as x= Resete, x). Conveniently, we write- Resete, X)
to denote the reset all variables.

e Event is a finite set of events.

e Event: E — Evenfy is a function that assigns an event to each transition
e € E from a set of events Event

e (o € Q defines the initial location of the automaton.

e \ defines the initial values of the variabl&s

The previous structure permits the existence of events o gansition
ec E. An event is meant to serve as communication between ditfere-
tomata or to denote a change in the internal behavior of ameaton. Thus,
we can consider that this set of events is classified into tgjoidt sets. The
first set contains the events that are used as communicagesages among
automata, whereas the other set contains the set of eventarth used to
describe the internal observation of the automaton. Therlaet of events
can be used to reason about the observational behaviorahat#, which is
required in the case of MASSs.

As shown in Chaptell2, a hybrid automaton with linear coirssaon
guards and invariants is classified according to the cootiadlow into timed,
linear hybrid, rectangular hybrid or non-linear hybrid @atta. In our ap-
proach, this type of classification depends on the choicéefdynamical
constraints.

4.3.3 Semantics

Having described the internal structure of a hybrid autemate will discuss
the semantics of its intended behaviors. A hybrid automatmexactly be
in one of its control locations at each stage of its compaomatBut knowing
the present control location is not enough to determine lwbfc¢he outgoing
transitions can be taken next, at all. A snapshot of the nuisate of the

4.3 Hybrid State Machines 45

computation should also keep in mind the present valuatfidimeocontinuous
variables. To begin formalizing the semantics of a hybrighenaton, we need
to define the concept ofsateand to show how control evolves from one state
to another. But first we need to define how continuous varsaélelve.

Definition 4.3.4 (Evaluation of Linear Constraints) Let¢ < ¢(X) be a con-
straints and v R" be the valuation of the variables, then we write

V=9,

if v satisfies the constrairg, which is defined inductively as

¢ =true
¢p=3Lia-x~c iff S a-vi~c holds
¢1/N 2 iff v ¢pand vi= ¢o.

where vis the valuation of the ith components of v

Definition 4.3.5 (Evaluation of Dynamical Constraints) Letde D(XU X)
be a dynamical constriants and:fR=% — R" be a differentiable function,
then we write

fE.d

if f satisfies the dynamical constraint d, which is definediatively as

d=true

d=x~c iff f(t) ~c holds
d=x+a-x=c iff f'(t)+a-f(t)~c holds
d=diAdy iff fF,dyand fk, do.

where f(t) is the differentiation of the function f forg R=°.

Definition 4.3.6 (State) At any instant of time € R=9, a state of a hybrid
automaton is given bg; = (qi,v,t), where g€ Q is a control location, v
is the valuation of the real variables. A state = (q;,Vv,t) is admissible iff

vV E Inv(g).

The state transition system of a hybrid automatbstarts with thenitial
stategp = (0o, Vo, 0), where thegp andvg are the initial location and valua-
tions of the variables respectively. For example, theahdtate of theTrain
automaton of Fid. 414 can be specified(&ar,x = 100Q 0).

The semantics of a hybrid automaton is defined in terms ofelddliran-
sition system between states. Transitions between stedegeaerally cate-
gorized into two kinds of transitions: continuous tramsis, capturing the

46 4 The Model

continuous evolution of states, and discrete transiticagturing the changes
of location. We will define the semantics of hybrid automataore formally.

Definition 4.3.7 (Operational Semantics)A transition rule between two ad-
missible states; = (qp,v1,t1) and oz = (O, Vo, t2) IS

Discrete transition iff e = (g1,02) € E, i =t; and v |=Jumge), and v =
Inv(gz), such that y is the valuations coming from RegetX). In this
case an event a Event; occurs. Conventionally, we write this as %
O>y.

Continuous(Delay) transition iff q; = g, (t2—t1) > Ois the duration of time
passed at location iq there exists a differentiable function f with=f
Flow(q;) and f(t1) = v1 and f(t2) = v, and for all t € [ty,t], f(t) =
Inv(ql).

In the previous definitiony, results from resetting variables on a transi-
tion in case of the discrete transition rule, while it res@itom the continuous
evolution of the variables in case of the continuous trasitule. An exe-
cution of a hybrid automaton corresponds to a sequence riti@ns from
onestate to another. For this purpose, we define the validsdollows:

Definition 4.3.8 (Run: micro level) A pathp = 010»03, ..., of a hybrid au-
tomaton H is a finite or infinite sequence of admissible statbsre the tran-
sition from a stateg; to a stateo; 1, for all i > 1, is related either by a discrete
or continuous transition. A set of all possible paths of Aeaated ad7(H).
A run of H is a pathp starting with the initial stategp.

It should be noted that the continuous change of states ithgopgener-
ates an infinite number of reachable states. Therefore;spaice exploration
techniques require a symbolic representation way for sgpring these infi-
nite states appropriately. One way to do so is to use matheahattervals.
We call this symbolic mathematical intervagion which is defined as fol-
lows:

Definition 4.3.9 (Region) Given a pattp € I1(H), a sub-sequence of admis-
sible stated” = (Gi+1--- Gi1m) C p is called a region, if for all states; |
with 1 < j <m, it holds ¢,; = g and for the states; and ;. m.1 with re-
spective locations;cand q.m:1, then it must hold 4 g and g m+1 # Q.
Conventionally, a regioft is written asl” = (q,V,T), wheret 1 <T <ti;m

is the interval of continuous time, and V is the tuple of inéds valuations of
the variables during the time interval T.

4.3 Hybrid State Machines 47

In the previous definition it should be noted that a regions always
admissible since itis a sub-sequence of aguh captures the possible states
that can be reached using continuous transitions in eactiidnog € Q. T
represents the continuously reached time. A region captine continuous
values for each variabbe € X. These continuous values can be represented
as an intervaV/ of real values. Let us consider the automataim of Fig.[4.4.

The region obtained from the locati¢er can be described #s= (far, X,T),
where 500< X < 1000, and X T < 10.

Arun of a hybrid automaton can be re-phrased in terms of ezhagions,

where the change from one region to another is fired by usingcaede step.

Definition 4.3.10 (Run: macro level) A run of hybrid automaton H ipy =
lo,a1,l1,az,..., @ sequence of (possibly infinite) regions, where a tramsiti

from a region/; to a region[l; ;—written asf; —> [1—is enabled, if there
|+1

is 0 —> 0.1, Whereg; € 7, i1 € 11 and a1 € Event is the gener-

ated event before the control goes to the regipn. I is the initial region
obtained from a start statep by means of continuous transitions.

The operational semantics are the basis for verification lojlaid au-
tomaton. In particular, model checking of a hybrid automasdefined as
the reachability analysis of its underlying transitionteys. The most useful
question to ask about hybrid automata is the reachabilieygifen state. We
define the reachability of a region and state as follows.

Definition 4.3.11 (Reachability) A region[; is called reachable in a rupy,
if [€ py. Consequently, a state; is called reachable, if there is a reached
region[; such thato; € [

Reachability analysis computes all the states that areemed to the
initial states by a run. The classical method to compute ¢aehable states
consists of performing a state-space exploration of a systarting from the
initial region and spreading the reachability informationg control loca-
tions and transitions until fixed regions can be reached.[&ER)is a simple
semi-decision algorithm, which computes the reached nsgid a given hy-
brid automaton. In this algorithm, Ipost(R)be the set of all reached regions
connected to the regidRwith a discrete step, given an initial regibg

4.3.4 Hybrid State Machines Composition

For the specification of complex systems, we extend hybridraata by par-
allel composition. The parallel composition of hybrid autta can be used

48 4 The Model

Wait : =post (lp)

Reached := Iy

while Wait #0 do

take R from Wit

if R ¢Reached then Reached := Reached U R

end if
Wit = Wait U (post(R)\ Wit)
end while

Fig. 4.5.A simple procedure for reachability computation.

to specify larger systems (multi-agent systems), wherebaidhyautomaton
is given for each part of the system and communication betvilee differ-
ent parts may occur via shared variables and synchronizéloels. It has
been previously said that the parallel composition of hyritomata is tech-
nically obtained from the different parts using a produatstouction of the
participating automata. The transitions from the difféer@momata are inter-
leaved, unless they share the same synchronization lab#isl case, they
are synchronized on transitions. As a result of the parath@hposition, a
new automaton called composed automaton is created whattrea the be-
havior of the entire system. The composed automaton isim given to a
model checker that checks the reachability of a certaire sidie composi-
tion of hybrid automatad; andH, can be defined in terms of synchronized
or interleaved regions of the regions produced from run ¢fi by and H,.
As a result of the composition procedure, compound regions@nstructed,
which consist of a conjunction of a regidh = (q;,V1,T) from H; and an-
other region, = (g, Vo, T) from H,. Therefore, each compound region takes
the formA = ((q1,V1), (02,V2), T) (shortly written as\ = (I7,,,T)), which
represents the reached region at both control locatipndqg, the during a
time intervalT.

Definition 4.3.12 (Run Composition) A run of composed automata is the
Sequenceg y,on, = Mo, a1,/\1, a2, ... of compound regions, where a transition
between compound regiors = (1,1, T1) and Ay = (I, o, T2) (written as
N % /\2) is enabled, if one of the following holds:

e ac Evenf, NEventy, is a joint event/; Ta> I, andy t3> ¥». In this case

, we say that the regiofy is synchronized with the region.
e ac Eveny, \ Event, (respectively & Eventy, \ Eventy,), 1 Ta> I and

Y1 — Vb, such that bothy and y», have the same control location—i.e. they
relate to each other using a continuous transition.

4.4 Constraint-Based Modeling 49

To illustrate the previous procedure, consider the trate gantroller ex-
ample. There is a synchronized region between the regioairgat from
location far and from locationidle in the automatdrain and controller re-
spectively. Both regions are synchronized using the joneneapp There-

fore, the synchronized region can be described &ar, X), (idle, T1), T) @

((nearX), (to_lower, T;), TT), whereX and T, are the continuous valua-
tions of the variable of the automatein and controller respectively. On
the other hand, the region obtained from locatifan and from location
open in the automatdrain and gate respectively, relates to each other us-
ing disjoint eventapp. Therefore the obtained region can be described as
((far,X),(openG),T) % ((nearX),(openG),TT).

The previous procedures give the possibility to constiuetdtomposition
dynamically during the run/verification phase. As it hasrbs&d, computing
the composition in such a way is obviously advantageouss iBhivhy only
the active parts of the state space will be taken into coreide during the
run instead of producing the composition procedure pridhéoverification
phase. This can relieve the state space problem raised bglimp#1ASs.

4.4 Constraint-Based Modeling

In [Mohammed and Furbach, 2009b] we showed how to encodeytiie s

tax and semantics of hybrid automata, previously descrdsed constraint

logic program (CLP)|[Jaffar and Lassez, 1987]. A primarysi@n of this
model has been presented lin [Mohammed and FdrﬂlaﬂJZO(Bb]elaas

in [Mohammed and Stolzenburgd_ZbOS]. There are diversevemtbeyond
choosingCLP as a modeling prototype to implement the framewaork. Firstly
hybrid automata can be described as a constraint systene Wieeconstraints
represent the possible flows, invariants, and transiti8asondly, constraints
can be used to characterize certain parts of the state spacehe initial
state or a set of unsafe state. Further, there are closeasiie# in opera-
tional semantics betweddLP and hybrid automata. State transition systems
can be ideally represented as a logic program in which thefsetachable
states can be computed. Moreover, constraints enable apriesent infinite
states symbolically as a finite interval. The infinite stafes instance, can
be handled efficiently as an interval constraint that bouhdsset of infinite
reachable state as a finite interval (i.es X < 250). A constraint solver can
be used to reason about the reachability of a particulae staitde this inter-
val. A further motivation to choos€LP s its enrichment with many efficient
constraint solvers of various domairaLP contains a constraint solver over

50 4 The Model

real interval constraints, which can be used to representahtinuous flows
as constraint relations to the time, as well as to reasontabparticular val-
uation.CLP also contains a constraint solver over symbolic domains;hwh
are appropriate to represent the synchronization eveotsrimnication mes-
sages) among agents. Last but not least, by empld@icgthe composition
of automata can be constructed on the fly (during models amgckr his can
be done by investigating the constraints appeared durimgmg models. The
previous can relieve the state space problem raised frooifgipg MAS.

Let us first look at a preliminary introduction to CLP, befave show how
to encode the syntax and semantics of our hybrid state meiinterms of
CLP

4.4.1 Overview of Constraint Logic Programming

Constraint Logic Programming (CLR) [Jaffar and Lassez719&s been in-
troduced as an extension to logic programming where unidicathe basic
operation of logic programming, is replaced by constraandiing in a con-
straint system. The resulting languages combine the aayastof logic pro-
gramming with the efficiency of constraint solving algonii.

Constraints are relations which should hold among varsabiex problem
and thei domains of values. A general purpose constraimesad used here-
after to solve such constraints. A constraint solver imgets an algorithm
for solving allowed constraints in accordance with the ¢@mst theory. The
solver collects the constraints that arrive incrementatiyn a running model.
It puts them into a data structure for the constraints wisdaailed constraint
store. During the previous process, the solver tests thisfiahtlity of the
constraints, or simplifies them.

A program in CLP typically consists of three sections. lRirghe decla-
ration of the domains of program variables. Secondly, caimgs are stated
that are used to build a constraint network at run time. Thesstraints pos-
sibly involv multiple constraint solvers. The last prograection defines in
which order program variables are assigned values thatargistent with
constraints, and in which order those values are tried

Currently there are many CLP languages. The domain of @intgris
one of the key point of creating such languages. Prolag llIif@oaus, 1984],
is generally considered as the first CLP language. The @nttrof Pro-
log Il are equations and dis-equalities over terms. The gexieration of
CLP languages, Prolog lil [Colmerabier, 1090], CHIP [Dirgleaal.| 1988]
and CLP(RHJaffar etal., 19|92], went a step further by idtrcing constraints
over new computation domains including rational and reatlers, integers,

4.4 Constraint-Based Modeling 51

Boolean and lists. A good survey about the development of @hBuages
can be found in@ 0].
ECLPS Prolog [Apt and Walla¢e, 2007] and SWI Prolog [Wielemaker,
] are among the successful platforms which supportritegiation of
various constraint solvers, including constraints ovatdidomains and con-
straints over continuous intervals.

4.4.2 Hybrid Automata in CLP

We useE.CI_iPSe Prolog IApt and Wallace, 201)7] to implement our proto-
type.ECL'PS includes theac library for interval constraints, as well as finite

domain constraint solving. The prototype follows the définis of both the
formal syntax and semantics of hybrid automata, which afmei in the
previous section. To start implementing a hybrid state nmaghve primarily
begin by modeling the locations and their constraints (togis, invariants),
which are modeled as the predicaigomatoras follows:

%86 aut onmat on(+Locat i on, ?Var s, +Var s0, +T0, ?Ti ne)
%806 nodel s invariant and flow inside | ocation
aut omat on(Locati on, Vars, Vars0, TO, Ti ne) : -

Fl ow(Var s),

I nv(Vars), Ti ne $>=TO.

automatorin the previous predicate indicates the name of the autamata
Locationrepresents the actual name of the current locations of tioereton.
Varsis a list of real variables belonging to in the automaton, riehsVar<)
is a list of the corresponding initial valuesiv(Vars) is the list of invariant
constraint orVars inside the location. The constraint predic&tw(vars)
models the continuous flows of the variabMars with respect to timer0
andTime given initial valuesvar9) of the variabled/ars at the start of the
flow. TO is the initial time at the start of the continuous flow. Asgaeted in
Sed.4.3.2, a hybrid automaton is classified according todhstraints on the
continuous flowFlow(Vars) is represented in terms of constraints/ass =
VarO+ c- (Time—TO) in case of a linear hybrid automaton, \@ar0 + c-
(Time—TO0) <Vars<VarO+c- (Time—TO0) in case of a rectangular hybrid
automaton, and dgars= —c2/cl+ (Var0+c2/cl)-exp(cl- (Time—TO)) in
case of a non-linear hybrid automatd@f.ime— T0) models the delay inside
the location. It should be noted that after executing theipedeautomaton
VarsandTimeholds the reached valuations of the variables togethertivith
reached time respectively. The following is an example shguhe concrete

52 4 The Model

implementation of the locatiofar in the automatortrain Fig.@]@. The
$ symbol in front of the (in)equalities is the constraintaten for interval
arithmetic constraints (libraric in ECLiIPSe Prolog).

train(far,[X],[X0], TO, Tine): -
X $= X0-50+(Ti me- TO),
X $>=500, Tinme $>=TO.

According to operational semantics defined in Def. 4.3.7ylarid au-
tomaton has two kinds of transitionsontinuoustransitions capturing the
continuous evolution of variables, adi$cretetransitions capturing the changes
of location. We encode transition systems into the predieablve which al-
ternates the automaton between a discrete and a continamsstion. The
automaton evolves with either discrete or continuous itians according to
the constraints appearing during the run.

%86 evol ve(+Aut omat on, +St at e, - Next st at e, +TO, - Ti me, ?Event)
evol ve(Aut omat on, (L1, Var1), (L2, Var2), TO, Ti ne, Event) : -
conti nuous(Aut omat on, (L1, Var1), (L1, Var2), TO, Ti ne, Event);
di screte(Automaton, (L1, Varl), (L2, Var2), TO, Ti ne, Event) .

When adiscretetransition occurs, it gives rise to updating the initialivar
ables fromVarl intoVar2, whereVarl andVar2 are the initial variables of
locationsL1 andL2 respectively. Otherwise, a delay transition is takengisin
the predicateontinuouslt is worth noting that there are infinite states due to
the continuous progress. However, this can be handledesffigias an inter-
val constraint that bounds the set of infinite reachable stata finite interval
(i.e., 0< X <250).

In addition to the variables, each automaton is supplied avitet of events
calledEvenhyomaton AN example of this set of events of the automati@am
is denoted agapp,in,exist}. Each transition is augmented with the variable
Event which is used to define the parallel composition from theousta
individuals sharing the same event. The varidblentranges over symbolic
domains and guarantees that whenever an automaton genanadgent, the
corresponding synchronized automata have to be takenamideration si-
multaneously. It should be mentioned that the declaratf@utbmata events
must be provided in the modeling example. The declaratioth®fpossible
events domain of Fig. 4.4. is coded as follows :

2 The full implementation is in the appendi¥ A

4.4 Constraint-Based Modeling 53
:- local domain(events(app,in,exit,raise,|lower, to_open)).

This means that the domains of events are declared symibpliocacapture
the set of all possible events applicable to the underlyiogleted system.

Once the domain of events has been defined, an appropriater sbla
symbolic domain deals with any defined constraints in terfriceodeclared
domains. After defining the domains of events, a variable/jpé eventscan
be declared as follow:

Event & : events, Event &= donmi n_val ue.

The variableEventis declared with domain values defined é¥ts and is
initialized with a specific value from its domain. The & synhisoa constraint
relation for symbolic domains (librargdin ECLiIPSe Prolog).

In the following we present the general implementation ef pinedicate
discrete which defines transitions between locations.

%86 di scret e(+Aut onat on, +St atel, - State2, +I nt Ti ne, - Ti ne, - Event)
di scret e(Automat on, (Locl, Var1), (Loc2, Var2), TO, Ti e, Event) : -
aut omat on, (Loc1, Var 1, Var, TO, Ti ne),
jump(Var), reset(Var2),
Event &: :events, Event &=domai n_val ue.

In the previous predicatelomainvaluemust be a member iIBvenhyiomaton
When thediscretepredicate is fired, the automaton generates an event by
constraining the variablEventto the suitable value from its domain.

In the following we show an instance of the concrete impletaigon of
thediscretepredicate betweefar andnearin thetrain automaton.

di screte(train, (far,[X0]), (near,[XX0]), TO, Ti ne, Event) : -
train(far,[X0],[X], TO, Ti ne),
X $=500, XX0 $=X,
Event & :events, Event &=app.

Once the locations and transition rules have been modegtateamachine
needs to be implemented in order to execute the model. Thexedriver
program is implemented as shown in Fig.4.6.

Thedriver is a state machine that is responsible to generate and tontro
the behaviors of the concurrent hybrid automata as well gzdwide the
reachable regions symbolically. Tloeiver takes the starting state for each
participating automaton, i.e. a control location as inpguaent as well as

54 4 The Model

%086 driver (+Statel, +State2,..., +Staten, +T0, - Regi ons,
+Past Regi on) .
%80 perform conposition and reachability
driver((L1,Var01), (L2,Var02),...,(Ln,Var0On), TO, [Reg| Nxt Req],
Past Reg) : -

aut omat onl1(L1, Var 1, Var 01, TO, Ti ne),
aut omat on2(L2, Var 2, Var 02, TO, Ti ne) ,

aut omat onn(Ln, Varn, Var On, TO, Ti ne),

evol ve(aut omat onl, (L1, Var01), (Nxt L1, Nvar01), TO, Ti ne, T, Event),
evol ve(aut omat on2, (L2, Var 02), (Nxt L2, Nvar 02), TO, Ti ne, T, Event),

evol ve(aut omat onn, (Ln, Var On), (Nxt Ln, Nvar On), TO, Ti ne, T, Event),
\+ nenber ((L1,L2,..,Ln,Varl, Var2,..,Varn, _, Event), PastReg),
Reg = (L1,L2,..,Ln,Varl,Var2,..,Varn, Tine, Event),

Npast Reg =[Reg| Past Req],

driver ((NxtL1, Nvar01), (NxtL2, Nvar02), ..., (NxtLn, NvarOn), T,
Nxt Reg, Npast Reg) .

Fig. 4.6.A state machine to drive the run of automata.

the list of initial valuations of the variables. In additidhtakes the starting
time TO followed by a list of reached regions, which is needed ferghrpose
of the verification. It should be noted that during the cowfsthe dirver's ex-
ecution, there is a symbolic domain varialdeentshared among automata.
That variable is used by the appropriate solver to ensut@titaone event is
generated at a time. In another words, when an automatomajes@n event
due to a discrete transition of one of the predicaeslveof the concurrent
automata, the symbolic domain solver will exclude all thendins of values
of the other automata that are not coincident with the geeéravent. This
means that only one event is generated at a time. If more tharaotoma-
ton generate different events at a time, then the symbolicaiio solver will
handle only one of them at a time, but the other events willdredked using
backtracking.

Since each automaton generates an event by a discrete shtepesid of
its continuous evolution, then the precedence of eventsapear during
the run is important to both composition and the verificatmocess. An
obvious way to deal with this precedence is to use conssraintthe time
of the generated events. To accomplish this, we constrainexecution of
each automaton with a shared varialbiene The constraint solver, in turn,

4.4 Constraint-Based Modeling 55

binds this variable with the minimum execution time amorg datomata. It
follows that this variablelime eventually holds the minimum time needed
to generated an event. The previous computation partitioesstate space
into regions, where the transition from one region to anotlepends on the
minimum time needed to generate an event. This shows howutioenata
composition can be implicitly constructed efficiently oreftfty, i.e. during
the computation.

It has been said that we are not only concerned with runnimigcam-
posing the automata, but also with the their verification: #is purpose,
the driver is supplemented with the list of reached compound regioris. A
each step of the execution of tlugiver, a compound region, in the form
(locationsVariables Time Event is added to the list of reached regions.
This region symbolically represents the set of reachecstahd times to
each control location as mathematical constrains. Aduhlly, each region
contains the generated event before the control goes tbemngion using
a discrete step. Thdriver technically computes the set of reached regions
until fixed regions are obtained. This is computed by ingeging— in each
iteration ofdriver—if the reached region is not contained in the list of the
previously reached regions. For this purpose, the lasinaegt of thedriver
holds for the list of these regions.

Reachable regions should contain only those variableshndmie impor-
tant for the verification of a given property. Therefore, thgt argument list
of the predicatalriver can be expanded or shrunk as needed to contain the
significant variables.

As soon as thariver has been built, the complete model should be in-
voked for the purpose of execution and verification. theofelihg predicate
reachableis implemented to invoke thariver.

reachabl e(Y, Reached) : -
driver (4,0, Reached, []).

The first argument of predicateachableis the states predicatéy that
represents the initial states of the hybrid automata. Amgrt@ showing how
to run the model on the running example [ig] 4.4, takes tha:for

reachabl e((far,[1000]), (open,[90]), (idle,[0]), Reached).

56 4 The Model
4.4.3 Model Analysis

Now we have an executable constraint based specificatiaohwhn be used
to test properties of systems modeled as hybrid automateer&@eproper-
ties can now be investigated. In particular, one can cheapgasties on states
using reachability analysis. The reachability analysisstsis of two basic
steps. Firstly, computing the state space of the automatderuconsidera-
tion. In our case, this is done using the predicdtieer. Secondly, search-
ing for states that satisfy or contradict given propertiggring the searching
stage, constraint solvers can be ideally can be used toreésat the reach-
ability of those states within regions.

As far asCLP is concerned, a state is reached iff the constraint solver
succeeds in finding a satisfiable solution for the conssaigpresenting the
intended state. For example, an interesting property isni thie shortest
distance of the train to the gate before the gate is entitesed. This can be
checked by posing the following query:

?- reachabl e((far,[1000]), (open,[90]),(idle,[0]), Reached),

nmenber ((near, _, , Tine,to_close,), Reached),
get _max(Tinme, Tm,
nenber ((near, _, _, Tm _, X), Reached),

get_mn(X Mn).

The previous query returndin = 104.8 meters, which is the minimum
distance of the train that the model guarantees before tieeigaompletely
closed.

Since the events and time are recorded particularly at eshobgions,
verifying timing properties or computing the delay betwegants are further
tasks that can be done within the reachability framework.ikstance, we
can find the maximal time delay betweanand exit events, by stating the
following query:

?- reachabl e((far,[1000]), (open,[90]),(idle,[0]), Reached),
append(A, [(past, _, _,Tinmel,exit,_)|_], Reached),
append(B, [(near, , ,Time2,in,)| _],A),
get _max(Ti mel, Tmax1), get _max(Ti me2, Tmax2),

Del ay $= Trmax1- Tmax2.

4.4 Constraint-Based Modeling 57

The constraint solver answeyssand yieldsDelay = 2.554. This value
means that the train needs at mo&52 seconds to be in the critical crossing
section before leaving it. Similarly, other timing propestcan be verified.

Last but not least, the expressiveness of CLP makes it pedsilbeason
about the reachability of interesting properties not onlthim some region,
but also on the boundary of the region during firing a traositiThis type
of properties is important in the sense that the values dimaeous variables
at the cutoff point can tell how well systems perform relatto the given
timing constraints, and shows how critical variables stidndhave. To do so,
we get first the occurrence of the event of interest. Then wstcain time
of that event by projecting it on the intended critical cantius variables.
For instance, suppose we want to find the shortest distarnite dfain to the
gate before the gate is entirely closed. This can be checkegktiing the
occurrence time of the evetd_close then the constraint solver will bind the
train distanceX to the value of this time.

5

Region Computation Tree Logic:Specification

In Chaptef#, we provided the syntax and semantics of ougsexgbapproach
to hybrid automata. We implemented this approach by meamsmstraint
logic programming. We showed how to analyze simple querniesnbans
of reachability analysis. This chapter shows the generacttre to spec-
ify those properties, which can be verified within our presdrapproach. In
order to specify properties one needs a suitable speatficenguage. Tem-
poral logics are prominent examples of such specificatioguages. They
have been devoted to specify those properties which depertieoorder
at which states appeared in a particular model, or what Isccajualitative
properties of the model. When the time constraints are @iglrequired in
the specification, the ordinary temporal logics have to liieed. Properties
that depend on these time constraints are known as quavaifabperties.
This chapter presents a variance of temporal logics, RCHgigh Compu-
tation Tree Logic) that extends the computation tree logi¢nicorporating
time on states, events, and constraints of formulas. ThelRGMmulas are
interpreted over the set of possible regions resulted fiwenran of hybrid
automata. The specification language of RCTL allows us togesgomany
properties in a concise and intuitive manner. To bring matheicking into
the scope of RCTL, we concentrate on the specification ofetlposperties
that can be verified using reachability analysis. The mairrdmution of this

chapter has been published in [Mohammed and Furbach,/2010a]

5.1 Introduction

Model checking asks if possible runs of a model satisfy argigeoperty
specified in a formal specification language. In fact, thei@hof this lan-
guage is known to be one of the keys issues in the design of Inchdek-

60 5 Region Computation Tree Logic:Specification

ers as this language is one of the primary interfaces to adbtesn. One
of the most widely used specification languages for many mapb sys-
tems istemporal logi¢ which was introduced i77] as a subclass
of model logic [Van Benthem and ter Meulen, 1997] with pofesilorld se-
mantics and model operatofs:(for all possible worlds) ane (there exists
a possible world). In temporal logi€) is interpreted as from now on, at all
states (or henceforth, always), whifeis interpreted as from now on, there
exists a state (or eventually). Basically, temporal logimes in two differ-
ent views: linear temporal logic LTL [Manna and Pnueli, 19Bueli, 197 7]
and computation tree Logic CTL [Ben-Ari etlal., 1983]. Thésgics allow
us to express real-time requirements of reactive systehesyviEw of a com-
putation is the key difference between LTL and CTL. The cotapon can
be viewed either as a linear sequence with only one futures @r teee with
many possible futures. The former belongs to LTL, while thitel belongs
to CTL. Thus, CTL provides the branching operatérandV to specify the
relation among futures. Temporal logics basically allovexpress the quali-
tative properties of reactive systems, that is the progertihich focus on the
temporal order of the occurrence of events. An example citipeoperties is
to specify that a certain property of interest may evenyuadicur, or in other
words the formula is reached in the model. Another exampfaaberties is
to specify that a critical property is never reached in thelehor what is so-
called safety property. These types of properties have beesidered in dif-
ferent model checkers SPIN.LHQ[ZJ:DJ&IM_]JQQ?] and NuSM Dl
2002].

The classical temporal logics, however, are insufficiergpecify quanti-
tative temporal requirements or what is so-called hardtieed constraints,
which put timing deadlines on the behavior of reactive systel et for ex-
ample a propositiop correspond to the occurrence of the everegnt, andq
correspond to the occurrence of the evarent, then in linear temporal logic,
the formulald(p — <>q) states thaeévent is always followed byeveng, but it
does not state anything about the time period between thgreccesvent
andevent. Temporal logics should be refined in order to permit suclesyp
of quantitative specifications. The quantitative requieats are favored or
are mandatory safety in various scenarios. In the logistigsport example,
it is not desirable to specify that the goods will eventua#igch their final
destination, but reaching within reasonable period of tigsrfavorable. In the
train gate example, it is mandatory safety to to guarantaietiie gate will be
closed in certain time limit while appearing of a train.

5.1 Introduction 61

For their inexpressiveness to specify quantitative progerthe classi-
cal temporal logics have to incorporate the notation of tifer this aim,
there have been proposed several extension to temporaklbgiding the
notation of time to formulas (see [Alur and Henzinger, 1SB2llini et all,
] for a survey). The underlying models of these logiesrapresented
as state transition graphs annotated with time constraistag eitherevent
or statebased approach. In the former approach, events record drgeh
of states at particular points of time. In the latter applhpabe changes of
states are recorded at each point of time. Therefore, bgifoaphes use a
different time domain. In particular, choosing the domditirae to be the set
of natural numbers leads to the so-call@dcrete timemodel. In this model
a transition between states, represented by events, whgbeh only at the
integer time values. The behavior of a discrete time mod#gssribed by the
timed trace over a set of events that occur during the ewniuf the model.
[ML‘O] showed a classification of temporal comgsavith respect
to event occurrences. The main advantage of event based togiether with
their underlying discrete time model are their simplicibyeixpress the quan-
titative properties. The quantitative requirements oteays often occurs at
the discrete change of behaviors. Hence, the use of evemtgise natural to
ideally specify such requirements. In the train gate exafriplorder to spec-
ify that whenever a train approaches the intersection, #te igust be closed
within a particular time period, it suffices to specify thaery occurrence of
eventapproachis followed by the eventslosedwithin such a time period.

Besides their ability to specify quantitative requirensergvents provide
general observation view of systems’ behaviors by abdtigddts of details
of those systems. Indeed, the behavior of systems can bactéazed by the
set of all possible sequences of event instances that hapgerime. This
type of view of the behaviors can be used to specify the ptigsenf complex
timed systems, or particularly multi-agent systems. Fangale, the behavior
of a transport agent in a logistic scenario is described kys#quence of
events that the agent should take in order to accomplishtailceask, like
receiving ordeytransport change route planandreach to destination

Specifying quantitative requirements, however, with temevhich events
occur, i.e. event based approach, is not the general choispecify such
types of requirements. There are quantitative requiresniiatt might not be
expressive by means of events. For example, it might bealdsito state
that within some interval of time, say X0t < 20, a certain property holds.
This can not be expressed with events unless the bounddribe mterval
coincides with occurrence of those events.

62 5 Region Computation Tree Logic:Specification

Choosing the time domain to be the set of non-negative reabeus, i.e.
R=0, leads to what is so callembntinuous/denseodel, in which states have
to be recorded at each point in time. Therefore, change tfssisrepresented
by letting the time to pass between one state to another. Tditative tem-
poral logics, based on this approach, are powerful and egweto specify
quantitative properties, as they record the state of theetnaideach point
of time. They can cope with the limitations of event basedd®gnentioned
previously. They, however, lack to express properties eht&vin models di-
rectly. They convert the event based into state based mpet®n. Addition-
aII underlying model checkers—for example UPPA/MI
1996] and Hytech [Henzinger etlal., 1997]—convert the fdemuaepending
on the occurrence of events, into formulas with state baspresentation.
For example, to specify and verify that it is always the chsg¢dvent is fol-
lowed byevent within t time unit, a traditional solution to verify this within
a modelM, is to translate this specification to a testing transiticodei A,
and then check whether the parallel modef@ndM can reach a designated
state ofA.

This chapter shows Region Computation Tree Logic (RCTL) ¢éin@om-
pass, in the same framework, the expressive power of evenstate based
approaches. This is done by incorporating time notationaies and events.
We use hybrid automata as an interpretation model of RCTlpalticular,
the formulas of RCTL are interpreted on the set of all possibhs generated
from the transition system of hybrid automata. Time, evestsl constraints
are the primary components constituting RCTL formulas. [g phe spec-
ification of properties, which can be verified within our preted approach
in the previous Chapter, we use a fragment of this logic tpatifies the
properties which can be verified using reachability analysi

The rest of this chapter is organized as follows: [Sek.5.@shibe syntax
and semantic of RCTL. Séc.5.3 shows the specification ofetlimportant
properties that can be verified by means of reachabilityyaisal Sec[514,
discusses related quantitative temporal logics.

5.2 Region Computation Tree Logic (RCTL)

This section primarily focuses on the definition of the reg@mmputation
tree logic (RCTL), which extends the qualitative tempoagjit of CTL with

time on states, events, and constraints of variables. R@nhbmnes, in the
same level of specifications, qualitative together withrqiative require-
ments. The formulas of RCTL are interpreted over the possidions ob-

5.2 Region Computation Tree Logic (RCTL) 63

tained from the run of hybrid automata. As described in Gérdfht a region

can be seen as a sequence of states separated by transititsn pach tran-
sition point marks the instantaneous exit from region, and the entrance
into regionfl;, and corresponds to the occurrence of a particular eveetefh
fore, we see regions constituting the essence of RCTL, $wathRCTL can

be viewed as a state based quantitative temporal logicsanseghat regions
capture the changes of states, and as event based quantigéatiporal logics
in a sense that events mark the instantaneous exist fromnrégianother.

Thus, RCTL brings together, in the same framework, the adg@s of both

approaches. In the following we show the syntax and senswotiRCTL.

Definition 5.2.1 (Timed-variables) Let T be a set of non-negative real vari-
ables calledtimed-variablesand @ (T) [be a set of linear constraints over
T. The valuatiorg of the timed-variable¥ is a functioné : T — R=°. Given
me ®(T), we writeé |= m, if £ satisfies the constraint.

5.2.1 Syntax of RCTL

Let X be a set of real variable§, be a set of non-negative real variables
disjoint fromX, @(X) and @(T) be two sets of linear constraints with free

variables fromX andT respectivelyL be a set of atomic propositions denot-

ing the locations, an&ventbe a set of atomic propositions denoting events
disjoint fromL.

Definition 5.2.2 (Formulas of RCTL) The formula¥ [of RCTL are induc-
tively defined as

Yi=plalo|y¥|m[-¥[HAY]I(HUY)| V(HUY)

foryeT, pel, ac Event,p € @(X), me &(T), and¥, ¥ are RCTL
formulas.

In addition to the definition of formulas, the following artadard abbre-
viations in RCTL similar to CTL:

JOW =J(trueU¥) VOW =VY(true UY)

O = Y- VOW = -3y

1 see Chaptdil4 of syntax and semantics
2 trueis defined implicitly in®(X), see Chaptet4

64 5 Region Computation Tree Logic:Specification

Given the previous abbreviations, the formdl&¥ indicates that there
exists a path wher® is eventually true, wheread 1¥ indicates that there
exists a path wher® is always true. The quantifieksandd in front of the
model operators) and] indicate a universal and existential quantifier on
paths respectively. It should be notated that the abbieniaif the logical
operatorsy and— are defined as usual.

5.2.2 Semantics of RCTL

We will interpret the formulas of RCTL over the set of all pibés regions
generated from possible runs of hybrid automata. Recalhalgd a region”
take the form™ = (q,V, T), with (") = qis its location, and&/ andT are the
interval of valuations and time respectively, in which thgion is admissible.
If there is a transition from a regiahn to a regionl,, then an everd occurs
at some timing point, written asl;, % 5. A sub-region C I, with B £ 0

means thap = (q,V',T') with T'C T andV' C V. A stated € ' means
thato = (q,v,t), with ve V andt € T. o satisfies a constrainp € ®@(X),
written aso = @, iff vi= ¢. In the following, we show the semantics of
RCTL formulas on the set of all possible rufs.

Definition 5.2.3 (Semantics)Let ¥ is a RCTL formula, H be a hybrid au-
tomaton, 1y be the possible runs of H with a regidh= (q,V,T) € Iy,
and £ is a valuation function of timed-variables. The satisfaatirelation

.
(My,I) ? W, which means tha¥ is satisfied in the regiof within the time

interval (duration) T for some valuation functidn is defined inductively as
follows:

« (Ma.r)Epif p=&(r)

. <I7H,I'>%aiff thereist € T with r%r’.

° <I7H,I'>%(piff thereisB C I , for eachoi € 3, 0k F @.

o (Ma,l) %y.‘l—’ iff there ist € T such that (y) —t and (M, ") Tgt m
° <I7H,I_>%7Tiff EETL

5.3 Model Checking as Reachability 65

T T
° <I7H,I'>?ﬂll—’iﬁ <I7H,I'>}?QU.
T _ T T
° <I‘IH,F>?‘JJ1/\‘,U2|ff <I7H,I'>§W1and(l"lH,l')§‘P2.
T
° <I7H,I'>?H(%U'~Pz) iff thereisarunll € Ny, M =1y, 1, -, with F=l,

T T,
for somej > 0, (I‘IH,I'J->I§JW2, and(l‘IH,I'kM?leforOg k<j.
T
° <I_IH,I_>?\V/(W1U%) iff foreveryrunl"l eI'IH,I"I:I'O,I'l,---,With I =ly,

T T
for somej > 0, (7T, 1) & %%, and (M. [i) £ %4
forO<k<j.

The quantifiers7, andd, in the previous semantics, are called paths quanti-
fiers. The variablg in the formulay.¥ holds the time at whick is satisfied.

T.=t
y :=t means the variablgis set to the valué (My,I") l; ¥ means that the

formulaW is satisfied in the regioh when the timeT is restricted to the time
pointt. In case¥ represents an atomic proposition from theBseéents then
y.%¥ binds the time at which the event has occurred. This can lbtospec-
ify various quantitative properties, such as time boungaase properties as
we will see in what follows. However, # represents a constraint formula,
theny.¥ evaluates the time interval at which the constrathis satisfied.
This allows to specify quantitative properties, which ecbobt be specified
using events.

Definition 5.2.4 (Satisfiability) Let H be hybrid automaton withly as its
possible runs. We say that H satisfies the RCTL forri#lavritten as H= W,
iff (My, o) F W, wherely is the initial region oflMy.

5.3 Model Checking as Reachability

For the purpose of verification by means of model checkingneex to de-
scribe the properties. As it has been said in the previousosethe qualita-
tive properties are often classified into reachabilityesafind liveness prop-
erties. However, when the time becomes a critical factoe&etrin the envi-
ronment, then the concept of safety and liveness propestiesid be refined.
We are going to review these types of properties [Olderogircks, 2008]
and show how to specify these properties by RCTL, and henoedenthem

66 5 Region Computation Tree Logic:Specification

into the CLP queries for the purpose of model checking. leptd put model
checking within our framework, we will concentrate only dre reachability
requirements. Indeed, many properties of interest can bafia as a form
of reachability, as we will see in the sequel. We will starafying reacha-
bility of properties.

5.3.1 Reachability Properties

The reachability of a property¢ means that there is a possibility to reach a
state wherd&¥ holds. In other words, the reachability of the propéktasserts
that starting from an initial state, is there a region alomgrain which¥ is
satisfiable. This can be specified in RCTL as follows:

init — 3OW

whereinit is the predicate characterizing the set of initial statesisefined
as conjunctions of atomic propositions frdmand constraints fron®(X).
This predicate expresses that the run to be considered ase that start
from the initial state.

In terms of the CLP, the reachability of a certain region #atisfies the
formula¥ is done by performing forward reachability analysis frora flys-
tem’s initial state, and then checking whether the conjoncof ¥ with the
possible reached regions is satisfied. Assuming for examipleas been as-
signed to the set of initial states, the following is the CLLReKy to check the
safety requirements.

?- reachabl e(init, Reached) ,
nenber (¥, Reached), ¢.

In the previous query, the formul is rewritten as a conjunction of two
formulas$; and ¢, whereg € (®(X)U @(T)) is an atomic the constraint
appearing in the formul&. Indeed, any RCTL formula can be rewritten as
W =W A @, this is for the reason that at the magstan be set to be true.

To demonstrate the reachability of a formula in a concretergte, let us
return to the train gate controller example described inpgB&}. Supposing
one wants to check the possibility of reaching a region whstate satisfies
that thetrain is at near within distance less than Ifietersand thegateis
closed First the initial state of the systems is given by:

init : train. far A gateopenA controlleridel A x=1000A g=0 A z=0.

5.3 Model Checking as Reachability 67
The intended formula is specified as
init — =3 (x < 10Atrain.near/A gateclosed

As shown, the set of atomic propositiohsdescribes the possible locations
of hybrid automata. Since locations of different automasgy fmave the same
names, we should identify them somehow. To do this, we wi#rreo each
atomic proposition with the formA.q meaning that the automatoh is at
locationg, as it has been shown in the previous specification.

CLP of the previous formula can be verified by asking the foiim

query:

?-reachabl e((far,[1000]), (open,[0]), (idl e, [0]), Reached),
menber ((near, close, _, Tine, _, X,), Reached), X $=< 10.

The successful answer to this query indicates reachalufithe specified
formula.

It is often that in certain cases we may be interested in thehagility
of a certain property either before or after a time deadlia® dxpired called
Time bounded reachabilitf-or example, the possibility of a formuléi to be
reached within the bounded tinmeis specified in RCTL as

init — 3% (t.YAt<a)

Demonstrating this by the previous example with= 19, We are going to
check the reachability of the previous example within 19eaunf time.

?-reachabl e((far,[1000]), (open,[0]), (idl e, [0]), Reached),
nmenber ((near, cl ose, _, Tinme, _, X,), Reached),
X $=< 10, Tine $=<19.

5.3.2 Safety as Reachability

A safety property states thedmething bad must never happ&he bad thing
represents a critical property that should never occur.W.etpresent this
critical property, then the safety property is specifiechgSRCTL as

init :— vO-W.

Starting from the initial states, the previous formulaesahat the critical for-
mulaW is never reached. Generally, a safety property can be giblatthin

bounded time, which means that the exhibition of the previmumula by a
single state within a region suffices to show that the safedpgrty does not
hold. Thus, safety property can be reduced to reachabilipgty. In other

68 5 Region Computation Tree Logic:Specification

words, sincev] and—3<> are dual, we can specify the same property as the
following:

init :— —3IoW.

The previous specification asserts that after executingnitia stateinit, the
requirement characterized & will not be reached. To illustrate the safety
property with an example, assuming one wants to check teadttte, where
the train is at the intersection—the train isnaar location—with a distance
X=0 and the gate ispenis a disallowed state. Even a stronger condition can
be investigated, namely that the state, where the trairtligantersection and
the gate iglown is forbidden. This safety requirement can be specified as

init — =30 (x = 0Atrain.nearA gatedown)

This formula asserts that during the run of the system,istgitom the initial
state, there is no reached state where the train is neartahckx = 0 and
the gate is at down state. Checking the safety property nthahene checks
the un-reachability of the following query:

?-reachabl e((far,[1000]), (open,[0]), (idl e, [0]), Reached),
menber ((near, down, _, Tine, _, X,), Reached), X $= 0.

The constrain solver answelk for the previous query.

5.3.3 Additional Requirements

We showed that safety properties can be reduced to the tahisharoblem.
Asitis known, a safety property asserts what may or may naipbut do not
require that anything ever does happen. In the train gatagbea closing the
gate permanently can maintain the safety of the systemt lsutimnacceptable
for the waiting cars or pedestrians in front of the gate. g teason, the
liveness property is needed to specify such requiremeritghvasserts that
some property of interest will always occur. It should besddhat these type
of properties can not be falsified in bounded time. Since twwence of
some state does not say how long it will take for this statecttun we can
not sure that the liveness property is violated. For thisoseathese types of
properties are not strong enough in the context quanttgiroperties. Here
one would like to see a time bound when the good state occhis|dads to
the next kind of properties.

5.3 Model Checking as Reachability 69
Bounded Response Properties

A bounded response property is one of the most importardesast quantita-
tive requirements used to specify many important appboati It asserts that
something will happen within a certain limit of time. A typilcapplication
of bounded response property is the specification of wosst parformance;
that is the specification of an upper boumdn the termination of a system
S if started at timd, thenSis guaranteed to reach a final state no later than
o +t unit time. In the logistic scenario, for example, specifyihat any re-
ceived order is guaranteed to be delivered within 5 days @iaded response
property. In communication protocols, specifying thatrgueequest will be
acknowledged within 3 seconds is a bounded response pyopethe train
gate example, a desired property is to specify that once fiheoach of a
train is detected, the gate needs to be closed within a oditaé bound in
order to halt cars and pedestrian traffic before the traiohesthe crossing
intersection.

The following is the RCTL specification of a bounded respamsgperty
between two eventavent andevens:

init — VO(ty.event — VO (th.eveng Aty < a +17)).

The previous formula states that whenever there is a reguest occurs at
timety, then it is followed by a responsens, at timet,, such that; is at
mosta +t.

It should be mentioned that this property can be falsifiechiwitime
bound. Therefore this property can be specified as a kindfetyseequire-
ment represented as reachability. For this reason, prakimgrevious prop-
erty means proving that it is not possible to reach a stateendens is not
reached fronevent within t; < a +t;. In other words, starting froravent,
finding a reachable state satisfisgent, within a time bound, is sufficient
to check the reachability of the property. In terms of the Cthé previous
property can be encoded into the following steps. Firstly,get all possi-
ble reachable states froavent within t; + a asL. Secondly, we check that
reachability ofevent has not occurred. A positive answer of the reachabil-
ity indicates a negative answer to the original problem, @nd versa. The
following is a CLP query encoding the previous specification

?- reachabl e(Y, Reached),
reached_fron(L, eveni, Reached),
reached_wi thin(Target, a,l),

\+ nmenber ((_,..,_, evenp), Target)

70 5 Region Computation Tree Logic:Specification

We should say that the traditional way to verify this kind objperties in
real-time system tools— like UPPAALLB_engls_s_Qn_dt[aL_ﬂwﬁd Hytech
[Henzinger et dll, 1997]—is to translate that property tatiticalled a testing
automatad, and then check whether the parallel composition of the iyrde
ing model together witl\ can reach a designated violation state. As we said
earlier, the reason behind this translation is that theme direct use of events
in the model. The use of events is limited to construct onéyphrallel com-
position of automata. In contrast to our adopted approdehdirect use of
events with the model allows us to avoid this translatiorcpss. This shows
that RCTL is more expressiveness, particularly in oursgttihan many oth-
ers quantitative temporal logics.

In real-time systems, specifying the behavior on the disaase, in some
cases, is not satisfactory. Suppose for example that ors teepecify that
a part of a certain region can be reached in some time bouervait To do
S0, we present the bounded invariance properties.

Bounded invariance Properties

Like the bounded response property, bounded invariangeepsois one of
the most important classes of quantitative timing requéets. It asserts that
once an event has been triggered, a certain condition wilirmaously hold
for a certain amount of time. It is often used to specify tr@nhsthing will
not happen for a certain period of time. Formally, spectythat a certain
property hold continuously for a certain amount of time inTRGs like the
following

init — VO(ty.event— VO(. WAt < a +17)).

wherea is the duration at which the formul¥ must be continuously held.
For instance, whenever the train approaches the gate,dtamdeé of the train
is always larger than 100 meters for the duration of 20 tintsuihe prop-
erty ¥ = X > 100 in this case represents the distance of the trainapps
the triggered event.

The bounded invariance property can be checked as a safgberpy.
Starting from timety, finding a non-reachable violating state for the formula
W, within a time bound, is sufficient to check the reachability of thepemdy.
This can be encoded into CLP as the following

?- reachabl e(Y, Reached),
reached_fron(L, eveni, Reached),
reached_wi thin(Target, a,l),
menber ((_,.., X, _, Target), X$<100.

5.4 Related Quantitative Languages 71

A satisfactory solution to the previous query violates thgioal property.
The way used to specify the bounded invariance propertieeaused
to specify what is the so-calleaiinimal event separatiol.,
] too, i.e ne@vent can occur earlier thaa time units after an occurrence
of event. This property can be specified as

init — vO(ty.event — VO(tp <ty +a — —ty.eveng)).

5.4 Related Quantitative Languages

As mentioned in the introduction, several quantitativeceffimation languages
have been proposed based on temporal logics. The distinatriong those
languages depend on various parameters. First of all, gestyf the models
of computational; that is whether itis linear or branchingdal. Additionally,
the accessibility of time; that is whether the time is imjplar explicit in the
temporal logics. Another discrimination concerns the $ypetime domain.
Choosing time to be a set of natural numbers gives us whatisdkcalled
the discrete time model. In this model, the change of statesoaly happen
at the integer time values. Choosing time to be a set of reabeuws, gives
what is the so-called the continuous/dense time model. inrtiodel, the
change of states is assumed to happen at an arbitrary pdinténover the
real line. Another important distinction among real-timeduls is whether
one assumes that the system under consideration is obs#reedry instant
in time leading to an interval based semantics [Alur et 8I96&], or whether
one only records a countable sequence of snapshots of ttleersieading to
point-based semantics[Alur and Henzinger, 1993, 1994].

In this section, we focus on the other quantitative templogits that are
used to extend the classical temporal logic with notatiotirog. Like the
conventional view of temporal logics, we devide the extemsf temporal
logic into linear time and branching time logic.

5.4.1 Linear Time Logics

Linear time logics extends the traditional linear tempdwogic by admitting
time constraints on definitions of the formulas. In the failog, we give
overview about these linear quantitative languages—thelso called real
time temporal logics.

72 5 Region Computation Tree Logic:Specification
Metric Temporal Logic

One of the earliest and most popular suggestions for extgridimporal log-
ics with quantitative setting is to extend the temporal af@s by subscript-
ing the modal operator with time interval. The idea of thigeesion is traced
back to metric tense Iogimé@%] of superscigptin subscripting
temporal logic. A successful and prominent example of i tof logic is
Metric Temporal LogiqMTL)[Koymans, 1990} Alur and Henzing 93],
which extends linear temporal logic by constraining thepgeral operators
0, and< with time intervals. For example, the formula, ¢ ¥ means that
W is eventually true within 2 to 6 time units from the currembd. The timed
bounded response property— that is to specify that evetgtp-g followed
by a g-state within 3 time units—can be specified using MTLH®y/formula
O(p— <39

The formulas of MTL are built from propositions using Boatezonnec-
tives and a time constrained version of until operafpr The formulas of
MTL are interpreted over time state sequences of integeratlgrwhich pro-
vide an interpretation for the propositions at every tinstant. For example,
the formula¥ U, % holds at timet of a timed state sequences iff there is a
latert’ € (t 4+ 1) such that¥, holds at timet’ and ¥4 holds throughout the
interval (t,t').

Metric Interval Temporal LogithITL)[AIur et al., 1996&] is a variant of
MTL employing dense time domain, instead of integer domidior.eover, the
bounded operator syntax is used with restriction such émaporal operators
must not be bounded by singular interval—i.e. interval effiorm [a, aJ.

Explicit Clock Logic

Another type class of quantitative logics, is to extend #@mporal logic with
explicit notation of time. In this approach, time is definedhwboth a se-
quence of states and a sequences of temporal instants. ¥ligeeebehind
this approach refers to use a dynamic state varidbénd global variables
over the time domain. The variablerepresents the time of each state, i.e. it
is considered as a global clock of a system. Due to the disecblithe global
variables, the temporal logic is call&xkplicit Clock Temporal LogicExam-

ples of this approach can be found in [Harel etlal., 1990; Pane Harel,
11988, Ostroff and Wonhdrh, 1990].

The time bounded response property can be specified by tHigiEgipck
approach as the formul&.O((pAT =X) — $(QAT < x+3)). The global
variablex is bound to the time of every state in whiphs observed.

5.4 Related Quantitative Languages 73

Freezing Quantifier

Timed Propositional Temporal Logid@PTL) [Alur and Henzingéﬂ, 1994] is
a real time logic, which extends the propositional temptgic with time
notations in order to specify the quantitative propertiégeal time sys-
tems. The key idea of TPTL is to use what is called tlemze quantifier
"x.”, which binds the associated variabtgo the time of the current tem-
poral context. Therefore, the formulas of TPTL are definedilarly to the
formulas of propositional temporal logic, but with the adshial formula
X.%, which freezes the time at which the form#&aholds. The TPTL for-
mula is interpreted over timed observational sequences.fgitmalx.%(x)
holds at timet if W(t) does. Therefore the formulkex. means that the
time variablex is bound to the time of the state at whighis eventually
true. In this way, and by admitting atomic formula that reltitnes of dif-
ferent states, one can write the time bounded responserpropi¢h TPTL
asx.(p — OY.(qAy < x+3)). The previous formula means that whenever
there is a requegt, and the variabla is frozen to the current time, the request
is followed by a responsgat timey, such thaty is at mostx+ 3.

5.4.2 Branching Time logics

In this section we show some of the formal specification laggs that are
used to extend the computational tree logic CTL with timestiints. Gen-
erally, the branching time logics adopt the same ideas ehelg linear time
logics.

Real Time Computation Tree Logic

Real-time Computation tree logi(RTCTL) is a propositional branching
timed logic, which has been proposed [b;LEm_QLS_QnJeLa.L_hWE]xtend
the temporal logic CTL with real time constraints. The esien allows to
the model operators to be bounded with time interval rangwer integer
domains. The use of integer domain simplify assumption ofleling real
time systems, whose events occur with the ticks of a glolmadkcIThe for-
mulas in RTCTL are generated from CTL formulas together itlule that
adds a natural number that abound on the modalities on theufar such as
V(pU=kq).

Timed Computation Tree Logic

Timed Computation Tree Log{@CTL) ||Alur etall, 19913] is another propo-
sitional branching timed logic that extends the qualigativgic CTL to the

74 5 Region Computation Tree Logic:Specification

quantitative logic Real-time. The syntax of TCTL is very ganto that of
RTCTL, but with less restrictive semantics. Precisely, TGS a bounded
operator extension of CTL with point based real time sersaniihus, TCTL

uses timed automata [Alur and Dill, 1994] as timed statesitam graph
model in order to define the semantics.

Duration Temporal Logic

There are specification languages that specify quantitaaioperties based
on the concept of duratioh_[Qhao_Qh_en_dtLaL_iQQ)ljration Temporal Logic
(DTL)[Bouajjani et al., 1993] is one among of these langsagermiting to
reason about the duration of state properties (formuldst iB, given a finite
interval on a run of a system, the duration of some state piyppethis inter-
val is the time during which the property is true. Namely,dlabal time spent
by the system in a run interval is simply the duration of therfala is true.
DTL is a branching time logic with duration variables thahdse associated
with state formulas, and then used to express constrainteadnduration.
Thus, the formulas of DTL are built from the formulas of CTlg&ther with
a duration formula of the fornx: @].¢@, which associates the duration vari-
able x with the formulag, and bindsx in ¢. DTL considers simple timed
graphs defined in [Nicollin et al., 1992] as a model for remigtisystems.

Integrator Computation Tree Logic

Integrator Computation Tree Log{¢CTL) [Alur et all,[1996b], similar to the
approach presented in this chapter, is a quantitative teahfmmic for speci-
fying properties based on hybrid automata. The notatioimmw#,thowever, is
not explicitly defined within the model of computation. leatl, the model of
computation is augmented with special clocks called isteeys whose func-
tion is to measure the accumulated time delay inside colucations. These
variables are used later to specify quantitative properii@us, ICTL extends
CTL by admitting these integrators on CTL formulas. The kigai of inte-
grators is inspired by duration temporal logic DTL [Bouaijjat al., 199B].
Each integrator has a type of sub-locatidnsom the setQ of locations of
hybrid automaton. The integrator evolves continuously amside|, and its
value increases with a rate at which time advances whenkegarantrol lo-
cation inl and its value stays unchanged elsewhere. Therefore, thmilas
of ICTL are constructed from CTL formula together with theetquantifier
formula(z: I).¢. The previous formula binds the formuato the integer,

5.4 Related Quantitative Languages 75

declares its type to ble and sets its value to 0. Generally, ICTL can success-
fully specify duration properties, which can be verifieceaftard by means of
Hytech |Henzinger etal., 19|97]. ICTL, however, has somatsahat should

be taken into consideration. Firstly, for the purpose offigtion, a model
should be extended to contain integrators, which in our aesaot necessary.
Secondly, ICTL can not specify properties that depend omtsvénstead it
has to follow an indirect way. For example, to specify tnagns is a response

to event within a time units, one has to augment the model under consider-
ation by an automatoA, whoseidle, wait, andviolate are considered as its
control locations andl as its integrator. Initially, the control location éfis

in the idle. When a triggerevent occurs, control pass teait location and
the integratott is reset. The responsent causes the control to return to
theidle location. The locatiorviolate is only enabled wheh> a. With the
parallel composition of the original model with the autoored, the specifi-
cation of bounded response property can be specified as theaahability

of the locationviolate

6

Experimental Results and Related Work

The aim of this chapter is to evaluate the approach presemtibe previous
Chapters. The Chapter is doing so by obtaining several elegntgken from
the context of hybrid automata. It begins with describingsthexamples and
their hybrid automata models. It conducts experiments &zkisuch models
against safety requirements. The evaluation of these drarmape compared
with Hytech. Furthermore, the Chapter discusses worksdftatelated to
the presented approach. The main results of this Chapter dlesady been

presented in [Mohammed and Furbzch, 2009al].

6.1 Benchmarks

In order to use the approach presented in the previous akaptenodel and
verify systems—particularly multi-agent systems—by nweahhybrid au-
tomata, we have to demonstrate its feasibility by runningeexnents on ex-
amples taken from the hybrid automata context. We will redestandard ex-
amples of verification of hybrid automata, which will be useavaluate our
presented approach. We use these examples to verify tlieiy gaoperties.
Firstly, the safety property ofchedulerexample [Halbwachs etal., 1994]
is to check whether a certain task (with number 2) never w&iezondly,
in the temperature controexample |[Alur et al.| 1994], the safety property
must guarantee that the temperature always lies in a givegerd hirdly, in
the train gate controllerlexample [Henzinger et al., 1995], the safety prop-
erty has to be ensured that the gate is closed whenever theigraithin

a distance less than 10 meter toward the gate. Inntater levelexample
[Halbwachs et al., 1994; Alur etal., 1994], the safety propés to make
sure that the water level is always between given thresh@ddand 12).
A non-linear version of both train gate controller—this Horear version

78 6 Experimental Results and Related Work

has been described throughout chapter 4—and the thernaost&tken from
ﬂH_euZlng_el”_e_t_dlL_ZQﬂ)O]. The safety property of the formee @ to prove the
similar safety property of the linear version. In the lateepthe safety prop-
erty is to prove that the temperature always lies betwe2d @nd 376. The
safety property oFisher's mutual exclusion protocﬂﬂenzinger et dILl_%S]
has to guarantee that two processes are never in the cs#icibn at the same
time. Last but not least, in the nucleReactorlexamplel[Alur et a]l., 199$b],
the safety property is to ensure that only one of the rodseofector can be
put in. Reactor2is an approximated version &eactorlwhich is found in
the verification examples of Hytech [Henzinger €tlal., 1997]

In the following, we present the details of these examplessiow their
prospective hybrid automata models. Additionally, we shiog/specification
of the safety requirements in terms of RTCL presented in theipus Chap-
ter.

Scheduler Example

In the scheduler example, Fig. b.1, there are two classesské t activated
by two different interruptd$; andl,. Interruptl, occurs at most once each 10
time units, whereas interrujpt occurs at most once each 20 time units. The
interruptly is responsible to activates the first class of tasks, whikbsta
time units. On the other hand, The interrupis responsible to activate the
second class of tasks, which takes 8 time units. Tasks okttensl class have
priority, and can preempt other tasks. The goal is to showdahask of the
second class never waits.

For the purpose of specifying the model, there are two timramelyc;,
for i = 1,2, to count the delay elapsed since the last interrupthere are
two timers, namely;, to count the execution time of tasks, and two counters
ki, to count the number of pending tasks in each class. Thesgazsuare
discrete variables, which means that their derivative [gesed to be 0 in
any location.

The initial conditioninit of the scheduler is given as:

init ; interrupt.start A taskidle A x; =0
AX=0Aki=0Ak=0ACc;=0AC=0

The safety requirement, which the second tasks never was specified by
RCTL as
init — =3O (ky > 1 Atasktaskl)

6.1 Benchmarks 79

The previous formula states that starting from the initiates of the model, it
is not possible to reach a state, where the first task is beowgpsed and the
pending of the second type of tasks is greater than 1.

(interrupt] N

X1 =8Aky <1Aky >1
k2 = k271X2::0

Y

lo k2 =1

Xo =8Aky >2
ko:=kp—1x:=0 ki i =ki+1

Fig. 6.1.Scheduler automata.

Temperature Control Example

In the temperature control example, a system controls tbiaabtemperature
in a reactor tank by means of moving two independent conbas.rThe main
goal of the system is to maintain the coolant between two &zatpres 250
and 1100, so that when the temperature reaches its maximue af1100,
the tank must be refrigerated with one of the rods. The teatpe¥x rises at

80 6 Experimental Results and Related Work

a rate of 34, and decreases at rates 25 or 10 depending on mHichbeing
used. A rod can be moved again only if 80 time units have ethgsgce
the end of its previous movement. If the temperature of th@act cannot
decrease because there is no available rod, a completeogmuttas to be
performed. Figur@ 612 shows the specified model of this el@nvariable

6 measures the temperature and the values of cleckspresents the time
elapsed since the last use of first rod, whepeagpresents the time elapsed
since the last use of the second rod.

v —g0 (CTO00 g 250
| i:0<1100[x:=0
& = (5-3 t

Xp = 80 X'l_:l X1 > 80
_ %=1) 6=1100 o

A

o
6-250| S|
% =0 T Al 6 =1100/nx; < 80AX2 < 80

0=

%:_92250

8="10
X1=1
Xo=1

Fig. 6.2. Temperature control automaton.

The initial conditioninit of the system is given as
init : tempnorod A X3 = 80 Ax, =80

The safety property, which is to check that the shutdownveneached , is
specified by RCTL as

init — =3 tempshutdown

Train Gate Example

The train gate controller example has been demonstratedusmseg exam-
ple throughout Chaptéd 4. There are two versions of this @l&nThe key
distinction between the two versions is the type of dynamidhe continu-
ous function. In particular, the version presented in [Hieger et al.| 1995]
is a rectangular version — see Fig.]6.3—, whereas the veps&sented in

6.1 Benchmarks 81

[Henzinger et al., 2000] is a non-linear version. In bothsi@ts, the safety
property is to guarantee that the gate must be closed whettevérain is
within a distance of less than 10 meter toward the gate.

Recall again, the initial conditiomit of the system is given as:

init : train.far A gateopenA controlleridel A x=1000A g=0A z=0
the safety requirement can be rewritten as:

init — -3 (x < 10Atrain.near/A gateclosed

(raar]l)
near/
x>0
X € [—50,—30]
-

to_open

lower

Controller)

app exit

Fig. 6.3.Train gate example.

Water Level Monitor Example

The water level in a tank is controlled through a monitor,ahhgontinuously
senses the water level and turns a pump on or off. The watel ¢ééanges
as a linear function over time, so that when the pump is off vtlater level,
denoted by the variablgfalls by 2 inches per second and when the pump is

82 6 Experimental Results and Related Work

on, the water level rises by 1 inch per second. As an initetestthe water
level is 1 inch and the pump is turned on. The goal of the watek s to

keep the water between 1 and 12 inches. From the time theonsighals to
change the status of the pump to the time that the changembsaifective,
there is a delay of 2 seconds. The monitor must signal to tugrptimp on
before the water level falls to 1 inch and it must signal tattive pump off

before the water level reaches 12 inches. The hybrid automatt Fig.[6.4

describes a water level monitor that signals whenever thendevel passes
5to 10 inches, respectively.

The initial conditioninit of the system is given as:

init : wateronl A y=1
In terms of RCTL, the safety property is specified as:

init - vO(1<y<12)

off2

Fig. 6.4.Water level automaton.

Thermostat Example

A thermostat, Fig._6]5, is a controller with delay: after thermometer de-
tects that the temperature is too low or too high, there mag delay of up

to one time unit before the appropriate control action i®tgak.e. turn the
heater on or off, respectively. The varialdeneasures the temperature. Ini-
tially, x = 2 and the heater is on. The temperature rises according fttifthe
ferential equatiorx = —x+ 4. The temperature eventually reaches 3; after a

6.1 Benchmarks 83

delay of one time unit, the thermostat sendsraoff signal to the heater. The
delay is measured using a varialld hen the temperature falls according the
equationx’ = —x until x = 1. One time unit after the temperature reaches 1,
the thermostat sendstarnon signal to the heater. The goal of the thermostat
is to prove that the temperature always lies betwe28 @nd 376.

The initial conditioninit of the thermostat is specified as

init : thermostaton A x =2
The safety property is specified as

init — V(0.28 < x < 3.76)

turnon

Fig. 6.5.The thermostat automaton.

Fisher’'s Mutual Exclusion Example

A mutual exclusion protocol is a system consisting of twocpssP; andP,
each performing atomic read and write operations on a afiection of a
shared memory variable k. Each process has a critical secioany time
instant one of the two processes is allowed to be in its afifection at most.
Fisher’s protocol ensures the mutual exclusion by modehegexecution of
each procesB,i = 1,2 as the following pseudo-code:

84 6 Experimental Results and Related Work

P : repeat
repeat
awaitk=0
k :=i delayb
until k =i
Critical Section
k:=0
forever

The two processeB; and P, share a variablé& and each procesh is
allowed to enter its critical section iK=i. Each process has a private clock.
The statemendelay bputs off a process for at leastime units as measures
by the process’s local clock. Each process takisie unit at most measured
by the process’s clock, in order to make a single write acte$ise shared
memory variablek, i.e. the assignmerikt:= i occurs . The values & andb
are the only information we have about the timing behavigorotesses.

Fig.[6.8 shows the hybrid automata that model the mutualisianh proto-
col of the two procesB,,i = 1,2. Given particular values ®andb, the safety
property is to ensure that the two process are never in thieatrsection at
the same time.

The specification of the initial condition of the systamit is given as:

init : Pp.init A Po.init Ak=0
The mutual exclusion requirement is specified by the RCTinfda:

init — =3O (Pr.cs A Po.cs)

Reactor Example

In the reactor example Fig. 6.7, the temperature is reptedday a non-linear
variablex. The temperature of the reactor is initially 510 degreestaotd the
control rods are outside the reactor. In this case, the teatype rises accord-
ing to the differential equatior = 3 + 50. In order to prevent the reactor to
shutdown, one of the two control rods can be put into the ceacire. Control
rod 1 decreases the reactor temperature according to fleedifial equation
X = 15 — 56, whereas control rod 2 has a stronger effect and decréases
temperature according to the differential equatica 7, — 60. When a con-
trol rod is removed from the reactor, it cannot be put back thie reactor
core for 15 seconds. This requirement is enforced by thekcladable x;

(i = 1,2), which measures the elapsed time since the control had been

6.2 Evaluation and Discussion 85

Xx=a
K:=0 k:=1Ax:=0
k#1Ax=Db)
cs delay
i true X<b
~ f.0.8<x<1
k=1Ax=b

y=a
k:=0 k:=2Ay:=0
k#1Ay=
CS delay
N iry<b
i: true < fl<y<11
k=2Ay=b

Fig. 6.6.Fischer mutual exclusion.

removed from the reactor core. The safety requirementtagbert one of the
rods must be put in the reactor, if the reactor temperataehes 550 degree.
The specification of the initial condition of the systémit is given as:

init : reactornorod A rodl.outl Arod2.o0ut2 AX=510Ax1=15Ax2=15
The safety property is specified as:

init — =3O (x =550 Arodl.outl Arod2.out2)

6.2 Evaluation and Discussion

This section compares the evaluation of the benchmarks nsnated in the
previous section using our proposed approach and HMI.,
1997]. We have chosen Hytech as a reference tool as it pottigemost gen-
eral input language by supporting the full scope of linedsrtd/automata. It
tackles also the verification procedure based on reactyabitalysis similar
to our adopted approach. In contrast to our approach, Hyteats the contin-
uous dynamics by using a polyhedral manipulation Iibrbrgl[Machs etal.,
1994].

86 6 Experimental Results and Related Work

(rodl J A
x1=15 (outl J x1>=15 i
@ — i true addl
fixl=1 |o Xx1=0

___ J removd

rod2)
x2=15 (Out2 J) yo>—15
@ — i true add2
fixe=1 | X250
\ J remove
|reactor)
x=510
Xx=550 (norod; \ x=550
i:x>510 addl i:x < 550 ad@ " i:x>510

x=510 | fix=F+50 |_ x=510

fix= 75 —56
remové \) remove

fix=7,—-60

Fig. 6.7.Scheduler automata.

Example HyTech|CLP
Scheduler 0.12 |0.07
Temperature Controller 0.04 |0.02
Train Gate Controller] 0.05 [0.02

Water Level 0.03 |0.01
Train Gate Controller2 - 0.02
Thermostat - 0.01
Fisher protocol 0.11 |0.34
Reactorl 0.01 (0.01
Reactor2 - 0.01

Fig. 6.8.Experimental results.

Fig.[6.8 illustrates the performance of our CLP and Hytechumming the
benchmarks. The performance is given in seconds. The symiolvithin
Hytech column indicates that its underlying example canb@expressed
in its direct form within Hytech; we will come to this point imore details.
The results revealed that our approach has a slight advantdl respect

6.2 Evaluation and Discussion 87

to the performance regarding the run-time of checking tlopgnties of the
benchmarks.

Despite the fact that Hytech has an advantage over othergllatiomata
model checking tools concerning checking parametric amglye. giving the
conditions on some parameters, which violate safety rements. There are
shortcoming issues in Hytech, which we take into the comatd® in our
presented approach. The first issue concerns the expmessivef the dy-
namical model. In Hytech, there are no direct means of auioally verify-
ing nonlinear hybrid automata. This is for that reason thaté¢h restricts
the dynamical model to linear hybrid automata in which theticmous dy-
namics are governed by differential equations a or differential inclusion
a < x < bfor some integera andb. This illustrates putting the symbol"
in the column of hytech to some example. To overcome thistpthie non-
linear dynamics, e.g. of the fors c1-x-+ c2, for some integersl, c2 and
cl#0,xe {<,<,>,>,=}, are firstly approximated either by a linear phase
portrait or clock translation method [Henzinger etlal., a@p In the former
method, the approximation method is obtained manually litjpaing the
state space of each control location into a set of contrations. Within
each partitioned location, the continuous flow is approx@dausing linear
flow, such that the nonlinear variabten a locationL is approximated by a
differential inclusiona < x < b, where the integer constaatandb specify
the minimal and maximal rate of change of the variabla the locationL
and are obtained from the differential equation, the lacainvariant and lo-
cation initial state. In the locatiomorodin Fig.[6.7 for example, if we take the
invariant and initial value into consideration, we find tkiat derivative ofx’
is bounded below by 1 and above by 5. Thus, the continuousnaigsaf the
location norod is approximated to 10X x < 105./Henzinger et all |199|8b]
showed that this method may cause a substantial blow-upitide¢ion pro-
cedure the state space. On the other hand, the idea behicid¢kdranslation
method is to replace a nonlinear variaklby a clockty, if the value ofx can
be determined uniquely from the valuetght all the time. This happenstif
measures the time that has elapsed since the valieva$ last changed by a
discrete transition, if the value afafter that change is recorded, and thas
followed a unique flow since that change.

In both methods of approximation, the verification phaseaisied out
on the approximated model, so that every run of the apprdeidnaonlinear
system is a run of the approximating linear hybrid autom@tathe other end
of the spectrum, our implement&lP approach is more expressive, as it al-
lows the direct use of more general dynamics. In partic@apR can directly

88 6 Experimental Results and Related Work

handle dynamics expressible as a combination of polynsméxiponentials,
and logarithmic functions explicitly without approximiagj the model.

An additional shortcoming issue of Hytech deals with thestgpproper-
ties which can be checked withing a hybrid automata modeTddly cannot
verify simple qualitative properties that depend on theuommnce of events,
despite of the fact that events are used to construct the @sitigm of differ-
ent parts of hybrid automata. On the other hand, simple idurgiroperties
between events can be verified using HyTech. To do so, the Imuas be
specified by introducing auxiliary variables to measuragebetween events
or the delay needed for a particular conditions to be hold.

Other simple quantitative properties like time boundegoese and min-
imal separation time between events are further propeittigiscan be ver-
ified using HyTech. These properties, however, can only lezlad after
augmenting the model under consideration with what is dalsonitor or
observerautomaton (cf.LLtI_enZlng_er_e_daL_ﬂ&S]) whose functidgais to
observe the model without changing its behavior. It rectihdsime as soon
as an event occurs. Before the model is verified, the monitmwmaaton has
to be composed with the original model, which may add furt@mnplexity
to the model. For example, in order to check that the eegaty is allways
followed by the eventvent within a time unit in hybrid automat#l, the
monitor automata of Fid. 6.9 should be composed first WitlChecking the
time bounded response property is translated into chedkimgeachability
of the control locatiorviol. As it has been demonstrated in our approach,
however, there is no need to augment the model with an extraraton.
This is for the reason that during the run, not only the stafesriables are
recorded, but also the events and the durations of time. &coiesitly, con-
straints solvers can be used to reason about the respeatperty

(Y
(eI eveny (Wai vl
° i true t—o | iit<a i true
f:i=0 _ t<a |fii=1 t>a fizo
7 evenp =
event
~ J

Fig. 6.9.A monitor automaton for the time bounded response property.

6.3 Related Works 89

6.3 Related Works

In this section, we will review related work that model, speand check
systems by means of hybrid automata and their restricte$eta Basically,
we classify this works into two categories. In the first categs, we discuss
the algorithmic approaches in which several tools existtli@ purpose of
modeling, specifying and analysing of systems. In the sg@aiegory we
relate our work to those works which adopt CLP as a frameworkybrid
automata. In the following we will discuss these two categgor

6.3.1 Algorithmic Approaches

There are several formalisms and tools for hybrid automath their re-
stricted cases, e.g. timed automata. In this section, vedlyprtroduce those
lines of works that are more or less closely related to ousgmed approach.

As already shownHytechis a tool for modeling and automatic verifica-
tion of linear hybrid automata. A system is modeled as caectirhybrid
automata that must be parallel composed prior to the veigit@hase. Sim-
ilar to Hytech PHAVer Frehse 5] is a tool supporting to analyze linear
hybrid automata. BasicalllpHAVeris emerged to overcome the arithmetic
overflow errors oHytechresulting from the limited digits of the exact arith-
metic operations. To cope with thiBHAVerenhances fix-point computation
algorithm for reachability with operators for partitiogiiocations and sim-
plification of sets of states. The partitioning process efrachable locations
is done during the analysis. This process is performed hitisgllocations
recursively until a minimum patrtition size is reached. Thepose of par-
titioning locations is to improve the accuracy on the dyr@anDespite its
enhancemenBHAVeris a quite similar tdHytechfrom various prospectives.
First, PHAVerdoes not specify properties using a kind of formal specificat
languages. Instead, it handles an algorithmic languadeé uquifrom com-
mands that manipulate set of states. AdditiondfiiAvVer computes all the
states that are connected to the initial states by a runh@&umbre, the com-
position of hybrid automata has to be done prior to the vetibn phase.
However, the process of splitting locationsRiAVeris restricted to specify
larger systems as it adds extra complexity to the state space

o 7] present an approach for verificatif hy-

brid systems. This approach applies what is called boundedehtheck-
ing (BMC) ﬂB_i_QLe_el_a|.l_19_99] to linear hybrid automata eded into pred-
icative formulas suitable for BMC. For this reason, a tood lh&en devel-
oped calledHySATthat combines a SAT solver with linear programming. In

90 6 Experimental Results and Related Work

HySATboolean variables are used for encoding the discrete coempgrand
real variables represent the continuous component. Tharliprogramming
routine is used to solve a large conjunctive system of lieegualities over
reals, whereas the SAT solver is used to handle disjunctiéowever, mod-
eling systems as concurrent hybrid automata is not takenciomsideration
in this approach.

In addition to the tools of hybrid automata, several resdcdynamics
model checking tools have been developed in the last twodéscad-or in-
stance Uppaal [Bengtsson et al., 1996; Behrmann et lal., 2004; Larsen,et al.

] is one of those tools which is widely used to model anifwémed
systemsUppaal implements forward search algorithms, in which the state
space is explored in a breadth first manner. It models syséesnasnetwork
of timed automata and supports communication via sharedblas. The
network of timed automata is composed using on-the-fly tiegclenand the
model checking procedure is performed using a symbolicessgtation of
the infinite state space by sets of linear constraints. Thepotation of clock
constraints is managed with a data structure knowbitisrence Bound Ma-
trices (DBMs) [Bengtsson and Vi, 20b4]. For the specification of pineper-
ties, Uppaal uses a fragment of TCTL [Alur et al., 1993] with restrictiam t
the properties that can be checked with reachability aisalys

Kronosm,] is another well known verification tool fonted
automata. It implements a symbolic model checking algarifbr the timed
temporal logic TCTL developed ilm 994 |intorporates
also both forward and backward algorithms for the reachglaihalysis Kro-
nosallows us to express and verify not only reachability préipsrbut live-
ness properties as well. It can express full TCTL model cimgcknd the
invocation of the model checker will select whether forwardbackward
analysis will be performed. Lik&Jppaal a system is modeled as a set of
concurrently operating time automat&onoscan perform model checking
using a symbolic representation of the infinite state spgcsels of linear
constraints. To improve the exploration of the state sp&rmosalso imple-
ments on the fly technique. Additionally, the symbolic conapions are also
managed with the DBM data structure.

The time Cospan[Alur and Kurshan| 1996] is a very restricted form of
timed automata. It supports verification based on autoraaiguiage of coor-
dinating processes with timing constraints. A system to duéfied is mod-
eled as a collection of coordinating processes describedfiage automata
with timing constraints. These timing constraints are egped by associat-
ing lower and upper bounds on the time spent by a process ie $ocal

6.3 Related Works 91

state.Cospanis considered a single language framework in the sense that
both the model and specification of a system are expressed astomata.
Thus the verification procedure asks for checking whetherdahguage of

the product of the model and the property is empty. Checlkiegemptiness

is performed by searching through the reachable state ohtidel. Cospan
includes two types of search: an on the fly enumerative seanthsymbolic
binary decision dlagramm-%]

Similar to timeCospan there are further tools which lay between timed

automata and automata augmented with timing constraifised HSIS

] are example of such tools.

6.3.2 Constraints Based Approaches

Constraints based approaches have been used generalhacieagbrim-
plementations platform for automatic verlflcatldﬂ_LDelna[and_&Ldﬁlﬁkl
12001 ;| Nilsson and Liibcke, 2000; Ramakrishnan et al., |2000jddition,
these approaches have been applied to modeling and aralisid systems.
Similar to the algorithmic approaches, constraints bag@doaches ranging
from simple to more general dynamics. In the following weveyrthese ap-
proaches.

Urbina -] presents a pioneer approach CLP|(R) |,1affat|é19912] to
model and analyze linear hybrid automata. In his approaelramslates hy-
brid automata into equivalent CLP(R) programs, where disctransitions,
invariants, flows and initial conditions are encoded as @)Rpnstraints. In
addition, he adopts the quantitative logic ICTL [Alur el, 4996b] to specify
requirements of hybrid automata. A reachability analysihe fundamental
verification technique in his approach. In contrast to oeispnted approach,
his approach does not provide an automatic mean to constreiomposi-
tion of hybrid automata. Instead, the composition has todpéatly encoded
manually by a user before applying his CLP implementatidnsis a tedious
task, especially in the case of MASs where a group of agelgssex

Banda and GallagHer [2008] show how reachability analysitirfear hy-
brid automata can be done by means of CLP too. They presehemscthat
translates linear hybrid automata into CLP clauses. Theposition of au-
tomata is constructed using the product construction eisea with synchro-
nization on shared events which are handled as constramtd he analysis
of the CLP program is checked against constraints existdnaantrast to
our approach, the way in which they construct the compasitibthe CLP
program leads to an exponential increase in the number agetain general.

92 6 Experimental Results and Related Work

Additionally, they do not provide any validation technigueto the specifica-
tion of intended requirements. The analysis of requiresenalso restricted
to finding a constraints that obey or violate a certain stéterefore, real
time requirements are not expressed in their approach.

Ciarlini and Fruhwirth/[2000] present another CLP apphofar the veri-
fication of hybrid automata. In their approach, a model ofrfd/automata is
described as CLP where they derive test data for conditibirgerest from
the output of the symbolic execution of CLP. These cond#iare specified
declaratively in the form of first order temporal logic. Thagvelop an algo-
rithm that takes the resulting constraints from the valid ofi CLP to obtain
test data for the automata by projecting outputs conssranto the condi-
tions of interest. As a result from the projection processndins of values
of the constraints of interest are obtained which are censdl as the test
data for the automata. In turn, these test data can be usbd waalidation of
the hybrid automata model. In this approach, however, tteen® means to
prove qualitative or quantitative requirements systecadlyi. In addition, the
approach has not taken the compositions of the concurréninaita in con-
sideration. Instead, the symbolic execution of the appraakes the possible
interleaving run of hybrid automata.

In contrast to our approach, various works approach to matehavior
of a hybrid system as an automaton using CLP, but they do nti&aon-
current hybrid systems. For exampble, Hickey and Wltten\lmgj] present
an approach to model hybrid systems using CLR(F) [Hickey\&fittenberg,
]. They show that nonlinear dynamics can be model wifR(E). How-
ever, modeling concurrent systems are not expressed inapgioach. Fur-
thermore, they provide no means to handle model checkirgjedd, they
show techniques for satisfaction of constraints within egegions of inter-
est.

Another approach on model checking of hybrid systems iseptesl in
[Gulwani and Tiwari| 2008]. There, an analysis techniqueraposed which
is able to derive verification conditions, i.e. finding theswaints that hold in
reachable states. These conditions are universally digahdind transformed
into purely existentially quantified conditions, which i®ra suitable for con-
straint solver. An implementation in Lisp is available eoyphg a satisfiabil-
ity modulo theories (SMT) solver.

In addition to those CLP approaches that model and analyZg/loid
automata, there are works proposing CLP to restricted etasshybrid au-

tomata. For example, the works of [Gupta and Pontelli, 19Riffar et al.,

@1] describe schemes for modeling timed (safety) au@rastCLP pro-

6.3 Related Works 93

grams. These works do not construct the overall behavior primodeling.

Instead, they model model ea

ch automaton separately, duthof the over-

all model takes all possible paths which result from the pob@f each com-
ponent into consideration. Likewise, this leads to unneagscomputation.

Another restricted CLP ap

proach of hybrid automata has degeloped

by|Delzanno and Podelski [1999]. In their approach, theyehmay modeled

discrete transition systems. Furthermore, they have sthdwes to encode

CTL temporal operators into

CLP, in order to check temporapprties of

systems. Thus, their approach can be considered as a speszabf our pre-

sented approach.

Part Il

Extensions to the Framework

v

Deliberative Multi-agent Planning

Hybrid automata can be used to formally model and coordiplaies of reac-
tive multi-agent systems. In most cases, reactivity in dyigagnvironments is
not satisfactory. It is favorable for agents to plan theldegors according to
some preference function. Most current verification todleydrid automata
are inadequate to model such agents’ plans. this chaptsrtgeard extend-
ing the decisions making of hybrid automata by incorporatire preference
on transitions. A scenario taken from supply chain managerisedemon-
strated to show the Chapter’'s approach. Analysis of agptds’s are exam-
ined using CLP. The main contribution of this chapter hasgmélished in

[Mohammed and Furbalch, 2009a].

7.1 Introduction

Planning to reach some goal is an essential requirementdti-agent sys-
tems. A classical planning task is generally defined by dralrstatel, a final
stateG and a set of action8. The solution of the planning is to find the ac-
tion sequence leading fromto G. In the last few decades, several planning
approaches have been developed. Automated plalm]is
one of those approaches that has received attention. Iaghi®ach, formal
methods are attractive to guarantee the reliability of tiet®n. In particu-
lar, several works have adopted model checking to solve [Hrnmg prob-
lem. This is known aplanning as model checkid@iunchiglia and Traverso,
M]. The key idea behind this approach is that the planthamgains are for-
malized as semantic models and the planning goals are sebififormulas
of temporal logics. Planning is performed by verifying wieattemporal for-
mulas true in a semantic model.

98 7 Deliberative Multi-agent Planning

Multi-agent planning|[de Weerdt etlal., 2005] has been daize a mo-
tivation to solve complex planning problems. In this sejtithe planning
problem is divided into sub-problems, which are distribdute agents. One
key feature of multi-agent planning is the nature of the mmment in which
the agents are involved. In realistic problems, the enwiremnt tends to be
dynamic and the behaviors of the agents change continutheslgin. When
unexpected events, threatening the plan, arise in theosmagnt, then agents
should react to those events in a proper way. Planning in swetse is called
continual planning [DesJardins et al., 2b(h0|. DesJardimé déave described
the situations in which agents should engage in continwairphg. One of
these situations occurs, if agents’ objectives can evoree time. In this case
the purpose of the planning is to set a target that can bewachiender several
constraints at a given time.

Reacting to the unexpected events, in real-time, can avojdiak that
might occur during the planning. Agents should not only tdacchange
those events that threaten the execution of the plan, botcalsrdinate op-
portunities to improve the future development of the planisTtan be done
by selecting the most favorable course of actions basedility fiinctions,
e.g. cost, quality. Hence, it seems to be favorable to pecaitbrmal way that
is capable to model and analysis the multi-agent plannirdyimamical envi-
ronments which combines in the same framework both aspéptarming.

Hybrid automata can be used to model plans of multi-ageresysthat
are defined through their capability to continuously reacdynamic en-
vironments while respecting some time constraints. Asqutesl in Chap-
ter[3, there are works adopting hybrid automata to formalbdeh reactive
mutli-agent systems. Examples of that works include thekvpoesented in
[El Fallah-Seghrouchni et b, 2003] and [Egerstedt, P0Ubgre are authors,
such aSLLHuIZJﬁr_e_t_bL._ZdOS], who have approached timezhzata to model
reactive agents. In reactive agents, decision making dispentirely on the
occurrence of events so that the agents base their nexs statéheir cur-
rent sensory events. In contrast to reactive agents, dafibe/rational agents
try to find the plan which utilizes a certain objective fucti Making delib-
erative decisions are inadequately expressive to hybtiohzata. In various
situations, one needs such type of decision making. In atiogicenario, for
example, changing the current route plan of a working trogbetrform a new
plan might utilize the profit of the company rather than aliieg a new truck
to perform such a new plan. In soccer-agents scenario, mgrome agent to-
ward the ball—particularly the closest agent to the ball-d-spreading other
teammates on the field will increase the utility of the tearméawors, instead

7.2 Planning 99

of running several agents toward the ball at once. To our kesye, the cur-
rent formal model of hybrid automata and their tools do nolvjgte means
for modeling these types of situations. Therefore, it setorise useful to
extend hybrid automata in a way that allows them to combirte beactive
and deliberative decision making. This combination caricagatastrophic
failures and provide better quality of decisions in timestosined dynamical
environments. Consequently, the formal verification ofriylautomata, by
means of reachability analysis can be used as plannindepnoolver where
a plan can be achieved, iff the final plan is reachable. Henedrajectory
from the initial state to the reachable goal will accommedéate solution of
this plan.

This chapter contributes to use hybrid automata as a cameptodel
for planning and it goes toward enhancing the decision ngakinthe hy-
brid automata in order to improve the future outcomes of rwdehis can
be accomplished by letting discrete transitions occur @nhihsis not only
of reactive decisions of the continuous evolution of thaakdes, but also
of particular preference functions. The expressiveneseeoCLP prototype
presented in ChaptEl 4 facilitates to implement this extengo demonstrate
the idea of this chapter, we present an example taken fropiysapain man-
agement in continuous dynamic environment. As far as we ktiuwis the
first attempt to use hybrid automata for planning multi-dagatstems whose
decisions rely on a performance measurement.

The rest of this chapter is organized as follows: In[Sek. &Zist review
the planning, show its relation to model checking framewarkd show the
planning using deliberation. Sec.J7.3 Introduces the sagnahich illustrates
the approach of this chapter. Then formal definitions of eéel hybrid au-
tomata are discussed in Secl7.4. Finally, [Sec.7.5 showsdaepecify and
analyze the planning requirements.

7.2 Planning

Planning in artificial intelligence idecision makingbout actions to be taken.
Generally, the classical planning problem can be formdlatefollows: given

e adescription of the known part of the initial state of the Mtatenoted by
| 1
a description of the goal, denoted 8y and
a description of the possible actions that can be performed,

then, the solution of the planning determines the sequeheetions in
order to reaclG from | under achievement a certain objective.

100 7 Deliberative Multi-agent Planning

In the last decade, the term multi-agent plann[ng_[deJAL@Ldl,LZD_Qb]
has been introduced as an approach to the planning problémcainplex
goals that divides the problem into sub-problems and alleach agent to
deal with each sub-problem. The solutions to the sub-prnoblbave to be
combined and coordinated afterwards to achieve a cohandrieasible solu-
tion to the original problem. According ko de Weerdt €t alultmagent plan-
ning is defined as: given a description of the initial stateeteof global goals,
a set of at least two agents and for each agent a set of itsitibpaland its
private goals, find a plan for each agent that achieves watgrigoals, such
that these plans are jointly coordinated and the globalsgma met as well.

7.2.1 Planning as Model Checking

In the last few years, several research has approachedimdawith formal
methods based on model checkihg [Giunchiglia and Tra}vggiﬂb]. The key
idea behind this approach refers to the strong relationdxatvthe framework
of model checking and planning. The framework of model chregkonsists
of a formal modeM of a system, an initial statg of the system, and a formal
specification of a property to be verified in this system. The model check-
ing aims at verifying ify is satisfied irM, i.e.M, 55 = (. Basically, the model
checker is an algorithm that takédl, sp,) as input and systematically vis-
its the states of the mod#, in order to verify if the propertyy holds. The
model checkers returns succesdMifsatisfies the property; otherwise, it
returns a counter-example, that is a state in the mbtiethere the prop-
erty @ is violated. In this framework, the planning problem can derfally
described in a way that the modél describes the planning environment’s
dynamics sy describes the initial state of the environment and the ptppke
describes the goal to be achieved. Sd i E), the planner returnsglan,
i.e. the behavior which allows the systems to achieve it$ gdlaerwise, the
planner returns failure. Fi§. 7.1 shows the relation betweedel checking
and planning.

Using the framework of model checking, the solution of treegk the tra-
jectory holding the sequences of reached states (actimm)d starting state
to a goal state. Another way to find the plan is to use the cowx@mple—
generated from a model checker—as a solution of the plarpribigiem. The
negation of the goal is stated as safety property and intexito the model
checker. If the problem is found to be reached, one of the dalvpoints
of model checkers is to generate a counter-example, whictbeaused to
provide a solution to the problem. This idea has been addptesveral re-

7.2 Planning 101

search, such as [Giunchiglia and Traverso, 2000; Pistatelmverso, 2001;
PPereira and Barros, 2008].

The classical way to solve the planning problem has beerséatan find-
ing any solution plan without careful consideration of dgyadf the plan. For
many practical problems, the problem is not only to find a plaut also
to achieve a certain objective at the end of the plan. Thectige of the
planning, according t&@%], can be specifiegbireral different
ways as follows:

e The simplest specification consists of a goal stateand the objective
is achieved by any sequence of state transitions that reatieegoal
states. In a logistic scenario, for example, the objectivddve a ship-
ment reached to its final destination.

e The objective is to satisfy some condition over the sequehstates fol-
lowed by the system. For example, one might want to requitesto be
avoided during the planning, e.g. reaching after deadline .

e The specification of objective based on a utility functiorthypenalties
and rewards. The goal is to optimize some function of thedidat, e.g.
sum, maximum, minimum, over the sequence of the statesfetauring
the planning.

Thus, the assessment of the planning objective is cruc@gtermine the
quality of the plan.

modelM ——
- success or counter example
initial statesy —
propertyy —_—
modelM ——»)
plan or failur
initial statesy —
propertyy —_—

Fig. 7.1.Planning versus Model checking.

7.2.2 Deliberative Actions

During planning, if things do not work as expected, agentstrbe able to
react and reconsider the plan. For instance, if an agentintmsinexpect-
edly high traffic on its chosen route through the city, themiist be able to
consider changing the plan. When there are alternativeracto react to the

102 7 Deliberative Multi-agent Planning

unexpected changes during the plan, the agent should ddhie select the
best alternative way. The deliberation process generatiydes in the ways
to achieve a goal and the decisions of which goal to be achigskberation
is particularly useful in hazardous environments wherectiteect action se-
lection is cruciall Decker and Lesser [1998] have statetighagent should
deliberate, if one of the following conditions is met:

e The agent has a choice of actions and the choice affectsrpenfce.
e The order in which activities are carried out affects perfance.
e The time at which actions are executed affects performance.

If the agent deliberates rationally, it will try to find thedtevays it can per-
form the actions. In other words, when the agent performstaioeactionA,
it will try to do so in a way that maximizes the expected uitif A. So to de-
cide whether to perform, the agent should assume that it will be performed
in the best way, i.e. the value of expected utility Avkhould be the maxi-
mum value for all the ways in which the agent can think of forf@ening
A. The expected value of an action is defined, according to ¢b&sidn the-
ory [c.f[B_61mﬂd_dz|._20_(|)9] to be the expected value of therenment when
the action is performed. In the decision theory, standardetsoof decision-
making involve calculations of the expected utility of easfailable action.
Starting with each possible outcome, multiplying the wtibf that outcome
by the probability of the condition of the environment in whiit will come
about. Summing of the values that obtained for each of theilplesoutcomes
of a certain action, gives the expected utility of that actiStandard models
of decision-making identify the rational resolutions ot#&n problems as
those that maximize expected utility.

7.3 Planning Scenario

As logistics competency becomes a more critical factoréating and main-
taining competitive advantage, logistics measurementrbes increasingly
important because the difference between profitable andofitgble op-
erations becomes more narrow. In recent years, severarobssuch as
Fox etal.] has viewed the supply chain as composed et afsin-
telligent (software) agents, each responsible for one aeractivities in the
supply chain and each interacting with other agents in jtegnand executing
their responsibilities.

In many logistic domains, some of the transport orders ahg kmown
in the short time, traffic is often unpredictable and unexp@@vents might

7.3 Planning Scenario 103

System
Monitor J rescued tosafe
. _ v 1 finish
fimish 3 i ! finish <table) decay / unsafe]
b0 accept b0 error | D=12p | Vviolate | b_o
= = D=1 D<6 D>
D:=0
finish
Tuek J -~~~
propose transporf estimat¢/ G e
: - error : ime <
X—0 acce| X —50 -0 ime XxT
cfp X < dx Exr = f(dx,X) I

help

X= dxifinish

2
init Ciime = Exr itosafe
arrived continue] w_help
._j> . . finish o rescue X=0
X:=0 finish X=0 X =50

X< dy

W_propose " tatarget J help wrescue
- acce| - -
P cfp 7=0 }—p> 7=0 z7=1
- rescue
Z:=0 752 z<2

error

tosafe finish
finish

“Disturbanc — i
init no_disturb disturb -
accept o) error (disturb J finish
?;?o> V<l Y=l

Fig. 7.2.Specification of a logistic scenario as hybrid automata.

occur. Thus, plans need to be revised all the time. Often rifigignt cost
reduction can arise when transportation companies ccardlitneir actions
well. For example, a company (agent) may assign a subtasénie sigent
either because it can do it more efficiently—as it might beady in the
neighborhood—or because the the other agent cannot petiiertask at all.
Consider this scenario, a customer has a shipment of fragght which is
subjected to be decayed. This shipment has to be transptrtadccertain
destination point. Therefore, she/he contacts a trarejimmtservice provider
for this mission. Then, the transportation service praviggsigns a trans-
portation truck to convey the shipment. Assuming that thretamer signs a
contract with the service provider so that the freight itdrase to delivered
with a certain threshold of items’ quality, e.g. at most 20% putrefaction
of the freight items. Otherwise, the provider has to compenthe customer
with a convenient deal. Therefore, for quality assuranakmovider’s prof-
itable service constraints, the quality of freight items k@abe monitored in
the truck during the transportation. In case of an excepgan cooling tem-

104 7 Deliberative Multi-agent Planning

perature breaks down, the truck has to find a suitable plara&bwlith this
exception taking into account to utilize its transportatpyovider business.

In Fig.[Z.2, the specification of the previous multi-agergrsrio is de-
picted as hybrid automata. The multi-agent scenario doitessi four agents,
Monitor, Truck, ProviderandDisturbance The ageniMonitor, plugged into
the truck, observes the occurrence of exceptional erromedisas the pu-
trefaction of the items. The items are putrefied accordintpéoexponential
decay function, given ad = 1.2% D. When an exceptional error occurs dur-
ing the transportation, stimulated by tBésturbanceagent after some time
tg, the Monitor agent alarms theuck with the occurrence of this error. The
Truckin turn has to make an appropriate decision before the dddéyms
reach a certain thresholtl The decision is estimated using the variable ,
according to the remaining distance to the destinationtpbliere,Ex; is de-
termined based on the dynamic of distance of the truck toatget. If the
expected delivery time is beyond a given critical ti@gne, then theTruck
requests help from the transportation service providen sdnds a rescue
truck within two hours. However, if the truck estimation islw the critical
time CGime, then it should continuously transport the shipment adogrdb
the current conditions. At the end of transportation, bbih ¢ustomer and
the provider check the result of the previous plan.

The objective of the previous scenario is to check that tlemeg particu-
larly the truck, will choose the right plan during the coucdexecution in a
way that utilizes the profit of its provider company.

7.4 Planning Model

This section shows the basics components of the concegaralipg model

that we use to formulate the planning problem. The modeadsadin extending
the syntax and semantics of hybrid automata. The definitidheomodel is

the same as the definition of hybrid automata defined in Ch&htexcept

it contains new decision variables that are used to evali&tealecisions-
making. The definition also contains a utility function tlzesigns cost on
transitions. In the following, we show the basic componetthe model.

Definition 7.1 (Extended Hybrid Automata). An extended hybrid automa-
ton is a tuple
H = (Q,V,Inv,Flow,E,JumpResetY, Event Event, do, Vo) where:

e Qs afinite set of control locations.

7.4 Planning Model 105

e V=XUA isasetofvariables, whet& is a finite set of n real-valued vari-
ables that model the continuous dynamics, whefeasa set of auxiliary
variables that are used as a performance measure to maksidesiFor
example, th&@ruckautomaton haX € X andEx; € A.
Inv:Q— @(X).
Flow: Q — D(XUX).
ECQOxQ.
Jump: E — @(X).
Reset V — R is the updating function, which resets the variables before
the control of a hybrid automaton goes from locationtq location .
The updating of the variable V is denoted as x= Resetx).
Graphically, one can distinguish between two types of updatepending
on types of variables € V. Casex € X, i.e. updating continuous variables
then the update is annotated graphically on the transigengg;, gp). For
example,D := 1.2 is the updating of the continuous variallebetween
location stableand decayin the automatorMonitor. Updating the vari-
ables on transitions are omitted, if the value of the vaesldt end of
locationq; are the same at the beginning of locatimpn Casev € A (i.e.
updating auxiliary variables), then the update is anndtatside location
g:- The reason is that these variables will be used afterwardwl&cators
for decision-making on transitions. For example, in thetan estimate
of the TruckautomatonE X := f(dy, X) is updating the auxiliary variable
E Xr to the estimated remaining time to deliver the shipment ¢adinget
based on the current remaining distance to the target, wifegex) € R.
Semantically, both types of updates are the same. This ausedoth of
them will eventually be executed before the control goetationqs
immediately.
e Y :E — Ris the cost function which captures the preference of antagen
over e.

For example, in the locatioastimate the Truck has preferences to go to
either locationw_help or continue with utilities p; and p, respectively.
The utility cost is omitted if there is no preference on thgeel

Event, is a finite set of events.

Event: E — Eveny.

Jo € Q the initial location of the automaton.

Vo the initial values of the variableX.

As said previously, decision theory is a tool for assessimy@mparing
the expected utility of different courses of action in terofishe probabilities

106 7 Deliberative Multi-agent Planning

and utilities assigned to the different possible outcormbsrefore, we define
the preference of an agent based on utilities. We assumsiniglicity, the
probabilities of the possible results are equal.

Definition 7.2 (Preference).Let g& Q be a control location, and S {g =
(0,91)|1 <i < n} be the set of possible alternative transitions connecteah fr
g, with respective utilitied”(e) = ;. We say g is the best preference transi-
tion to q iff un = Max{ |1 <i < n}.

The semantics of the planning model is defined in the same walyea
semantics of hybrid automata presented in Chdgter 4, bhtansight mod-
ification on the operational semantics, that is on the dedmibf the discrete
changes of the behavior which is described as the following.

Definition 7.3 (Discrete Changes)A discrete transition rule between two
admissible statesr; = (qp,v1,t1) and 02 = (g2, Vo,t2) is enabled iff e=
(01,02) € E, 1 =tx and v |=Jumpe), and v |= Inv(c), where y is the val-
uation of variablesX as a result from the reset function RegS€t such that.
Additionally, @ is the best preference of in this case an eventa Eventy
occurs.

7.5 Planning as Reachability Analysis

Having defined the basic extensions of hybrid automata tbvaéathe plan-
ning in a proper way, we can use our CLP presentdd in 4 to igetstthe
planning analysis. In particular, we use reachability gsialto analyze the
behaviors of the multi-agent team.

Let Reachedrepresent the set of reached regions. In terms of CLP,
the reachability analysis can be generally specified by kshgcwhether
Reached = W holds, wheré? is the constraint predicate that describes a
property of interest. As shown in Chapiér 5, the reachghlitalysis is spec-
ified in RCTL as:

init — 3IOW

init is the predicate characterizing the set of initial stateghk context of
planning, the reachability question is equivalent to a @aistence, where
Y represents the goal of the plan to be reached. ConcerningltRemodel,

the following encodes the planning query: For example, @reaheck that
there is no existing bad plan, where the shipment arrivets testination un-
safely, i.e. the ratio of decayed items is below 20%. Thislminvestigated
by showing that the locationnsafein the Monitor agent will not be reached.

7.5 Planning as Reachability Analysis 107

?- reachabl e(init, Reached),
%/46ind the plan to reach Goal in Reached
append(Pl an, [Goal | _], Reached).

Using the CLP implemenation model and the standard Proledigateap-
pend 3, executing the following query reveals the answeras expected.

?- reachable((initl1,[0]),(init2,[0]),(init3,[0]),(init4,[0]),
Reached),

append(Pl an, [Goal | _], Reached),

CGoal =(Moni tor, _truck, cargo, _disturbance, D, X, Z, Y, Ti ne, Event),

Moni tor = unsafe .

We are not only interested to find a plan, but also to find the fiat uti-
lizes certain tasks in case of an exceptional error. In thplgichain example,
one can check that the truck will choose the best plan thktagiits com-
pany business and at the same time fulfill the customer desndihis can be
accomplished by investigating the reachability of the stept to its destina-
tion point with a certain percentage of putrefactibnFor this purpose, the
following query should be invoked:

?- reachable((initl1,[0]),(init2,[0]),(init3,[0]),(init4,[0]),
Reached),

append(Pl an, [Goal | _], Reached),

CGoal =(_noni tor, Truck, _cargo, _di sturbance, D, X, Z, Y, Ti ne, Event),

Truck=arri ved.

The success of this query means tapgpend” 3 returns the intendelan to
reachGoalin the set of possible reached staRmsachedHowever, there are
several constraints which influence the outcome of thisygsech as the time
of the unexpected error generated byRhsturbanceagent and the remaining
distance to the destination during the transportation.eample, setting the
disturbance timé¢y = 8 in the supply chain model, the previous query gives
the D ~ 1.626% upon the truck’s arrival to the destination, wheredisnge

tqy = 24, the query giveb ~ 5.542%. In both cases, the customer’s demand is
not violated according to the deal with the provider. Thetast between the
two values oD results from the truck’s decision based on the constrajs a
peared in the environment. In the first caseyothe truck requested a rescue

108 7 Deliberative Multi-agent Planning

from the provider.In the second case, the truck keeps toatisg the ship-
ment without requesting help. The previous analysis carmbeked using the
following query:

?- reachable((initl,[0]),(init2,[0]),(init3,[0]),(init4,[0]),
Reached),

append(Pl an, [Goal | _], Reached),

CGoal =(_noni tor, Truck, _cargo, _di sturbance, D, X, Z, Y, Ti e, Event),

Truck=arrived,

nmenber (St at e, Pl an),

Stat e=(_noni tor, _truck, _cargo, _di sturbance, , _, , _,_, Event),

Event = rescue.

This query checks whether there is a state at which the egsatiecan
be reached in plan. In other words, the query medoes the truck need a
rescue?In the first case ofy, the query returns with the answ¥es but
with Noin the second case. The interesting thing in hybrid autorisattaat
we can check the timed constraints that occurs during the plais type of
constraints can be used as an aspect in the decision maKiege the agents
take suitable actions that comply with a deadline.

8

Hierarchical Model

Hybrid automata may add complexity by specifying multiHaigeystems.
This is because hybrid automata not only describe the iatdsahaviors
of agents, but also the external interaction among agehis.demands for
structured and systematic methods for the specification A&8) which are
able to cope with the complexity of structuredtatechartsn this case are
helpful. They have the clear advantage of allowing hieraattspecification
on several levels of abstraction but are limited to desdfieebehavior of dis-
crete reactive systems. To bring the advantage of statsdbgether with hy-
brid automata, this chapter combines both formalisms witté same frame-
work. The Chapter presents the formal semantics for thisbomation and
shows how to systematically analyze the dynamic behaviosgstems with
this combination. In principle, a straightforward way t@bsze a hierarchical
machines is to flatten them and to apply verification techescio the result-
ing ordinary finite state machines. We show how this flattgieen be avoided
by providing an implementation with help of constraint logirogramming.
The implementation serves as a model and verification erfiginthe pro-
posed combination. The contribution of this chapter has esented in

[Mohammed and Stolzenbiirg, 2008; Mohammed et al.,|2010kwstems
from original work of [Furbach et al., 2008].

8.1 Introduction

So far, we have used hybrid Finite State Machines (FSMs)doifgpand ver-
ify a group of agents. Classical FSMs unfortunately lackupffrt for mod-
ularity, which is very important when modeling complex gyss that con-
tain similar subsystems—for the setting of this chapterusethe term finite
state machine and automaton synonymously. All states aadlggisible and

110 8 Hierarchical Model

are considered to be at the same level of abstraction, whattesnmodeling
cluttered and illegible. In practice, to describe comphgstesms using FSMs,
several extensions can be useful to overcome their staldionitations. The
most important extension is hierarchy, or what is the steddlierarchical
(nested) FSMHierarchical FSMs have descriptive advantages over argdin
FSMs. Firstly, super-states offer a convenient structunrechanism that al-
lows us to specify systems in a gradual refinement mannerfafabk at
it at different levels of granularity. Such structuring iarficularly essential
for specifying large FSMs by means of a graphical interfé&econdly, by
allowing sharing of component FSMs, one needs to specifypoom@nts only
once and then can re-use them in different contexts leadingptularity and
succinct system representations.

One of the existing specification formalisms, which adopts riotation
of hierarchy, isstatecharts,]. Statecharts have been originally
proposed to describe complex reactive systems. The behaifveo reactive
system is described as a sequence of discrete events tatazanges in the
state of the system. In order to cope with those reactiveesysthat exhibit
continuous timed behaviors, it seems to be advantageouseiodestatecharts
with continuous actions inside states. This extensiomeallcomplex/multi-
agent systems to be modeled with different levels of abstraand provides
a formal way to analyze the dynamical behavior of the modslstems.
There are two possibilities of combinations to do so, naroeiynbining stat-
echarts with differential equations or extending hybritbawata with hierar-
chy. Therefore, both terms hierarchical hybrid automatelAHand hybrid
statecharts can be used interchangeably.

Modeling, and extending statecharts to include diffeedrgguation can
be straightforward. However, for the purpose of formal gsial an impor-
tant thing is that we need executable models of those sysignth can be
described in terms of hybrid statecharts. Modeling langsaaye extremely
useful, if they can prove properties of systems being desdriThe straight-
forward way to analyze hierarchical state machines is ttefighem to obtain
an ordinary FSMs. The flattening process is done by recuyssudstituting
each super-state with its associated FSM. In turn, modelkiig tools are
applied on the resulting ordinary FSM. Such a flattening, évax, can cause
a blow-up, particularly when there is a lot of sharing. Thiagpter shows that
this flattening can be avoided.

This chapter contributes in extending the statecharts eatttinuous dy-
namics to model complex multi-agent systems situated innamcal envi-
ronment. The Chapter also gives an executable model basstra@iot logic

8.2 Statecharts Basics 111

System
Train J

X = 2000

x> 1000 x <100

X € [30,50]

to_raise
[— < < -
app app) exit t <a exit
t=1
,,,
Gate)
o ———
Gate |
Opening]
g=90 open .
@~ 9<% 9=90 g=90 raise
g=9 to_open g=0
lower] .
raise
Y
Closing J
down closed
> =
[—— g;(ig g=0 8:8 lower
to_close

Fig. 8.1.State Hierarchy of train gate controller example.

programming, where the size of the corresponding CLP progsaonly

straight proportional to the size of the given hierarchiegbrid automaton
description.

8.2 Statecharts Basics

FSMs have been used extensively in the specification angsasalf reactive
systems. In practice when they are applied to larger prohléhe models
lack to support modularity and become cluttered and illegiStatecharts
[Harel,[1987] have been introduced to overcome these lilmits.Basically,

112 8 Hierarchical Model

statecharts extend FSMs with several capabilities innwdiierarchy, and
concurrency. Hierarchy is the ability to group states intsuger-state, or
synonymously an OR state. Hierarchy serves several pus s as state
refinement used mostly for the purposes of top-down desighrasuction
of transition clutter and transition state dependenceplcally, hierarchy is
usually represented using two drawing techniques namijcit nestingand
coarse statesExplicit nesting is used when one draw explicitly a lowesele
state inside a higher level state, such as state insideSystenin Fig.[8.1. A
coarse state is a state whose contents are drawn on a sdpeaténg, such
as the stat&ateshown in Fig[8.11.

The notation of hierarchical was popularized not only with introduc-
tion of statecharts, but with also other specification fdrsnas such asnod-
echarts[Jahanian and Mok, 1994]. It has become a central comporigat-o
ious object-oriented software development methodolod@maloped in re-
cent years, such @MT [Rumbaugh et all, 1991], and it has become a part
of the unified modeling language (UML) [UML, 2009]. It is conomiy avail-
able also in commercial software engineering tools, sucBtatemateand
Rational rose

Concurrency in the statecharts denotes orthogonal subrsg<alled to-
gether a concurrent state. These sub-systems are indepearidsach other
and are therefore drawn separately. Each sub-system cambeptually re-
garded as a statecharts in its own. An concurrent statetiallysdepicted by
dashed lines splitting a state. When a system is in a condustate, it will
be in all if its sub-systems.

Statechart transitions are annotated with events, conditiand actions.
Thus, a transition in a statechart takes the fermanfconditior]/action Such
a transition is shown as a directed edge from a state s1 ®s2atThe (in-
formal) semantics of a transition means that if the system sate s1 and
an event occurs and some condition holds, then the systerntesean action
and changes to state s2 .

8.3 Hybrid Statecharts

In this section we present the definitions and formalisninfdarid statecharts
Before we begin the description of their formal syntax anchaatics, we
should note that we replace the notatiorst#tesin statecharts with the no-
tationlocations This is because, a state in a hybrid automaton describes the
evaluation of the continuous variables at a particular ims&ance at a certain
location. Therefore, we will use the tedocationto avoid any confusion that

8.3 Hybrid Statecharts 113

may happen. It should be noted that we do not attempt to hémelemaximal
fragment of the statecharts languages. Instead, we focasrepresentative
fragment of hierarchy.

The locations in hybrid statechars are generalized intb@ sélocations,
which is divided into three disjoint setQsimpie Qcomp aNdQconc calledsim-
ple, compositeand concurrentlocations. There is one designated start loca-
tion which is the topmost location in the hierarchy. In egsetthe locations of
plain hybrid finite state machines correspond to simpletiona in the hybrid
statecharts. Based on this, we will now introduce the catsogfohybrid stat-
echarts. In the following, we adopt and slightly change tasiddefinitions

of [Furbach et dll, 2008].

8.3.1 Syntax

Similar to the definition of syntax of hybrid automata, hylstatecharts con-
tain the basic components of hybrid automata including gte&real vari-

ablesX representing the continuous flows, invariants inside lonat jump

conditions, and the initial state. However, the hierarchyooations is the

key difference to hybrid automata. Therefore, we will ongncentrate on
the locations hierarcELwhich will be defined in the following.

Definition 8.3.1 (Hierarchy components) The basic components of hybrid
statecharts are the following disjoint sets:

Q: a finite set of locations, which is partitioned into threejdiist sets:
Qsimple Qcomp and Qonc—called simple, composite and concurrent lo-
cations, containing one designatsthrt locationtjy € QcompU Qconc

In order to introduce a concrete example of the previous itiefin let us
look at the hierarchical train gate controller example of[Bi1. The locations
far, idle, anddownare example of simple locations. The locati®ysternmis
a concurrent location and the start location of the model Tde locations
Train, Controller, Gate OpeningandClosingare composite locations.

Definition 8.3.2 (Location hierarchy) Each location q is associated with
zero, one or morénitial locationsa(q): a simple location has zero, a com-
posite location exactly one, and a concurrent location nmben one initial
location. Moreover, each location g Q\ {qo} is associated to exactly one
superior statg3(q). Therefore, it must hol@(q) € QconcU Qcomp A concur-
rent state must not directly contain other concurrent ones all transitions

1 see Chaptdrl4 for the basic components of a hybrid automaton

114 8 Hierarchical Model

(01,02) must keep to the hierarchy, i.(q;) = B(qgz). Variables xe X may
be declared locally in a certain staigx) € S. A variable x X is valid in all
states s= S with3"(s) = y(x) for some > 0 (i.e. in all states below/(x) in
the state hierarchy), unless another variable with the saarae overwrites
it locally.

For the example in Fi§. 8.1, according to the previous Defigids e.qg.:

o(Train) = far o (Gate) = opening
o(opening =up o (controller) =idle
o (System= {Train,Controller,Gate} (near) = Train
B(Train) = System y(x) = Train

y(g) = Gate

y(t) = controller

The functionf from the previous definition naturally induces a location
tree withqg as root. This tree is formed as a result of the semantics leetwe
states which we will define as the following.

8.3.2 Semantics

As known, the semantics of hybrid automaton are describéstins of alter-
nating sequences of states. A state is a control locatiortrendaluation of
the real variables at each time instance. Different to ldybritomata, the
control location of statecharts may be composite or coeatirfocations.
Therefore, state machines, which describe the behaviosgstéms can not
be described by simple sequences of states, but by confapsatvhich are
trees of locations. While processing the behavior of thiestechines, each
composite location only contains one active control lagatiMore specific,
whenever a location is in a configuration and it is composedtion, then
each of its direct sub-automata must also contribute to@héiguration and
vice versa. In the case of concurrent location, each of theasttomata con-
tributes to the configuration, if their parent is in that cgofition, i.e. one
location of respective automata belong to the current cordigon. In our
example Fig[8]1, this means that whenever the model in didmc8ystem
alsoTrain,Gate,andController are active.

Fig.[8.2 shows the configuration tree of the example of [Eif. 8.con-
figuration of the given statecharts is indicated by the thiigs. Let us now
define the notion configuration more formally.

8.3 Hybrid Statecharts 115

System

Train Controller Gate

far near pastto-lower idle to-rise

\
Op(ining Cl‘osing

up OPEN 4own closed

Fig. 8.2.Location hierarchy and configuration tree (thick lines).

Definition 8.3.3 (Configuration and Completion) A configurationc is a rooted
tree of locations where the root node is the topmost initiabltion g of the
overall state machine. Whenever a location g is an immedgiegdecessor of
g in c, it must hold3(q') = g. A configuration izompletedby applying the
following procedure recursively as long as possible to leades: if there is a
leaf node in c labeled with a location g, then introducec(t]) as immediate
successors of g.

As presented in Chaptel 4, a hybrid automaton may changeoinvays:
discretely from locationgq; to another locatiom,, when the transitior € E
between the two locations is enabled (i.e., the jump candiiolds) andon-
tinuouslywithin a control locatiorg € Q, by means of a finite (positive) time
delayt. The semantics of hybrid statecharts can now be defineddmyating
sequences of discrete and continuous steps between catifbgist we as-
sume that discrete state changes happen in zero time, vamtaaous steps
(within one state) may last some time.

Definition 8.3.4 (Operational Semantic) The state machine starts with the
initial configuration i.e. the completed topmost initial staig the overall
state machine. In addition, an initial condition must beegivas a predicate
with free variables froniX. The currentsituatioffl of the whole system can
be characterized by a tripléc,v,t) where c is a configuration, v a valuation
(i.e. a mapping v X — IR"), and t the current time. Thimitial situationis

a situation(c,v,t) where c is the initial configuration, v satisfies the initial
condition, and t= 0. The following steps are possible in the situat{an,t):

discrete step: a discrete/micro-step from one configuration ¢ of a state ma-
chine to a configuratioric’,V/,t) by means of a transitiofq, q') € E with

2 situation are used instead of state to describe the timariostof a configuration

116 8 Hierarchical Model

some jump condition in the current situation (writter-cc’) is possible

iff:

1. c contains a node labeled with g;

2. the jump condition of the given transition holds in therent situa-
tion (c,v,t);

3. is identical with ¢ except that g together with its sub treeciis
replaced by the completion of;q

4. the variables in X are set by executing specific assigrsnent

continuous step: a continuous step/flow within the actual configuration to

the situation(c,V,t") requires the computation of allx X that are valid

in ¢ at the time‘taccording to the conjunction of all state conditions (i.e.

flow conditions plus invariants) of the active locations @, where it

must hold t > t.

From the previous semantics, a state machine is initialsyagonfiguration
derived from the initial top most location. This derivatiperformed in a
top-down manner; that is the root of the state machine daurigs to the initial
configuration by its initial location. If some location ingttonfiguration is
refined to further automata, then these automata must botdrtheir initial
states to the initial configuration as well.

It should be noted that invariants of the definition of hylaidomata pre-
sented in Chaptérn 4 are merged here with the flow conditiom®iminuous
steps (see Def._8.3.4). In particular, while jump cond#i@me checked dur-
ing a discrete transition, flow and invariant conditions anéy tested at the
beginning and at the end of a continuous flow within one conédition, i.e.
only at the boundaries.

8.4 Hierarchy Implementation with CLP

Now we will show how to implement an abstract state machinetlie
previous hybrid statecharts. In this implementation, drignies and con-
currency are treated more explicitly [Mohammed and Stdimem, | 2008;
Mohammed et all, 2010]. This leads to a lean implementatfdnybrid au-
tomata, where efficient CLP solvers are employed for perifogmeachability
analysis.

Fig.[8.3 shows parts of the abstract state machine in Prakggely the
code for completion and for performing discrete and comtirsusteps accord-
ing to Def.[8.3.4 an@ 8.3.3. Discrete steps take zero timati@aous steps
remain within the same configuration but the variable vataeg differ. The

8.4 Hierarchy Implementation with CLP 117

conpl ete(T, Rest, State,[State: Var| Conpl ete]): -
init(T,State,[Var|Rest],Init,),
mapl i st (conpl ete(T,[Var|Rest]),Init, Conplete).

discrete(T,Restl, Rest2,[Statel:Varl| _],[State2:Var2| Conf]):-
trans(T, Statel, [Varl| Restl], State2,[Var2| Rest2]),
conplete(T, Rest2, State2, [State2: Var2| Conf]).

di screte(T, Restl, Rest 2, [Top: Var 1| Sub], [Top: Var 2| Tree]) : -
Sub \=[],
mapl i st (discrete(T,[Varl| Rest1],[Var2| Rest2]), Sub, Tree).

continuous(T1, T2, Rest 1, Rest 2, [St at e: Var 1| Sub],
[State:Var2| Tree]): -
flow(Tl, T2, State,[Varl| Rest1],[Var2| Rest2]),
mapl i st (conti nuous(T1, T2, [Var 1| Rest1], [Var 2| Rest 2]), Sub, Tree).

Fig. 8.3.CLP code of the abstract state machine.

flow conditions of active locations (in the configuration) shbe applied, as
time passes. In this context, configurations are encodetblngplists, where
the head of a list corresponds to the root of the respectinégioation tree.
In addition, each location is conjoined by a colan (vith its list of local
variables. According to Deff. 8.3.3, the completed starffigomation will be
represented as shown below. The event and the delayepresented by the
variableAl pha—are treated as global variables of the whole system.

[system [none, Al pha],
[train:[2000],[far:[]11.

[gate:[90], [open:[]]],
[controller:[O],[idle:[]]]]

The corresponding configuration is also shown as a tree iigHy(left).
Of course, trees could be represented more efficientlycaasuming less
space, rather than by Prolog lists as shown above. But thefubsts is
straightforward and allows us to implement the abstrade staachine for
hybrid statecharts (Fig._8.3) within only a dozen lines ofRZRrolog code.
By this way, explicit composition of automata is avoidedr Each state, its
initial states have to be declared in addition to their cardus flow con-
ditions. For all discrete transitions, the jump conditidresse to be stated.
Local variables are expressed by a nested list of varialaliés v the respec-
tive state. Since the abstract state machine is of constmnasd the abstract
machine computes complex configurations only on demanck the one-to-

118 8 Hierarchical Model

one correspondence between the elements of the hybridisiate and their
CLP/Prolog implementation. Thus, the program size is linedhe size of
the model.

System[none a] System [app. o]
| |

r ! [1 |
train x =2000 gate g=90 controllet =0 {rajn x=1000 gateg=90 controllert=0

far opening idle near opening tdower

up o;!en

Fig. 8.4.Configuration trees of the running example.

In the concrete implementation of the example, the ovetait states; is
indicated by the predicatet ar t , while i ni t defines the initial states for
each stated values according to Def. 8.3.2). The flow and the jump con-
ditions have to be expressed by means of the predi¢dtesvandt r ans.
The reader can easily see from Fﬁmmat the size of the CLP program is
only straight proportional to the size of the given hybridtstharts because
there is a one-to-one correspondence between the grappicification and
its encoding in Prolog, whereas computing the compositf@oncurrent au-
tomata explicitly leads to an exponential increase. Siheeoverall system
behavior is given by the abstract state machine (Eid. 818, approach is
completely declarative and concise.

The reachability analysis of the abstract state maching itesative deep-
ing search strategy. After one continuous and one disctefeagzcording to
Def.[8.3.4, the configuration shown below (see Eigl. 8.4 t)igfil be reached
after 0.0-25.0s. The eveapp occurs, when the train has traveled 1000 m.
Then, the simple statasear andto_lower in the composite statdsain and
controller are entered respectively.

8.4.1 Testing Hierarchy

As far as we know, there is no standard benchmark to test drarbhy. In-
stead, a flat version of hybrid automata should be given toeindueckers
for the purpose of verification. Thus, to be able to check dasibility of our
approach, we use flat benchmarks. We experiment the stabdachmarks
presented in Chaptél 6 to test the HHA. Querying these beadtsntheck
safety properties (cf. Fig._8.6). Firstly, in tisghedulerexample, the safety

3 See appendiXJA for the rest of the example

8.4 Hierarchy Implementation with CLP 119

%986 system

start(system.

init(T,system[[Event, Alpha]],[train,gate,controller],_) :-
Event = none.

flowT1, T2, system [[Event, Al pha]], [[Event, Al pha]]).

%86 train
init(T,train,[[X]|_].,[far],systen) :-
X $= 2000.

flow(T1, T2, train, _,).

init(T,far,[[]1]_].[],train).
flow(T1, T2, far, [[], [X1]|_].[[].[X2]|_]) :-
X2 $>= 1000,
X2 $>= X1-50+%(T2-T1),
X2 $=< X1-40+(T2-T1).
trans(T,far,[[],[X],[Eventl, Alphal],far,[[].[X],
[Event 2, Al pha]]): -
Event2 = lower ; Event2 = raise.
trans(T,far,[[].[X],[Eventl, Al phal],near,[[].[X],
[Event 2, Al pha]]): -
Event2 = app,
X $= 1000.

Fig. 8.5.A part of the HHA implementation of the train example.

[system [app, Al pha],
[train:[1000],[near:[]]1],

[gate:[90], [open:[]]],
[controller:[0],[to_lower:[]]]

property is to check whether a certain task (with number 2¢nwaits. Sec-
ondly, in thetemperature controexample, it has to be guaranteed, that the
temperature always lies in a given range. Thirdly, intilaén gate controller
example, the safety property has to make sure that the geltsexd whenever
the train is within a distance less than 10 meter toward tle. Jdoe second
version of the train gate controller example is used to ¢alela parameter
analysis, i.e. finding a condition to be hold on a paramedeidile which
guarantees the satisfaction of the safety property. Inrdie gate controller
example, parameter analysis aims at finding the conditiotherparameter
a. Last but not least, in thevater levelexample, the safety property is to
make sure that the water level is always between given toldslil and 12).

120 8 Hierarchical Model

The benchmarks can be solved by all considered implemensatamely
HyTech, and the HHA implementation with CLP, within millsmnds. Fig_ 816
shows the concrete run-time results (in milliseconds), dapgaring Hytech
with HHA. It reveals that the CLP/HHA implementation allowse briefest
problem formulations because of the use of the abstra@ stathine, but
since the time points of performing discrete steps are noipeed explic-
itly, it is susceptible to rounding errors. In order to gudes termination
of the CLP implementations, the search depth is fixed in acizaRor the
CLP/HHA implementation, the number of continuous plus e steps is
given. These limits are also listed in the table.

HyTech| CLP/HHA
secondssecondsstep$
Scheduler 0.12 | 0.34 | 12
Temperature Controller 0.04 | 0.02 | 12
Train Gate Controller| 0.05 | 0.03 | 12
Train Gate Controller 0.10 | 0.02 | 9
Water Level 0.03 | 0.02 | 8

Example

Fig. 8.6.Experimental results.

In the run of the abstract state machine, the way of settiaglépth might
restrict the reachability analysis such that the reachedigurations could
be incomplete to check the reachability of certain queksice, one might
get negative results. A possible solution to this probleno iset the depth to
be big enough. But this raises the problem of the performafican-time.
A suitable way to handle the reachability analysis is to firdot reachabil-
ity of configurations—similar to the way of computing the ckability of
regions presented in Chaptér 4—by running the abstrae stathine until
reaching to fixed configurations, i.e. finding cycles. In [Batz et al., 2010;

tz,_Zd)Og] the hierarchical implemeamtdias been re-
fined to perform that process.

8.5 Related work

For the advantages to model the dynamical behaviors of MAB®rarchical
manner, several successful approaches have been propgeeditle hierar-
chy. In the following we show some of those approaches treatelates to
the the work presented in this chapter.

8.5 Related work 121

On of the early approaches discussing model checking oatuleical
state machines is presentedlin [Alur and Yannakakis,|1988his approach
the verification of hierarchical finite machines are perfedmvithout flatting
the hierarchy. Several algorithms are presented for theehatakcking prob-
lem. In particular, this approach adopts a depth first sealgdrithm that per-
forms the reachability analysis. This approach, howewssahot consider the
continuous behaviors within the hierarchical state maghii similar work
to this approach is presented [[n_[ﬁn_e_si_éﬂ_aLJ999]. Thikweesents a sim-
ple model-checking approach to verify UML statechart diags. However,
this approach is very simple and restricted in the sensetttiaés not handle
the hierarchical notations of statecharts. Moreover, thgicuous dynamics
are not be considered.

Modecharts[Jahanian and Mok, 1994] is one of the early extensions of
the statecharts which extends statecharts with timingtioo& The for-
mal semantics oModechartsare defined in terms of real time logic of
|L1ahanian and Mok, 19B6] whose time is restricted to disatemain. A sim-
ilar work is presented iH_LKe_slﬁn_and_EnLlEIL_]Jggl]. Thiskvaggests an
extension of statecharts to accommodate continuous antetéisevent be-
haviors. As a result of this extension a language cdil®@d statechartss
presented in which each transition of statecharts is atetbtay a time inter-
val [I,u] denoting the lower and upper time bounds of that transitkdso,
this work proposes what is calléybrid statechartss a further extension to
statecharts, which allows to annotate a basic state ofcbtatis with differ-
ential equations. The semantics of those extensions aressisd, but there is
no automatic mean to execute these hybrid statecharts.

In contrast to this chapter, there are researches that usporents to
model hierarchy instead of statecharts. In these reseqret@mic compo-
nents are used to build more complex components in hieachanners.
Interaction between components takes place by means cdskariables.
Synchronization by means of actions is, however, not supgoOne of the
works adopting this approach is presentech in |Hgnziri|gﬂf]20r1 this work,

a language calleMasacciois used as a formal model of hybrid dynamic sys-
tems. InMasacciq systems are built from two atomic components, hamely
discrete and continuous components. A modeMasacciois structured in a
way which permits hierarchical definition of componentsttBtypes of com-
ponents can be arbitrarily nested and composed by meansaldiepand se-
rial operators. Data can enter and exit a component throaigables. Control
enters and exits through locatiodasacciosupports the assume guarantee
principle, where one can separately verify the correctnésach component

122 8 Hierarchical Model

by assuming that the rest of the components of the systenasdelccording
to their specification. By using this technique, a largefieaiion problem can
be decomposed into many smaller verification problems. is dbproach,
however, there is no formal verification on the model as a ehBharon
[Alur et all,[2000] 2001] is quite similar to this work, whiciso addresses
the hierarchical issues within hybrid systems. In the fraor& of Charon
the basic building block is represented by an agent that aamwates with
its environment by means of shared variables. Agents carhdatinct com-
ponents of the system whose executions are all active aathe §me. The
agents in this approach are classified into two types: priendand compos-
ite agents. The primitive agents form the primitive typeshasic building
blocks of the architectural hierarchy. The composite egané derived by
parallel composition of the primitive agents. The interhahavior of each
agent is represented by modes, which represent the disardteontinuous
activities of the agent. Each agent consists of one or matadi modes that
describe the flow of control inside an agent. In addition toaldes, contin-
uous dynamics, invariants, and guards, modes containatqgramts which
provide entry and exit points to the flow of modes. Althougharon can
perform some kind of formal analysis, particularly chegkinvariants at run
time and reporting an error when an invariant is violated aadransition
is enabled, it only focuses on simulation rather then foramallysis.SHIFT
[Deshpande et al., 1997] is a similar simulation approatdwahg hierarchi-
cal specifications of hybrid systems.

Other works proposes to model hierarchical machines withritlyau-
tomata or with less expressive subclasses of hybrid autorkldwever, to
analyze behaviors of hierarchical models, they have to leried into or-
dinary state machines and then model checking tools aréedpmh the flat-
tened parts. An example of these works is presenteb_m_LMIIﬂﬂ.,LZD_QB].
In this work, a hierarchical specification of timed automatgresented.
To verify a hierarchical model, it has to be transformed té-tfraed au-
tomata, which in turn can be used as input for the model cli¢okéUppaal
[Behrmann et &ll, 2004]. Similarly, Ruh in [Ruh, 2007] pretsea translator
tool that automatically converts hybrid hierarchical sthiarts, defined as an
ASCII-formatted specification, into an input format for theodel checker
Hytech |Hgnzinggr et élLﬁb?]. In contrast to these wovks have shown
that the hierarchical hybrid automata can be analyzed witlgetting in-
volved in the flattening process.

9

From Graphical Modeling to Formal analysis

So far, we have shown a framework to model and verify muléragystems
by means of concurrent and hierarchical hybrid automatah Bwe model
and the requirements of the system under considerationtbdewritten in
CLP. However, specifying the complete systems using CLRfisidely a te-
dious, error-prone and undesirable task, particularlymdpecifying safety-
critical or larger systems. To facilitate the process otc#mation, graphical
notations of software engineering are helpful to modelesyst but they pro-
vide little support for systems analysis. Therefore, todgprihe advantages
of graphical notations together with automatic verificatmf formal meth-
ods. For this purpose, this chapter aims at simplifying fecsication and
verification process by introducirdieroMatea tool environment with a con-
straint logic programming core that allows us to specify tiragjent systems
graphically and verify them automatically. The Chapter dastrates this on
a multi-agent system scenario taken from the Robocup re3teecontribu-

tion of this chapter has been published|in [Mohammed and Sch\2009;
Schwarz et all, 2010].

9.1 Introduction

In the previous Chaptefd 4 ahdl 8, we have shown how to fornsalgcify
and automatically verify systems at different levels oftedagion using hy-
brid automata. We have presented two structural views désys namely
concurrent/flat and hierarchical views. It is well knowntttiee formal spec-
ification targets a precise and unambiguous descriptiom@fbehavior of
systems under design, whereas the automatic verificationdael checking
aims at verifying a desired specification.

124 9 From Graphical Modeling to Formal analysis

To automatically verify a certain model, one needs to tetestuch model
into an executable format written in a language executed @yaincheckers.
Generally, to specify and verify a certain model, two altives can be used
to achieve this: either designing the model prior to put ititextual rep-
resentation format convenient to a model checker, or statt specify the
scenario directly with the suitable description languagédsch is definitely
a tedious and undesirable work, particularly when spauifygafety-critical
systems. An example of these textual languages adopteagtinoat this the-
sis is CLP by which we encode both models and specificatiomayquties
of hybrid automata. However, writing models together with specification
of properties with a textual language in general or with ChRmiore spe-
cific is a difficult, cumbersome and error-prone task for sglveeasons. To
model and specify a certain problem, one needs to write lealsdof lines
of CLP, which becomes difficult to grasp the meaning of the lasystem.
To avoid side effects that may result in unwanted behavid? Code has
to be done carefully. Consequently, this may require a losgecification
time and expert personnel. Nevertheless, the possibilitierror occurrence
are highly increased and difficult to discover. Additiogathe direct use of
logic to build a model is often claimed to be an obstacle fatayns engi-
neering. To cope with these limitations, the graphical @spntation taken
from software engineering can be helpful. Intuitively, gnacal representa-
tions have advantages over textual representations. Thedgss syntactical
language from users’ prospectives and easy to develop. dtvept require
highly experienced users, and hence are favored by lot a§ udewever, for
their informal specification, they provide little suppoot fanalysis systems.
To bridg this gap, this chapter combines the advantageseajrphical no-
tations together with formal verification. In particulanjs chapter presents a
tool environmentHieroMate with a constraint logic programming core that
allows us to specify and hence verify multi-agent systemish WieroMate
the process of specifying a certain model is done in the fofrgraphical
state transition diagram annotated with mathematical &isms, which in
turn can be verified directly. The informal graphical naiat are invisible
converted into formal executable specifications. In thig,vitais sufficient
for the user to focus only on the specification process rétiean focusing
on both specification and the CLP implementation. This cdoce mistakes
which may occur due to the CLP implementation. THieroMate tool ac-
cepts specifications and properties to be proven by a viatekiction. Then
it generates an intermediate CLP, which can be verified bynseareacha-
bility analysis using appropriate constraints solversstate machine, written

9.2 Robocup Rescue Scenario 125

in CLP as well.HieroMate supports different views of model specification,
namely concurrent/flat and hierarchical view. To our knalgke, there is no

tool that supports the integration of graphical notationd formal verifica-

tion of hybrid automata with these views. To convey how theous parts

of HieroMate are used, the Chapter provides a multi-agent system example
taken from the RoboCup rescue.

The rest of this chapter is organized as follows: [Set.9.2rike=s and
specifies a Robocup rescue multi-agent system scenarichviditaken as
an a running example to demonstrate the ta@roMate This scenario is a
modified version of that one existing exists lin [Furbach £12008]. Se€.9]3
goes through the details of the tool. Finally, §ed.9.4 shahated work.

9.2 Robocup Rescue Scenario

In the RoboCup rescue simulation league [Tadokorolet aDORGa large
scale disaster is simulated. The simulator models part iy after an earth-
quake. Buildings may be collapsed or are on fire, and roadpaatglly or
completely blocked. A team of heterogeneous agents comgisf police
forces, ambulance teams, a fire brigade, and their respdutiadquarters is
deployed. The agents have two main tasks, namely finding eswliing the
civilians and extinguishing fires. An auxiliary task is tHearing of blocked
roads, such that agents can move smoothly. As their abibiti@ble each type
of agent to solve onlgnekind of task, e.g. fire brigades cannot clear roads or
rescue civilians, the need for coordination and synchaiiia among agents
is obvious in order to accomplish the rescue tasks.

Consider the following simple scenario. When a fire breakissome-
where in the city, a fire brigade agent is ordered by its headers to extin-
guish the fire. The fire brigade moves to the fire and beginstti put. If the
agent runs out of water it has to refill its tank at a supplyiataand returns
to the fire to complete its task. If the fire is not out within atae period of
time, it will get out of control and cannot be extinguishedthg brigade any-
more. If enough water could be added to the fire, it will beregtiished and
the fire brigade agent is idle again. An additional task thenabas to execute
is to report any discovered injured civilians. The wholersg® is modeled
as hybrid automata in F[g 9.1. It includes models of the findlians, a fire
station and a fire brigade agent.

The fire will initially start in the first 10 minutes of the s@aio, the con-
crete time point is not defined. This is modeled by the locatiofire and the
clock variableboomwhich is restricted to values less then 600. The transition

126 9 From Graphical Modeling to Formal analysis

Rescuescenaril)
(Fire) boom= 260 neededw=0
explode Vt o
(outcontol /
boom neededW< 120i- neededws 0 put out
Aneededw> 0.1 i true
boord =0 nee > neededw= 0.1
burn f: boom=10 out
[Ciilians)~~~ T T & vl |
sleeping) burn dead
@ i true =30 ii true
out
[Firestaton)~~~ oo oo nT oo T
e bun X =0
'—’br/ue ‘
emergency
{ reported
® = | _ e m -]
Firebrigade J .
FirebrigadeAgel '
FirebrigadeAgen’t
(FirebrigadeMai il wlLevel=500A neededws 0 /
distance=0 - distancé = 200
i wLevel< 500
f: wLevel= 100
Aneededw= 0
wLevel= 500/ neededw-= 0
wLevel= 500
die) move2fire
i distance> 0 ® i true emergenc i distance> 0
f: wLevel=0 gency f: wLevel=0

f: wLevel=0
Aneededw= 0

Aneededw= OA
—18 < distance< —1

Aneededw= 0N
—18 < distance< —1

civ>0/

oV = civ—1 neededw= 0 AwLevel> 0

extinguish
iwLevel>0
Aneededw> 0
wLevel= 0/ distancé = 200 |f: wLevel= —30
Aneededw= —30

Listener)

help
civ=0 true/civ =civ+1

Fig. 9.1.The specification of the rescue scenario.

distance= 0

from of this location may fire at any time and will lead to theationburning
which models the state of the fire where it could be extingrdsi he amount
of water that is needed to put it out is modeled by the variabkdedwthat is

9.2 Robocup Rescue Scenario 127

set to some value less then 1200 when entering the locatiia.nfeans that
in the beginning it needs less than 1200 liters of water toguish the fire.
There are two possible follow-up locations fmurning namelyputoutthat is
reached if enough water was added by the fire brigadeoatafcontrolthat
is reached if that is not the case before some timer runs out.

In this simple scenario the civilians are modeled to be shepimitially.
When the fire breaks out, they will wake up and call for helpg@® seconds.
If the fire is put out they will sleep again, if the fire gets ofitontrol, they
will die.

The task of the fire station is to assign a fire brigade to a fisesdon as
the fire is discovered, the fire station assigns a fire brigadextinguish it.
In this simple example there is only one brigade agent, stasieof the fire
station is rather trivial.

As depicted in Fig[9]1, The specification of the fire brigadasists of
the main control structur€&irebrigadeMainwhich models the behavior of
the agent and &istenerthat records the number of discovered civilians.
The behavior of the ageirebrigadeMainconsists of five control locations
corresponding to movementafve2firemove2supply extinguishing éxtin-
guish, refilling the tank (efill), and an idle locationidle). The behavior of
FirebrigadeMainstarts in thddle location and jumps to thmove2firdoca-
tion, when it is assigned to a fire by the fire station. The iocamove2fire
models the movement of the fire brigade towards the fire. Thimmte be-
tween fire and the the fire brigade is modeled by the varidiskancewhich
is set to be less then 800 meters in the beginning. The firadeighoves with
some speed between 15m/s and 18m/s towards the fire. Thisdisleoby
bounding the derivative of the variahbiistancebetween-18 and—15. After
it arriving on the site of the fire, the fire brigade tries toiegtish it. This is
modeled by decreasing the valuevadfeve] which models the water level in
the tank, and the water needed to put out the fiemdedwby the same rate.
If the water in the tank runs out, the fire brigade has to movhdmext refill
station that is set to be 200 meters away. The movement isletbdealo-
gously to the movement to the fire. After the tank is refilléa fire brigade
moves towards the fire again. After the fire is put out or is dwomtrol, the
fire brigade becomes idle again and reports any found anglia

It should be obvious that even in this simple case with vewy déempo-
nents, it is difficult to see if the agent behaves correcthpadrtant questions
like:

- Does the fire brigade agent try to extinguish without water?
- Will every discovered civilian (and only those) be repdreaentually?

128 9 From Graphical Modeling to Formal analysis

depend on the interaction of all components and cannot lveesiad with-
out an analysis of the whole system.

Fig.[9.1 shows the RoboCup scenario depicted as a grapkataltsansi-
tion diagrams. Generally, state transition diagrams haea lapplied success-
fully for MAS, particularly in the RoboCup, a simulation dfman) rescuer
with real or virtual robots [cfl_Arai and Stolzenblirg, 20G£ Silva et all.,
M] in particular for the teani®obolLog Koblen#wo-dimensional simula-
tion league) andHarzer Rollers(standard four-legged Ieagum al.,
2002 Ruh and Stolzenbuirg, 2008]. In what follows, we wilirdmstrate the
use of this scenario with the todlieroMate and present some exemplary
model checking tasks.

9.3 The HieroMate tool

The aim ofHieroMateis to use graphical notations to make the process of
specifying system easier or more approachable to averags. e idea of
HieroMaterelies on translating a graphical model into a hidden CLR-spe
ification, which is verified using a proper state machine dedowith CLP
too. A normal session withlieroMateis as follows: After creating a model
with hybrid automata, and specifying the requirements lgjeaghly, the de-
signer invokesHieroMate to verify it. The tool automatically converts the
model into constraint logic programming specification. i tiee verification

is performed using the reachability analysis.

This section describes the tadieroMatein more detail by showing the
internal architecture view. The section demonstrates lsfesiep how to de-
scribe a normal session wittieroMate Finally, it shows how several prop-
erties of the robocup scenario can be checked.

9.3.1 HieroMate at a Glance

The toolHieroMateis composed of three layers, namely the graphical user
interface , an internal constraint logic program, and staaehine with con-
straints solver back-end. The overall architecturéli@roMate environment

is shown in FigL9.R. The different layers are separated aaghed lines. The
first layer contains a graphical user interfaceHiéroMate which serves the
user to do several activities. First, it enables the usemtwsituct or edit a
certain model. Moreover, it helps the user to edit and spaqmibperties of
the model. Furthermore, it informs the user with the answehecking the
model against properties of interest.

9.3 The HieroMate tool 129

4 N\

[User Interface)

\i \i

Hierarchical/ Property/ Answer
flat model Query Yes/No

[State machine=Prolog search+Constraints Solvgrs

AN J

Fig. 9.2.The Architecture view of HieroMate environment.

The second layer contains an internal constraint logicrarog Inside this
layer, the graphical model together with the specificatibproperties, con-
structed in the graphical user interface layer, are coeddrito a constraint
logic program. Usually this layer is hidden to the user bettdol facilitates
to give a view for the constructed constraint logic program.

Finally, the lowest layer contains a state machine, write@LP, which
uses the prolog search together with constraints solvehicking the CLP
program created from the previous layer. Like its predamdsyer, this layer
is hidden to the user. Hiding the layers to the user helpsdoae the errors,
which might occur as the direct access of the CLP program théhuser.

Since the graphical user interface is the only visible lagéheHieroMate
users, in the following we will show a normal session to iredis interface.
We depict it with the example described in $ed.9.1.

9.3.2 The Graphical Interface

The graphical user interface of tiBeroMate enables the user to create and
edit a graphical model of hybrid automata. A model under tanson ap-

pears on a workstation display as shown in [Eig] 9.3. In thiskstation,

the pull-down menusHile, Edit, Automatoh at the top of the display con-
tain commands for storing, retrieving and editing modelsyddrid automata.
With the pull-down mentAutomaton one can choose the type of the struc-
tural view of the model under construction; that is whethes flat or hier-

130 9 From Graphical Modeling to Formal analysis

Fle Edt. Automaton Hel

system J
firebrigade

refil
W <= 50

T

F:W'=10 and N'=0

firebrigade

dd Siple Location
Add Concurrent Location
Collapse

Fig. 9.3.The graphical interface of HieroMate.

archical. Additional function of the menu is that it consicommand/erify
which invokes the window of specifying the properties fag thodel check-
ing purposes.

The first step to create a model is to start a new working ahea, tight
clicking on any empty working area, a pop-up menu appearsagong Sev-
eral items, which help the user to create and manage his/bdelmAmong
of these items, as shown in F[g. B.3, the user has the ahilibegin creat-
ing simple, composed or concurrent locations of the modékrAcreating
the locations of the model, the user can create a transigbne®n any two
locations by drawing a directed edge from one location tdtero

Once both locations and transitions have been created, ghaerties
can be edited. Clicking on a particular location, for exampghuses a prop-
erty window to appear, by which the user can edit the nameyiant, and
flow of the location, as illustrated in Fig. 9.4. It should beted that most of
these actions are context-sensitive so only legal optioestaown and exe-
cuted. While editing the flow of a variablein a non-prime form, i.e<, the
tool marks this specification with red colored font, whichame there is a
violation of the syntax made by the user. In addition to et properties of
locations, the user can edit the jump condition and synchation label of
transitions.

9.3 The HieroMate tool 131

fle Edt Automston Help |

System I

firebrigade | Name—foqy

|2 W <= 50
F-w'=10 and N'=0
Guard Event |

ctgain
[F=3 and W =50 and H>0 | |refiled
: i ; il [=50 and H=0 | [putout

i F:N'=0 and W' =| Incoming Transions ~Guard Event

emoveToSupply {5 aivesupply |

moveToSupply]
1:5>=0
F:W'=0and N'=0 and §'=-1

Fig. 9.4.Editing locations in HieroMate.

Having specified all locations and transitions, the congphebdel can be
ready for checking against properties of interest. Eig.sbh@&ws the specifi-
cation of the robocup rescue scenario witteroMate Now this model can
be stored or modified. Its appearance can also be changedrsirging the
locations and transitions by means of drag-and-drop oapsé operation.

For specifying and checking requirements of interegtroMateincludes
an interface that helps in achieving these aims.[Figd. 9.@/shbis interface
as a window entitled wittverification This window is partitioned into three
parts: Visual tree of locations, the generated query, aaddhlult of model
checking. The visual tree contains all the possible looatiaf the model be-
ing checked. From that tree, the user can mark locationghépurpose of
model checking. There are two points should be noted, wklkecting loca-
tions. Firstly, marking more than one child of a certain agnent location
means that during checking the requirement, all theseitommhave to be
reached in the same time. Secondly, marking more than ofe afé com-
posed location means that at least when of these childreto tesreached.

In addition to the visual tree part, the interface contalms generated
query part, which contains the automatically CLP queryltedurom mark-
ing the locations of interest in the first part. This partakdhe user to textual

132 9 From Graphical Modeling to Formal analysis

File Edit Automaton Help

systern]

firestation | frebrigade |

refill moveToFire |
I: W =50 I:F>=0
fsidle ‘ F:W'=10 and N'=0 FN'=0 and W' =0 and F'=-1

o>
o ide
e O £ =0 ang w=0 and ©=0

I:X=0
FX=1
&> . E————
moveToSupply J extinguish
civilians 1:5:=0 I:W>=0 and N>=0
— F-W=0and N'=0 and §'=-1 Eea N
itk s ﬁre listener |

l:H>=0 ‘

& [EH=1 T F
‘I Be=3 burning putout |]
F:B'=1 e
sleeping

listen |

F.C'=0

Fig. 9.5.The rescue scenario in HieroMate.

edit the current query to specify more complex requiremesush as speci-
fying the reachability of certain values of particular #dnlies.

Having defined the properties, the interface can check thehadility
of theses properties by pressing tbeeckbutton afterwards. The answer to
checking the query is returned in the output part. At the mutrtbe current
output of the tools gives a positive or a negative answer ¢oqgtiery under
investigation, but in future it might be shown additiondioirmation such as
a trace which leads to the specific configuration of the modéievalue of
certain parameters.

9.3.3 Examples with Model checking

As we already mentioned, the graphical notations are @#atlinto exe-
cutable specifications, which can be checked by model chgckn Hiero-
Mate the term ofmodel checkingefers toreachability testing, i.e. the ques-
tion whether some (unwanted) state is reachable from thaliconfiguration
of the specified system. For this purpose, some exemplanehubecking
tasks for the rescue scenario can be investigated.

For the behavior specification shown in Fig.]9.1, we condluseveral ex-
periments withHieroMate The tool performs reachability tests on the state

9.3 The HieroMate tool 133

moveToFire | i
l:F>=0
FN'=0 and W' =0 and F'=-1

and C'=0 ‘

extinguish
l:W>=0 and N>=0
F:W'=-3 and N'=-3

i
[k

& X _ loc:
[fire:~Putout_loc] Putaul_loc=[putcre_J)

indanger J fire |
I Hs=0
® > FH'=-1 nofire
1 Be=3 burnin
FB=1

Fig. 9.6.Specifying and verifying properties in HieroMate.

listener

listen
FC'=0

sleeping ||

space of the model. This is done by computing all reachablestrom the

initial state/configuration, and then checking the resglet for the needed
properties. In the following, we present some exemplary eha@thecking

tasks for the rescue scenario.

Is it possible to extinguish the fire?When the state of the automaton mod-
eling the fire changes fromo fire to burning the variableneededwstores

the amount of water needed for putting out the finegdedw= 120 in the
beginning). When the fire is put out, i;eeededw= 0, the automaton enters
the stateput out Thus the fire can be extinguished, iff there is a reachable
configurationcy, Where fire is in the statput out It is easy to see from the
specification that this is indeed the casenasdedws only decreased after
the initial setting, and so the transition frdoarning to put outis eventually
forced.

Does the agent try to extinguish with an empty water tank?To answer
this question, we should check the reachability of certati@rvals in the con-
tinuous valuation of the automaton. The fact that the firgdate agent tries
to put out the fire without water corresponds to the simpléesatinguish
being active whilevLevel< 0. Note that we must not test farLevel< 0, as

134 9 From Graphical Modeling to Formal analysis

the stateextinguishis only left when the water level is zero, so including a
check for equality leads to false results.

Won't the fire brigade move to the fire if it is not burning? This is a kind
of question that needs to check the reachability of comptiszdions at the
same time. This can be checked by investigating that noitotatherefire-
brigade is in location move2fireand fire is in location nofire or putoutis
reachable

Does the agent report all discovered civilians?Ve can check properties
about the history of a certain state and the reachable $tatesa given state,
this allows more complex questions like this question. Altjuthis question
contains two properties to be checked:

(a) all discovered civilians are reported eventually and
(b) the agent does not report more civilians than found.

The property (a) corresponds to the fact that from everyhalsle state there
is a state reachable where all discovered civilians have begorted. This
again means that the number of transitions labeled mathequals the num-
ber of transitions labeled witreported Property (b) holds if in the history
of each reachable state the number of transitions labelgthelpis always
greater or equal to the number of transitions that are ldbelth reported

All properties described above could be successfully prav&ng our
framework.

9.4 Related Work

The graphical notation is becoming more and more accepsatissexpected
that designers will be more familiar with graphical notatid@herefore, sev-
eral researchers approach to specify behaviors of MASg ug#phical no-
tations, namely UML statechallL_MunLay ih_LMudahL._ZbO%rﬁnstance,
presents an statechart editor call@tEditthat is used to graphically spec-
ify behaviors MASs with a layered structureBtatEditwas intended to de-
sign behavior of agents in the RoboCup simulation leaguéh s editor
statecharts can be created and exported to a variety of ferfoafurther
processing. Similar t&tatEdit there are software engineering tools, such as
Statematdl:lar_el_e_t_al.l_l&dB] an®ational rosewhich can be used to graph-
ically specify graphically behaviors of MAS. Neither canibus activities,
nor model checking are allowed in these tools however .

In order to combine the formal verification with graphical aets, there
already exists a number of tools supporting verificatiorhefdtate machines

9.4 Related Work 135

view of an un-timed UML graphs, particularly statecharteeTools are do-
ing so by translating graphical models into input languazfesxisting model

checkers. For example, Lilius and Porres.in [Lilius and 3&&99]9] present

the tool vUML for model checking systems, which are modeled by UML
statecharts. They use the model checBBIN |HQIzmanh,|M7! as the un-
derlying verification engine in their tool. Similar to theirork,

in [Mikk et all,|1998] present a translator that translatesesharts into, the
modeling language of thePINmodel checker’romela The same approach
is adopted in_Mota et all [2004]. In their approach, they @nés: tool that
integrates UML models with formal verification. In their tepa graphical
model is translated into an intermediate representatioef@re the model is
checked using the model checINmSVM[IQLmaLti_e_t_a“. LZD_dZ]. In contrast to
our work, all the previous approaches are restricted to hubsierete reactive
systems.

To graphically specify and hence verify real time systerageral tools are
existing. For instanceylodechart[Jahanian and Mok, 1994] is a tool which
captures graphically time-based requirements. Systeenexaressed graph-
ically as concurrent finite state diagrams with delays aratlilees which
are specified in modes of the systems. The tool includes alationallow-
ing an interactive execution of modechart for consistemuy @ompleteness
checker. Additionally, the tool includes a verifier whichtelenines whether
a timing assertion can be derived from a set of modecharifgg@dions. An-
other successful graphical tool ifppaal [Behrmann et all, 2004], which is
a tool suite for automatic verification of safety and bountieehess prop-
erties of real time systems modeled as networks of timedzatim Uppaal
consists of a graphical user interface basemmmgraphﬂRmLand_Sldee
] which allows a system description to be defined gragtllyi and then
verified with a model checking procedures. However, hidriaed structures
are not allowed itUppaal To cope with this, several works propose to specify
real-time systems by incorporating the full advantageshefUML models.

In particular, there are works extending the standard UMldet®with time
notation |[_G_r_a.f_e_t_dl.l._29ﬂ)6]. For this purpose, severalddwve been devel-
oped to verify the timed UML models by mapping them to inpuigaages

of timed automata, which in turn are verified using existingdel check-
ers of timed automata. For examdg, Del Blangg etall in [OeahBo et tal.,
] use the model checkEronos[Yovin] to verify their systems,
Whereaﬂnﬁ.pp_e_t_hl |rh_LKna.pp_ej ehu_ZbOZ] wsepaal NB_QDJJ%ISS_Q@I.,

] for the same purpose. As we have said, before tramgléte graphical
specifications into suitable representations to model kdtsg the previous

136 9 From Graphical Modeling to Formal analysis

tools, however, have to flatten any hierarchical speciboati This of course
increases the complexity of models. Additionally, thosaelddogether with
their underlying verification tools, do not support more fighdynamics—
e.g. linear hybrid automata.

Several works introduce tools that contain graphical userfaces serv-
ing as graphical input languages to model hybrid systemsveder, those
tools provide no means of formal verification; instead, they emerged for
simulation purposes of highly complex hybrid systems. Eplas of these

tools |ncludeHy\/sualﬂg¢t¢I¢o_e_allL_0L¢3I;haron||AIur etall |_O_Qb|.Jﬂl]
andStateflow[Sahbani and Pastal, 2000].

Part IV

Conclusion

10

Final Remarks

10.1 Summary and Future Work

Multi-agent systems (MASS) are reactive systems congistinlistributed re-
active components/agents located in some environmentiichvithey jointly
work and interact to achieve their goals. Reactive systezastrto stim-
uli received from the environment by generating correspuandesponses.
They often appear in safety-critical applications wheiitufa is unaccept-
able. Their behaviors must be carefully designed with a biggree of preci-
sion in order to avoid any undesirable behaviors. The usigofaus formal
methods not only provide ways to precisely describe behsnabsuch sys-
tems through formal specification, but also to analyze tHemough formal
analysis.

One of the formal approaches that is extensively used taiesisehav-
iors of reactive systems, particularly MASS, is to use diatiesition systems.
A reactive system usually behaves according to a reasomouggs of exter-
nal or internal actions. whenever an action occurs, thewbehaf the system
moves from one state to another. Finite automata or finite stachines have
been successfully used as a medium to model such transitgtenss. One
advantage of state transition systems is that they can beflyranalyzed by
means of model checking.

Hybrid systems are special forms of reactive systems thatiremusly
react to their environment according to time dependentipllsules. The
behavior of such systems involves continuous and disctens. The con-
tinuous actions of the behaviors arise as an evolution affeems according
to differential equations describing some physical ruldsereas the discrete
actions result from the change from one continuous acticantther. The
classical finite automata are not sufficient to model sucksyg behaviors,

140 10 Final Remarks

as they can only model the discrete behaviors. Finite auttoheave been ex-
tended to deal with such type of behaviors. This has led tbittie of hybrid
automata, which are mathematical formalisms that can filyroapture the
behavior of hybrid systems. Their formal semantics allovicuprove desir-
able features and the absence of unwanted properties ipeb#ied systems.

This thesis aimed at approaching the framework of hybricraata to
model and verify behavior of MASs. We have contributed in anbar of
ways to achieve this aim. In one way of contribution, we haxesented a
convenient approach which allows us to specify and verityav@ors and re-
quirements of MASSs. In this approach we have shown how tclattee state
space complexity raised from composition of automata byidinog a way
that dynamically constructs the composition during thafieation phase.
Additionally, we have presented a specification languagedban extending
the well know temporal logic CTL to specify both qualitatiemd quanti-
tative properties. We have also implemented this approatththe help of
constraint logic programming. In this implementation, adelcof hybrid au-
tomata is converted to an equivalent model of constraintIpgpgram. The
specifications of the requirements are converted to seitgntries, which are
checked within the constraint logic program by means oftrabitity analy-
sis.

In another way of contributions, we have provided severgedresions con-
cerning the expressiveness of specifying behaviors of MA&shave intro-
duced a simple approach toward extending the decision maitihybrid au-
tomata to deal with deliberative agents’ plans. Moreoverhave presented
a combination of hybrid automata formal semantics withdrigmical nota-
tions. This combination allows us to model and analyze berswof MASs
under several levels of abstraction. We have presented! ghttofacilitates
the specification process by permitting the graphical ratatwhile specify-
ing behaviors and requirements.

One possible area of future research is to reason about tiaibe of
MASSs under uncertainty. Decision theories have proposednaber of de-
cision rules for decision-making under uncertaiﬁl)LLB_aﬂﬂﬁ,LZQ_dg]. One
should integrate such types of rules into our approach.

Reasoning about knowled@dﬂom] has always beemeacon-
cern in Al and MASs. It is well known that knowledge is a key cept to
model intelligent and rational activities. The usual apjgtoto reason about
knowledge assumes time to be discrete. Thus, another taptt wmvestigat-
ing would be extending model checking to reason not only abeuaporal
properties but also about epistemic properties of agents.

A

Appendix

This Appendix lists the complete CLP for the train gate exi@ngemon-
strated in Chaptérd 4 andl 8.

The concurrent CLP

:- lib(ic).
- lib(ic_synbolic).
:-lib(scattered).
- local donmain(events(app,in,exit,|lower,raise, to_close,to_open)).
Wb train
train(far,[Y0],[VY],TO, T):-
Y $>= YO0-50+(T-T0),
Y $>=500, T $>=TO.

train(near,[YO],[Y],TO, T):-
Y $=(exp(-(T-TO)/25))*(YO0+750)- 750,
Y $>=0, T $>= TO.

train(past,[YO],[Y],TO, T):-
Y $= (exp((T- TO)/5))=*(YO0+150)-150,
Y $=<100, T $>= TO.

gate(open, [X],[GF,T0,T): -
G $=Q0+0+(T-T0)
T $>=T0.

%0gat e
gate(close,[@0],[Q,TO, T): -
G $=Q0+0=*(T-TO),

T $>=TO.

gate(up,[®0],[Q§,TO, T): -

142 A Appendix

G $=C0+20+*(T-T0),
T $>=T0, G $=<90.

gate(down, [0],[GF,TO, T): -
G $= 0-20*(T-TO),
T $>=T0, G $>=0.

%eontroller

controller(idle, [20],[2],T0,T):-
Z $=Z0+0+(T-TO),
T $>=T0.

controller(to_lower,[20],[Z2],TO,T):-
Z $=Z0+(T-TO),
T $>=T0, Z $=<5.

controller(to_raise,[20],[Z2],TO,T):-
Z $=Z0+(T-TO),
T $>=T0, Z $=<5.

evol ve(Aut ormat on, (St at e, Val uel), (St ate, Val ue2), 70, T, Tn, Event) : -
cont i nuous(Aut ormat on, (St at e, Val uel), (St ate, Val ue2), 70, T, Tn, Event),
Tn $>=0.

evol ve(Aut ormat on, (St at e, Val uel), (Next st at e, Val ue2), 70, T, Tn, Event) : -
di scret e(Aut omat on, (St at e, Val uel), (Next stat e, Val ue2), TO, T, Tn, Event).

di screte(train, (far,[X0]), (near,[XX0]), TO, T, Tn, Event) : -
Event & :events, Event &=app,
train(far,[X0],[XX0], TO, Tn),

XX0 $=500.

di screte(train, (near,[X0]), (past,[XX0]), TO, T, Tn, Event) : -
Event & :events, Event &=in,
trai n(near, [X0], [XX0], TO, Tn),
XX0 $=0.

di screte(train, (past,[X0]), (far,[XX0]), TO, T, Tn, Event): -
Event & :events, Event &=exit,
trai n(past,[X0],[100], TO, Tn),
XX0 $=2000.

di screte(control ler,(idl e, [X0]), (to_lower,[XX0]), TO, T, Tn, Event): -
Event & :events, Event &=app,
XX0 $=0,
controller(idle, [X0],[X],T0O,Tn).

di screte(control ler,(idl e, [X0]), (to_raise,[XX0]), TO, T, Tn, Event): -

A Appendix 143

Event & :events, Event &=exit,
XX0 $=0,
controller(idle, [X0],[X],T0O,Tn).

screte(controller,(to_lower,[X0]), (idle,[XX0]),TO, T, Tn, Event): -
Event & :events, Event &=l ower,
XX0 $=X0,

controller(to_l ower, X0, X, TO, Tn) .

screte(controller,(to_l ower,[X0]),(to_raise,[XX0]), TO, T, Tn, Event): -
Event & :events, Event &=exit,
XX0 $=0,
controller(to_lower,[X0],[X],TO, Tn) .

screte(controller,(to_raise,[X0]),(idl e, [XX0]),TO, T, Tn, Event): -
Event & :events, Event &=rai se,
XX0 $=X0,
controller(to_raise,[X0],[X],TO, Tn).

screte(controller,(to_raise,[X0]), (to_lower,[XX0]), TO, T, Tn, Event) : -
Event & :events, Event &=app,
XX0 $=0,
controller(to_raise,[X0],[X],TO, Tn).

screte(gate, (open,[X0]), (down, [XX0], TO, T, Tn, Event) : -
Event & :events, Event &=l ower,
XX0 $=X0,
gat e(open, X0, X, TO, Tn).

screte(gate, (close, [X0]), (up, [XX0]), TO, T, Tn, Event) : -
Event & :events, Event &=rai se,
XX0 $=X0,
gate(close, [X0],[X], TO, Tn).

screte(gate, (down, [X0]), (cl ose, [XX0]), TO, T, Tn, Event): -
Event & :events, Event &=to_cl ose,
XX0 $=0,
gat e(down, [X0],[O], TO, Tn),

screte(gate, (down, [X0]), (up, [XX0]), TO, T, Tn, Event): -
Event & :events, Event &=rai se,
XX0 $=X0,
gat e(down, [X0], [X], TO, Tn).

screte(gate, (up,[X0]), (open, [XX0]), TO, T, Tn, Event) : -
Event &: :events, Event &=to_open,
XX0 $=90,
gat e(up, X0, 90, TO, Tn).

144 A Appendix

di screte(gate, (up,[X0]), (down, [XX0]), TO, T, Tn, Event): -
Event & :events, Event &=l ower,
XX0 $=X0,
gate(up, [X0],[X], TO, Tn)

continuous(train,(far,[X0]), (far,[X0]), TO, T, Event): -
Event & :events, Event & =app, Event & = in, Event & =exit,
train(far,[X0],[X],TO, T), \+ (X $=500).

continuous(train, (near,[X0]), (near,[X0]), TO, T, Event): -
Event & :events, Event & =app, Event & = in, Event & =exit,
train(near,[X0],[X],T0,T), \+ (X $=0).

continuous(train, (past,[X0]), (past,[X0]), TO, T, Event): -
Event & :events, Event & =app, Event & = in, Event & =exit,
train(past,[X0],[X],TO, T), \+ (X $=100).

continuous(controller,(idle,[X0]),(idl e [X0]),TO,T,Event):-
Event & :events, Event & =app, Event & =exit, Event &\ =rai se,
Event & =l ower, controller(idle, [X0],[X,TO,T).

continuous(controller,(to_l ower,[X0]),(to_lower,[X0]),TO, T, Event): -
Event & :events, Event & =app, Event & =exit, Event & =rai se,
Event & =lower, controller(to_lower,[X0],[X],TO, T), \+ (X $=5).

continuous(controller,(to_raise,[X0]),(to_raise,[X0]),TO, T, Event): -
Event & :events, Event & =app, Event & =exit, Event &) =rai se,
Event &\ =l ower,
controller(to_raise,[X0],[X],TO, T), \+ (X $=5).

conti nuous(gate, (open, [X0]), (open,[X0]), TO, T, Event): -
Event & :events, Event & =lower, Event & =to_open,
Event & =to_cl ose, Event &\ =rai se,
gate(open, [X0],[X],TO, T).

conti nuous(gate, (down, [X0]), (down, [X0]), TO, T, Event): -
Event & :events, Event &\ =l ower,
Event &\ =t o_open,
Event & =to_cl ose, Event &\ =rai se,
gate(down, [X0],[X],TO, T),\+ (X $=0).

conti nuous(gate, (up,[X0]), (up,[X0]), TO, T, Event): -
Event &: :events, Event &\ =l ower,
Event &\ =t o_open,
Event & =to_cl ose, Event &\ =rai se,
gate(up,[X0],[X],TO, T),\+ (X $=90).

continuous(gate, (close,[X0]), (close,[X0]),TO, T, Event): -

A Appendix 145

Event & :events, Event &\ =l ower,
Event &\ =t o_open,

Event & =to_cl ose, Event &\ =rai se,
gate(close,[X0],[X],TO, T).

drive((S1,[X0]),(S2,[@G0]),(S8,[20]), Starttinme,[(S1,S2,S3,Tine, Event, X)|L],B):-
train(S1,[X0],[X],Starttine, Tx),
gate(S2,[X0],[G, Starttine, Tg),
controller(S3,[20],[Z], Starttine, Tz),
Tx $=Tg, Tx$= Tz , Tinme $=Tx,

evol ve(train, (S1,[X0]), (NextS1,[XX0]), Starttine, Tx, Tx1, Event),

evol ve(gate, (S2,[G0]), (NextS2,[G30]), Starttime, Tx, Tgl, Event),

evol ve(control l er, (S3,[Z0]), (Next S3,[220]), Starttine, Tx, Tz1, Event),
Tx1 $=Tgl, Tx1 $=Tz1l, Tnew $=Tx1,

\ + menber ((S1, S2, S3, _, Event, X), B),

A=[(S1, S2, S3, Ti ne, Event, X) | B] ,

drive((NextsS1,[XX0]), (NextS2,[G30]), (NextS3,[Zz0]), Tnew, L, A) .
drive(_, _, ,_,[],):-!'.

Reachabl e((L1, [X0]), (L2, [Q0]), (L3, [Z0]), Reached): - drive((L1,[X0]), (L2, [G0]),(L3,[Z0]),0,

Hierarchical CLP

:- lib(ic).
greater(T2,T1) :- T2 $> T1.

9986 system
start(system.

init(T,system[[Event, Alpha]],[train,gate,controller],_) :-
Event = none.
flowm T1, T2, system [[Event, Al pha]], [[Event, Al pha]]).

%WBhtrain
init(T,train,[[X]|_].,[far],systen) :-
X $= 2000.

flowm(T1, T2, train, _,).

init(T,far,[[]1]_].[],train).

flowm(TL, T2, far, [[].[X1]|_1.[[1.[X2]|_]) :-

X2 $>= 1000,

X2 $>= X1-50%(T2-T1),

X2 $=< X1-30+%(T2-T1).

trans(T,far,[[].,[X,[Eventl, Alpha]l],far,[[].[X].,[Event2, Alphal]) :-
Event2 = lower ; Event2 = rai se.

146 A Appendix

trans(T,far,[[].[X],[Eventl, Alphal],near,[[],[X],[Event2, Al pha]]) :-
Event2 = app,
X $= 1000.

init(T,near,[[]]|_],[].train).

flow(T1, T2, near, [[1,[X1]|_I.[[1.[X2]|_]) :-

X2 $>= 0,

X2 $>= X1-50+(T2-T1),

X2 $=< X1-30%(T2-T1).
trans(T,near,[[],[X],[Eventl, Al pha]],near,[[],[X],[Event2, Al pha]]) :-
Event2 = lower ; Event2 = raise.
trans(T,near,[[],[X],[Event1, Al pha]],past,[[],[X],[Event2, Al pha]]) :-
Event2 = in,

X $= 0.

init(T,past,[[]]_].,[].train).

flow(T1, T2, past, [[], [X1]|_].[[].[X2]|_]) :-

X2 $=< 100,

X2 $>= X1+30+(T2-T1),

X2 $=< X1+50+(T2-T1).
trans(T,past,[[],[X],[Event1, Al pha]],past,[[],[X],[Event2, Al pha]]) :-
Event2 = lower ; Event2 = raise.

trans(T, past,[[],[X1],[Eventl, Alpha]],far,[[],[X2],[Event2, Al pha]]) :-
Event2 = exit,

X1 $= 100,

X2 $= 2000.

%8 gat e
init(T,gate,[[G]|_],[open],systen) :-
G $= 90.

flowT1, T2, gate, _,).

init(T,open,[[]]_].[],9ate).

flow(T1, T2, open, [[],[GL]|_].[[].[@]|_]) :-

Gl $= 90,

@ $= GL+0*(T2-T1).
trans(T,open,[[],[G,[Eventl, Al pha]],open,[[],[G,[Event2, Al pha]]) :-
Event2 = app ; Event2 =in ; Event2 = raise.
trans(T,open,[[],[G,[Eventl, Al pha]],down, [[],[QG,[Event2, Al pha]]) :-
Event2 = | ower.

init(T,down,[[]]_].[],9ate).

flow(T1, T2, down, [[], [GL]|_].[[].[@]I|_]) :-

Gl $>= 0,

& $= Gl-9+(T2-T1).

trans(T,down, [[],[Q§,[Event1, Al pha]],down, [[],[QG,[Event2, Al pha]]) :-
Event2 = app ; Event2 = in ; Event2 = | ower.
trans(T,down, [[],[Gl], [Event1, Al pha]],closed,[[],[@&],[Event2, Al pha]]) :-
@ $= 0.

A Appendix 147

trans(T,down, [[],[Gl],[Eventl, Al pha]],up,[[].[GLl],[Event2, Al pha]]) :-
Event2 = rai se.

init(T,closed,[[]]_].[1,9gate).

flowm(T1, T2, closed, [[],[Gl]|_].[[].[@]I_]) :-

Gl $= 90,

& $= GL+0+(T2-T1).
trans(T,closed,[[],[G,[Eventl, Al pha]],closed,[[],[Q,[Event2, Al pha]]) :-
Event2 = app ; Event2 = in ; Event2 = | ower.
trans(T,closed,[[],[Q,[Eventl, Alpha]],up,[[],[Q,[Event2, Al pha]]) :-
Event2 = rai se.

init(T,up, [[]]_].[],0ate).
flow(T1, T2, up, [[].[GL]]_].[[].[@]I_]) :-

Gl $=< 90,
G $= GL+9*(T2-T1).
trans(T,up,[[].[G.,[Eventl, Alpha]],up,[[].[QG.,[Event2, Al pha]]) :-
Event2 = app ; Event2 = in ; Event2 = raise.
trans(T,up, [[],[GLl],[Eventl, Al pha]], open,[[],[GLl],[Event2, Al pha]]) :-
& $= 90.
trans(T,up,[[]1,[GLl],[Eventl, Al pha]],down, [[],[GLl],[Event2, Al pha]]) :-
Event2 = | ower.

%86 control | er
init(T,controller,[[D]|_],[idle],system :-
D $= 0.

flow(T1, T2, controller,[[D1]]|_],[[D2]|_1) :-
D2 $>= 0.

init(T,idle, [[]]_],[],controller).

flow(T1, T2, idle, [[],[D1]|_],[[].[D2]|_]) :-

D2 $= D1+0x(T2-T1).

trans(T,idle,[[],[D,[Eventl, Alpha]],idle,[[],[D],[Event2, Al pha]]) :-
Event2 = in.

trans(T,idle, [[],[D1],[Eventl, Al pha]],lower,[[],[D2],[Event2, Al pha]]) :-
Event2 = app,

D2 $= 0.

trans(T,idle, [[],[D1],[Eventl, Al pha]],raise,[[],[D2],[Event2, Al pha]]) :-
Event2 = exit,

D2 $= 0.

init(T,lower,[[]|_],[],controller).

flowm(T1, T2, lower,[[],[D1], [Event, Al pha]],[[].[D2],[Event, Al pha]]) :-
D2 $=< Al pha,

D2 $= D1+1%(T2-T1).

trans(T,lower,[[].[D],[Eventl, Alpha]],lower,[[],[D],[Event2, Al phal]) :-
Event2 = app ; Event2 = in.

trans(T,lower,[[],[D],[Event1, Alpha]],idle,[[],[D,[Event2, Alphal]) :-

148 A Appendix

Event2 = | owner.

trans(T,lower,[[],[D1],[Eventl, Al pha]],raise,[[],[D2],[Event2, Al pha]]) :-

Event2 = exit,
D2 $= 0.

init(T,raise,[[]1|_].[],controller).

flow(T1, T2, raise,[[],[D1],[Event, Al pha]],[[].[D2],[Event, Al pha]]) :-
D2 $=< Al pha,

D2 $= D1+1%(T2-T1).

trans(T,raise,[[].[D,[Eventl, Alpha]],raise,[[],[D],[Event2, Alphal]) :-
Event2 = exit ; Event2 = in.

trans(T,raise,[[],[D],[Eventl, Alpha]],idle,[[],[D,[Event2, Al phal]) :-
Event2 = rai se.

trans(T,raise,[[],[D1],[Eventl, Al pha]],lower,[[],[D2],[Event2, Al pha]]) :-

Event 2 = app,
D2 $= 0.

References

Abrial, J.-R. (2009). Modeling in Event-B: System and Software Engineeri@ambridge
University Press.

Alur, R., Courcoubetis, C., and Dill, D. (1993). Model-ckéy in dense real-time.Inf.
Comput, 104(1):2-34.

Alur, R., Courcoubetis, C., Henzinger, T. A., Ho, P.-H., dllm, X., Olivero, A., Sifakis, J.,
and Yovine, S. (1994). The algorithmic analysis of hybridteyns. InICAOS: Inter-
national Conference on Analysis and Optimization of SysterDiscrete-Event Systems
Lecture Notes in Control and Information Sciences 1994ep&31—-351. Springer, Berlin,
Heidelberg, New York.

Alur, R., Dang, T., Esposito, J. M., Fierro, R. B., Hur, Y.ahcic, F., Kumar, V., Lee, |., Mishra,
P., Pappas, G. J., and Sokolsky, O. (2001). Hierarchicafithyhodeling of embedded
systems. IEEMSOFT '01: Proceedings of the First International Workgtan Embedded
Software pages 14-31, London, UK. Springer-Verlag.

Alur, R. and Dill, D. (1994). A Theory of Timed Automata-heoretical Computer Science
126(2):183-235.

Alur, R., Feder, T., and Henzinger, T. A. (1996a). The besefftrelaxing punctuality.J.
ACM, 43(1):116-146.

Alur, R., Grosu, R., Hur, Y., Kumar, V., and Lee, I. (2000). dMdar specification of hybrid
systems in charon. IRSCC '00: Proceedings of the Third International Workshap o
Hybrid Systems: Computation and Confmpages 6-19, London, UK. Springer-Verlag.

Alur, R. and Henzinger, T. (1992). Logics and models of re@akt A survey. Real Time:
Theory in Practice, Lecture Notes in Computer Sciel6€9:74—106.

Alur, R. and Henzinger, T. (1994). A really temporal logidournal of the ACM (JACM)
41(1):203.

Alur, R. and Henzinger, T. A. (1993). Real-time logics: Cdexity and expressivenessn-
formation and Computatiqri04(1):35-77.

Alur, R., Henzinger, T. A., and Ho, P.-H. (1996b). Automatjenbolic verification of embed-
ded systemslEEE Transactions on Software Engineer,i2@(3):181-201.

Alur, R. and Kurshan, R. P. (1996). Timing analysis in COSPABKcture Notes in Computer
Sciencel1066:220-231.

Alur, R. and Yannakakis, M. (1998). Model checking of hieracal state machineSIGSOFT
Softw. Eng. Note3(6):175-188.

Apt, K. R. and Wallace, M. (2007 Constraint Logic Programming Using Eclips€ambridge
University Press, Cambridge, UK.

Arai, T. and Stolzenburg, F. (2002). Multiagent systemsgation by uml statecharts aim-
ing at intelligent manufacturing. pages 11-18.

Balarin, F. and Sangiovanni-Vincentelli, A. L. (1994).rk&ve algorithms for formal verifica-
tion of embedded real-time systems. IBCAD '94: Proceedings of the 1994 IEEE/ACM
international conference on Computer-aided desigages 450-457, Los Alamitos, CA,
USA. IEEE Computer Society Press.

Banda, G. and Gallagher, J. P. (2008). Analysis of linearidydystems in CLP. In Hanus, M.,
editor,Pre-Proceedings of LOPSTR 2008 — 18th International Syiaposn Logic-Based
Program Synthesis and Transformatigrages 58-72. Technical University of Valencia,
Spain.

Bauer, B., Muller, J. P., and Odell, J. (2001). Agent umbtafalism for specifying multiagent
software systems. IRirst international workshop, AOSE 2000 on Agent-oriergeftware
engineeringpages 91-103, Secaucus, NJ, USA. Springer-Verlag New, ¥aock

150 A Appendix

Behrmann, G., David, A., and Larsen, K. G. (2004). A tutodalUppaal. In Bernardo, M.
and Corradini, F., editor&roceedings of 4th International School on Formal Methaxts f
the Design of Computer, Communication, and Software Sgsteformal Methods for the
Design of Real-Time Systems (SFM-RINCS 3185, pages 200-236. Springer, Berlin,
Heidelberg, New York.

Bellini, P., Mattolini, R., and Nesi, P. (2000). Temporagjics for real-time system specifica-
tion. ACM Comput. Sury32(1):12-42.

Ben-Ari, M., Pnueli, A., and Manna, Z. (1983). The tempomit of branching time Acta
Informaticg 20(3):207-226.

Bengtsson, J., Larsen, K., Larsson, F., Pettersson, PYiaid (1996). Uppaal—a tool suite
for automatic verification of real-time systems. Pmoceedings of the DIMACS/SYCON
workshop on Hybrid systems Il : verification and contnohges 232-243, Secaucus, NJ,
USA. Springer-Verlag New York, Inc.

Bengtsson, J. and Yi, W. (2004). Timed automata: Semargigsyithms and tools. In De-
sel, J., Reisig, W., and Rozenberg, G., editbestures on Concurrency and Petri Nets
LNCS 3098, pages 87-124. Springer, Berlin, Heidelberg, Mefk.

Bermudez, J. L. (2009Decision theory and rationalityOxford University press.

Biere, A., Cimatti, A., Clarke, E. M., and Zhu, Y. (1999). Skaiic model checking without
BDDs. InProceedings of 5th International Conference on Tools argbAthms for Con-
struction and Analysis of Systems (TACAS)JCS 1579, pages 193-207. Springer, Berlin,
Heidelberg, New York.

Bouajjani, A., Echahed, R., and Sifakis, J. (1993). On maotetking for real-time properties
with durations. InProceedings, Eighth Annual IEEE Symposium on Logic in Coenpu
pages 147-159. IEEE Computer Society.

Bouajjani, A., Tripakis, S., and Yovine, S. (1997). On-thesymbolic model checking for
real-time systems. IRroc. of the 18th IEEE Real-Time Systems Sympqgages 232—
243.

Burgess, J. P. (1984). Basic tense lodt#andbook of philosophical logi@:89-133.

Cabac, L. and Moldt, D. (2004). Formal semantics for aumhaggeraction protocol dia-
grams. In Odell, J., Giorgini, P., and Miller, J. P., editékgent-Oriented Software En-
gineering V, 5th International Workshop, AOSE 2004, Nevk YidlY, USA, July 19, 2004,
Revised Selected Papevslume 3382 of ecture Notes in Computer Scienpages 47—61.
Springer.

Cansell, D., Abrial, J., et al. (2004). B4fre&.set of tools for B development. Available from:
http://www.b4free.com

Cassez, F. and Roux, O. H. (2006). Structural translatiomfiime petri nets to timed au-
tomata. Journal of Systems and Softwa®(10):1456 — 1468. Architecting Dependable
Systems.

Cataldo, A., Hylands, C., Lee, E., Liu, J., Liu, X., Neuerfte S., and Zheng, H. (2003).
Hyvisual: A hybrid system visual modeler. Technical rep&dCB/ERL M03/1, UC
Berkely. available at http://ptolemy.eecs.berkeleyllegvisual.

Celaya, J., Desrochers, A., and Graves, R. (2009). Modelird) analysis of multi-agent
systems using petri netdournal of Computers4(10):981- 996.

Chainbi, W. (2004). Multi-agent systems: A petri net witheatis based approachtelligent
Agent Technology, IEEE / WIC / ACM International Confereang0:429-432.

Chaochen, Z., Hoare, C. A. R., and Ravn, A. P. (1991). A cakof durationsInformation
Processing Letter10(5):269-276.

References 151

Ciarlini, A. and Fruhwirth, T. (2000). Automatic derivati of meaningful experiments for
hybrid systems Proceeding of ACM SIGSIM Conf. on Atrtificial Intelligencé@n8lation,
and Planning (AIS’0Q)

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, Ristore, M., Roveri, M., Sebastiani,
R., and Tacchella, A. (2002). NuSMV Version 2: An OpenSodimel for Symbolic Model
Checking. InProc. International Conference on Computer-Aided Vertfaa(CAV 2002)
volume 2404 oLLNCS Copenhagen, Denmark. Springer.

Clarke, E., Grumberg, O., and Peled, D. (1999pdel checking Springer.

Colmeraue, A. (1984). Equations and inequations on finitkiafinite trees. IrProceedings
of the 2nd International Conference on Fifth Generation @ater Systemgages 85-99.

Colmerauer, A. (1990). An introduction to prolog iitommun. ACM33(7):69-90.

da Silva, V., Choren, R., and de Lucena, C. (2004). A UML baggatoach for modeling and
implementing multi-agent systems. pages 914-921.

David, R. (1997). Modeling of hybrid systems using continsi@nd hybrid petri nets. In
PNPM '97: Proceedings of the 6th International Workshop etrifNets and Performance
Models page 47, Washington, DC, USA. IEEE Computer Society.

de Weerdt, M., ter Mors, A., and Witteveen, C. (2005). Malgient planning: An introduction
to planning and coordination. IHandouts of the European Agent Summer Schuajes
1-32.

Decker, K. S. and Lesser, V. R. (1998). Designing a familyamirdination algorithms. pages
450-457.

Del Bianco, V., Lavazza, L., and Mauri, M. (2002). Model ckieg uml specifications of real
time software. page 203.

Delzanno, G. and Podelski, A. (1999). Model checking in CLLR Proceedings of 5th In-
ternational Conference on Tools and Algorithms for Conginn and Analysis of Systems
(TACAS)LNCS 1579, pages 223-239. Springer, Berlin, Heidelbegsyy Nork.

Delzanno, G. and Podelski, A. (2001). Constraint-basedctia@ model checkinglnterna-
tional Journal on Software Tools for Technology Transfér{¥), 3(3):250-270.

Deshpande, A., Gollu, A., and Varaiya, P. (1997). Shifttohmalism and a programming
language for dynamic networks of hybrid automataHirid Systems I\pages 113-133,
London, UK. Springer-Verlag.

DesJardins, M. E., Durfee, E. H., Ortiz, C. L., Jr., and Wdiwe, M. J. (2000). Survey of
research in distributed, continual plannigy. MAG, 20(4):13-22.

Dill, D. L. and Wong-Toi, H. (1995). Verification of real-tiensystems by successive over and
under approximation. lfProceedings of the 7th International Conference on Compute
Aided Verification pages 409-422, London, UK. Springer-Verlag.

Dincbas, M., Hentenryck, P. V., Simonis, H., Aggoun, A., {3/&, and Berthier, F. (1988).
The constraint logic programming language chipPhoceedings of the international con-
ference on fifth generation computer systepages 693-702.

Egerstedt, M. (2000). Behavior Based Robotics Using HyBritbmata. LECTURE NOTES
IN COMPUTER SCIENCHages 103-116.

Eker, S., Meseguer, J., and Sridharanarayanan, A. (2062)maude Itl model checkeElectr.
Notes Theor. Comput. Scr.1.

El Fallah-Seghrouchni, A., Degirmenciyan-Cartault, hdaarc, F. (2003). Framework for
Multi-agent Planning Based on Hybrid AutomataECTURE NOTES IN COMPUTER
SCIENCE pages 226-235.

Emerson, E. A., Mok, A. K., Sistla, A. P., and Srinivasan,1R292). Quantitative temporal
reasoning Real-Time Syst4(4):331-352.

Fagin, R. (2003)Reasoning about knowledg&he MIT Press.

152 A Appendix

FIPA (2002). Contract Net Interaction Protocol Specifizati Available from:
http://www.fipa.org/specs/fipa00029/SC00029H.pdf.

Fox, M. S., Barbuceanu, M., and RuneTeigen. (2000). Ageiefited supply-chain manage-
ment. International Journal of Flexible Manufacturing Systerh2(2):165—-188.

Franzle, M. and Herde, C. (2007). HySAT: An efficient proofgae for bounded model
checking of hybrid system$ormal Methods in System Desig30(3):179-198.

Frehse, G. (2005). PHAVer: Algorithmic verification of hydbrsystems past HyTech. In
Morari, M. and Thiele, L., editordjlybrid Systems: Computation and Control, 8th Interna-
tional Workshop, ProceedingeNCS 3414, pages 258-273. Springer, Berlin, Heidelberg,
New York.

Furbach, U., Murray, J., Schmidsberger, F., and Stolzenlur(2008). Hybrid multiagent
systems with timed synchronization — specification and rhoklecking. In Dastani, M.,
El Fallah Seghrouchni, A., Ricci, A., and Winikoff, M., edit, Post-Proceedings of 5th
International Workshop on Programming Multi-Agent Systeah6th International Joint
Conference on Autonomous Agents & Multi-Agent Systeial 4908, pages 205-220.
Springer.

Gehrke, J. D., Behrens, C., Jedermann, R., and Morales KEig&006). The intelligent
container - toward autonomous logistic processeXI18006 Demo Presentationpages
15-18. Universitat Bremen. Published on CD-ROM.

Ghomri, L. and Alla, H. (2007). Modeling and analysis usindptid petri nets. Nonlinear
Analysis: Hybrid System4(2):141 — 153. Nonlinear Hybrid Control Systems.

Giunchiglia, F. and Traverso, P. (2000). Planning as ModedRing. LECTURE NOTES IN
COMPUTER SCIENCHages 1-20.

Gnesi, S., Latella, D., and Massink, M. (1999). Model chegkiml statechart diagrams using
jack. INHASE '99: The 4th IEEE International Symposium on High-fasce Systems
Engineering pages 46-55, Washington, DC, USA. IEEE Computer Society.

Graf, S., Ober, I., and Ober, I. (2006). A real-time profile @ML. International Journal on
Software Tools for Technology Transfer (ST,18(2):113-127.

Gulwani, S. and Tiwari, A. (2008). Constraint-based apphdar analysis of hybrid systems.
In Raskin, J.-F. and Thiagarajan, P. S., edit®receedings of 20th International Confer-
ence on Computer Aided Verification (CAV 2008)ICS 5123, pages 190-203, Princeton,
NJ. Springer, Berlin, Heidelberg, New York.

Gupta, G. and Pontelli, E. (1997). A constraint-based aggrdor specification and verifica-
tion of real-time system®roceedings of IEEE Real-time Symposijages 230-239.

Halbwachs, N., Proy, Y., and Raymond, P. (1994). Verificatid linear hybrid systems
by means of convex approximations. $tatic Analysis — Proceedings of 1st Interna-
tional Static Analysis Symposium (SAS;94)CS 864, pages 223—-223, Namur, Belgium.
Springer, Berlin, Heidelberg, New York.

Harel, D. (1987). Statecharts: A visual formalism for coexpbystemsScience of Computer
Programming 8(-):231-274.

Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, dherman, R., and Shtul-Trauring,
a. (1988). Statemate: a working environment for the devetop of complex reactive
systems. INCSE '88: Proceedings of the 10th international confereaneSoftware engi-
neering pages 396-406, Los Alamitos, CA, USA. IEEE Computer Sydpeess.

Harel, D. and Pnueli, A. (1985). On the development of reacystems. pages 477-498.

Harel, E., Lichtenstein, O., and Pnueli, A. (1990). Explidbck temporal logic. InPro-
ceedings, Fifth Annual IEEE Symposium on Logic in Computen8e, 4-7 June 1990,
Philadelphia, Pennsylvania, USpages 402—413. IEEE Computer Society.

References 153

Henzinger, T. (1996). The theory of hybrid automata. Pnoceedings of the 11th Annual
Symposium on Logic in Computer Scienpages 278-292, New Brunswick, NJ. IEEE
Computer Society Press.

Henzinger, T., Ho, P.-H., and Wong-Toi, H. (1995). A userdguio HyTech. IrProceedings
of International Conference on Tools and Algorithms for @enstruction and Analysis of
Systems (TACAS)NCS 1019, pages 41-71. Springer, Berlin, Heidelberg, Nexi.

Henzinger, T., Horowitz, B., Majumdar, R., and Wong-Toi,(B000). Beyond HYTECH: Hy-
brid Systems Analysis Using Interval Numerical Method£CTURE NOTES IN COM-
PUTER SCIENCEpages 130-144.

Henzinger, T., Kopke, P., Puri, A., and Varaiya, P. (1998Ahat’s Decidable about Hybrid
Automata?Journal of Computer and System Sciené&d41):94-124.

Henzinger, T. A. (2000). Masaccio: A formal model for embedidomponents. IMCS '00:
Proceedings of the International Conference IFIP on Thecat Computer Science, Ex-
ploring New Frontiers of Theoretical Informaticsages 549-563, London, UK. Springer-
Verlag.

Henzinger, T. A., Ho, P.-H., and Wong-Toi, H. (1997). Hyteéhmodel checker for hybrid
systems. IICAV '97: Proceedings of the 9th International ConferenceCamputer Aided
Verification pages 460-463, London, UK. Springer-Verlag.

Henzinger, T. A., Ho, P.-H., and Wong-Toi, H. (1998b). Aliglomic analysis of nonlinear
hybrid systemslEEE Transactions on Automatic Contrdi3:540-554.

Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, 3994). Symbolic model checking
for real-time systemdnf. Comput, 111(2):193-244.

Hickey, T. J. and Wittenberg, D. K. (2004a). Rigorous maugbf hybrid systems using inter-
val arithmetic constraints. In Alur, R. and Pappas, G. Jtoex] Proceedings of 7th Interna-
tional Workshop on Hybrid Systems: Computation and Co#S8ICC 2004)LNCS 2993,
pages 402-416, Philadelphia, PA, USA. Springer, Berlirdelkierg, New York.

Hickey, T. J. and Wittenberg, D. K. (2004b). Using analytic®xo model and analyze hybrid
systems. IrProceedings of the 17th International Florida Artificialtelligence Research
Society ConferencdAAl Press.

Holzmann, G. (1997). The model checker SPIREE Transactions on software engineering
23(5):279-295.

Hutzler, G., Klaudel, H., and Wang, D. Y. (2005). Towardsdarautomata and multi-agent
systems. InFormal Approaches to Agent-Based Systems, Third IntemaltiWorkshop,
FAABS 2004, Greenbelt, MD, USA, April 26-27, 2004, Revistdc&d Papersvolume
3228 ofLecture Notes in Computer Scienpages 161-172. Springer.

Jaffar, J. and Lassez, J. (1987). Constraint logic progriagumin Proceedings of the 14th
ACM SIGACT-SIGPLAN symposium on Principles of programrgnguagespages 111—
119. ACM New York, NY, USA.

Jaffar, J., Michaylov, S., Stuckey, P., and Yap, R. (1992)e TLP(R) language and system.
ACM Transactions on Programming Languages and Syst&4(3):339—-395.

Jaffar, J., Santosa, A., and Voicu, R. (2004). A clp prooftmdtfor timed automataReal-
Time Systems Symposium, IEEE Internatip@zl75—186.

Jahanian, F. and Mok, A. K. (1986). Safety analysis of tinpngperties in real-time systems.
IEEE Trans. Softw. Eng12(9):890-904.

Jahanian, F. and Mok, A. K. (1994). Modechart: A specificatanguage for real-time sys-
tems.|EEE Trans. Softw. Eng20(12):933-947.

James, P. (1977). Petri neSCM Computing Survey9(3):223—-252.

Jemni Ben Ayed, L. and Siala, F. (2008). Specification anidigation of multi-agent systems
interaction protocols using a combination of auml and ebemages 102—-107.

154 A Appendix

Kesten, Y. and Pnueli, A. (1991). Timed and hybrid statetsterd their textual representation.
In Proceedings of the Second International Symposium on Hofetaniques in Real-Time
and Fault-Tolerant Systempages 591-620, London, UK. Springer-Verlag.

Knapp, A., Merz, S., and Rauh, C. (2002). Model checkingetin ML state machines and
collaborations Lecture notes in computer sciengages 395-416.

Kopke, Jr., P. W. (1996)The theory of rectangular hybrid automatBhD thesis, Ithaca, NY,
USA. Adviser-Henzinger, Thomas A.

Koymans, R. (1990). Specifying real-time properties witbtrit temporal logic.Real-Time
Systems2(4):255—-299.

Larsen, K. G., Pettersson, P., and Yi, W. (1997). Uppaal irutshell. International Journal
on Software Tools for Technology Transfer (ST ()):134-152.

Lilius, J. and Porres, 1. (1999). Formalising UML state niaeb for model checking. page
430.

Manna, Z. and Pnueli, A. (1992)The temporal logic of reactive and concurrent systems:
Specification Springer.

McMillan, K. (1993). Symbolic model checking: an approach to the state-expigsioblem
. Kluwer Academic.

Mikk, E., Lakhnech, Y., Siegel, M., and Holzmann, G. J. (1998nplementing statecharts
in promela/spin. IMWIFT '98: Proceedings of the Second IEEE Workshop on Inghistr
Strength Formal Specification Techniquesage 90, Washington, DC, USA. IEEE Com-
puter Society.

Mohammed, A. and Furbach, U. (2008a). Modeling multi-adegistic process system using
hybrid automata. In Ultes-Nitsche, U., Moldt, D., and Augyd. C., editorsin Proceed-
ings of the 7th International Workshop on Modelling, Sintiola, Verification and Valida-
tion of Enterprise Information Systems, MSVVEIS 2@@8es 141-149, Barcelona, Spain.
INSTICC PRESS. Held in conjunction with 10th Internatio@ainference on Enterprise
Information Systems (ICEIS 2008).

Mohammed, A. and Furbach, U. (2008b). Using CLP to modelidydystems. IfProceedings
of Annual ERCIM Workshop on Constraint Solving Programm{i@@CLP2008) Rome,
Italy. Published online http://pst.istc.cnr.itt CSCLP08

Mohammed, A. and Furbach, U. (2009a). From reactive to dedifive multi-agent planning.
In Ultes-Nitsche, U., Moldt, D., and Augusto, J. C., editdrs Proceedings of the 7th
International Workshop on Modeling, Simulation, Verifioatand Validation of Enterprise
Information Systems, MSVVEIS 20p8ges 6775, Milan, Italy. INSTICC PRESS. Held in
conjunction with 11th International Conference on Entisginformation Systems (ICEIS
2009).

Mohammed, A. and Furbach, U. (2009b). Multi-agent systedMadeling and verification
using hybrid automata. IRroceedings of the 7th International Workshop on Prograngmi
Multi-Agent Systems (ProMAS 2009), May 10-15, 2009, Bustapeingary Revised Ver-
sion, will appear as the workshop Post-proceedings LNCBn&gr.

Mohammed, A. and Furbach, U. (2010a). Extending ctl to $pegiantitative temporal re-
quirements. In Sopena, J. G. and I. Capel-Tunon, M., editofBroceedings of the 8th In-
ternational Workshop on Modelling, Simulation, Verificatiand Validation of Enterprise
Information Systems, MSVVEIS 20p@ges 70-79, Funchal, Madeira, Portugal. INSTICC
PRESS. Held in conjunction with 11th International Confeeon Enterprise Information
Systems (ICEIS 2010).

Mohammed, A. and Furbach, U. (2010b). Multi-agent systévtadeling and verification us-
ing hybrid automata. In Lars Braubach, J.-P. B. and Thajgfard., editorsProgramming

References 155

Multi-Agent Systems:7th International Workshop,ProM@®® Budapest, Hungary, May
2009, Revised Selected PapdrBIAlI 5919, pages 49—66. Springer, Berlin, Heidelberg.

Mohammed, A., Furbach, U., and Stolzenburg, F. (2010). iMaliot systems: Modeling,
specification, and model checking. In Papic, V., ediRopot Soccerchapter 11, pages
241-265. IN-TECH.

Mohammed, A. and Schwarz, C. (2009). Hieromate: A graphimall for specification and
verification of hierarchical hybrid automata. In B. Mertswh M. H. and Aziz, Z., editors,
K1 2009: Advances in Artificial Intelligence, Proceedindgdfte 32nd German Conference
on Artificial Intelligence LNAI 5803, pages 695-702. Springer.

Mohammed, A. and Stolzenburg, F. (2008). Implementingan@ical hybrid automata us-
ing constraint logic programming. In Schwarz, S., ediRmceedings of 22nd Workshop
on (Constraint) Logic Programmingages 60-71, Dresden. University Halle Wittenberg,
Institute of Computer Science. Technical Report 2008/08.

Mokhati, F., Boudiaf, N., Badri, M., and Badri, L. (2007). afnslating auml diagrams into
maude specifications: A formal verification of agents intéom protocols. Journal of
Object Technology6(4).

Mota, E., Clarke, E. M., Groce, A., Oliveira, W., Falcao,,lnd Kanda, J. (2004). Veriagent:
an approach to integrating uml and formal verification to@kectr. Notes Theor. Comput.
Sci, 95:111-129.

Murray, J. (2004). Specifying agents with UML statechartd &tatEdit. 3020:145-156.
Murray, J., Obst, O., and Stolzenburg, F. (2002). RoboLobl&uz 2001. In Birk, A., Corade-
schi, S., and Tadokoro, S., editoRoboCup 2001: Robot Soccer World Cud WAl 2377,

pages 526-530. Springer, Berlin, Heidelberg, New York.nTeascription.

Miller, O., David, A., and Yi, W. (2003). Verification of umlatechart with real-time exten-
sions. pages 218-232.

Nau, D., Ghallab, M., and Traverso, P. (2004)\utomated Planning: Theory & Practice
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Nicollin, X., Sifakis, J., and Yovine, S. (1992). From atptitmed graphs and hybrid systems.
In Proceedings of the Real-Time: Theory in Practice, REX Wamgpages 549-572, Lon-
don, UK. Springer-Verlag.

Nilsson, U. and Lubcke, J. (2000). Constraint logic progmgng for local and symbolic
model-checking. I'€L '00: Proceedings of the First International Conferenage@ompu-
tational Logig pages 384-398, London, UK. Springer-Verlag.

Olderog, E.-R. and Dierks, H. (2008}eal-Time Systems: Formal Specification and Automatic
Verification Cambridge University Press.

Ostroff, J. and Wonham, W. (1990). A framework for real-tidiscrete event controlEEE
Transactions on Automatic Contrd5(4):386—-397.

Pereira, S. L. and Barros, L. N. (2008). A logic-based adeattplans for extended reachabil-
ity goals. Autonomous Agents and Multi-Agent Systel8$3):327—344.

Pistore, M. and Traverso, P. (2001). Planning as model ¢hgdkr extended goals in non-
deterministic domains. IRICAI'01: Proceedings of the 17th international joint cerénce
on Atrtificial intelligence pages 479-484, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Pnueli, A. (1977). The temporal logic of programs. Houndations of Computer Science,
1977., 18th Annual Symposium, ages 46-57.

Pnueli, A. and Harel, E. (1988). Applications of temporalitoto the specification of real-
time systems. IIBystems, Proceedings of a Symposium on Formal TechnigReslfTime
and Fault-Tolerant Systempages 84—98, London, UK. Springer-Verlag.

156 A Appendix

Ramakrishnan, C. R., Ramakrishnan, I. V., Smolka, S. A.,dDdh Du, X., Roychoudhury,
A., and Venkatakrishnan, V. N. (2000). Xmc: A logic-progmaimg-based verification
toolset. INCAV '00: Proceedings of the 12th International ConferenneComputer Aided
Verification pages 576-580, London, UK. Springer-Verlag.

Rossi, F. (2000). Constraint (logic) programming: a sureeyresearch and applications.
Lecture Notes in Computer Sciend®65:40-74.

Roy, V. and Simone, R. d. (1991). Auto/autographCHK '90: Proceedings of the 2nd Inter-
national Workshop on Computer Aided Verificatipages 65-75, London, UK. Springer-
Verlag.

Ruh, F. (2007)A translator for cooperative strategies of mobile agentddar-legged robots
Master thesis, Dept. of Automation and Computer Scienceshkthule Harz, Hochschule
Harz.

Ruh, F. and Stolzenburg, F. (2008). Translating cooperatixategies for robot behavior. In
Nalepa, G. J. and Baumeister, J., editéhgceedings of 4th Workshop on Knowledge En-
gineering and Software Engineering at 31st German Conter@m Artificial Intelligence
pages 85-96, Kaiserslautern. CEUR Workshop Proceedirfyys 42

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and LseenW. (1991)0Object-oriented
modeling and desigrPrentice-Hall, Inc., Upper Saddle River, NJ, USA.

Russell, S., Norvig, P., Canny, J., Malik, J., and Edwardg2D03). Artificial intelligence: a
modern approachPrentice Hall Englewood Cliffs, NJ.

Sahbani, A. and Pascal, J.-C. (2000). Simulation of hyilyglesns using stateflow. In Lan-
deghem, R. V., editol4th European Simulation Multiconference - Simulation &fatl-
elling: Enablers for a Better Quality of Life(SCS Europe.

Scholz-Reiter, B., Windt, K., and Freitag, M. (2004). Automous Logistic Processes-New
Demands and First Approaches. Pmoceedings of the 37th CIRP International Seminar
on Manufacturing Systems, Budapest, Hunggpeges 357-362.

Schwarz, C., Mohammed, A., and Stolzenburg, F. (2010). Adgogironment for specifying
and verifying multi-agent systems. In Filipe, J., Fred, @&d Sharp, B., editor®roceed-
ings of the 2nd International Conference on Agents and aidifintelligence volume 2,
pages 323-326. INSTICC Press.

Tadokoro, S. et al. (2000). The RoboCup-Rescue project:hatio approach to the disaster
mitigation problem. InProceedings of IEEE International Conference on Robotind a
Automation (ICRA 200Qpages 4089-4104.

UML (2009). OMG Unified Modeling Language (OMG UML): Infrastructure; (gustruc-
ture. Object Management Group, Inc.

Urbina, L. (1996). Analysis of hybrid systems in CLP(R) Rroceedings of 2nd International
Conference on Principles and Practice of Constraint Pragnaing (CP’96) LNAI 1118,
pages 451-467.

Van Benthem, J. and ter Meulen, A., editors (19%andbook of Logic and languagé&lse-
vier.

Wang, J. (1998)Timed Petri nets: Theory and applicatioKluwer Academic Publishers.

Wen, W. and Mizoguchi, F. (1999). Analysis and verificatidmmuulti-agent interaction pro-
tocols. INAPSEC '99: Proceedings of the Sixth Asia Pacific Softwardri&eging Confer-
ence page 252, Washington, DC, USA. IEEE Computer Society.

Wielemaker, J. (2008)SWI-Prolog 5.6 — Reference ManudJniversity of Amsterdam, Am-
sterdam, The Netherlands. Updated for version 5.6.59.

Wood, M. and DelLoach, S. (2001). An Overview of the Multiag&ystems Engineering
Methodology.LECTURE NOTES IN COMPUTER SCIENGiages 207-222.

References 157

Wooldridge., M. (2002). An introduction to multiagent syists. John Willey & Sons, New
York

Wooldridge, M. and Jennings, N. (1995). Intelligent agemteeory and practiceKnowledge
engineering reviewl0(2):115-152.

Yovine, S. (1997). Kronos: A verification tool for real-tirsgstemslinternational Journal on
Software Tools for Technology Transfer (ST,TI{}L):123-133.

Curriculum Vitae

Personal Data

e Ammar Mohammed Ammar
1.11.1977, Cairo, Egypt.

Education

e M.Sc., Computer Science, March 2005, Department of Compute
and Information Science, ISSR, University of Cairo, CakEgypt.
Thesis Title: A Multi-Agent System for Solving a ScheduliRgob-
lem.

e May 2002: Preliminary Master courses leading to M.Sc regist
tion , May 2002, Department of Computer and Information Sci-
ence, ISSR, University of Cairo, Egypt.

e B.Sc., Computer Science, May 1999, Faculty of Science, &isity
of Cairo, Egypt Very Good with honor class.

Professional Career

e October 2006—today: Joining Al Research Group, Departroént
Computer Science, University of Koblenz-landau.

e March 2005-today: Assistant Lecturer, Department of Camepu
and Information Sceince,Institute of Statistical Studéesl Re-
search, University of Cairo, Egypt.

e April 2000—March 2005: Teaching Assistant,Department ofnc
puter and Information Sceince,Institute of Statisticaldits and
Research, University of Cairo, Egypt.

	Introduction
	Overview and Motivation
	Contributions
	Publications
	Structure of the Thesis

	Part I Background
	Background literature
	Introduction
	Hybrid Automata
	What is Hybrid Automaton ?
	Automata Composition
	Classes of Hybrid Automata

	Reachability of Hybrid Automata

	Multi-agent Scenario as Hybrid Automata
	Introduction
	Autonomous Logistic Processes
	 Scenario Description

	Model Specification
	Model Checking Using Hytech
	Related work

	Part II A Noval Framework
	The Model
	Introduction
	Illustrative Example
	Hybrid State Machines
	Running Example
	Syntax
	Semantics
	Hybrid State Machines Composition

	Constraint-Based Modeling
	Overview of Constraint Logic Programming
	Hybrid Automata in CLP
	Model Analysis

	Region Computation Tree Logic:Specification
	Introduction
	Region Computation Tree Logic (RCTL)
	Syntax of RCTL
	Semantics of RCTL

	Model Checking as Reachability
	 Reachability Properties
	Safety as Reachability
	 Additional Requirements

	Related Quantitative Languages
	Linear Time Logics
	Branching Time logics

	Experimental Results and Related Work
	Benchmarks
	Evaluation and Discussion
	Related Works
	Algorithmic Approaches
	Constraints Based Approaches

	Part III Extensions to the Framework
	Deliberative Multi-agent Planning
	Introduction
	Planning
	Planning as Model Checking
	Deliberative Actions

	Planning Scenario
	Planning Model
	Planning as Reachability Analysis

	Hierarchical Model
	Introduction
	Statecharts Basics
	Hybrid Statecharts
	Syntax
	Semantics

	Hierarchy Implementation with CLP
	Testing Hierarchy

	Related work

	From Graphical Modeling to Formal analysis
	Introduction
	Robocup Rescue Scenario
	The HieroMate tool
	HieroMate at a Glance
	The Graphical Interface
	Examples with Model checking

	Related Work

	Part IV Conclusion
	Final Remarks
	Summary and Future Work

	Appendix
	References

