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Abstract

The semantic web and model-driven engineering are changing the enterprise
computing paradigm. By introducing technologies like ontologies, metadata
and logic, the semantic web improves drastically how companies manage
knowledge. In counterpart, model-driven engineering relies on the principle
of using models to provide abstraction, enabling developers to concentrate on
the system functionality rather than on technical platforms.

The next enterprise computing era will rely on the synergy between both
technologies. On the one side, ontology technologies organize system knowl-
edge in conceptual domains according to its meaning. It addresses enterprise
computing needs by identifying, abstracting and rationalizing commonalities,
and checking for inconsistencies across system specifications. On the other
side, model-driven engineering is closing the gap among business requirements,
designs and executables by using domain-specific languages with custom-built
syntax and semantics.

In this scenario, the research question that arises is: What are the scientific
and technical results around ontology technologies that can be used in model-
driven engineering and vice versa? The objective is to analyze approaches
available in the literature that involve both ontologies and model-driven en-
gineering. Therefore, we conduct a literature review that resulted in a feature
model for classifying state-of-the-art approaches. The results show that the
usage of ontologies and model-driven engineering together have multiple pur-
poses: validation, visual notation, expressiveness and interoperability.

While approaches involving both paradigms exist, an integrated approach
for UML class-based modeling and ontology modeling is lacking so far. There-
fore, we investigate the techniques and languages for designing integrated
models. The objective is to provide an approach to support the design of in-
tegrated solutions. Thus, we develop a conceptual framework involving the
structure and the notations of a solution to represent and query software ar-
tifacts using a combination of ontologies and class-based modeling. As proof
of concept, we have implemented our approach as a set of open source plug-
ins – the TwoUse Toolkit.
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The hypothesis is that a combination of both paradigms yields improve-
ments in both fields, ontology engineering and model-driven engineering. For
MDE, we investigate the impact of using features of the Web Ontology Lan-
guage in software modeling. The results are patterns and guidelines for design-
ing ontology-based information systems and for supporting software engineers
in modeling software. The results include alternative ways of describing classes
and objects and querying software models and metamodels. Applications show
improvements on changeability and extensibility.

In the ontology engineering domain, we investigate the application of tech-
niques used in model-driven engineering to fill the abstraction gap between
ontology specification languages and programming languages. The objective
is to provide a model-driven platform for supporting activities in the ontology
engineering life cycle. Therefore, we study the development of core ontologies
in our department, namely the core ontology for multimedia (COMM) and
the multimedia metadata ontology. The results are domain-specific languages
that allow ontology engineers to abstract from implementation issues and con-
centrate on the ontology engineering task. It results in increasing productivity
by filling the gap between domain models and source code.



Zusammenfassung

Wissenschaftliche und wirtschaftliche Initiativen haben immer mehr Inter-
esse an der Integration von Ontologien und Software-Entwicklung. Das World
Wide Web Consortium (W3C) und die Object Management Group (OMG)
haben in den letzten Jahren Arbeitsgruppen zur Erforschung des Zusam-
menwirkens des Semantischen Webs und der Software-Entwicklung ins Leben
gerufen.

Bezüglich der Integration von Ontologien und modellgetriebener Software-
Entwicklung entstehen permanent Gebiete zur Erforschung neuer Technolo-
gien, die die Erhöhung des Abstraktionsgrades bereitstellen. Obwohl Ontolo-
gien in der Informatik zu den konzeptuellen Modellen gehören, werden sie
anders und mit verschiedenen Technologien im Vergleich zur klassenbasierten
und objektorientierten Softwareentwicklung eingesetzt.

In diesem Szenario ist die Fragestellung für die Forschung: Welche wis-
senschaftlichen und technischen Ergebnisse im Bereich von Ontologien und
zugehörigen Werkzeugen existieren, die in modellgetriebener Software- En-
twicklung und dem Entwurf von Ontologien eingesetzt werden können? Ziel
dieser Arbeit ist es, Ansätze in der Literatur zu untersuchen, die die In-
tegration beider Bereiche ermöglicht. Deshalb führen wir eine Literatur-
recherche durch, die als Ergebnis eine Klassifizierung von modernen Entwick-
lungsansätzen liefert. Die Ergebnisse zeigen, dass der gemeinsame Einsatz
von Ontologien und modellgetriebener Software-Entwicklung verschiedenen
Zwecken dient: Der Validierung von visuellen Notationen, der Erhöhung der
Ausdruckskraft vieler Sprachen in der Software-Entwicklung und der Interop-
erabilität.

Während Ansätze zur Einbeziehung beider Paradigmen existieren, ist ein
integriertes Konzept für die klassenbasierte Modellierung und den Entwurf
von Ontologien bisher nicht vorhanden. Daher untersuchen wir ebenfalls die
Techniken und Sprachen zur Gestaltung integrierter Modelle. Das Ziel ist,
ein Konzept für die Gestaltung von integrierten Lösungen zu erstellen. Da-
her haben wir ein Konzept entwickelt, das die Strukturen und die Notationen
bietet, um Softwareartefakte unter Verwendung einer Kombination aus On-
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tologien und klassenbasierter Modellierung zu repräsentieren und anzufragen.
Wir haben eine Reihe von frei verfügbaren Komponenten (Plugins) als Mach-
barkeitsnachweis unserer Vorgehensweisen entwickelt, zusammen bilden sie
das TwoUse Toolkit.

Die Hypothese dieser Arbeit ist, dass eine Kombination der beiden Paradig-
men Verbesserungen in beiden Bereichen, sowohl im Entwurf von Ontologie
als auch in der modellgetriebenen Software-Entwicklung, bringt. Bezüglich
modellgetriebene Software-Entwicklung untersuchen wir den Einfluss der Ver-
wendung von Ontologiesprachen in der Software-Modellierung. Die ausgear-
beiteten Ergebnisse beinhalten Muster und Richtlinien für die Gestaltung
ontologie-basierter Software, darüber hinaus wird so den Entwicklern eine um-
fassende Unterstützung in der Softwaremodellierung geboten. Die Ergebnisse
umfassen alternative Wege zur Beschreibung von Klassen und von Objek-
ten sowie von Anfragen an Softwaremodelle oder Beschreibung von Software-
sprachen. Zu erkennen sind Verbesserungen in den Bereichen Veränderbarkeit
und Erweiterbarkeit von Anwendungen. Für den Entwurf von Ontologien
stellen wir Techniken vor, welche in der modellgetriebenen Software- Entwick-
lung benutzt werden, um die Abstraktionsebene zwischen Ontologie- Spezi-
fikationssprachen und Programmiersprachen zu erhöhen.

Für den Ontologie-Entwurf untersuchen wir die Anwendung von Tech-
niken der modellgetriebenen Software-Entwicklung, um die Lücke zwischen
abstrakten Ontologie-Spezifikationen und des Zugriffs durch Implementation-
sschnittstellen zu schließen. Das Ziel ist, eine Plattform bereitzustellen, die
den Entwicklungsprozess von Ontologien unterstützt. Um dieses Ziel zu er-
reichen, analysieren wir Ontologien und zu deren Entwicklung vorgesehene
Werkzeuge, die im WeST Institut an der Universität Koblenz-Landau en-
twickelt wurden, z.B. Werkzeuge für die Ontologie COMM (core ontology for
multimedia) und die Multimedia-Metadata Ontologie. Die Ergebnisse unserer
Ansätze sind domänenspezifische Sprachen, die die Entwickler von Ontologien
nutzen, um sich auf die Ontologie-Entwicklung zu konzentrieren anstatt Im-
plementationsschnittstellen zu verstehen. Daraus ergibt sich eine Steigerung
der Produktivität.
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1

Introduction

1.1 Motivation

Among recent attempts to improve productivity in software engineering,
model-driven engineering (MDE) is an approach that focuses on the design
of artifacts and on generative techniques to raise the level of abstraction of
physical systems [2]. As model-driven engineering gains momentum, the trans-
formation of artifacts and domain-specific notations become essential in the
software development process.

One of the pre-existing modeling languages that boosted research on MDE
is the Unified Modeling Language (UML). UML is a visual design notation [3]
for designing software systems. It is a general-purpose modeling language,
capable of capturing information about different views of systems, like static
structure and dynamic behavior.

In addition to general-purpose modeling languages, MDE relies on domain-
specific languages (DSL). Such languages provide abstractions and notations
for modeling specific aspects of systems. A variety of domain-specific lan-
guages and fragments of their models is used to develop one large software
system.

Among artifacts produced by multiple modeling languages, MDE faces
the following challenges [4]: support for developers; interoperability among
multiple artifacts and formal semantics of modeling languages. Addressing
these challenges is crucial for the success of MDE.

In contrast, issues like interoperability and formal semantics motivate the
development of ontology web languages. Indeed, the World Wide Web Con-
sortium (W3C) standard Web Ontology Language (OWL) [5], together with
automated reasoning services, provides a powerful solution for formally de-
scribing domain concepts in an extensible way, thus allowing for precise spec-
ification of the semantics of concepts as well as for interoperability between
ontology specifications.

Ontologies provide shared domain conceptualizations representing knowl-
edge by a vocabulary and, typically, logical definitions [6, 7]. OWL provides
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a class definition language for ontologies. More specifically, OWL allows for
the definition of classes by required and implied logical constraints on the
properties of their members.

The strength of OWL modeling lies in disentangling conceptual hierar-
chies with an abundance of relationships of multiple generalization of classes
(cf. [8]). For this purpose, OWL allows for deriving concept hierarchies from
logically precisely defined class axioms stating necessary and sufficient condi-
tions of class membership. The logics of class definitions may be validated by
using corresponding automated reasoning technology.

Ontology engineers usually have to cope with W3C standard specifications
and programming languages for manipulating ontologies. The gap between
W3C specifications and programming language leads ontology engineers to
deal with multiple languages of different natures. For instance, W3C speci-
fications are platform independent, whereas programming languages include
platform specific constructs.

Indeed, addressing these issues has been one of the objectives of model-
driven engineering. MDE allows for developing and managing abstractions of
the solution domain towards the problem domain in software design, turning
the focus from code-centric to transformation-centric.

Understanding the role of ontology technologies like knowledge representa-
tion, automated reasoning, dynamic classification and consistency checking in
MDE as well as the role of MDE technologies like model transformation and
domain-specific modeling in ontology engineering is essential for leveraging
the development of both paradigms.

For example, UML and OWL constitute modeling approaches with strengths
and weaknesses that make them appropriate for specifying distinct aspects of
software systems. UML provides means to express dynamic behavior, whereas
OWL does not. OWL is capable of inferring generalization and specialization
between classes as well as class membership of objects based on the constraints
imposed on the properties of class definitions, whereas UML class diagrams
do not allow for dynamic specialization/generalization of classes and class
memberships or any other kind of inference per se.

Though schemas [9] and UML extensions (UML profiles) for OWL on-
tologies exist, an integrated usage of both modeling approaches in a coherent
framework has been lacking so far. This thesis unveils research problems in-
volving the composition of these two paradigms and presents research methods
to assess the application of a novel framework integrating UML class-based
models and OWL ontologies and technologies.

Investigating the composition of UML class-based modeling and ontology
technologies requires a systematic procedure to address a series of research
questions. Firstly, we need to characterize the fundamental concepts and tech-
nologies around UML class-based modeling and OWL ontologies and to elicit
the requirements of an integrated framework. Consequently, we need to spec-
ify a framework that realizes the integration of both paradigms and fulfills
the requirements previously elicited.
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To analyze the impact of an integrated approach, we need to apply it
in both domains: model-driven engineering and ontology engineering. In the
domain of model-driven engineering, we apply the proposed framework to
address shortcomings of software design and software languages. Our aim is
to reduce complexity and to improve reusability and interoperability.

In the domain of ontology engineering, we tackle issues addressing the gap
in clarity and accessibility of languages that operate ontologies, e.g., ontology
translation languages or ontology APIs generation. Our framework is then
used to support the development of platform independent models, aiming at
improving maintainability and comprehensibility.

In the following subsections, we describe the motivation for investigating
an integration between UML class-based modeling and OWL in Section 1.2. In
Section 1.3, we present the guidelines for reading this thesis and in Section 1.4,
we present the publications covering parts of this thesis.

1.2 Research Questions

Over the last decade, the Semantic Web and the software engineering com-
munities have investigated and promoted the use of ontologies and of UML
class-based modeling as modeling frameworks for the management of schemas.
While the foci of these communities are different, the following question arises:

Question I What are the commonalities and variations around ontology tech-
nologies and model-driven engineering?

By identifying the main features of both paradigms, a comparison of both
leads to the following sub-questions:

Question I.A What are the scientific and technical results around ontologies,
ontology languages and their corresponding reasoning technologies that can
be used in model-driven engineering?

Question I.B What are the scientific and technical results around UML class-
based modeling that can be used in ontology engineering?

While investigating this problem, our goal is to analyze approaches that use
both UML class-based technologies and ontology technologies and to identify
patterns involving both paradigms. The result of such analysis is a feature
model, described in Chapter 4.

The feature model reveals the possible choices for an integrated approach
of OWL ontologies and model-driven engineering and serves as a taxonomy
to categorize existing approaches. Furthermore, the classification allows for
eliciting requirements for a composed approach.

We carry out exploratory research by conducting a domain analysis over
approaches involving UML class-based technologies and ontology technologies
found in the literature. Domain analysis addresses the analysis and modeling
of variabilities and commonalities of systems or concepts in a domain [10].
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The research result is a descriptive model characterized by a feature model
for the area of marrying UML class-based modeling and ontology technologies.

While there exist mappings between these modeling paradigms [1], an anal-
ysis of the outcome of an integrated approach for UML class-based modeling
and OWL is lacking so far. The challenge of this task arises from the large
number of differing properties relevant to each of the two modeling paradigms.

For example, UML modeling provides means to express dynamic behavior,
whereas OWL 2 does not. OWL is capable of inferring generalization and
specialization between classes as well as class membership of objects based
on restrictions imposed on properties of class definitions, whereas UML class
diagrams do not allow for dynamic specialization/generalization of classes and
class memberships or any other kind of inference per se.

Contemporary software development should make use of the benefits of
both approaches to overcome their restrictions. This need leads to the follow-
ing question:

Question II What are the techniques and languages used for designing inte-
grated models?

To address this question, we use the requirements resulting from Prob-
lem I to propose a framework comprising the following building blocks: (i) an
integration of the structure of UML class-based modeling and OWL; (ii) the
definition of notations for denoting integrated artifacts; and (iii) the spec-
ification of a query solution for retrieving elements of integrated artifacts.
Together, these building blocks constitute our original approach to Transform
and Weave Ontologies and UML class-based modeling in Software Engineering
—TwoUse (Figure 1.1).

We analyze the impact of the TwoUse approach with case studies in the
domain of model-driven engineering and ontology engineering.

Applying TwoUse in Model-Driven Engineering

In UML class-based modeling, software design patterns provide elaborated,
best practice solutions for commonly occurring problems in software develop-
ment. However, software design patterns that manage variants delegate the
decision of what variant to choose to client classes. Moreover, the inevitable
usage of several software modeling languages leads to unmanageable redun-
dancy in engineering and managing the same information across multiple ar-
tifacts and, eventually, information inconsistency. The growing demand for
networked and federated environments requires the convergence of existing
web standards and software modeling standards.

In contrast, the strength of OWL modeling lies in disentangling conceptual
hierarchies with multiple generalization of classes [8]. OWL allows for deriv-
ing concept hierarchies from logically precisely defined class axioms stating
necessary and sufficient conditions of class membership.
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Model-Driven Engineering Ontology Technologies

Metamodeling

Model
Transformation

Domain-Specific
Modeling Languages

Ontology
Services

Formalization

The TwoUse
Approach

Fig. 1.1. Context of the Thesis.

OWL provides exclusive features that distinguish it from class-based mod-
eling languages: class expressions, individual equality and class expression ax-
ioms. Hence, the following question arises:

Question III What is the structural impact of using OWL constructs in design-
ing software artifacts?

To address this problem, we work on identifying patterns at the modeling
level as well as at the language level. At the modeling level, we analyze the
situation where the decision of what class to instantiate typically needs to be
specified at a client class. We investigate the following question:

Question III.A How to determine the selection of classes to instantiate using
only class descriptions rather than by weaving the descriptions into class
operations?

In systems that rely on ontologies, i.e., in ontology-based information sys-
tems, the question is the following:

Question III.B How to reuse existing knowledge captured by domain ontologies
in the specification of functional algorithms of ontology-based information
systems?

At the language level, to support the interrelationships of software mod-
eling languages in distributed software modeling environments, we need to
answer the following question:
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Question III.C what and how ontology technologies can help existing modeling
languages in managing the same information across multiple artifacts?

The hypothesis is that an ontology-based approach improves software qual-
ity and provides guidance to software engineers. To test the hypothesis, at
the modeling level, we analyze the TwoUse approach with three case studies:
software design pattern, designing of ontology-based information systems and
model-driven software languages.

At the modeling level, we analyze the application of TwoUse in addressing
drawbacks of software design patterns and in design ontology-based informa-
tion systems. At the language level, we analyze the application of TwoUse
in addressing the transformation and matching of modeling languages into
OWL.

Applying TwoUse in Ontology Engineering

In ontology engineering, the design of ontology engineering services [11] have
drawn the attention of the ontology engineering community in the last years.
However, as ontology engineering services get more complex, current ap-
proaches fail to provide clarity and accessibility to ontology engineers who
need to see and understand the semantic as well as the lexical/syntactic part
of specifying ontology engineering services. Ontology engineers use services in
an intricate and disintegrated manner, that draws their attention away from
the core task proper down into the diverging platform details.

From this scenario, the problem of supporting generative techniques in
ontology engineering services emerges, adding expressiveness without going
into platform specifics, i.e.,

Question IV how to fill the abstraction gap between specification languages and
programming languages?

We propose a representation approach for generative specification of ontol-
ogy engineering services based on model-driven engineering (MDE). In order
to reconcile semantics with lexical and syntactic aspects of the specification,
we integrate these different layers into a representation based on a joint meta-
model.

The hypothesis is that filling the gap between ontology specification lan-
guages and general purpose programming languages helps to improve produc-
tivity, since ontology engineers do not have to be aware of platform-specific
details. Moreover, it simplifies the tasks of maintenance and traceability be-
cause knowledge is no longer embedded in the source code of programming
languages.

We validate our approach with three case studies of three ontology en-
gineering services: ontology mapping, ontology API generation and ontology
modeling.

For ontology mapping, we present a solution for ontology translation spec-
ification that intends to be more expressive than current ontology mapping
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languages and less complex and granular than programming languages to ad-
dress the following question:

Question IV.A How to fill the abstraction gap between ontology mapping lan-
guages and programming languages?

For ontology API generation, we present a model-driven solution for de-
signing mappings between complex ontology descriptions and object oriented
representations – the agogo approach – and tackle the following problem:

Question IV.B What are the results of applying MDE techniques in ontology
API development?

For ontology modeling, we present a model-driven approach for specifying
and encapsulating descriptions of ontology design patterns and address the
following problem:

Question IV.C How to allow declarative specifications of templates and tools
to test these template specifications and realizations?

1.3 Road Map

Figure 1.2 depicts the road map for this thesis, positioning the research ques-
tions presented in this chapter. In Part I, we present the fundamental concepts
and analyze state-of-the-art approaches. Chapter 2 and Chapter 3 describe
the concepts and technologies around MDE and ontologies, respectively. In
Chapter 4, we present the commonalities and variations of both paradigms,
analyze existing work in this area and elicit the requirements for an integrated
solution.

Part II describes the role of MDE techniques (DSL, model transformation
and metamodeling) and ontology technologies (reasoning services, query an-
swering) in an integrated approach. In Chapters 5 and 6, we describe the con-
ceptual architecture of our approach. Chapter 7 presents the TwoUse Toolkit –
the implementation of the conceptual architecture.

We use the TwoUse toolkit to realize case studies from the model-driven
engineering and ontology engineering domains. Part III assembles case studies
that use our approach at the modeling level and at the language level. Chap-
ter 8 analyzes the application of TwoUse in software design patterns and in
Chapter 9, we present the application of TwoUse in ontology-based informa-
tion systems. Chapter 10 describes the usage of TwoUse to support software
developers in integrating software languages.

Part IV presents an analysis of employing our approach in ontology en-
gineering services. We address the need for multiple languages for ontology
mapping in Chapter 11. Chapter 12 presents a domain specific language for
specifying ontology APIs. Chapter 13 use templates for encapsulate complex-
ity of ontology design patterns.
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Applications in MDE:
* Software Languages
* Ontology-Based Inf. Systems
* Software Design Patterns

Applications in Ontology Engineering
* Generation of Ontology APIs
* Ontology Translation Language
* Ontology Templates

The TwoUse Approach
Structure, Querying, Notations

TwoUse Toolkit
Architecture and Services

Fundamentals
MDE foundations, ontology foundations, commonalities and variations

Fig. 1.2. Road Map of this Thesis.

1.4 Communications of this Thesis

We have communicated the research presented in this thesis through confer-
ence papers, a journal paper, conference tutorials, conference demonstrations
and bachelor/master theses. In the following, we list the publications accord-
ing to the chapters covering the respective contributions.

Chapter 3: Silva Parreiras, F., Staab, S., Ebert, J., Pan, J.Z., Miksa, K.,
Kuehn, H., Zivkovic, S., Tinella, S., Assmann, U., Henriksson, J.: Se-
mantics of Software Modeling. In: Semantic Computing. Willey (2010)
229–248

Chapter 4: Silva Parreiras, F., Staab, S., Winter, A.: On marrying ontological
and metamodeling technical spaces. In: Proceedings of the 6th joint meet-
ing of the European Software Engineering Conference and the ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
2007, Dubrovnik, Croatia, September 3-7, 2007, ACM (2007) 439–448

Chapters 5, 6, 9: Parreiras, F.S., Staab, S.: Using ontologies with UML class-
based modeling: The TwoUse approach. Data & Knowledge Engineering
69(11) (2010) 1194 – 1207

Chapter 7 Silva Parreiras, F., Walter, T., Gröner, G.: Filling the gap between
the semantic web and model-driven engineering: The TwoUse toolkit. In:
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Demo and Posters Proceedings of the 6th European Conference on Mod-
elling Foundations and Applications, ECMFA 2010, Paris, France, June
15-18, 2010. (2010)

Chapter 8: Silva Parreiras, F., Staab, S., Winter, A.: Improving design pat-
terns by description logics: A use case with abstract factory and strat-
egy. In: Proceedings of Modellierung 2008, Berlin, Germany, March 12-14,
2008. Number 127 in LNI, GI (2008) 89–104

Chapter 11: Silva Parreiras, F., Staab, S., Schenk, S., Winter, A.: Model
driven specification of ontology translations. In: Proceedings of Concep-
tual Modeling - ER 2008, 27th International Conference on Conceptual
Modeling, Barcelona, Spain, October 20-24, 2008. Number 5231 in LNCS,
Springer (2008) 484–497

Chapter 12: Silva Parreiras, F., Walter, T., Staab, S., Saathoff, C., Franz,
T.: APIs a gogo: Automatic generation of ontology APIs. In: Proceed-
ings of the 3rd IEEE International Conference on Semantic Computing
(ICSC 2009), September 14-16, 2009, Santa Clara, California, USA, IEEE
Computer Society (2009) 342–348

Chapter 13: Silva Parreiras, F., Groener, G., Walter, T., Staab, S.: A model-
driven approach for using templates in OWL ontologies. In: Knowledge
Management and Engineering by the Masses, 17th International Confer-
ence, EKAW 2010, Lisbon, Portugal, October 11-15, 2010. Proceedings.
Volume 6317 of LNAI, Springer (2010) 350–359

We presented parts of this work in the following tutorials:

• Silva Parreiras, F., Walter, T., Wende, C., Thomas, E.: Model-Driven
Software Development with Semantic Web Technologies. In: Tutorial at
the 6th European Conference on Modelling Foundations and Applications,
ECMFA 2010, Paris, France, June 15-18, 2010. (2010)

• Silva Parreiras, F., Walter, T., Wende, C., Thomas, E.: Bridging Soft-
ware Languages and Ontology Technologies. In: SPLASH ’10: Proceed-
ings of the ACM international conference companion on Object oriented
programming systems languages and applications companion, October 17,
2010, Reno/Tahoe, Nevada, USA., ACM (2010) 311–315

• Gasevic, D., Silva Parreiras, F., Walter, T.: Ontologies and Software Lan-
guage Engineering. In: Tutorial at Generative Programming and Compo-
nent Engineering (GPCE’10) co-located with Software Language Engineer-
ing (SLE 2010), October 10, 2010, Eindhoven, The Netherlands. (2010)

• Staab, S., Walter, T., Gröner, G., Silva Parreiras, F.: Model Driven Engi-
neering with Ontology Technologies. In: Reasoning Web. Semantic Tech-
nologies for Software Engineering, 6th International Summer School 2010,
Dresden, Germany, August 30 - September 3, 2010. Tutorial Lectures.
LNCS 6325 Springer (2010) 62–98

The implementation of the approach described in this thesis served as basis
for the following bachelor thesis, Studienarbeiten or Diplomarbeiten:
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• Saile, David: Integrating TwoUse and OCL-DL. Studienarbeit.
• Schneider, Mark: SPARQLAS - Implementing SPARQL Queries with

OWL Syntax. Studienarbeit. [In German]
• Fichtner, Vitali: Developing a semantic Environment for analyzing Soft-

ware Artifacts. Bachelor Thesis. [In German]
• Schneider, Carsten: Towards an Eclipse Ontology Framework: Integrating

OWL and the Eclipse Modeling Framework. Diplomarbeit. [In German]

Moreover, the implementation of the approach led to the development of
a free open-source set of tools for designing models combining model-driven
engineering and OWL – the TwoUse toolkit1.

1 http://twouse.googlecode.com/

http://twouse.googlecode.com/
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Model-Driven Engineering Foundations

Summary. This chapter discusses the state of the art for model-driven engineering.
We inspect approaches, abstractions, and techniques constituting MDE, describe
them with respect to their concepts and relationships, and investigate the conceptual
structure that underpins MDE in this state-of-the-art review. The result is a static
structural model represented by UML class diagrams.

2.1 Introduction

Raising the level of abstraction is one of the basic principles of software engineering.
It eliminates complexity that is not inherent in software artifacts. The idea is to
selectively abstract away from non-fundamental aspects and to concentrate on the
essential aspects of software artifacts.

Approaches that aim at reducing complexity have an impact upon software pro-
ductivity. In productivity models, complexity metrics compose the cost metrics to-
gether with resources and personnel [12].

Model-driven engineering (MDE) is an approach that uses models, notations and
transformation rules to raise the level of abstraction of a physical system [2] aiming
at improving productivity.

In this chapter, we present the fundamental concepts of the model-driven engi-
neering structure. In Section 2.2, we use the concept of megamodel [13] to present a
description of the structure of MDE. We use this structure to group concepts around
ontology technologies and model-driven technologies in Section 2.3.

2.2 Model-Driven Engineering Structure

Model-driven techniques provide management, transformation and synchronization
of software artifacts. The objective is to factorize complexity into different levels of
abstraction and concern, from high-level conceptual models down to the individual
aspects of target platforms.
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There is a consensus in the literature about the cornerstones of MDE: (1) lan-
guages comprising: models that represent real-world elements, metamodels to de-
scribe the structure of models and language semantics; (2) and transformations
between languages. Schmidt [2] argues that model-driven engineering technologies
should combine domain-specific modeling languages and transformation engines to
address platform complexity. For Kent [14], MDE requires a family of languages,
transformations between languages and a process associated with the conception of
languages and transformations. In this chapter, we concentrate on the structural
specification of model-driven engineering.

An instance of MDE is the Model-Driven Architecture (MDA) [15], which is
based on OMG’s Meta-Object Facility. It frequently includes UML as its modeling
language and a common pipeline of managing and transforming models [16]: A
platform-independent model (PIM) is transformed into a platform-specific model
(PSM) and eventually into an executable representation (code), being the target
platform.

Favre [13] proposes a descriptive model that specifies the concepts that are the
cornerstones of MDE: model, metamodel, modeling language and model transforma-
tion. This descriptive model is called megamodel (Figure 2.1). We extend this model
later to illustrate the relationships between MDE concepts and ontology technolo-
gies.

In the following section, we analyze and describe the concepts and relations
depicted in the Figure 2.1.

2.2.1 Models

The notion of model accepted in MDE is that a model is a simplification of a
physical system. Apostel [17] uses the word “simplification” to denote a viewpoint
of a system from a certain scale where the system is controlled with a certain purpose
in mind. This notion is aligned with Rothenberg’s definition in which a model is a
representation of the reality for a given purpose [18].

The UML specification [3] corroborates this notion describing a model as an
abstraction of a physical system. Bezivin [19] and Favre [13] use the association
representedBy or representationOf to connect the system under study to a model.
Thus, a system can have multiple models depending on the viewpoint. For example,
developers can use the UML and Java to represent different viewpoints of the real-
world system e-shop (Figure 2.2).

Notice that Favre specifies the notion of a model as a relation to the system
because a system can play the role of a model. For example, a Java program can be
a model of a system and can also serve as a system for a UML model of the Java
program.

2.2.2 Metamodels

While models describe a specific abstraction of reality, metamodels are models of
languages used to define models [13, 20]. For example, the structure of the UML
language is the metamodel of UML diagrams (Figure 2.3). Thus, we infer that a
given UML class diagram conforms to the UML metamodel, i.e., a model conforms
to its metamodel.
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Fig. 2.1. Main Concepts of Megamodel.

Fig. 2.2. Notion of RepresentationOf in Megamodel.

Metamodel-based approaches are based on a staged architecture of models and
metamodels, where the structure of lower level models is defined by higher level
metamodels. This staged architecture defines a layered structure, which is applied
to define domain-specific languages and general-purpose languages, e.g., UML. Fig-
ure 2.4 illustrates a layered structure using UML as metamodeling language.
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Fig. 2.3. Notion of ConformsTo in Megamodel.

At the top level (M3) is situated the Meta Object Facility [9] (MOF), which is
a class-based modeling language that defines itself. Language specifications like the
UML specification are viewed as (linguistic) instances [21] of the MOF situated on
the metamodel level (M2). The model level (M1) contains concrete models defined
by metamodels on M2. These models represent real world systems situated on M0.

Fig. 2.4. Layered Architecture.
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EMOF

Metamodeling rely in constructs like package, class, inheritance, property and oper-
ation. Therefore, OMG reuses common core packages of UML 2.0 and MOF 2.0
to define the essential constructs of MOF – EMOF. These essential constructs are
reused by multiple modeling languages, query languages and transformation lan-
guages and comprise the core constructs for defining metamodels. Figure 2.5 shows
the main classes of EMOF.

A Package contains Types or nested Packages. DataType and Class are specializa-
tions of Type. A class contains properties and operations. An Operation specifies the
behavioral features of classifies. An operation specifies a type (Classifier), Parameters
and constraints for executing a behavior.

Fig. 2.5. EMOF classes.

Ecore

Ecore is an implementation of EMOF defined in the Eclipse Modeling Frame-
work [22]. Ecore addresses practical issues regarding the structure of EMOF. For
example, while EMOF defines one class for defining properties, Ecore defines two
types of structural features: attributes and references. The practical aspects inherent
in Ecore make it more suitable for adoption.

Figure 2.6 presents the main classes of Ecore. The class EModelElement allows
to tag model elements with names. EPackage is an EModelElement that contains
classifiers and sub-packages. Properties are defined by references and attributes as
structural features. An EReference is a type of structural feature that has as type an
EClass. An EAttribute is a type of structural reference that has as type an EDataType.
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Fig. 2.6. Ecore Structure.

2.2.3 Modeling Languages

Favre defines the role of a language in megamodeling as an abstract system com-
prising a set of elements [13] or a set of coordinated models [23].

In the realm of modeling languages, i.e., languages for defining models, we iden-
tify two categories of languages according to the purpose of usage: general-purpose
modeling languages (GPML) and domain-specific modeling languages (DSML).

General-purpose modeling languages (GPML) provide constructs to represent
multiple aspects of a system. For example, the Unified Modeling Language (UML)
and the Extensible Markup Language (XML) are general-purpose modeling lan-
guages used to model a wide variety of systems.

In contrast to GPML, domain-specific modeling languages (DSML) capture the
essential concepts of a limited domain. They address specific applications. An Ex-
ample of DSML is the W3C HyperText Markup Language (HTML).

According to Atkinson and Kühne [21], a language definition covers four com-
ponents: (i) an abstract syntax, realized by metamodels in MDE, (ii) a concrete
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syntax which renders the concepts defined in the metamodel, (iii) well-formedness,
defined by constraints on the abstract syntax and (iv) the semantics describing the
meaning of the concepts. For Harel and Rumpe [24, 25], a modeling language con-
sists of a syntactic notation, its semantics and semantic mappings that relate the
syntactic expressions to the semantic domain. In the next subsections, we describe
these components and illustrate them with examples.

Figure 2.7 depicts the relationships and concepts for defining a modeling lan-
guage using the megamodel structure. The UML metamodel defines the model of
the e-shop domain. This model is the input of an injector that serializes the input
e-shop UML model into a textual representation of UML (e-shop.uml.text). This
textual model conforms to the EBNF grammar for UML. A mapping function con-
nects the e-shop UML model to an equivalent representation (fol-representation) in
first-order logics (FOL), giving semantics to the UML language.

Fig. 2.7. Structure, Semantics and Syntax of the UML Language.

Syntax

The syntax provides a structure for arranging the elements of a given language. It
comprises the symbols and signs that represent the language concepts. We identify
two types of syntax: textual syntax and diagrammatic syntax.

A textual syntax comprises elements in the form of sequences of characters. A
textual syntax defines the valid combinations of words and sentences. Examples of
textual notations are the Human-Usable Textual Notation (HUTN) [26], HTML and
XML.

A diagrammatic syntax, in contrast, comprises elements in the form of picto-
rial signs. Examples of diagrammatic notations are UML and the Business Process
Modeling Notation (BPMN) [27].

Abstract Syntax

Model-driven engineering as promoted by the OMG is based on UML diagrams
as model descriptions. UML class diagrams are a means for describing applica-
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tion domains and software systems in the instance-schema-metaschema dimension
(ISM-dimension). UML Class diagrams have their roots in entity-relationship (ER)
descriptions of database schemas, on the one hand, and in design notations for
object-oriented programs, on the other hand.

The OMG Meta Object Facility (MOF) is the relevant subset of UML to describe
abstract syntax during metamodeling. In other words, in model-driven engineering,
metamodels serve as abstract syntax, whereas models serve as snapshots of lan-
guages.

A snapshot is the static configuration of a system or model at a given point in
time [28]. It consists of objects, values and links that represent the instances of a
metamodel.

Semantics

The semantics of a modeling language allows for determining the truth value of
elements in the model with respect to the system being defined. In other words,
the semantics of a modeling language provides the meaning to its syntactical ele-
ments by mapping them to a meaningful representation [25, 29]. France et al. [30]
and Harel and Rumpe [24] denominate the target of these mappings semantic model
or semantic domain. For Harel and Rumpe [24], the semantic definition of a lan-
guage comprises a semantic domain and a semantic mapping from the syntax to the
semantic domain.

For example, the UML specification [3] defines the semantics of the UML lan-
guage by explaining each UML modeling concept using natural language. In a for-
mal approach, Berardi [31] defines the semantics of UML class diagrams by mapping
UML class diagram constructs to first-order logic (FOL) formulas and, more specif-
ically, to its fragment description logics (see Chapter 3).

2.2.4 Model Transformations

A transformation definition is a set of transformation rules that together describe
the conversion of one model in the source language into another related model in
the target language [16].

A transformation rule is a function that takes as input one or more model ele-
ments of a language and generates one or more model elements of a target language.
For example, the transformation model

uml : Class(?x)→ mof : Class(?x)

produces one MOF class for each UML class, i.e.,

uml : Class(Product)→ mof : Class(Product)

.
The Object Management Group (OMG) defines a standard model transforma-

tion language within the MOF metamodeling environment: Query/View/Transfor-
mation (QVT) [32]. The call for proposal of the QVT language encouraged the de-
velopment of other transformation languages: AGG [33], GReTL [34] and ATL [35].
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2.2.5 Query Languages

In order to manipulate models, one requires a language capable of specifying query
operations. In common MOF modeling practice, the Object Constraint Language
(OCL) [36] is the textual query language used to specify such queries.

Beyond querying, OCL may also be used to specify invariants on classes and
types in the class model, to describe pre- and post conditions on operations and
methods, and to specify initial and derived rules over a UML model.

The OCL syntax differs from SQL and SPARQL. Indeed, SQL and SPARQL do
not require a starting point for query, i.e., it takes a global point of view. OCL, on
the other hand, takes the object-oriented point of view, starting the queries from
one given class.

In OCL, expressions are written in the context of an instance of a specific
class [36]. The reserved word self is used to denote this instance.

OCL expressions may be used to specify the body of query operations. Since OCL
is a typed language, i.e., each OCL expression is evaluated to a value, expressions
may be chained to specify complex queries or invariants.

Let us consider the example of an international e-shop system. A snippet of the
corresponding UML class diagram is presented in the Figure 2.8.

The class TaskCtrl is responsible for controlling the sales orders. A SalesOrder can
be a USSalesOrder or a CanSalesOrder, according to the Country where the Customer
lives.

TaskCtrl
salesOrder : SalesOrder
customer : Customer

process()
getSalesOrder()

CanSalesOrder USSalesOrder

SalesOrder
price

total()
taxes()
freight()

Country

name : String

Customer

10..n

+customer

+order

1

0..n

+country

+customer

Fig. 2.8. UML Class Diagram of an E-Shop System.

The operation getSalesOrder() queries the country of the customer and returns
the subclass of SalesOrder to be instantiated (either CanSalesOrder or USSalesOrder).
Following the example mentioned above, the target operation may be denoted by
the following OCL expression:

context TaskCtrl : : ge tSa le sOrder ( ) : OclType
body :

i f customer . country . name = ’USA’ then
USSalesOrder

else
i f customer . country . name = ’Canada’ then

CanSalesOrder
endif
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endif

The example above illustrates the usage of reflection in OCL to deliver the right
type. The usage of OCL reflection capabilities is common in model transformations.
OCL defines a predefined class called OclAny, which acts as a superclass for every
type except for the OCL pre-defined collection types. Hence, features of OclAny are
available on each object in every OCL expression, and every class in a UML model
inherit all operations defined on OclAny. We highlight two of these operations:

• oclIsTypeOf(typespec: OclType): Boolean: evaluates to true if the given ob-
ject is of the type identified by typespec;

• oclIsKindOf(typespec: OclType): Boolean: evaluates to true if the object is of
the type identified by typespec or one of its subtypes.

We exemplify these operations as follows. The first one evaluates to true if we
have an instance of SalesOrder and ask whether it is an instance of SalesOrder. The
second one evaluates to true if we have an instance of USSalesOrder and ask whether
it is an instance of USSalesOrder or if we have an instance of USSalesOrder and ask
whether it is an instance of SalesOrder, but not the opposite.

Semantics

The specification of OCL is given in natural language, although an informative
semantics based on [37] is part of the specification. Beckert et al. [38] propose a
translation of OCL into first-order predicate logics. Bucker presents a representation
of the semantics of OCL in higher-order logic [39].

2.3 Technical Spaces

The concept of megamodel as used by Favre is platform-independent. Applying this
structure into a set of technologies yields a technical space. Kurtev et al. [23] have
coined the term technical space to organize concepts and to compare sets of solutions.
A technical space comprises a framework for specifying models and metamodels, and
a set of functions that operate on these models.

A common characteristic among several technical spaces is the organization of
modeling levels. A technical space usually comprises a metametamodel (M3) that
defines itself and defines metamodels (M2). Metamodels define models (M1) that
represent systems (M0). Additionally, a technical space has a set of languages as-
sociated with it. In the context of the MDE structure presented in Section 2.2, we
consider two types of languages: query languages and transformation languages.

Figure 2.9 shows the MOF Technical Space. In MOF, the metametamodel is
MOF itself and an example of metamodel is UML. The query metamodel is OCL,
whereas examples of transformation metamodels are ATL and QVT.

2.4 Conclusion

This chapter describes the main concepts and techniques around model-driven engi-
neering. It provides the fundamental understanding about the role of model-driven
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Fig. 2.9. MOF Technical Space.

engineering in software engineering. The contribution is a descriptive model connect-
ing the main concepts of MDE that can be used to model further technical spaces.
We use the descriptive model in further chapters for organizing the concepts and
technologies presented in this thesis.





3

Ontology Foundations

Summary. Ontology technologies organize system knowledge in conceptual do-
mains according to its meaning. It addresses various software engineering needs by
identifying, abstracting and rationalizing commonalities, and checking for inconsis-
tencies across system specifications. This chapter describes the state of the art of
ontology technologies. The result is an outline of the languages and services around
the Web Ontology Language. Additionally, we arrange these blocks using a model-
driven perspective.

3.1 Introduction

Ontologies play a fundamental role in bridging computing and human understand-
ing. The field of artificial intelligence has been studying ontologies under multiple
perspectives like knowledge engineering and natural-language processing.

Ontology languages have constructs similar to UML class-based modeling, e.g.,
classes, properties and data cardinalities. Indeed, ontology languages provide various
means for describing classes to the extent that explicit typing is not compulsory.

This chapter gives an overview of the scientific and technical results around
ontologies, ontology languages and their corresponding reasoning technologies used
in model-driven engineering. We introduce the concept of ontology in Section 3.2.
Section 3.3 presents the W3C standard ontology language for ontology-based in-
formation systems – the Web Ontology Language. Section 3.4 describes ontology
services like reasoning and querying. In Section 3.6 we describe the rule language
for the semantic web.

Figure 2.4 presents the stack of technologies described in this chapter above in
colored boxes. In Section 3.8, we describe the relations between these technologies
using technical spaces.

3.2 Ontology

The word ontology has its origin in philosophy, and it denotes the philosophical
study of the nature of existence. In this sense, ontology involves identifying the
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Fig. 3.1. Semantic Web Stack Covered in this Chapter.

fundamental categories of things. For example, ontological categories might be used
to group objects as essential or existential, abstract or concrete.

Computer science took the term ontology and attributed a technical meaning
to it: “An ontology is an explicit specification of a conceptualization” [6]. Studer et
al. [40] argue that this specification is also formal, i.e., An ontology is an “explicit
and formal specification of a conceptualization” [41].

In the semantic web field, ontologies provide shared domain conceptualizations
representing knowledge by a vocabulary and, typically, logical definitions [6] to model
the problem domain as well as the solution domain. Developers usually use ontologies
as domain models for ontology-based information systems.

3.2.1 Ontology Modeling

The Web Ontology Language (OWL) [5] provides a class definition language for
ontologies, i.e., OWL allows for the definition of classes by required and implied
logical constraints on properties of their members.

The process of modeling ontologies exhibits a couple of overlaps with the devel-
opment of conceptual models [42]. Requirements elicitation is followed by the design
phase, where classes and relationships are defined similarly as in a UML class dia-
gram. This stage, however, is followed by another step that depends on the ontology
modeling paradigm and its corresponding language.

In the realm of description logic based ontologies [43], the strength of ontology
modeling lies in disentangling conceptual hierarchies with an abundance of relation-
ships of multiple generalization of classes. For this purpose, description logics allow
for deriving concept hierarchies from logically precisely defined class axioms, stating
necessary and sufficient conditions of class membership.
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In the realm of logic programming-based ontologies [44], the strength of ontology
modeling lies in a formally integrated consideration of expressive class and rule
definitions.

In both paradigms, the structure of class definitions may be validated by intro-
specting the model, using corresponding reasoning technology. In the first model of
description logics, this is indeed the focus of its reasoning technology while, in the
second model, the focus of the corresponding reasoning technology is on reasoning
with objects in a logical framework.

An ontology constitutes a formal conceptual model. Hence, its core concerns, i.e.,
formal definitions of classes and relationship, are germane to the software engineering
community. However, ontologies have always been used differently than conceptual
models in software and data engineering. Hence, the perspectives on modeling and
using ontologies are slightly twisted if compared to conceptual models such as UML
class diagrams.

For the sake of illustration, Figure 3.2 depicts an incomplete specification of the
example presented in the Figure 2.8 using a description logic syntax. The identifier
Customer is used to declare the corresponding class (3.1) as a specialization of Thing
(>), since classes in OWL are specializations of the reserved class Thing. The class
Consumer has a restriction on property country with exactly one Country (3.2). The
class Country contains the individuals USA and CANADA (3.3). USSalesOrder is
defined as a subclass of a SalesOrder with at least one restriction on the property
country, the value range must include the country USA (3.4). The description of the
class CanSalesOrder is analogous. The intersection of both classes is empty (⊥), i.e.,
they are disjoint (3.6). The class SalesOrder is equal to the union of CanSalesOrder
and USSalesOrder, i.e., it is a complete generalization of both classes (3.7).

3.3 The Ontology Web Language

The language and reasoning paradigm that has been predominantly used and re-
searched is the family of description logic languages covered by the W3C recom-
mendation Web Ontology Language (OWL) [5]. Description logic languages allow
for capturing the schema in the “terminological box” (T-Box) and the objects and
their relationships in the “assertional box” (A-Box). The terminological box captures
knowledge about the class level, i.e., independent of a given situation.

The sub-languages of OWL (or profiles) differ in the set of modeling constructs
they support. Depending on the exact configuration of allowed modeling primitives,
a profile requires sound and complete reasoning algorithms that are NLogSpace-
Complete (OWL 2 QL), PTime-Complete (OWL 2 EL and OWL 2 RL), NExpTime-
Complete (OWL DL) or 2NExpTimeComplete (OWL 2) [45].

Each OWL sub-language corresponds to a given set of constructs in description
logics. For example, OWL 2 EL corresponds to the description logic language EL++
and OWL DL corresponds to SHOIN(D). OWL 2 extends both and it corresponds
to SROIQ(D) (see [43] for more about description logics).

3.3.1 OWL 2 Syntax

In order to save and share OWL 2 ontologies, one requires a concrete syntax for
OWL 2. There are multiple concrete syntax notations for OWL 2: RDF/XML syn-
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Customer v > (3.1)

Customer v= 1country.Country (3.2)

{USA,CANADA} v Country (3.3)

USSalesOrder v SalesOrder u ∃customer.(Customer u
∃country.{USA}) (3.4)

CanSalesOrder v SalesOrder u ∃customer.(Customer u
∃country.{CANADA}) (3.5)

CanSalesOrder u USSalesOrder v ⊥ (3.6)

SalesOrder ≡ CanSalesOrder t USSalesOrder (3.7)

customer ≡ order− (3.8)

country ≡ customer− (3.9)

SalesOrder(ORDER1) (3.10)

Customer(HANS) (3.11)

country(HANS,CANADA) (3.12)

Customer(JOHN) (3.13)

country(JOHN,USA) (3.14)

customer(ORDER1, JOHN) (3.15)

Fig. 3.2. E-Shop Example with Description Logic Syntax.

tax, OWL/XML syntax, Manchester Syntax, Functional Syntax and Turtle. Each
of these notations is suitable for a specific purpose. In this work, we use the OWL 2
Functional Syntax due to its axiomatic nature, facilitating the analysis of the OWL 2
formal structure.

An OWL 2 Vocabulary VO = (Vcls,Vop,VD,Vdp,Vind,Vlt) is a 6-tuple consisting
of the following elements:

1. Vcls is a set of named classes, class expressions and the built-in classes owl:Thing
and owl:Nothing.

2. Vop is a set of object properties, including the built-in object properties
owl:topObjectProperty and owl:bottomObjectProperty.

3. Vdp is a set o data properties, including the built-in data properties owl:topDataProperty
and owl:bottomDataProperty.

4. Vind is a set of individuals.
5. Vdt is a set of datatypes.
6. Vlt is a set of literals.

Given the vocabulary VO, we use the following convention in the tables 3.1 to 3.4:

• OP indicates an object property;
• OPE indicates an object property expression;
• DP indicates a data property;
• DPE indicates a data property expression;
• C indicates a class;
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• CE indicates a class expression;
• DT indicates a datatype;
• DR indicates a data range;
• a indicates an individual (named or anonymous);
• lt indicates a literal.

In order to illustrate the equivalences between OWL 2 and description logics, we
present a list of OWL 2 axioms with their corresponding representation in description
logics. Tables 3.1, 3.2 and 3.3 present lists of axioms for class expressions, object
properties and data properties. Table 3.4 presents the list of assertions and Table 3.5
the list of class expressions.

OWL 2 Syntax Description Logic Syntax

SubClassOf(CE1 CE2) CE1 v CE2

EquivalentClasses(CE1 ... CEn) CE1 ≡ ... ≡ CEn

DisjointClasses(CE1 ... CEn) CE1 u ... u CEn ≡ ⊥
DisjointUnion(C CE1 ... CEn) CE1 t ... t CEn ≡ C and

CE1 u ... u CEn ≡ ⊥
Table 3.1. Syntax of Class Expression Axioms.

OWL 2 Syntax Description Logic Syntax

SubObjectPropertyOf(ObjectPropertyChain
(OPE1 ... OPEn) OPE)

OPE1 o ... o OPEn v OPE

SubObjectPropertyOf(OPE1 OPE2) OPE1 v OPE2

EquivalentObjectProperties(OPE1 ... OPEn) OPE1 ≡ ... ≡ OPEn

DisjointObjectProperties(OPE1 ... OPEn) OPE1 u ... uOPEn ≡ ⊥
InverseObjectProperties(OPE1 OPE2) OPE1 ≡ OPE−2
ObjectPropertyDomain(OPE CE) ∃OPE.> v CE
ObjectPropertyRange(OPE CE) > v ∀OPE.CE
FunctionalObjectProperty(OPE) > v6 1 OPE
InverseFunctionalObjectProperty(OPE) > v6 1 OPE−

ReflexiveObjectProperty(OPE) > v ∃OPE.Self
IrreflexiveObjectProperty(OPE) ∃OPE.Self v ⊥
SymmetricObjectProperty(OPE) OPE v OPE−
AsymmetricObjectProperty(OPE) OPE v ¬OPE−
TransitiveObjectProperty(OPE) OPE+

Table 3.2. Syntax of Object Property Axioms.
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OWL 2 Syntax Description Logic Syntax

SubDataPropertyOf(DPE1 DPE2) DPE1 v DPE2

EquivalentDataProperties(DPE1 ... DPEn) DPE1 ≡ ... ≡ DPEn

DisjointDataProperties(DPE1 ... DPEn) DPE1 u ... uDPEn ≡ ⊥
DataPropertyDomain(DPE CE) ∃DPE.Literal v DR
DataPropertyRange(DPE DR) Literal v ∀DPE.DR
FunctionalDataProperty(DPE) Literal v6 1 DPE
DatatypeDefinition(DT DR) DT ≡ DR

Table 3.3. Syntax of Data Property Axioms.

OWL 2 Syntax Description Logic Syntax

SameIndividual(a1 ... an) a1
.
= ...

.
= an

DifferentIndividuals(a1 ... an) a1 6= ... 6= an
ClassAssertion(CE a) CE(a)
ObjectPropertyAssertion(OPE a1 a2) OPE(a1, a2)
NegativeObjectPropertyAssertion(OPE a1 a2) ¬OPE(a1, a2)
DataPropertyAssertion(DPE a lt) DPE(a1, lt)
NegativeDataPropertyAssertion(DPE a lt) ¬DPE(a1, lt)

Table 3.4. Syntax of Assertions.

3.3.2 OWL 2 Semantics

OWL 2 corresponds to the description logic SROIQ(D) [46] and has a model-
theoretic semantics defined by interpretations [47]. Model-theoretic semantics allows
for interpreting unambiguously the legitimate expressions of a given language; for
evaluating the truth of a language statement under a particular interpretation; and
for carrying out automated reasoning with these statements [48].

An interpretation is a pair I = (∆I , ·I), where ∆I is the domain and ·I is the
interpretation function that satisfies the conditions described in Tables 3.7 - 3.11.
We say an interpretation I satisfies an ontology O if and only if it satisfies every
axiom in O.

3.3.3 World Assumption and Name Assumption

Analyzing the semantics of OWL, we can see that OWL does not assume unique
names for individuals. For example, according to the definition of functional prop-
erties in Table 3.8 (∀x, y1, y2 : (x, y1) ∈ (OPE)I and (x, y2) ∈ (OPE)I implies
y1 = y2), for the two pairs of functional object property assertions p(x, y1) and
p(x, y2), it is inferred that y1 and y2 are the same individual. The knowledge base
becomes inconsistent only if it is asserted that y1 and y2 are different individuals
(y1 6= y2).



3.3 The Ontology Web Language 31

OWL 2 Syntax Description Logic Syntax

ObjectIntersectionOf(CE1 ... CEn) CE1 u ... u CEn

ObjectUnionOf(CE1 ... CEn) CE1 t ... t CEn

ObjectComplementOf(CE) ¬CE
ObjectOneOf(a1 ... an) {a1, ..., an}
ObjectSomeValuesFrom(OPE CE) ∃OPE.CE
ObjectAllValuesFrom(OPE CE) ∀OPE.CE
ObjectHasValue(OPE a) OPE.{a}
ObjectHasSelf(OPE) ∃OPE.Self
ObjectMinCardinality(n OPE) > n OPE
ObjectMaxCardinality(n OPE) 6 n OPE
ObjectExactCardinality(n OPE) = n OPE
ObjectMinCardinality(n OPE CE) > n OPE.CE
ObjectMaxCardinality(n OPE CE) 6 n OPE.CE
ObjectExactCardinality(n OPE CE) = n OPE.CE
DataSomeValuesFrom(DPE1 ... DPEn DR) {∃DPE1.DR}...{∃DPEn.DR}
DataAllValuesFrom(DPE1 ... DPEn DR) {∀DPE1.DR}...{∀DPEn.DR}
DataHasValue(DPE lt) DPE.{lt}
DataMinCardinality(n DPE) > n DPE
DataMaxCardinality(n DPE) 6 n DPE
DataExactCardinality(n DPE) = n DPE
DataMinCardinality(n DPE DR) > n DPE.DR
DataMaxCardinality(n DPE DR) 6 n DPE.DR
DataExactCardinality(n DPE DR) = n DPE.DR

Table 3.5. Syntax of Class Expressions.

OWL 2 Syntax Description Logic Syntax

DataIntersectionOf(DR1...DRn) DR1 u ... uDRn

DataUnionOf(DR1...DRn) DR1 t ... tDRn

DataComplementOf(DR) ¬DR
DataOneOf(lt1...ltn) {lt1, ..., ltn}

Table 3.6. Syntax of Data Ranges.

In contrast, according to the semantics of UML-class based modeling, the model
would be inconsistent since it is assumed by default that y1 and y2 are different
individuals.

Another important assumption is whether the set of instances is considered
complete or not (world-assumption). The underlying semantics of UML-based class
modeling assumes that the set of instances of a given model is complete, i.e., the
set of instances has exactly one interpretation. In this one interpretation, the classes
and relations in the model are interpreted by the objects and tuples in the instance.
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Description Logic Syntax Semantics

CE1 v CE2 (CE1)I ⊆ (CE2)I

CE1 ≡ ... ≡ CEn (CEj)
I = (CEk)I for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n

CE1 u ... u CEn ≡ ⊥ (CEj)
I ∩ (CEk)I = ∅ for each 1 ≤ j ≤ n and each

1 ≤ k ≤ n such that j 6= k
CE1 t ... t CEn ≡ C and
CE1 u ... u CEn ≡ ⊥

(CE1)I ∪ ...∪ (CEn)I = (C)I and (CEj)
I ∩ (CEk)I = ∅

for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n such that j 6= k

Table 3.7. Semantics of Class Expression Axioms.

Description Logic Syntax Semantics

OPE1 o ... o OPEn v OPE ∀y0, ..., yn : (y0, y1) ∈ (OPE1)I and ... and (yn− 1, yn) ∈
(OPEn)I implies (y0, yn) ⊆ (OPE)I

OPE1 v OPE2 (OPE1)I ⊆ (OPE2)I

OPE1 ≡ ... ≡ OPEn (OPEj)
I = (OPEk)I for each 1 ≤ j ≤ n and each 1 ≤

k ≤ n
OPE1 u ... uOPEn ≡ ⊥ (OPEj)

I ∩ (OPEk)I = ∅ for each 1 ≤ j ≤ n and each
1 ≤ k ≤ n such that j 6= k

∃OPE.> v CE ∀x, y : (x, y) ∈ (OPE)I implies x ∈ (CE)I

> v ∀OPE.CE ∀x, y : (x, y) ∈ (OPE)I implies y ∈ (CE)I

> v6 1 OPE ∀x, y1, y2 : (x, y1) ∈ (OPE)I and (x, y2) ∈ (OPE)I im-
plies y1 = y2

> v6 1 OPE− ∀x1, x2, y : (x1, y) ∈ (OPE)I and (x2, y) ∈ (OPE)I im-
plies x1 = x2

> v ∃OPE.Self ∀x : x ∈ ∆I implies (x, x) ∈ (OPE)I

∃OPE.Self v ⊥ ∀x : x ∈ ∆I implies (x, x) /∈ (OPE)I

OPE v OPE− ∀x, y : (x, y) ∈ (OPE)I implies (y, x) ∈ (CE)I

OPE v ¬OPE− ∀x, y : (x, y) ∈ (OPE)I implies (y, x) /∈ (CE)I

OPE+ ∀x, y, z : (x, y) ∈ (OPE)I and (y, z) ∈ (OPE)I implies
(x, z) ∈ (CE)I

Table 3.8. Semantics of Object Property Axioms.

Therefore, the lack of information in the set of objects and values that are instance
of a UML-class based model is interpreted as negative information, since there is
only one interpretation and everything that does not belong to this interpretation
belongs to its complement (closed-world assumption).

In contrast, OWL assumes incomplete knowledge by default. The set of individ-
uals, literals and property assertions has many different interpretations. Therefore,
the absence of information in this set is only the evidence of lack of knowledge
(open-world assumption).
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Description Logic Syntax Semantics

DPE1 v DPE2 (DPE1)I ⊆ (DPE2)I

DPE1 ≡ ... ≡ DPEn (DPEj)
I = (DPEk)I for each 1 ≤ j ≤ n and each

1 ≤ k ≤ n
DPE1 u ... uDPEn ≡ ⊥ (DPEj)

I ∩ (DPEk)I = ∅ for each 1 ≤ j ≤ n and each
1 ≤ k ≤ n such that j 6= k

∃DPE.Literal v DR ∀x, y : (x, y) ∈ (DPE)I implies x ∈ (DR)I

Literal v ∀DPE.DR ∀x, y : (x, y) ∈ (DPE)I implies y ∈ (DR)I

Literal v6 1 DPE ∀x, y1, y2 : (x, y1) ∈ (DPE)I and (x, y2) ∈ (DPE)I im-
plies y1 = y2

DT ≡ DR (DT )I = (DR)I

Table 3.9. Semantics of Data Property Axioms.

Description Logic Syntax Semantics

a1
.
= ...

.
= an (aj)

I = (ak)I for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n
a1 6= ... 6= an (aj)

I 6= (ak)I for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n
such that j 6= k

CE(a) (a)I ∈ (CE)I

OPE(a1, a2) ((a1)I , (a2)I) ∈ (OPE)I

¬OPE(a1, a2) ((a1)I , (a2)I) /∈ (OPE)I

DPE(a1, lt) ((a1)I , (lt)I) ∈ (DPE)I

¬DPE(a1, lt) ((a1)I , (lt)I) /∈ (DPE)I

Table 3.10. Semantics of Assertions.

Each of these approaches (OWA and CWA) has its proper place. OWA serves
to describe knowledge in an extensible way, since OWL is monotonic. The OWA is
suitable to represent the core knowledge of a domain.

Closed-world assumption is appropriate for defining integrity constraints and
validation based on negation as failure (NAF). The Negation as failure inference
allows for deriving the negation of a proposition if it is not possible to obtain the
affirmation of this proposition.

Let us use the example depicted in Table 3.2. We consider the following in-
stances and property assertions: country(JOHN, USA), country(HANS, CANADA).
Under the CWA, querying the ontology for customers who are not American
(Customeru¬country.{USA}?) produces HANS. Since there is no fact about HANS
being American, it is derived that he is not. The same query under OWA would pro-
duce no results, since there are no facts asserting that HANS is not American. To
achieve the same result, we need to close the domain.

There are OWL constructs that can be used to constrain the interpretation to
a defined set of individuals, i.e., to close the domain(closed-domain assumption).
Figure 3.3 shows axioms used to close the domain of the ontology presented in the



34 3 Ontology Foundations

Description Logic Syntax Semantics

CE1 u ... u CEn (CE1)I ∩ ... ∩ (CEn)I

CE1 t ... t CEn (CE1)I ∪ ... ∪ (CEn)I

¬CE ∆I (CE)I

{a1, ..., an} {(a1)I , ..., (an)I}
∃OPE.CE {x|∃y : (x, y) ∈ (OPE)I and y ∈ (CE)I}
∀OPE.CE {x|∀y : (x, y) ∈ (OPE)I implies y ∈ (CE)I}
OPE.{a} {x|(x, (a)I) ∈ (OPE)I}
∃OPE.Self {x|(x, x) ∈ (OPE)I}
> n OPE {x|]{y|(x, y) ∈ (OPE)I} ≥ n}
6 n OPE {x|]{y|(x, y) ∈ (OPE)I} ≤ n}
= n OPE {x|]{y|(x, y) ∈ (OPE)I} = n}
> n OPE.CE {x|]{y|(x, y) ∈ (OPE)I and y ∈ (CE)I} ≥ n}
6 n OPE.CE {x|]{y|(x, y) ∈ (OPE)I and y ∈ (CE)I} ≤ n}
= n OPE.CE {x|]{y|(x, y) ∈ (OPE)I and y ∈ (CE)I} = n}
{∃DPE1.DR}...{∃DPEn.DR}{x|∃y1, ..., yn : (x, yk) ∈ (DPEk)I for each 1 ≤ k ≤ n and

(y1, ..., yn) ∈ (DR)I}
{∀DPE1.DR}...{∀DPEn.DR}{x|∀y1, ..., yn : (x, yk) ∈ (DPEk)I for each 1 ≤ k ≤ n and

(y1, ..., yn) ∈ (DR)I}
DPE.{lt} {x|(x, (lt)I) ∈ (DPE)I}
> n DPE {x|]{y|(x, y) ∈ (DPE)I} ≥ n}
6 n DPE {x|]{y|(x, y) ∈ (DPE)I} ≤ n}
= n DPE {x|]{y|(x, y) ∈ (DPE)I} = n}
> n DPE.DR {x|]{y|(x, y) ∈ (DPE)I and y ∈ (DR)I} ≥ n}
6 n DPE.DR {x|]{y|(x, y) ∈ (DPE)I and y ∈ (DR)I} ≤ n}
= n DPE.DR {x|]{y|(x, y) ∈ (DPE)I and y ∈ (DR)I} = n}

Table 3.11. Semantics of Class Expression.

Figure 3.2. One may declare that the set of all existing individuals comprises {HANS,
JOHN, ORDER1, USA, CANADA} (Line 3.16). Moreover, because of the non unique
name assumption, we have to assert that all individuals are different from each
other (Line 3.17). Additionally, we declare that the classes SalesOrder, Customer
and Country are disjoint from each other (Line 3.18) as well as the subclasses of
SalesOrder are (Line 3.19).

By adding these axioms, we can also deliver the same results of CWA using
OWA in the query aforementioned. We can infer that HANS does not live in USA,
since HANS is a Customer, a Customer muss live in exactly one country ( 3.2), HANS
lives in CANADA, and CANADA is different from USA.

However, closing the domain does not imply CWA because NAF is not in place.
For example, if we remove the object property assertion country(HANS, CANADA)
and ask the same query, using CWA, the result is still HANS because the lack of
information about HANS. By using OWA, there are no results, since the lack of
information about HANS is not enough to infer that he is not American.
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{HANS, JOHN,ORDER1, USA,CANADA} ≡ > (3.16)

HANS 6= JOHN 6= ORDER1 6= USA 6= CANADA (3.17)

SalesOrder u Customer u Country ≡ ⊥ (3.18)

CanSalesOrder u USSalesOrder ≡ ⊥ (3.19)

Fig. 3.3. Closing the Domain of E-Shop with OWL Axioms.

Research in the field of combining description logics and logic programming [49]
provides solutions to support OWL reasoning with CWA. Different strategies have
been explored like adopting an epistemic operator [50, 51] or extending OWL with
the specification of external predicates that implements the idea of Negation As
Failure [52].

The CWA and OWA are not contradictory. Recent results [53] show that it is
possible to control the degree of incompleteness in an ontology obtaining a more
versatile formalism. Such “under specification” can be used to allow reuse and ex-
tension and does not mean insufficiency. Again using our example, suppose we define
an incomplete list of countries part of the North American Free Trade Agreement
(NAFTA) comprising only Canada and USA, because these are the countries the
store ships to, and we do not need to know the others. If the store starts shipping
to Mexico at some point in time, a query about whether Mexico is a member of
NAFTA returns undefined, which is reasonable, providing that our list of NAFTA
countries is incomplete and does not include Mexico.

3.4 Ontology Services

Ontology-Based Information Systems [11] provide users with a set of functionalities
to manage ontologies – ontology services.

Tran et al. [11] described a set of ontology services for supporting ontology
engineering. In this thesis, we concentrate on the following services: reasoning and
querying.

3.4.1 Reasoning Services

Reasoning services are services provided by reasoning systems with respect to the
ontology. Standard reasoning services are services available in all reasoning systems,
whereas non-standard reasoning services are extensions of basic reasoning services.

The standard reasoning services for TBox are satisfiability and subsumption.
A class C is unsatisfiable (C v ⊥) with respect to an ontology O if C is empty
(does not have any instances) in all models of O. Satisfiability checking is useful for
verifying whether an ontology is meaningful, i.e., whether all classes are instantiable.

Subsumption is useful to hierarchically organize classes according to their gen-
erality. A class C is subsumed by another class D with respect to an ontology O if
the set denoted by C is a subset of the subset denoted by D for every model of O.
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The standard reasoning services for ABox are instance checking, consistency, re-
alization and retrieval. Instance checking proves whether a given individual i belongs
to the set described by the class C. An ontology is consistent if every individual i
is instance of only satisfiable classes. The realization service identifies the most spe-
cific class a given individual belongs to. Finally, the retrieval service identifies the
individuals that belong to a given concept.

3.4.2 Querying

Querying ontologies is a research field that comprises multiple techniques and lan-
guages. We limit the scope of our analysis to two languages, conjunctive query and
the SPARQL-like language SPARQL-DL. We address conjunctive queries because
they have been the querying mechanism for description logic based knowledge bases.
The reason for using SPARQL is that it is a W3C standard query language [54],
and it includes the definition of graph pattern matching for OWL 2 Entailment
Regime [55].

Conjunctive Query

Conjunctive queries correspond to the conjunctive existential subset of first-order
logic formulas, i.e., disjunction (∨), negation(¬), or universal quantification (∀) are
not allowed. The body of a conjunctive query consists of one or more atoms bind-
ing variables or literal values to class expressions or property expressions in the
ontology [56].

For example, the query

Q(x, y) : −Customer(x) ∧ hasOrder(x, y)

is a query for any instance of the concept Customer (x is a distinguished variable)
that have some order (y is a non-distinguished variable).

Let VO = (Vcls,Vop,Vdp,Vind,VD,Vlit) be an OWL vocabulary. Let x ≡ {y1, . . . , yn}
and y ≡ {x1, . . . , xn} be sets of distinguished and non-distinguished variables. A
conjunctive query Q(si) is a conjunction of atoms in the form:

Q(si)←
∧
Pi(si) ∪

∧
Pi(ci) where

• P ∈ Vcls ∪ Vop ∪ Vdp ∪ VD
• s ≡ y ∪ x
• c ∈ Vind ∪ Vlit

An answer of a conjunctive query Q w.r.t. ontology is an assignment σ of indi-
viduals to distinguished variables, such that I |= Q(xσ, y).
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SPARQL

SPARQL 1.0 [54] is the triple-based W3C standard query language for RDF graphs.
The semantics of SPARQL 1.0 is based on graph pattern matching and does not
take into account OWL, although the specification allows for extending the SPARQL
basic graph matching. SPARQL 1.1 [54] will address this problem by specifying an
OWL entailment regime for SPARQL [55].

Sirin and Parsia [57] have done preliminary work on answering full SPARQL
queries on top of OWL ontologies on SPARQL-DL. Next, we describe the abstract
syntax of SPARQL-DL and its semantics.

SPARQL-DL Abstract Syntax

The abstract syntax of SPARQL-DL comprises basically the extension of the OWL
abstract syntax to cover the usage of variables and blank nodes for classes, proper-
ties, individuals and literals. Let VO = (Vcls,Vop,Vdp,Vap,Vind,VD,Vlit) be an OWL
vocabulary. Let Vbnode and Vvar be the set of blank nodes and set of variables. A
SPARQL-DL query atom q is of the form:

q ← Type(a,C) | PropertyValue(a, p, v) | SameAs(a, b) | DifferentFrom(a, b) |
ClassExpressionAxioms(CE1, . . . , CEn) | ObjectPropertyAxioms(OPE1, . . . , OPEn)
DataPropertyAxioms(DPE) | Annotation(s, pa, o)

where a, b ∈ Vind ∪ Vbnode ∪ Vvar, v ∈ Vind ∪ Vlit ∪ Vbnode ∪ Vvar, p ∈ Vop ∪
Vdp ∪ Vvar, CE ∈ Vcls ∪ Vvar, s ∈ Vcls ∪ Vop ∪ Vdp ∪ Vap ∪ Vind ∪ VD, pa ∈ Vap, o ∈
Vcls ∪ Vop ∪ Vdp ∪ Vap ∪ Vind ∪ VD ∪ Vlit. A SPARQL-DL query Q is a finite set of
SPARQL-DL query atoms and the query is interpreted as the conjunction of the
elements in the set.

For example, the query

Type(?x,ObjectHasValue(country, USA))

returns all individuals that have the individual USA as value of the property
country.

The semantics of SPARQL-DL extends the semantics of OWL to provide query
evaluation. We say that there is a model of the query Q = q1 ∧ . . . ∧ qn (I |= σQ)
with respect to an evaluation σ iff I |= σqi for every i = 1, . . . , n.

A solution to a SPARQL-DL query Q with respect to an OWL ontology O is a
variable mapping µ : Vvar → Vuri ∪ Vlit such that O |= µ(Q).
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3.5 Ontology Engineering Services

On top of core ontology services, ontology engineers count on functionalities to
support the ontology development life cycle [11]. Two ontology engineering services
are particular useful for application in UML class-based modeling: explanation and
ontology matching.

3.5.1 Explanation

Users rely on reasoning services for classification and consistency checking. However,
in case of inconsistencies in ontologies with a large amount of classes, users need to
identify which constructs are causing the inconsistencies. Therefore, research on
explanations of inferred assertions is gaining attention.

Explanations can be seen as a form of debugging ontologies. It consists of identi-
fying and computing justifications, i.e., the set of axioms causing the subsumption.
There are distinguishing methods for computing a simple justification or all justifi-
cations [58,59].

Black Box Method for Single Justification

The algorithm of a black-box technique for computing a justification comprises two
steps. Firstly, axioms of an ontology O are inserted into a new ontology O′ until
a class C becomes unsatisfiable with regard to O′. Secondly, irrelevant axioms are
pruned until concept C becomes satisfiable, i.e., a single minimal justification is
achieved.

Computing All Justifications

Once a single justification is achieved, one requires other techniques to compute the
remaining justifications. Please refer to Kalyanpur et al. [59] for a description of a
variation of the Hitting Set Tree (HST) algorithm [60] for finding all justifications.

3.5.2 Ontology Matching

Ontology matching is the discipline responsible for studying techniques for recon-
ciling multiple resources on the web. It comprises two steps: match and determine
alignments and the generation of a processor for merging and transforming [61].
Matching identifies the correspondences. A correspondence for two ontologies A and
B is a quintuple, including an id, an entity of ontology A, an entity of ontology
B, a relation (equivalence, more general, disjointness) and a confidence measure.
A set of correspondences forms an alignment. Correspondences can be done at the
schema-level (metamodel) and at the instance-level (model).

Matchings can be based on different criteria: name of entities, structure (rela-
tions between entities, cardinality), background knowledge like existing ontologies or
wordnet. Techniques can be string-based or rely on linguistic resources like wordnet.
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Furthermore, matchings are established according to the different structures that
are compared. There are three techniques for comparing structures: internal struc-
ture comparison, relational structure comparison and extensional techniques. Inter-
nal structure comparison includes the comparison of property, key, datatype, domain
and multiplicities. Relational structure comparison comprises the comparison of the
taxonomic structure between the ontologies.

Finally, the extensional techniques cover the usage of extensional information,
e.g., formal concept analysis for comparison.

3.6 Rules

Efforts in extending the expressiveness of the OWL language has led to the combi-
nation of OWL with the unary/binary Datalog sublanguages of RuleML [62]: The
Semantic Web Rule Language (SWRL) [63].

A drawback of SWRL rules is that they are undecidable in general. Nevertheless,
Motik et al. have identified the decidable subset of OWL, usually called description
logic safe rules [64]. Although a syntax for description logic safe rules is not part of
the OWL 2, standard existing work [65] defines such a syntax which is supported by
the de facto standard OWL application program interface (OWL API) [66]. Thus,
engineers can use description logic safe rules over reasoners that implement the
tableau algorithm for description logic safe rules extension to OWL.

A rule comprises an antecedent and a consequent. Antecedents and consequents
are composed by a set of atoms. An atom has the form P (x) where P can be a
class expression, data range, object property expression, data property expression,
sameAs construct, differentFrom construct or built-ins and x are variables or named
individuals.

The model-theoretic semantics for SWRL extents the semantics of OWL [47]
to define extensions of OWL interpretations that map variables to elements of the
ontology (bindings). Hence, an interpretation satisfies a rule iff every binding that
satisfies the antecedent also satisfies the consequent [63].

3.7 Metamodels for Ontology Technologies

The definition of metamodel for ontology technologies enables the specification of
model transformations of software engineering artifacts into OWL-related languages.
For example, the transformation of UML class diagrams into OWL uses transfor-
mation rules based on the metamodel of both languages. In the next subsections,
we give an overview of existing metamodels for OWL-related specifications.

3.7.1 OWL Metamodels

The following section presents a short description of the most prominent OWL
metamodels, namely the OMG OWL Metamodel [1], the NeOn OWL Metamodel [67]
and the W3C OWL 2 Metamodel [68].

We do not to describe these metamodels completely. Instead, we concentrate on
two central constructs: classes and properties. Please refer to the citations for more
details.
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OMG OWL Metamodel

The OMG OWL Metamodel is part of the OMG Ontology Definition Metamodel [1].
It has a large number of classes, since it imports the OMG RDFS Metamodel. Thus,
some relations between classes are described in the RDFS Metamodel and reused in
the OWL Metamodel.

For example, Figure 3.4 and Figure 3.5 depict the Class Description Diagram
and the Properties Diagram respectively. The Domain and range of properties are
specified in the RDFS Metamodel, depicted in the Figure 3.6.

Fig. 3.4. OWL Class Descriptions of the OMG OWL Metamodel [1].

The OMG metamodel has public acceptance as standard and popularity. Nev-
ertheless, the OMG metamodel introduces unnecessary complexity in dealing with
RDF without any gain. Furthermore, the OMG metamodel does not provide support
for OWL 2.

NeOn OWL Metamodel

The NeOn Metamodel [67] is a concise metamodel able to cover the OWL-DL func-
tional syntax. Figure 3.7 and Figure 3.8 depict the OWL class hierarchy and the
property diagram respectively. The relationship between Class and Property is direct,
since the NeOn OWL Metamodel does not provide support for RDFS.



3.7 Metamodels for Ontology Technologies 41

Fig. 3.5. OWL Properties of the OMG OWL Metamodel [1].

Fig. 3.6. RDFS Properties of the OMG OWL Metamodel [1].

The NeOn OWL Metamodel is smaller on the number of classes and simpler,
since it is not attached to the RDF metamodel. However, the NeOn metamodel does
not cover OWL 2 constructs.

W3C OWL 2 Metamodel

Improvements on the OWL language led the W3C OWL Working Group to publish
working drafts of a new version of OWL: OWL 2 [68]. OWL 2 is fully compatible
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Fig. 3.7. OWL Class Descriptions of the NeOn Metamodel.

with OWL-DL and extends the latter with limited complex role inclusion axioms,
reflexivity and irreflexivity, role disjointness and qualified cardinality restrictions.

The OWL 2 Metamodel is considerably different from the aforementioned meta-
models for OWL. Constructs like Axiom and OWLEntity play central roles and as-
sociations between classes and properties are done by axioms. Figures 3.9 and 3.10
exemplify such constructs.

SWRL Metamodel

The SRWL metamodel (Figure 3.11) is an extension of the OWL 2 metamodel to
provide support for OWL Rules. Brockmans et al. [69] have defined a metamodel
for SWRL rules.

In the SWRL metamodel, a Rule is a subclass of OWLAxiom, which is defined
as an element of an Ontology. A Rule contains an Antecedent and a Consequent, and
those contain atoms. An Atom factors out OWL 2 axioms that can be used in SWRL
rules like OWLClass and ObjectProperty.

3.7.2 SPARQL Metamodel

In addition to OWL and SWRL, we capture the structure of the SPARQL lan-
guage using a metamodel. Since the SPARQL specification does not recommend a
structural specification of the SPARQL language, we have designed the SPARQL
metamodel based on the SPARQL EBNF Syntax.

Figure 3.12 presents the main classes of the SPARQL metamodel. A SPARQL
query comprises a prologue, where namespaces are declared, and the query body.
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Fig. 3.8. OWL Properties of the NeOn Metamodel.

There are multiple types of SPARQL queries: DESCRIBE, CONSTRUCT, SELECT
and ASK.

SPARQL queries have a WHERE clause, where the conditions are defined in
the form of graph pattern. A graph pattern contains a triple block of subjects,
properties, objects. In SPARQL queries, variables and blank nodes may occur in
any position of the triples.

3.8 Ontological Technical Spaces

In order to organize the concepts presented in this chapter, we use the notion of
technical spaces presented in Chapter 2. Figure 3.14 presents the description logics
technical space.

The description logics technical space uses the description logic terminology as
schema for defining knowledge bases as well as the SPARQL-DL or the conjunctive
query vocabulary for defining queries. Query models are representations of evalua-
tion functions that map variables into elements of a knowledge base.

The description logics technical space is an abstract technical space which is real-
ized by the serialization of text files. OWL includes a set of concrete syntax notations
for modeling OWL ontologies underpinned by description logics. Figure 3.15 depicts
the relationships between OWL and description logics under the model-driven struc-
ture. The Java language is used to create Java programs that realize the idea of a
reasoner and of a query engine. OWL reasoners take as input an OWL ontology
written using, e.g., the OWL 2 Functional Syntax and generate a knowledge Base
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Fig. 3.9. OWL Class Descriptions of the OWL 2 Metamodel.

in memory for applying description logic algorithms. The same principles apply to
query engines.

As defined in Section 3.7, there exist multiple MOF metamodels for ontology
technologies and these are the main artifacts for model-driven engineering. Fig-
ure 3.16 depicts ontology technologies defined based on three technical spaces: MOF,
EBNF and description logics technical space. MOF-based models of OWL ontolo-
gies and queries are defined using ontology-related MOF-metamodels. These models
are serialized using projectors that generated textual representations of ontologies
and queries. The textual file is the input artefact for reasoners, query engines and
ontology services.
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Fig. 3.10. OWL Properties of the OWL 2 Metamodel.

3.9 Conclusion

This chapter describes the main technologies of the semantic web stack related to
ontology technologies. Additionally, we group languages and techniques according
to the model-driven engineering structure. The contribution is a model-driven view-
point of ontology technologies. We refer to these concepts and techniques later as
we describe the integration with model-driven engineering.
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Fig. 3.11. Snippets of the SWRL Metamodel and the Connections with the OWL
Metamodel.
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Fig. 3.12. Snippets of the SPARQL Metamodel.
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Fig. 3.13. Semantic Web Stack Covered in this Chapter.

Fig. 3.14. The Description Logics Technical Space.
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Fig. 3.15. Relation between the EBNF Technical Space and the Description Logics
Technical Space.

Fig. 3.16. Model-Driven Viewpoint of Ontology Technologies.
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Towards Marrying Ontology Technologies and
Model-Driven Engineering

Summary. In this chapter, we present a literature review and describe a domain
analysis of ontological technical spaces and MOF technical space, explaining the
features of the different paradigms. We analyze their similarities and describe fre-
quently used patterns for transformations between instantiations of metamodeling
technical spaces and ontological technical spaces1.

4.1 Introduction

Ontology technologies and model-driven engineering have distinct foci. For example,
MOF targets automating the management and interchange of metadata, whereas
knowledge representation focuses on semantics of the content and on automated
reasoning over that content [72].

While the focus of these communities is somewhat different, the following ques-
tion arises: What are the commonalities and variations around ontology technologies
and model-driven engineering?

MDE can be based on the MOF Technical Space (cf. Section 2.3)(MMTS) as
well as on the Ontological Technical Space (cf. Section 3.8)(OTS). Figure 4.1 il-
lustrates an example indicating the use of OTSs in the MDE process. The classical
MDE transformations, residing in the MOF technical space, are extended by further
transformations, making use of OTSs.

Further transformation into other technical spaces may provide additional anal-
ysis and implementation support, not as efficiently available in metamodeling tech-
nical spaces. Current MDE uses semi-formal metamodels instead of formal specifi-
cation languages as support for describing models [73]. In the Figure 4.1, EMOF
is transformed into an ontological representation in OWL, e.g., for model checking.
The resulting ontology describes a submodel of EMOF, that enables logic-based
model analysis and serves as knowledge base for a reasoner.

In order to improve the understanding of the space composed by MMTS and OTS
(MMTS+OTS), we compare MMTS+OTS approaches by using a feature model

1 This chapter contains work of the paper “On Marrying Ontological and Metamod-
eling Technical Spaces” presented at ESEC-FSE’07 [70] and EU STReP MOST
Deliverable D1.1 “Report on Transformation Patterns” [71].
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Fig. 4.1. Marrying MMTS and OTS.

and validate the model offering a survey and categorization of a number of existing
approaches.

We organized the chapter as follows: we define basic similar concepts between
UML class-based modeling and OWL modeling in Section 4.2. Section 4.3 presents
an understanding of the domain in the form of a feature model. We apply this model
categorizing related approaches in Section 4.4.

4.2 Similarities between OWL Modeling and UML
Class-Based Modeling

Despite having distinct purposes, OTS and MMTS share similar constructs. Recent
approaches presented similarities between MOF and RDF [74], between OWL/RDF
and Object-Oriented Languages [75] and between UML and OWL [1,76]. We sum-
marize them in the Table 4.2. For the subtleties, please refer to the cited papers.

Table 4.1. OTS and MMTS: Comparable Features.

UML Class-based Modeling OWL

package ontology

class class

instances and attribute values individuals and data values

association, attribute property

datatypes datatypes

subclass, generalization subclass, sub-property

enumeration enumeration

navigable, non-navigable domain, range

disjointness, cover disjointness, disjoint union

multiplicity cardinality

These similarities allows for translating UML class-based modeling into descrip-
tion logics, which gives UML class-based modeling a model-theoretic semantics. For



4.2 Similarities between OWL Modeling and UML Class-Based Modeling 53

example, the work of Berardi et al. [31] investigates the translation of UML Class
Diagrams into DLRifd, an expressive yet decidable description logic.

Figure 4.2 depicts distinguishing features of UML Class Diagrams (DLRifd),
OWL-DL (SHOIN (D)), OWL 2 (SROIQ(D)) and ALCQI, a fragment supported
by state-of-the-art reasoning services thatDLRifd has in common with SROIQ(D).
Considering Figure 4.2, UML class diagrams (DLRifd) differentiate from OWL-
DL (SHOIN (D)) by representing n-ary relations, functional dependencies on n-
ary relations, identification constraints on concepts [77, 78], limited complex role
inclusion axioms and role disjointness.

limited complex role inclusion, 
role disjointness

n-ary relations, 
functional dependencies on n-ary relations

transitive properties

nominals 

OWL 2
(SROIQ(D))

UML Class Diagrams
(DLRifd)

OWL-DL
SHOIN(D)

role hierarchy

qualified cardinality 
restrictions

ALCQI

cardinality restrictions 
DL-Lite

identification constraints

reflexivity

Fig. 4.2. Comparing UML Class Diagrams, OWL-DL, OWL 2 and DL-Lite.

State-of-the-art automated reasoning systems do not support all constructs of
UML Class Diagrams (DLRifd). However, by dropping functional dependencies and
identification constraints, one achieves ALCQI. ALCQI is the most expressive frag-
ment in common between UML class diagrams (DLRifd) and OWL 2 (SROIQ(D)).
Automated reasoning systems [79] support constructs of OWL-DL (SHOIN (D)),
OWL 2 (SROIQ(D)) and consequently ALCQI.

Notice that we compare the language constructs and we do not consider OCL.
Rahmani et al. [80] describe an adjustable transformation from OWL to Ecore and
identified that it is possible to represent most OWL constructs with Ecore and
OCL invariants. However, such a transformation has the purpose of aligning OWL
constraints with OCL invariants and does not cover OWL reasoning services like
realization and instance checking.
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4.3 Commonalities and Variations

Marrying Metamodeling and Ontologies
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Fig. 4.3. Snippet of the Feature Model of Bridging OTS and MMTS.

In this section, we present a domain analysis of MMTS+OTS approaches. Do-
main analysis is concerned with analyzing and modeling the variabilities and com-
monalities of systems or concepts in a domain [10].

The product of such analysis is a feature model, described in this section. A fea-
ture model comprises a feature diagram, depicted in the Figure 4.3, the description
of the features and examples. The feature model reveals the possible choices for a
MMTS+OTS approach and also serves as a taxonomy to categorize approaches in-
volving both paradigms. We describe the features on Figure 4.3 in the next sections.

4.3.1 Language

The choice of a language shapes the message exchange between agents. A language
is defined based on:

1. a concrete syntax describing the way in which the language elements appear
in a human-readable form. Extended BNF is frequently used to describe the
concrete syntax of lexical notations. In the case of graphical notations, natural
language and symbols are used to describe what graphical symbols represent
information, and how these symbols are laid out. A particular case of concrete
syntax is a serialization syntax, which allows the language expressions to be
made persistent or interchanged between tools. XML can be used as serialization
syntax. Syntactical variations may co-exist for one given language.

2. an abstract syntax of a language portraying the elements that compose the lan-
guage, and the possible combination of these elements. Abstract syntax graphs,
metamodels and Extended BNF are commonly used to represent the abstract
syntax of a language.
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3. the semantics of a language attributes meaning to the language primitives and
its vocabulary. This attribution can be done by the means of a formal language,
using mathematics, or an informal language, using natural language. The rele-
vant formal semantics for MMTS+OTS are [81]:

• Model-theoretic semantics. Model-theoretic semantics assigns meaning to a
set of logical sentences by considering all possible interpretations that may
be given to its atomic elements. Such a set of logical sentences is then satisfi-
able if there is an interpretation that will render all the sentences to become
true (please refer to Section 3.3.2).

• Axiomatic semantics. Axiomatic semantics is based on methods of logical
deduction from predicate logic. The semantic meaning of a program is based
on assertions about relationships that remain the same each time the pro-
gram executes.

• Translational semantics. Another way of giving a semantics to a language is
translating expressions from one language into another language that has a
defined semantics.

The abstract syntax characterizes the primitives of a language. The concrete
syntax realizes the primitives by a concrete notation. The semantics assigns meaning
to the primitives, and the models constructed using these primitives.

Let us consider three examples: UML is a modeling language with a graphical
notation, an informal semantics described in natural language (there exist transla-
tional semantics approaches for UML), uses a metamodeling approach to describe
its abstract syntax, as well as natural language and symbols to describe the concrete
syntax.

OWL is an ontology modeling language with a lexical notation, formalized by
description logics. It is a subset of first-order predicate logics with a model-theoretic
semantics. OWL’s concrete and abstract syntax are specified by Extended BNF.

RDF(S) is a language based on triples as the abstract syntax graph, with a
concrete lexical notation and a formal axiomatic semantics [82].

4.3.2 Formalism

We define the term “formalism” as formal language used to precisely define concepts
of the world. A formalism is the basis for reasoning over models. We distinguish
between four formalisms applicable to MMTS+OTS:

• First-Order Logic. First-Order Logic is a logical language able to express relations
between individuals using predicates and quantifiers [83].

• Description Logics. Description Logics are a family of knowledge representation
formalisms aimed at unifying and giving a logical basis to frame-based systems,
semantic networks, object-oriented representations, semantic data models, and
type systems [43]. Core to each language from this family is its capability to
express class definitions by restrictions on relationships to other classes and
by inheritance relations. Though the exact expressiveness varies, all description
logic languages are subsets of first-order predicate logics.

• Horn Rules. Horn rules restrict first-order predicate logics to axioms of a par-
ticular form. Though horn rules are in general Turing powerful, in a practical
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situation it is possible to oversee deductive consequences and to reason efficiently
with terms (i.e., kind of objects).
While horn rules can be given a model-theoretic semantics, e.g., first-order predi-
cate logics, in order to handle negation efficiently, most approaches select specific
interpretation functions in order to decide upon satisfiability (or inconsistency).

• Frame Logic. Frame Logic is a syntactically more expressive variant of horn rules.
It constitutes a deductive, object oriented database language combining declar-
ative semantics and the expressiveness of deductive database languages with the
data modeling capabilities supported by the object oriented data model [44].

Ontologies and models written in a given language, e.g., OWL, are usually trans-
lated to one or more formalisms, e.g., SHOIN (D), a member of the family of de-
scription logic languages, to realize reasoning.

4.3.3 Data Model

A data model is an underlying structure mandating how data is represented. The
data model provides a basis for organizing the primitive elements of a language. This
organization is used by the abstract syntax of the language to relate the primitives.
We differentiate four data models:

1. Graph: consisting of (hyper-)edges and nodes.
2. Tree: constituting a restricted graph data model having a hierarchical organi-

zation of the data.
3. Object-based : organizing data according to the object-oriented paradigm.
4. Relational : organizing data in relations.

A modeling approach can be seen from the point of view of data models. For
instance, the UML class diagram is commonly seen either as a graph data model or
as an object data model.

OWL is primarily based on unary relations (i.e., logically-defined classes) and
binary relations (i.e., relationships between objects), but there are alternative access
methods, e.g., via Java object APIs or querying through the SPARQL, graph data
model query language.

RDF(S) constitutes a graph data model, but it can also be seen as a kind of
object model or a kind of constrained relational model.

4.3.4 Reasoning

Each type of reasoning is based on a formalism, typically a logical language, to
deduce (infer) conclusions from a given set of facts (also called assertions) encoded
in a model. Standard reasoning services include:

1. Logical consistency. Logical consistency checks whether a set of logical sentences,
i.e., a logical theory, has an interpretation, i.e., admits a model.

2. Logical implication. Given a set of logical sentences as a premise (i.e., a “the-
ory”), another set of logical sentences may be implied as a conclusion because
every model of the premise is also a model of the conclusion.
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3. Subsumption. Subsumption is a special case of checking logical implications.
Subsumption tests whether one class definition is more specific than another
one — given a set of logical sentences as background theory. Subsumption tests
can be used to generate a sound and complete classification of a set of class
definitions.

4. Extension test. An extension test checks whether a tuple is contained in a logical
relation. Specifically, it tests whether an instance belongs to the extension of a
class, which is a unary relation.

Indeed, all standard reasoning services in first-order predicate logics (and in
description logics, specifically) that are illustrated here can be based on consistency
checking.

In horn rules formalisms, reasoning is defined either based on resolution or based
on näıve bottom-up evaluation.

4.3.5 Querying

Querying plays an important role for accessing and bridging between technical
spaces. The work by Haase et al. [84] comparing aspects of query languages for
ontologies have been used to identify features of querying:

1. Inference support. A query engine may access only explicitly available data (e.g.,
SPARQL [54]), or it may include facts derived by using a reasoner (e.g., OWL-
QL [85] or SAIQL [86]).

2. Closure. A query language may represent the results of a query on a model (i.e.,
a kind of database) either in the same format as the model itself (usual) or in
a different paradigm. For instance, the earliest RDF query languages returned
results as variable bindings, i.e., as relations rather than graphs, while SPARQL
may return results in its native paradigm, i.e., as a graph.

3. Safety. A query language is considered safe, iff a syntactically correct query
returns a finite set of results.

Queries are expressed in a language, over a data model, in a modeling level, and
can use a reasoning service. For example, OCL can be used as a query language with
lexical notation over a UML object data model.

SPARQL is a query language with lexical notation over RDF graph data model
without reasoning support (according to the version 1.0 of SPARQL specifica-
tion [87]) and with results being either represented as relations or as graphs.

4.3.6 Rules

Rules are present inside technical spaces as well as in transformations between them.
Rule languages can be considered to include a querying mechanism over a data
model. The term “rules” is ambiguous and includes in its range:

1. Integrity constraints. Integrity constraints restrict the number of possible inter-
pretations. They do not add inferences, but they signal exceptions.

2. Derivation rules. Integrity constraints comprise one or more conditions from
which a fact is derived as conclusion iff the rule holds.
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3. Reaction rules. Reaction rules have as a core feature their reactivity. They com-
prise a triggering event and a condition that carries out a triggered action iff
the rule holds.

4. Logical rules. Logical rules describe a logical axiom that holds.

For example, OCL is a language with lexical notation, uses metamodeling to
represent its abstract syntax and has translational semantics into first-order logics.
It serves to write integrity constraints and derivation rules as well. Part of the UML
specification called Action Semantics could be used to specify reaction rules.

F-Logic rules [44] are logical rules that can be considered to constitute derivation
rules and that can be configured to model integrity constraints.

DL-safe rules [64] are a logical rule mechanism for a subset of OWL allowing for
sound and complete reasoning with class definitions and a restricted rule language
that defines specific logical axioms.

ATL [35] and QVT [32] are languages with lexical notation, metamodeling ab-
stract syntax and they can be used to write transformation rules.

4.3.7 Transformation

A transformation definition is a set of transformation rules that together describe
the conversion of one model in the source language into another related model in
the target language [16]. Concerning MMTS+OTS, we distinguish between three
aspects of transformations:

1. Semantic. The semantic aspect of a transformation differs between precise trans-
formation or approximative transformations. Approximative transformations
give up on soundness (rarely) or completeness (more often) in order to speed
up subsequent querying or reasoning. Precise transformations are sound and
complete.

2. Syntactic. We distinguish between (i) graph-based syntactic transformation,
which draws on the theoretical work on graph transformations, operating on
typed, attributed, labeled graphs (e.g., UMLX [88] and GReTL [34]); and (ii)
hybrid syntactic transformations, which involve declarative and prescriptive no-
tations. ATL [35] is an example of a hybrid language.

3. Directionality. Directionality concerns the generation of models in different di-
rections based on the definition of a transformation. Bidirectional transforma-
tions are sufficient to transform forward and backward between source and tar-
get models. Examples include QVT and UMLX [88]. Unidirectional transfor-
mations allow for transformations in exactly one direction, such as ATL, in
general.

A transformation language requires querying over a data model and transforma-
tion rules to manipulate the source and target metamodels. For example, an ATL
transformation has a lexical notation, precise semantics, hybrid syntax and is com-
posed by transformation rules using OCL as a query language over UML object
models.
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4.3.8 Mediation

Mediation is the process of reconciling differences between heterogeneous models.
Mediation plays a central role in MMTS+OTS, as models in different languages
must coexist. A mediation consists of:

1. Integration. Integration focuses on interoperability between models so that they
work together effectively. It comprises:
• Aligning. Aligning preserves the source models and produces a new model

containing additional axioms to describe the relationship between the con-
cepts from the source models.

• Merging. Merging refers to the creation of one new merged model from two
or more source models. The merging process can involve aligning as a step.

2. Mapping. Mappings are declarative specifications of the correspondences be-
tween elements of the two models. In the transformation process, the mapping
specification precedes the transformation definition.

3. Composition. Composition comprises the combination of elements that conform
to overlapping concepts in different source models. Usually, each source model
handles a different dimension of the overlapping elements. A weaving process
does not necessarily produce a merged mediation, but it can produce a model
with new knowledge based on the source models.

Both integration and composition make use of mappings to specify overlaps.
A transformation usually takes as input the source models and the mappings to
generate the target models.

4.3.9 Modeling Level

Considering that “everything is a model” in model-driven engineering, these models
are organized according to their conformance. Such an organization is defined by
[19] as follows:

1. System: corresponding to the executable system, the runtime instances.
2. Model: defining the circumstances under which a system operates and evolves.
3. Metamodel: defining the constructs to design models.
4. Metametamodel: defining the constructs to design metamodels.

This organization corresponds to the OMG layered metamodel architecture: the
metametamodel level (M3), the metamodel level (M2), the model level (M1) and
the runtime instances (M0). Each modeling level is described using a language and
is organized according to a data model (please refer to Section 11.3.2 for an example
of the OMG layered metamodel architecture).

Figure 4.4 shows a layered architecture of the features presented in this section
according to the abstraction level. Each layer exploits facilities of the layers below.
It shows how the features are organized to realize each of the technical spaces.

4.4 The State of the Art of Integrated Approaches

In this Section, we apply the model presented in Section 4.3 to MMTS+OTS ap-
proaches found in the literature. As an example, we identify major categories that
group related work. Each category corresponds to one configuration of our feature
model.
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Fig. 4.4. Organization of Features According to Technical Space.

4.4.1 Model Validation

This category assembles the works that use automated reasoning techniques for
checking and validation of models in formal languages. It implies aligning the source
model and the target model by a mapping. A unidirectional transformation approach
takes the mapping and uses transformation rules to generate the models. Queries
against a reasoner serve to verify the models.

Approaches for validating models verify specification against design. The descrip-
tion logics technical spaces, however, have specifically been defined to validate the
internal consistency of a set of class definitions. To exploit this model of validation,
one may transform a part of a given MDE-based model, e.g., a UML class diagram,
into a set of OWL class definitions (cf. [31]) and one may check class hierarchy re-
lationships, property hierarchies as well as the logical consistency of instantiating
classes.

Berardi et al. [31] provide automated reasoning support for detecting relevant
properties of UML class diagrams, e.g., implicit consequences, refinement of prop-
erties and class equivalence. This work consists of aligning a UML class diagram
(independent of modeling level) and a DL ALCQI knowledge base. A precise au-
tomatic unidirectional transformation generates an ALCQI knowledge base that
corresponds to the UML class diagram.

We illustrate this process using the simple diagram depicted in the Figure 4.5.
The diagram shows that a WebPortalAccount is a particular kind of UserAccount
and that each UserAccount is owned by one and only one User. Additionally, there
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exist two types of users: Researcher and Student. A Researcher can have only one
WebPortalAccount. The association class Uses specializes the association class Owns.

UserAccount User
0..n 10..n 1

Owns

Student

Uses
{complete, disjoint}

WebPortalAccount Researcher
1 1..n1 1..n

Fig. 4.5. Checking consistency of UML models.

After applying the transformation from UML into a description logic model,
such as OWL (more specifically, Berardi et al. [31] mapped it into ALCQI), we ask
the reasoner to verify the model. By reasoning over such a diagram, we discover
undesirable characteristics. For instance, the class Researcher must be empty and,
hence, cannot be instantiated. The reason is that the disjointness constraint asserts
that there is no Researcher that is also Student. Furthermore, since the class User
is made up by the union of classes Researcher and Student, and since Researcher is
empty, the classes User and Student are equivalent, implying redundancy.

By dropping the generalization Student-Researcher, we arrive at a valid model.
If we invoke the reasoner one more time, we can refine the multiplicity of the role
Researcher in the association uses to 1. Owns is a generalization of Uses, hence
every link of Uses is a link of Owns, since every Account is owned by exactly one
User, necessarily every WebPortalAccount is used by at most one Researcher, since
WebPortalAccount is a subclass of Account.

Straeten [89] proposes an approach to detect and resolve inconsistencies between
versions of UML models, specified as a collection of class diagrams, sequence dia-
grams and state diagrams. She presents a UML Profile able to describe the evolution
of the models.

Ren et al. [90] propose an approach for validating refinements of BPMN diagrams
with OWL based on the execution set semantics. The OWL ontology serves to
identify the invalid execution set in the refined BPMN diagram according to the
abstract BPMN diagram.

The configuration of this category uses the following features (Figure 4.6): (i)
a model at a given modeling level (model, metamodel or metametamodel), written
in a graphical language, using an object data model; (ii) a target model, written
in a language with model-theoretic semantics and lexical notation, including one
formalism, reasoning capability, querying with closure, inference support and safe;
(iii) a mapping specification describing the links between the models; (iv) a unidi-



62 4 Towards Marrying Ontology Technologies and Model-Driven Engineering

rectional, declarative and precise transformation definition, which includes transfor-
mation rules and querying.
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Fig. 4.6. Feature Model Configuration for Model Checking.

4.4.2 Model Enrichment

This category comprises the approaches that make use of ontologies to infer knowl-
edge from the MMTS models and convert these inferences back as facts in the new
MMTS models. The main difference between this category and the former is the
bidirectional transformation and the application of transformation rules and rea-
soning on the OTS side. First, the MMTS model is transformed into an OTS model.
On the OTS side, inference services and transformation rules are used to make ex-
plicit the assertions that are implicit in the MMTS. Then, the resulting OTS model
is transformed back.

Let us illustrate this process with an example of mappings between two MMTS
models, depict in the Figure 4.7. Let us assume that we have two models captur-
ing bibliographical references. On the left side, we have the model Ma with the
class Publication, which generalizes Article and Thesis, which generalizes MScThesis
and PhDThesis. On the right side, we have the model Mb with the classes Entry
and Thesis. At the center, we have the mapping Mab with the association class
MScThesis2Thesis, mapping a MScThesis onto a Thesis, and the association class
PhDThesis2Thesis, mapping a PhDThesis onto a Thesis.

After translating both models into RDF models, we can use TRIPLE [91], a
RDF query, inference, and transformation language, to apply the transformation
rules depicted in 4.7, corresponding to the MScThesis2Thesis and PhDThesis2Thesis
labels. This resulting query is translated back into MMTS model Mb.
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// Mapping Mab

FORALL Ma @Mb(Ma) {

// MScThesis2Thesis

FORALL X MScThesis[typeOf->X]@Ma --> Thesis[typeOf->X]

// PhDThesis2Thesis

FORALL X PhDThesis[typeOf->X]@Ma --> Thesis[typeOf->X]

}

Publication

Article

Entry

MScThesis Thesis

PhDThesis

MScThesis2Thesis

PhDThesis2Thesis

Parreiras05 :

ThesisStaab98 :
Thesis

Parreiras05 :
MScThesis

Staab98 :
PhDThesis

M0

M1

Ma Mb

Mab

instanceOf

Fig. 4.7. Mapping between two models Ma and Mb.

The works that fit in this category have different facets. Billig et al. [92] use
TRIPLE to generate mappings between a PIM and a PSM using a feature model
that describes user requirements as input. It comprises a transformation from MMTS
into OTS (TRIPLE), the generation of the mappings, the transformation into a
PSM under OTS and the transformation OTS to MMTS of the PSM. Roser and
Bauer [93] propose a framework to automatically generate model transformations in-
side a MMTS using the OTS; Kappel et al. [94] provide an approach for model-based
tool integration. It consists of transforming two MMTS metamodels into ontologies,
using reasoning services and generating mapping between the two MMTS.

The configuration of features in this category includes (Figure 4.8): (i) a model
at a given modeling level (model, metamodel or metametamodel), written in a given
language, using an object data model; (ii) a target model, written in a given logical
language, reasoning capability, querying with closure, inference support and safety;
(iii) a mapping specification describing the links between the models; (iv) a bidi-
rectional declarative transformation definition, which includes transformation rules
and querying; (v) logical rules and reasoning to make the knowledge explicit on the
OTS side.
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Fig. 4.8. Feature Model Configuration for Model Enrichment.

4.4.3 Ontology Modeling
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Fig. 4.9. Ontology Modeling with UML Profile.

This category assembles the efforts into giving a graphical notation to ontology
modeling. Referring to our feature model, this category embraces the usage of MMTS
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graphical notations to design OTS ontologies. It requires integration, bidirectional
transformation, the model level, transformation rules and querying. It is the only
one that does not involve reasoning.

Cranefield and Purvis [95] and Falkovych et al. [76] advocate the usage of UML
without extensions as Ontology Representation Language capable of representing
ontologies.

Extensions of the Unified Modeling Language for ontology development were
proposed [96], culminating in a new metamodel into the MDA family of modeling
languages - the Ontology Definition Metamodel [1, 67, 97]. These approaches use
UML extension mechanisms (UML Profile) to represent the ontology, a mapping
onto the ODM and a transformation from the ODM into the serialization syntax of
the OWL ontology language. Figure 4.9 depicts the example of a UML class diagram
representing an OWL ontology using the ODM UML profile for OWL.

The configuration of this category includes (Figure 4.10): (i) a model written in
a given language with graphical notation from MMTS; (ii) a target model written
in a given language and including one formalism from OTS; and (iii) a mapping
specification describing the links between the models.

Ontology Modeling

Syntax

Language
Data Model

Rules

Mediation

Modelling Level

Graphical

Notation

Formalism
Transformation

Mapping

Lexical

Object-based

Description
Logics

Model

Semantical

Syntactical
Directionality

Transformation
Rules

Declarative
Precise

Bidirectional

Executable Logic

Querying

Fig. 4.10. Feature Model Configuration for Ontology Modeling.

4.5 Existing Work on Classifying Integrated Approaches

Research on the understanding of the large number of possible relations between
OTS and MMTS is not new. Uschold and Jasper [98] propose a framework for
understanding the ontology application scenarios outside the artificial intelligence
community. Despite presenting application scenarios of ontologies in software devel-
opment, the work does not explore the domain modeling community within software
engineering.
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Tetlow et al. [73] propose ideas based on how semantic web technologies can be
applied in systems and software engineering and examples of these ideas. Such work
does not present a framework pointing ways of integration. It serves as a research
agenda instead, involving applications in the software engineering process.

Happel et al. [99] categorize ontologies in software engineering, distinguishing be-
tween four groups: Ontology-driven development (ODD), Ontology-enabled develop-
ment (OED), Ontology-based architectures (OBA), Ontology-enabled architectures
(OEA). Our work takes a more detailed view into ODD and OBA groups.

Bézivin et al. [100] bridge model engineering and ontology engineering using a
M3-Neutral infrastructure. They consider software engineering and ontology engi-
neering as two similarly organized areas, based on different metametamodels (M3-
level).

4.6 Conclusion

In this chapter, we have illustrated commonalities and variations of using metamod-
eling technical spaces (MMTS) with ontological technical spaces (OTS). The basic
pattern is that next to existing technical spaces of established metamodeling frame-
works, new technical spaces are positioned that either enrich or exploit the software
engineering capabilities by or for ontology technologies. We have identified the main
characteristics of such approaches and designed a feature model to enlighten the
possible conceptual choices. We have applied our model illustrating the usage of
ontology technologies.



Conclusion of Part I

In this part, we have used the concept of megamodeling to provide a descriptive
model for specifying the structure of MDE approaches (research question I). We
use this model to describe the relationship between concepts of MDE and ontolo-
gies. Moreover, we use the approach to specify the relations between metamodeling
technical spaces and ontological technical spaces.

Additionally, we propose a classification for existing approaches that use MDE
and ontologies and identify patterns for transformations between both paradigms,
addressing the research questions I.A and I.B. The analysis of existing work re-
sulted in the identification of requirements for the integration of MDE and ontology
technologies.
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The TwoUse Approach
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The TwoUse Conceptual Architecture

Summary. The next software engineering era will rely on the synergy between
both model-driven engineering and ontology technologies. However, an approach
that allows for exploiting the uniqueness of each paradigm has been missing so far.
This chapter defines an integration between OWL and UML class-based modeling.
It comprises an integration of existing metamodels and UML profiles, including
relevant (sub)standards such as OCL. The result is a model-driven architecture for
specifying integrated systems1.

5.1 Introduction

UML class-based modeling and OWL comprise similar constituents: classes, asso-
ciations, properties, packages, types, generalization and instances [1]. Despite the
similarities, both approaches come with restrictions that may be overcome by an
integration.

On the one hand, a key limitation of UML class-based modeling is that it allows
only for static specification of specialization and generalization of classes and rela-
tionships, whereas OWL provides mechanisms to define these in a dynamic fashion.
In other words, OWL allows for recognition of generalization and specialization be-
tween classes as well as class membership of objects based on conditions imposed
on the properties of class definitions.

On the other hand, UML provides means to specify dynamic behavior, whereas
OWL does not. The Object Constraint Language (OCL) [36] complements UML by
allowing the specification of query operations, derived values, constraints, pre and
post conditions.

Since both approaches provide complementary benefits, contemporary software
development should make use of both. The benefits of an integration are twofold.
Firstly, it provides software developers with additional modeling facilities. Secondly,
it enables semantic software developers to use object-oriented concepts like operation

1 This chapter contains work of the paper “Using Ontologies with UML Class-based
Modeling: The TwoUse Approach” published in the Journal Data & Knowledge
Engineering [101].
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and polymorphism together with ontologies in a platform independent way. These
considerations have led us to investigate the following challenge: How can we develop
and denote models that benefit from advantages of the two modeling paradigms?

We present TwoUse in this chapter as follows: Section 5.2 describes the re-
quirements for integrating ontology technologies and model-driven engineering. Sec-
tion 5.3 presents and explains the building blocks of TwoUse. In Section 5.4 we
present the metamodeling infra-structure for UML class-based models and OWL. In
Section 5.5, we describe the notations for designing TwoUse models.

5.2 Requirements for Integrating Ontology Technologies
and Model-Driven Engineering

Section 4.4 presents in the state-of-the-art research and MDE approaches that
use OWL technologies and vice versa. However, the relationships between the two
paradigms are still under exploration. In this section, we present the requirements
for an integrated framework. These requirements are extended and refined in Part III
and Part IV where we present the case studies.

5.2.1 Usage of Ontology Services in MDE

In addition to model validation and model enrichment, ontology technologies have
more to offer. The integration between MDE and ontology technologies enables ex-
tending UML class-based modeling with OWL constructs and using ontology services
to support the MDE process.

Integrate OWL Constructs in UML Class-Based Modeling

While mappings from one modeling paradigm to the other one have been established
a while ago (see Section 4.4.1), the task of an integrated language for UML class-
based modeling and OWL models is missing so far.

Such an approach simplifies the modeling task by introducing intuitive constructs
that require complex OCL expressions otherwise, and it enables the definition of do-
main models enriched by formal class descriptions. Moreover, the usage of OWL class
expressions allows decoupling class selection from the definition of query operations
in client classes.

Such an integration is not only intriguing because of the heterogeneity of the
two modeling approaches, but it is now a strict requirement to allow for the develop-
ment of software with thousands of ontology classes and multiple dozens of complex
software modules in the realms of medical informatics [102], multimedia [103] or
engineering applications [104].

Usage of ontology services in UML class-based modeling

In addition to integrating OWL constructs in UML class-based modeling, the usage
of ontology services (see Section 3.4) is essential for realizing the potential of on-
tology technologies. Therefore, one requires model transformations that transform
integrated models into OWL ontologies.
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Moreover, the integration between UML class-based modeling and OWL needs
to cover the usage of ontology services at runtime as well as in design time. Thus,
developers specify queries that use ontology services over the OWL representation.
These queries are the interface between users and ontology services. The results
generated by ontology services should be compatible with existing languages used
to operate UML class-based models, e.g., OCL.

The intended benefit is that developers will not have to program by having to
enumerate actions class-by-class. Instead they will rely on the ontology engine to
perform generic operations to retrieve classes that satisfy ontological relationships
with other classes, so that developers can focus only on the application specific
actions.

5.2.2 Usage of MDE Techniques in OWL Ontology Engineering

MDE Support for Ontology Modeling

Research on ontology engineering has been inspired by the advances in software engi-
neering over the years. For example, current approaches (see 4.4.3) use the graphical
notation of UML to design OWL ontologies to support the ontology development life
cycle. Moreover, as in software engineering, the usage of design patterns in ontology
engineering is an established practice [105].

As new modeling techniques in model-driven engineering emerge, it is desirable
to analyze the application of MDE techniques in ontology modeling. For exam-
ple, the usage of domain-specific modeling is a promising approach for improving
the usability of the OWL language by providing users with syntactical shortcuts.
Moreover, the usage of templates in UML class-based modeling for reusing pieces of
models is an accepted practice for improving reusability.

Usage of Domain Specific Modeling for Ontology Engineering
Services

Currently, the development of ontology engineering services needs to manage mul-
tiple languages for defining services. For example, modelers of ontology matching
services need to manage different languages: (1) an ontology translation language
to specify translation rules and (2) a programming language to specify built-ins,
when the ontology translation language does not provide constructs to completely
specify a given translation rule. This intricate and disintegrated manner draws their
attention away from the alignment task proper down into diverging technical details
of the translation model.

Addressing this issue allows developers to concentrate on constructs related to
the problem domain, raising the abstraction level. Moreover, by defining domain
concepts as first-class citizens, developers may reuse these domain concepts on dif-
ferent situations. It helps to improve productivity, since modelers will not have to
be aware of platform-specific details and will be able to exchange translation models
even when they use different ontology translation platforms.
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5.3 Addressing the Requirements with the TwoUse
Approach

We build the TwoUse approach based on four core ideas:

1. As abstract syntax, it provides an integrated MOF based metamodel as a com-
mon backbone for UML class-based modeling and OWL modeling (Section 5.4).

2. As concrete syntax, it uses pure UML, Ecore, an UML profile supporting stan-
dard UML2 extension mechanisms and a textual concrete syntax to write inte-
grated models (Section 5.5).

3. It provides a canonical set of transformation rules in order to deal with integra-
tion at the semantic level.

4. It provides a novel SPARQL-like language to write queries and constraints over
OWL ontologies, SPARQLAS (Chapter 6).

To give an idea of the target integration, let us consider the simple example of
E-Shop (please consult Figure 2.8 on Page 21). Instead of defining the operation
getTypes() in the class SalesOrder using OCL, a more transparent and maintainable
solution will use the expressiveness of the OWL language. Using the querying service,
a query retrieves the OWL subclasses of SalesOrder a given instance fulfills the logical
requirements of. The body of the getTypes() operation will then be specified by:

context SalesOrder
de f getTypes ( ) : Set ( Class )

? s e l f type ?T
?T subClassOf SalesOrder

As specified above, to identify which subclasses are applicable, we use the vari-
able ?T to get all types of ?self that are subclasses of SalesOrder. We explain these
and other expressions in Section 6.3.

The usage of the variable ?self means that at the implementation level, we con-
sistently correlate class instances with individuals in the ontology. That is, for every
object in the system, we generate a corresponding individual in the ontology. As the
classification of these individuals depends on structural relationships between ob-
jects, we need to update the individual information whenever changes in the object
state occur.

The advantage of this integrated formulation of getTypes() lies in separating
two sources of specification complexity. First, the classification of complex classes
remains in an OWL model. The classification is re-useable for specifying other oper-
ations, and it may be maintained using diagram visualizations as well as decidable,
yet rigorous reasoning models. Second, the specification of the business logic itself
remains in OCL specifications. It becomes smaller, more understandable and easier
to maintain.

Figure 5.1 presents a model-driven view of the TwoUse approach. TwoUse uses
UML profiles for class diagrams and textual notations for designing combined mod-
els (Syntax). These notations are input for model transformations that generate
TwoUse models conforming to the TwoUse metamodel (Structure). The TwoUse
metamodel provides the abstract syntax for the TwoUse approach. Further model
transformations take TwoUse models and generate the OWL ontology and Java code
(Platform-Specific Artifacts and the Semantic Web Stack).
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Fig. 5.1. The TwoUse Conceptual Architecture.

We correlate the building blocks in the Figure 5.1 with the requirements pre-
sented in Section 5.2 to show how TwoUse realizes the integration of MDE and
ontology technologies. Table 5.1 depicts a traceability matrix and correlates the
requirements (columns) with the building blocks (rows).

Extended languages for MDE (syntax and structure) and the TwoUse adapter
allow for using OWL constructs in UML class-based modeling, whereas the SPAR-
QLAS language enables the usage of ontology services. Domain-specific languages
and the TwoUse adapter realizes the usage of MDE techniques for supporting on-
tology engineering.

5.4 Metamodeling Architecture

In this Section, we describe the concepts with respect to the integration of UML
class-based modeling and OWL in the form of metamodels. The advantage of having
an integrated metamodel is threefold:

• It enables the verification of well-formed models integrating both paradigms.
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Requirements OWL Con-
structs in
UML class-
based model-
ing (5.2.1)

Ontology ser-
vices in UML
class-based
modeling
(5.2.1)

MDE Support
for Ontology
Modeling
(5.2.2)

Domain Mod-
eling for
Ontology
Engineer-
ing Services
(5.2.2)

Building Blocks

Notations for MDE X

Domain-Specific No-
tations for Ontology
Engineering

X

SPARQLAS X

SPARQLAS4TwoUse X

TwoUseAdapter X X X X

TwoUse4OntoEng X X

TwoUse4MDE X X

SPARQLAS-MM X X

SPARQLAS4TwoUse-
MM

X X

Table 5.1. Traceability Matrix: Correlating Building Blocks with Requirements.

• It provides a common structure for supporting multiple notations.
• It realizes the mapping between UML class-based constructs and OWL con-

structs.

5.4.1 The TwoUse Metamodel

The TwoUse metamodel provides the abstract syntax integrating UML class-based
modeling, OWL and a SPARQL-like query language. The abstract syntax provides
an abstraction over the concrete syntax notations used in TwoUse.

The TwoUse metamodel provides the integration between common constructs
in OWL and UML class-based modeling: package, class, property, instance and
datatype. Basically, we compose classes from the Ecore metamodel with classes
from the OWL metamodel.

We use model adaptation as composition technique to integrate the OWL meta-
model and the Ecore metamodel. It consists of applying the Object Adapter Pat-
tern [106] to adapt classes of the OWL metamodel to corresponding classes of the
Ecore metamodel (see Table 4.2 for common features between UML class-based
modeling and OWL). The Object Adapter Pattern allows us to compose objects
within Adapters, called TwoUse classes.

Following the nomenclature of Gamma et al. [106], Target classes represent the
interfaces from the Ecore metamodel (EPackage, EClass, EDatatype, EAttribute, ERef-
erence, EEnum, EEnumLiteral and EObject). Adapter classes are prefixed with TU
and suffixed with Adapter (TUPackageAdapter, TUClassAdapter, TUDatatypeAdapter,
TUAttributeAdapter, TUReferenceAdapter, TUEnumAdapter, TUEnumLiteralAdapter
and TUObjectAdapter). Adaptee classes are classes of the OWL 2 metamodel.
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Figure 5.2 illustrates the principle of model adaptation. We adapt the class
Class from the OWL 2 metamodel for the class EClass from the Ecore metamodel.
In the class TUClassAdapter, we implement the operations defined in the class
Ecore::EClass.

Fig. 5.2. Adapting the OWL Class for UML class-based modeling.

For example, the class Ecore::EClass defines the operation addAttribute for in-
serting attributes into a class. The class TUClassAdapter implements this operation
as described in Listing 5.1. The implementation creates instances of the OWL 2
metamodel corresponding to the mappings between UML class-based modeling and
OWL. In this example, for the addition of an attribute in a class in UML class-
based modeling, we need to create two OWL axioms: one asserting the domain of
the dataproperty and another asserting the range of the dataproperty.

Listing 5.1. Implementing the operation addAttribute in the class TUClassAdapter

1 public Void addAttr ibute ( Att r ibute a t t r i b u t e ) {
// DataPropertyDomain
DataPropertyDomain dpd = owl2 f sFactory

. createDataPropertyDomain ( ) ;
5 dpd . setDataPropertyExpress ion ( a t t r i b u t e . getName ( ) ) ;

dpd . setDomain ( e c l a s s . getName ( ) ) ;
. . .

// DataPropertyRange
10 DataPropertyRange dpr = owl2 f sFactory

. createDataPropertyRange ( ) ;
dpr . setDataPropertyExpress ion ( a t t r i b u t e . getName ( ) ) ;
dpr . setRange ( a t t r i b u t e . getEAttributeType ( ) . getName ( ) ) ;
. . .

15
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a t t r i b u t e s . add ( a t t r i b u t e ) ;
}

Figure 5.3 depicts the mappings for the TwoUse metamodel using a simplified
notation that associates the interfaces in the UML class-based metamodel to the
corresponding concepts in the OWL 2 metamodel. As we have mentioned, this inte-
gration is independent of metamodeling level, i.e., it works for MOF, UML and any
UML-class based modeling systems.

5.5 Syntax

5.5.1 UML Profile for OWL

The TwoUse approach provides developers with UML profiling as concrete syntax
for simultaneous design of UML models and OWL ontologies, exploiting the full
expressiveness of OWL (SROIQ(D)) and allowing usage of existing UML2 tools.
We reuse the UML profile for OWL proposed by OMG [1] and introduce stereotypes
to label integrated classes.

We use the UML profile for OWL proposed by OMG [1] for designing OWL on-
tologies using UML notation. We call the UML class diagram with elements stereo-
typed by a UML Profile for OWL a hybrid diagram. The hybrid diagram comprises
three viewpoints, illustrated in the Figure 5.4: (1) the UML view, including OCL,
(2) the OWL view and its logical class definitions and (3) the TwoUse view, which
integrates UML classes and OWL classes and, relying on SPARQLAS, defines query
operations that use ontology services (Chapter 6).

Considering the example of E-Shop (Figure 5.4 on Page 83), the OWL view
consists of nine classes, five of which are named classes and four are unnamed classes.
The restriction classes are required for reasoning on the subclasses USSalesOrder and
CanSalesOrder. The UML View comprises six classes. The TwoUse view will contain
five classes and the SPARQLAS query operation.

A TwoUse class is the bridge that links OWL elements with SPARQLAS
expressions. To be compatible with tools that support UML2 extension mecha-
nisms, developers annotate the UML element OpaqueBehavior with the stereotype
<<SPARQLASQuery>> and define the SPARQLAS query as the body of the
opaque behavior.

Table 5.2 illustrates the mappings between the UML Profile for OWL (hy-
brid diagram) and the TwoUse metamodel. Any class that has the stereotype
<<owlClass>> in the hybrid diagram is mapped onto a TwoUse class. Any class
with the stereotype <<owlRestriction>> and its properties <<datatypeProperty>>
or <<objectProperty>> are mapped onto OWL classes and properties. Any class
without any stereotype results in a regular class (Ecore::EClass). A TwoUse pack-
age is any package that has TwoUse classes. The UML Opaque behaviors stereotyped
as <<SPARQLASQuery>> are mapped onto SPARQLAS.

5.5.2 Pure UML Class Diagrams

We have explored additional notations with increasing expressiveness, presented
next. In addition to the UML Profile for TwoUse, one may use the pure UML
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UML Class Diagram TwoUse metamodel

UMLPackage TUPackageAdapter

UMLClass Ecore::EClass

(owlClass)UMLClass TUClassAdapter

(owlRestriction)UMLClass OWL::Class

(owlRestriction)UMLClass.(datatypePropert)UMLProperty OWL::DataProperty

(owlRestriction)UMLClass.(objectProperty)UMLProperty OWL::ObjectProperty

(owlClass)UMLClass.(owlDataProperty)UMLProperty TUAttributeAdapter

(owlClass)UMLClass.(owlObjectProperty)UMLProperty TUReferenceAdapter

(owlIndividual)InstanceSpecification TUObjectAdapter

(dataRange)Enumeration TUEnumAdapter

Table 5.2. Mapping between the UML Profile for OWL (hybrid diagram) and the
TwoUse Metamodel.

class diagram notation to model OWL ontologies with SPARQLAS expressions at
class operations or use a textual syntax to design class-based models with OWL
descriptions.

To let UML2 users develop ontology-based information systems, pure UML class
diagrams may be used. Developers who do not need the full expressiveness of OWL
can use this approach without having to handle the OWL syntax.

Model transformations transform the UML class diagram into a TwoUse model
to support SPARQLAS expressions over the OWL translation of the UML class
diagram. In this case, developers attach SPARQLAS expressions to the body of
opaque behavior of class operations. Each UML class will be a TUClassAdapter.
For transforming UML class diagrams into ontologies, we follow the rules defined
in [1] 2.

5.5.3 Textual Notation

As alternative to graphical languages, we have defined a textual notation for spec-
ifying UML class-based models together with OWL. This approach is useful for
experienced developers who work more productively with textual languages than
visual languages.

In the following, we illustrate the textual notation with our running example.
Again, each class is a TUClassAdapter. In this case, the textual notation allows for
exploring the full expressiveness of OWL. The textual notation is a combination of
the Java-like syntax and the OWL Manchester Syntax [107] (see Appendix A.1 for
the EBNF grammar).

1package PurchaseOrder // package name
PurchaseOrder // namespace p r e f i x
"http://org.example/PurchaseOrder.ecore" //

namespace URI

2 In this case, the expressiveness of the generated OWL ontology is limited to the
description logic ALCOIQ(D), since DLRifd is not supported by state-of-the-art
DL-based reasoning systems [31].
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{
5

class TaskCtrl {
r e f e r e n c e SalesOrder sa l e sOrder (0 . . −1) ;
r e f e r e n c e Customer customer (0 . . −1) ;

10 operat i on proce s s ( ) ;
}

class SalesOrder {
a t t r i b u t e EFloat p r i c e ( 0 . . 1 ) ;

15

r e f e r e n c e Customer customer ( 1 . . 1 ) oppos i t e
o rde r s ;

ope ra t i on EClass (0 . . −1) getTypes ( ) ;
ope ra t i on EFloat t o t a l ( ) ;

20 operat i on EFloat taxes ( ) ;
ope ra t i on EFloat f r e i g h t ( ) ;

}

class CanSalesOrder extends SalesOrder
[ equiva lentTo [ Sa lesOrder and [ customer some
[ country value CANADA] ] ] ] {}

25

class USSalesOrder extends SalesOrder [ equiva lentTo
[ Sa lesOrder and [ customer some [ country value
USA ] ] ] ] {}

class Customer {
r e f e r e n c e SalesOrder o rde r s (0 . . −1)

oppos i t e customer ;
30 r e f e r e n c e Country country ( 1 . . 1 ) ;

}

enum Country {
1 : USA = "USA" ;

35 2 : Canada = "Canada" ;
}

}

The textual notation uses constructs familiar to programmers and enables de-
velopers to write class descriptions in a human readable way.

5.6 Conclusion

In this chapter, we have introduced a technique for integrating existing UML class-
based metamodels and OWL metamodels. We describe the usage of the Adapter
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design pattern to compose similar constructs between the OWL 2 metamodel and
the Ecore metamodel. Moreover, we have defined notations for creating integrated
models. As we apply our approach in Part III and Part IV, we will extend the
integrated metamodel according to application requirements.
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Fig. 5.3. The OWL 2 Metamodel Adapted for the UML Class-Based Metamodel –
the TwoUse Metamodel.
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«owlClass» Customer

«owlClass»
10..n

+customer+order

10..n

+country

+customer

«owlRestriction»

« »owlValue  {hasValue = USA} country:Country

«owlRestriction» {someValuesFrom} customer«owlValue»

«owlRestriction»

«owlValue» {hasValue = Canada} country:Country«owlRestriction»

{someValuesFrom} customer«owlValue»

CanSalesOrder

«owlClass»

USSalesOrder

«owlClass»

«equivalentClass»

«equivalentClass»

TaskCtrl
salesOrder : SalesOrder
customer : Customer

getSalesOrder()

SalesOrder
« »owlClass

price

total()
taxes()
freight()

Country

«owlClass»process()

« »
context SalesOrder::getTypes(): Set(Class)
 body:
       ?self type ?T  ?T subClassOf SalesOrder

SPARQLASQuery

UML

TwoUse

OWL

Fig. 5.4. UML class Diagram Profiled with Uml Profile for OWL and TwoUse
Profile.
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Query Languages for Integrated Models

Summary. After providing a unified view of metamodels and addressing the in-
tegration of modeling languages in the previous chapter, this chapter describes a
querying approach to support developers in querying integrated models. We exam-
ine a combination of existing approaches and introduce our solution for querying
integrated models1.

6.1 Introduction

To exploit integrated models, it is important to enable engineers with the proper
tools to manage and understand models. An important service for developers to gain
insight into their models and to manage models is integrated querying.

In order to be able to query integrated models, a query framework needs to
be integrated on the metamodeling level. A querying framework provides engineers
with support for using existing approaches and for addressing modeling decisions.

In this chapter, we investigate the possibilities for querying elements of the
combined metamodel in a flexible manner using or combining existing languages.

We structure this chapter as follows: in Section 6.2, we analyze the combination
of existing query languages for UML class-based modeling and OWL. In Section 6.3,
we present a concise query language for querying OWL ontologies: SPARQLAS.
We extend SPARQLAS for supporting integrated models in Section 6.4: SPAR-
QLAS4TwoUse.

6.2 Combining Existing Approaches

The OCL language provides the definition of functions and the usage of built-in
functions for defining query operations in UML class diagrams, whereas SPARQL-
DL provides a powerful language to query resources in OWL ontologies, allowing

1 This chapter contains work of the EU STReP MOST Deliverable D1.2 “Report on
Querying the Combined Metamodel” [108] and of the paper “Using Ontologies
with UML Class-based Modeling: The TwoUse Approach” published at the Data
& Knowledge Engineering Journal [101].
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for retrieving of concepts, properties and individuals. While OCL assumes Unique
Name Assumption (UNA) OWL may mimic it using constructs like owl:AllDifferent
and owl:distinctMembers.

A combination of existing languages reflects configurations for querying inte-
grated models. Figure 6.1 presents an architecture for querying integrated models.
These configurations can be realized by adopting current approaches or combining
different assumptions and reasoning services. We describe these configurations in
the following sections.

OWA CWA

OWL UML Class-Based Modeling

SPARQLAS OCL

Domain Models

World Assumption

Reasoning

Querying

Fig. 6.1. Existing Approaches for Querying Models.

Using SPARQL over OWL with OWA

Among existing RDF based query languages for the semantic web, SPARQL is the
W3C recommendation. It is based on triples patterns and allows for querying the
vocabulary and the assertions of a given domain.

Restrictions on the SPARQL language, i.e., entailment regimes, allow for query-
ing OWL ontologies, including TBox, RBox and ABox. One implementation is
SPARQL-DL [57](see Section3.4.2 for a description of SPARQL-DL).

SPARQL-DL enables querying OWL ontologies using the Open World Assump-
tion. It is current available with the Pellet Reasoner [79].

Using SPARQL over OWL with CWA

Polleres et at. [109] have explored the usage of the SPARQL language in combina-
tion with closed-world reasoning in SPARQL++. SPARQL++ extends SPARQL by
supporting aggregate functions and built-ins. SPARQL++ queries can be formalized
in HEX Programs or description logic programs. However, SPARQL++ covers only
a subset of RDF(S) and how it could be extended towards OWL is still an open
issue.



6.3 Querying Ontologies Using OWL syntax: SPARQLAS 87

Using OCL over UML class-based modeling with CWA

This is the standard application of OCL as a query language. Query operations may
be defined and used as helpers for OCL queries and constraints. Default values as
well as initial and derived values can be defined by using UML and OCL.

Using OCL and SPARQL over OWA and UML class-based modeling

In some cases, a combination of UML class-based modeling and OWL is desired,
e.g., for defining complex class descriptions or reuse existing ones. To make usage
of behavioral features like query operations, helpers and built-ins, UML class-based
modeling comes into play.

In the next section, we present our approach for such a combination. Our ap-
proach allows for describing query operations using SPARQL-like syntax. Query
operations are written in SPARQL-like notation and are translated into SPARQL
and execute against an OWL knowledge base. The results are used as input for OCL
query operations that allows the usage of helpers, query operations and built-ins de-
fined in OCL.

6.3 Querying Ontologies Using OWL syntax:
SPARQLAS

Writing SPARQL queries for OWL can be time-consuming for those who work with
OWL ontologies, since OWL is not triple-based and requires reification of axioms
when using a triple-based language.

Therefore, we propose SPARQLAS, a language that allows for specifying queries
over OWL ontologies with the OWL syntax [110]. SPARQLAS uses the OWL Func-
tional Syntax as well as OWL 2 Manchester Syntax and allows using variables wher-
ever an entity (Class, ObjectProperty, DataProperty, NamedIndividual) or a literal is
allowed.

In the following, we illustrate the SPARQLAS concrete syntax with examples in
Section 6.3.1, present the main classes of the SPARQLAS metamodel in Section 6.3.2
and exemplify the transformation of SPARQLAS into SPARQL in Section 6.3.3.

6.3.1 SPARQLAS Concrete Syntax

For creating SPARQLAS queries, we adopt the existing standard concrete syntax
notations for OWL 2. Users can write SPARQLAS queries using the OWL 2 Func-
tional Syntax [68] or the OWL 2 Manchester-like Syntax [107]. Appendix A.3 and
Appendix A.2 specify the EBNF grammar for both notations.

Listing 6.1 and Listing 6.2 present the same query using the two different no-
tations. The query results in all subclasses of a class that have, as the value of the
property customer, a customer who lives in USA.

Listing 6.1. Example of SPARQLAS Query with Functional Syntax

1 Namespace ( = <http : //www. example . org / customer#> )
S e l e c t ?x
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Where (
SubClassOf (

5 ?x
ObjectSomeValuesFrom (

customer
Ob j e c t In t e r s e c t i onOf (

Customer
10 ObjectHasValue ( country USA)

)
)

)
)

Since SPARQLAS copes with the OWL 2 syntax, it does not provide support
for SPARQL solution sequences and modifiers (ORDER BY, OFFSET) or optional
values (OPTIONAL). Schneider [110] presents an analysis of these constructs and
the details about the mappings between SPARQLAS and SPARQL.

Listing 6.2. Example of SPARQLAS Query with Manchester-like Syntax

1 Namespace : <http : //www. example . org / customer#>
S e l e c t ?x
Where : ?x subClassOf ( customer some ( Customer and ( country

value USA) ) )

6.3.2 SPARQLAS Metamodel

The SPARQLAS metamodel extends the OWL 2 metamodel [68] for including sup-
port for variables. Figure 6.2 depicts the additional classes in the SPARQLAS meta-
model used for supporting the usage of variables. In the appendix, Figure A.1 depicts
the complete SPARQLAS metamodel.

The class Variable is a term that has a symbol as property, which represents the
variable (e.g., ?x). Specializations of the class Variable define the existing variable
types: ClassVariable, ObjectPropertyVariable, DataPropertyVariable, IndividualVariable
and LiteralVariable. All these classes extend the class Variable and the corresponding
class in the OWL 2 metamodel. For example, the class ClassVariable extends the
class Variable as well as the class ClassExpression. Therefore, users can use variables
whenever class expressions fit.

6.3.3 Transformation from SPARQLAS to SPARQL

SPARQLAS queries are translated into SPARQL queries to be executed by SPARQL
engines that support graph pattern matching for OWL 2 entailment regime [55].
The model transformation comprises the implementation of the mappings from the
OWL 2 structural specification to RDF Graphs (please consult [111] for the list of
mappings).

For the sake of illustration, Listing 6.3 presents the corresponding SPARQL
query for the SPARQLAS query defined in Listing 6.1 and 6.2. The SPARQL syntax
uses triples to reify class expressions defined in the SPARQLAS queries.



6.3 Querying Ontologies Using OWL syntax: SPARQLAS 89

Fig. 6.2. Variables in the SPARQLAS Metamodel.

Listing 6.3. SPARQL Query Generated from the SPARQLAS Query

1 PREFIX rd f : <http : //www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX r d f s : <http : //www. w3 . org /2000/01/ rdf−schema#>
PREFIX owl : <http : //www. w3 . org /2002/07/ owl#>
PREFIX xsd : <http : //www. w3 . org /2001/XMLSchema#>

5 PREFIX : <http : //www. example . org / customer#>

SELECT DISTINCT ?x
WHERE {

?x r d f s : subClassOf [
10 rd f : type owl : R e s t r i c t i o n ;

owl : onProperty : customer ;
owl : someValuesFrom [

rd f : type owl : Class ;
owl : i n t e r s e c t i o n O f [

15 rd f : f i r s t : Customer ;
rd f : r e s t [

rd f : f i r s t [
rd f : type owl : R e s t r i c t i o n ;
owl : onProperty : country ;

20 owl : hasValue :USA
] ;

rd f : r e s t rd f : n i l
]

]
25 ]
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]
}

6.4 Querying Integrated Models: SPARQLAS4TwoUse

An adaptation of SPARQLAS allows for defining the body of query operations in
integrated models using an OWL-like language. Such an approach enables users to
use ontology services integrated with UML class-based modeling, as depicted in the
Figure 5.4.

For this purpose, we need first to compose the TwoUse metamodel with the
SPARQLAS metamodel. Figure 6.3 depicts the navigation from the class TUAdapter-
Class to the query definition SPARQLAS::Query. The TUAdapterClass extends the
EClass, with contains operations. An Operation extends a model element which
contains constraints. A constraint contains as body an expression. The Expression-
InSPARQLAS defines a SPARQLAS Query.

Fig. 6.3. Composing the SPARQLAS Metamodel and the TwoUse Metamodel.
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The Variable ?self

Unlike in SPARQLAS, the expressions are written in the context of an instance of
a specific class in SPARQLAS4TwoUse. We use the same rationale as OCL and
reserve the variable ?self for referring to the contextual instance. For example, the
SPARQLAS4TwoUse query in Listing 6.4 evaluates to John if the contextual instance
of the class SalesOrder is ORDER1 (see Table 3.2 for the running example).

Listing 6.4. Example of SPARQLAS Query with Manchester-like Syntax

1 context SalesOrder : : getCustomer ( ) : Customer
Namespace : <http : //www. example . org / customer#>
S e l e c t ? c
Where : ? s e l f : customer ? c

SPARQLAS queries operate on the modeling layer (M) as well as on the snapshot
layer (M-1). In the Figure 6.4, we present an object diagram representing a possible
snapshot for the running example.

Fig. 6.4. Snapshot of the Running Example.

The result of SPARQLAS queries is mapped from OWL onto UML class-based
modeling, i.e., although all OWL expressions like property chains and universal
quantification can be used to write SPARQLAS queries, only classes, instances and
literals can be delivered as the result.

Table 6.1 presents results of evaluating SPARQLAS expressions considering the
snapshot depicted in the Figure 6.4. We take two objects of the snapshot (ORDER1,
ORDER2) and bind them to the predefined variable self. For example, for the ex-
pression ?self type SalesOrder where ?self is bound to ORDER1, the result is true.

Since the results of SPARQLAS4TwoUse queries are transformed back from
OWL into UML class-based modeling, the results can be used by OCL expressions
that utilize query operations defined in SPARQLAS4TwoUse. For example, the OCL
expression self.getTypes().size(); evaluates to 3 if the contextual instances are OR-
DER1 (Thing, SalesOrder, USSalesOrder). Consequently, OCL expressions can use
query operations defined in SPARQLAS4TwoUse as input (see Figure 6.5).
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Context object ORDER1 ORDER2
SPARQLAS Expression

?self type SalesOrder true true

?self type USSalesOrder true false

?self type ?C SalesOrder, USSale-
sOrder

SalesOrder, CanSale-
sOrder

?self inverse order ?c John Hans

?self directType ?C USSalesOrder CanSalesOrder

Table 6.1. Evaluation of SPARQLAS Expressions According to The Running Ex-
ample Snapshot.

OWA CWA

OWL UML Class-Based Modeling

SPARQLAS OCLSPARQLAS4TwoUse

Domain Models

World Assumption

Reasoning

Querying

Fig. 6.5. Positioning SPARQLAS4TwoUse among Existing Approaches.

6.5 Conclusion

This chapter analyzes how current approaches can serve to query UML class-based
modeling and OWL and possible combinations. The query languages SPARQLAS
and OCL may be used according to different requirements to query OWL and UML
class-based modeling respectively.

The adaptation of SPARQLAS, SPARQLAS4TwoUse, allows the definition of
query operations for TwoUse classes that rely on ontology reasoning services. The
combination of OCL and SPARQLAS4TwoUse allows for using the results of ontol-
ogy reasoning services as input of OCL queries.
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Realizing the TwoUse Conceptual
Architecture: The TwoUse Toolkit

Summary. The gap between the specification of standards and the implementa-
tion of standards in a programming language leads to adaptation penalties when new
versions are available. Among the possible solutions for raising the level of abstrac-
tion from code to standard specification, a framework that allows the integration of
multiple standards at the design level is lacking so far. In this chapter, we present a
generic architecture for designing artifacts using multiple standard languages, turn-
ing the focus from code-centric to transformation-centric. We test this architecture
by instantiating its conceptual blocks in an integrated development environment –
the TwoUse Toolkit1.

7.1 Introduction

Although the interest in integrating ontology technologies and software engineering
has gained more attention, practitioners lack tool support. Although guidelines for
model transformations and implementations of these transformations exist, a com-
prehensive framework dedicated to fill the gap between model-driven engineering
and ontology technologies is lacking so far. Ontology engineering environments [113]
support exclusively ontology development and do not provide support for OMG
standards.

Providing a framework for integrating MDE and ontology technologies requires
dealing with the following challenges:

• Seamless integration between UML class-based modeling languages and OWL.
Developers should be able to design models seamlessly in different formats like
Ecore, UML, XML and OWL.

• Modeling Design Patterns. Integrated frameworks should provide developers
with capabilities for reusing existing knowledge from other projects in the form
of design patterns.

1 This chapter contains work of the tool demonstration “Filling the Gap between
the Semantic Web and Model-Driven Engineering: The TwoUse Toolkit” at
ECMFA2010 [112].
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• Integration with existing standard and recommendations such as SWRL [63]
and OCL [36]. Developers should be able to work with semantic web languages
(OWL, SWRL and SPARQL) as well as with software languages (UML and
OCL).

In this chapter, we present a generic architecture to implement OWL-related
standard specifications and model-driven techniques in an integrated engineering
tool, turning the focus from code-centric to transformation-centric. It comprises a
set of model transformations, graphical and textual editors and reasoning services.

We organize this chapter as follows. In Section 7.2, we describe the use cases for
such an architecture based on the requirements specified in Section 5.2 and correlate
use cases and requirements in Section A.7. We describe the generic architecture in
Section 7.3. In Section 7.4, we describe an instantiation of the generic architecture for
development of model-driven applications and ontology-based information systems –
the TwoUse Toolkit.

7.2 Use Case Descriptions

In Section 5.2, we present the requirements for an integrated approach. Figure 7.1
depicts the use cases (UC) to address those requirements. It gives an overview of
actors and their relation to the use cases. Appendix A.6 presents the description of
these use-cases

Designing integrated UML class diagram or integrated Ecore models (UC De-
sign Integrated Model) enables the integration of OWL constructs in UML class-
based modeling. By specifying SPARQLAS4TwoUse query operations at classes
(UC Specify Query Operations), software engineers can define queries over ontolo-
gies and thus use classification and realization to improve software quality (see case
studies 8 and 9). Moreover, when ontology engineers transform Ecore-based models
and metamodels into OWL (UC Transform to OWL), it allows the usage of explana-
tion (UC Explain Axiom), querying (UC Query UML class-based models) and ontology
matching (UC Compute Alignments) for supporting software engineers in debugging
and maintenance.

The Usage of SPARQLAS for querying OWL ontologies applies the principles
of MDE (domain-specific modeling and model transformation) to enable ontology
engineers to write SPARQL queries without having to deal with the reification of
OWL axiom in RDF triples (UC Query OWL ontologies). Moreover, the design and
generation of ontology engineering services (UC Design Ontology Engineering Service)
counts on domain-specific modeling and model transformation to generate platform-
specific artifacts and raises the level of abstraction (see case studies 12, 11 and
13).

7.3 A Generic Architecture for MDE and Ontology
Engineering

The architecture of an integrated environment for OWL modeling and UML class-
based modeling serves as a guideline for the development of artifacts for ontology
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Fig. 7.1. Use Case for a Generic Architecture for MDE and Ontology Engineering.

engineering that use model-driven technologies and artifacts for model-driven en-
gineering that use ontology technologies. It comprises a layered view according to
the degree of abstraction of the components. Components of higher layers invoke
components of lower layers.

Figure 7.2 depicts the generic architecture for developing integrated artifacts. It
comprises a set of core services, services for ontology engineering, services for MDE
and a front-end layer.
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Core Services

Services for Ontology Engineering Services for MDE 

Debugging MatchingOntology 
Translation

Ontology API 
Specification

Front-End

Editors Views

Ontology 
Modeling

Core Ontology Services

Querying Reasoning

Model Management Services

Model 
Transformation Synchronization

Model 
Extension

Perspectives

… …

Commands

Validation

Fig. 7.2. A Generic Architecture for MDE and Ontology Engineering.

7.3.1 Core Services

The core services comprise the core ontology services and the model management
services. The core ontology services correspond to the ontology services described in
Section 3.4 and cover querying and reasoning.

The model management services involve model transformations and the synchro-
nization of the source and target model. For example, when transforming a UML
class diagram into OWL, one requires that the generated OWL ontology keeps syn-
chronized with changes on the source model.

7.3.2 Engineering Services

Services for Ontology Engineering

Engineering services assemble the services for ontology engineering and the ser-
vices for MDE. Among the services for ontology engineering, we highlight three
services that use model-driven technologies to support ontology engineering: ontol-
ogy translation, ontology modeling and ontology API specification. Further ontology
engineering services are described in [11].

The ontology modeling service provides the structure for designing ontologies. It
covers the support for ontology design patterns and the validation and verification
of well-formedness constraints.
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Ontology translation enables the translation of a source ontology into target
formalisms. It adopts a dedicated language for defining mappings of multiple natures:
semantic, syntactic and lexical.

Ontologies require dedicated APIs to encapsulate the complexity of concepts and
relations. Therefore, to facilitate the adoption of these ontologies, ontology engineers
specify which ontological concepts and roles require operations for creation, update
and deletion. The ontology API service supports this task.

Services for Model-Driven Engineering

Among the services for MDE, we have identified the following services that use
ontology technologies to support MDE: debugging, matching, validation and exten-
sion. Debugging allows for supporting software engineers in identifying the model
elements that underpin a logical conclusion. For example, it consists of pointing out
the assertions that support a given statement.

The matching services consist of applying ontology matching techniques [61]
to identify similar concepts or relations in multiple models (see Section 3.5.2 for
ontology matching techniques).

Finally, the model extension service controls the integration between OWL
and UML class-based modeling. It manages the extension of UML class diagrams
and textual Ecore notation with OWL axioms and the specification of a SPAR-
QLAS4TwoUse query as the body of query operations.

7.3.3 Front-End

The layer Front-End is the interface between services and ontology engineers / soft-
ware engineers. It comprises editors, views, commands and perspectives.

The editors enable engineers to create and update artifacts written in ontology
languages as well as in software languages. For example, the OWL2FS editor enables
ontology engineers to create OWL ontologies using the OWL 2 functional syntax.

Commands comprise the actions that engineers execute to manipulate artifacts.
For example, to evaluate a given query operation, ontology engineers execute the
command evaluate that requests the instance specifications to be used as the snap-
shot and invokes the model extension to control the applicable model transforma-
tions.

The component View provides engineers with multiple types of visualizations
of artifacts. For example, engineers require the visualization of classes in a class
hierarchy or the results of a query in a grid.

Perspectives arrange views and editors in the workbench. It consists of support-
ing the organization of the front-end services according to engineers needs.

7.4 Instantiating The Generic Model-Driven
Architecture: The Twouse Toolkit

TwoUse toolkit is an open source tool that implements the research presented in this
thesis. It is an instantiation of the generic architecture and an implementation of
current OMG and W3C standards for designing ontology-based information systems
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and model-based OWL ontologies. It is a model-driven tool to bridge the gap between
semantic web and model-driven engineering.

TwoUse toolkit building blocks are (Figure 7.3):

• A set of textual and graphical editors. TwoUse relies on textual and graphical
editors for editing and parsing W3C standard languages (OWL 2 and SPARQL),
OMG standards (UML, MOF and OCL) as well as other domain-specific lan-
guages.

• A set of model transformations. Generic transformations like “Ecore to OWL”
allow developers to transform any software language into OWL. Specific transfor-
mations like “UML to OWL” and “BPMN to OWL” allow developers to create
ad-hoc OWL representations of software models.

• A set of ontology services like reasoning, query answering and explanation.

TwoUse
Toolkit

X

MODEL

MANAGEMENT

X

Model Design

Transformation

Reasoning and
Querying

Fig. 7.3. The TwoUse Toolkit.

Figure 7.6 depicts the TwoUse instantiation of the generic architecture (Fig-
ure 7.2). It comprises core services, services for ontology engineering and model-
driven engineering and a front-end.

Core Services

The TwoUse toolkit uses the implementation of SPARQL-DL and the OWL 2 rea-
soner provided by the Pellet reasoner [79] as components for realizing the core on-
tology services. The model transformation component consists of a set of model
transformations implemented using the Java language [114] as well as the model
transformation language ATL [35]. The synchronization service maintains the de-
pendencies between the source artifacts and the target artifacts. For example, when
engineers use a SPARQLAS query, a corresponding SPARQL query is generated
and executed. The synchronization service maintains the generated SPARQL query
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updated in case of changes on the SPARQLAS query. It basically implements the
observer pattern [106] to notify state changes on the source model.

Services for Engineering

The services for ontology engineering cover concrete applications of the TwoUse
toolkit. We detail each of these applications in Part IV.

The services for model-driven engineering cover explanation, ontology match-
ing and the TwoUse metamodel. The explanation service uses ontology services to
help software engineers in pinpointing statements. The TwoUse toolkit covers the
following types of explanation: unsatisfiability, class subsumption, instantiation and
property assertion. The matching service uses the Ontology Alignment API [115]
to support engineers in identifying similar constructs over multiple metamodels. We
illustrate the application of these services in Chapter 10.

Figure 7.4 depicts a snapshot of the TwoUse Toolkit showing the view Explana-
tion. The result of the explanation is showed in the console with links to the class
on the UML class diagram.

Fig. 7.4. TwoUse Toolkit Snapshot: Explanation Service.

Front-End

The front-end is the interface of the TwoUse toolkit to engineers. It comprises mul-
tiple editors that implement W3C standard languages and OMG standards as well
as other domain-specific languages. We define three views to help engineers in vi-
sualizing models: a hierarchy of the inferred classes (Figure 7.5), a user interface
for explanation and for query results. The commands involve transforming models
into OWL, executing queries and generating services and code. We group the edi-
tors, views and commands under two perspectives: ontology-based model design and
model-driven ontology development.
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Fig. 7.5. TwoUse Toolkit Snapshot: View Inferred Class Hierarchy.

We implement the TwoUse toolkit on top of the Eclipse Rich Client Plat-
form [116] as an open-source tool under the eclipse public license. It is available
for download on the Project Website2.

Core Services

Services for Ontology Engineering Services for MDE 
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Fig. 7.6. Instantiation of the Generic Architecture: The TwoUse Toolkit.

2 http://twouse.googlecode.com/

http://twouse.googlecode.com/
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7.5 Conclusion

In this chapter, we have specified a generic architecture for integrated approaches.
The architecture fulfills the requirements defined in Section 5.2. We validated the
architecture by instantiating it as an implementation of the conceptual architecture –
the TwoUse Toolkit.





Conclusion of Part II

This part presents TwoUse as a solution for developing and denoting models that
benefit from the advantages of UML class-based modeling and OWL modeling (Re-
search Question II). We describe the main building blocks of a conceptual archi-
tecture covering an integration of UML class-based modeling, OWL and a query
language for OWL. Moreover, we specify a generic architecture for implementing
the conceptual architecture and describe an instantiation of the generic architec-
ture - the TwoUse Toolkit.





Part III

Applications in Model-Driven Engineering
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Improving Software Design Patterns with OWL

Summary. This chapter tackles problems in common design patterns and proposes
OWL modeling to remedy these issues. We exploit the TwoUse approach and inte-
grate OWL with UML class-based modeling to overcome drawbacks of the strategy
pattern, that are also extensible to the abstract factory pattern. The results are
ontology-based software design patterns to be used with software design patterns 1.

8.1 Introduction

Design patterns [106] provide elaborated, best practice solutions for commonly oc-
curring problems in software development. During the last years, design patterns
were established as general means to ensure quality of software systems by applying
reference templates containing software models and their appropriate implementa-
tion to describe and realize software systems.

In addition to their advantages, Gamma et al. [106] characterize software design
patterns by their consequences including side effects and disadvantages caused by
their use. In this chapter, we address the drawbacks associated with pattern-based
solutions for variant management [118]. Design patterns rely on basic principles of
reusable object design like manipulation of objects through the interface defined by
abstract classes, and by favoring delegation and object composition over direct class
inheritance in order to deal with variation in the problem domain.

However, the decision of what variation to choose typically needs to be specified
at a client class. For example, solutions based on the strategy design pattern embed
the treatment of variants into the client’s code, leading to an unnecessary tight
coupling of classes. Gamma [106] identifies this issue as a drawback of pattern-based
solutions, e.g., when discussing the strategy pattern and its combination with the
abstract factory pattern. Hence, the question arises of how the selection of specific
classes could be determined using only their descriptions rather than by weaving
the descriptions into client classes.

1 This chapter contains work of the paper “Improving Design Patterns by De-
scription Logics: A Use Case with Abstract Factory and Strategy” presented at
Modellierung’08 [117].
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Here, description logics come into play. Description logics, in general, and OWL
as a specific expressive yet pragmatically usable W3C recommendation [5] allow for
specifying classes by rich, precise logical definitions [43]. Based on these definitions,
OWL reasoners infer dynamically class subsumption and object classification.

The basic idea of this chapter lies in decoupling class selection from the definition
of client classes at runtime by exploiting OWL modeling and reasoning. We explore
a slight modification of the strategy pattern and the abstract factory pattern that
includes OWL modeling and that leads to a minor, but powerful variation of existing
practices: the Selector Pattern. To realize the Selector Pattern, we apply the TwoUse
approach.

This chapter is organized as follows. We present an example demonstrating the
application of the strategy and abstract factory patterns to solve a typical imple-
mentation problem in Section 8.2. The example illustrates the known drawbacks of
the state-of-the-art straightforward adoption of these patterns. Then, we present a
solution extending the existing patterns by OWL modeling in Section 8.3. We ex-
plain how our revision modifies the prior example and how it addresses the issues
raised in the example. We describe an abstraction of the modified example, i.e. the
selector pattern, in Section 8.4. We present its structure, guidelines for adoption,
consequences and related works. A short discussion of open issues concludes this
chapter in Section 8.6.

8.2 Case Study

This section presents a typical case study of design patterns involving the strategy
and abstract factory pattern. To illustrate an application of such patterns, we take
the example of an order-processing system for an international e-commerce company
in the United States [119]. This system must be able to process sales orders in
different countries, e.g., the US and Germany, and handle different tax calculations.

Design patterns rely on principles of reusable object-oriented design [106]. In
order to isolate variations, we identify the concepts (commonalities) and concrete
implementations (variants) present in the problem domain. The concept generalizes
common aspects of variants by an abstract class. If several variations are required,
the variations are subsumed to contextual classes, which delegate behavior to the
appropriate variants. These variants are used by clients.

8.2.1 Applying the Strategy Pattern

Considering the principles above, we identify the class SalesOrder as a context, Tax as
a concept, and the classes USTax and GermanTax as the variants of tax calculation.
Since tax calculation varies according to the country, the strategy pattern allows
for encapsulating the tax calculation, and letting them vary independently of the
context. The resulting class diagram is depicted in the Figure 8.1.

To specify operations, we use the Object Constraint Language (OCL) [36]. The
TaskController requires the operation getRulesForCountry, which returns the concrete
strategy to be used. The specification must include criteria to select from the strate-
gies. In our example, the criterion is the country where the customer of a sales order
lives in.



8.2 Case Study 109

TaskController

so : SalesOrder

getRulesForCountry() : OclType
process()

USTax GermanTax

Country

name : String

Tax

taxAmount()

Customer +country

SalesOrder

process(tax : Tax)

+customer

Client
Concept

Context

Variants

context TaskController::getRulesForCountry():OclType
 body:
  if so.customer.country.name = 'USA' then
    USTax
  else
    if so.customer.country.name = 'GERMANY' then
      GermanTax
    endif
  endif

Variation

Fig. 8.1. Application of the Strategy Pattern in the Running Example.

The drawback of this solution is that, at runtime, the client TaskController must
decide on the variant of the concept Tax to be used, achieved by the operation
getRulesForCountry. Nevertheless, it requires the client to understand the differences
between the variants, which increases the coupling between these classes.

Indeed, the decision of whether a given object of SalesOrder will use the class
GermanTax to calculate the tax depends on whether the corresponding Customer
lives in Germany. Although this condition refers to the class GermanTax, it is speci-
fied in the class TaskController. Any change in this condition will require a change in
the specification of the class TaskController, which is not intuitive and implies an un-
desirably tight coupling between the classes GermanTax, Country, and TaskController
(cf. Figure 8.2).
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Fig. 8.2. Drawbacks of the Strategy Pattern.

8.2.2 Extending to the Abstract Factory

When the company additionally needs to calculate the freight, new requirements
must be handled. Therefore, we apply again the strategy pattern for freight calcu-
lation. As for the tax calculation, the context SalesOrder aggregates the variation of
freight calculation, USFreight and GermanFreight generalized by the concept Freight
(cf. Figure 8.3).

As we now have families of objects related to USA and Germany, we apply
the abstract factory pattern to handle these families. The abstract factory pattern
provides an interface for creating groups of related variants [106].

As one possible adaptation of the design patterns, the client (TaskController)
remains responsible for selecting the variants of the concept AbstractFactory to be
used, i.e., the family of strategies, and passes the concrete factory as a parameter to
the class SalesOrder. The class SalesOrder is associated with the class AbstractFac-
tory, which interfaces the creation of the strategies Tax and Freight. The concrete
factories USAbsFact and GermanAbsFact implement the operations to create concrete
strategies USFreight, GermanFreight, GermanTax and USTax.

The adaptation of the design patterns used as the example introduces a con-
figuration object [119] to shift the responsibility for selecting variants from one or
several clients to a Configuration class, as depicted in the Figure 8.3. The class Con-
figuration decides which variant to use. The class SalesOrder invokes the operation
getRulesForCountry in the class Configuration to get the variant. These interactions
are also depicted in a sequence chart in the Figure 8.4.
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GermanTaxUSTax GermanFreightUSFreight

AbstractFactory

makeCalcFreight() : Freight
makeCalcTax() : Tax
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 TaskController
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context Configuration::getRulesForCountry():OclType
 body:
  if so.customer.country.name = 'USA' then
    USAbsFact
  else
    if so.country.name = 'GERMANY' then
      GermanAbsFact
    endif
  endif

Fig. 8.3. Strategy and Abstract Factory Patterns with Configuration Object.

8.2.3 Drawbacks

In general, the strategy pattern solves the problem of dealing with variations. How-
ever, as documented by Gamma [106], the strategy pattern has a drawback. The
clients must be aware of variations and of the criteria to select between them at
runtime, as described at the end of Section8.2.1.

When combining the strategy and the abstract factory pattern, the problem of
choosing among the variants of the AbstractFactory remains almost the same. Indeed,
the abstract factory pattern assembles the families of strategies. Hence, the client
must still be aware of variations.

The solution using the class Configuration does not solve this problem either, i.e.,
the coupling migrates. As the Configuration must understand how the variants differ,
the selection is transferred from the client TaskController to the class Configuration.
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: TaskController

: SalesOrder

: Configuration : AbstractFactory

: Tax

: Freight

2:  process( )
3: getRulesForCountry( )

4: makeCalcTax( )

7: taxAmount( )

8: makeCalcFreight( )

11: freight( )

1: «create»

6: «return»

10: «return»

9: «create»

5: «create»

Fig. 8.4. UML Sequence Diagram of Strategy and Abstract Factory Patterns with
Configuration Object.

Furthermore, each occurrence of the strategy and the abstract factory patterns
increases the number of operations that the class Configuration must be able to
handle. It makes the specification of such a class complex, decreasing class cohesion.

Thus, a solution that reuses the understanding of the variations without increas-
ing the complexity is desirable. Furthermore, such a solution should allow to decide
on the appropriate variants as late as possible. Separating the base of decision from
the decision itself will provide an evolvable and more modular software design. In
the next section, we describe how TwoUse provides such a mechanism.

8.3 Application of the TwoUse Approach

A solution for the drawbacks presented at the end of Section 8.2 is to dynamically
classify the context, and verify if it satisfies the set of requirements of a given variant.
To do so, one requires a logical class definition language that is more expressive than
UML, e.g., the Web Ontology Language (OWL) [5].

To benefit from the expressiveness of OWL and UML modeling it is necessary
to weave both paradigms into an integrated model-based approach, e.g., by using
the TwoUse modeling approach (see Chapter 5).
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8.3.1 OWL for Conceptual Modeling

OWL provides various means for expressing classes, which may also be nested into
each other. One may denote a class by a class identifier, an exhaustive enumeration
of individuals, a property restriction, an intersection of class descriptions, a union
of class descriptions or the complement of a class description.

For the sake of illustration, an incomplete specification of the E-Shop example
using a description logic syntax repeated here. The identifier Customer is used to
declare the corresponding class (8.1) as a specialization of Thing (>), since all classes
in OWL are specializations of the reserved class Thing. The class Country contains
the individuals USA and GERMANY (8.2). The class USCustomer is defined by a
restriction on the property hasCountry, the value range must include the country USA
(8.3). The description of the class GermanCustomer is analogous (8.5). USSalesOrder
is defined as a subclass of a SalesOrder with at least one USCustomer(8.4). The
intersection of both classes is empty (⊥), i.e., they are disjoint (8.7). The class
SalesOrder is equal to the union of GermanSalesOrder and USSalesOrder, i.e., it is a
complete generalization of both classes (8.8).

Customer v > (8.1)

{USA,GERMANY } v Country (8.2)

USCustomer v Customer u ∃hasCountry{USA} (8.3)

USSalesOrder v SalesOrder u ∃hasCustomer.USCustomer (8.4)

GermanCustomer v Customer u ∃hasCountry{GERMANY } (8.5)

GermanSalesOrder v SalesOrder u ∃hasCustomer.GermanCustomer (8.6)

GermanSalesOrder u USSalesOrder v ⊥ (8.7)

SalesOrder ≡ GermanSalesOrder t USSalesOrder (8.8)

Notations for OWL modeling have been developed, resulting in lexical notations
(cf. [5, 120]) and in UML as visual notation (cf. [1, 69, 97] ). When modeling the
problem domain of our running example using a UML profile for OWL [1], the
diagram looks as depicted in the Figure 8.5. The number relates the list of DL
statements above to the corresponding visual notation.

8.3.2 TwoUse for Software Design Patterns: the Selector Pattern

To integrate the UML class diagram with patterns (cf. Figure 8.3) and the OWL
profiled class diagram (cf. Figure 8.5), we rely on the TwoUse approach. We use UML
profiles as concrete syntax, and allow for specifying UML entities and OWL entities
using one hybrid diagram. These entities are connected using the UML profile and
SPARQLAS queries. This hybrid diagram, i.e., a UML class diagram with profiles
for OWL and TwoUse is mapped later onto the TwoUse abstract syntax.

The approach enables the modeler to use SPARQLAS4TwoUse expressions to
describe the query operations of classes that have both semantics of an OWL class
and a UML class in the same diagram. Moreover, this operation can query the OWL
model, i.e., invoke a reasoning service at runtime that uses the same OWL model.

Hence, we can achieve dynamic classification writing SPARQLAS4TwoUse query
operations in the context to classify the variation in the OWL model in runtime.
The result is returned as a common object-oriented class.
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Fig. 8.5. Domain Design by a UML Class Diagram Using a UML Profile for OWL.

Structure

The hybrid diagram is depicted in the Figure 8.6 and in the Figure 8.7. The classes
Customer and Country are OWL classes and UML classes, i.e., they are hybrid
TwoUse classes. They are used in the OWL part of the model to describe the vari-
ations of the context SalesOrder. The TwoUse profile provides a mapping between
the names in OWL and in UML in such a way that class names in both OWL and
UML are preserved.

The concrete factories, i.e. the variants to be instantiated by the client TaskCon-
troller are TwoUse classes as well. The concrete factories are described based on
the restrictions on the class SalesOrder which must also exist in both paradigms.
In the OWL part of the model, the concrete factories specialize the SalesOrder, but
in UML, they specialize the class AbstractFactory. Hence, they do not inherit the
methods of the class SalesOrder, because the associations between the variants and
the context happen only in OWL part of the model.

Participants and Collaborations

The TwoUse approach preserves the signature and behavior of existing pattern
implementations, as only the body of the operation getRulesForCountry is affected.
The class Configuration is no longer needed, as the selection is moved to querying
the OWL part of the model (cf. the query in the Figure 8.6).
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UML

Package

OWL

TwoUse

GermanTaxUSTax
GermanFreightUSFreight

AbstractFactory

makeCalcFreight() : Freight
makeCalcTax() : Tax

 TaskController

so : SalesOrder

process()

GermanSalesOrder
<<owlClass>>

USSalesOrder
<<owlClass>>

Country
<<owlClass>>

Customer
<<owlClass>>

+hasCountry

SalesOrder
<<owlClass>>

getRulesForCountry() : OclType
process()

+hasOrder

+hasCustomer

Tax

taxAmount() Freight

freight()

<<owlRestriction>>

<<equivalentClass>>

USCustomer
<<owlRestriction>>

<<owlValue>> {hasValue = USA} country : Country

«owlValue» {someValuesFrom=USCustomer} hasCustomer

<<owlRestriction>>

<<equivalentClass>>

GermanCustomer
<<owlRestriction>>

<<owlValue>> {hasValue = GERMANY} hasCountry : Country

«owlValue» {someValuesFrom=GermanCustomer} hasCustomer

<<rdfSubClassOf>><<rdfSubClassOf>>

context SalesOrder::getRulesForCountry():OclType
 body:
   Select  ?T where ?self directType ?T

{disjoint, complete}

Customer
<<owlClass>>

Fig. 8.6. Profiled UML Class Diagram of an Ontology-Based Solution.

As depicted in the Figure 8.8, the class TaskController invokes the operation
process in the class SalesOrder (2), which invokes the operation getRulesForCoun-
try (3). This operation calls SPARQLAS4TwoUse query operations. The SPAR-
QLAS4TwoUse operations use reasoning services to classify dynamically the object
SalesOrder to the appropriate subclass. The resulting OWL class, i.e., USSalesOrder
or GermanSalesOrder, is mapped onto a UML class and is returned. The remaining
sequence (5-12) remains unchanged.
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TaskController 
process()

(USSalesOrder)
«owlClass»

USTax

«owlClass»
Country

«owlClass»

Customer
«owlClass»

Tax
taxAmount()

SalesOrder
«owlClass»

process()
getRulesForCountry()

«rdfSubClassOf»«rdfSubClassOf»

context SalesOrder::getRulesForCountry():OclType
body:
Select ?T where ?self directType ?T

USCustomer
«owlRestriction»

«owlValue» {hasValue = USA} country : Country

«owlValue» {someValuesFrom=USCustomer} hasCustomer

GermanCustomer
«owlRestriction»

«owlValue» {hasValue = GERMANY} hasCountry : Country
«owlValue» {someValuesFrom=GermanCustomer} hasCustomer

«owlRestriction»

«equivalentClass»

«owlRestriction»

«equivalentClass»

UML

OWL

TwoUse

GermanTax
(GermanSalesOrder)

Fig. 8.7. Profiled UML Class Diagram with the Strategy Pattern.

For instance, let ORDER1 be a SalesOrder with the property customer being
HANS with the property country being GERMANY. The call ORDER1.getRulesForCountry()
results in an object of type GermanSalesOrder.

Comparison

In the strategy and abstract factory solution, the decision of which variant to use is
left to the client or to the Configuration object. It requires associations from these
classes (TaskController and Configuration respectively) with the concepts (Tax and
AbstractFactory respectively). Furthermore, the conditions are hard-coded in the
client’s operations.

The TwoUse-based solution cuts these couplings, as the selection is done at the
OWL concept level, without any impact on the UML level, allowing the OWL part
of the model to be extended independently.
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 : TaskController

 : SalesOrder

 : AbstractFactory

 : Tax

 : Freight

2: process()

3: getRulesForCountry( )

5: makeCalcTax( )

12: freight( )

8: taxAmount( )

9: makeCalcFreight( )

10: «create»
11: «return»

6: «create»

7: «return»

1: «create»

   Select  ?T where ?self directType ?T

Fig. 8.8. Sequence Diagram of an OWL-Based Solution.

The descriptions of the classes USSalesOrder and GermanSalesOrder are used for
the Reasoner to classify the object dynamically. As the classification occurs at the
OWL level, resulting OWL classes are transformed into UML classes. Hence, the
conditions are specified as logical descriptions.

When evolving from Figure 8.1 to Figure 8.3, the OWL part of the model does
not change. Thus, new patterns can be applied without additional effort in modeling
the OWL domain.
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8.4 Validation

After analyzing the case study of composing OWL and design patterns in Section 8.3,
we abstract repeatable arrangements of entities and propose a design pattern sup-
ported by OWL to address decision of variations — the selector pattern.

The selector pattern provides an interface for handling variations of context.
It enables the context to select the appropriated variants based on their descrip-
tions. Selections in the selector pattern are encapsulated in appropriate SPARQLAS-
queries against the concept, facilitating a clear separation between the base of deci-
sion and the decision itself.

 : Concept : Context

1: selector( )

2: behavior( )

Context
<<owlClass>>

selector()

VariantA
<<owlClass>>

VariantB
<<owlClass>>

Concept

behavior()

<<rdfSubClassOf>><<rdfSubClassOf>>

{disjoint, complete}

context Context::selector():OclType
 body: 
   Select ?T where ?self directType ?T

Fig. 8.9. Structure, Participants and Collaborations in the Selector Pattern.

8.4.1 Participants and Collaborations

The selector pattern is composed by a context (e.g., SalesOrder in the Figure 8.6),
the specific variants (e.g. USAbsFact and GermanAbsFact in the Figure 8.6) of this
context and their respective descriptions, and the concept (e.g., AbstractFactory in
the Figure 8.6), which provides a common interface for the variations (Figure 8.9).
Its participants are:

• Context maintains a reference to the Concept object.
• Concept declares an abstract method behavior common to all variants.
• Variants implement the method behavior of the class Concept.
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The Context has the operation select, which uses SPARQLAS operations to call
the reasoner and dynamically classify the object according to the logical descriptions
of the variants. A Variant is returned as the result (Figure 8.9). Then, the Context
establishes an association with the Concept, which interfaces the variation.

8.4.2 Applicability

The selector pattern is applicable:

• when the strategy pattern is applicable (cf. [106]);
• when the decision of what variant to use appears as multiple conditional state-

ments in the operations;
• when exposing complex and case-specific data structures must be avoided.

The selector pattern preserves the interactions of the patterns strategy and ab-
stract factory, studied in this chapter. The following steps guide the application of
the selector pattern:

1. Design the OWL part of the model using a UML profile for OWL, identifying
the concept and logically describing the variations;

2. Map the overlapping classes in UML and in OWL using a UML profile;
3. Write the operation in the Context class corresponding to the operation selector

using SPARQLAS expressions.

8.4.3 Drawbacks

The proposed solution may seem complex for practitioners. Indeed, applying the
selector pattern requires sufficiently deep understanding by the developers about
topics like open and closed world assumption, class expressions and satisfiability,
in addition to the knowledge about SPARQLAS4TwoUse. Moreover, the diagram
presented by Figure 8.6 is visibly more complex than the corresponding version
without patterns, although applying aspect oriented techniques can minimize this
problem.

Further, calls from OCL to SPARQLAS4TwoUse may return OWL classes that
are not part of the TwoUse model. This implies a dynamic diffusion of OWL classes
into the UML model which must either be accommodated dynamically or, which
needs to raise an exception.

Therefore, class descriptions must be sufficient for the reasoner to classify the
variant, i.e., classes and properties needed to describe the variants must also exist at
the OWL level. When this is not possible, the reasoner cannot classify the variants
correctly.

8.4.4 Advantages

The application of the selector pattern presents the following consequences:

Reuse. The knowledge represented in OWL can be reused independently of platform
or programming language.

Flexibility. The knowledge encoded in OWL can be modeled and evolved indepen-
dently of the execution logic.
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Testability. The OWL part of the model can be automatically tested by logical unit
tests, independently of the UML development.

Easy Adoption. Expanding Figure 8.3 with Figure 8.6 and Figure 8.4 with Fig-
ure 8.8 in the motivating example, show that the changes required by applying
the selector pattern in existing practices are indeed minor.

UML paradigm dominance. The concrete cases are bound to the context only in
OWL. It has no impact on the UML part of the model. The programmer freely
specifies the SPARQLAS operation calls when applicable.

8.5 Related Work

State-of-the-art approaches require hard-coding the conditions of selecting a partic-
ular variant [119]. Our approach relies on OWL modeling and reasoning to dynam-
ically subclassify an object when required.

The composition of OWL with object-oriented software has been addressed
by [121] and [122]. We address this composition at the modeling level in a plat-
form independent manner [16].

8.6 Conclusion

We have proposed a novel way of reducing coupling in important design patterns
by including OWL modeling. We have proposed an ontology-based software design
pattern called selector pattern and discuss the impact of adopting the new approach.

The application of TwoUse can be extended to other design patterns concerning
variant management and control of execution and method selection. Software design
patterns that factor out commonality of related objects, e.g., prototype, factory
method and template method, are good candidates.
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Modeling Ontology-Based Information Systems

Summary. Developers of ontology-based information systems have to deal with
domain knowledge represented in ontologies and domain logic represented by algo-
rithms. An approach that allows developers to reuse knowledge embedded in on-
tologies for modeling algorithms is lacking so far. In this chapter, we apply the
TwoUse approach for enabling developers of ontology-based information systems to
reuse domain knowledge for modeling domain logic. It results in improvements in
maintainability, reusability and extensibility 1.

9.1 Introduction

The development of ontology-based information systems has gained momentum
as users increasingly consume applications relying on semantic web technologies.
For example, a core ontology-based information system for the Semantic Web
is the semantic annotation of formulas, text or image, which transforms human-
understandable content into a machine understandable form.

The development of these applications requires software engineers to handle
software artifacts and the ontologies separately. For instance, software engineers
cannot use OWL class expressions in the body of operations that indeed relies on
information contained in the ontology. Therefore, software engineers have to define
the conditions for selecting classes twice, firstly in the ontology and secondly in the
body of operations. This process is error-prone and requires the synchronization of
both definitions in case of changes.

In this chapter, we analyze the application of the TwoUse approach for inte-
grating the ontologies in the development of ontology-based information systems.
TwoUse enables ontology engineers to specify conditions reusing the knowledge en-
coded in the ontology.

This chapter is structured as follows: Section 9.2 describes the domain of the
case study and analyzing current modeling techniques. In Section 9.3, we apply

1 This chapter contains work of the paper “Using Ontologies with UML Class-
based Modeling: The TwoUse Approach” published at the Data & Knowledge
Engineering Journal [101].



122 9 Modeling Ontology-Based Information Systems

the TwoUse approach for integrating domain ontologies and software specification.
Section 9.4 analyzes the application of the TwoUse approach according to ISO 9126
non-functional software requirements, and it describes the limitations.

9.2 Case Study

We describe the case study in the context of the semantic multimedia tools in
this chapter. The K-Space Annotation Tool (KAT) [123] is a framework for semi-
automatic and efficient annotation of multimedia content that provides a plug-in
infrastructure (analysis plug-ins and visual plug-ins) and a formal model based on
the Core Ontology for Multimedia (COMM) [124].

Analysis plug-ins provide functionalities to analyze content, e.g., to semi- au-
tomatically annotate multimedia data like images or videos, or to detect structure
within multimedia data. However, as the number of available plug-ins increases, it
becomes difficult for KAT end-users to choose appropriate plug-ins.

For example, semantic multimedia developers provide machine learning based
classifies, e.g., Support Vector Machines (SVM), for pattern recognition. There are
different recognizers (object recognizers, face detectors and speaker identifiers) for
different themes (sport, politics and art), for different types of multimedia data
(image, audio and video) and for different formats (JPEG, GIF and MPEG). More-
over, the list of recognizers is continuously extended and, like the list of multimedia
formats, it is not closed but, by sheer principle, it needs to be open.

Therefore, the objective is to provide KAT end-users with the functionality of
automatically selecting and running the most appropriate plug-in(s) according to
the multimedia data captured by the ontology. Such improvement enhances user
satisfaction, since it prevents KAT end-users from employing unsuitable recognizers
over multimedia data.

In the following, we consider three recognizers that work over soccer videos:
highlight recognizer, jubilation recognizer and goal shots detector. A highlight rec-
ognizer works on detecting sets of frames in videos with high changing rates, e.g.,
intervals where the camera view changes frequently in a soccer game. A jubilation
recognizer analyzes the video and audio, searching for shouts of jubilation. Finally,
a goal shots detector works on matching shouts of jubilation with changes in camera
view to characterize goal shots.

9.2.1 UML class-based software development

We apply an extensible approach to model recognizer variations, namely an adap-
tation of the strategy pattern [106]. The strategy pattern allows for encapsulating
recognizers uniformly, as depicted in the Figure 9.1.

Figure 9.1 depicts the KAT domain in the UML class diagram. It is a complex
domain since KAT uses the COMM ontology that comprises multiple occurrences
of ontology design patterns, e.g., semantic annotation used in the running example.

Users select KAT algorithms for SVM recognition and, consequently, the class
controller invokes the method run() in the class kat algorithm (Figure 9.1). The
method run() invokes the method getRecognizers(), which uses reflection to get a
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jubilation_recognizer

highlight_recognizer

controller

multimedia_data

recognizer

recognize()

kat_algorithm

_recognizers : ArrayList

run( )

getRecognizers() : Set(r )ecognizer

goal_shots_detector

: controller : algorithm

: recognizer

1: run( )
2: getRecognizers( )

4: recognize( )

3: createInstance( )rNames(i)

loop (0, rNames->size())

loop (0, _recognizers->size())

Fig. 9.1. UML Class Diagram and Sequence Diagram of KAT Algorithms.

collection (rNames()) of the recognizers ( r) applicable to a given multimedia con-
tent (multimedia data). Then, the method recognize() of each recognizer is invoked,
which adds further annotations to multimedia data to refine the description.

Nevertheless, applying the strategy design pattern opens the problem of strategy
selection. To solve it, one needs to model how to select the appropriate recognizer(s)
to a given item of multimedia content. Listing 9.1 illustrates a solution using OCL.
It shows the description of the query operation rNames() in OCL. This operation is
used in the guard expression of the loop combined fragment in the sequence diagram
(Figure 9.1).

The operation rNames() collects the classes of recognizers to be created. The
OCL expression Set(OclType) (Line 4) is used here as a reflection mechanism to get
a list of the classes to be created. It is required to iterate through the instances of
kat algorithm (Line 4) and test if it satisfies the requirements of a given recognizer.
If it does, the recognizer is added into a collection of recognizers to be created (Line
17).

Listing 9.1. OCL Expressions for the UML Sequence Diagram of Figure 9.1

1 context kat a lgor i thm
def rNames ( ) : Set (OclType)
= kat a lgor i thm . allInstances ( )

−>iterate ( i : ka t a lgor i thm ;
5 r : Set (OclType) = Set{} |

i f
i . annota ted data ro l e−>exists ( adr |
adr . v ideo data−>exists ( v |

v . oclIsTypeOf ( s o c c e r v i d e o ) and
10 v . semant ic annotat ion−>exists ( sa |

sa . kat th ing−>exists ( g |
g . oclIsTypeOf ( h i g h l i g h t ) ) ) and

v . semant ic annotat ion−>exists ( sa |
sa . kat th ing−>exists ( j |

15 j . oclIsTypeOf ( j u b i l a t i o n ) ) )
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) )
then

r−>including ( g o a l s h o t s d e t e c t o r )
else i f

20 i . annota ted data ro l e−>exists ( adr |
adr . v ideo data−>exists ( v |

v . oclIsTypeOf ( v ideo data ) ) )
then

r−>including ( h i g h l i g h t r e c o g n i z e r )−>union (
25 r−>including ( j u b i l a t i o n r e c o g n i z e r ) )

else
r

endif
endif )−>asSet ( )

In fact, the OCL expressions in Listing 9.1 contain class descriptions in some
sense. For example, the classes highlight recognizer and jubilation recognizer need
a kat algorithm with some annotated data role with some video data (Lines 19-24).
The description of a goal shots detector is complicated (Lines 7-15), since it needs
a soccer video, that is a subclass of video data, with some semantic annotation with
some highlight, and with some semantic annotation with some jubilation.

Indeed, the UML/OCL approach has limitations:

• It restricts information that can be known about objects to object types, i.e.,
known information about objects is limited by information in object types (or
in object states when using OCL).

• Class descriptions, e.g. goal shots detector (Lines 7-16), are embedded within
conditional statements that are hard to maintain and reuse. In scenarios with
thousands of classes, it becomes difficult to find those descriptions, achievable
only by text search.

• OCL lacks of support for transitive closure of relations [89, 125]. It makes ex-
pressions including properties like part-of more complex.

9.2.2 Ontology-Based Software Development

OWL Modeling

Instead of hard-coding class descriptions using OCL expressions, a more expressive
and extensible manner of modeling data provides flexible ways to describe classes
and, based on such descriptions, it enables type inference.

Therefore, one requires a logical class definition language that is more expressive
than UML class-based modeling. Indeed, OWL provides various means for describing
classes. One may denote a class by a class identifier, an exhaustive enumeration of
individuals, property restrictions, an intersection of class descriptions, a union of
class descriptions, or the complement of a class description.

For the sake of illustration, we use description logic syntax to specify the KAT
domain as follows. KAT uses the COMM ontology [124] as a conceptually sound
model of MPEG-7 and as a common but extensible denominator for different plug-
ins exchanging data.
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For example, the classes jubilation and highlight are subclasses of kat thing(1).
A soccer video is a subclass of video data(2). A highlight annotation is a seman-
tic annotation that setting for some highlight (3). A highlight video is equivalent to
a video data that setting some highlight annotation(4). A jubilation video is similarly
described (5). A highlight recognizer is a subclass of a kat algorithm and is equiva-
lent to a kat algorithm that defines some annotated data role that is played by some
video data(7).

jubilation, highlight v kat thing (9.1)

soccer video v video data (9.2)

highlight annotation ≡ semantic annotation
u∃setting for.highlight (9.3)

highlight video ≡ video data u ∃setting.highlight annotation (9.4)

jubilation video ≡ video data u ∃setting.jubilation annotation (9.5)

soccer jub hl video ≡ soccer video u highlight video u jubilation video (9.6)

highlight recognizer ≡ kat algorithm
u∃defines(annotated data role u ∃played by.video data) (9.7)

goal shots detector ≡ kat algorithm
u∃defines(annotated data role u ∃played by.soccer jub hl video) (9.8)

Table 9.1. Specifying KAT with Description Logic Syntax.

OWL is compositional, i.e., OWL allows for reusing class descriptions to cre-
ate new ones. A look at the class soccer jub hl video(6) shows that it is equivalent
to an intersection of soccer video, highlight video and jubilation video, i.e., a soccer
video with highlight and jubilation. Thus, it becomes easier to describe the class
goal shots detector(8), which is a subclass of a kat algorithm and is equivalent to
a kat algorithm that defines some annotated data role that is played by some soc-
cer jub hl video. Moreover, OWL allows for defining properties as transitive, simpli-
fying query expressions. The reader may compare these reusable class definitions
against the involved and useable implicit definition of distinctions provided in List-
ing 9.1 (Lines 6-25).

OWL Reasoning

OWL ontologies can be operated on by reasoners providing consistency checking,
concept satisfiability, instance classification and concept classification. The reasoner
performs model checking to the extent that entailments of the Tarski-style model
theory of OWL are fulfilled. For instance, it is possible to verify whether it is possible
to apply goal shots detector to images (consistency checking)(the answer is ‘no’ if
goal shots detector is disjoint from image recognizers) or whether a given instance is a
soccer jub hl video(instance classification). It is possible to ask a reasoner to classify
the concepts of the ontology and find that highlight video and jubilation video are
both superclasses of soccer jub hl video (concept classification).
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More specifically, given that we know an object to be an instance of high-
light video, we can infer that this object has the property setting and the value
of setting is an individual of highlight annotation. Conversely, if we have an object of
video data, which has the property setting and the value of setting associated with
such an individual is a highlight annotation, we can infer that the prior individual is
an instance of highlight video. This example illustrates how to define OWL classes
like highlight video by necessary and sufficient conditions.

To sum up, OWL provides important features complementary to UML and OCL
that improve software modeling: it provides multiple ways of describing classes; it
handles these descriptions as first-class entities; it provides additional constructs
like transitive closure for properties; and it enables dynamic classification of objects
based upon class descriptions.

The need for an integration emerges since OWL is a purely declarative and logical
language and not suitable to describe, e.g., dynamic aspects of software systems such
as states or message passing. Thus, to benefit from inference, one must decide at
which state or given which trigger one should call the reasoner. In the next section,
we address this issue among others, proposing ways of integrating both paradigms
using the TwoUse approach.

9.3 Application of the TwoUse Approach

We apply the TwoUse approach described in Part II to enable engineers to design
and integrate UML models and OWL ontologies, exploiting the full expressiveness
of OWL (SROIQ(D)) and allowing usage of existing UML2 tools.

To give an idea of the integration, we use the example of the E-Shop domain.
Instead of defining the query operation rNames using UML/OCL expressions, we
use the expressiveness of the OWL language together with SPARQLAS4TwoUse.
Querying an OWL reasoning service, it is possible to ask which OWL subclasses
of kat algorithm describe a given instance, enabling dynamic classification. Such
expression will then be specified by:

1 context kat a lgor i thm
def rNames ( ) : Set ( Class )

? s e l f type ?T
?T subClassOf kat a lgor i thm

As specified above, to identify which subclasses are applicable, we use the vari-
able ?T to get all types of ?self that are subclasses of kat algorithm.

The advantage of this integrated formulation of rNames lies in separating two
sources of specification complexity. First, the classification of complex classes re-
mains in an OWL model. The classification reuses the COMM model and it is
re-useable for specifying other operations; it is maintainable using graphical nota-
tions; and it is a decidable, yet rigorous reasoning model (see Figure 9.2). Second,
the specification of the execution logic remains in the UML specification (Sequence
Diagram in the Figure 9.1).
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9.3.1 Concrete Syntax

Figure 9.2 shows a snippet of the UML class diagram for the case study. In this
snippet, the OWL view consists of five classes. The UML View comprises the seven
classes depicted in the Figure 2.8 and the TwoUse view contains six classes and a
SPARQLAS query expression.

Fig. 9.2. UML Class Diagram of KAT.

Another way or integrating ontologies in the development of ontology-based
information systems is using the textual syntax. Listing 9.2 presents the equivalent
of the UML class diagram defined using the textual syntax for Ecore and includes
the OWL class expressions (between brackets).

Listing 9.2. Modeling KAT using the textual language

1 class c o n t r o l l e r {}
class kat a lgor i thm extends core : a lgor i thm {

a t t r i b u t e r e c o g n i z e r r e c o g n i z e r s (0 . . −1) ;
ope ra t i on void run ( ) ;

5 operat i on r e c o g n i z e r (0 . . −1) ge tRecogn i ze r s ( ) ;
ope ra t i on rNames ( ) : Set ( OclType )

S e l e c t ?T where ? s e l f type ?T ?T subClassOf
kat a lgor i thm ;

}
. . .

10 abstract class r e c o g n i z e r {
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operat i on void r e c o g n i z e ( ) ;
}
class h i g h l i g h t a n n o t a t i o n [ equiva lentTo

[ core : s emant i c annotat ion and [ dsn : s e t t i n g f o r some
h i g h l i g h t ] ] ] {}

class h i g h l i g h t v i d e o [ equiva lentTo [ core : v ideo data and
[ dsn : s e t t i n g some h i g h l i g h t a n n o t a t i o n ] ] ] { }

15 class j u b i l a t i o n v i d e o [ equivalentTo [ core : v ideo data and
[ dsn : s e t t i n g some j u b i l a t i o n a n n o t a t i o n ] ] ] { }

class s o c c e r j u b h l v i d e o [ equiva lentTo [ s o c c e r v i d e o and
h i g h l i g h t v i d e o and j u b i l a t i o n v i d e o ] ] { }

class h i g h l i g h t r e c o g n i z e r extends kat a lgor i thm ,
[ subClassOf [ dns : d e f i n e s some
[ core : anno ta t ed da ta ro l e and [ played by some
core : v ideo data ] ] ] ] { }

class j u b i l a t i o n r e c o g n i z e r extends kat a lgor i thm ,
[ subClassOf [ dns : d e f i n e s some
[ core : anno ta t ed da ta ro l e and [ dns : played by some
core : v ideo data ] ] ] ] { }

class g o a l s h o t s d e t e c t o r extends kat a lgor i thm ,
[ subClassOf [ dns : d e f i n e s some
[ core : anno ta t ed da ta ro l e and [ dns : played by some
s o c c e r j u b h l v i d e o ] ] ] ] { }

9.3.2 Abstract Syntax

The TwoUse abstract model is generated as output of model transformations that
take as input models defined using any of the notations supported by TwoUse.
Figure 9.3 depicts an excerpt of the abstract model for the running example.

9.3.3 Querying

Table 9.2 lists results of evaluating SPARQLAS expressions considering the snap-
shot depicted in the Figure 9.4. We take two objects of the snapshot (alg1, alg2)
and bind them to the predefined variable self. For example, for the expression
self.owlIsInstanceOf(highlight recognizer) where self is bound to alg1, the result is
true.

9.4 Validation

Based on the case study, we analyze how TwoUse features reflect development-
oriented non-functional requirements according to a quality model covering the fol-
lowing quality factors: maintainability, efficiency (ISO 9126 [126]), reusability and
extensibility [127]. The decision of using UML with OWL does not affect other ISO
9126 quality factors.
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Context object alg1 alg2
SPARQLAS Expression

?self directType highlight recognizer true true

?self directType goal shots detector false true

?self type ?T algorithm, description,
highlight recognizer,
jubilation recognizer,
method

algorithm, description,
highlight recognizer,
jubilation recognizer,
goal shots detector,
method

?self type ?T ?T subClassOf algorithm highlight recognizer,
jubilation recognizer

highlight recognizer,
jubilation recognizer,
goal shots detector

?self directType :t ?a type :t alg1, alg2 alg1, alg2

?self directType ?T highlight recognizer goal shots detector

Table 9.2. Evaluation of SPARQLAS expressions according to the KAT snapshot.

Maintainability

We analyze maintainability with regard to analyzability, changeability and testabil-
ity as follows.

Analyzability. In case of failure in the software, developers have the possibility of
checking the consistency of the domain and then use axiom explanation to track
down failure, which helps to improve failure analysis efficiency.

Changeability. The knowledge encoded in OWL evolves independently of the execu-
tion logic, i.e., developers maintain class descriptions in the ontology and not in
the software. Since the software does not need recompilation and redistribution,
the work time spent to change decreases.

Testability. Developers used queries declared in unit tests to test ontology axioms,
enabling test suites to be more declarative.

Reusability

Extending the COMM core ontology allows developers to reuse available knowledge
about multimedia content, semantic annotation and algorithm. Furthermore, devel-
opers can reuse the knowledge represented in OWL independently of platform or
programming language.

Moreover, developers rely on usage of class descriptions to semantically query
the domain. Semantic query plays an important role in large domains like KAT
(approx. 750 classes). For example, it is possible to reuse algorithm descriptions
applicable to videos. By executing the query
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1 ?T subClassOf ( d e f i n e s some ( anno ta t ed da ta ro l e and
( played by some video ) ) )

using SPARQLAS, developers see that the classes highlight recognizer, jubila-
tion recognizer and goal shots detector are candidates to reuse. Such a semantic query
is not possible with UML/OCL.

Extensibility

When the application requires it, developers can be more specific by extending
existing concepts and adding statements. By adding new statements, developers
update the OWL ontology which does not require generating code if the UML model
is not affected. For example, if developers identify that an algorithm works better
with certain types of videos, developers extend the algorithm description.

9.4.1 Limitations

By weaving UML and OWL ontologies, TwoUse requires sufficient understanding of
developers about class expressions and satisfiability. There is a trade-off between a
concise and clear definition of syntax that is unknown to many people as in Table 9.1
versus an involved syntax that people know. From past experiences, we conclude
that, in the long term, the higher level expressivity will prevail, as developers are
willing to learn a more expressive approach.

Indeed, we have defined multiple notations according to different developers’
needs, but this does not prevent them from understanding the semantics of OWL
constructs. This shortcoming is minimized in case of ontology-based information
systems, since software developers are familiar with OWL.

9.5 Conclusion

In this chapter, we show how our approach yields improvements on the maintainabil-
ity, reusability and extensibility for designing ontology-based information systems,
which corroborates literature on description logics [128]. TwoUse allows develop-
ers to raise the level of abstraction of business rules until now embedded in OCL
expressions.
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Fig. 9.3. Excerpt of a KAT model (M1).
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Fig. 9.4. Snapshot of KAT (M0).



10

Enabling Linked Data Capabilities to MOF
Compliant Models

Summary. In the software development process, there are standards for general-
purpose modeling languages and domain-specific languages, capable of capturing
information about different views of systems like static structure and dynamic be-
havior. In a networked and federated development environment, modeling artifacts
need to be linked, adapted and analyzed to meet information requirements of mul-
tiple stakeholders. In this chapter, we present an approach for linking, transforming
and querying MOF-compliant modeling languages on the web of data. We propose
the usage of semantic web technologies for linking and querying software models.
We apply the proposed framework in a model-driven software.

10.1 Introduction

In a model-driven architecture, software engineers rely on a variety of languages
for designing software systems. As different stakeholders need different views of
information, the software development environment needs to encompass a myriad of
general-purpose and domain-specific languages with complementary and overlapping
applications.

Since it is not feasible to capture all aspects of software into only one single
model, contemporary model-driven architectures includes numerous notations to
serve according to the software development task. The inevitable usage of multi-
ple languages leads to unmanageable redundancy in developing and managing the
same information across multiple artifacts and, eventually, information inconsis-
tency. With the growing demand for networked and federated environments, the
question arises about what and how existing web standards can help existing mod-
eling standards in fulfilling the requirements of a web of models.

Semantic web technologies [41] and linked open data (LOD) principles [129]
enable any kind of data to be represented, identified, linked and formalized on the
web. The same data can be adapted for use according to the software engineer’s
perspective.

The interest on this topic motivated the Object Management Group (OMG)
to issue a request for proposal aiming at defining a structural mapping between
Meta Object Facility (MOF) models and Resource Description Framework (RDF)
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representations [130]. This mapping should make possible to apply LOD principles
to MOF compliant models and to publish MOF compliant models as LOD resources.

In a collaborative environment, developers need to be able to create architectures
with information expressed in multiple modeling languages. According to the devel-
opment phase, developers rely on multiple languages for modeling distinct aspects
of the system.

OWL [5] provides a powerful solution for formally describing domain concepts
in networked environments. OWL is part of the semantic web stack, is compati-
ble with RDF and with LOD principles. OWL’s objective is to provide evolution,
interoperability, and inconsistency detection of shared conceptualizations.

Although transformations from the MOF metamodel to OWL have been pro-
posed before, addressing the aforementioned problems requires a coherent frame-
work comprising techniques not only for transforming but for extending, linking
and querying MOF compliant models.

In this chapter, we propose TwoUse as a framework for supporting interrela-
tionships of modeling languages in distributed software modeling environments. We
present this chapter as follows: Section 10.2 describes the running example used
through the chapter and analyzes the requirements to be addressed. Section 10.3
describes the application of the TwoUse approach. We analyze the approach on
Section 10.4 and the related work in Section 10.5. Section 10.6 finishes the chapter.

10.2 Case Study

As a case study, we use the development of the TwoUse toolkit, i.e., “we eat our
own dog food”. As described in Chapter 7, the TwoUse Toolkit is a model-driven
implementation of current OMG and W3C standards for designing ontology-based
information systems and model-based OWL ontologies.

TwoUse’s development life cycle comprises five phases: requirement specifica-
tion, analysis, design, code and management. Figure 10.1 depicts these phases and
the artifacts generated in each phase. In the requirement specification phase, de-
velopers use UML use case diagrams and a domain-specific language for specifying
requirements. These requirements are realized by Business Process Model Nota-
tion (BPMN) and UML component diagrams in the analysis phase. During the de-
sign phase, developers specify metamodels, generations for those metamodels, model
transformations and in the case of editors, the grammar specification. At the end of
the development life cycle, these artifacts are transformed to source code and the de-
pendencies between TwoUse plug-ins are captured by eclipse manifest files. Finally,
the management phase controls the development life cycle and provides versioning.

Figures 10.3, 10.2 and 10.4 depict three concrete diagrams and show how they
depend on each other. The UML use case diagram depicts use cases from the perspec-
tive of two actors: software engineer and ontology engineer (Figure 10.3). Software
engineers use the TwoUse toolkit to extend UML or Ecore models with OWL an-
notations, to transform either of these metamodels into OWL and subsequently to
query them. Ontology engineers use a textual or graphical editor to design an OWL
ontology to be queried afterwards.

The BPMN diagram shows the realization of these use cases from the perspec-
tive of the software engineer (Figure 10.3). Concretely, software engineers open the
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Fig. 10.1. Development Life Cycle of the TwoUse Toolkit.

Fig. 10.2. Snippets of Use Case Diagram from TwoUse Toolkit.

perspective “ontology development” to start editing and querying models and meta-
models in OWL format.

The component diagram shows the internal structure and dependencies of com-
ponent in the TwoUse architecture (Figure 10.4).
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Fig. 10.3. Snippets of BPMN Diagram from TwoUse Toolkit.

Fig. 10.4. Snippets of Component Diagram from TwoUse Toolkit.

The TwoUse toolkit development life cycle relies on multiple models to provide
viewpoints according to the development phase. For example, testers are interested
in the information flow to realize functionalities provided by the system. Software
engineers are interested in the impact of changing a given component or task. Other
software engineers are interested in a modular view of the system for coordinating
deliverables.

10.2.1 Requirements

Based on demand identified in developing the TwoUse toolkit, we identify three
fundamental requirements for realizing a linked-open data environment in model-
driven engineering:
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RQ1: Model and Metamodel Interoperability. Multiple metamodels may define the
same concepts in different ways. Therefore, one needs to extend existing meta-
modeling frameworks (e.g., EMOF) to include support for primitives for relat-
ing different representations, thus allowing for integrate models that conform to
heterogeneous metamodels.

RQ2: Techniques for composition of models and metamodels. For semi automatically
integrating modeling languages, one requires alignment techniques that allow
for identifying equivalences over multiple languages and represent these equiv-
alences (linking).

RQ3: Integration Management. To achieve interoperability of modeling languages,
one needs to control all stages of linking modeling languages. Models and meta-
models must be transformed into the same representation. After the composition
takes place developers can create or execute queries over artifacts.

Addressing these requirements allows for achieving the following features:

Consistent view over multiple MOF Models: Based on an integration of multiple
(MOF-based) languages, it is possible to have a consistent view over multiple
artifacts.

Query Answering: Based on underlying formal semantics and constraints, it is pos-
sible to define queries over multiple artifacts. For example, it is possible to
answer questions like: What is the effect of updating the plug-in pellet? Which
case tests must be executed if this plug-in is updated? Moreover, it enables the
identification of the impact of some model components upon others (Impact
Analysis) and thus the identification of cyclic dependencies or other unexpected
consequences.

10.3 Application of the TwoUse Approach

In this section, we describe how we exploit the TwoUse approach to address the
requirements described in the previous section. We present how to extend and trans-
form modeling languages into OWL. We illustrate how to query and manage links
between modeling languages.

In the next subsections, we show how we apply the TwoUse components de-
scribed in Chapter 7 to realize linked data capabilities to MOF languages. The
approach consists of the following components (1) model extension, (2) model trans-
formation, (3) matching, and (4) querying (please refer to Section 7.3 for the com-
ponents of the generic architecture).

10.3.1 Model Extension

OWL specifies class expression axioms, object property axioms and individual ax-
ioms that serve to link similar classes and individuals over multiple metamodels and
models. Because of OWL 2 expressiveness, it is possible to combine class expressions
and axioms to express equivalencies between classes.

Figure 10.5 shows snippets of the UML and BPMN metamodels. From the UML
metamodel, it depicts classes of the Use Case package and the Activity package. From
the BPMN metamodel, it depicts classes that describe tasks and message edges. A
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look at both metamodels shows correspondences between the activity package and
the BPMN metamodel. For example, the UML class Activity is equivalent to BPMN
class BpmnDiagram.

Fig. 10.5. Snippet of BPMN metamodel and UML metamodel for Use Cases.

In Listing 10.1, we present examples using OWL 2 syntax of constructs that can
serve to link Ecore metamodels with OWL. In Line 1, we describe the equivalence of
a UML Activity and BpmnDiagram. The equivalence of the set of individuals of the
class OpaqueAction and the set of individuals of the class Activity where the property
activityType is set to Task in the BPMN metamodel is defined in Line 2. Lines 3 and
4 characterize the property general of the UML metamodel as transitive. In Line 5,
we derive a new property in the BPMN metamodel based on a property chain, i.e., a
composition of the properties outgoingEdges and target are properties of sucessorAc-
tivities. For instance, outgoingEdges(x, y), target(y, z) → sucessorActivities(x, z).
Similarly, a property chain ancestorNodes for the UML metamodel is defined in
Line 6. The equivalence of the defined property chains is expressed in Line 7.
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Listing 10.1. Linking Ecore metamodels with OWL.

1 EquivalentClasses ( uml : Ac t i v i ty bpmn : BpmnDiagram)
EquivalentClasses ( uml : OpaqueAction ObjectSomeValuesFrom

(bpmn : act iv i tyType bpmn : Task ) )
TransitiveObjectProperty ( uml : g ene ra l )
SubObjectPropertyOf ( ObjectPropertyChain

(bpmn : outgoingEdges bpmn : t a r g e t )
bpmn : s u c e s s o r A c t i v i t i e s )

5 SubObjectPropertyOf ( ObjectPropertyChain ( uml : outgoing
uml : t a r g e t ) uml : sucessorNodes )

SubObjectPropertyOf ( ObjectPropertyChain ( uml : i n c lude
uml : add i t i on ) uml : inc ludeUseCases )

SubObjectPropertyOf ( ObjectPropertyChain
( Object InverseOf ( uml : add i t i on ) uml : inc lud ingCase )
uml : inc lud ingUseCases )

EquivalentObjectProperties ( uml : sucessorNodes
bpmn : s u c e s s o r A c t i v i t i e s )

At the model level, developers can link models elements (metamodel instances)
using OWL constructs. The SameIndividual axioms allow to define the equality of
individuals in order to assert that instances of different metamodels are the same.
For example, if we have a UML package called west.twouse.backend, we can assert
that this package is the same as the Java package with the same name – SameIndi-
vidual(uml:west.twouse.backend java:west.twouse.backend).

Additionally, OWL 2 provides constructs to enrich Ecore metamodels and extend
its expressiveness. For example, object property axioms aim at characterizing object
properties like the definition of sub-property relations and the expression of reflexive,
irreflexive, symmetric, asymmetric and transitive properties.

Another benefit of extending Ecore with OWL is monotonicity, i.e., adding fur-
ther axioms to a model does not negate existing entailments. We can extend Ecore
metamodels with OWL without invalidating any existing assertions. Thus, OWL
provides a non-invasive way to integrate same or similar concepts of different mod-
eling languages.

In order to extend the expressiveness of Ecore metamodels, we use the textual
notation defined in the TwoUse approach (Chapter 5).

By extending the Ecore metamodel with OWL, we enable developers with prim-
itives for connecting metamodels like property equivalence, class equivalence and
individual equality, addressing the requirement RQ1.

10.3.2 Model Transformation

Based on the mappings between UML class-based modeling and OWL ontology, we
develop a generic transformation to transform any Ecore Metamodel/Model into
OWL TBox/ABox – OWLizer [131]. Figure 10.6 depicts the conceptual schema of
transforming Ecore into OWL.

A model transformation takes a language metamodel and the annotations as
input and generates an OWL ontology where the concepts, enumerations, properties
and datatypes (terms) correspond to classes, enumerations, attributes/references
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Fig. 10.6. Mapping Ecore and OWL.

and datatypes in the language metamodel. Additionally, the transformation takes
the language model created by the language user and generates assertions in the
OWL ontology.

The structural mapping from Ecore-based metamodels and models to OWL
makes Ecore models in general data available as federated, accessible and query-
ready LOD resources. Multiple UML models can be transformed into a common
representation in OWL ontologies according to this structural mapping. Having
models represented in OWL ontologies, one might connect these ontologies and
process these ontologies in a federated way.

Thus, the resulting OWL representations address the requirement RQ3 defined
in Section 10.2.1.

10.3.3 Matching

In a model-driven paradigm, resources that are expressed using different model-
ing languages must be reconciled before being used. As described previously (see
Section 3.5 in Chapter on Ontology Foundations), ontology matching allows for
identifying correspondences of elements between two ontologies.

The quality of the correspondences depends on the applied criteria and tech-
nique. For example, if we apply only string matching, it generates a false positive
correspondence between the UML Activity and the BPMN Activity. However, if we
apply structure-based techniques and analyze the structure of the UML class Ac-
tion and the BPMN class Activity, we see that both have similar structures (both
have one superclass with two associations with the same cardinalities). However, the
UML class Action is abstract and the BPMN class Activity is concrete. So, we could
assert that the class Activity is a subclass of class Action.

Automatic matching techniques can be seen as support but should be assisted by
domain experts, because of false positive matches. For example, the correspondence
between BpmnDiagram and UML Activity is hard to catch automatically.
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Ontology matching capabilities address the requirement RQ2 by identifying cor-
respondences in order to link between (meta) models.

10.3.4 Querying with SPARQLAS

As described in Section 6.3, SPARQLAS allows for specifying queries using the OWL
syntax for querying OWL ontologies. Listing 10.2 shows a SPARQLAS query about
use cases that include other use cases. In this example, we ask about the individuals
?x whose type is an anonym class where the transitive property includeUseCase has
as a value some use case.

Listing 10.2. Use Cases that includes some other use case

1 Namespace : uml = <http ://www. e c l i p s e . org /uml2 / 3 . 0 . 0 /UML#>
Select ?x
Where :

?x type ( UseCase and inc ludeUseCase some UseCase )

With SPARQLAS, we cover the requirement RQ3 by providing distributed query
facilities for models and metamodels that are represented in OWL.

10.4 Validation

In order to validate our approach, we applied it in the TwoUse Toolkit. Table 10.4
presents the list of artifacts part of the development process of TwoUse Toolkit
and the corresponding metrics. TwoUse Toolkit is a model-driven approach, i.e.,
each artifact listed below has an Ecore metamodel. For each artifact, we present the
number of classes on the metamodel and the number of instances.

Table 10.1. TwoUse Measurement.

Phase Artifact Classes Instances

User Requirements Requirements specifi-
cation

24 212

UML diagrams 261 174

Analysis BPMN diagram 24 754

Design Metamodel 23 5370

Generator specifica-
tion

20 3374

Grammar specifica-
tion

38 7611

Model transforma-
tion

46 8043

Code manifest specifica-
tion

53 2824

Management Versioning and devel-
opment life cycle

22 7032
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Using our approach, we are able to extract information about the Ecore meta-
models and models listed in Table 10.4, partially fulfilling requirement RQ3. Our ap-
proach for transforming Ecore-compliant metamodels and models captures all Ecore
constructs. Thus, transformations from OWL back to Ecore can be done lossless.

After extracting metamodel/model information from TwoUse artifacts, we used
ontology matching techniques to identify correspondences between metamodels, ful-
filling the requirement RQ2. For Ecore metamodels and models, we have used string
distance method that analyzes the similarities between names of elements. Addition-
ally, we have used the class structure alignment method for establishing alignments
based on the comparison of class properties.

Ontology matching techniques still generate false positives. Thus, it is necessary
that domain experts assist the ontology matching process at the metamodel level
(M2) by manually determining which of the identified correspondences should be
implemented. At the modeling level (M1), this problem is minimized by alignment
rules that query the metamodels. For example, if an instance x of UML metaclass
OpaqueAction has the same name as an instance of the BPMN metaclass Activity,
then they are the same activity.

Once that domain experts have acknowledged which correspondences should
take place, the axioms for realizing the correspondences are generated, fulfilling
the requirement RQ2. Listing 10.3 presents sample axioms for linking model and
metamodel. Equivalent classes or class expressions are connected by the construct
EquivalentClasses, whereas individuals with the same name are connected by the
construct SameIndividual.

Listing 10.3. Sample of Linking Ecore metamodels with OWL.

1 EquivalentClasses ( uml : Ac t i v i ty bpmn : BpmnDiagram)
EquivalentClasses ( uml : ActivityNode bpmn : Vertex )
EquivalentClasses ( uml : OpaqueAction ObjectSomeValuesFrom

(bpmn : act iv i tyType bpmn : Task ) )
Equiva lentDataPropert i e s ( uml : name bpmn : name)

5 SameIndividual ( uml : west . twouse . r ea sone r
s r s : west . twouse . r ea sone r )

SameIndividual (mf : west . twouse . r ea sone r
s r s : west . twouse . r ea sone r )

SameIndividual ( uml : Reason ingServ i ce s
s r s : Reason ingServ i ce s )

Finally, we present the specification of queries mentioned at the beginning of this
Section, fulfilling the requirement RQ3. Listing 10.4 presents the SPARQLAS query
for determining which tasks realize the use case Querying. The usage of the transitive
property and property chain for includeUseCases simplifies the query. Moreover, the
query works for Activity Diagrams and BPMN Diagrams, since both are integrated.

Listing 10.4. Which Tasks realize Use Case Querying?

1 Namespace : = <http ://www. e c l i p s e . org /uml2 / 3 . 0 . 0 /UML#>
Select ?name
Where : : u name "Querying"ˆˆ xsd : s t r i n g

: u inc ludeUseCases ?uc
5 ?uc ownedBehavior ? act
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? act node ?node
?node type OpaqueAction
?node name ?name

Listing 10.5 presents an example of querying involving both levels (metamodel
M2 and model M1) at the same time. It uses the alignments presented above, i.e.,
individuals of class UseCase and class Component are the same as individuals of
classes UseCase and Component with the same name. Moreover, it uses an anonym
property that corresponds to a property chain of the property uml:includingCase and
the inverse of the property uml:addition.

Listing 10.5. What Use Cases to test If the component west.twouse.reasoner is
updated?

1 Namespace : uml = <http ://www. e c l i p s e . org /uml2 / 3 . 0 . 0 /UML#>
Namespace : s r s = <http :// west . uni−koblenz . de/SRS#>
Namespace : mf =

<http :// west . uni−koblenz . de/ Ec l i p s eMan i f e s t#>
Select ?name

5 Where : ? component mf : name
"west.twouse.reasoner"ˆˆ xsd : s t r i n g

?component s r s : requirement ? requirement
? requirement s r s : useCase ?uc
?uc uml : name ?name

Union :
10 ?uc ( i n v e r s e uml : add i t i on o uml : inc lud ingCase ) ? iuc

? iuc uml : name ?name

10.4.1 Limitations

Since there exist multiple strategies for matching and aligning ontologies, it is possi-
ble that false positive matches occur. For example, OWL classes with the same name
are matched as equivalent, if one uses a string based matching technique, although
the two concepts are semantically different. Thus, domain experts must be involved
to validate the results of matching and alignments.

10.5 Related Work

The integration of software artifacts has been the topic of works including [132,133].
However, these approaches presented dedicated extractors for specific systems like
bug tracking and version control but not for software models. Moreover, neither of
these approaches presents formats for publishing data suitable to the linked-data
approach, i.e., they do not share the principles of interoperability for connecting
federated software models across the Web.

Kiefer et al. [134] and Iqbal et al. [135] explore semantic web approaches for
transforming software artifacts such as data from version control systems, bug track-
ing tools and source code into linked data. Both approaches use artifact-specific
extractors and thus work only for a fixed number of software artifacts. We propose
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a generic approach for transforming and managing any MOF metamodel in a web
format.

The OMG ontology definition metamodel [1] specifies mappings between OWL
and UML. In this chapter, we present a general approach for mapping arbitrary
Ecore models into OWL. We provide the means to express any MOF metamodel in
its equivalent OWL.

The OMG Request For Proposal for MOF to RDF Structural Mapping in sup-
port of Linked Open Data [130] aims at defining a structural mapping between
OMG-MOF models and RDF. This work can be seen as a response to this request.
We propose an approach that can serve as a benchmark for future proposals.

10.6 Conclusion

In this chapter, we propose an approach to enable analysis, federation and querying
of models expressed in MOF compliant languages, including OMG standards and
domain-specific languages. The contribution in this chapter shows that the usage
of the Ontology Web Language for specifying metamodels is a viable solution to
achieve interoperability and shared conceptualizations. The role of OWL is not to
replace MOF or the Object Constraint Language, since OWL addresses distinct re-
quirements, specially concerning networked environments. OWL should complement
the spectrum of software modeling languages in a unified architecture.



Conclusion of Part III

In this part, we have analyzed the impact of using OWL constructs and OWL
ontology services in software modeling languages (addressing research problem III).

We used class expressions to decouple class selection from OCL expressions em-
bedded in query operations (addressing research problem III.A) and improve soft-
ware design patterns that address variant management.

When applying it in ontology-based information systems, the usage of SPAR-
QLAS4TwoUse for integrating queries over ontologies with operations impacts on
maintainability, reusability and extensibility (addressing research problem III.B).

Moreover, the transformation of MOF-based software languages into OWL sup-
ports software development by allowing developers to extract software engineering
data using SPARQL-like queries over multiple software artifacts (addressing research
problem III.C).





Part IV

Applications in the Semantic Web
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Model-Driven Specification of Ontology
Translations

Summary. The alignment of different ontologies requires the specification, repre-
sentation and execution of translation rules. The rules need to integrate translations
at the lexical, the syntactic and the semantic layer requiring semantic reasoning as
well as low-level specification of ad-hoc conversions of data. Existing formalisms for
representing translation rules cannot cover the requirements of these three layers in
one model. We propose a metamodel-based representation of ontology alignments
that integrate semantic translations using description logics and lower level transla-
tion specifications into one model of representation for ontology alignments 1.

11.1 Introduction

The reconciliation of data and concepts from ontologies and data repositories in
the Semantic Web requires the discovery, the representation and the execution of
ontology translation rules. Although research attention is now devoted to the dis-
covery of alignments between ontologies, a shallow inspection of ontology alignment
challenges reveals that there does not exist one accessible way of representing such
alignments as translation rules [137].

The reason is that alignments must address ontology translation problems at
different layers [138,139]:

1. At the lexical layer, it is necessary to arrange character sets, handling token
transformations.

2. At the syntactic layer, it is necessary to shape language statements according
to the appropriate ontology language grammar.

3. At the semantic layer, it is necessary to reason over existing ontological speci-
fications and data in both the source and the target ontologies.

For addressing ontology translation problems at the semantic layer, existing
frameworks provide reasoning in one or several logical paradigms, such as descrip-
tion logics [140,141] or logic programming [142–144]. For addressing ontology trans-

1 This chapter contains work of the paper “Model-Driven Specification of Ontology
Translations” presented at ER’08 [136].
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lation problems at lexical and syntactic layers, alignment frameworks take advan-
tage of platform-specific implementations, sometimes abstracted into translation
patterns [145,146] or into logical built-ins [144].

Such hybrid approaches, however, fail to provide clarity and accessibility to the
modelers that need to see and understand translation problems at semantic, lexical
and syntactic layers. Indeed, modelers need to manage different languages: (1) an
ontology translation language to specify translation rules and (2) a programming
language to specify built-ins, when the ontology translation language does not pro-
vide constructs to completely specify a given translation rule. This intricate and
disintegrated manner draws their attention away from the alignment task proper
down into diverging technical details of the translation model.

Filling the gap in the ontology translation domain between ontology mapping
languages and general purpose programming languages helps to improve productiv-
ity, since modelers will not have to be aware of platform-specific details and will be
able to exchange translation models, even if they use different ontology translation
platforms. Moreover, maintenance and traceability are facilitated because knowl-
edge about mappings is not longer embedded in the source code of programming
languages.

We propose a platform independent approach for ontology translations, based on
model-driven engineering (MDE) of ontology alignments. The framework includes a
language to specify ontology translations – the Model-Based Ontology Translation
Language (MBOTL). In order to reconcile semantic reasoning with idiosyncratic
lexical and syntactic translations, we integrate these three translation problems into
a representation based on a joint metamodel. The joint metamodel comprises, among
others, the OWL 2 metamodel and the OCL metamodel to support specification,
representation and execution of ontology translations.

The chapter is organized as follows: The running example and the requirements
for ontology translation approaches are explained in Section 11.2. Our solution is
described in Section 11.3, followed by examples in Section 11.4. In Section 11.5 we
discuss the requirements evaluation and in Section 11.6, we present related work.
The conclusion, Section 11.7, finishes the chapter with an outlook to future work.

11.2 Case Study

We consider two ontologies of bibliographic references from the test library of the
Ontology Alignment Evaluation Initiative (OAEI) [137] to demonstrate the solution
presented in this chapter: the reference ontology (#101) and the Karlsruhe ontology
(#303). Canonical mappings covered by examples in this chapter and snippets of
the source and target ontologies using the Manchester OWL Syntax [120] are shown
in the Figure 11.1. Please refer to OAEI for complete ontologies.

By examining the mapping between ontology #101 and ontology #303, it be-
comes clear that translations are required in order to realize the mapping. Individuals
of the classes Chapter and InBook in ontology #101 are translated into individuals of
the class InBook in the ontology #303. Values of the object property month having
a Gregorian month, e.g., “–01”, are translated into the equivalent unabbreviated
form, e.g., “January”. Values of the data property pages in ontology #303 can be
calculated by subtracting the value of the data property initialPage from the value
of the property endPage in ontology #101.
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Fig. 11.1. Ontology Mapping Challenge for the Running Example.

We define the translation rules explained above by the following logical rules. All
variables are treated as universally quantified and prefixed with a question mark.
Let builtin : notShortened be a built-in function that returns the unabbreviated
month, builtin : toUpper be a built-in function to capitalize strings, builtin : − be a
subtractor function, s be the namespace prefix of the source ontology #101, and t
be the namespace prefix of the target ontology #303, the translation rules can be
written as follows:

t : InBook(?x) ∧ t : month(?x, ?m) ∧ t : title(?x, ?n) ∧ t : pages(?x, ?p)←
(s : InBook(?x) ∨ s : Chapter(?x)) ∧ s : month(?x, ?y) ∧

builtin : notShortened(?y, ?m) ∧ s : title(?x, ?z) ∧
builtin : toUpper(?z, ?n) ∧ s : pages(?x, ?w) ∧ s : startPage(?w, ?a) ∧

s : endPage(?w, ?e) ∧ builtin : − (?e, ?a, ?p).(11.1)

The translation rule of authors is not trivial either. While in ontology #101
the authors are collected by recursively matching the property first of the class
PersonList, in ontology #303 it is a matter of cardinality of the object property
author. Let list:contains be the built-in able to filter a list structure into object
properties, the referred rule can be written as follows:

t : Book(?x) ∧ t : author(?x, ?u)←
s : Book(?x) ∧ s : author(?x, ?y) ∧ list : contains(?y, ?u). (11.2)

However, built-ins are black boxes that conceal knowledge about algorithms,
compromising traceability and maintenance. Therefore, an approach able to specify
rules and built-ins without code specifics is required.
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From inspecting these examples, we illustrate requirements for a platform inde-
pendent ontology translation approach addressing translation problems at the fol-
lowing ontology translation layers proposed by Corcho and Gómez-Pérez [138] based
on Euzenat [139]: the lexical layer, the syntactic layer, the semantic layer and the
pragmatic layer. Since the pragmatic layer addresses the meaning of representation
in a given context, it is similar to the semantic layer from the point of translation
decisions. In this chapter, we refer to both layers as semantic layer.

1. The lexical layer deals with distinguishing character arrangements, including:
a) Transformations of element identifiers. They are required when different

principles are applied to named objects, for example, when transforming
the value of the data property title into capital letters.

b) Transformations of values. They are necessary when source and target on-
tologies use different date formats, for example, when transforming a Gre-
gorian month into an unabbreviated form.

2. The syntactic layer covers the anatomy of the ontology elements according to a
defined grammar. The syntactic layer embraces:
a) Transformations of ontology element definitions. They are needed when the

syntax of source and target ontologies are different, e.g., when transforming
from OWL RDF syntax into OWL XML syntax.

b) Transformations of datatypes. They involve the conversion of primitive
datatypes, e.g., converting string datatype to date datatype.

3. The semantic layer comprises transformations dealing with the denotation of
concepts. We consider the following aspects:
a) Inferred knowledge. Reasoning services are applied to deduce new knowl-

edge, for example, inferring properties from class restrictions.
b) Transformations of concepts. It takes place when translating ontology ele-

ments using the same formalism, e.g., translating a concept from Karlsruhe’s
OWL ontology for bibliographic references into one or more concepts in the
INRIA’s OWL ontology.

The translation problems are classified in non-strict layers, e.g., one rule com-
monly addresses more than one translation problem. For example, in Rule 2, the
built-in toUpper solves a translation problem at the lexical layer, the translation of
months happens at the syntactical layer and is achieved by the built-in notShort-
ened and, finally, the translation of the union of individuals of the classes Chapter
and InBook in ontology #101 into individuals of the class InBook in ontology #303
appears at the semantic layer.

An orthogonal classification of ontology translation problems is given by Dou et
al. [143]. From their point of view, ontology translation problems comprise dataset
translation, ontology-extension generation and querying. This chapter concentrates
on dataset translation, i.e., translation of instances, leaving the model-driven engi-
neering of the remaining problems for future work.

11.3 Application of the TwoUse Approach

The proposed ontology translation approach relies on advances in model-driven en-
gineering (MDE) with support for ontology reasoning services [147]. We define here
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the Model-Based Ontology Translation Language (MBOTL) comprising (1) a tex-
tual concrete syntax used to write translation rules, (2) an integrated metamodel
as abstract syntax to represent the translation rules as models, (3) an extensible
model library to provide built-in constructs and (4) model transformations yielding
translational semantics.

Figure 11.2 relates MBOTL with existing approach with respect to abstraction
and expressiveness. Languages for specifying translation rules like F-logic and RDF
abstract from platform details, but they are not as powerful as programming lan-
guages. The usage of a domain specific language for ontology translation (MBOTL)
provides the right trade-off between abstraction and expressiveness.

Specification 
Language Model Driven

Specification

Programming 
Language

Ab
st

ra
ct

io
n

JavaPrologC++

F-Logic
RDF

Expressiveness

Transformation

Fig. 11.2. Abstraction vs. Expressiveness.

11.3.1 Concrete Syntax

While visual notations are effective in communicating models, textual notations are
preferable to express more complex structures. The following subsections present
the anatomy of the translation rules, alluding to the requirements presented in Sec-
tion 11.2.
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Dealing with Translation Problems at Semantic Layer

In order to extract information from the source ontology, we need a query language
able to determine which datasets are to be translated. We use OCL expressions [36]
to formulate queries. Indeed, OCL has been used in MDE for specifying constraints
and queries that are side effect free operations. As OCL is originally designed for
UML or MOF, we provide a transformation from OCL to SPARQL.

Ontology translation problems at the semantic layer are treated by querying
individuals of the source ontology using OCL queries and matching target individ-
uals. These assumptions have been used by model transformation languages like
OMG MOF Query/View/Transformation (QVT) [32] and the Atlas Transformation
Language (ATL) [35]. We base MBOTL upon the ATL concrete syntax to specify
ontology translations.

The example depicted in the Figure 11.3 illustrates the concrete syntax. A rule
Conference2Conference is defined for translating individuals of the class Conference
in ontology #101 into individuals of the class Conference in ontology #303.

Conference2Conference

s : _101!Conference

t : _303!Conference (
location    s.location.city.concat(', ')

.concat(s.location.country),
...

),

rule                       {

from

to

<-

}

Ontology Element

Property Expression

Matched Rule

Out Pattern

In Pattern

Operation Expression

Variables

1

3

5

7

9

11 Assignment Operator

Fig. 11.3. Example of a Translation Rule.

In OCL, a dot-notation is used to navigate through properties. In the scope of
our extension of OCL, a property can be an OWL data property, an OWL object
property, a predefined operation or a helper. A helper is a user defined side effect
free query operation belonging to a defined class in one of the given ontologies.

For example, in the expression s.location, s is a reference to an individual of the
class Conference with location resulting in a value of the class Address. The navigation
can also end with an operation evaluation, as depicted in the Figure 11.3, where the
operation concat is used to concatenate the properties city and country.

Addressing Translation Problems at Lexical and Syntactic Layers

Ontology translation problems at lexical and syntactic layers are supported by em-
ploying operations or helpers. For example, for the type string, the operation toUp-
per() returning a string object with capital letters is available. Thus, the evaluation
of s.title.toUpper() capitalizes the value of the property title.
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The operation toUpper() is an example of predefined operation. The set of pre-
defined operations is available in the OCL library (M1 layer). These operations are
applicable to any type in OCL. Additionally, it is possible to specify ad hoc opera-
tions, the so-called helpers.

11.3.2 Metamodels

The textual concrete syntax for ontology translation specification presented in the
previous section has an integrated metamodel as equivalent abstract syntax. The
integrated metamodel consists of the following metamodels: MOF metamodel [9],
OCL metamodel [36], OWL metamodel [1] , and part of the ATL metamodel [35].
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InPatternElement

OutPatternElement

PatternElement

OutPattern +elements

OclModelElement

(from OCL)

MatchedRule

OclModel

(from OCL)
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1..*
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1
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*
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Fig. 11.4. Fragment of the ATL Metamodel.

The translation metamodel (Figure 11.4) allows for describing translations be-
tween two ontologies by a model. A translation is characterized as a Module relating
source ontologies (inModels) and target ontologies (outModels). A MatchedRule is
a specific translation rule that has a pattern for the input model (inPattern) and
a pattern for the output model (outPattern). The InPattern has one or more ele-
ments that are OCL variables (Variable). Variables are bound to model elements
(OclModelElement). The InPattern has an OclExpression acting as query to refine
individuals of the OclModelElement.

Since each expression in OCL has a type, we need a type metamodel (Fig-
ure 11.5). The expression evaluation produces a value of type of the expression. The
type TUClassAdapter is the particular composition of the OWL class with the MOF
class. This composition allows for applying side effect free operations into individuals
of OWL classes.

Figure 11.5 depicts additionally another part of the integrated metamodel,
namely the package Expressions of the extended OCL metamodel. The class OclEx-
pression enables MBOTL to define the abstract syntax for OCL expressions. The
integration with the OWL metamodel is accomplished by expressions of the type
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PropertyCallExp. Such expression allows for navigating through OWL properties, as
explained in Sect. 11.3.1.
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Fig. 11.5. Snippet of the Package Type and Package Expressions of the OCL Meta-
model.

The operation call expressions (OperationCallExp) support the declaration of
built-in operations and helpers. An operation call expression evaluates to the result
of a class operation, providing that such operation is side effect free. This resource
is particularly relevant in the scope of ontology translation, i.e., it enables queries
to invoke built-in reasoning operations or helpers.

11.3.3 Model Libraries

The model libraries define a number of datatypes, class identifiers and operations
that must be included in the implementation of MBOTL. These constructs are
instances of an abstract syntax class. The foundation library exists at the M1 level,
where the abstract syntax (metamodel) exists at M2 level. The foundation library is
composed of the XML Schema Datatypes library, the RDF library, the OWL library
and the OCL library.

An example of M1 object of the extended OCL library is the construct oclAny. All
types inherit the properties and operations of oclAny, except collection types. This
invariant allows for attributing predefined operations to classes. The OCL library is
based on the standard OMG OCL library [36].

11.3.4 Semantics

The semantics of MBOTL is defined by the semantics of the languages comprising
the integrated metamodel (Section 11.3.2).
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MBOTL is translated into a target language (SPARQL and Java). Regarding
the target languages, the semantics of SPARQL is described by entailment regimes,
whereas the semantics of Java can be defined by providing an Abstract State Ma-
chine [148]. More specifically, the SPARQL basic graph pattern is described ac-
cording to an entailment regime. Indeed, SPARQL-DL [57] provides an entailment
regime for OWL-DL.

11.3.5 Ontology Translation Process

In order to guide the user from the ontology translation specification until the run-
ning code, the ontology translation process covers the following steps:

1. Specification of Ontology Translation. The ontology translation rules and helpers
are specified by the user using MBOTL.

2. Specification of Model Transformations. In order to have a running implemen-
tation of ontology translation, the ontology translation specification model is
transformed into models for a given platform. The model transformation spec-
ification mapping the MOBTL model onto platform specific models must be
specified here. Our framework provides model transformations from MOBTL
into SPARQL and Java as target platforms. Notice that other target platforms
like F-Logic and Java can be considered.

3. Transformation into Target Platform. Three transformations take place at
this step. Firstly, the ontology translation specification in the concrete syntax
(MOBTL file) is injected into a model conforming with the integrated meta-
model, i.e., the ontology translation specification model. The second transfor-
mation is responsible for generating models according to the target metamodels,
e.g., SPARQL and Java metamodels. Thirdly, SPARQL queries in the SPARQL
concrete syntax and Java code are extracted from the SPARQL and Java MOF-
based models.

11.3.6 Implementation

The implementation comprises (1) the environment to specify ontology translations
and (2) transformations into ontology translation engines in order to realize ontology
translation. Figure 11.7 depicts a screen shot of the MBOTL implementation on
TwoUse toolkit.

Taking the ontology translation specification model as a source model, we use
the Atlas Transformation Language [35] framework to define model transformations
into models for an ontology translation platform (2). We use SPARQL and Java as
target languages and the Jena framework as a ontology translation solution. The
Jena framework includes an API for OWL ontologies and reasoners, as well as a
SPARQL engine.

Elements of the ontology translation specification model concerning transla-
tion problems at the semantic layer are transformed by ATL into SPARQL CON-
STRUCT queries. The SPARQL engine can be extended using custom SPARQL
filter functions — as foreseen as an extension hook in the SPARQL standard, but
also using so called predicate functions. Predicate functions are not matched against
the knowledge base like normal RDF predicates, but evaluated in Java code. Filter
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Fig. 11.6. Ontology Translation Process.

and predicate functions are used to handle translation problems at the lexical and
syntactic layer. These functions are defined in the ontology translation specification
model and have the Java code automatically generated by the ATL transformation.

The next section illustrates our approach by addressing the translation prob-
lems presented in Section 11.4, specifying the translation rules and transforming the
ontology translation specification into SPARQL and Java code.

11.4 Examples

This section presents rules integrating translation problems at semantic, syntactic
and lexical layers, according to the problems presented in Section 11.2.

Example 1: Semantic, syntactic and lexical translations

The classes Chapter and InBook in ontology #101 are translated into the class InBook
in the ontology #303. The translation rule uses a helper to transform a Gregorian
month, e.g., “–01”, into its equivalent unabbreviated form, e.g., “January”. This
helper is applicable only to the gMonth datatype. Using MBOTL, we can specify
both the rule and the helper — and hence lexical, syntactical and semantical trans-
lations — using an integrated framework. The helper is shown on top of listing 11.1,
followed by the translation rule.

Listing 11.1. Semantic, syntactic and lexical translations with MBOTL

1 he lpe r context 101 ! gMonth
de f : notShortened ( ) : String =

Sequence{’January’ , ’February’ , ’March’}−>at (
Sequence{’--01’ , ’--02’ , ’--03’}−>indexOf ( s e l f . t oS t r i ng ( ) ) )
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Fig. 11.7. Screenshot of MBOTL.

5

r u l e ChapterInBook2Inbook {
from

s : 101 ! Part ( s . owl I s Ins tanceOf ( Chapter ) or
s . owl I s Ins tanceOf ( Inbook ) )

10 to
t : 303 ! Inbook (

t i t l e <− s . t i t l e . toUpper ( ) ,
pages <− s . pages . endPage − s . pages . startPage ,
month <− s . date . month . notShortened ( ) ,

15 )
}

After specifying mappings with MBOTL, we transform MBOTL specification
into suitable languages for execution. Our implementation uses SPARQL queries for
semantic mappings and Java code for syntactic translations.

In this example, the rule ChapterInBook2Inbook is transformed into a SPARQL
query (Listing 11.2), whereas the helper notShortened is transformed into Java code
(Listing 11.3). The Java code extends a suitable SPARQL engine, in this case Jena.

Listing 11.2. SPARQL query corresponding to ChapterInBook2Inbook

1CONSTRUCT {?x rd f : type 303 : Inbook . ?x 303 : t i t l e ?y .
?x 303 : pages ? z . ?x 303 : month ?w}

WHERE {
?x rd f : type 101 : Part .
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5 {?x rd f : type 101 : Chapter UNION ?x rd f : type 101 : Inbook}
?x 101 : t i t l e ?u . ?u u s e rde f : toUpper ?y .
?x 101 : pages [ rd f : type 101 : Page ;

101 : s tar tPage ?w; 101 : endPage ?u ] .
? z u s e rde f : d i f f e r e n c e (?u ?w) .

10 ?x 101 : date [ rd f : type 101 : Date ; 101 : month ?m] .
?m us e rd e f : notShortened ?w.

}

In Lines 1 and 2 of Listing 11.2, the pattern in the target ontology is specified.
It is filled with variable bindings obtained from the pattern in Lines 4-11. Variables
in SPARQL are denoted with a question mark. In Line 5 we see the disjunction of
chapter and book. In Lines 7-8, the start and end page properties of the complex
“Page” concept in the source ontology is matched. They are used to compute the
simpler page length in the target ontology using a predicate function in Line 9.
Analogously, the abbreviated date is matched and mapped in Lines 10-11.

As an example of the translation of a helper, we show a part of the Java code
resulting from transforming notShortened into a Jena predicate function in List-
ing 11.3.

Listing 11.3. Automatically generated Java code for the function notShortened

1 public class NotShortened extends PFuncSimple {
/∗∗ Implements Sequence { ’ January ’ , ’ February ’ , ’ March ’}

∗/
private L i s t c o l L i t 1 ( ) {

L i s t /∗ ( S t r i n g ) ∗/ myList = new ArrayList ( /∗ S t r i n g ∗/ ) ;
5 myList . add ( "January" ) ;

myList . add ( "February" ) ;
myList . add ( "March" ) ;
return myList ;

}
10

/∗∗ Implements Sequence { ’−−01’ , ’−−02’ , ’−−03’} ∗/
private L i s t c o l L i t 2 ( ) {

L i s t /∗ ( S t r i n g ) ∗/ myList = new ArrayList ( /∗ S t r i n g ∗/ ) ;
myList . add ( "--01" ) ;

15 myList . add ( "--02" ) ;
myList . add ( "--03" ) ;
return myList ;

}

20 private QueryI te rator execFixedSubj (Node subject ,
Node object , Binding binding ,
ExecutionContext execCxt ) {

/∗∗ Implements the b u i l t−in notShortened () : S t r i n g ∗/
25 return new Query I t e rS ing l e ton (

c o l L i t 1 ( ) . s i z e ( ) > c o l L i t 2 ( ) . indexOf ( this . t oS t r i ng ( ) )
? ( ( S t r ing ) c o l L i t 1 ( ) . get ( c o l L i t 2 ( ) . indexOf ( this . t oS t r i ng ( ) ) ) )
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: "" , execCxt ) ;
}

30 }

Example 2: Semantic and syntactic translation of complex structures

In the ontology #101, the class Article has the property author with the range of
type PersonList. PersonList has a property first with the range of type Person and a
property rest with the range of type PersonList.

This rule relies on a helper, able to match elements recursively. In this case, the
helper algorithm must add the current value of the property first to the collection
of authors and verify whether the value of the property rest is nil, returning in this
case the collection. Otherwise, the helper is invoked until value nil is found.

As we can see from the examples, helpers are used for lexical and syntactical
translations (Example 1) and semantic translations (Example 2).

11.5 Analysis

In response to the requirements deduced in Section 11.2, Table 11.1 shows use cases
according to each requirement and where to find the corresponding examples in this
chapter.

Table 11.1. Satisfying Ontology Translation Requirements.

Requirement Use Case Implementation
(Section 11.2)

1.(a) converting to capital letters Listing 11.1, Line 12
1.(b) converting date formats Listing 11.1, Line 14
2.(b) converting gMonth to String Listing 11.1, Line 14

3.(a)(b) Union of Chapter and InBook Listing 11.1, Line 8-9

Translation problems of lexical nature, e.g., converting a string to an uppercase
string, are managed by using predefined OCL operations applied to specific types
of objects, in this example a string type. It is also possible to write functions, i.e.,
helpers, to perform ad hoc operations. For example, the helper notShortened (List-
ing 11.1) allows for converting date formats, i.e., replacing a value of gMonth type
to the unabbreviated form.

Translation problems inherent in the syntactic layer are handled distinctly. For
example, datatype conversions are achieved by invoking predefined operations, e.g.,
toString() (Listing 11.1).

Translation problems at the semantic layer, regarding datasets of ontologies with
different vocabularies but the same formalism is demonstrated by the running ex-
ample. In Listing 11.1, the individuals of the class Chapter in ontology #101 and the
individuals of the class InBook are translated into individuals of the class InBook in
ontology #303.
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Limitations

Our approach has restrictions reflected by the ATL metamodel. With ATL, it is
possible to realize only unidirectional translations. A bidirectional translation must
be accomplished by two unidirectional translations.

Moreover, at the current state of development, it is not possible to validate or
to reason over translation models. In other words, it is not possible to test the
translation model without transforming it into the target platform (SPARQL and
Java).

11.6 Related Work

Since related work has been done in the field of ontology alignment, we group works
according to semantic, syntactic and lexical layers.

Among works covering lexical and syntactic translations, Model transformation
languages like OMG Query/View/Transformation (QVT) [32] and Atlas Transfor-
mation Language (ATL) [35] allow for defining how to transform MOF-based models
using declarative and imperative constructs. Nevertheless, they do not support the
OWL metamodel and do not provide description logic constructs. Our contribution
extends the ATL solution by integrating with the OWL metamodel and providing
such constructs.

The work of Atzeni et al. [149] is based on a metamodel approach with models
described in terms of the constructs they involve, taken from a given set of predefined
ones. However, the work is in the scope of databases and does not support reasoning
at the semantic layer.

Among works covering semantic reasoning capabilities, C-OWL [140] and the
ontology mapping system proposed by Haase and Motik [141] are formal solutions
for ontology mapping with description logic expressiveness. The mappings are based
on subsumption relationships of concepts between ontologies. Notwithstanding, the
usage of built-ins to express lexical and syntactic translation problems is not pos-
sible. A metamodeling-based approach of Haase and Motik [141] is provided by
Brockmans et al. [150]. Although the usage of built-ins in mapping rules is allowed,
the latter approach does not provide the means do specify built-ins without recourse
to programming languages, whereas MBOTL allows for specifying ad hoc functions
by helpers.

Among works covering lexical, syntactic and semantic translations, MAFRA [145]
and RDFT [146] are frameworks enabling dataset translations. Nonetheless, both
are based on RDF Schema and neither they provide the expressiveness of OWL nor
support reasoning capabilities of description logic inference engines.

OntoMorph [142] and the framework proposed by Dou [143] for ontology transla-
tion rely on First Order Logic (FOL) expressiveness to specify translation rules. Our
approach counts on the decidable subset of FOL, the description logic SHOIN (D),
with complete and sound automated reasoning services for addressing semantic
translation problems. Moreover, while the first solution relies on PowerLoom and the
latter on Web-PDDL, we propose a platform independent model-based translation
language, flexible enough to cope with different knowledge representation systems.

OntoMap [144] is a mapping solution allowing for visual specification of map-
pings, with a limited number of translation functions. Snoogle [151] is an ontology
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translation tool that enables the use of SWRL rules to express translations and
alignments between geospatial ontologies. While in both approaches it is possible to
use custom plug-ins, the user has to write functions using Java and the Jena frame-
work. In contrast, our approach allows for specifying mapping rules and functions
in a platform independent and integrated way.

Corcho and Gómez-Pérez [152] propose ODEDialect, a set of declarative lan-
guages to specify ontology translations. However, it is a platform specific approach
based on Java that exposes users to the complexity of programming languages,
whereas MBOTL allows modelers to concentrate on business logics instead.

11.7 Conclusion

This chapter presents a solution for ontology translation specification that aims
at being more expressive than ontology mapping languages and less complex and
fine-grained than programming languages. The solution is comprised of a concrete
syntax, an integration metamodel covering OWL, MOF, OCL and ATL metamodels
and model transformations from MOBTL into SPARQL and Java. We validate our
solution against canonical ontology translation problems organized in three layers –
lexical, syntactic and semantic.
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Automatic Generation of Ontology APIs

Summary. When developing application programming interfaces of ontologies that
include instances of ontology design patterns, developers of ontology-based infor-
mation systems usually have to handle complex mappings between descriptions of
information given by ontologies and object oriented representations of the same
information. In current approaches, annotations on API source code handle these
mappings, leading to problems with reuse and maintenance. We propose a domain-
specific language to tackle these mappings in a platform independent way – agogo.
Agogo provides improvements on software engineering quality attributes like usabil-
ity, reusability, maintainability, and portability 1.

12.1 Introduction

Upper level ontologies and domain ontologies comprise occurrences of a variety of on-
tology design patterns (OPs) [105]. These ontologies are generally large and densely
axiomatized. Therefore, in comparison with generic solutions like RDF or OWL
APIs, the development of dedicated application programming interfaces (APIs) eases
the adoption of this kind of ontologies.

When developing such dedicated APIs, developers of ontology-based information
systems face the challenge of mapping descriptions of complex relations or entities
to object oriented (OO) representations thereof. For example, core ontologies such
as COMM [124], X-COSIMO [154] or Event-Model-F [155] represent complex ob-
jects, e.g., a multimedia annotation, a conversation among participants or an event
decomposition. Such objects are not represented by a single instance of a class but
by ontology design patterns involving a number of connected (linked) instances.

The task of implementing object manipulation functionality becomes complex as
well. For example, the specification of creation or deletion of multimedia objects is
spread out in a number of connected (linked) data instances using decompositions,
descriptions and segments.

1 This chapter contains work of the paper “APIs a gogo: Automatic Generation of
Ontology APIs” presented at ICSC’09 [153].
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Specifying interfaces for manipulating ontologies should provide constructs that
enable to handle complex structures defined by ontologies. Accordingly, such con-
structs need to map from a single programming object to multiple RDF statements.

Current approaches store annotations as plain text on API source code to handle
these mappings. These approaches have the following disadvantages (Figure 12.1):

• Low level of abstraction. When it comes to complex mappings between ontol-
ogy classes and OO classes, current approaches require developers to deal with
platform-specific details like database connection, data validation, deviating at-
tention from the mappings.

• No portability. The APIs are tightly coupled to programming languages and
cannot be easily ported to other programming platforms.

• Low reuse rate. Mappings between ontology classes and OO classes are in the
form of annotations. These annotations are stored as plain text and to be reused,
they have to be copied instead of being referred.

• Hard maintenance. Changes of mappings on the ontology usually imply chang-
ing all occurrences of a given Java annotation, since mappings are stored as
annotations and must be copied to be reused.

Platform Specific

Mappings as Annotations

Annotations as Strings

one java class for 
each ontology class

Fig. 12.1. Limitations of Current Approaches.

Indeed, addressing these issues has been one of the objectives of the field of
model-driven engineering (MDE) [14], i.e., to develop and manage abstractions of
the solution domain towards the problem domain in software design. Considering
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the expansion and usage of MDE techniques, we investigate the following problems
in this chapter: What MDE techniques address the aforementioned issues? What
are the results of applying these techniques in ontology API development?

Tackling the aforementioned problems results in improving the usability, main-
tainability and portability of ontology API specifications. It enables developers to
concentrate on the mappings instead of taking care of problems inherent in program-
ming. By considering mappings as first-order objects rather than as annotations,
developers can keep track of mapping ontology elements like classes and properties.
Finally, by introducing an abstraction from the programming language, it allows
developers to generate APIs for different programming languages or domain-specific
APIs.

We extend the TwoUse approach and introduce agogo, an approach that provides
a development environment for API developers to handle complex mappings, to
define and to reuse complex OPs, and to automatically generate ontology API code.
Moreover, we present results of comparing agogo with existing ontology API code,
showing drastic reduction in size.

We organize this chapter as follows: After introducing the challenges and benefits
of agogo, we analyze current approaches in Section 12.5. We derive requirements
based on our experience in developing APIs for core ontologies (COMM [124], X-
COSIMO [154], Event-Model-F [155]) in Section 12.2. Section 12.3 presents the
techniques and artifacts used by agogo to tackle those requirements. We describe
how agogo uses these techniques and artifacts by example in Section 12.3.2. In
Section 12.4, we analyze how the agogo approach allows for improving quality of
ontology APIs based on the quality characteristics introduced in this section. Finally,
Section 12.6 concludes this chapter.

12.2 Case Study

From the set of ontology design patterns found in the COMM ontology, we use the
Semantic Annotation Pattern to illustrate the solution presented in this chapter.
The basic rationale applies to any other pattern used in COMM, X-COSIMO [154]
and Event-Model-F [155]. Figure 12.2 illustrates the semantic annotation pattern as
defined by the COMM ontology and the desired classes of the API in the program-
ming model.

The pattern describes the annotation of a multimedia item with some label, e.g.,
the annotation of a part of a photo with a label pointing to a person – Carsten
(not included in the Figure 12.2). This association is embodied through a semantic-
annotation that satisfies a method (e.g., algorithms for image recognition) that defines
a semantic-label-role as well as an annotated-data-role. The multimedia-data has to
play the annotated-data-role, which identifies the part of the image that is annotated.
The depicted particular has to play the semantic-label-role, e.g., the instance Carsten.

The COMM API comprises mappings between such patterns and Java objects.
For instance, objects of the class SemanticAnnotation represent instantiations of the
pattern semantic-annotation. The mapping is achieved by implementing the intended
behavior for create, read, update, and delete operations (CRUD) that affect the
knowledge base accordingly:
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Fig. 12.2. Ontology and API for the Semantic Annotation Pattern.

Create: The construction of a new object, i.e., an object representing data that
is not yet present in the knowledge base, needs to result in the correct and complete
instantiation of an ontology pattern.

Read: The construction of an object based on existing data in the knowledge
base. Although similar from an application programming interface point of view,
the underlying operation in the knowledge base is fundamentally different. In this
case, the knowledge base is queried for the instance of a pattern, and all involved
resources and statements required to fully instantiate the object.

Update: The update of an object needs to result in the replacement of in-
formation in the knowledge base. Thereby, developers need to implement distinct
update behaviors. For example, the class MultimediaData implements a method to
add a SemanticAnnotation. This method either adds a semantic label to an existing
SemanticAnnotation for the image or creates a new instance of a SemanticAnnotation.

Delete: The deletion of an object has different implications. For instance, the
deletion of SemanticAnnotation results in the deletion of the relation between the
image and Carsten as expressed by the instance of the pattern. In another sce-
nario, developers may want to delete the image and Carsten as well or to delete the
representation of Carsten.

Based on our experience in developing the core ontologies COMM, X-COSIMO
and Event-F and their APIs, we have identified problems and derived the following
requirements:

RQ1. Emphasis on domain concepts. When programming ontology APIs,
developers have to deal with aspects inherent in programming languages like data-
base access coding or data validation coding. For example, for each mapping, de-
velopers have to write code for handling access to the knowledge base. These tasks
divert developers’ attention from the specification of ontology APIs.

Moreover, currently, developers have to redundantly implement programming
code for validating the correct instantiation of objects, e.g., code that checks whether
all required information is available in an object. In our example, the Java class Se-
manticAnnotation needs to provide code that checks whether all information for a
correct instantiation of the Semantic Annotation Pattern is available. The instan-
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tiation of this pattern without both the part of the image and the depicted person
makes no sense.

RQ2. Patterns as first-class citizens. Currently, when specifying standard
behaviors for CRUD operations, developers have no choice but tangling the specifi-
cation over the classes that implement the pattern. Thus, developers cannot reuse
these operations across software projects or programming languages.

RQ3. Support for debugging. The ontology API code consists of complex
queries. Such queries are typically represented as strings and are not always rec-
ognized by programming languages or programming environments during compile
time. This makes debugging particularly hard for two reasons: First, the program-
ming environment gives no hints for syntax errors during compile time. Accordingly,
developers can track syntax errors only at runtime. Second, even at runtime, seman-
tic errors are hard to recognize. For instance, the following SPARQL-query has the
correct syntax but does not return any results due to the mistyped concept name
semantic-an(n)otation: “select ?s where {?s a comm:semantic-anotation}”

RQ4. Change management. As the programming code references ontology
concepts that the programming environment ignores, refactoring code in case of
ontology changes is difficult. For instance, if a developer changes the ontology con-
cept semantic-annotation to Annotation, associations in the programming code (e.g.
annotations, query strings, URI strings) need to be updated manually.

RQ5. Generation of APIs for the same ontology or for different plat-
forms. Currently, mappings cannot be reused in other programming languages,
since they are implemented by programming code and specific means provided by a
programming language, e.g. Java annotations.

The problems that motivate these requirements impair the development of on-
tology APIs by retarding their availability, affecting the adoption of the respective
ontologies. Moreover, having families of APIs for a given ontology or APIs for dif-
ferent platforms is implausible due to the effort needed.

To enforce the importance of these requirements, we analyze the current COMM
API. The current COMM ontology has 702 classes while its API has 34 packages,
294 classes, 1823 functions and 11597 non-commenting source statements (NCSSs).

12.3 Application of the TwoUse Approach

agogo is an application of the TwoUse approach for automatically generating OWL
APIs on demand. To tackle the problems presented in the previous section, agogo
relies on technologies regularly applied in model-driven development: metamodeling,
concrete syntax and model transformations.

Agogo’s metamodel and concrete syntax constitute a domain-specific language
(DSL) that provides an abstraction layer over programming languages, encapsulat-
ing redundant data validation or implementation behavior. The DSL simplifies the
process of specifying ontology APIs by focusing on domain concepts (RQ1).

Moreover, the usage of metamodels allows for defining concepts in a structured
way, improving maintainability (RQ4). For example, elements of the ontology API
specification are maintained as single units instead of being stored in annotations.

The definition of constraints on concepts in the agogo metamodel improves de-
sign time checking, i.e., it enables API developers to validate API specifications
against these constraints, minimizing errors at runtime (RQ3).
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The concrete syntax for ontology API specification enables users to model pat-
terns as first-class citizens (RQ2). For example, developers specify CRUD operations
and patterns using SPARQL syntax independently from the class definition. Further-
more, the concrete syntax allows for identifying missing references and for helping
to find errors before code generation.

Model transformations allow for code generation to eventually more than one
platform, overcoming the restriction on programming language (RQ5). Additionally,
model transformations ease the creation of families of APIs. It enables developers
to release a subset of the COMM API for lightweight applications, if required.

12.3.1 Key domain concepts

The agogo metamodel extends the TwoUse metamodel and defines the concepts
of an ontology API specification and corresponds to the abstract syntax of agogo
DSL. The definition of the concepts of an ontology API specification in a metamodel
raises the abstraction level and allows API developers to work exclusively with rele-
vant constructs. For example, developers handle mappings, patterns and operations
without considering implementation issues.

In the following, we describe agogo key concepts. Figure 12.3 depicts how these
concepts are related in the agogo metamodel.

Classes. The construct Class defines the associations between platform specific
classes and ontology classes. The property ontoElement associates classes to patterns
or ontology classes.

Patterns. When a platform specific class does not correspond directly to a
single ontology class but to an occurrence of an ontology design pattern (OP),
the concept of pattern applies. The construct QueryPattern describes OPs using
SPARQL queries [87]. It is possible to define patterns for classes, properties and
operations.

Operations. CRUD operations (Create, Read, Update and Delete) are defined
in ontology APIs to enable manipulation of ontology classes. Using SPARQL-like
syntax, these operations as well as patterns are defined in a platform independent
way.

Imports. Developers may group patterns for classes, properties and operations
into packages and make them available or reuse them in another API specification.

The agogo metamodel extends the TwoUse metamodel that and reuses existing
metamodels for SPARQL, OWL 2 and Ecore.

Metamodel Constraints

Together with the agogo metamodel, we define constraints used by the syntax checker
to enforce valid ontology API specifications. This functionality allows for identifying
errors before generating ontology APIs.

Listing 12.1. Constraints on the agogo Metamodel.

1 context Operation
inv inv1 : s e l f . ontoElement . SPARQLQuery . whereClause

. v a r i a b l e s . i n c l u d e s A l l ( s e l f . parameters ) ;
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Fig. 12.3. Snippet of the agogo Metamodel.

5 context Property
inv inv2 : s e l f . ontoElement . SPARQLQuery

. v a r i a b l e s . varname . i n c l u d e s ("obj" ) ;

In Listing 12.1, we exemplify these constraints with two OCL constraints. In the
first constraint, we enforce that all variables passed as parameter to an operation
are used in the body of the query.

In the second constraint, we enforce that every pattern associated to a property
must include the variable ?obj in the select statement. The predefined variable ?obj
points to the range of a property in the OO representation.

12.3.2 agogo Concrete Syntax by Example

In this section, we demonstrate the main components of the agogo textual syntax
and exemplify them with the running example. In this chapter, we concentrate on
how agogo supports patterns as first-class citizens, CRUD operations, support for
debugging and change management.
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To improve user experience, we have based the definition of the agogo textual
syntax on the SPARQL syntax [87]. For example, for prefix declaration and specifi-
cation of patterns, we use the SPARQL constructs.

Listing 12.2 presents the basic constructs of the agogo syntax like PACKAGE, IM-
PORT, CLASS and PROPERTY in exemplary fashion. We group API specifications
into packages, which contain all model elements. The construct IMPORT allows for
reusing classes and patterns definitions.

The construct CLASS specifies the mappings between ontology concepts and OO
representations. The reserved word TO points to a pattern declaration or directly
to a SPARQL query that represents a pattern. The construct PROPERTY follows
the same rationale. In Listing 12.2, the property label is of type dvl:particular and
points to the pattern prop label, defined in Listing 12.3.

Listing 12.2. An Example of Using agogo Basic Constructs.

1 PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX core : <http ://comm/ core . owl#>
PREFIX dvl : <http ://comm/ dolce−very− l i t e . owl#>
PREFIX edns : <http ://comm/extended−dns−very− l i t e . owl#>

5 PREFIX agogo : <http :// uni−koblenz /agogo#>

PACKAGE <http ://comm. agogo#> {

IMPORT <http ://comm− l i t e . agogo#>;
10

CLASS SemanticAnnotation TO core : semantic−annotat ion {
PROPERTY l a b e l ˆˆ dvl : p a r t i c u l a r TO p r o p l a b e l ;
. . .

To detach pattern specifications from class specifications, patterns must be first-
class citizens, i.e., their declarations must not be associated to class declarations.

The definition of patterns is an essential point in our approach. To represent
a pattern, we need to represent how ontology classes and relations compose this
pattern. A user-friendly way of doing it is by using the SPARQL syntax. By using
the SPARQL SELECT construct, developers describe the pattern structure.

In Listing 12.2, we declare that the OO class SemanticAnnotation maps onto the
ontology class core:semantic-annotation and that the OO class SemanticAnnotation
has a property of name label of type dvl:particular. Next, we specify how the values of
the property label are matched. To have the labels of a semantic annotation, we need
to navigate trough the structure of the Semantic Annotation Pattern (Figure 12.2).

Listing 12.3 shows the declaration of a query pattern for the property label. The
pattern is a SPARQL query that describes the structure of the Semantic Annotation
Pattern. In the clause WHERE, the structure of the pattern is represented. In the
clause WHERE, we have all classes and relations that need to be created, read,
updated and deleted when dealing with the property label. The SPARQL query in
Listing 12.3 is comparable with the classes and relations composing the pattern in
the Figure 12.2.

The definition of patterns includes the usage of two predefined variables: ?subj
and ?obj. The variable ?subj identifies the OO class, i.e., in this case, the class
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SemanticAnnotation, while the variable ?obj refers to the values or the property
label.

For example, this pattern will match the labels associated to the class semantic-
annotation, e.g., the particular Carsten (see Section 12.2). In other words, the domain
of the pattern prop label is the ontology class semantic-annotation and the range is
the class particular (see declaration in Listing 12.2).

Listing 12.3. Patterns as First-class Citizens.

1 PATTERN p r o p l a b e l {
SELECT ? obj
WHERE
{ ? subj edns : s a t i s f i e s ?method .

5 ?method rd f : type edns : method ;
edns : d e f i n e s ? s l r ;
edns : d e f i n e s ? adr .

? s l r rd f : type core : semantic−l abe l−role .
? adr rd f : type core : annotated−data−role .

10 ? obj edns : p lays ? s l r .
? data edns : p lays ? adr ;

rd f : type core : multimedia−data .
? subj edns : s e t t i n g−f o r ? obj ;

edns : s e t t i n g−f o r ? data .
15 }
}

Model transformations are responsible for generating automatically CRUD (Cre-
ate/Read/Update/Delete) operations for each OO property based on the pattern
specification. Although CRUD operations are generated automatically, in some
cases, developers may want to customize operations. For example, developers may
want to customize an insert operation to use existing individuals.

To specify Read operations, we use the standard construct SELECT and to spec-
ify custom CUD operations, we use SPARQL Update [156] syntax2. Listing 12.4
shows the definition of the customized operation addLabel. The operation uses an
existing instance of the class method – :method1. For each variable in the INSERT
clause, one new individual is created in the ontology (except variables ?subj and
?obj).

Model transformations take specifications of CUD and generate corresponding
programming language code. For example, the usage of variables (Listing 12.4, Lines
4-6) leads to the generation of statements to create a new instance of the class
semantic-annotation-role (?slr).

Listing 12.4. Definition of an Operation Using SPARQL Update Syntax.

1 OPERATION addLabel (? obj ) {
INSERT DATA
{

: method1 edns : d e f i n e s ? s l r .

2 agogo does not require a SPARQL Update engine. We use the SPARQL Update
syntax only to generate appropriate code.
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5 ? s l r a core : semantic−l abe l−role .
? obj edns : p lays ? s l r .
? subj edns : s e t t i n g−f o r ? obj .

}
WHERE

10 {
? subj edns : s a t i s f i e s : method1 .
}

} ;

Developers may declare patterns anonymously, i.e., developers may associate
patterns directly with properties or classes. Listing 12.5 shows the specification of a
pattern associated with the property semantic annotation.

Listing 12.5. Mapping a Property onto a Pattern.

1CLASS MultimediaData TO core : multimedia−data {
PROPERTY semant i c annotat ion ˆˆ core : semantic−annotat ion TO {

SELECT ? obj
WHERE

5 {? obj edns : s e t t i n g−f o r ? subj ;
rd f : type core : semantic−annotat ion ;

edns : s a t i s f i e s ?method .
?method rd f : type edns : method ;

edns : d e f i n e s ? adr .
10 ? adr rd f : type core : annotated−data−role .

? subj edns : p lays ? adr .
}

} ;

The definition of the SPARQL syntax together with the SPARQL metamodel
allows for identifying non well-formed SPARQL statements. Consequently, develop-
ers may check for syntax errors at design time. Moreover, by integrating the OWL 2
metamodel into the agogo metamodel, agogo allows for enforcing the ontology as
schema for the specification. If developers mistype names of classes or individuals,
the syntax checker identifies that there is no corresponding element in the ontology
for that name. This functionally helps to identify typos at design time.

12.3.3 Implementation

agogo consists of a model-driven process composed of model transformations, models
and metamodels. Figure 12.4 depicts the agogo architecture and the embedded MDA
process. Developers use agogo textual syntax to specify ontology API specifications.
These specifications are injected to platform independent models (PIMs). We use
EFMText [157] for defining agogo textual syntax and Ecore [22] for defining the
agogo metamodel.

Model transformations take the PIM and a configuration file as input. The con-
figuration file contains directives for code generation like names of classes and identi-
fiers. Consequently, model transformations produce platform specific models (PSMs)
as output, which are then extracted to programming code. To specify model trans-
formations, we use the Atlas Transformation Language (ATL) [35].
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Fig. 12.4. Architecture of the agogo Approach.

The usage of a PIM enables developers to detach the ontology API specification
from programming code. Consequently, model transformations for different program-
ming platforms may be specified, allowing code generation for multiple platforms.

We have implemented agogo as part of the TwoUse toolkit. Figure 12.5 shows
a screen shot of the semantic annotation example design using the agogo DSL. By
referring to non-existing classes or using misspelled reserve words, the editor raises
an error.

12.4 Analysis

In this section, we analyze how agogo’s functionalities affect the quality of ontol-
ogy API specifications. In the following, we consider four quality characteristics of
ontology API specification according to ISO 9126 [126].

Q1. Usability. One cognitive dimension of usability analysis is the abstraction
level [158]. With agogo, developers concentrate on constructs related to the problem
domain, e.g., map and pattern, raising the abstraction level.
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Fig. 12.5. Screenshot of agogo Implementation.

Raising the abstraction level influences productivity. To demonstrate this im-
pact, we have conducted an exploratory evaluation of the size of both agogo API
specifications and Java API specifications of the running example based on the cur-
rent COMM API.

As metric for size, we consider the number of non-commenting source statements
(NCSSs) [159]. Table 12.1 summarizes the comparison of size between agogo and the
current COMM API in two cases.

In Case1, we consider a specification with only two classes: SemanticAnnotation
and SemanticLabel. The current COMM API requires coding 19 Java Classes and
more than 400 NCSSs. With agogo, developers concentrate on coding 50 NCSSs in
two classes.

agogo Current COMM API

Case1 Case2 Case1 Case2

Packages 1 1 4 15
Classes 2 5 19 101
NCSS 50 70 461 3928

Table 12.1. Comparison of Size between agogo and the Current COMM API in
Two Cases.
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To have an idea of the effort of extending or taking a subset of the COMM API,
we consider the addition of the class MultimediaData in Case2. Although including
the class MultimediaData implies implementing another OP – the object decompo-
sition –, the size of the ontology API increases drastically to approx. nine times the
original size.

Based on this exploratory analysis, even if developers have in agogo half of the
productivity ratio they have in Java, since the agogo specification is smaller than
the Java specification, the effort for producing NCSSs in Java is still higher. In other
words developers are more productive with agogo, with benefits increasing as the
API grows due to the possibilities for reuse and improved maintenance.

Q2. Reusability. By defining patterns as first-class citizens, developers may
reuse patterns on further mappings. Moreover, complete libraries can be reused to
generate derived APIs. For example, API developers may want to have multiple
ontology APIs according to the complexity, e.g., COMM lite and COMM full.

Q3. Maintainability. agogo defines constructs as metamodel concepts instead
of parsing strings of text. Consequently, structured models are easier to maintain
than plain text.

When the ontology changes, developers change the ontolgy API specification and
automatically regenerate the ontology API. The syntax checker assists developers
with tasks like renaming and raises errors for missing references.

Moreover, constraint validation and syntax checking take place at design time,
and not only at runtime as by existing approaches. The developer counts on a syntax
checker for pattern specifications.

Q4. Portability. Providing that model transformations are available, it is pos-
sible to generate APIs for multiple programming languages. Developers describe
ontology APIs once and model transformations use the specification to generate
ontology APIs for multiple platforms.

agogo may be seen as an abstraction layer over existing approaches for generating
ontology APIs (Section 12.5). As agogo does not mandate a specific programming
language, developers may specify model transformations for transforming agogo API
specifications into programming code for the platform of choice.

Nevertheless, developers need to bear in mind the effort of specifying the model
transformations. To achieve abstraction from programming code, the model trans-
formations have to handle the gap between the agogo API specification and the
programming language. The initial effort in developing these model transformations
needs to be considered when deciding to provide ontology APIs in a given program-
ming language.

To track how the agogo approach addresses the requirements of Section 12.2
and affects ontology API quality characteristics, we present a traceability matrix in
Table 12.2. It relates agogo requirements, the artifacts that tackle these requirements
(metamodel (MM), concrete syntax (CS), and transformations (T)), examples and
their relations to quality attributes. As one may notice, by establishing a domain-
specific notation for designing ontology APIs, we improve the quality characteristics
above, corroborating the literature on domain specific languages [160].
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Requirement Artifact Example Quality
Attribute

RQ1 MM, CS Figure 12.3, List. 12.2 Q1
RQ2 MM, CS List. 12.2, List. 12.3 Q2
RQ3 MM, CS Figure 12.3, List. 12.1 Q3
RQ4 MM, CS List. 12.5 Q3
RQ5 T - Q4

Table 12.2. Traceability Matrix: Correlating agogo Requirements with Quality
Attributes.

12.5 Related Work

Ontology Engineers count on a variety of solutions for specifying ontology APIs. In
the following, we analyze these approaches according to the abstraction level.

Generic solutions for developing ontology APIs are the Jena API [161] and the
Sesame API [162]. However, these approaches are triple-based, i.e., developers have
to work with methods such as getSubject and getObject. Low abstraction level and
high complexity are aggravated when dealing with big ontologies.

RDFReactor [163] and [164] are “plain” RDFS - Java/OO mapping approaches.
These approaches do not provide support for complex mappings implied by ontology
design patterns, i.e., developers have to program one java class for each ontology
class. Moreover, when the ontology changes, developers have to manually change
ontology API code.

A solution with higher abstraction level is ActiveRDF [165]. ActiveRDF relies
on annotations to specify mappings for Ruby programs. As we have seen, annota-
tions are hard to maintain and to debug. Moreover, these applications force API
developers to commit to one programming language.

12.6 Conclusion

This chapter presents an application of TwoUse for designing mappings between
complex ontology descriptions and object oriented representations – agogo. The so-
lution comprises a domain-specific language and model transformations to generate
API programming code.

agogo improves productivity on ontology API specification and enables devel-
opers with functionalities infeasible until now. Additionally, agogo accomplishes im-
provements on reusability and maintainability.
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A Model-Driven Approach for Using
Templates in OWL Ontologies

Summary. Integrating model-driven development and semantic web resulted in
metamodels and model-driven tools for the semantic web. However, these metamod-
els or tools do not provide dedicated support for dealing with templates in ontology
engineering. Templates are useful for encapsulating knowledge and modeling recur-
rent sets of axioms. We propose an extension of existing metamodels and tools to
support ontology engineers in modeling ontology templates. Our approach allows
ontology engineers to keep template specifications as first-class citizens, reducing
complexity and increasing reusability in ontology engineering. We demonstrate our
approach with templates for ontology design patterns 1.

13.1 Introduction

As OWL ontologies becomes more complex, approaches that use abstraction to
encapsulate complexity emerge. For example, ontology engineers may use macros
and annotations to represent ontology design patterns (ODPs) [105], key artifacts
for reuse in ontology engineering.

Nevertheless, these approaches do not consider abstraction mechanisms as first-
class citizens to encapsulate complexity. For instance, the development of ODPs
relies on the usage of macros [167] or annotations [168] to represent the structure
of these patterns. Ontology engineers should be able to encapsulate reusable sets
of axioms that capture modeling practices in templates. In other words, ontology
engineers need declarative specifications of templates and tools to test these speci-
fications and realizations.

The usage of templates is a well-known technique to encapsulate complexity in
generative programming, leading OMG to add support for templates in UML [3].
For ontology engineers, the main advantages of using templates are increase in pro-
ductivity, since ontology engineers rely on well-known reusable pieces to design the
ontology; and increase in reliability, since templates comprise reliable sets of axioms
developed by domain experts.

1 This chapter contains work of the paper “A Model-Driven Approach for Support-
ing Ontology Design Patterns” [166].
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Providing declarative specifications of templates and support for template real-
ization enables ontology engineers to handle templates as first-class citizens instead
of having template descriptions embedded in ontologies as annotations or using pre-
processing macros. Moreover, a dedicated approach for handling templates enables
ontology engineers to explore the full expressiveness of template declarations and to
analyze template realization scenarios.

Current approaches [167–169] have limited expressiveness and are tool-oriented
instead of generic, i.e., they do not allow ontology engineers to choose freely tools
and representation notations for templates. Moreover, current ontology metamodels
and model-driven tools do not provide those constructs [1, 67,68].

Templates should be first-class citizens in a higher abstract level than annota-
tions, i.e., in the ontology metamodel. Such an approach allows the following: (1)
to extend the usage of templates to other OWL-related languages like SWRL [63],
SAIQL [86], or SPARQL-DL [57]; (2) to use different modeling notations, including
graphical languages; and (3) to extend the usage of templates beyond individuals,
classes and properties to literals and class expressions.

The contribution of this chapter is twofold: (1) we present an approach for mod-
eling ontology templates applicable to different OWL metamodels and extensible to
SWRL, SPARQL-DL and SAIQL; (2) we introduce graphical notations containing
dedicated constructs to specify templates and to bind them with domain ontologies,
enabling ontology engineers to design and test templates as first-class citizens.

We present our approach in this chapter as follows. Section 13.2 gives a scenario
motivating template design. We give an example of our approach and describe the
graphical notations and the main constructs of our approach in Section 13.3. Sec-
tion 13.4 presents application scenarios of ontology templates. Section 13.5 presents
an analysis of existing approaches and Section 13.6 concludes the chapter.

13.2 Case Study

As running example, we consider an ontology for capturing music records as domain
ontology. For this domain ontology, we want to reuse existing knowledge from three
resources: ontology design patterns (ODP), SWRL rules and domain closure.

To represent the role of performers, we use the AgentRole ontology design pat-
tern [105] from the ontology design pattern collection. The intention of this ODP is
to represent agents and their roles. A Role is a subclass of the class Concept, i.e., a
Role is a specialization of Concept. An Agent is a specialization of the class Object.
The property hasRole assigns Roles to Objects, whereas the inverse property isRoleOf
assigns Objects to Roles.

Additionally, we want to propagate the genre of a musical group to a record,
i.e., we want to assert that the style of the record is the same as the style of the
group. Thus, we reuse a SWRL rule (in this case a description logic rule) to move
the property values from one individual to a related individual.

Furthermore, we want to consider the knowledge about genres as complete. In
general, OWL models realize the open-world assumption (OWA), i.e., the repre-
sented knowledge base is considered as incomplete. However, in certain applications,
it is more appropriate to consider a knowledge base as complete. If complete knowl-
edge is assumed, the set of all individuals in the knowledge base must be equivalent
to the set of individuals declared.
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The following knowledge base (TBox and ABox) describes a simple domain
ontology about music records. Beatles and RollingStones are instances of Group.
A Group has Performer as a member. A Performer plays a role in a Group. The
Group belongs to a Genre and produces Records. In our knowledge base, there are
only four genres: Rock,Blues, Country and Samba.

Group v ∃hasMember.Performer u ∃hasStyle.Genre
u∃creatorOf.Record (13.1)

Record v ∃stylePeriod.Style (13.2)

Performer v ∃hasRole.Position (13.3)

Genre(Rock,Blues, Country, Samba), Record(LetItBleed) (13.4)

Group(RollingStones), P erformer(Mick), Position(V ocalist) (13.5)

hasRole(Mick, V ocalist), creatorOf(RollingStones, LetItBleed) (13.6)

hasMember(RollingStones,Mick) (13.7)

hasStyle(RollingStones,Rock), Group(Beatles) (13.8)

hasStyle(Beatles,¬Blues), hasStyle(Beatles,¬Country) (13.9)

hasStyle(Beatles,¬Samba) (13.10)

Based on this knowledge base, a user may be looking for all rock bands as
described by the following description logic query: ∃hasStyle.{Rock}. If we consider
an incomplete knowledge base, the result of this query contains only the individual
RollingStones. If we assume a complete knowledge base though, the result also
includes the group Beatles.

There are multiple strategies for closing the domain of a class. In this chapter,
we only make the class Genre equivalent to the set of existing individuals of the
class Genre, i.e., Rock,Blues, Country, Samba.

Additionally, we want to assert that the genre of a record is the same as the
genre of the group:

Performer(?a) ∧Genre(?s) ∧Record(?c) ∧ hasStyle(?a?s) (13.11)

∧ creatorOf(?a, ?c)→ stylePeriod(?c, ?s)

For other ontologies, ontology engineers want to reuse these resources, since
these resources represent modeling guidelines and best practices identified by domain
experts. Thus, it makes sense to encapsulate these axioms, identifying generic pieces,
i.e., to create a template. We consider templates as parameterized generic sets of
axioms that can be combined with different specifications to produce a variety of
artifacts like domain ontologies and queries.

A possibility is to use inheritance to encapsulate reusable axioms and define a
super class of Genre which is equivalent to a list of existing individuals of this type,
and the SWRL rule to propagate the genre to records. However, this super class and
rule are reusable for other types of art like poetry, painting, acting and work only
for music.

In summary, the usage of a template has the following advantages:
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• Templates work as interfaces to encapsulate axioms and expose only the con-
structs to be used as parameters. Thus, ontology engineers know exactly which
concepts and roles are needed for applying the ontology design pattern.

• Ontology engineers can reuse repeatedly templates in other ontologies or in other
pieces of the same ontology.

• Ontology engineers bind and unbind templates to exploit different results, e.g.,
using the open world or closed domain assumption.

• Templates are reliable, since ontology experts derive templates from well-known
sets of axioms.

• Templates realize macros when inheritance is not enough.

13.3 Application of the TwoUse Approach

In this section, we describe the application of TwoUse and the main constructs of
our metamodel extension and the different notations.

Figure 13.1 depicts the result of applying TwoUse into the running example to
add support for templates in OWL ontologies. It uses the UML profile for OWL
with package templates. A template agent-role represents the agent role ODP. This
template has the two parameters – Agent and Role – to be bound in order to adopt
this pattern.

A template closed-domain defines a class X which is equivalent to a list of indi-
viduals {}. Class X and class expression {} are template parameters and are bound
to the class Genre and to the class expression {Rock Blues Country Samba} of the
ontology music records.

Finally, the third template shows an ontology with a SWRL rule asserting that
the genre of an artist is the same as the genre of a record. When realizing these
template bindings, the result is set of axioms (1-11) presented in Section 13.2.

13.3.1 Extending the OWL Metamodel with Templates

In this section, we use the TwoUse integration and apply the idea of package
templates of UML into OWL and extend it to different OWL-related languages
like SWRL [63] and query languages like SPARQL-DL Abstract Syntax [57] and
SAIQL [86].

UML [3] allows software developers to design templates of packages and classes.
With templates, software developers describe reusable structures with unbound pa-
rameters. In order to use these templates, developers have to bind package templates
to actual classes or properties to create real structures. By binding template param-
eters to actual values, developers apply, for example, software design patterns to
software model.

While UML package templates allow classes, interfaces and datatypes as pa-
rameterable elements, we define ontology templates as templateable elements and
allow classes, properties, datatypes, literals and class expressions as parameterable
elements.

In the following, we explain each of these metamodel elements as addressed in
our solution and present the relationships between them in the Figure 13.2.
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Fig. 13.1. Modeling the Running Example with OMG UML Profile for OWL and
UML Profile for SWRL.

• TemplateableElement: A templateable element is an element that can optionally
be defined as a template. When a template is used, a template binding is cre-
ated describing the replacement of template parameters with actual parameters.
Examples of templateable elements are ontologies and queries.

• Ontology: The class Ontology specializes TemplateableElement to specify an on-
tology template. We apply the same rationale to queries (SPARQL-DL::Query and
SAIQL::Query). For example, in Figure 13.1, closed-domain, artist and agent-role
are ontology templates.

• TemplateSignature: A template signature wraps the set of template parameters
for a templateable element. In Figure 13.1, the signature of closed-domain is a
bundle containing the parameters X and {}.

• TemplateParameter: A template parameter exposes a parameterable element as
a template parameter of a template. For example, in the template signature
closed-domain, X and {} are representations of the parameterable elements with
the same names.

• ParameterableElement: A parameterable element is an element that can be ex-
posed as a template parameter for a template or be specified as an actual parame-
ter in a binding of a template. In Figure 13.2, we show only some parameterable
elements like ObjectProperty, Class and Individual. Other parameterable ele-
ments include DataProperty, ClassExpression and Literal. For Example, in the
Figure 13.1, the class X and the class expression {} are template parameters
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while the class Genre and the class expression {Rock Blues Country Samba} are
actual parameters in the template binding.

• TemplateBinding: A template binding represents a relationship between a tem-
plateable element and template parameters. A template binding specifies the
substitutions of actual parameters for the template parameters of the template.
In the Figure 13.1, the template binding is represented on top of the ontology
music-record ontology by the symbol ->.

• TemplateParameterSubstitution: A template parameter substitution relates the
actual parameter(s) to a template parameter as part of a template binding.

Fig. 13.2. Metamodel for Ontology Templates.

The metamodel for ontology templates depicted in the Figure 13.2 is independent
of the ontology metamodel. Although we have considered the OWL 2 metamodel for
our implementation, implementers can use any OWL metamodel of choice or other
ontology metamodels like RDF. Implementers must then specialize the class Param-
eterableElement with the elements that can be used as parameters, e.g., RDFClass.

To write description logic rules, ontology engineers rely on the structure provided
by the SWRL metamodel which connects with the OWL metamodel through the
class Rule.

In order to have query templates, we specialize the class TemplateableElement
with the class Query and the class ParameterableElement with variables. Thus, we
can specify templates of queries and give variables as parameters. We discuss query
templates in Section 13.3.4.
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13.3.2 Semantics of Templates

We treat templates as generators, i.e., templates for generating axioms. Thus, rea-
soners cannot inspect the contents of templates until a transformation realizes the
template bindings by generating an effective OWL ontology.

One issue when creating templates is to ensure that they are consistent, i.e.,
that there exists at least one possible valid binding. A mechanism for doing this
is to realize the template by automatically generating an ontology and the respec-
tive bindings. Thus, the effective OWL ontology can be tested with any standard
reasoning for satisfiability and consistency.

The template mechanics do not add to the complexity of the OWL ontology.
The complexity of the effective OWL ontology is composed of the complexity of the
template and the complexity of the ontology bound to the template. For example,
if the template definition has expressivity SHON and the ontology bound to the
template has expressivity ALCIQ, the effective ontology would have expressivity
SHOINQ.

The outcome of realizing the template bindings is an effective OWL ontology
that can be normally checked by reasoners. When realizing template bindings, ac-
tual parameters replace template parameters, and the remaining elements are copied.
Consequently, the template definition is not part of the effective ontology document
(the generated one), but of the implicit ontology document based on our approach.
The implicit ontology document contains all axioms defined by the ontology engi-
neers and the template definitions.

The realization of template bindings takes place when transforming the implicit
ontology document into an effective ontology document. Figure 13.3 depicts in ab-
stract language the transformation realizing the template bindings of actual param-
eters of a templateable element (ontology or query) and the template parameters of
at least one template.

The recursive algorithm RecursiveBinding (Figure 13.3) guarantees that all binds
of an eventual template chain take place, since templates can be connected to other
templates. The input of the algorithm is a templateable element E, e.g., the music
record ontology. The second input parameter is the set of all templates that generate
the output element (ontology or query). For the templates, the type list is used, since
in case of multiple connected templates, the ordering of the binding of the template
parameters is significant.

The first case (line 1,2) occurs if no template is given. The second case (line 3,4)
is the end of the recursion. In the third case, the binding and generation is re-
alized. The next template (first element of the template list) is bound with the
previous (recursive) template bindings and generations, which is templateable ele-
ment RecursiveResult. The binding and generation is in lines 9-14. The template
parameters are substituted by the actual parameter of RecursiveResult according
to the parameter substitution (line 9-11). After the binding, the RecursiveResult
(ontology or query) is imported or included to the bound template (Result). The
result, i.e., the effective ontology is a set of axioms, like axioms (1-7) presented in
Section 13.2.
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Algorithm: RecursiveBinding(TemplateableElement E,
List〈TemplateableElement〉 Templates)
Input: A templateable element E (ontology or query) and a set of Template-
ableElements (Templates)
Output: Templateable Element (ontology or query) Result
begin

1: if List == null then
2: Return E
3: else if List.tail() == null then
4: Return List.head()
5: else
6: TemplateableElement RecursiveResult = RecursiveBinding(E, List.tail());
7: TemplateableElement Result = list.head()
8: /* Bind the Template (list.head) to RecursiveResult */
9: for all Param : Result.TemplateBinding do

10: for all Substitution : Param.parameterSubstitution do
11: Substitute template parameters in Result by actual parameters of

RecursiveResult
12: end for
13: end for
14: Import RecursiveResult to Result
15: Return Result
16: end if

end

Fig. 13.3. The Template Binding Realization Algorithm.

13.3.3 Notations for Templates in OWL

TwoUse provides an abstraction independent of concrete syntax, i.e., it is possible
to provide multiple notations for modeling ontology templates. In the Figure 13.1,
we show the running example modeled using the OMG UML Profile for OWL and
the UML Profile for SWRL [69]. It relies on package templates natively supported
by UML.

Figure 13.4 shows the same example using the OWL 2 graphical notation. We
have implemented a graphical notation based on [170] that uses the OWL 2 meta-
model as concrete syntax.

A model transformation takes a diagram in one of the supported notations
(OWL 2 graphical syntax or UML Profile for OWL/SWRL) and parses it into an im-
plicit ontology document model based on our approach. The realization step takes
the output and generates the effective ontology document model, which is later
parsed into OWL standard syntax. Figure 13.5 describes these steps.

13.3.4 Query Templates

In this section, we show how ontology engineers can benefit of query templates.
Taking the running example, we analyze a simple query about artists belonging to
a set of genres.
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Fig. 13.4. Modeling the Running Example with OWL 2 Graphical Syntax.

Since there exist different types of Artists (musician, painter, actor), it is useful
to write the query once and set artist and style as parameters. Listing 13.1 depicts
this query using SPARQLAS with templates.

Lines 4-5 of Listing 13.1 show the declaration of two parameters for the query
template: ?artist and ?style. Each of these parameters has a specific type associated
to it: owl:Class and owl:oneOf (from the default namespace).

Listing 13.1. Artists of a given style.

1 P r e f i x : owl = <http ://www. w3 . org /2002/07/ owl#>
IRI <http :// A r t i s t s S t y l e#>
Parameters : ? a r t i s t type owl : Class , ? s t y l e owl : oneOf
Select ?x

5 Where (
?x type (? a r t i s t and ( hasSty l e some ? s t y l e ) )

)
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Fig. 13.5. Ontology Development with Templates.

It is possible to reuse this query for search for music groups popular in the
USA. Thus, Users need to bind the parameter ?artist to the class Group of ontology
Ontology1261152793434 and the parameter ?style to the list {Rock Blues Country}.
Listing 13.2 depicts these bindings.

Listing 13.2. Groups and Styles popular in the USA.

1 P r e f i x : = <http :// Ontology1261152793434 . owl#>
P r e f i x : q = <http :// Art i stsSty leInUSA#>
Bind : ( q : a r t i s t Group) ( q : s t y l e {Rock Blues Country })

Realizing these bindings produce the query presented in Listing 13.3.

Listing 13.3. Effective Query.

1 P r e f i x : = <http :// Ontology1261152793434 . owl#>
Select ?x
Where (

?x type (Group and ( hasSty l e some {Rock Blues Country }) )
5 )

It is clear here that abstraction plays an important role. Users can reuse knowl-
edge encoded in query templates and combine the results. We apply the same ratio-
nale illustrated with SPARQLAS into SAIQL queries [86].

13.4 Analysis

The requirements of using templates in OWL ontologies and SPARQLAS are based
in our experience in building core ontologies in the past years [124, 155, 171] and in
modeling software artifacts with OWL. In this section, we analyze the application
of our approach.

Many versions of ontologies

We can, at the low maintenance cost of a template binding, generate many versions
of an ontology. For example, it is possible to have two versions of the artist ontology:
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one with the open-world assumption and another with the closed-domain assumption
on class Genre. In some domains like software engineering, it is usual to assume
complete knowledge. We can generate variations of ontologies simply by changing
the bindings.

Ontology design patterns

Ontology design patterns (ODPs) are key artifacts for reuse in ontology engineer-
ing. Applying templates in ODPs provides demands specialized support for ODP
constructs.

We have applied our approach in the development of domain ontologies that use
core ontologies: the COMM ontology [124], the Event-Model-F Ontology [155] and
the M3O ontology [171]. We are able to model all ODPs of these ontologies (three
of COMM, six of Event-Model-F, four of M3O), which pointed at advantages and
limitations of our approach.

Introducing templates raises the level of abstraction by allowing ontology en-
gineers to identify the requirements for using a given ODP. For example, in the
COMM ontology, the semantic annotation design pattern involves at least 12 con-
cepts and six roles to represent that a multimedia data is annotated with a label.
The concepts are grounded by upper level ontologies like DOLCE. In this case, we
use templates for creating an interface for semantic annotations, i.e., we expose only
two classes – label and multimedia-data – as parameters. In comparison with tex-
tual templating systems, the main advantage of our approach is portability. Because
we handle templates and macros at the platform-independent level, it is possible to
develop plug-ins for multiple ontology editors like Protégé or NeOn Toolkit.

13.4.1 Limitations

The usability of the tool is a fact to consider when working with templates. Al-
though we used existing standards for UML profiles for OWL and SWRL created to
popularize OWL among software developers, there is limited tool support for those.

Another issue is transparency. Because templates work as generators, their re-
sults are not always apparent. Therefore, using templates requires attention about
possible unsatisfiability or inconsistency caused by properties or concepts added to
the effective ontology.

13.5 Related Work

Relevant works related to this chapter cover mainly the engineering of ontology
design patterns from three perspectives: macros, annotations and language depen-
dency.

Multiple works cover the engineering of ontology design patterns [167–169]. Ian-
none [168] uses a pre-processor language to specify knowledge patterns to allow
modeling on a more general pattern level than directly in the OWL ontology. This
is a tool-orient application with procedural constructs like ADD and REMOVE. Our
approach is declarative and provide support for multiple notations.

Vrandecic analyzes the usage of macros in ontologies in [167]. These macros
allow the specification of design patterns for OWL ontologies. In a preprocessing
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step, a macro is transformed to a set of axioms in the OWL ontology. However, the
authors do not provide a concrete specification language for macros.

In [169] semantic patterns are described in RDF. These semantic patterns are
transformed into the target language. The target language is not restricted to a cer-
tain language; therefore, the semantic patterns are more general. Although general,
this approach does not provide constructs to handle patterns as first-class citizens
as our approach does.

Presutti [172] considers the creation of ontology design patterns from exist-
ing ontologies. The creation methods that are similar to our approach are the re-
engineering from other (conceptual) data models and the extraction method from
reference ontologies.

In comparison with related work, we provide an approach that is flexible, since it
supports multiple notations (including UML), extensible, as it comprises metamod-
els for OWL and related languages like SWRL, SPARQL and SAIQL, and platform
independent, since templates are tackled at the modeling level and not at the lan-
guage specific level.

13.6 Conclusion

In this chapter, we present an approach that raises the level of abstraction in the
ontology development process by providing platform-independent specifications of
templates. The prime benefit of this approach is that it is based on pre-existing meta-
models and profiles and therefore, enhances the utility of previous work. Moreover,
our approach is generic enough to enable model-driven tools to support metamodels
of multiple OWL-related languages.



Conclusion of Part IV

In this part, we investigate the support of generative techniques in ontology engi-
neering services and address the abstraction gap between specification languages
and programming languages for ontology engineering tasks (research question IV).

Applying the TwoUse approach raises the abstraction level and consequently,
influences productivity. With the TwoUse approach, ontology engineers concentrate
on domain problems instead of implementation problems. Moreover, the usage of
domain-specific languages enables ontology engineers to handle domain concepts
as first-class citizens, improving maintainability (and addressing research questions
IV.A and IV.B).

We use the integration between UML class-based modeling and OWL modeling
to extend techniques used in model-driven engineering to ontology engineering to
declaratively specify artifacts (research question IV.C).





Part V

Finale
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Conclusion

This thesis addresses challenges in composing model-driven engineering and OWL
technologies. This work comprises multiple facets of this challenge, namely: (1) clas-
sification of existing approaches integrating both paradigms; (2) the specification of
a coherent framework for integrated usage of both modeling approaches, comprising
the benefits of UML class-based modeling and OWL; Applications of the proposed
framework to improve (3) model-driven engineering and (4) ontology engineering.

14.1 Thesis Contributions

This work present contributions of different natures. In the following, we summarize
the contributions of this thesis.

Classification of Approaches Involving MDE and OWL Ontologies

We outline state-of-the-art research on model-driven engineering and ontology tech-
nologies. Then, we describe a domain analysis of both paradigms and identify their
commonalities and variations. The contribution is a taxonomy to categorize ap-
proaches involving ontology technologies and model-driven engineering.

Integration of UML Class-Based Modeling and OWL Ontologies

We propose an integrated use of both modeling approaches in a coherent frame-
work – TwoUse. We present a framework involving multiple notations for developing
integrated models and use a SPARQL-like approach for writing query operations.
We validate TwoUse’s applicability with case studies and conclude that TwoUse
achieves enhancements of non-functional software requirements like maintainability,
reusability and extensibility. The contribution is a method for applying ontology
technologies in model-driven engineering and for applying model-driven engineering
in ontology engineering.
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Ontology-Based Software Design Patterns

We deal with problems in common design patterns and propose ontology-based
modeling to overcome drawbacks of the strategy pattern, that are also extensible to
the abstract factory pattern and other patterns that deal with variant management.
The result is an ontology-based software design pattern to be used with design
patterns: the Selector Pattern.

Transformation of Modeling Languages into OWL

In a networked and federated development environment, modeling artifacts need
to be linked, adapted and analyzed to meet the information requirements of mul-
tiple stakeholders. We present an approach for linking, transforming and querying
MOF-compliant modeling languages on the web of data. We use the definition of
structural mappings between MOF and OWL and propose the usage of semantic
web technologies for linking and querying software models.

Framework for Designing Ontology-Based Domain Specific Languages

In [173], we address major challenges in the field of domain specific languages with
OWL ontologies and automated reasoning. We applied the TwoUse approach to
enable applications of reasoning to help DSL designers and DSL users through the
development and usage of DSLs. DSL designers profit by formal representations, an
expressive language and constraint analysis. DSL users profit by progressive verifi-
cation, debugging support and assisted programming.

A Language for Specifying Ontology Translations

We address the balance between abstraction and expressiveness that causes ontology
mapping frameworks to turn to programming languages when built-in constructs fail
in specifying complex rules for dataset translation. The contribution is a platform
independent language which allows modelers to abstract from implementation de-
tails while providing expressiveness to address translation problems at the semantic
as well as at the syntactical and lexical layer.

Automatic Generation of Ontology APIs

We address the complex mappings between descriptions of information given by on-
tologies and object oriented representations of the same information for developing
application programming interfaces of ontologies that include instances of ontol-
ogy design patterns. The contribution is a domain-specific language to tackle these
mappings in a platform independent way – agogo. Agogo provides improvements
on software engineering quality attributes like usability, reusability, maintainability,
and portability.

Templates for OWL Ontologies

Metamodels for the semantic web do not provide dedicated support for dealing
with templates in ontology engineering. Our contribution is an extension of existing
metamodels and tools to support ontology engineers in modeling ontology templates.
Our approach allows ontology engineers to keep template specifications as first-class
citizens, reducing complexity and increasing reusability in ontology engineering.
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The TwoUse Toolkit

The result of implementing the approach is a free open source tool available for use –
the TwoUse Toolkit. We address the lack of a framework that allows the integration
of multiple W3C and OMG standards at the designing level. The contribution is the
implementation of an architecture for designing artifacts using multiple standard
languages, turning the focus from code-centric to transformation-centric.
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Outlook

This research has been made possible by intensive research work in the last 10 years
in the fields of MDE and ontology technologies. There remains a considerable body
of research problems that are currently being tackled or that are open for future
work.

15.1 Ongoing Research

Integrating Linguistic Metamodeling and Ontological Metamodeling

The integration between OWL modeling and UML class-based modeling covered in
this thesis involves the usage of OWL ontologies for linguistic metamodeling [21].
The alignment between UML class-based modeling and OWL in the metamodeling
level requires the transformation of elements of the metamodel into OWL classes and
properties and the transformation of elements of the model into OWL individuals
and assertions.

In this thesis, we do not address the usage of OWL for ontological metamod-
eling as described by Atkinson and Kühne [21]. An integration of both linguistic
metamodeling and ontological metamodeling involves the usage of MOF for meta-
modeling as a language definition tool (linguistic metamodeling) and the usage of
OWL for modeling the relationships between concepts and domain types at the same
linguistic modeling level.

Walter investigates such an integration with preliminary results in [174,175].

Modeling and Querying Patterns for MDE in OWL

In this thesis, we align constructs of UML class-based modeling and OWL modeling
and allow the integration of UML class-based modeling and OWL modeling inde-
pendently of the modeling level, i.e., at the metamodeling level (language bridge) or
at the modeling level (model bridge) [131].

Nevertheless, some modeling approaches require a dedicated transformation of
model constructs into OWL. For example, the transformation of business pro-
cess models into OWL handles the mappings of tasks and gateways into OWL
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classes [176], whereas the transformation of feature models handles mappings of
features and relationships between parent feature and its child features onto OWL
classes [90].

Gröner investigates patterns of modeling, querying and reasoning for MDE in
OWL in his ongoing research with preliminary results in [177,178].

Linked Data in Software Engineering

The advent of the Semantic Web has given a new perspective to aspects of soft-
ware engineering like collaboration, representation and interoperability. For exam-
ple, existing works present the impact of semantic web technologies like RDF(S) and
SPARQL on programmer’s assistance [135,179,180].

Semantic web technologies and Linked Data principles [129] are paving the way
for the Web of Data, a global data space relies on a stack of technologies like URIs,
HTTP and RDF to empower information retrieval. In this context, there is a need
for investigation on the impact of applying Linked Data principles and techniques
for mining, collecting and analyzing software engineering data.

Scalability of ontological reasoning technology

The scalability of ontological reasoning technology has matured over the last 10
years and current implementations point to the assumption that reasoners will scale
to higher efficiency by one or several orders of magnitude. Research on techniques
for semantic transformations between OWL profiles [181, 182] is in place to benefit
from the most appropriate and most efficient technique at each given point in the
software development process.
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Appendices

A.1 EBNF Definition of the Concrete Syntax for
TwoUse

Listing A.1. EBNF Syntax for the concrete syntax

1

d i g i t = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
n o n n u l l d i g i t = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
i n t e g e r = [ "-" ] n o n n u l l d i g i t { d i g i t } | "0" ;

5 nonnega t iv e in t ege r = "0" | n o n n u l l d i g i t { d i g i t } ;
name = ( l e t t e r | "_" ) { l e t t e r | d i g i t | "_" } ;
l e t t e r = "a" . . "z" | "A" . . "Z" ;

EPackage = {EAnnotation} "package" name [ EDataType ] [ "\""
EDataType "\"" ] "{" {EClass} {EPackage} "}" ;

10 EClass = [ "abstract" ] ("interface" | "class" ) [ "<" EClass
{"," EClass} ">" ] name [ "\"" name "\"" ] [ "extends"
EClass {"," EClass } ] { c la s sAnnotat ion } "{" {EClass |
EOperation} "}" ;

EAttr ibute = {EAnnotation} {("derived" | "volatile" |
"unique" | "ordered" | "unsettable" | "changeable" |
"transient" | "iD" ) } "attribute" ( EClass |
EGenericType ) name [ "=" "\"" name "\"" ] [ "(" i n t e g e r
".." i n t e g e r ")" ] ";" ;

EParameter = {EAnnotation} {("ordered" | "unique" ) } EClass
name [ "(" i n t e g e r ".." i n t e g e r ")" ] ;

EReference =
{("containment" | "derived" | "transient" | "volatile" |

"unique" | "ordered" | "unsettable" | "changeable" |
"resolveProxies" ) }

15 { f rontRe fe renceAnnotat ion } "reference" ( EClass |
EGenericType ) name [ "=" "\"" name "\"" ] [ "(" i n t e g e r
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".." i n t e g e r ")" ] [ "opposite" EReference ]
{ endReferenceAnnotation } ";" ;

EOperation = {EAnnotation} {("ordered" | "unique" ) }
"operation" ("void" | EClass ) [ "(" i n t e g e r ".." i n t e g e r
")" ] [ "<" ETypeParameter {"," ETypeParameter} ">" ] name
"(" [ EParameter {"," EParameter } ] ")" [ "throws" EClass
{"," EClass } ] ";" ;

EEnum = {EAnnotation} [ "serializable" ] "enum" name "\""

name "\"" "{" {EEnumLiteral} "}" ;
EEnumLiteral = {EAnnotation} EDataType ":" name "=" "\""

EEnumLiteral "\"" ";" ;
EAnnotation = "(" { "eAnnotations" ":" EAnnotation |

"source" ":" "\"" name "\"" | "details" ":" "\"" name
"\"" "=" "\"" name "\"" | "contents" ":" EObject |
"references" ":" EReference | "eModelElement" ":"

EObject } ")" ;
20 EObject = "EObject" ;

EFactory = "EFactory" ;
EStringToStringMapEntry = "cardinality" i n t e g e r ;
EDataType = {EAnnotation} [ "serializable" ] "datatype" name

"\"" name "\"" ;
ETypeParameter = {EAnnotation} name ;

25 EGenericType = "typed" [ "<" ( ETypeParameter | "?"

"extends" EGenericType | "?" "super" EGenericType ) ">" ]
EClass [ "<" ( EGenericType | "?" ) {"," ( EGenericType |
"?" ) } ">" ] ;

f rontRe fe renceAnnotat ion = "(" ("functional" |
"inversefunctional" | "symmetric" | "asymmetric" |
"reflexive" | "irreflexive" | "transitive" ) ")" ;

endReferenceAnnotation = "(" ("equivalentTo" OPE |
"subPropertyOf" OPE | "domain" CE | "range" CE |
"disjointWith" OPE | "inverseOf" name |
"subPropertyChain" OPE "o" OPE {"o" OPE}) ")" ;

c l a s sAnnotat ion = "(" (
30 ("equivalentTo" | "disjointWith" )

CE {CE} |
"subClassOf" CE |
"disjointUnionOf" CE CE {CE}

) ")" ;

35CE = "(" ( [ "not" ] name |
"not" CE |
CE "and" CE { "and" CE } |
CE "or" CE {"or" CE} |
OPE ("some" | "only" ) CE |

40 OPE "Self" |
OPE ("min" | "max" | "exactly" ) "cardinality"

nonnega t i ve in t ege r CE )
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")" ;

OPE = name | "(" "inverse" name ")" ;

A.2 EBNF Grammar of SPARQLAS Functional Syntax

Listing A.2. EBNF Grammar of SPARQLAS Functional Syntax

1

c a r d i n a l i t y = "a nonempty finite sequence of digits between

0 and 9" ;
l e x i c a l = "a nonempty finite sequence of alphanumeric

characters enclosed in a pair of \" (U+22) characters" ;
v a r i a b l e = "a nonempty finite sequence of alphanumeric

characters starting with either a ? (U+3F) character or

a $ (U+24) character" ;
5 nodeID = "a finite sequence of characters matching the

BLANK_NODE_LABEL production of SPARQL" ;
p r e f i x = "a finite sequence of characters matching the

PNAME_NS production of SPARQL" ;
f u l l I R I = "an IRI as defined in RFC3987 , enclosed in a pair

of < (U+3C) and > (U+3E) characters" ;
abbrev iatedIRI = "a finite sequence of characters matching

the PNAME_LN production of SPARQL" ;

10 IRI = f u l l I R I | abbrev iatedIRI ;

OntologyDocument = [ QueryIRI ] { Import } {
P r e f i x D e f i n i t i o n } Query ;

QueryIRI = "IRI" "(" f u l l I R I ")" ;
Import = "Import" "(" f u l l I R I ")" ;

15 P r e f i x D e f i n i t i o n = "Namespace" "(" [ p r e f i x ] "=" f u l l I R I
")" ;

Query = SelectQuery | ConstructQuery | AskQuery |
DescribeQuery ;

Se lectQuery = "Select" [ v a r i a b l e { v a r i a b l e } | "*" ]
"Where" "(" { Atom } ")" ;

20 ConstructQuery = "Construct" "(" { ConstructAtom } ")"

"Where" "(" { WhereAtom } ")" ;
AskQuery = "Ask" "Where" "(" { Atom } ")" ;
DescribeQuery = "Describe" Descr ibeIRI | "Describe" "Where"

"(" { Atom } ")" ;

ConstructAtom = Atom ;



218 A Appendices

25WhereAtom = Atom ;
Descr ibeIRI = f u l l I R I ;

C la s sVar iab l e = v a r i a b l e ;
ObjectPropertyVar iab le = v a r i a b l e ;

30 DataPropertyVariable = v a r i a b l e ;
I n d i v i d u a l V a r i a b l e = v a r i a b l e ;
L i t e r a l V a r i a b l e = v a r i a b l e ;

Class = IRI ;
35 Datatype = IRI ;

ObjectProperty = IRI ;
DataProperty = IRI ;
NamedIndividual = IRI ;
Constra in ingFacet = IRI ;

40 AnonymousIndividual = nodeID ;
NamedLiteral = l e x i c a l "^^" Datatype ;

Atom = Asse r t i on | ClassAtom | ObjectPropertyAtom |
DataPropertyAtom | HasKey | Dec la ra t i on ;

45 Asse r t i on = Cla s sAs s e r t i on | DirectType |
ObjectPropertyAsser t ion | DataPropertyAssert ion |
Negat iveObjectPropertyAsser t ion |
Negat iveDataPropertyAssert ion | SameIndividual |
D i f f e r e n t I n d i v i d u a l s ;

C la s sAs s e r t i on = ( "ClassAssertion" | "Type" ) "("

I n d i v i d u a l Clas sExpres s ion ")" ;
DirectType = "DirectType" "(" I n d i v i d u a l Clas sExpres s ion

")" ;
ObjectPropertyAsser t ion = ( "ObjectPropertyAssertion" |

"PropertyValue" ) "(" Source Ind iv idua l
ObjectPropertyExpress ion Targe t Ind iv idua l ")" ;

50 DataPropertyAssert ion = ( "DataPropertyAssertion" |
"PropertyValue" ) "(" Source Ind iv idua l
DataPropertyExpress ion TargetValue ")" ;

Negat iveObjectPropertyAsser t ion = (
"NegativeObjectPropertyAssertion" |
"NegativePropertyValue" ) "(" Source Ind iv idua l
ObjectPropertyExpress ion Targe t Ind iv idua l ")" ;

Negat iveDataPropertyAssert ion = (
"NegativeDataPropertyAssertion" |
"NegativePropertyValue" ) "(" Source Ind iv idua l
DataPropertyExpress ion TargetValue ")" ;

SameIndividual = ( "SameIndividual" | "SameAs" ) "("

I n d i v i d u a l I n d i v i d u a l { I n d i v i d u a l } ")" ;
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D i f f e r e n t I n d i v i d u a l s = ( "DifferentIndividuals" |
"DifferentFrom" ) "(" I n d i v i d u a l I n d i v i d u a l {
I n d i v i d u a l } ")" ;

55 Source Ind iv idua l = I n d i v i d u a l ;
Targe t Ind iv idua l = I n d i v i d u a l ;
I n d i v i d u a l = NamedIndividual | I n d i v i d u a l V a r i a b l e |

AnonymousIndividual ;
TargetValue = L i t e r a l ;
L i t e r a l = L i t e r a l V a r i a b l e | NamedLiteral ;

60

ClassAtom = SubClassOf | DirectSubClassOf |
Str i c tSubClas sOf | Equ iva l entC la s s e s | D i s j o i n t C l a s s e s
| Dis jo intUnion ;

SubClassOf = "SubClassOf" "(" SubClassExpress ion
SuperClassExpress ion ")" ;

DirectSubClassOf = "DirectSubClassOf" "("

SubClassExpress ion SuperClassExpress ion ")" ;
65 Str i c tSubClas sOf = "StrictSubClassOf" "("

SubClassExpress ion SuperClassExpress ion ")" ;
Equ iva l entC la s s e s = ( "EquivalentClasses" | "EquivalentTo"

) "(" ClassExpres s ion Clas sExpres s ion { ClassExpres s ion
} ")" ;

D i s j o i n t C l a s s e s = ( "DisjointClasses" | "DisjointWith" )
"(" ClassExpres s ion Clas sExpres s ion { ClassExpres s ion }
")" ;

D i s jo intUnion = "DisjointUnion" "(" D i s j o i n t C l a s s
D i s j o i n tC la s sE xpr e s s i o n D i s j o i n t C la s s Exp r e s s i on {
Di s j o i n tC la s sE xpr e s s i o n } ")" ;

SubClassExpress ion = ClassExpres s ion ;
70 SuperClassExpress ion = ClassExpres s ion ;

D i s j o i n t C l a s s = Clas sVar iab l e | Class ;
D i s j o i n tC la s sE xp r e s s i on = ClassExpres s ion ;

Clas sExpres s ion = Clas sVar iab l e | Class | ObjectUnionOf |
ObjectComplementOf | ObjectOneOf | Objec t In t e r s e c t i onOf
| ObjectAllValuesFrom | ObjectSomeValuesFrom |
ObjectHasValue | ObjectMinCardinal i ty |
ObjectMaxCardinal ity | ObjectExactCard ina l i ty |
DataAllValuesFrom | DataSomeValuesFrom | DataHasValue |
DataMinCardinal ity | DataMaxCardinality |
DataExactCardinal i ty ;

75

ObjectUnionOf = ( "ObjectUnionOf" | "Or" ) "("

ClassExpres s ion Clas sExpres s ion { ClassExpres s ion } ")" ;
ObjectComplementOf = ( "ObjectComplementOf" | "Not" ) "("

ClassExpres s ion ")" ;
ObjectOneOf = ( "ObjectOneOf" | "One" ) "(" I n d i v i d u a l {

I n d i v i d u a l } ")" ;
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Ob j e c t In t e r s e c t i onOf = ( "ObjectIntersectionOf" | "And" )
"(" ClassExpres s ion Clas sExpres s ion { ClassExpres s ion
}")" ;

80 ObjectAllValuesFrom = ( "ObjectAllValuesFrom" | "All" ) "("

ObjectPropertyExpress ion Clas sExpres s ion ")" ;
ObjectSomeValuesFrom = ( "ObjectSomeValuesFrom" | "Some" )

"(" ObjectPropertyExpress ion Clas sExpres s ion ")" ;
ObjectHasValue = ( "ObjectHasValue" | "Has" ) "("

ObjectPropertyExpress ion I n d i v i d u a l ")" ;
ObjectMinCardinal i ty = ( "ObjectMinCardinality" | "Min" )

"(" c a r d i n a l i t y ObjectPropertyExpress ion [
Clas sExpres s ion ] ")" ;

ObjectMaxCardinal ity = ( "ObjectMaxCardinality" | "Max" )
"(" c a r d i n a l i t y ObjectPropertyExpress ion [
Clas sExpres s ion ] ")" ;

85 ObjectExactCard ina l i ty = ( "ObjectExactCardinality" |
"Exact" ) "(" c a r d i n a l i t y ObjectPropertyExpress ion [
Clas sExpres s ion ] ")" ;

DataAllValuesFrom = ( "DataAllValuesFrom" | "All" ) "("

DataPropertyExpress ion DataRange ")" ;
DataSomeValuesFrom = ( "DataSomeValuesFrom" | "Some" ) "("

DataPropertyExpress ion DataRange ")" ;
DataHasValue = ( "DataHasValue" | "Has" ) "("

DataPropertyExpress ion L i t e r a l ")" ;
DataMinCardinal ity = ( "DataMinCardinality" | "Min" ) "("

c a r d i n a l i t y DataPropertyExpress ion [ DataRange ] ")" ;
90 DataMaxCardinality = ( "DataMaxCardinality" | "Max" ) "("

c a r d i n a l i t y DataPropertyExpress ion [ DataRange ] ")" ;
DataExactCardinal i ty = ( "DataExactCardinality" | "Exact" )

"(" c a r d i n a l i t y DataPropertyExpress ion [ DataRange ]
")" ;

DataRange = Datatype | DataUnionOf | DataComplementOf |
DataOneOf | DataInte r sec t i onOf | DatatypeRest r i c t i on ;

95 DataUnionOf = ( "DataUnionOf" | "Or" ) "(" DataRange
DataRange { DataRange } ")" ;

DataComplementOf = ( "DataComplementOf" | "Not" ) "("

DataRange ")" ;
DataOneOf = ( "DataOneOf" | "One" ) "(" L i t e r a l { L i t e r a l }

")" ;
Data Inte r sec t i onOf = ( "DataIntersectionOf" | "And" ) "("

DataRange DataRange { DataRange } ")" ;
DatatypeRest r i c t i on = "DatatypeRestriction" "(" Datatype

F a c e t R e s t r i c t i o n { F a c e t R e s t r i c t i o n } ")" ;
100 F a c e t R e s t r i c t i o n = Constra in ingFacet L i t e r a l ;

ObjectPropertyAtom = SubObjectPropertyOf |
Equiva l entObjec tProper t i e s | D i s j o i n t O b j e c t P r o p e r t i e s |
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ObjectPropertyDomain | ObjectPropertyRange |
InverseObjectPropertyAtom | Funct ionalObjectProperty |
InverseFunct iona lObjectProper ty |
Ref l ex iveObjec tProper ty | I r r e f l e x i v e O b j e c t P r o p e r t y |
SymmetricObjectProperty | AsymmetricObjectProperty |
Trans i t iveObjec tProper ty ;

SubObjectPropertyOf = ( "SubObjectPropertyOf" |
"SubPropertyOf" ) "(" SubObjectPropertyExpress ion
SuperObjectPropertyExpress ion ")" ;

105 Equiva l entObjec tProper t i e s = ( "EquivalentObjectProperties"

| "EquivalentProperty" ) "(" ObjectPropertyExpress ion
ObjectPropertyExpress ion { ObjectPropertyExpress ion }
")" ;

D i s j o i n t O b j e c t P r o p e r t i e s = ( "DisjointObjectProperties" |
"DisjointProperty" ) "(" ObjectPropertyExpress ion
ObjectPropertyExpress ion { ObjectPropertyExpress ion }
")" ;

ObjectPropertyDomain = ( "ObjectPropertyDomain" | "Domain"

) "(" ObjectPropertyExpress ion Clas sExpres s ion ")" ;
ObjectPropertyRange = ( "ObjectPropertyRange" | "Range" )

"(" ObjectPropertyExpress ion Clas sExpres s ion ")" ;
InverseObjectPropertyAtom = ( "InverseObjectProperties" |

"InverseOf" ) "(" ObjectPropertyExpress ion
ObjectPropertyExpress ion ")" ;

110 Funct ionalObjectProperty = "FunctionalObjectProperty" "("

ObjectPropertyExpress ion ")" ;
Inver seFunct iona lObjectProper ty = (

"InverseFunctionalObjectProperty" | "InverseFunctional"

) "(" ObjectPropertyExpress ion ")" ;
Re f l ex iveObjec tProper ty = ( "ReflexiveObjectProperty" |

"Reflexive" ) "(" ObjectPropertyExpress ion ")" ;
I r r e f l e x i v e O b j e c t P r o p e r t y = ( "IrreflexiveObjectProperty" |

"Irreflexive" ) "(" ObjectPropertyExpress ion ")" ;
SymmetricObjectProperty = ( "SymmetricObjectProperty" |

"Symmetric" ) "(" ObjectPropertyExpress ion ")" ;
115 AsymmetricObjectProperty = ( "AsymmetricObjectProperty" |

"Asymmetric" ) "(" ObjectPropertyExpress ion ")" ;
Trans i t iveObjec tProper ty = ( "TransitiveObjectProperty" |

"Transitive" ) "(" ObjectPropertyExpress ion ")" ;
SubObjectPropertyExpress ion = ObjectPropertyExpress ion |

ObjectPropertyChain ;
SuperObjectPropertyExpress ion = ObjectPropertyExpress ion ;
ObjectPropertyChain = ( "ObjectPropertyChain" | "Chain" )

"(" ObjectPropertyExpress ion ObjectPropertyExpress ion {
ObjectPropertyExpress ion } ")" ;

120

ObjectPropertyExpress ion = ObjectPropertyVar iab le |
ObjectProperty | InverseObjectProperty ;
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InverseObjectProperty = ( "ObjectInverseOf" | "InverseOf" )
"(" ObjectPropertyExpress ion ")" ;

125 DataPropertyAtom = SubDataPropertyOf |
Equiva lentDataPropert i e s | Dis j o in tDataPrope r t i e s |
DataPropertyDomain | DataPropertyRange |
FunctionalDataProperty ;

SubDataPropertyOf = ( "SubDataPropertyOf" | "SubPropertyOf"

) "(" SubDataPropertyExpression
SuperDataPropertyExpress ion ")" ;

Equ iva lentDataPropert i e s = ( "EquivalentDataProperties" |
"EquivalentProperty" ) "(" DataPropertyExpress ion
DataPropertyExpress ion { DataPropertyExpress ion } ")" ;

D i s j o in tDataPrope r t i e s = ( "DisjointDataProperties" |
"DisjointProperty" ) "(" DataPropertyExpress ion
DataPropertyExpress ion { DataPropertyExpress ion } ")" ;

130 DataPropertyDomain = ( "DataPropertyDomain" | "Domain" )
"(" DataPropertyExpress ion Clas sExpres s ion ")" ;

DataPropertyRange = ( "DataPropertyRange" | "Range" ) "("

DataPropertyExpress ion DataRange ")" ;
FunctionalDataProperty = "FunctionalDataProperty" "("

DataPropertyExpress ion ")" ;
SubDataPropertyExpression = DataPropertyExpress ion ;
SuperDataPropertyExpress ion = DataPropertyExpress ion ;

135

DataPropertyExpress ion = DataPropertyVariable |
DataProperty ;

HasKey = "HasKey" "(" ClassExpres s ion "(" {
ObjectPropertyExpress ion } ")" "(" {
DataPropertyExpress ion } ")" ")" ;

140 Dec la ra t i on = ObjectPropertyDec larat ion |
DataPropertyDeclarat ion | NamedIndiv idualDeclarat ion |
Clas sDec l a ra t i on ;

ObjectPropertyDec larat ion = "ObjectProperty" "("

ObjectProperty | ObjectPropertyVar iab le ")" ;
DataPropertyDeclarat ion = "DataProperty" "(" DataProperty |

DataPropertyVariable ")" ;
NamedIndiv idualDeclarat ion = "NamedIndividual" "("

NamedIndividual | I n d i v i d u a l V a r i a b l e ")" ;
145 Clas sDec l a ra t i on = "Class" "(" Class | Clas sVar iab l e ")" ;
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A.3 EBNF Grammar of SPARQLAS Manchester Syntax

Listing A.3. EBNF Grammar of SPARQLAS Manchester Syntax

1

c a r d i n a l i t y = "a nonempty finite sequence of digits between

0 and 9" ;
l e x i c a l = "a nonempty finite sequence of alphanumeric

characters enclosed in a pair of \" (U+22) characters" ;
v a r i a b l e = "a nonempty finite sequence of alphanumeric

characters starting with either a ? (U+3F) character or

a $ (U+24) character" ;
5 nodeID = "a finite sequence of characters matching the

BLANK_NODE_LABEL production of SPARQL" ;
p r e f i x = "a finite sequence of characters matching the

PNAME_NS production of SPARQL" ;
f u l l I R I = "an IRI as defined in RFC3987 , enclosed in a pair

of < (U+3C) and > (U+3E) characters" ;
abbrev iatedIRI = "a finite sequence of characters matching

the PNAME_LN production of SPARQL" ;

10 IRI = f u l l I R I | abbrev iatedIRI ;

OntologyDocument = [ QueryIRI ] { Import } {
P r e f i x D e f i n i t i o n } Query ;

QueryIRI = "IRI" "(" f u l l I R I ")" ;
Import = "Import:" f u l l I R I ;

15 P r e f i x D e f i n i t i o n = "Namespace:" [ p r e f i x ] f u l l I R I ;

Query = SelectQuery | ConstructQuery | AskQuery |
DescribeQuery ;

Se lectQuery = "Select" [ v a r i a b l e { v a r i a b l e } | "*" ]
"Where:" { Atom } ;

20 ConstructQuery = "Construct:" { ConstructAtom } "Where:" {
WhereAtom } ;

AskQuery = "Ask" "Where:" { Atom } ;
DescribeQuery = "Describe" Descr ibeIRI | "Describe"

"Where:" { Atom } ;

ConstructAtom = Atom ;
25WhereAtom = Atom ;

Descr ibeIRI = f u l l I R I ;

C la s sVar iab l e = v a r i a b l e ;
ObjectPropertyVar iab le = v a r i a b l e ;

30 DataPropertyVariable = v a r i a b l e ;
I n d i v i d u a l V a r i a b l e = v a r i a b l e ;
L i t e r a l V a r i a b l e = v a r i a b l e ;
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Class = IRI ;
35 Datatype = IRI ;

ObjectProperty = IRI ;
DataProperty = IRI ;
NamedIndividual = IRI ;
Constra in ingFacet = IRI ;

40 AnonymousIndividual = nodeID ;
NamedLiteral = l e x i c a l "^^" Datatype ;

Atom = Asse r t i on | ClassAtom | ObjectPropertyAtom |
DataPropertyAtom | HasKey | Dec la ra t i on ;

45 Asse r t i on = Cla s sAs s e r t i on | DirectType |
ObjectPropertyAsser t ion | DataPropertyAssert ion |
Negat iveObjectPropertyAsser t ion |
Negat iveDataPropertyAssert ion | SameIndividual |
D i f f e r e n t I n d i v i d u a l s ;

C la s sAs s e r t i on = I n d i v i d u a l "type" ClassExpres s ion ;
DirectType = I n d i v i d u a l "directType" ClassExpres s ion ;
ObjectPropertyAsser t ion = Source Ind iv idua l

ObjectPropertyExpress ion Targe t Ind iv idua l ;
50 DataPropertyAssert ion = Source Ind iv idua l

DataPropertyExpress ion TargetValue ;
Negat iveObjectPropertyAsser t ion = Source Ind iv idua l "not"

ObjectPropertyExpress ion Targe t Ind iv idua l ;
Negat iveDataPropertyAssert ion = Source Ind iv idua l "not"

DataPropertyExpress ion TargetValue ;
SameIndividual = I n d i v i d u a l "sameAs" I n d i v i d u a l |

"SameIndividuals" "(" I n d i v i d u a l I n d i v i d u a l {
I n d i v i d u a l } ")" ;

D i f f e r e n t I n d i v i d u a l s = I n d i v i d u a l "differentFrom"

I n d i v i d u a l | "DifferentIndividuals" "(" I n d i v i d u a l
I n d i v i d u a l { I n d i v i d u a l } ")" ;

55 Source Ind iv idua l = I n d i v i d u a l ;
Targe t Ind iv idua l = I n d i v i d u a l ;
I n d i v i d u a l = NamedIndividual | I n d i v i d u a l V a r i a b l e |

AnonymousIndividual ;
TargetValue = L i t e r a l ;
L i t e r a l = L i t e r a l V a r i a b l e | NamedLiteral ;

60

ClassAtom = SubClassOf | DirectSubClassOf |
Str i c tSubClas sOf | Equ iva l entC la s s e s | D i s j o i n t C l a s s e s
| Dis jo intUnion ;

SubClassOf = SubClassExpress ion "subClassOf"

SuperClassExpress ion ;
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DirectSubClassOf = SubClassExpress ion "directSubClassOf"

SuperClassExpress ion ;
65 Str i c tSubClas sOf = SubClassExpress ion "strictSubClassOf"

SuperClassExpress ion ;
Equ iva l entC la s s e s = "EquivalentClasses:" ClassExpres s ion

"," ClassExpres s ion { "," ClassExpres s ion } |
ClassExpres s ion "equivalentClasses" ClassExpres s ion {
"," ClassExpres s ion } | ClassExpres s ion "equivalentTo"

ClassExpres s ion { "," ClassExpres s ion } ;
D i s j o i n t C l a s s e s = "DisjointClasses:" ClassExpres s ion ","

ClassExpres s ion { "," ClassExpres s ion } |
ClassExpres s ion "disjointClasses" ClassExpres s ion { ","

ClassExpres s ion } | ClassExpres s ion "disjointWith"

ClassExpres s ion { "," ClassExpres s ion } ;
D i s jo intUnion = D i s j o i n t C l a s s "DisjointUnionOf:"

Di s j o i n tC la s sE xpr e s s i o n D i s j o i n t C la s s Exp r e s s i on {
Di s j o i n tC la s sE xpr e s s i o n } ;

SubClassExpress ion = ClassExpres s ion ;
70 SuperClassExpress ion = ClassExpres s ion ;

D i s j o i n t C l a s s = Clas sVar iab l e | Class ;
D i s j o i n tC la s sE xpr e s s i o n = ClassExpres s ion ;

Clas sExpres s ion = Clas sVar iab l e | Class | ObjectUnionOf |
ObjectComplementOf | ObjectOneOf | Objec t In t e r s e c t i onOf
| ObjectAllValuesFrom | ObjectSomeValuesFrom |
ObjectHasValue | ObjectMinCardinal i ty |
ObjectMaxCardinal ity | ObjectExactCard ina l i ty |
DataAllValuesFrom | DataSomeValuesFrom | DataHasValue |
DataMinCardinal ity | DataMaxCardinality |
DataExactCardinal i ty ;

75

ObjectUnionOf = "(" ClassExpres s ion "or" ClassExpres s ion {
"or" ClassExpres s ion } ")" ;

ObjectComplementOf = "not" ClassExpres s ion ;
ObjectOneOf = "{" I n d i v i d u a l { "," I n d i v i d u a l } "}" ;
Ob j e c t In t e r s e c t i onOf = "(" ClassExpres s ion "and"

ClassExpres s ion { "and" ClassExpres s ion } ")" ;
80 ObjectAllValuesFrom = ObjectPropertyExpress ion "only"

ClassExpres s ion | "(" ObjectPropertyExpress ion "only"

ClassExpres s ion ")" ;
ObjectSomeValuesFrom = ObjectPropertyExpress ion "some"

ClassExpres s ion | "(" ObjectPropertyExpress ion "some"

ClassExpres s ion ")" ;
ObjectHasValue = ObjectPropertyExpress ion "value"

I n d i v i d u a l | "(" ObjectPropertyExpress ion "vaule"

I n d i v i d u a l ")" ;
ObjectMinCardinal i ty = ObjectPropertyExpress ion "min"

c a r d i n a l i t y [ C las sExpres s ion ] | "("
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ObjectPropertyExpress ion "min" c a r d i n a l i t y [
C las sExpres s ion ] ")" ;

ObjectMaxCardinal ity = ObjectPropertyExpress ion "max"

c a r d i n a l i t y [ C las sExpres s ion ] | "("

ObjectPropertyExpress ion "max" c a r d i n a l i t y [
C las sExpres s ion ] ")" ;

85 ObjectExactCard ina l i ty = ObjectPropertyExpress ion "exactly"

c a r d i n a l i t y [ C las sExpres s ion ] | "("

ObjectPropertyExpress ion "exactly" c a r d i n a l i t y [
C las sExpres s ion ] ")" ;

DataAllValuesFrom = DataPropertyExpress ion "only" DataRange
| "(" DataPropertyExpress ion "only" DataRange ")" ;

DataSomeValuesFrom = DataPropertyExpress ion "some"

DataRange | "(" DataPropertyExpress ion "some" DataRange
")" ;

DataHasValue = DataPropertyExpress ion "value" L i t e r a l | "("

DataPropertyExpress ion "value" L i t e r a l ")" ;
DataMinCardinal ity = c a r d i n a l i t y "min"

DataPropertyExpress ion [ DataRange ] | "(" c a r d i n a l i t y
"min" DataPropertyExpress ion [ DataRange ] ")" ;

90 DataMaxCardinality = c a r d i n a l i t y "max"

DataPropertyExpress ion [ DataRange ] | "(" c a r d i n a l i t y
"max" DataPropertyExpress ion [ DataRange ] ")" ;

DataExactCardinal i ty = c a r d i n a l i t y "exactly"

DataPropertyExpress ion [ DataRange ] | "(" c a r d i n a l i t y
"exactly" DataPropertyExpress ion [ DataRange ] ")" ;

DataRange = Datatype | DataUnionOf | DataComplementOf |
DataOneOf | DataInte r sec t i onOf | DatatypeRest r i c t i on ;

95 DataUnionOf = "(" DataRange "or" DataRange { "or" DataRange
} ")" ;

DataComplementOf = "DataComplementOf" DataRange | "not"

DataRange ;
DataOneOf = "{" L i t e r a l { L i t e r a l } "}" ;
Data Inte r sec t i onOf = "(" DataRange "and" DataRange { "and"

DataRange } ")" ;
DatatypeRest r i c t i on = Datatype "[" F a c e t R e s t r i c t i o n {

F a c e t R e s t r i c t i o n } "]" ;
100 F a c e t R e s t r i c t i o n = Constra in ingFacet L i t e r a l ;

ObjectPropertyAtom = SubObjectPropertyOf |
Equiva l entObjec tProper t i e s | D i s j o i n t O b j e c t P r o p e r t i e s |
ObjectPropertyDomain | ObjectPropertyRange |
InverseObjectPropertyAtom | Funct ionalObjectProperty |
InverseFunct iona lObjectProper ty |
Ref l ex iveObjec tProper ty | I r r e f l e x i v e O b j e c t P r o p e r t y |
SymmetricObjectProperty | AsymmetricObjectProperty |
Trans i t iveObjec tProper ty ;
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SubObjectPropertyOf = SubObjectPropertyExpress ion (
"subObjectPropertyOf" | "subPropertyOf" )
SuperObjectPropertyExpress ion ;

105 Equiva l entObjec tProper t i e s = (
"EquivalentObjectProperties:" | "EquivalentProperties:"

) ObjectPropertyExpress ion "," ObjectPropertyExpress ion
{ "," ObjectPropertyExpress ion } |
ObjectPropertyExpress ion ( "equivalentObjectProperties"

| "equivalentTo" ) ObjectPropertyExpress ion { ","

ObjectPropertyExpress ion } ;
D i s j o i n t O b j e c t P r o p e r t i e s = ( "DisjointObjectProperties:" |

"DisjointProperties:" ) ObjectPropertyExpress ion ","

ObjectPropertyExpress ion { "," ObjectPropertyExpress ion
} | ObjectPropertyExpress ion (
"disjointObjectProperties" | "disjointWith" )
ObjectPropertyExpress ion { "," ObjectPropertyExpress ion
} ;

ObjectPropertyDomain = ObjectPropertyExpress ion (
"objectPropertyDomain" | "domain" ) Clas sExpres s ion ;

ObjectPropertyRange = ObjectPropertyExpress ion (
"objectPropertyRange" | "range" ) Clas sExpres s ion ;

InverseObjectPropertyAtom = ObjectPropertyExpress ion (
"inverseObjectProperties" | "inverseOf" )
ObjectPropertyExpress ion ;

110 Funct ionalObjectProperty = ( "FunctionalObjectProperty" |
"Functional" ) ObjectPropertyExpress ion ;

InverseFunct iona lObjectProper ty = (
"InverseFunctionalObjectProperty" | "InverseFunctional"

) ObjectPropertyExpress ion ;
Re f l ex iveObjec tProper ty = ( "ReflexiveObjectProperty" |

"Reflexive" ) ObjectPropertyExpress ion ;
I r r e f l e x i v e O b j e c t P r o p e r t y = ( "IrreflexiveObjectProperty" |

"Irreflexive" ) ObjectPropertyExpress ion ;
SymmetricObjectProperty = ( "SymmetricObjectProperty" |

"Symmetric" ) ObjectPropertyExpress ion ;
115 AsymmetricObjectProperty = ( "AsymmetricObjectProperty" |

"Asymmetric" ) ObjectPropertyExpress ion ;
Trans i t iveObjec tProper ty = ( "TransitiveObjectProperty" |

"Transitive" ) ObjectPropertyExpress ion ;
SubObjectPropertyExpress ion = ObjectPropertyExpress ion |

ObjectPropertyChain ;
SuperObjectPropertyExpress ion = ObjectPropertyExpress ion ;
ObjectPropertyChain = "SubPropertyChain:"

ObjectPropertyExpress ion "o" ObjectPropertyExpress ion {
"o" ObjectPropertyExpress ion } ;

120

ObjectPropertyExpress ion = ObjectPropertyVar iab le |
ObjectProperty | InverseObjectProperty ;
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InverseObjectProperty = ( "ObjectInverseOf" | "inverseOf" )
ObjectPropertyExpress ion ;

125 DataPropertyAtom = SubDataPropertyOf |
Equiva lentDataPropert i e s | Dis j o in tDataPrope r t i e s |
DataPropertyDomain | DataPropertyRange |
FunctionalDataProperty ;

SubDataPropertyOf = SubDataPropertyExpression (
"subDataPropertyOf" | "subPropertyOf" )
SuperDataPropertyExpress ion ;

Equiva lentDataPropert i e s = ( "EquivalentDataProperties:" |
"EquivalentProperties:" ) ObjectPropertyExpress ion ","

ObjectPropertyExpress ion { "," ObjectPropertyExpress ion
} | ObjectPropertyExpress ion (
"equivalentDataProperties" | "equivalentTo" )
ObjectPropertyExpress ion { "," ObjectPropertyExpress ion
} ;

D i s j o in tDataPrope r t i e s = ( "DisjointDataProperties:" |
"DisjointProperties:" ) ObjectPropertyExpress ion ","

ObjectPropertyExpress ion { "," ObjectPropertyExpress ion
} | ObjectPropertyExpress ion ( "disjointDataProperties"

| "disjointWith" ) ObjectPropertyExpress ion { ","

ObjectPropertyExpress ion } ;
130 DataPropertyDomain = DataPropertyExpress ion (

"dataPropertyDomain" | "domain" ) Clas sExpres s ion ;
DataPropertyRange = DataPropertyExpress ion (

"dataPropertyRange:" | "range" ) DataRange ;
FunctionalDataProperty = ( "FunctionalDataProperty" |

"Functional" ) DataPropertyExpress ion ;
SubDataPropertyExpression = DataPropertyExpress ion ;
SuperDataPropertyExpress ion = DataPropertyExpress ion ;

135

DataPropertyExpress ion = DataPropertyVariable |
DataProperty ;

HasKey = "HasKey" "(" ClassExpres s ion "(" {
ObjectPropertyExpress ion } ")" "(" {
DataPropertyExpress ion } ")" ")" ;

140 Dec la ra t i on = ObjectPropertyDec larat ion |
DataPropertyDeclarat ion | NamedIndiv idualDeclarat ion |
Clas sDec l a ra t i on ;

ObjectPropertyDec larat ion = "ObjectProperty:" "("

ObjectProperty | ObjectPropertyVar iab le ")" ;
DataPropertyDeclarat ion = "DataProperty:" "(" DataProperty

| DataPropertyVariable ")" ;
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NamedIndiv idualDeclarat ion = "NamedIndividual:" "("

NamedIndividual | I n d i v i d u a l V a r i a b l e ")" ;
145 Clas sDec l a ra t i on = "Class:" "(" Class | Clas sVar iab l e ")" ;

A.4 SPARQLAS Metamodel

Fig. A.1. SPARQLAS Metamodel

A.5 Ecore to OWL: Translation Rules

In this section, we describe the transformation rule for generating OWL ontologies
based on the Ecore metamodel.

OWL::ClassDeclaration(?x) ← Ecore::EClass(?x)

OWL::Class(?x) ← Ecore::EClass(?x)
iri(?x,?y) ← name(?x,?y)
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OWL::SubClassOf(?x,?y) ← Ecore::EClass(?x) ∧ Ecore::EClass(?y) ∧
superClass(?x,?y)

OWL::Class(?x) ← Ecore::EClass(?x)
OWL::Class(?y) ← Ecore::EClass(?y)
iri(?x,?z1) ← name(?x,?z1)
iri(?y,?z2) ← name(?y,?z2)

OWL::DataPropertyDeclaration(?y) ← Ecore::EClass(?x) ∧ Ecore::EAttribute(?y)
∧ Ecore::EPrimitiveType(?z) ∧ eAttributes(?x,?y) ∧ eAttributeType(?y,?z)

OWL::DataProperty(?y) ← Ecore::EAttribute(?y)
iri(?y,?z) ← name(?y,?z)

OWL::ObjectPropertyDeclaration(?y)← Ecore::EClass(?x) ∧ Ecore::EAttribute(?y)
∧ Ecore::EEnum(?z) ∧ eAttributes(?x,?y) ∧ eAttributeType(?y,?z)

OWL::ObjectProperty(?y) ← Ecore::EAttribute(?y)
iri(?y,?z) ← name(?y,?z)

OWL::ObjectPropertyDeclaration(?y)← Ecore::EClass(?x) ∧ Ecore::EReference(?y)
∧ Ecore::EClass(?z) ∧ eReferences(?x,?y) ∧ eReferenceType(?y,?z)

OWL::ObjectProperty(?y) ← Ecore::EReference(?y)
iri(?y,?z) ← name(?y,?z)

OWL::EquivalentClasses(?v) ← Ecore::EEnum(?v)

OWL::Class(?w) ← Ecore::EEnum(?v)
iri(?w,?x) ← name(?v,?x)
equivalentClass(?v,?w) ← .

OWL::ObjectOneOf(?y) ← Ecore::EEnum(?v)
OWL::NamedIndividual(?z) ← Ecore::EEnumLiteral(?z)
oneOfIndividual(?y,?z) ← eLiterals(?v,?z)
equivalentClass(?v,?y) ← .
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OWL::ClassAssertion(?x,?y) ← Ecore::EClass(?x) ∧
Ecore::EObject(?y) ∧ eClass(?y,?x)

OWL::Class(?x) ← Ecore::EClass(?x)
iri(?x,?z1) ← name(?x,?z1)

OWL::NamedIndividual(?y) ← Ecore::EObject(?y)
iri(?y,?z2) ← name(?y,?z2)

OWL::ObjectPropertyAssertion(?x,?y,?z) ← Ecore::EObject(?s)
∧ Ecore::EObject(?o) ∧ Ecore::EReference(?r) ∧ eGet(?r, ?s,?o)

OWL:ObjectProperty(?r) ← Ecore::EReference(?r)
iri(?r,?n1) ← name(?r,?n1)

OWL::NamedIndividual(?s) ← Ecore::EObject(?s)
iri(?s,?n2) ← name(?s,?n2)

OWL::NamedIndividual(?o) ← Ecore::EObject(?o)
iri(?o,?n3) ← name(?o,?n3)

OWL::DataPropertyAssertion(?x,?y,?z) ← Ecore::EObject(?s)
∧ Ecore::Literal(?l) ∧ Ecore::EAttribute(?r) ∧ eGet(?a, ?s,?l)

OWL:ObjectProperty(?r) ← Ecore::EAttribute(?a)
iri(?a,?n1) ← name(?r,?n1)

OWL::NamedIndividual(?s) ← Ecore::EObject(?s)
iri(?s,?n2) ← name(?s,?n2)

OWL::Literal(?l) ← Ecore::Literal(?l)

A.6 Use Cases

In the following subsections we describe the use cases of the TwoUse approach.
After describing the use cases, we map these use cases onto the requirements in the
traceability matrix presented in Section A.7.

A.6.1 Design Integrated models

Brief Description: This use case covers the creation and visualization of OWL
constructs with UML class-based modeling.
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Preconditions: None.
Postconditions: An OWL ontology is generated.
Basic Flow:

1. Software Engineer Design Integrated models.
2. Software Engineer saves integrated model.
3. System transforms TwoUse model into OWL.
4. Use case terminates.

Sub flow: abstract Design Integrated models.

A.6.2 Design Integrated UML Class Diagram

Brief Description: This use case covers the creation and visualization of hybrid
models using UML as concrete syntax.

Sub flow: Design Integrated models
1. Software Engineer creates a new UML class diagram.
2. Software Engineer use stereotypes of the UML Profile for OWL to annotate

UML elements.
3. System transforms the hybrid class diagram into a TwoUse model.

Alternate Flows:
1. Software Engineer imports existing UML class diagram.

A.6.3 Design Integrated Ecore Model

Brief Description: This use case covers the creation and visualization of Ecore
models using the textual syntax.

Sub flow: Design Integrated models
1. Software Engineer creates a new Ecore model.
2. Software Engineer creates annotations with OWL axioms to Ecore elements.
3. System transforms Ecore model with annotations for OWL into a TwoUse

model.
Alternate Flows:

1. Software Engineer imports existing Ecore model.

A.6.4 Specify SPARQLAS4TwoUse Query Operations

Brief Description: This use case covers the specification of query operations
for classes using SPARQLAS4TwoUse for usage of ontology services in UML
class-based modeling.

Preconditions: Integrated model exists.
Postconditions: None.
Basic Flow:

1. Software Engineer creates query operations at classes.
2. Software Engineer specifies the body of query operations using SPAR-

QLAS4TwoUse.
3. System transforms the hybrid class diagram into a TwoUse model.
4. System generates an OWL ontology from the TwoUse model.
5. System generates a SPARQL query from the SPARQLAS4TwoUse query.
6. Use case terminates.

Alternate Flows: none
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A.6.5 Transform to OWL

Brief Description: This use case covers the transformation of Ecore-based model-
ing languages. It consists of transforming model and metamodel into individuals
and classes in an OWL ontology for usage of ontology services in UML class-
based modeling.

Preconditions: A model and its metamodel designed using Ecore technologies
exist.

Postconditions: An OWL ontology is generated including elements of the model
as individuals and property assertions and the elements of the metamodel as
classes and properties.

Basic Flows:
1. Software engineer selects a model for transformation.
2. System creates an OWL ontology.
3. System reads selected model’s metamodel and transform it into OWL

classes and properties.
4. System reads selected model and transform it into OWL individuals, class

assertions and property assertions.
5. Use case terminates.

Alternate Flows: None.

A.6.6 Compute Alignments

Brief Description: This use case covers the computation of alignments between
two UML class-based models. It consists of transforming models into OWL and
applying matching techniques to identify similarities between two models.

Preconditions: Two models exist.
Postconditions: Results of alignments are displayed.
Basic Flows:

1. Software engineer selects two UML class-based models for comparison.
2. System reads the two corresponding OWL ontologies.
3. System computes the alignment between these ontologies.
4. System displays the result.
5. Use case terminates.

Alternate Flows: None.

A.6.7 Browse

Brief Description: It covers the usage of queries and filters for extrating data.
Preconditions: UML class-based modeling exists.
Postconditions: Results are presented.
Basic Flows:

1. Engineer creates new SPARQLAS query.
2. Engineer saves SPARQLAS query.
3. Engineer executes SPARQLAS query.
4. Engineer Select Model.
5. System transforms UML class-based model into OWL.
6. System transforms SPARQLAS query into SPARQL query.
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7. System uses reasoning systems to classify and realize the ontology and to
execute the SPARQL query.

8. System shows query results.
9. Use case terminates.

Alternate Flows: Engineer visualizes inferred class hierarchy.
1. System shows the inferred class hierarchy.

A.6.8 Explain Axioms

Brief Description: It covers the usage of explanation services.
Preconditions: OWL exists.
Postconditions: None.
Basic Flows:

1. Engineer selects axioms for explanation.
2. System generates an explanation for the selected axioms.
3. Use case terminates.

Alternate Flows: None.
Sub flow: abstract Select Model.

A.6.9 Query UML class-based models

Brief Description: It covers the usage of queries over UML class-based modeling.
Sub flow: Select Model

1. Software Engineer selects UML class-based model.
2. System transforms UML class-based model into OWL.

A.6.10 Query OWL ontologies

Brief Description: It extends use case Query.
Sub flow: Select Model

1. Software Engineer selects OWL ontology.

A.6.11 Design Ontology Engineering Services

Brief Description: It involves the specification of Ontology Engineering Service.
Preconditions: OWL ontology exists.
Postconditions: None.
Basic Flows:

1. Ontology Engineer Design Services.
2. System Generate Service.
3. Use case terminates.

Alternate Flows: None.
Extension Point: Generate Service.
Sub flow: abstract Design Services.
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A.6.12 Design Ontology API

Brief Description: It involves the specification of OWL ontology API.
Sub flow: Design Services.

1. Ontology Engineer creates OWL ontology API specification.
2. Ontology Engineer specifies API using a domain-specific textual language.
3. Ontology Engineer saves OWL Ontology API specification.

Alternate Flows: None.
Preconditions: OWL ontology exists.
Postconditions: None.

A.6.13 Design Ontology Translation

Brief Description: It outlines the design of OWL ontology dataset translations.
Sub flow: Design Services.

1. Ontology Engineer creates OWL ontology dataset translation specification.
2. Ontology Engineer specifies OWL ontology dataset translation using a

domain-specific textual language.
3. Ontology Engineer saves OWL ontology dataset translation specification.

Alternate Flows: None.
Preconditions: Source OWL ontology and Target OWL ontology exist.
Postconditions: None.

A.6.14 Design Ontology Template

Brief Description: It covers the usage of templates in OWL ontologies.
Sub flow: Design Services.

1. Ontology Engineer imports domain ontology.
2. Ontology Engineer specifies ontology templates.
3. Ontology Engineer binds templates to domain ontology.

Alternate Flows
1. Ontology Engineer uses UML class diagrams for creating templates.
2. Ontology Engineer uses the OWL 2 graphical notation for creating tem-

plates.
Preconditions: Domain ontology exists.
Postconditions: OWL ontology generated.

A.6.15 Generate Service

Brief Description: It covers the transformation of specification into plat-
form specific artifacts.

Extension Flows: Generate Service.
1. System generates platform specific artifacts for the ontology engineering

service.
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Requirements OWL Con-
structs in
UML Class-
Based Model-
ing (5.2.1)

Ontology ser-
vices in UML
class-based
modeling
(5.2.1)

MDE Support
for Ontology
Modeling
(5.2.2)

Domain Mod-
eling for
Ontology
Engineer-
ing Services
(5.2.2)

Use Cases

Design Integrated mod-
els (A.6.1)

X

Design Integrated UML
Class Diagram (A.6.2)

X

Design Integrated Ecore
Model (A.6.3)

X

Specify SPAR-
QLAS4TwoUse Query
Operations (A.6.4)

X

Transform to OWL
(A.6.5)

X

Compute Alignments
(A.6.6)

X

Browse (A.6.7) X X X

Query UML class-based
models (A.6.9)

X

Query OWL ontologies
(A.6.10)

X X

Explain Axioms (A.6.8) X

Design Ontology Engi-
neering Services (A.6.11)

X X

Design Ontology API
(A.6.12)

X

Design Ontology Trans-
lation (A.6.13)

X

Design Ontology Tem-
plate (A.6.14)

X

Generate Service
(A.6.15)

X

Table A.1. Traceability Matrix: Mapping Use Cases and Requirements.

A.7 Connecting Use Cases with Requirements

Having described the use cases in section A.6, we have mapped them onto the
requirements presented in Section 5.2 in Table A.1. It depicts a traceability matrix
and correlates the requirements with the use cases.
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A.8 Connecting Use Cases with the TwoUse
Architecture

Each of the components described in Chapter 7 implements one or more use cases
specified in Section A.6. Table A.2 shows the traceability matrix connecting com-
ponents and use cases.

Use Cases A.6.2 A.6.3 A.6.4 A.6.5 A.6.9 A.6.10 A.6.12 A.6.13 A.6.14 A.6.15 A.6.6
Component

SPARQL-DL X X X X X X

OWL 2 Reasoner X X X X X X

SPARQLAS2SPARQL X X X X X

Ecore2OWL2Ecore X X X X

OntologyTemplate2OWL X

UML2OWL2UML X X X

MBOTL2Java+SPARQL X

Agogo2Java X

SPARQLAS-SPARQL X X X

Ecore-OWL-Ecore X X X

OntologyTemplate-OWL X

UML-OWL-UML X X

MBOTL-Java+SPARQL X

Agogo-Java X

Explanation X X

Onlogy Alignment API X

TwoUse Modeling X X X

TwoUse Querying X X

MBOTL X

Agogo X

Ontology Templates X

Ontology Querying X

OWL 2 FS X

SPARQLAS X X

SPARQL X X

SPARQLAS4Ecore X

SPARQLAS4UML X

Text Ecore X

UML X X

OWL 2 Graphical Editor X

Agogo X

MBOTL X

Class Hierarchy X X

Query Results X X

Explanation X X

Ontology-Based Model Design X X X X X X

Model-Driven Ontology Development X X X X X

Transform to OWL X

Execute Query X X

Generate Service X

Compute Alignments X

Table A.2. Traceability Matrix: Mapping TwoUse Components and Use Cases.





Short Biography

Fernando Silva Parreiras was born in Belo Horizonte, Brazil, in 1978. He holds a
Bachelor’s degree in computer science from the FUMEC University and a Master’s
degree in information science from the Federal University of Minas Gerais. He held
a CAPES/DAAD scholarship during his Ph.D. studies in computer science at the
University of Koblenz-Landau.

In Brazil, he has worked for four years at software companies like Unisys as soft-
ware developer and software architect, developing and designing web applications.

Currently, he is the leader of the Special Interest Group Software Web at the
WeST Institute at the University of Koblenz-Landau, Germany. He has worked on
the European projects “Marrying Ontologies and Software Technologies” (MOST)
and “Network for Enabling Networked Knowledge” (Net2).


	Part I Fundamentals
	Introduction
	Motivation
	Research Questions
	Road Map
	Communications of this Thesis

	Model-Driven Engineering Foundations
	Introduction
	Model-Driven Engineering Structure
	Models
	Metamodels
	Modeling Languages
	Model Transformations
	Query Languages

	Technical Spaces
	Conclusion

	Ontology Foundations
	Introduction
	Ontology
	Ontology Modeling

	The Ontology Web Language
	OWL 2 Syntax
	OWL 2 Semantics
	World Assumption and Name Assumption

	Ontology Services
	Reasoning Services
	Querying

	Ontology Engineering Services
	Explanation
	Ontology Matching

	Rules
	Metamodels for Ontology Technologies
	OWL Metamodels
	SPARQL Metamodel

	Ontological Technical Spaces
	Conclusion

	Towards Marrying Ontology Technologies and Model-Driven Engineering
	Introduction
	Similarities between OWL Modeling and UML Class-Based Modeling
	Commonalities and Variations
	Language
	Formalism
	Data Model
	Reasoning
	Querying
	Rules
	Transformation
	Mediation
	Modeling Level

	The State of the Art of Integrated Approaches
	Model Validation
	Model Enrichment
	Ontology Modeling

	Existing Work on Classifying Integrated Approaches
	Conclusion


	Part II The TwoUse Approach
	The TwoUse Conceptual Architecture
	Introduction
	Requirements for Integrating Ontology Technologies and Model-Driven Engineering
	Usage of Ontology Services in MDE
	Usage of MDE Techniques in OWL Ontology Engineering

	Addressing the Requirements with the TwoUse Approach
	Metamodeling Architecture
	The TwoUse Metamodel

	Syntax
	UML Profile for OWL
	Pure UML Class Diagrams
	Textual Notation

	Conclusion

	Query Languages for Integrated Models
	Introduction
	Combining Existing Approaches
	Querying Ontologies Using OWL syntax: SPARQLAS
	SPARQLAS Concrete Syntax
	SPARQLAS Metamodel
	Transformation from SPARQLAS to SPARQL

	Querying Integrated Models: SPARQLAS4TwoUse
	Conclusion

	Realizing the TwoUse Conceptual Architecture: The TwoUse Toolkit
	Introduction
	Use Case Descriptions
	A Generic Architecture for MDE and Ontology Engineering
	Core Services
	Engineering Services
	Front-End

	Instantiating The Generic Model-Driven Architecture: The Twouse Toolkit
	Conclusion


	Part III Applications in Model-Driven Engineering
	Improving Software Design Patterns with OWL
	Introduction
	Case Study
	Applying the Strategy Pattern
	Extending to the Abstract Factory
	Drawbacks

	Application of the TwoUse Approach
	OWL for Conceptual Modeling
	TwoUse for Software Design Patterns: the Selector Pattern

	Validation
	Participants and Collaborations
	Applicability
	Drawbacks
	Advantages

	Related Work
	Conclusion

	Modeling Ontology-Based Information Systems
	Introduction
	Case Study
	UML class-based software development
	Ontology-Based Software Development

	Application of the TwoUse Approach
	Concrete Syntax
	Abstract Syntax
	Querying

	Validation
	Limitations

	Conclusion

	Enabling Linked Data Capabilities to MOF Compliant Models
	Introduction
	Case Study
	Requirements

	Application of the TwoUse Approach
	Model Extension
	Model Transformation
	Matching
	Querying with SPARQLAS

	Validation
	Limitations

	Related Work
	Conclusion


	Part IV Applications in the Semantic Web
	Model-Driven Specification of Ontology Translations
	Introduction
	Case Study
	Application of the TwoUse Approach
	Concrete Syntax
	Metamodels
	Model Libraries
	Semantics
	Ontology Translation Process
	Implementation

	Examples
	Analysis
	Related Work
	Conclusion

	Automatic Generation of Ontology APIs
	Introduction
	Case Study
	Application of the TwoUse Approach
	Key domain concepts
	agogo Concrete Syntax by Example
	Implementation

	Analysis
	Related Work
	Conclusion

	A Model-Driven Approach for Using Templates in OWL Ontologies
	Introduction
	Case Study
	Application of the TwoUse Approach
	Extending the OWL Metamodel with Templates
	Semantics of Templates
	Notations for Templates in OWL
	Query Templates

	Analysis
	Limitations

	Related Work
	Conclusion


	Part V Finale
	Conclusion
	Thesis Contributions

	Outlook
	Ongoing Research

	References
	Appendices
	EBNF Definition of the Concrete Syntax for TwoUse
	EBNF Grammar of SPARQLAS Functional Syntax
	EBNF Grammar of SPARQLAS Manchester Syntax
	SPARQLAS Metamodel
	Ecore to OWL: Translation Rules
	Use Cases
	Design Integrated models
	Design Integrated UML Class Diagram
	Design Integrated Ecore Model
	Specify SPARQLAS4TwoUse Query Operations 
	Transform to OWL
	Compute Alignments
	Browse
	Explain Axioms
	Query UML class-based models
	Query OWL ontologies
	Design Ontology Engineering Services
	Design Ontology API
	Design Ontology Translation
	Design Ontology Template
	Generate Service

	Connecting Use Cases with Requirements
	Connecting Use Cases with the TwoUse Architecture



