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Abstract

Graphs are known to be a good representation of structured data. TGraphs, which are typed,
attributed, ordered, and directed graphs, are a very general kind of graphs that can be used for
many domains. The Java Graph Laboratory (JGraLab) provides an efficient implementation
of TGraphs with all their properties. JGraLab ships with many features, including a query
language (GReQL2) for extracting data from a graph. However, it lacks a generic library for
important common graph algorithms.

This mid-study thesis extends JGraLab with a generic algorithm library called Algolib, which
provides a generic and extensible implementation of several important common graph algo-
rithms. The major aspects of this work are the generic nature of Algolib, its extensibility, and the
methods of software engineering that were used for achieving both. Algolib is designed to be
extensible in two ways. Existing algorithms can be extended for solving specialized problems
and further algorithms can be easily added to the library.
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Abstract

Graphen sind eine gute Wahl um strukturierte Daten zu repräsentieren. TGraphen (typisierte,
attributierte, geordnete und gerichtete Graphen) sind eine sehr generische Graphenart, die in
vielen Bereichen verwendet werden können. Das Java Graphenlabor (JGraLab) bietet eine
effiziente Implementierung von TGraphen mit all ihren Eigenschaften. Zusätzlich stellt es,
unter anderem, die Anfragesprache GReQL2 zur Verfügung, die dazu verwendet werden kann,
Daten aus einem Graphen zu extrahieren. Es verfügt jedoch nicht über eine generische Biblio-
thek von gängigen Graphalgorithmen.

Diese Studienarbeit ergänzt JGraLab durch eine generische Algorithmenbibliothek namens
Algolib, die eine generische und erweiterbare Implementierung einiger wichtiger gängiger
Graphalgorithmen enthält. Das Hauptaugenmerk dieser Arbeit liegt auf der Generizität von
Algolib, ihrer Erweiterbarkeit und der Methoden der Softwaretechnik die benutzt wurden um
beides zu erreichen. Algolib ist auf zwei Weisen erweiterbar. Bereits enthaltene Algorithmen
können erweitert werden um speziellere Probleme zu lösen und weitere Algorithmen können
auf einfache Weise der Bibliothek hinzugefügt werden.
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1 Introduction

This chapter gives a short introduction into JGraLab and TGraphs. It also contains the motiva-
tion for developing a graph algorithm library and shows the goals of this mid-study thesis.

1.1 JGraLab and TGraphs

Graphs are a suitable representation for structured data. They are used for representing arbi-
trary entities and the relationships between them.

For providing a generic graph representation, TGraphs have been developed. TGraphs are
typed, attributed, ordered, and directed graphs. A mathematical definition for TGraphs can
be found in section 2.4 on page 28. The Java Graph Laboratory (JGraLab), provides an efficient
implementation of TGraphs with the properties mentioned above.

JGraLab is based upon an older implementation, written in C++, called GraLab. The base im-
plementation of JGraLab was performed by Steffen Kahle in his diploma thesis [Kah06]. The
development was continued by the working group of Jürgen Ebert at the Institute for Software
Technology at the University of Koblenz.

The first official version of JGralab (Version Anatotitan1) was released November 2nd 2007.
JGraLab’s current version is Dimetrodon.

1.1.1 Graph schemas

A TGraph always corresponds to a certain so-called graph schema. Such a graph schema de-
fines the types and attributes of graph elements. It also defines which edge types are possi-
ble between which vertex types. Graph schemas can be defined in grUML, a subset of UML
[BHR+10].

A grUML diagram is a UML class diagram following certain rules. It declares one so-called
graph class, which is the type of the graph. It further declares the vertex and edge classes,
where vertex classes are visualized as UML classes and edge classes are visualized as either
UML associations or UML association classes. Graph classes, vertex classes, and edge classes

1The versioning schema uses dinosaur names but does not use numbers. The position of the version name’s first
letter in the alphabet corresponds to the version number.
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can have attributes. Furthermore, grUML allows generalization among vertex classes and edge
classes. Also multiple inheritance is possible.

Attributes may be of several types, which are called domains. The simplest domains are the
primitive domains (Integer, Long, Double, and Boolean). There are also domains that
correspond to Java collections (List, Set, and Map). The last group of domains are self-defined
domains. As the name suggests, they have to be explicitly defined in the grUML diagram. The
first one is the enum domain, which corresponds to a Java enum type. The second one is the
record domain, which corresponds to a tuple type, comparable to a struct in C.

grUML also supports packaging, meaning that vertex classes, edge classes, and the self-defined
domains may be placed in different packages.

1.1.2 Object oriented access layer

The exported XMI model of a grUMLdiagram can be converted into JGraLab’s TG file format2.
Currently, this is only possible for models that have been exported with the tool Rational Soft-
ware Architect3 from IBM using the tool rsa2tg, which ships with JGraLab.

For working with graph instances belonging to a schema, JGraLab can provide an object ori-
ented access layer. This layer has to be generated in order to work with instances. JGraLab
contains a Java code generator that generates the code for this access layer from the TG file
containing the desired schema. Afterwards the schema has to be compiled before it can be
used. For schemas that are frequently used, the generated code and the compiled class files
can be stored persistently. JGraLab also provides a way of doing this on-the-fly, meaning the
classes are directly compiled for instant use.

The object oriented access layer of a schema provides several interfaces, corresponding to the
classes that have been defined in the source TG file. It also reflects the schema’s package struc-
ture. The schema itself is represented by the schema class. This class is a singleton and can
be used, among other things, for creating new graphs, loading graphs from or storing graphs
to a hard disk. When creating or loading a graph, an instance of the graph class, belonging to
the schema, is returned, which represents the instance of the graph. All graph operations are
performed on the graph class instance.

Persistent serialized copies of a graph are stored in TG files. The header of a TG file is always
the schema of the graph. The remainder, which is mostly the major part of the file, contains the
serialized, but still human readable representation of the TGraph.

2It is also possible to define a schema directly in TG.
3http://www-01.ibm.com/software/rational/products/swarchitect/
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1.1.3 GReQL2

Since JGraLab’s first official version, the second version of the Graph Repository Query Lan-
guage (GReQL2) is shipped with JGraLab. It allows querying graphs for data which is stored
in the graph.

The GReQL2 language is based on the original GReQL language that was used in the old
GraLab. The GReQL2 language itself was specified by Katrin Marchewka in her diploma the-
sis [Mar06]. She also implemented a GReQL2parser in this work. The GReQL2 evaluator was
implemented by Daniel Bildhauer in his diploma thesis [Bil08].

A GReQL2 query is parsed into a TGraph representing this query. For reducing the evaluation
time, an optimizer was created by Tassilo Horn in his diploma thesis [Hor09], that optimizes
the query graph for achieving a better time efficiency.

An introduction to GReQL2, how it works, and how it can be used, can be found in [EB10].

1.2 Motivation

As indicated above, JGraLab is a very powerful implementation for TGraphs. It provides an
efficient general purpose graph data structure. With GReQL2, it also provides a sophisticated
querying mechanism, which makes handling large amounts of data stored in a TGraph fairly
easy.

However, in some domains the capabilities of GReQL2 are insufficient, because many graph
problems cannot be solved with a bare GReQL2 query. For solving such graph problems, there
exist approved algorithms. The design of JGraLab’s object oriented access layer allows for
implementing these algorithms easily. One domain, where this has been done, is described
later in this work (see chapter 6 for details).

If those algorithms are required in many different domains, multiple specialized variants
would be implemented, solving the same problems in different contexts. For avoiding such an
uncontrolled growth of specialized algorithms, it is feasible for JGraLab to provide a generic
algorithm library, containing many important common graph algorithms. Such an algorithm
library is developed in this work.

1.3 Goals

The goal of this mid-study thesis is the development of a generic, extensible algorithm library
for JGraLab, which will be called Algolibin the following. First, the problems that are initially
covered by Algolib have to be specified. Here, the algorithms solving those problems are also
introduced conceptually. Afterwards, the mathematical structures, that arise from the problem
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definitions, have to be mapped to Java data structures for being used by algorithm implemen-
tations. Then, concepts for making the algorithm implementations generic and extensible have
to be introduced. With these concepts, the algorithms are implemented. Finally the implemen-
tation rules for algorithms have to be collected in order to add further algorithms to Algolib in
the future.

Algolib is required to be generic, extensible, and fast. Generic means, that Algolib’s algorithm
implementations have to be adjustable to arbitrary domains. Extensible means, that the algo-
rithms can be used for solving problems, they are normally not capable of. Some algorithms,
that are currently included in Algolib, demonstrate how this is done. Fast means, that these
generic algorithms have to perform similarly well in comparison to domain specific imple-
mentations of the same algorithms. Naturally a generic approach is expected to be slower
than a specialized one. A concrete goal, for a generic algorithm implementation that has been
adjusted to a specific domain, is consuming at most twice the time a corresponding domain
specific algorithm implementation does.

1.4 Overview

In chapter 2, some mathematical definitions are made about graphs and relations. It contains
definitions about relations for two reasons. Firstly, relations are important for understanding
the mathematical nature of graphs. And secondly, the solution of some problems solved by
Algolib have relations as result.

Chapter 3 introduces some basic concepts and introduces some problems and their algorith-
mic solutions. The drafts of the algorithms in this chapter serve as base for Algolib’s generic
implementation.

Chapter 4 shows how the mathematical structures, that arose from the problem definitions in
chapter 3, are mapped to Java data structures. Those structures are used in Algolib’s implemen-
tation.

Chapter 5 shows how graph algorithms are implemented in Algolib while introducing the con-
cepts for its generic nature and extensibility. It also gives examples on how graph algorithms
can be implemented by extending other graph algorithms.

Chapter 6 shows how graph algorithms can be adjusted to a specific domain. The chosen
domain also allows a comparison between a generic algorithm implementation from Algolib
and a specialized algorithm implementation that already exists. This comparison is also shown
in this chapter. Finally the overhead, that arises from extending graph algorithms, is measured,
for judging the speed efficiency of Algolib and its mechanism for extending algorithms.

Chapter 7 summarizes rules for extending Algolib with new algorithms. Some of them arise
from chapter 5, others are less obvious. Every developer, planning on adding new algorithms to
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Algolib, is required to obey these rules for creating algorithms that are compatible with Algolib’s
concepts.

Finally chapter 8 compares the resulting implementation of Algolib with the goals from sec-
tion 1.3. It evaluates the results and gives a proposal on Algolib’s future.
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2 Definitions

In this chapter all relevant graph related definitions and some theorems are given. The proofs
for the theorems are not included in this thesis. However, for some theorems there is a reference
to a proof.

Section 2.1 is an excursus to relations. It gives some definitions concerning relations. They are
necessary for some definitions concerning graphs. Sections 2.2, 2.3, and 2.4 contain definitions
concerning directed graphs, undirected graphs, and TGraphs respectively.

2.1 Definitions on relations

This section is an excursus to relations and contains several definitions concerning them. These
definitions are important for the understanding of some graph related definitions.�

�

�

�
Definition: Relation
Given two sets X and Y,
R ⊆ X × Y is called a relation between X and Y.

Relations are sets of tuples. For relations the infix notation can be used. Given a relation R,
then (x, y) ∈ R⇔ xRy.

Given a relation R ⊆ X × Y, two sets can be derived:

• xR := {y ∈ Y | (x, y) ∈ R}, xR ⊆ Y
• Ry := {x ∈ X | (x, y) ∈ R}, Ry ⊆ X'

&

$

%

Definition: Function
Given two sets X and Y,
a (partial) function f : X 7→ Y is a right-unique relation between X and Y, meaning
∀(x1, y1), (x2, y2) ∈ f : x1 = x2 ⇒ y1 = y2.
The set dom(f ) := {x ∈ X | ∃ y ∈ Y : (x, y) ∈ f} is called the domain of f . A function can have the
following properties:
• finite, iff dom(f ) is finite; Notation: f : X 7 7→ Y and
• total, iff dom(f ) = X; Notation f : X→ Y.
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�

�

�

�
Definition: Relation on one set
Given a set X,

a relation R ⊆ X × X is called relation on X.

Relations on one set allow several operations on them.'

&

$

%

Definition: Operations on relations
Given a set X and a relation R on X,

the relation Rt := {(y, x) | (x, y) ∈ R} is called the inverse relation.
Given a set X, a relation R on X and a relation S on X,
the relation RS := {(x, z) | ∃ y ∈ X : (x, y) ∈ R ∧ (y, z) ∈ S} is called the product of R and S.
Given a set X and a relation R on X. The n-th power of R is inductively defined by:
• R0 := IdX where Idx = {(x, x) | x ∈ X}.
• Ri+1 = RiR

With these operations, several properties of relations can be defined.'

&

$

%

Definition: Properties of relations
Given a set X and a relation R on X,

R is called:
1. reflexive, iff R0 ⊆ R
2. irreflexive, iff R0 ∩ R = ∅
3. symmetric, iff R = Rt

4. asymmetric, iff R ∩ Rt = ∅
5. antisymmetric, iff R ∩ Rt ⊆ R0

6. transitive, iff R2 ⊆ R

Based on these properties, several new relations can be derived from a given relation. These
derived relations are called closures.'

&

$

%

Definition: Closures
Given a set X and a relation R on X,

the following relations can be derived from R:
• R̂ := R ∪ R0 is called the reflexive closure,
• R := R ∪ Rt is called the symmetric closure,

• R+ :=
∞⋃

k=1

Rk is called the transitive closure and

• R∗ := R0 ∪ R+ =
∞⋃

k=0

Rk is called the reflexive-transitive closure

of the relation R.

Relations can be classified by their properties. One very important class of relations is the class
of equivalence relations.
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�

�

�

�
Definition: Equivalence relation
Given a relation ≡,
≡ is called equivalence relation, iff it is reflexive, symmetric, and transitive.

If an equivalence relation R is a relation on a set X, this relation can be used to create a partition
of X.#

"

 

!

Definition: Partition
Given a set X,
the set X ⊆ P(X) \ {∅} is called partition, iff ∀M,N ∈ X : M ∩N = ∅ ∧

⋃
M∈X

M = X.

Theorem:
Given an equivalence relation ≡ on a set X,
≡ creates a partition X with X = {{y ∈ X | y ≡ x} | x ∈ X}.
The notation of such a partition is X/≡.
The elements of X/≡ are also called equivalence classes.

A partition can be described by a representative function defined below.'

&

$

%

Definition: Representative function
Given a set X and a partition X .
An equivalence class Xi ∈ X can be identified by an arbitrarily chosen xi ∈ Xi. xi is called the
representative of the equivalence class Xi. A function rep : X → X that assigns to every element
x ∈ X the representative xi of the equivalence class Xi with x ∈ Xi, is called representative
function.
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2.2 Definitions on directed graphs

After giving several definitions about relations, this section gives important definitions about
directed graphs. The first definition is the graph itself.

'

&

$

%

Definition: Directed graph
A directed graph G = (V,E, ϕ) consists of

1. a finite set V of vertices with V 6= ∅,
2. a finite set E of edges with V ∩ E = ∅,
3. an incidence mapping ϕ : E→ V × V.

Given a directed graph G = (V,E, ϕ) and an edge e ∈ E with ϕ(e) = (v,w), v is called the start
vertex and w is called the end vertex of e.
It is possible to define these vertices by functions:
• α : E→ V gives the start vertex of a given edge (α(e) = v).
• ω : E→ V gives the end vertex of a given edge (ω(e) = w).

If α(e) = ω(e), e is called a loop.
Given a directed graph G = (V,E, ϕ) and two vertices v ∈ V, w ∈ V,
The relation→⊆ (V × V) with v→ w⇔ ∃ e ∈ E : ϕ(e) = (v,w) is called successor relation.
Given a directed graph G = (V,E, ϕ) , for a vertex v ∈ V
• Γ+(v) = {w ∈ V | v→ w} is called the set of direct successors of v,
• Γ−(v) = {w ∈ V | w→ v} is called the set of direct predecessors of v,
• Λ+(v) = {e ∈ E | α(e) = v} is called the set of outgoing edges of v,
• Λ−(v) = {e ∈ E | ω(e) = v} is called the set of incoming edges of v,
• δ+(v) = |Λ+(v)| is called the out-degree of v,
• δ−(v) = |Λ−(v)| is called the in-degree of v, and
• δ(v) = δ+(v) + δ−(v) is called the degree of v.

The following theorem correlates the edge number to the degree functions.

Theorem:
Given a directed graph G = (V,E, ϕ) ,
|E| =

∑
v∈V

δ+(v) =
∑

v∈V
δ−(v)

The next definition uses the terminology that was just introduced for defining directed paths
and terminology concerning directed paths.
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Definition: Directed path
Given a directed graph G = (V,E, ϕ) ,
an alternating sequence C =< v0, e1, v1, e2, v2, . . . , ek, vk >, k ≥ 0 is called directed path from v0
to vk, iff ∀ i, 1 ≤ i ≤ k : α(ei) = vi−1 ∧ ω(ei) = vi. The set of all paths in G is called PAT HG.
|C| := k is the length of C.
α(C) := v0 is the start vertex of C.
ω(C) := vk is the end vertex of C.
V(C) := {v0, . . . , vk} is the vertex set of C.
E(C) := {e1, . . . , ek} is the edge set of C.
A directed path C with |C| = 0, is called empty path.
A directed path C with |V(C)| = |C| + 1 is called a directed simple path (there are no multiple
occurrences of vertices in C).
A directed path C is called closed iff α(C) = ω(C). A closed directed path is called cycle iff
|V(C)| = |C|. G is called acyclic, iff G contains no cycles.

Theorem:
Based on the successor relation defined above, several other relevant relations can be derived:
→∗,→k,→+.
These relations have the following properties:
• →∗: (v,w) ∈→∗⇔ ∃ a directed path C : α(C) = v ∧ ω(C) = w,
• →k: (v,w) ∈→k⇔ ∃ a directed path C : α(C) = v ∧ ω(C) = w ∧ |(|C) = k, and
• →+: (v,w) ∈→+⇔ ∃ a directed path C : α(C) = v ∧ ω(C) = w ∧ |(|C) ≥ 1.

�

�

�

�
Definition: Relational graph
Given a directed graph G = (V,E, ϕ) ,
G is called relational, iff ϕ is injective, meaning, there are no multiple edges.

For a relational graph G = (V,E, ϕ) , this definition yields |E| ≤ (|V|)2.

The following is the definition of a directed subgraph.

�

�

�

�
Definition: Subgraph
Given a directed graph G = (V,E, ϕ) ,
a graph Gs = (Vs,Es, ϕ|Es

) is called a subgraph of G, iff Vs ⊆ V ∧ Es ⊆ E.

The following is a definition of a special graph, which is very important in various fields, in-
cluding graph algorithms.
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Definition: Directed rooted tree
A directed rooted tree T = (V,E, ϕ) is a directed graph with the following properties:
• ∃!r ∈ V with δ−(r) = 0. The vertex r is called the root of the tree.
• ∀ v ∈ V, v 6= r : δ−(v) = 1. Every non-root vertex in the tree has exactly one predecessor.
• T is acyclic.

A vertex v ∈ V with δ+(v) = 0 is called a leaf.
A vertex w ∈ V with δ+(w) > 0 is called an inner node.
Given an edge e ∈ E with ϕ(e) = (v,w). v is called the parent node of w and w is called the child
node of v.

Theorem:
Given a directed rooted tree T = (V,E, ϕ) ,
∀ v ∈ V ∃! a directed path C with α(C) = r ∧ ω(C) = v, meaning there is exactly one path for
each vertex v leading from the root to v.
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2.3 Definitions on undirected graphs

The definitions on undirected graphs, covered in this section, are similar to the corresponding
definitions of directed graphs.
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Definition: Undirected graph
An undirected graph G = (V,E, χ) consists of

1. a finite set V of vertices with V 6= ∅,
2. a finite set E of edges with V ∩ E = ∅,
3. an incidence mapping χ : E→ {W ⊆ V | 1 ≤ |W| ≤ 2}.

Given an undirected graph G = (V,E, χ) and two vertices v ∈ V, w ∈ V, the relation p−p⊆
(V × V) is called adjacency relation with v p−p w ⇔ ∃ e ∈ E : χ(e) = {v,w}. p−p is a symmetric
relation.
Given an undirected graph G = (V,E, χ) , for v ∈ V
• Γ(v) = {w ∈ V | v p−p w} is called the set of adjacent vertices of v,
• Λ(v) = {e ∈ E | v ∈ χ(e)} is called the set of incident edges of v, and
• δ(v) = |Λ(v)|+ |{e ∈ E | χ(e) = {v}}| is called the degree of v.

Note that loops are counted twice by δ(v). This is done so the following theorem is compatible
with the corresponding theorem on directed graphs.

Theorem:
Given an undirected graph G = (V,E, χ) ,∑
v∈V

δ(v) = 2 ∗ |E|

Undirected paths can be defined, in analogy to the definition of directed paths.
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Definition: Undirected path
Given an undirected graph G = (V,E, χ) ,

an alternating sequence C =< v0, e1, v1, e2, v2, . . . , ek, vk >, k ≥ 0 is called undirected path from
v0 to vk, iff ∀ i, 1 ≤ i ≤ k : χ(ei) = {vi−1, vi}. The set of all paths in G is called PAT HG.
|C| := k is the length of C.
α(C) := v0 is the start vertex of C.
ω(C) := vk is the end vertex of C.
V(C) = {v0, . . . , vk} is the vertex set of C.
E(C) = {e1, . . . , ek} is the edge set of C.
An undirected path C with |C| = 0, is called empty path.
An undirected path C with |V(C)| = |C|+ 1 is called a directed simple path meaning, there are no
multiple occurrences of vertices in C.
A directed path C is called closed iff α(C) = ω(C). A closed directed path is called cycle iff
|V(C)| = |C| ∧ |E(C)| = |(|C).
Given an undirected graph G = (V,E, χ) ,
G is called cycle-free, iff G contains no cycles.

Theorem:
Based on the adjacency relation defined above, several other relevant relations can be derived:
∗
p−p, p−pk, p−p+. The following list describes these derived relations:
•
∗
p−p: (v,w) ∈

∗
p−p⇔ ∃ an undirected path C : (α(C) = v∧ ω(C) = w)∨ (α(C) = w∧ ω(C) = v),

• p−pk: (v,w) ∈p−pk⇔ ∃ a directed path C : α(C) = v ∧ ω(C) = w ∧ |(|C) = k, and
• p−p+: (v,w) ∈p−p+⇔ ∃ a directed path C : α(C) = v ∧ ω(C) = w ∧ |(|C) ≥ 1.

Undirected graphs are generalizations of directed graphs.�

�

�

�
Definition: Underlying graph
Given a directed graph G = (V,E, ϕ) ,

The graph U(G) = (V,E, χ) is called the underlying graph of G, iff ∀ e ∈ E : χ(e) = {α(e), ω(e)}.

The definitions for Γ, Λ, δ and p−p of U(G) are compatible with the corresponding definitions on
G.

Theorem:
Given a vertex v ∈ V:
• Γ(v) = Γ−(v) ∪ Γ+(v),
• Λ(v) = Λ−(v) ∪ Λ+(v),
• δ(v) = δ−(v) ∪ δ+(v), and
• p−p=→ ∪ ←

A directed path in G is also an undirected path in U(G).
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So every directed graph can also be interpreted as an undirected graph. This implies, that
all concepts, definitions, and algorithms on undirected graphs can also be applied to directed
graphs.

As a convention, when just speaking of a graph G = (V,E, ϕ) , both a directed or an undirected
graph is possible. This is important for several problem definitions in chapter 3, which are
defined for both, directed and undirected graphs.
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2.4 Definitions on TGraphs

The following definition on TGraphs is taken from [EB10].

TGraphs are typed, attributed, and ordered directed graphs, i.e. all graph elements are typed
and may carry type-dependent attribute values. Furthermore, there are orderings of the vertex
and the edge sets of the graph and of the incidences at all vertices. Lastly, all edges are assumed
to be directed.'
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Definition: TGraph
Let
• Vertex be the universe of vertices,
• Edge be the universe of edges,
• TypeId be the universe of type identifiers,
• AttrId be the universe of attribute identifiers, and
• Value be the universe of attribute values.

Assuming two finite sets,
• a vertex set V ⊆ Vertex and
• an edge set E ⊆ Edge,

be given. G = (Vseq,Eseq,Λseq, type, value) is a TGraph iff
• Vseq ∈ iseq V is a permutation of V,
• Eseq ∈ iseq E is a permutation of E,
• Λseq : V → iseq(E× {in, out}) is an incidence function where

∀ e ∈ E : ∃!v,w ∈ V : (e, out) ∈ ran Λseq(v) ∧ (e, in) ∈ ran Λseq(w),
• type : V ∪ E→ TypeId is a type function, and
• value : V ∪ E→ (AttrId 7 7→ Value) is an attribute function where

∀ x, y ∈ V ∪ E : type(x) = type(y)⇒ dom(value(x)) = dom(value(y)).

Thus, a TGraph consists of an ordered vertex set V and an ordered edge set E. They are con-
nected by the incidence function Λseq which assigns the sequence of its incoming and outgoing
edges to each vertex. For a given edge e, α(e) and ω(e) denote its start vertex and target vertex,
respectively. Furthermore, all elements (i.e. vertices and edges) have a type and carry a type
dependent set of attribute-value pairs.

TGraphs can also be seen as regular directed graphs. The vertex set and the edge set can remain.
The incidence function ϕ can be derived from Λseq as follows:
∀ e ∈ E,u, v ∈ V : ϕ(e) = (u, v)⇔ ((e, out) ∈ Λseq(v) ∧ (e, in) ∈ Λseq(w))

This also allows interpreting TGraphs as undirected graphs.

Although Algolib works only on TGraphs, the problem definitions in the next chapter are done
for regular graphs.
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3 Problems, algorithms, and interfaces

This chapter describes the graph problems that are covered in this mid-study thesis. For each
definition there is at least one rough idea how the problem can be solved meaning which algo-
rithm can be used for solving it. Some problems can be solved by multiple algorithms.

Each problem definition is placed inside a box with normal corners . A problem definition
consists of a name, the input, the output, and the type of output. The problem definitions are
in mathematical notation. Solutions are placed inside a

�� ��box with round corners . A solution
consists of a description which problem is solved and which algorithm can be used for the
solution. The description only refers to one algorithm. In addition to this, the time- and space
complexity is given in O-notation, where n is the number of vertices and m is the number of
edges. The space complexity only considers the additional memory required by the algorithm
and not the memory that is already used by the graph. In JGraLab, the space complexity for
storing a graph is O(max (m,n)). When speaking of the space complexity of an algorithm, the
space complexity for storing the graph is omitted.

For each algorithm there is a draft in a pseudocode with a syntax similar to Java. The core syn-
tax is identical to Java. Some more complex operations may be simplified by using comments.
Unlike in Java, generic type variables can be instantiated with primitive types. This is done
for simplifying the interfaces that are used in the algorithms. Some variables used in the algo-
rithms are of interface types. All variables that are not explicitly instantiated are assumed to
be instantiated. For explaining the algorithms it is not significant, where the data comes from.
The implementation of the algorithms is subject of chapter 5.

In section 3.1, the interfaces used by the algorithms are introduced. This includes the inter-
faces used for the graph and the interfaces used for in- and output parameters. In section 3.3,
the problems and algorithms are introduced.The problems are divided into so-called problem
groups and the subsections reflect this.

3.1 The interfaces for graph element access

This section introduces three interfaces allowing the interaction with a graph and its elements.
The interfaces are Graph, Vertex, and Edge. The method signatures are identical to those
in JGraLab’s corresponding interfaces. Only a fraction of JGraLab’s methods are needed for
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drafting graph algorithms. So the following interfaces only provide a subset of methods that
can be found in JGraLab.

In JGraLab all graphs are stored as directed graphs. So this problem and algorithm overview
will also assume this.

3.1.1 The interface Graph

Listing 3.1 shows the interface Graph.

Listing 3.1: The interface Graph
1 public interface Graph{
2 public Iterable<Vertex> vertices();
3 public Iterable<Edge> edges();
4 public int getVCount();
5 public int getECount();
6 }

This interface contains methods for retrieving graph elements and gaining information about
the graph’s size. Any implementation of Graph is assumed to realize a directed graph. How-
ever, directed graphs can also be treated as undirected graphs. The differences only concern
edges and the details are described in section 3.1.2.

The method vertices() returns an Iterable for traversing all vertices of the graph. The
method edges() does the same for edges. The method getVCount() returns the number of
vertices in the graph. The method getECount() returns the number of edges in the graph.

3.1.2 The interface Edge

In JGraLab, an Edge can either be normal or reversed. Both, normal and reversed edges, imple-
ment the interface Edge. In a graph, every edge has a normal and a reversed representation.
Incoming incident edges of a Vertex are reversed edges, outgoing incident edges of a Vertex
are normal edges. The alpha- and omega vertices of a normal edge are identical to the alpha-
and omega vertices of a reversed edge respectively.

In addition to the alpha- and omega vertices, JGraLab also provides the so-called this and that
vertices. If an Edge is a normal edge, this is the alpha vertex and that is the omega vertex. If an
Edge is a reversed edge, this is the omega vertex and that is the alpha vertex. This mechanism
is useful when working on an undirected graphs.

Listing 3.2 shows the interface Edge. This interface contains methods for retrieving incident
vertices.
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Listing 3.2: The interface Edge
1 public interface Edge{
2 public Vertex getAlpha();
3 public Vertex getOmega();
4 public Vertex getThis();
5 public Vertex getThat();
6 public boolean isNormal();
7 }

The method getAlpha() returns the start vertex of this Edge. The method getOmega()

returns the end vertex of this Edge. The method getThis() returns the start vertex of this
Edge if treated as an undirected edge. The method getThat() returns the end vertex of this
Edge if treaded as an undirected edge. The method isNormal() returns true, if this Edge is
a normal edge, false otherwise.

3.1.3 The interface Vertex

Listing 3.3 shows the interface Vertex. This interface contains methods for retrieving and

Listing 3.3: The interface Vertex
1 public interface Vertex{
2 public Iterable<Edge> incidences(EdgeDirection dir);
3 public int getDegree(EdgeDirection dir);
4 }

counting incident edges. The method incidences(...) returns an Iterable for traversing
incident edges. The method getDegree(...) returns the number of incident edges.

The results can be filtered by the desired edge direction which can be specified by the enum
EdgeDirection. Its literals are IN, OUT, and INOUT. The edge direction IN refers to in-
coming edges and can be used for following and counting incident edges in reversed direc-
tion. The edge direction OUT refers to outgoing edges and can be used for following and
counting incident edges in normal direction. The edge direction INOUT refers to all incident
edges and can be used for following and counting incident edges without paying attention to
their direction. The pseudocode will omit the prefix EdgeDirection. for these literals (e.g.
v.incidences(OUT)).
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3.2 Other interfaces and concepts used by graph algorithms

This section introduces some interfaces and concepts that are used in most graph algorithms
described in this chapter. It also shows how they are noted in the pseudocode used to draft
these algorithms.

3.2.1 The concept of work lists

Many algorithms require so-called work lists. A work list is data structure that contains elements
that are about to be processed. Such data structures have to provide at least operations to

• add a new element to the work list,
• retrieve and remove the next element from the work list and
• detect if the work list is empty.

In the pseudocode, the usage of and all operations on explicit work lists are noted using angle
brackets (e.g.: « add v to the queue »).

A work list does not necessarily be a class of its own. It can also be simulated by data structures
that are not explicitly designed to be a work list (e.g. an array) or be implicitly present (e.g. the
call stack). If this is the case, it is mentioned in the algorithm description and can also be
commented in the pseudocode.

The differences between different kinds of work lists primarily concern the order elements are
removed and the complexity of the operations. The latter has an influence on the complexity
of the algorithm using the work list. By default a time complexity of O(1) is assumed for all
operations. Some algorithms are defined by the kind of work list that is used. If an algorithm
uses a work list, the corresponding description also addresses these issues.

3.2.2 The concept of working points

All algorithms that are introduced in this chapter provide so-called working points. These
working points are positions in the algorithm, where additional operations can be added in the
context of graph elements and the current algorithm state.

A working point has a name and affects one graph element. In the pseudocode the working
points are described using comments (e.g. /* working point "visitVertex(v)" */).

Working points can be used for extending an algorithm with new functionality and for solving
other problems. For every working point in a graph algorithm, every graph element is at most
processed once.
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3.2.3 Input parameters, runtime variables, and results

Algorithms are used to solve problems. The problems that are specified in this chapter have
input parameters and they have at least one result. An algorithm that solves a problem has the
same input parameters as the problem that is solved. In the pseudocode, the input parameters
are the parameters of the method that represents the algorithm.

An algorithm can solve multiple problems. Every problem has its own specified result set. So
an algorithm has at least as many results as specified by the problems it solves. In addition to
this, many algorithms can also compute results that are not specified by any problem that is
solved. These results are called additional results. In the pseudocode all additional results are
computed as well. All results are defined as global variables.

Most of the algorithms require additional variables for their computation. Such variables are
called runtime variables. In the pseudocode the runtime variables are also declared as global
variables.

3.2.4 The interface Function

Some results and input parameters can be interpreted as partial functions. For this purpose,
an interface is defined, that represents such functions. The interface Function from listing 3.4
is used for this. An element of the functions’ domain is called parameter. An element of the

Listing 3.4: The interface Function
1 public interface Function<DOMAIN,RANGE>{
2 public RANGE get(DOMAIN parameter);
3 public boolean isDefined(DOMAIN parameter);
4 public void set(DOMAIN parameter, RANGE value);
5 }

functions’ range is called value.

The method get(...) returns the value for the given parameter. The method
isDefined(...) checks if the function is defined for the given parameter. The method
set(...) adds the given value for the given parameter to the function.

All these operations are assumed to have a time complexity of O(1). An implementation is
assumed to have a space complexity of O(n), where n is the number of defined parameter
value pairs.

Binary functions

Some functions that occur in this chapter are binary functions. For such functions an analogous
interface can be specified. Listing 3.5 shows the interface BinaryFunction.
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Listing 3.5: The interface BinaryFunction
1 public interface BinaryFunction<DOMAIN1,DOMAIN2,RANGE>{
2 public RANGE get(DOMAIN1 parameter1, DOMAIN2 parameter2);
3 public boolean isDefined(DOMAIN1 parameter1, DOMAIN2 parameter2);
4 public void set(DOMAIN parameter1, DOMAIN2, parameter2, RANGE value);
5 }

The methods work in analogy to the interface Function and are assumed to have the same
time and space complexity. For binary functions whose domain is V×V and whose range is E,
the corresponding interface is BinaryFunction<Vertex,Vertex,Edge>.

3.3 Problems and algorithms

This section introduces all problems and algorithms that are covered by this mid-study thesis
and that are implemented in Algolib. Most problems are defined for directed and undirected
graphs. If this is the case, the algorithm drafts only describe the solution for directed graphs.
An additional description will contain the information how to transform the draft for working
on undirected graphs.

The most basic problems on graphs are traversal problems. So the first subsection is about
these traversal problems and how to solve them.

3.3.1 Problem group: Traversal

�

�

�

�
Definition: Traversal
Given a graph G = (V,E, ϕ) ,

a traversal of G is an activity that visits each vertex v ∈ V and each edge e ∈ E exactly once.

3.3.1.1 Traversal from r

This section describes a traversal from a given vertex r ∈ V. This traversal only considers the
reachable subgraph from r.'

&

$

%

Definition: Reachable subgraph
Given a graph G = (V,E, ϕ) and a vertex r ∈ V,

let Vr := {v ∈ V | r→∗ v} and Er := {e ∈ E | α(e) ∈ Vr ∧ ω(e) ∈ Vr}.
The subgraph Gr := (Vr,Er, ϕ|Er

) is called the reachable subgraph from r.
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Problem: Traversal from r
Input: a graph G = (V,E, ϕ) and a vertex r ∈ V
Output: a traversal of the reachable subgraph Gr

Output type: a permutation of Vr and a permutation of Er

This problem can be solved using a search algorithm described below.

A search algorithm starts at a given vertex r and traverses the reachable subgraph from r. Dur-
ing a search, a reachability tree is created.'
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Definition: Reachability tree
Given a graph G = (V,E, ϕ) , a vertex r ∈ V and the reachable subgraph Gr = (Vr,Er, ϕ|Er

),
a reachability tree of r is a rooted tree Tr := (Vr,Et, ϕ|Et

) with r being the root of Tr and Et ⊆ Er.
The reachability tree, that is created during a search, is also called search tree.
The edges in this tree are called tree edges.
All other edges in the reachable subgraph are called fronds.
A path from the root of the search tree to a leaf is called search path.

A

B
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D

 t

f

t  f

Figure 3.1: Sample graph with tree edges and fronds

Figure 3.1 shows a small sample graph with tree edges and fronds. The tree’s root is vertex A.

The tree edges are indicated by t→. The fronds are indicated by
f

99K.

3.3.1.2 Search algorithms

A search algorithm starts at a given vertex r and traverses its incident edges. It uses a work list
for storing the vertices whose incident edges have not been traversed yet. Whenever an inci-
dent edge is encountered, the vertex on the other end (that for directed graphs this corresponds
to omega) is added to the work list.

It is also possible to implement a search algorithm that uses a work list for storing edges instead.
However, in the following a work list for vertices is used.
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3.3.1.3 The results of a search algorithm

Besides the specified results from traversal from r, a search can compute several additional re-
sults. All of them can be interpreted as functions and are defined in the following.'
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Definition: Functions that can be computed during a directed search
• The function vertexOrder : [1..n] 7 7→ V defines the order, in which the vertices are traversed.

vertexOrder(i) := the ith vertex that has been traversed.
vertexOrder can also be interpreted as a sequence of vertices.
• The function eorder : [1..m] 7 7→ E defines the order, in which the edges are traversed.

edgeOrder(i) := the ith edge that has been traversed.
edgeOrder can also be interpreted as a sequence of edges.
• The function number : V 7 7→ [1..n] defines the position of a vertex in the vertexOrder se-

quence.
• The function enumber : E 7 7→ [1..m] defines the position of an edge in the edgeOrder se-

quence.
• The function level : V 7 7→ [1..n] defines the level of a vertex v in the search tree T.

level(v) :=
−→
dT(r, v), where r is the root of T.

• The function parent : V\ 7 7→ E defines the structure of the search tree T with root r. For
every non-root vertex, the incoming edge in T from the parent node is returned.

3.3.1.4 The generic search algorithm

A search algorithm needs to know which vertices have already been traversed (or visited).
For this purpose the function number can be used. If the number value of a vertex has been
computed (is defined), it has been traversed.

Listing 3.6 shows the generic search algorithm with computation of all functions mentioned
above. The algorithm is called generic, because the actual work list is not specified (line 12).
The runtime variables num and eNum (lines 10 and 11) are required for the computation of
vertexOrder, number, enumber, and edgeOrder. In line 18 a working point is specified
that visits the root of the search tree. The work list is initialized with the root (line 20).

The main loop (lines 21 - 40) runs until the work list is empty. The first step is taking the next
vertex from the work list (line 22). Its outgoing edges are traversed in the inner loop (lines 23 -
39).

In line 26 a working point is specified that visits the current incident edge. In line 27 the that
vertex of the current edge is taken into consideration. It is visited if it has not been visited yet
(lines 28 - 35). Line 33 (and line 19) define a working point that visits a vertex before it is added
to the work list. Line 35 adds the current vertex to the work list right before the inner loop’s
current iteration ends.
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Listing 3.6: Generic search algorithm from r
1 // results
2 Function<int,Vertex> vertexOrder;
3 Function<int,Edge> edgeOrder;
4 Function<Vertex,int> number;
5 Function<Edge,int> enumber;
6 Function<Vertex,int> level;
7 Function<Vertex,Edge> parent;
8

9 // runtime variables
10 int num = 0;
11 int eNum = 0;
12 /* << a work list for storing vertices >> */
13

14 public void search(Graph g, Vertex r) {
15 number.set(r,++num);
16 vertexOrder.set(num,r);
17 level.set(r,0);
18 // working point: visitRoot(r)
19 // working point: visitVertex(r)
20 << add r to work list >>
21 while(<< work list is not empty >>){
22 << get next vertex v from work list >>
23 for(Edge e: v.incidences(OUT)){
24 enumber.set(e,++eNum);
25 edgeOrder.set(eNum,e);
26 // working point: visitEdge(e)
27 Vertex w = e.getThat();
28 if(!number.isDefined(w)){
29 number.set(w,++num);
30 vertexOrder.set(num,w);
31 level.set(w,(level.get(v) + 1));
32 parent.set(w,e);
33 // working point: visitVertex(w)
34 // working point: visitTreeEdge(e)
35 << add w to work list >>
36 } else {
37 // working point: visitFrond(e)
38 }
39 }
40 }
41 }

The generic search also defines working points for distinguishing between tree edges and
fronds. If the next vertex (w) has not been visited yet (line 28), the current edge (e) it is a
tree edge (line 34). Otherwise it is a frond (line 37).

37



Algolib, a generic algorithm library for JGraLab

#

"

 

!

Solution: Traversal from r
Perform a generic directed search algorithm from r as shown in listing 3.6.
Space complexity: O(max(m,n))

Time complexity: O(max(m,n))

Undirected graphs

For undirected graphs, the algorithm would have to operate on all incident edges instead of
only the outgoing ones. This can be achieved in line 23 by replacing the parameter OUT by
INOUT. However, in doing this, every reachable edge is considered twice. For avoiding visiting
edges twice, the algorithm has to keep track of the edges that have already been visited.

3.3.1.5 Specific search algorithms

In order to create an actual search algorithm, the work list has to be specified. The kind of work
list directly influences the order the vertices and edges are traversed.

Using a queue creates a breadth first search (BFS). In this search, all successor vertices are put
into a queue. This ensures a horizontal traversal of the graph, meaning each level of the search
tree is traversed completely before the next level is considered.

Using a stack creates a depth first search (DFS). In this search, all successor vertices are pushed
on a stack. This ensures a vertical traversal of the graph.

In the following, both of them are described in detail.

3.3.1.6 Breadth first search

A breadth first search (BFS) can be realized by using a queue that serves as work list. Here the
function vertexOrder is used as queue. This is possible, because the function value are computed
in successor order, controlled by the runtime variable num. The removal of elements is done
using a second runtime variable firstV that points to the next vertex. If the next vertex is
requested, this variable is incremented and the element is virtually removed from the queue.

Listing 3.7 shows the BFS, which is simply a modification of the generic search algorithm. The
only difference to the generic search from listing 3.6 is the usage of vertexOrder as a queue
buffer. In line 17 and 31, the current vertex is implicitly added to the queue. The counter
firstV is used to decide if the queue is empty (line 21). Whenever the queue contains more
elements, the counter num is greater than firstV. If they are equal, they refer to an undefined
function value, which means the queue is empty.

Figure 3.2 shows the same sample graph as Figure 3.1, except that the search tree is different.
The search tree, defined by the tree edges, is a possible search tree when performing a BFS
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Listing 3.7: breadth first search from r
1 // results
2 Function<int,Vertex> vertexOrder;
3 Function<int,Edge> edgeOrder;
4 Function<Vertex,int> number;
5 Function<Edge,int> enumber;
6 Function<Vertex,int> level;
7 Function<Vertex,Edge> parent;
8

9 // runtime variables
10 int num = 0;
11 int eNum = 0;
12 int firstV = 1;
13

14 public void search(Graph g, Vertex r) {
15 number.set(r,++num);
16 // implicit add to queue
17 vertexOrder.set(num,r);
18 level.set(r,0);
19 // working point: visitRoot(r)
20 // working point: visitVertex(r)
21 while(firstV < num){ // queue not empty
22 // implicit get from queue
23 Vertex v = vertexOrder.get(firstV++);
24 for(Edge e: v.incidences(OUT)){
25 enumber.set(e,++eNum);
26 edgeOrder.set(eNum,e);
27 // working point: visitEdge(e)
28 Vertex w = e.getThat();
29 if(!number.isDefined(w)){
30 number.set(w,++num);
31 // implicit add to queue
32 vertexOrder.set(num,w);
33 level.set(w,(level.get(v) + 1));
34 parent.set(w,e);
35 // working point: visitVertex(w)
36 // working point: visitTreeEdge(e)
37 } else {
38 // working point: visitFrond(e)
39 }
40 }
41 }
42 }

on this sample graph. It also shows the values of number, parent, and level for the search that
created this specific search tree as vertex attributes.
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Figure 3.2: Sample graph with tree edges created by a BFS and fronds

3.3.1.7 Depth first search

The depth first search (DFS) is capable of distinguishing between three different kinds of
fronds. The easiest way to implement it is using recursion. However, this implementation
does not contain an explicit work list as seen in BFS. The call stack serves as an implicit work
list.

The recursive DFS allows two working points for vertices and edges instead of one. The first
working point for either of them is before the recursive call and the second one is after the re-
cursive call. This also allows the definition of two additional functions that can be computed by
a recursive DFS. For defining these functions, the term completely traversed has to be introduced.'

&

$

%

Definition: Completely traversed during a DFS
During the execution of a DFS,
• a vertex is completely traversed, if it has been visited and all its relevant incident edges have

been completely traversed as well,
• a tree edge is completely traversed if its that vertex has been completely traversed, and
• a frond is completely traversed if it has been visited.'

&

$

%

Definition: Functions that can be computed during a recursive DFS
• The function rorder : [1..n] 7 7→ V defines the order in which the vertices are completely

traversed.
rorder(i) := the ith vertex that has been completely traversed.
rorder can also be interpreted as a sequence of vertices.
• The function rnumber : V 7 7→ [1..n] defines the position of a vertex in the rorder sequence.

As mentioned above, the recursive DFS allows a distinction between three different kinds of
fronds, forward arcs, backward arcs, and cross links.
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Figure 3.3: Sample graph with tree edges created by a DFS and different kinds of fronds

Figure 3.3 shows the same sample graph as figure 3.1 but distinguishes between the different

kinds of fronds. Tree edges are indicated by t→. Forward arcs are indicated by
f

99K. Backward

arcs are indicated by
b

99K. Cross links are indicated by
c

99K. The search tree, defined by the tree
edges, is a possible search tree if performing a DFS on this sample graph. The figure also shows
the values of number, rnumber, parent, and level for the search that created this specific search
tree as vertex attributes.

The functions number and rnumber can be used for defining the fronds. Table 3.1 considers a
frond v→ w and defines which kind of frond it is, using these functions.

number(v) < number(w) number(v) ≥ number(w)

rnumber(v) ≤ rnumber(w) × backward arc
rnumber(v) > rnumber(w) forward arc cross link

Table 3.1: Fronds overview

The entry × indicates that this case cannot occur. Assuming an edge e = v → w. If number(w)

has not been computed yet, e is a tree edge. If it has already been computed, it is a forward arc.
In both cases vertex w is completely traversed before vertex v, so rnumber(v) cannot be greater
than rnumber(w).

For every kind of frond, a different working point can be specified.

Listing 3.8 shows the directed recursive version of DFS with computation of all functions from
the directed generic search and the newly defined functions rorder and rnumber.

The actual search is started in line 18 and defined by the method dfs. The functions
vertexOrder, edgeOrder, number, enumber, level and parent are computed in anal-
ogy to the BFS. The DFS defines similar working points as the BFS. In addition to those, lines
35 and 49 define working points for visiting edges and vertices respectively when being com-
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Listing 3.8: Recursive depth first search algorithm from r
1 // results
2 Function<int,Vertex> vertexOrder;
3 Function<int,Edge> edgeOrder;
4 Function<Vertex,int> number;
5 Function<Edge,int> enumber;
6 Function<Vertex,int> level;
7 Function<Vertex,Edge> parent;
8 Function<int,Vertex> rorder;
9 Function<Vertex,int> rnumber;

10

11 // runtime variables
12 int num = 0;
13 int rnum = 0;
14

15 public void search(Graph g, Vertex r) {
16 level.set(r,0);
17 // working point: visitRoot(r)
18 dfs(r);
19 }
20

21 private void dfs(Vertex v){
22 number.set(v,++num);
23 vertexOrder.set(num,v);
24 // working point: visitVertex(v)
25 for(Edge e: v.incidences(OUT)){
26 enumber.set(e,++eNum);
27 edgeOrder.set(eNum,e);
28 // working point: visitEdge(e)
29 Vertex w = e.getThat();
30 if(!number.isDefined(w)){
31 level.set(w,(level.get(v) + 1));
32 parent.set(w,e);
33 // working point: visitTreeEdge(e)
34 dfs(w); // recursive call
35 // working point: leaveTreeEdge(e)
36 } else {
37 // working point: visitFrond(e)
38 if(!rnumber.isDefined(w)){
39 // working point: visitBackwardArc(e)
40 } else if(number.get(w) > number.get(v)){
41 // working point: visitForwardArc(e)
42 } else{
43 // working point: visitCrossLink(e)
44 }
45 }
46 }
47 rnumber.set(v,++rnum);
48 rorder.set(rnum,v);
49 // working point: leaveVertex(v)
50 }
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pletely traversed. Lines 38 - 44 distinguish between the different kinds of fronds using the
functions number and rnumber and define working points for each of them.

3.3.1.8 Complete traversal

The traversals described so far in this section only traverse the reachable subgraph from r. A
more generic traversal problem can be defined where the whole graph is traversed.

Problem: Directed complete traversal
Input: a graph G = (V,E, ϕ)

Output: a traversal of G.
Output type: a permutation of V and a permutation of E

A trivial solution for the complete traversal is the traversal without concerning the structure of
the graph. For this purpose, the methods vertices() and edges() from the interface Graph
are used.

In this approach no search tree is created and no distinction between fronds and tree edges can
be made. This approach can compute the functions vertexOrder, edgeOrder, and number. For
some problems this is a sufficient traversal. Listing 3.9 shows this approach.

Listing 3.9: Complete traversal ignoring the structure of the graph
1 // results
2 Function<int,Vertex> vertexOrder;
3 Function<int,Edge> edgeOrder;
4 Function<Vertex,int> number;
5 Function<Edge,int> enumber;
6

7 // runtime variables
8 int num = 0;
9 int eNum = 0;

10

11 public void completeSearch(Graph g){
12 for(Vertex v: g.vertices()){
13 number.set(v,++num);
14 vertexOrder.set(num,v);
15 // working point: visitVertex(v)
16 }
17 for(Edge e: g.edges()){
18 edgeOrder.set(e,eNum++);
19 enumber.set(eNum,e);
20 // working point: visitEdge(e)
21 }
22 }
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Solution: Complete traversal
Traverse all vertices and edges from the graph, without considering the structure of the

graph.
Space complexity: O(max(m,n))

Time complexity: O(max(m,n))

If the structure of the graph is important, the search algorithms described above, can be ex-
tended to a complete search algorithm. The actual search algorithm is called multiple times but
the runtime variables remain. This is realized using an outer loop. Listing 3.10 shows this
extension.

Listing 3.10: Extension for the complete search algorithm
1 public void completeSearch(Graph g){
2 for(Vertex v:g.vertices()){
3 if(!number.isDefined(v)){
4 search(g, v);
5 }
6 }
7 }

This code above can be added to any search algorithm shown in this section. The loop ensures
that every vertex is considered. If number has already been set for a given vertex, it is ignored.
If not, a new search is started from this vertex.#

"

 

!

Solution: Complete traversal
Extend any search algorithm from r by calling it from within a loop iterating over V.
Space complexity: O(max(m,n))

Time complexity: O(max(m,n))

3.3.2 Problem group: Acyclicity

The problem group Acyclicity covers the problems acyclicity and topological order. The prob-
lems belong to the same group, because the existence of a topological order and acyclicity are
equivalent.

Problem: Acyclicity
Input: a directed graph G = (V,E, ϕ)

Output: the decision if G is acyclic
Output type: a boolean value
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Definition: Topological order
Given a directed acyclic graph G = (V,E, ϕ) ,
a bijective function tnumber : V → [1..n] with ∀ v → w ∈ E : tnumber(v) < tnumber(w) is called
topological numbering.
A topological order (torder) is the inverse function of tnumber.

With this, the following problem can be defined.

Problem: Topological order
Input: an acyclic directed graph G = (V,E, ϕ)

Output: a topological order of V
Output type: a permutation of V

Please note that these two problems are only defined for directed graphs.

3.3.2.1 Solution with the DFS algorithm

These two problems can be solved using a complete DFS. If a backward arc is detected, the
graph contains at least one cycle and the vertices do not have a topological order. If the com-
plete search terminates without a detected backward arc, a topological order can be derived
from the function rorder.

For achieving this, the DFS has to be extended with the code from listing 3.11. The working

Listing 3.11: Code for extending the DFS to detect cycles
1 // add to results
2 boolean acyclic = true;
3

4 // add to working point: visitBackwardArc(e)
5 acyclic = false;
6 // terminate
7

8 public void acyclic(Graph g){
9 completeSearch(g);

10 }

point visitBackwardArc has to be extended with the code from line 5. If a backward arc is
encountered, the graph is cyclic and the algorithm may terminate.

If the graph is acyclic, the function torder, that represents the topological order, can be defined
using the function rorder:

torder(i) := rorder(n− i + 1).
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Solution: Acyclicity and topological order
Perform a complete DFS and compute rorder.
Space complexity: O(max(m,n))

Time complexity: O(max(m,n))

3.3.2.2 The Kahn-Knuth algorithm

With the algorithm above, a topological order has to be computed offline. If online actions on
all vertices in a topological order are desired, the Kahn-Knuth algorithm with working points
can be used.

Listing 3.12 shows the Kahn-Knuth algorithm. It uses a temporary function inDegree : V → N
(line 9). This function returns the temporary in-degree for all vertices. Initially the temporary
in-degree is set to the real in-degree (line 13) using the method getDegree(...) from the
interface Vertex.

During the algorithm, after a vertex has been traversed, the vertex is logically removed from
the graph and the temporary in-degree of all successor vertices is reduced by 1 (line 25).

In analogy to the BFS, the Kahn-Knuth algorithm computes torder as a function and uses this
function as a queue. This queue holds vertices with a temporary in-degree of 0. It is initialized
in lines 14-17. The variable tnum refers to the last element that has been added to the queue
and works in analogy to the variable num from BFS. As in BFS, the variable firstV refers to
the head of the queue. In line 22 a working point is defined for visiting vertices in topological
order.

The inner loop reduces the temporary in-degree of all successor vertices by 1. In doing this, the
current vertex v is logically removed from the graph. All successor vertices with a temporary
in-degree of 0 are added to the queue (line 26-29).

The variable acyclic (line 2) is set to false after the execution of the main loop, if the graph
is cyclic (lines 32-33). tnum is also an implicit counter for the number of vertices that have been
added to torder. It can be used for checking if all vertices have been added to the queue.
Only if all vertices of the graph have been added to the queue, the graph is acyclic. If this is the
case, the function torder represents a topological order of V.#
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Solution: Acyclicity and topological order
Perform the Kahn-Knuth algorithm.
Space complexity: O(n)

Time complexity: O(max(m,n))

The disadvantage of Kahn-Knuth is the additional time that is needed for the computation of
the temporary in-degree. It is possible to avoid this without losing the ability to perform online
actions by performing a reversed DFS.
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Listing 3.12: The Kahn-Knuth algorithm
1 // results
2 boolean acyclic = true;
3 Function<int, Vertex> torder;
4 Function<Vertex,int> tnumber;
5

6 // runtime variables
7 int tnum = 0;
8 int firstV = 1;
9 Function<Vertex,int> inDegree;

10

11 public void kahnKnuth(Graph g){
12 for(Vertex v: g.vertices()){
13 inDegree.insert(v,v.getDegree(IN));
14 if(inDegree.get(v) == 0){
15 tnumber.set(v, ++tnum);
16 torder.set(tnum, v);
17 }
18 }
19

20 while(firstV < tnum) {
21 Vertex v = torder.get(firstV++);
22 // working point: visitVertexInTopologicalOrder(v)
23 for(Edge e: v.incidences(OUT)){
24 Vertex w = e.getThat();
25 inDegree.set(w, inDegree.get(w) - 1);
26 if(inDegree.get(w) == 0){
27 tnumber.set(w, ++tnum);
28 torder.set(tnum, w);
29 }
30 }
31 }
32 if(tnum < g.getVCount()){
33 acyclic = false;
34 }
35 }

3.3.2.3 Solution with the reversed DFS

Search algorithms can be modified easily for searching the graph in reversed orientation. In the
generic search algorithm from listing 3.6 on page 37 this can be done in line 22 by changing the
parameter of v.incidences(...) from OUT to IN. This makes the algorithm follow incom-
ing incident edges instead of outgoing ones. For BFS and DFS this can be done analogously.

For solving the problems topological order and acyclicity a reversed DFS can be used. The only
difference is the definition of the function torder. Here it is torder(i) := rorder(i).

The function rorder is computed right before the working point leaveVertex(v)

(see listing 3.8 on page 42 in lines 47-49). By adding the working point
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visitVertexInTopologicalOrder(v) to the working point leaveVertex(v), this
algorithm gains the ability to perform online actions in topological order.

3.3.3 Problem group: shortest paths

From a vertex v ∈ V every reachable vertex has a distance from v. This is defined in the follow-
ing definition.#

"
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Definition: Distance
Given a graph G = (V,E, ϕ) and two vertices v ∈ V, w ∈ V,

the distance
−→
d (v,w) is the length of a shortest path from v to w.

If w 6∈ v→∗, then
−→
d (v,w) :=∞.

Now a problem can be specified for the computation of the distance from a vertex r to all
vertices.

Problem: Distance from r
Input: a graph G = (V,E, ϕ) and a vertex r ∈ V
Output: the distance

−→
d (r, v) for every vertex v ∈ V

Output type: a function dr : V → N ∪ {∞}

3.3.3.1 Solution with the BFS

The distance from r can be computed by performing a directed BFS with the computation of
level. The level of a vertex in the search tree created by a BFS is also the distance from the root
r of this tree, i.e., for reachable vertices v ∈ Vr : dr(v) = level(v). For unreachable vertices
v ∈ V \ Vr : dr :=∞'

&
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Solution: Distance from r
Perform a BFS from r with the computation of level. The function dr is identical to the func-

tion level.
Space complexity: O(max(m,n))

Time complexity: O(max(m,n))

Problem: Shortest paths from r
Input: a graph G = (V,E, ϕ) and a vertex r ∈ V
Output: for every vertex v with r→∗ v a simple path from r to v with minimal length
Output type: a function spr : V → PAT HG

For all reachable vertices v from r a set of simple paths can be computed by performing a
directed BFS with the computation of parent. The actual paths from r to v can be computed
offline.
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Solution: Shortest paths from r
Perform a BFS from r with the computation of parent. With parent, the paths can be computed

offline.
Space complexity: O(max(m,n))

Time complexity: O(max(m,n))

3.3.4 Problem group: strong components'

&

$

%

Definition: Strongly connected
Given a directed graph G = (V,E, ϕ) ,
Two vertices v ∈ V and w ∈ V are strongly connected, iff
v→∗ w ∧ w→∗ v.
Notation: v ∗↔ w

∗↔ is an equivalence relation and the partition V/ ∗↔ is a partition of V into strong components.
The edges connecting different strong components of a graph G are called reduced edges.�

�

�

�
Definition: Reduced edge
Given a directed graph G = (V,E, ϕ) and an edge e ∈ E.
e is called reduced edge iff !(α(e) ∗↔ ω(e))

Problem: Strong components
Input: a directed graph G = (V,E, ϕ)

Output: the strong components of G, i.e. V/ ∗↔
Output type: a partition of V

Please note that this problem is only defined for directed graphs.

3.3.4.1 Solution with the DFS and lowlink

This problem can be solved with the DFS. In order to solve the problem with it, the function
lowlink for DFS trees is needed.�

�

�

�
Definition: Lowlink
lowlink : V 7 7→ [1..n] with lowlink(v) := min({number(v)} ∪ {number(w) | v→∗99K w ∧ v ∗↔ w}).
(The symbol 99K means frond.)

The lowlink value of a vertex is equal to the number value of a vertex of the same strong
component. If number(v) = lowlink(v), then v is the root of a strong component, also called
strong root. This function and the solution of this problem using DFS goes back to Tarjan [Tar72].
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For solving the problem strong components with the DFS, it has been extended at some of its
working points. Listing 3.13 shows how this is done.

Listing 3.13: Code for extending DFS for computing lowlink and strong components
1 // add to results
2 Function<Vertex,Vertex> rep;
3 Function<Vertex,int> lowlink;
4

5 // add to runtime variables
6 /* << a stack for vertices >> */
7

8 // add to working point: visitVertex(v)
9 << push v on the stack >>

10 lowlink.set(v,number.get(v));
11

12 // add to working point: leaveTreeEdge(e@(v->w))
13 lowlink.set(v,min(lowlink.get(v),lowlink.get(w)));
14 detectReducedEdge(e);
15

16 // add to working point: visitForwardArc(e)
17 detectReducedEdge(e);
18

19 // add to working point: visitBackwardArc(e@(v->w))
20 lowlink.set(v,min(lowlink.get(v),number.get(w)));
21

22 // add to working point: visitCrosslink(e@(v->w))
23 if(<< w is on the stack >>){
24 lowlink.set(v,min(lowlink.get(v),number.get(w)));
25 }
26 detectReducedEdge(e);
27

28 // add to working point: leaveVertex(v){
29 if(lowlink.get(v) == number.get(v)){
30 do {
31 << pop vertex x from the stack >>
32 rep.set(x,v);
33 } while(x != v);
34 // working point: visitRepresentativeVertex(v)
35 }
36

37 private void detectReducedEdge(e@(v->w)){
38 if (rep.isDefined(w)) {
39 // working point: visitReducedEdge(e)
40 }
41 }
42

43 public void strongComponents(Graph g){
44 completeSearch(g);
45 }
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For simplicity reasons, an edge e is written e@(v->w)1 for accessing the alpha and omega
vertex directly. The working points leaveTreeEdge (line 12), visitBackwardArc (line 15)
and visitCrossLink (line 18) realize the computation of the function lowlink.

The detection of strong components is done using the working points visitVertex (line 8)
and leaveVertex (line 28). The vertices that are visited are pushed on a stack (line 9). When
vertices are left, the strong roots are detected using the function lowlink (line 29). If a strong
root is encountered, vertices are popped from the stack until the current strong root is reached
(lines 30-33). All those vertices belong to the same strong component. The current strong
root is assigned to them as representative vertex (line 32). For strong roots, which are used as
representative vertices, a new working point is added in line 34.

The detection of reduced edges is also possible. This is done by the method
detectReducedEdge(...) (line 37). It defines a working point for reduced edges (line 39).
If the strong component of the omega vertex is already known, it cannot belong to the strong
component of the alpha vertex and the current edge is a reduced edge. If the strong component
of the omega vertex is unknown (not defined yet), it belongs to the same strong component
as the alpha vertex and the current edge is not a reduced edge. For tree edges this is only true
when they are left, so this method is called at the working point leaveTreeEdge(e) (line 14).
For forward and backward arcs this is true when they are encountered during the DFS, so this
method is called at their working points (lines 17 and 26). Backward arcs can never be reduced
edges, they only occur inside of strong components.'
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Solution: Strong components
Perform a directed complete depth first search with the computation of lowlink and an ad-

ditional vertex stack.
Space complexity: O(n)

Time complexity: O(max(m,n))

3.3.5 Problem group: reachability�

�

�

�
Definition: Reachable
Given a graph G = (V,E, ϕ) , and two vertices v,w ∈ V,
w is reachable from v, iff v→∗ w.

Problem: Reachable
Input: a graph G = (V,E, ϕ) and two vertices v,w ∈ V.
Output: the decision if w is reachable from v
Output type: a boolean value

1similar to Haskell
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3.3.5.1 Solution with a generic search algorithm

The above problem can be solved by any search algorithm. Listing 3.14 shows how a search
algorithm can be extended for solving this problem.

Listing 3.14: Code for extending a search algorithm for solving the problem reachable
1 // add to results
2 boolean reachable = false;
3

4 // add to runtime variables
5 Vertex target;
6

7 // add to working point: visitVertex(v)
8 if(v == target) {
9 reachable = true;

10 // terminate
11 }
12

13 public void reachable(Vertex r, Vertex t){
14 target = t,
15 search(r);
16 }

In line 8 it is checked if the target vertex has been reached. In this case the algorithm may
terminate (line 10). If the target vertex has not been reached, the result reachable remains
false (line 2).

3.3.5.2 The Warshall algorithm

It is also possible to compute the whole reachability relation→∗.

Problem: Reachability
Input: a graph G = (V,E, ϕ)

Output: The reachability relation→∗

Output type: a relation on V

Such a relation can be interpreted as binary function. that assigns to each vertex tuple a boolean
value if this tuple is part of the relation or not. If a vertex v is reachable from another vertex w,
the corresponding function value for (v,w) is set to true.

It is also possible to compute simple paths leading from any vertex v to all vertices that are
reachable from v.
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Problem: Simple paths
Input: a graph G = (V,E, ϕ)

Output: for each vertex tuple (v,w) ∈ V × V a simple path from v to w
Output type: a function (V × V)→ PAT HG

It is sufficient if the algorithm only computes the function successor: (V × V) → E with
successor((v,w)) := the successor vertex on a simple path from v to w iff v →∗ w. If the tar-
get vertex is not reachable or the source- and target vertex are the same, the function value is
undefined. Actual simple paths can be computed offline using the function successor.

An algorithm for computing the reachability relation and the corresponding simple paths is
the Warshall algorithm. This algorithm can be found in listing 3.15.

Listing 3.15: The Warshall algorithm
1 // results
2 BinaryFunction<Vertex,Vertex,boolean> reachable;
3 BinaryFunction<Vertex,Vertex,Edge> successor;
4

5 public void warshall(Graph g){
6 for (Vertex v: g.vertices()) {
7 for (Vertex w: g.vertices()) {
8 reachable.set(v,w,false);
9 }

10 reachable.set(v,v,true);
11 }
12

13 for (Edge e@(v->w): g.getAllEdges()) {
14 if (v != w) {
15 reachable.set(v,w,true);
16 successor.set(v,w,e);
17 }
18 }
19

20 for (Vertex v: g.vertices()) {
21 for (Vertex u: g.vertices()) {
22 for (Vertex w: g.vertices()) {
23 if (reachable.get(u,v) && reachable.get(v,w) &&

!reachable.get(u,w)){
24 reachable.set(u,w,true);
25 successor.set(u,w,successor.get(u,v));
26 }
27 }
28 }
29 }
30 }

In line 8, all vertex tuples are marked as unreachable. In lines 10 all vertices are marked reach-
able to themselves. In lines 13-18 the information from all edges in the graph are stored in the
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functions. For each edge, its omega vertex (w) is marked reachable from its alpha vertex (v) and
the current edge is set as successive edge in the function successor.

The main loop (lines 20-29) iterates over all possible vertex triples (u, v,w) and creates the
transitive closure. In line 23 it is checked, if v is reachable from u and if w is reachable from v.
Only if the reachability from u to w has not been detected before, this gap is closed (line 24) and
the successive edge for reaching w from u is set to the edge for reaching v from u (line 25).#
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Solution: Reachability and simple paths
Perform the Warshall algorithm
Space complexity: O(n2)

Time complexity: O(n3)

Because of the quadratic space complexity and the cubic time complexity, the Warshall algo-
rithm is not applicable for graphs with a high vertex count.

3.3.6 Problem group: weighted shortest paths

In section 3.3.3, the problems distance from r and shortest paths from r are defined. There, all
edges are assumed to have a weight of 1. This section defines analogous problems for edges
that can have arbitrary weights, including negative ones.

First the weighted length of a path has to be defined, followed by the weighted distance of two
vertices.#
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Definition: Weighted length
Given a graph G = (V,E, ϕ) , an edge weight function g : E→ R and a directed path C,

The weighted length lg(C) :=
|C|∑
i=1

g(ei), where ei ∈ E(C).

'
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Definition: Weighted distance
Given a graph G = (V,E, ϕ) , an edge weight function g : E → R and two vertices v ∈ V,

w ∈ V,
the distance

−→
dg(v,w) is the weighted length of a shortest path from v to w.

If w 6∈ v→∗, then
−→
dg(v,w) :=∞.

Now several problems can be defined using the definitions from above.

Problem: Negative cycles
Input: a graph G = (V,E, ϕ) and an edge weight function g : E→ R
Output: the decision if G has a cycle with negative length with respect to g
Output type: a boolean value
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Problem: Weighted distances
Input: a graph G = (V,E, ϕ) and an edge weight function g : E → R ; G may not have

negative cycles with respect to g
Output: for every pair of vertices (v,w) ∈ V × V the distance

−→
dg(v,w)

Output type: a function
−→
dg : V × V → R ∪ {∞}

Problem: Weighted shortest paths
Input: a graph G = (V,E, ϕ) and an edge weight function g : E → R ; G may not have

negative cycles with respect to g
Output: for every pair of vertices (v,w) ∈ V × V a simple path from v to w with minimal

weighted length.
Output type: a function spg : (V × V)→ PAT HG

For solving both of these problems, the Floyd algorithm can be used.

3.3.6.1 The Floyd algorithm

The Floyd algorithm is similar to the Warshall algorithm from listing 3.15. The binary func-
tion reachable is replaced by a binary function distance that stores the distances between all
vertex pairs. The binary function successor is the same as in the Warshall algorithm, but here
it represents all shortest weighted paths from all vertices. The Floyd algorithm can be found in
listing 3.16

The initialization is similar to the Warshall algorithm. The distance is initially set to∞ for all
vertex pairs (line 9) except the pairs of same vertices. They are set to 0 (line 11). For each edge,
the distance from its alpha vertex (v) to its omega vertex (w) is set to its weight (line 18). If
multiple edges with the same alpha and omega vertex exist, the edge with the lowest weight
is taken. This is ensured by the condition in line 17. The initialization of the successor array is
the same as in Warshall (line 19).

The main loop, that iterates over all possible vertex triples, is also the same. The important
difference is in lines 27 - 31. Here, the current shortest distance from vertex u to vertex w is
compared to the distance of following the path from u over v to w. If following this path is
shorter, the edge u → v is stored in the successor array and the new shorter distance is
stored in the distance array.

If any entry in the distance function contains a negative value for any vertex to itself (line
32), the graph contains at least one negative cycle (line 33) and the algorithm can terminate
(line 34).

If the graph does not contain negative cycles, the function distance provides the distance for
every vertex pair. The function successor contains the information for creating a shortest
weighted path for every vertex to every vertex. The actual paths can be computed offline.
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Listing 3.16: The Floyd algorithm
1 // results
2 BinaryFunction<Vertex,Vertex,double> distance;
3 BinaryFunction<Vertex,Vertex,Edge> successor;
4 boolean negativeCycleDetected = false;
5

6 public void floyd(Graph g, Function<Edge,double> weight){
7 for (Vertex v: g.vertices()) {
8 for (Vertex w: g.vertices()) {
9 distance.set(v,w,infinity);

10 }
11 distance.set(v,v,0);
12 }
13

14 for (Edge e@(v->w): g.getAllEdges()) {
15 if (v != w) {
16 double newDistance = weight.get(e);
17 if(newDistance < distance.get(v,w)){
18 distance.set(v,w,newDistance);
19 successor.set(v,w,e);
20 }
21 }
22 }
23

24 for (Vertex v: g.vertices()) {
25 for (Vertex u: g.vertices()) {
26 for (Vertex w: g.vertices()) {
27 double newDistance = distance.get(u,v) + distance.get(v,w);
28 if (distance.get(u,w) > newDistance){
29 distance.set(u,w,newDistance);
30 successor.set(u,w,successor.get(u,v));
31 }
32 if (u == w && distance.get(u,w) < 0){
33 negativeCycleDetected = true;
34 // terminate
35 }
36 }
37 }
38 }
39 }

#
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Solution: Negative cycles, weighted distances and weighted shortest paths
Apply the Floyd algorithm
Space complexity: O(n2)

Time complexity: O(n3)

Since the Floyd algorithm relies on the same iteration over all vertex triples and computes
similar binary functions, it succumbs the same efficiency problem as Warshall.
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3.3.6.2 The Ford-Moore algorithm

If only some weighted shortest paths are relevant, using the Floyd algorithm would be unrea-
sonable. In the following, more restricted problems are defined, whose result contains only one
weighted shortest path instead of all.

Problem: Weighted distances from r
Input: a graph G = (V,E, ϕ) and an edge weight function g : E → R ; G may not have

negative cycles with respect to g
Output: the distance

−→
dg(r, v) for every vertex v ∈ Vr

Output type: a function dr : V → R

Problem: Weighted shortest paths from r
Input: a graph G = (V,E, ϕ) and an edge weight function g : E → R ; G may not have

negative cycles with respect to g
Output: for every vertex v with r→∗ v a path from r to v with minimal weighted length
Output type: a function wspr : V → PAT HG

If only the weighted shortest path from one vertex to one target vertex is relevant, the following
problems can be solved.

Problem: Weighted distance from r to t
Input: a graph G = (V,E, ϕ) and an edge weight function g : E → R ; G may not have

negative cycles with respect to g
Output: the distance

−→
dg(r, t)

Output type: a value dr,t ∈ R with dr,t = dr(v)

Problem: Weighted shortest path from r to t
Input: a graph G = (V,E, ϕ) and an edge weight function g : E→ R
Output: a path from s to t
Output type: a path

All these problems can be solved using the Ford-Moore algorithm. It actually only solves the
problems weighted shortest distances from r and weighted shortest paths from r. But all algorithms
solving these problems also solve the problems weighted shortest distance from r to t and weighted
shortest path from r to t implicitly.

The Ford-Moore algorithm can be found in listing 3.17.

The algorithm searches for the shortest paths in the reachable subgraph from r. A queue is
used for all vertices whose incident edges might decrease the length of the shortest path to any
vertex found so far.
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Listing 3.17: The Ford-Moore algorithm
1 // results
2 Function<Vertex,Edge> parent;
3 Function<Vertex,double> distance;
4

5 // runtime variables
6 Function<Vertex,int> pushCount;
7 /* << a queue for vertices >> */
8 boolean negativeCycleDetected;
9

10 public void fordMoore(Graph g, Function<Edge,double> weight, Vertex r){
11 int maxPushCount = g.getVCount() - 1;
12 for(Vertex v: g.vertices(){
13 distance.set(v,infinity);
14 }
15 distance.set(r,0);
16 << add r to queue >>
17 while (<< queue is not empty >>) {
18 << get next vertex v from queue >>
19 for (Edge e: v.incidences(OUT)) {
20 Vertex w = e.getThat();
21 double newDistance = distance.get(v) + weight.get(e);
22 if (distance.get(w) > newDistance){
23 parent.set(w,e);
24 distance.set(w,newDistance);
25 int newCount = pushCount.get(w) + 1;
26 if(newCount > maxPushCount){
27 negativeCycleDetected = true;
28 // terminate
29 }
30 pushCount.set(w,newCount);
31 << add w to queue >>
32 }
33 }
34 }
35 }

The distance to all vertices is initialized with∞ (lines 12-14). The distance to the start vertex r
is initially set to 0 (line 15).

In the main loop of the algorithm (lines 17-34), firstly a vertex is taken from the queue (line 18).
The inner loop (lines 19-33) iterates over all relevant incident edges from this vertex. A new
potential distance from r to w, the that vertex of the current edge, is computed (line 21). Only if
the potential new distance is shorter, it is actually set as distance from r to w (lines 22-32) and
w is added to the queue (line 31). The path information is stored in the function parent in
analogy to the parent function used for directed search algorithms (see section 3.3.1).

If the reachable subgraph from r contains negative cycles, the Ford-Moore algorithm provides
a mechanism to detect that. The nature of the algorithm requires that vertices can be added
to the queue multiple times. The algorithm keeps track of this in the function pushCount.
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The variable maxPushCount limits the number of pushes per vertex to | V | −1. If this limit
is exceeded, the algorithm detects a negative cycle and terminates (lines 26-29). Without this
mechanism, the algorithm would never terminate in case of negative cycles. The vertices on
negative cycles would be added endlessly to the queue.

If no negative cycle was detected, the required weighted shortest paths can be computed offline
using the function parent.'
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Solution: Weighted distances from r, weighted shortest distance from r to t, weighted short-
est paths from r and weighted shortest path from r to t

Apply the Ford-Moore algorithm from listing 3.17
Space complexity: O(n)

Time complexity: O(n ·m)

This algorithm has a better time- and space complexity than Floyd and can also be applied on
bigger graphs.

3.3.6.3 The Dijkstra algorithm

If the limitation of non-negative cycles is tightened to a limitation to non-negative weights, the
problems from above can be solved using the Dijkstra algorithm. Depending on the vertex and
edge count, this algorithm can have a better time complexity than the Ford-Moore algorithm.

The Dijkstra algorithm is very similar to the Ford-Moore algorithm from listing 3.17. Instead
of a queue, a priority queue is used that is sorted by the distance computed so far. The priority
queue is assumed to have a time complexity of O(log(n)) for adding and removing items.

The Dijkstra algorithm can be found in listing 3.18.

The algorithm uses the function number for deciding whether a vertex has been visited or not.
The function number also defines the order in which the vertices are removed from the priority
queue for the first time. In line 17, the vertex with the lowest cost so far is removed from the
priority queue. Because of the limitation on positive weights, at this point, a shortest path from
r to v has been computed.

The nature of this implementation allows vertices to be added to the priority queue multiple
times with different priorities. So the inner loop(21-30) is only executed, if the current vertex
has not already been removed from the queue before with a higher priority. This loop is almost
identical to the inner loop in the Ford-Moore algorithm. The difference is the usage of the
priority queue.

Depending on the ratio between the vertex and edge count, this algorithm can provide a more
efficient solution for the problem of weighted shortest paths from r, compared to the Ford-
Moore algorithm. Its disadvantage is the limitation on positive weights.
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Listing 3.18: The Dijkstra algorithm
1 // results
2 Function<Vertex,int> number;
3 Function<Vertex,Edge> parent;
4 Function<Vertex,double> distance;
5

6 // runtime variables
7 /* << a priority queue for vertices sorted by distance >> */
8 int num = 0;
9

10 public void dijkstra(Graph g, Function<Edge,double> weight, Vertex r){
11 for(Vertex v: g.vertices(){
12 distance.set(v,infinity);
13 }
14 distance.set(r,0);
15 << add r to priority queue with value 0 >>
16 while (<< priority queue is not empty >>) {
17 << get next vertex v from priority queue >>
18 if (!number.isSet(v)) {
19 number.set(v,++num);
20 // working point: visitVertex(v)
21 for (Edge e: v.incidences(OUT)) {
22 Vertex w = e.getThat();
23 double newDistance = distance.get(v) + weight.get(e);
24 // working point: visitEdge(e)
25 if (distance.get(w) > newDistance){
26 parent.set(w,e);
27 distance.set(w,newDistance);
28 << add w to priority queue with value newDistance >>
29 }
30 }
31 }
32 }
33 }

As in Ford-Moore, the actual relevant shortest paths can be computed offline using the function
parent.'
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Solution: Weighted distances from r, weighted shortest distance from r to t, weighted short-
est paths from r, and weighted shortest path from r to t with positive weights

Apply the Dijkstra algorithm from listing 3.18
Space complexity: O(m)

Time complexity: O(m · log(m))

It is also possible to use a different priority queue implementation which uses an unsorted list
instead of a heap. In such an implementation, adding to the queue requires constant time.
However, removing elements requires linear time, which would change the time complexity of
Dijkstra to O(max(m,n2)).

60



Algolib, a generic algorithm library for JGraLab

3.3.6.4 The Dijkstra algorithm with early termination

For the solution of the problems weighted shortest distance from r to t and weighted shortest path
from r to t, the Dijkstra algorithm can be improved, by terminating the algorithm when the
target vertex t is removed from the priority queue. This can be achieved by extending the
algorithm as shown in listing 3.19.

Listing 3.19: Extension of the Dijkstra algortihm for early termination
1 // change method signature to
2 public void dijkstra(Graph g, Function<Edge,double> weight, Vertex r,

Vertex t)
3

4 // add to working point: visitVertex(v)
5 if (v == t){
6 // terminate
7 }

Due to the early termination of the algorithm, only the computed path from r to t, is guaranteed
to be a shortest path.

3.3.6.5 The A*-Search

A further improvement can be achieved by adding additional information to the Dijkstra algo-
rithm.'
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Definition: Heuristic
Given a graph G = (V,E, ϕ) and an edge weight function g : E→ R ,
a heuristic is a function h : V × V → R with the following properties:
• h is optimistic: ∀ v ∈ V,w ∈ V : h(v,w) ≤ d(v, t)
• h is monotonic: ∀(u→ v) ∈ E,w ∈ V : h(u,w) ≤ g(u→ v) + h(v,w)

A heuristic h assigns each vertex v ∈ V an estimated distance to any vertex w ∈ V.

In addition to the target vertex t, a heuristic h is passed to the algorithm. This heuristic is used
for directing the search towards the target vertex t and for avoiding paths that do not lead to t.
The resulting algorithm is called A*-Search. Listing 3.20 shows the A*-Search.

The structure is very similar to the Dijkstra algorithm. The algorithm is terminated when the
target vertex is removed from the priority queue (line 22). The priority queue is sorted by
distance + heuristic (line 31), meaning, the search is directed to the vertices that are assumed to
be good candidates for the shortest path.

The actual path can be computed offline. If the target vertex t is not reachable from s, the
algorithm searches the whole reachable subgraph from r and parent(t) is undefined. If the
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Listing 3.20: The A*-Search algorithm
1 // results
2 Function<Vertex,int> number;
3 Function<Vertex,Edge> parent;
4 Function<Vertex,double> distance;
5

6 // runtime variables
7 /* << a priority queue for vertices sorted by distance >> */
8 int num = 0;
9

10 public void aStar(Graph g, Function<Edge,double> weight,
BinaryFunction<Vertex,Vertex,double> heuristic, Vertex r, Vertex t){

11 for(Vertex v: g.vertices(){
12 distance.set(v,infinity);
13 }
14 distance.set(r,0);
15 /* add r to priority queue with value 0 */
16 while (/* priority queue is not empty */) {
17 /* get next vertex v from priority queue */
18 if (!number.isSet(v)) {
19 number.set(v,++num);
20 // working point: visitVertex(v)
21 if (v == t){
22 // terminate
23 }
24 for (Edge e: v.incidences(OUT)) {
25 Vertex w = e.getThat();
26 double newDistance = distance.get(v) + weight.get(e);
27 // working point: visitEdge(e)
28 if (distance.get(w) > newDistance){
29 parent.set(w,e);
30 distance.set(w,newDistance);
31 /* add w to priority queue with value (newDistance +

heuristic.get(w,t))*/
32 }
33 }
34 }
35 }
36 }
37 }

heuristic is good, the A*-Search algorithm may find the shortest path earlier than the Dijkstra
algorithm with early termination. If ∀ v ∈ V : h(v, t) = 0, the A*-Search algorithm is equivalent
to a Dijkstra algorithm with early termination.#
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Solution: Weighted shortest path from r to t with positive weights
Apply the A*-Search algorithm from listing 3.20
Space complexity: O(m)

Time complexity: O(m · log(m))
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As in Dijkstra, the time complexity also depends on the the implementation of the prior-
ity queue. So if using an unsorted list instead of a heap, the time complexity is changed to
O(max(m,n2)).
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4 Java mapping

This chapter describes how the mathematical structures, used in chapter 3, are realized in Java.
It also describes the role of JGraLab and how it is used for and will be extended with graph
algorithms.

4.1 JGraLab

The implementation of all graph algorithms in Algolib is done using JGraLab. Algolib extends
JGraLab with these algorithms and becomes a part of JGraLab. For graph access, JGraLab
provides the interfaces described in section 3.1. The actual interfaces in JGralab provide more
methods, but they are not relevant for Algolib and therefore are not explained here.

4.1.1 Ordered graphs

As described in section 2.4 the graphs implemented by JGraLab have several properties. The
property of edges, vertices, and incidences being ordered is of high importance for most graph
algorithms. The method edges(...) from the interface Graph provides iteration over the
edges in edge order. The method vertices(...) from the interface Graph analogously
provides iteration over all vertices in vertex order. E.g., the algorithm complete search uses the
method vertices(...) for deciding the start vertex of the next search. So the vertex order
in the graph dictates the order the vertices are used as start vertex for the search. The method
incidences(...) from the interface Vertex provides iteration over all incident edges in
incidence order. This fact has a high impact on the order incident edges are followed. E.g., for
search algorithm, the incidence order also dictates the layout of the search tree.

4.1.2 Subgraphs

JGraLab provides a mechanism for declaring subgraphs. However, subgraphs are not man-
ifested as actual objects. A subgraph is declared by using a function that is defined for both,
edges and vertices and assigns for each graph element whether it is part of the subgraph or not.
This function is called subgraph function in the following. The combination of a graph and
a subgraph function defines a subgraph. Algolib can exploit this for applying graph algorithms
on subgraphs.
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Using subgraph functions also makes Algolib compatible with GReQL, which is able to compute
them. Every algorithm in Algolib supports subgraph functions.

The next section shows how functions are implemented in Algolib.

4.2 Functions

This section describes the realization of functions in Algolib. This also includes other mathe-
matical structures that can be interpreted as functions (e.g., relations).

In this context functions are generally partial functions. This is especially true for functions
that are computed as results. However, some input functions may also be total.

4.2.1 Unary functions

For unary functions Algolib provides the interface Function as described in section 3.2.4 with
additional methods. The whole interface can be found in listing 4.1.

Listing 4.1: The interface Function
1 public interface Function<DOMAIN,RANGE> extends

Iterable<FunctionEntry<DOMAIN, RANGE>>{
2 public RANGE get(DOMAIN parameter);
3 public boolean isDefined(DOMAIN parameter);
4 public boolean set(DOMAIN parameter, RANGE value);
5 public Iterable<DOMAIN> getDomainElements();
6 }

The method get(...) retrieves or computes the function value for the given parameter.
The method isDefined(...) returns true if the function is defined for the given
parameter, false otherwise. This method is useful for deciding, if a function value exists
for the given parameter. The method set(...) is used to modify the function. It defines a
value for a given parameter. If the function already contains a value for the parameter, it is over-
written. This is an optional operation that throws an UnsupportedOperationException

if the function is immutable. The method getDomainElements() returns an iterator that
enumerates all domain elements of a function. This is an optional operation that throws an
UnsupportedOperationException if the domain elements are not enumerable. The inher-
ited method iterator() returns an iterator that enumerates all function entries of a function.
The class FunctionEntry<DOMAIN,RANGE> is a self-defined tuple type.

4.2.1.1 Functions with primitive types as domain or range

As seen in chapter 3, some of the functions have a domain or range that corresponds to a prim-
itive type. It is possible to use the interface Function with wrapper classes of primitive types
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and use Java’s mechanisms of autoboxing and unboxing. This technique, however, at least
doubles the amount of memory used for a value. When computing functions for large graphs,
this can be a handicap. Algolib tries to avoid autoboxing and unboxing wherever possible.

For functions with the primitive ranges int, long, double, and boolean, Algolib provides
specialized interfaces that only allow a type variable for the domain of the function. The
names of these interfaces are derived from the primitive type names by using the primitive
type name as prefix. E.g., the interface representing all functions with range double is called
DoubleFunction. The definition of this interface is analogous to the interface Function in
listing 4.1. It only contains one generic type, which is DOMAIN.

The primitive function interfaces are also capable of providing an iterator for enumerating all
function entries. However, the generic tuple type FunctionEntry<DOMAIN,RANGE> is not
used here, because this would require autoboxing and unboxing. Algolib provides special tuple
types for functions with primitive range. E.g., the tuple type for DoubleFunction is called
DoubleFunctionEntry. The other entry types are called analogously.

There are also functions with primitive types as domain. However, in Algolib N is so-far the only
domain that corresponds to a primitive type. All functions in Algolib that have this domain can
be interpreted as permutations and they are treated differently (see section 4.3).

4.2.1.2 The implementation of unary functions

Most of the algorithms in Algolib compute functions during their run. The computation of a
function can be done with an arbitrary internal data structure. The result however has to im-
plement one of Algolib’s function interfaces. This can be achieved by wrapping the data struc-
ture inside an object that implements a function interface.Alternatively the class representing
the type of the data structure can directly implement one of the function interfaces.

Functions whose domain is either V or E are realized using JGraLab’s mechanism for treating
so-called temporary attributes. Temporary attributes are attributes for graph elements that are
not stored in the graph and only valid during runtime. Temporary attributes can be of arbitrary
types. They are realized using so-called graph markers.

Graph markers

A graph marker is a data structure that allows assigning each graph element an additional
attribute. Most graph markers are limited to either assign attributes to vertices only or edges
only. An arbitrary number of graph markers may exist. They are only valid at runtime and
their data cannot be stored with the graph.

JGraLab provides several graph markers using different implementations.
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One type of graph marker is implemented using hash maps (map graph markers). Map graph
markers are very useful if only a fraction of graph elements should receive temporary at-
tributes. Since Java’s implementation of hash maps is used, using primitive types as attribute
type would result in autoboxing and unboxing. Another type of graph markers is implemented
using arrays (array graph markers). The implementation of array graph markers has been moti-
vated by the creation of Algolib. Compared to map graph markers, they provide a more efficient
memory consumption if most vertices or edges are expected to receive temporary attributes.
They also allow the usage of primitive types without autoboxing and unboxing. JGraLab pro-
vides array graph markers for the primitive types int, long, double, and boolean1). In
general, Algolib uses array graph markers, especially for avoiding autoboxing und unboxing.

With the introduction of Algolib, all graph markers implement one of Algolib’s function inter-
faces. In Algolib they are operated using the function interfaces.

Table 4.1 shows a mapping of some function interfaces and the corresponding graph
marker classes that are used in Algolib. All graph markers can be found in the package

Function interface Corresponding graph marker class
Function<Vertex,RANGE> ArrayVertexMarker<RANGE>
Function<Edge,RANGE> ArrayEdgeMarker<RANGE>
IntFunction<Vertex> IntegerVertexMarker
IntFunction<Edge> IntegerEdgeMarker
DoubleFunction<Vertex> DoubleVertexMarker
DoubleFunction<Edge> DoubleEdgeMarker
LongFunction<Vertex> LongVertexMarker
LongFunction<Edge> LongEdgeMarker
BooleanFunction<Vertex> BitSetVertexMarker
BooleanFunction<Edge> BitSetEdgeMarker
BooleanFunction<GraphElement> SubGraphMarker

Table 4.1: Overview of graph marker classes

de.uni koblenz.jgralab.graphmarker. A graph marker has to be initialized with the
graph whose graph elements should be extended with a temporary attribute. If graph elements
should receive multiple temporary attributes, a graph marker with a tuple type as RANGE can
be used. The alternative is using multiple graph markers. Algolib uses the latter for flexibility
reasons2.

4.2.2 Binary Functions

As seen in chapter 3, also binary functions occur in Algolib. For this purpose, Algolib contains
the interface BinaryFunction, that was already introduced in chapter 3.2.4 on page 33.

1The graph markers with range boolean are implemented using a BitSet instead of an array, but conceptually
they are equivalent to array graph markers.

2Chapter 6 will show that the chosen alternative also provides a higher speed efficiency.
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The methods work in analogy to the methods from the interface Function. The interface
BinaryFunction does not provide methods for creating iterators for enumerating domain
elements or function entries. For binary functions such methods would be inefficient and they
are not required.

For allowing primitive ranges for binary functions, Algolib provides special interfaces. They
are named similarly to the corresponding interfaces for unary functions. E.g., the interface for
the primitive type double is called BinaryDoubleFunction<DOMAIN1,DOMAIN2>.

4.2.2.1 The implementation of binary functions with domain V × V

In Algolib the most relevant domain for binary functions is V × V. The internal data structure
for such functions in Algolib is a two dimensional quadratic array of the range type. E.g., in the
case of successor from the Warshall- and Floyd algorithm, it is Edge[][]. For runtime efficiency
reasons, algorithms that compute binary functions with domain V × V operate directly on the
array.

An issue when using a two dimensional array for this type of function is the index numbering.
In JGraLab, each vertex has a unique id, which is always a positive int value. So the easiest
index numbering would be using the vertex id. However, this numbering is not necessarily
contiguous, because there may be unused ids in the graph. Since the space complexity of a two
dimensional array is O(n2), this is not feasible for graphs with many unused ids.

To overcome this problem, an alternative numbering has to be used instead. Any complete
search algorithms provided by Algolib can be used for computing the function number that
creates a continuous numbering of all vertices. So all algorithms that compute binary functions
with domain V × V should run an arbitrary search algorithm first for computing the function
number and using it as index numbering. Please note that the numbering, provided by number,
by convention starts with 1. So the array indexing also starts with the index 1 causing the arrays
at the position 0 to be null in both dimensions.

When the result is requested, the two dimensional array representa-
tion of the function is wrapped in an implementation of the interface
BinaryFunction<Vertex,Vertex,RANGE>. For this purpose, Algolib already pro-
vides the class ArrayBinaryFunction<DOMAIN,RANGE>. It only has one type variable for
the domain type, because it assumes both parts of the domain being of the same type. For the
domain V × V this type variable is set to Vertex. This class turns the two dimensional array
into an immutable instance of BinaryFunction<Vertex,Vertex,RANGE>, meaning the
method add(...) throws an exception.

If RANGE is a primitive type, the corresponding interface for primitive types is used. Algolib
also provides corresponding classes for wrapping two dimensional arrays representing binary
functions with primitive range types.
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4.2.3 Method calls

It is possible to wrap simple method calls in function objects. In doing this, it is very easy to
specify functions whose values are not obtained by a lookup in a data structure. Such functions
are immutable and can only serve as input functions.

Algolib provides adapter classes for method calls that implement the corresponding function
interfaces. In these adapters, the methods set(...), getDomainElements(...) and
iterator(...) throw exceptions.

For example the heuristic of the A*-search can be realized using the adapter class for
BinaryDoubleFunction.

4.3 Permutations

Permutations are sequences of all elements of a set. As done in chapter 3, permutations can be
interpreted as functions with domain N. In Algolib permutations have an interface of their own
that is defined similarly to the interface Function. This interface can be found in listing 4.2.

Listing 4.2: The interface Permutation
1 public interface Permutation<RANGE> extends

Iterable<PermutationEntry<RANGE>>{
2 public RANGE get(int index);
3 public void add(RANGE value);
4 public boolean isDefined(int index);
5 public int length();
6 public Iterable<RANGE> getRangeElements();
7 }

The method get(...) retrieves or computes the function value for the given index. The
method add(...) adds the given value to the end of the permutation. This is an optional op-
eration that throws an UnsupportedOperationException if the permutation is immutable.
A permutation is built successively, starting at index 1. The method isDefined(...) returns
true if the permutation contains a value at the given index, false otherwise. The method
length() retrieves or computes the length of the permutation, which is equivalent to the in-
dex of the last element that was added due to the index numbering convention. The method
getRangeElements() returns an iterator that enumerates all entries of the permutation in
the same order as they have been added to the permutation (from 1 to length). The inherited
method iterator() returns an iterator that enumerates all permutation entries in analogy to
the interface Function. The class PermutationEntry<RANGE> is a self-defined tuple type
whose first element is of the primitive type int.

70



Algolib, a generic algorithm library for JGraLab

An example for a permutation is the function vertexOrder that is computed by all search algo-
rithms.

4.3.1 The implementation of permutations

In Algolib, the underlying data structure of a permutation is an array of the range type. E.g.,
in case of vertexOrder this is Vertex[]. For runtime efficiency reasons, algorithms that
compute permutations operate directly on the array. Here the indexing also stars at 1 causing
the first index of the array (0) to be undefined. For arrays this means, the first field at position
0 is always empty.

When the result is requested, the array representation of the permutation is wrapped in
an implementation of the interface Permutation<RANGE>. For this purpose, Algolib al-
ready provides the class ArrayPermutation<RANGE>. This class turns the array into an
immutable instance of Permutation<RANGE>, meaning the method add(...) throws an
exception. This class also provides appropriate iterators for the methods iterator() and
getRangeElements().

4.4 Partitions

Some algorithms compute partitions on either the vertex- or edge set. Partitions can be inter-
preted as representative functions (see page 21 for definition).

In Algolib, representative functions, defining partitions, are realized using graph markers (see
section 4.2.1.2).

If a different representation of partitions is required (e.g., Set<Vertex>[]), the representative
function can be used for computing such a representation offline.

An example for a partition on V are the strong components of a graph.

4.5 Relations

Relations on either the vertex set V or the edge set E are realized using their characteristic func-
tion. This is a function whose domain is V×V or E×E and whose range is boolean. The function
value indicates, whether the given pair is an element of the relation or not.

In Algolib, characteristic functions are realized using the interface Relation, which is actually
a special interface for binary functions whose domain is boolean. All its methods work in
analogy to the interface BinaryFunction.

An example for a relation is the reachability relation computed by the Warshall algorithm.
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The implementation of relations on V follows the same rules as implementations of binary
functions with domain V × V as described in section 4.2.2.1.

The corresponding interface is Relation<DOMAIN1,DOMAIN2> and the class for wrapping a
two dimensional arrays representing relations is ArrayRelation<DOMAIN>.
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5 Implementation

This chapter describes how some of the graph algorithms from chapter 3 are implemented in
Algolib. It introduces the strategy pattern and the visitor pattern and shows how these are used
for algorithm implementation.

Section 5.1 describes Algolib’s package structure and how it is integrated into JGraLab’s. Sec-
tion 5.2 introduces the strategy pattern and shows how the problems from chapter 3 are spec-
ified in Algolib. Section 5.3.4 is the major part of this chapter. It introduces the visitor pattern,
shows common classes, needed for algorithm creation and gives some examples on how con-
crete algorithms are implemented.

5.1 Package structure

This section describes the package structure of Algolib. It shows where the packages of the
current implementation are located. Figure 5.1 shows the package structure of Algolib.

Figure 5.1: Overview of the package structure

Since Algolib is an extension of JGraLab, the base package of Algolib is a
subpackage of JGraLab’s base package. So the base package of Algolib is
de.uni koblenz.jgralab.algolib. All further package references are relative to
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this base package (e.g., problems). If other subpackages of JGraLab are referenced, the prefix
jgralab is used (e.g., jgralab.graphmarker).

5.1.1 Package functions

The package functions contains all function interfaces described in section 4.2. It also con-
tains the interfaces for permutations and relations.

The tuple types implementing function entries for unary partial functions, which are used for
the iterators created by functions, can be found in the package functions.entries (see
section 4.2.1). The adapter classes for easily wrapping method calls in function interfaces (see
section 4.2.3) can be found in the package functions.adapters.

5.1.2 Package problems

The package problems contains all problem interfaces. Details about these interfaces can be
found in section 5.2.

5.1.3 Package algorithms

The package algorithms contains all algorithm implementation in Algolib. Details about the
algorithm implementations can be found in section 5.3 on page 78.

The subpackages are mostly named after the problem groups from section 3.3. Table 5.1 shows,
which problem group corresponds to which subpackage. It also gives an overview of the sub-
packages that currently exist in Algolib. The order of the entries corresponds to the order the
problem groups have been introduced in section 3.3.

problem group package
traversal algorithms.search

acyclicity algorithms.topological order
shortest paths algorithms.shortest paths

strong components algorithms.strong components
reachability algorithms.reachability

weighted shortest paths algorithms.shortest paths

Table 5.1: overview of algorithm packages

Abstract classes, that give several common attributes and behavior to algorithms from multiple
subpackages, can be found directly in the package algolib.algorithms.
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5.1.4 Package visitors

The package visitors contains all base interfaces and base implementations of visitors. De-
tails about visitors can be found in section 5.3.2.

If a problem group has their own visitors, they will be placed in a subpackage named
visitors of the problem group. E.g., the visitors for search algorithms can be found in the
package algorithms.search.visitors.

This package does not contain any subpackages.

5.1.5 Package util

The package util contains everything that does not belong to the other packages. This in-
cludes data structures, such as custom worklists, that are only used by Algolib and convenience
classes for post-processing several results.

5.2 Problems

In Algolib, problems and their solution are strictly separated. This section shows how problems
are described in Algolib and it gives a first hint on how solutions can be realized. The core idea
of the problems and their solution is the usage of the strategy pattern which is introduced in
the following.

5.2.1 The strategy pattern

The strategy pattern is one of the behavioral patterns introduced by Gamma, Helm, Johnson
and Vlissides [GHJV94]. The pattern allows defining a set of algorithms that solve the same
problem, encapsulating each implementation and making them interchangeable. That means,
algorithms are made first class citizens. When solving a problem, the decision which imple-
mentation should be used can be made at runtime.

For achieving this, an interface is created, which describes the problem, specifies the input
parameters and results and declares a so-called execute method that is used to solve the described
problem. Classes implementing this interface provide a strategy (or algorithm) to solve the
described problem. This is mainly done by implementing the execute method that was declared
in the interface. This allows a decision made at runtime about which solution for a problem to
use.

There are multiple possibilities how to handle input parameters and results. The parameters
can be passed as arguments to the execute method or by setter methods before the execute
method is invoked. The result can be the return type of the execute method or obtained by
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a getter method after the execute method has terminated. It is also possible to mix these ap-
proaches or provide multiple alternatives.

All algorithms in Algolib are implemented using the strategy pattern. The following section
describes (among other things), how the strategy pattern is actually implemented in Algolib.

5.2.2 The problem interfaces

The description of a problem and the specification of an interface for algorithms solving this
problem is done using a Java interface. Such interfaces are called problem interfaces in the fol-
lowing. As mentioned in section 5.1.2, all problem interfaces can be found in the package
algolib.problems. Descriptions of the problems are phrased similarly to the descriptions
of problems in chapter 3.

Algolib has a naming convention for these problem interfaces. The name consists of the problem
name, followed by the suffix Solver. E.g., the interface for the problem simple paths is called
SimplePathsSolver. The suffix Solver was chosen, because all algorithms that solve a
problem have to implement the problem interfaces of all the problems they solve. This makes
algorithms problem solvers and the problem interfaces should reflect this.

A difference arises from the handling of input parameters and results compared to chapter 3.
There, input parameters and results have been described very vaguely. Here, they have to be
specified more concretely. But first two different types of input parameters have to be distin-
guished.

5.2.2.1 Input parameters

In chapter 3, all input parameters were passed directly to the algorithms. This was done to
simplify their description.

Algolib distinguishes between two different types of input parameters. The first type is passed
directly to the execute method. It is only valid until the execute method terminates. This type of
parameter is called transient parameter in the following. The second type has to be set before the
execute method is invoked. For setting the latter type of parameters, setter methods are used.
The name of such a setter method is set«ParameterName». These types of parameters are
called durable parameters because they remain valid even after the execute method terminated.

Both, durable and transient parameters, are described in the Javadoc text of the interface itself.
Section 5.2.3 gives an overview of the problem interfaces that currently exist in Algolib. Some
of these interfaces only specify durable parameters and do not have an execute method.

The Javadoc text of the setter methods and of the execute method can provide further infor-
mation on the input parameters. This can be implementation related information, which is
irrelevant for the problem description.
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5.2.2.2 Results

In Algolib, The handling of results is done using getter methods. The name of the getter meth-
ods for results is get«ResultName». This method has to be called after the execute method
terminated for retrieving the result of the algorithm. The description of the results is done in
the Javadoc text of the interface itself.

The Javadoc text of the getter methods can provide further information on the results. This can
be implementation related information, which is irrelevant for the problem description.

Only mandatory results require getter methods in the problem interfaces. All optional results
are specified in the implementations.

5.2.2.3 The execute method

For all problem specifications, the execute method has the name execute. The return type is
always the problem interface in which the execute method is declared in. This allows an easy
pattern for accessing one result after the execute method has been terminated:

ResultType r = solver.execute().getResult();

The following code snippet shows a real example on how the BFS can be called for computing
the order function.

Permutation<Vertex> order = bfs.execute().getOrder();

All execute methods are declared to throw the exception AlgorithmTerminatedException
for allowing early termination. Details about this can be found in section 5.3.4.3 on page 91.

The parameter list of an execute method only contains the transient parameters of the problem.

5.2.3 Overview of problem interfaces

Figure 5.2 shows all problem interfaces that currently exist in Algolib. The super interface of
all problem interfaces is called ProblemSolver. It has no execute method. It defines the
common durable parameters for all problems, which are the graph and the function defining a
subgraph. All other problem interfaces are derived from it.

The interface TraversalSolver has no execute method. It defines the common durable pa-
rameter navigable, which is a function that defines for every edge of the graph whether
it is navigable or not. The navigability of an edge can depend on the start and end ver-
tex. So the function subgraph is insufficient for deciding it. This is highly domain spe-
cific, so navigable provides a generic way of defining the navigability independently from
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Figure 5.2: An overview of the problem interfaces

the function subgraph. TraversalSolver is the super interface of the problem interfaces
TraversalFromVertexSolver and CompleteTraversalSolver.

The interface WeightedProblemSolver has no execute method either. It defines
the common parameter edgeWeight, which is a function that assigns a weight to
every edge of the graph. Algorithms operating on edge weighted graphs imple-
ment this interface. E.g., FordMooreAlgorithm implements (among others) the in-
terfaces ShortestPathsFromVertexSolver and WeightedProblemSolver, because
it solves the problem weighted shortest paths from vertex. It is the super interface of
NegativeCyclesSolver, because the corresponding problem is only defined for edge
weighted graphs.

5.3 Algorithms

This section describes the implementation of graph algorithms in Algolib.

Solutions of problems are called algorithms in the following. Classes implementing problem in-
terfaces are called algorithm classes. There is one algorithm class per algorithm implementation.
Instances of algorithm classes are called algorithm objects.

Algolib also contains some abstract algorithm classes that unite common features of algorithm
classes. The next section gives an overview of the algorithm class hierarchy.

5.3.1 Overview of algorithm classes

Figure 5.3 shows all algorithm classes that currently exist in Algolib. The abstract super class
of all algorithm classes is called GraphAlgorithm. It contains all common attributes and
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Figure 5.3: An overview of the algorithm classes

methods for all graph algorithms in Algolib. Details about its implementation can be found in
section 5.3.4.3 on page 85.

The abstract super class of all algorithm classes, that implement algorithms with respect to
the graph structure, is called StructureOrientedAlgorithm. This class allows a traversal
of edges in normal, reversed, and undirected orientation. Currently, all algorithm classes are
derived from this class. Details about its implementation can be found in section 5.3.4.4 on
page 92.

5.3.2 The visitors pattern

Before actual implementations of algorithm classes can be shown, the implementation of work-
ing points has to be described. The concept of working points was introduced in section 3.2.2
on page 32. Here the implementation of working points in Algolib is described.

For extending algorithms with further functionality, a variant of the visitor pattern is used.
The visitor pattern is one of the behavioral patterns introduced by Gamma, Helm, Johnson
and Vlissides [GHJV94]. It is used for representing operations that are performed on elements
of an object structure. The pattern allows the definition of new operations on these elements,
without the need for changing the elements’ classes.

In its original form, the visitor pattern is used for performing independent operations on data
structures, that can be implemented without the need of changing the classes implementing
the data structure. For this purpose, all elements of the data structure have to provide methods
for accepting visitors. The visitors provide so-called visit methods, that are called in the accept
methods of the elements. There is exactly one visit method per element class. The algorithm for
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traversing the data structure is implemented in the visitors. This algorithm has to ensure that
each element in the data structure is visited at most once (depending on the domain this can
also be exactly once).

5.3.3 The visitor pattern in Algolib

JGraLab does not provide a visitor interface for vertices and edges. Even if it would do so, this
would be inappropriate for the working points in graph algorithms. For Algolib a variant of the
visitor pattern is used.

Instead of accepting visitors for each call of a visit method, they are registered in the algorithm
objects, before the algorithm is executed. Algorithm objects can register an arbitrary number of
visitors. Details about this can be found in section 5.3.3.2.

The traversal of elements is implemented in the algorithm classes instead of the visitor classes.
In addition, there can be multiple visit methods per element type. E.g., in a search algorithm
every edge can be visited as edge and additionally as either tree edge or as frond. Details about
the different visitors and the visit methods they provide can be found in section 5.3.3.1.

It is also possible to define visit methods for element tuples. E.g., this is used in the Warshall
algorithm for visiting vertex triples.

One rule has to be obeyed by all graph algorithms: Every visit method may only be called at most
once for every graph element or every graph element tuple respectively.

In Algolib visitors can be used for computing additional results. In order to do this, they might
need to have their own local runtime variables and they might need access to the algorithm
object’s runtime variables. Details about how this is achieved can be found in section 5.3.4.

Visitors can also be used for causing an algorithm to terminate earlier, e.g., in case the result
has been computed before the algorithm would normally terminate. Algolib uses the exception
AlgorithmTerminatedException for this purpose. All visit methods are declared to throw
this exception. Details about early termination can be found in section 5.3.4.3 on page 91.

5.3.3.1 Overview of visitors

Figure 5.4 shows all visitor interfaces that currently exist in Algolib. The definition of interfaces
is done in Java interfaces. These interfaces are called visitor interfaces in the following. Every
visit method, that is provided by a visitor interface, corresponds to one of the working points
introduced in chapter 3.

The most generic visitor is simply called Visitor. The method reset() is used for reinitial-
izing the visitor’s runtime variables. The method setAlgorithm(...) is used for binding
the visitor to a specific algorithm object in order to access its runtime variables.
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Figure 5.4: An overview of the visitor interfaces

The visitor GraphVisitor is a basic visitor for visiting graph elements without them being
a special context in the algorithm. It provides the visit methods visitVertex(...) and
visitEdge(...).

The visitor SearchVisitor is a visitor that is used in search algorithms. It extends
GraphVisitor with the visit methods visitRoot(...), visitTreeEdge(...) and
visitFrond(...). visitRoot(...) visits vertices which are roots of search trees.
visitTreeEdge(...) visits edges in search trees. visitFrond(...) visits edges that
are in search trees.

The visitor DFSVisitor is a visitor that is used in the depth first search algorithm. It extends
SearchVisitor with the visit methods leaveVertex(...), leaveTreeEdge(...),
visitForwardArc(...), visitBackwardArc and visitCrosslink(...).
leaveVertex(...) and leaveTreeEdge(...) visit vertices and edges after they
have been completely traversed in the search (after the recursive call). The other visit methods
distinguish between the different frond types.
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The visitor TopologicalOrderVisitor is only used in algorithms that can com-
pute a topological order (e.g., Kahn Knuth). It provides only one visit method
(visitVertexInTopologicalOrder(...)), that visits all vertices of the graph in the topo-
logical order that is computed by the algorithm.

The visitor ReducedGraphVisitor is used by algorithms that can compute strong com-
ponents. It provides the visit methods visitRepresentativeVertex(...) and
visitReducedEdge(...). visitRepresentativeVertex(...) visits the representa-
tive vertices of the strong components. For the algorithm described in section 3.3.4 on page 49
these are the strong roots. visitReducedEdge(...) visits the reduced edges that connect
the strong components.

All visitors provide a visitor adapter for simplification. These adapters implement all methods
mentioned above with empty stubs. This is in analogy to the adapter classes for listeners in
Swing. The visitor adapters have an analogous inheritance tree in comparison to the the visitor
interfaces.

5.3.3.2 Visitor list

In order to support multiple visitors, each visitor interface requires a so-called visitor list. In a
nutshell, a visitor list is a class that implements a visitor interface containing a list of visitors. It
delegates all visit method calls to the visitors contained in the list.

All algorithm classes internally use a visitor list for storing the visitor objects. When registering
a visitor object, it is added to the visitor list of the algorithm object.

As mentioned above, visitors can be used for computing additional results. Furthermore it
is possible that one visitor depends on the results of another visitor. Such visitors are called
dependent visitors in the following. This demands several further requirements for visitors and
visitor lists. Visitors computing further results have to provide access to their runtime variables
in the same way as algorithm classes. Dependent visitors need a reference to their required
visitors.

Dependent visitors generally need the intermediate results of their required visitor (stored in
the runtime variables) at the same working point in the algorithm. This is possible, if the visit
method of the required visitor is called before the visit method of the dependent visitor. The
visitor lists are designed to invoke the visit methods of the stored visitors in the order the visi-
tors have been added to the visitor list. So the developer using dependent visitors has to ensure
that the visitors are registered with the algorithm object in correct order. The documentation of
a dependent visitor has to explicitly indicate this.
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The implementation of visitor lists

Algorithm classes generally only contain exactly one reference to a visitor list. However, visitor
lists are designed to support not only the visitors of the own visitor interface, but also all visi-
tors of super interfaces. In order to achieve this, visitor lists have an analogous inheritance tree
in comparison to the visitor interfaces. Every visitor list contains a List of visitors. This List
only contains the visitors implementing the same visitor interface (including derived visitors).
E.g., in case of SearchVisitor, this also includes DFSVisitor but not GraphVisitor.
When adding visitors to a visitor list, the type of the visitor is checked. If it implements the
same interface, it is added to the own List. It is always added to the List of the visitor
list’s super class. The visit methods only consider the List of visitors that is present on the
same level as the visit method is declared. E.g., The method visitTreeEdge(...) from
SearchVisitor iterates over the List of SearchVisitors in the class DFSVisitorList,
which can also include DFSVisitors. The method leaveTreeEdge(...) in DFSVisitor

iterates over the List of DFSVisitors in the class DFSVisitorList. These multiple Lists
always ensure the relative order of the visitors at each working point.

The consequence of doing it that way is having multiple references to the same visitor. The
alternative would be having only one List of visitors at the top level of the inheritance tree.
This would reflect the absolute order of the visitors and only require to have one reference
per visitor. The disadvantage of this approach is the necessity of performing the type checks
(instanceof) at every call of the visit method.

Both variants have been tried and experiments have shown, that the variant with multiple
Lists have performed significantly better because the type checks are only necessary when
adding the visitors to the List.

5.3.4 The implementation of algorithm classes

This section shows how algorithm classes are implemented in Algolib. First a general concept
is introduced, accompanied by the description of two generic classes. The first example for
actual implementations, including the handling of visitors, are the search algorithms. Finally
two examples are presented that implement graph algorithms in using other algorithms.

5.3.4.1 Algorithm states

At runtime, an algorithm object can be in several states. An overview of these states can be
found in figure 5.5.

The method names shown in this diagram refer to methods that are present in every algorithm
class. They are explained in section 5.3.4.3.
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Figure 5.5: The possible states of algorithm objects

The possible states are realized using a Java enum. Listing 5.1 shows this Java enum. The
description below refers to the names in the enum.

Listing 5.1: The enum AlgorithmState

1 public enum AlgorithmState {
2 INITIALIZED, RUNNING, STOPPED, FINISHED,CANCELED;
3 }

After an algorithm object is created, it is in the state INITIALIZED. In this state a reference
to the graph has been created and all runtime variables and durable parameters have been
initialized. After changing durable parameters, the object remains in this state. This is the only
state that allows changes to durable parameters.

When invoking the execute method, the algorithm object changes into the state RUNNING.

After the termination of the execute method, the object either changes into the state STOPPED
or FINISHED. The behavior depends on the type of algorithm. If a re-invocation of the ex-
ecute method is feasible with the current runtime variables and their values, the algorithm
should change into the state STOPPED. If a re-invocation is not feasible, meaning no possi-
ble re-invocation would contribute to the result, the algorithm should change into the state
FINISHED. An example for such an algorithm is any search algorithm that searches in the
reachable subgraph of a given start vertex. If, however, the algorithm is not re-usable, it should
directly change into the state FINISHED. While being in one of these states, the results can be
obtained from the algorithm object.
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If the algorithm was terminated from outside (the current thread was interrupted), changes into
the state CANCELED. In this state no results can be obtained. Details about how to terminate
algorithms from outside can be found in section 5.3.4.3 on page 91.

5.3.4.2 Additional results

As already mentioned in section 3.2.3 on page 33, an algorithm can have multiple results. Re-
sults that are not specified in the problem interfaces are called additional results. Most additional
results are not required for successfully executing an algorithm. Those results are called optional
results.

In Algolib optional results are not computed by default. They have to be explicitly activated
and they can be deactivated. All additional results can be retrieved in the same way and in the
same state as regular results. If an optional result, that has not been computed, is requested
after the algorithm is done, null is returned by convention.

5.3.4.3 The class GraphAlgorithm

The class GraphAlgorithm unites all common features of all graph algorithms in Algolib. It
implements the interface ProblemSolver. Listings 5.2-5.10 show the sourcecode of this class.

Listing 5.2 shows the member variables of GraphAlgorithm.

Listing 5.2: Member variables

1 public abstract class GraphAlgorithm implements ProblemSolver {

2 protected Graph graph;

3 protected BooleanFunction<GraphElement> subgraph;

4 private int vertexCount;

5 private int edgeCount;

6 protected AlgorithmState state;

graph and subgraph describe the graph the algorithm works on. If subgraph is set to null,
the algorithm will work on the whole graph. vertexCount and edgeCount contain the graph
element count with respect to the function subgraph. They are lazily computed and their de-
fault values is -1 for indicating that the values have not been computed yet.
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Listing 5.3 shows the constructors of GraphAlgorithm.

Listing 5.3: Constructors

7 public GraphAlgorithm(Graph graph) {

8 this.graph = graph;

9 this.state = AlgorithmState.INITIALIZED;

10 resetParameters();

11 reset();

12 }

13

14 public GraphAlgorithm(Graph graph, BooleanFunction<GraphElement>

subgraph) {

15 this(graph);

16 this.subgraph = subgraph;

17 }

Please note that resetParameters() and reset() are called in the constructor. These meth-
ods are described below.

Listing 5.4 shows the getter and setter methods for the graph and the subgraph.

Listing 5.4: Changing the graph

18 @Override

19 public void setGraph(Graph graph) {

20 checkStateForSettingParameters();

21 this.graph = graph;

22 vertexCount = -1;

23 edgeCount = -1;

24 }

25

26 @Override

27 public void setSubgraph(BooleanFunction<GraphElement> subgraph) {

28 checkStateForSettingParameters();

29 this.subgraph = subgraph;

30 vertexCount = -1;

31 edgeCount = -1;

32 }

33

34 public Graph getGraph() {

35 return graph;

36 }

37

38 public BooleanFunction<GraphElement> getSubgraph() {

39 return subgraph;

40 }
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The methods setGraph and setSubgraph are inherited from the interface ProblemSolver.
The method checkStateForSettingParameters() ensures that the graph can only be
changed if the algorithm object is in the state INITIALIZED (see below). If the graph changes,
the graph element count is set back to -1 because the old element count becomes invalid.

Listing 5.5 shows the methods for obtaining derived graph properties in the context of the
graph algorithm.

Listing 5.5: Graph properties

41 public int getVertexCount() {

42 if (vertexCount < 0) {

43 if (subgraph == null) {

44 vertexCount = graph.getVCount();

45 } else {

46 vertexCount = 0;

47 for (Vertex currentVertex : graph.vertices()) {

48 if (subgraph.get(currentVertex)) {

49 vertexCount++;

50 }

51 }

52 }

53 }

54 return vertexCount;

55 }

56

57 public int getEdgeCount() {

58 if (edgeCount < 0) {

59 if (subgraph == null) {

60 edgeCount = graph.getECount();

61 } else {

62 edgeCount = 0;

63 for (Edge currentEdge : graph.edges()) {

64 if (subgraph.get(currentEdge)) {

65 edgeCount++;

66 }

67 }

68 }

69 }

70 return edgeCount;

71 }

72

73 public abstract boolean isDirected();

74

75 public abstract boolean isHybrid();
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The methods getEdgeCount() and getVertexCount() lazily compute the graph ele-
ment number with respect to the function subgraph. The methods isDirected() and
isHybrid() handle the interpretation of the graph. In JGraLab all graphs are directed. How-
ever, they can be interpreted as undirected graphs. The method isDirected() tells if the
algorithm object currently interprets the graph as directed graph. This highly depends on the
algorithm. Some algorithms even allow both. The method isHybrid() tells if the algorithm
object’s interpretation of the graph can be changed. If an algorithm supports this, its algorithm
class defines how the interpretation can be changed.

Listing 5.6 shows the most generic reset methods of graph algorithms.

Listing 5.6: Reset methods

76 public synchronized AlgorithmState getState() {

77 return state;

78 }

79

80 public void reset() {

81 if (getState() != AlgorithmState.RUNNING) {

82 this.state = AlgorithmState.INITIALIZED;

83 } else {

84 throw new IllegalStateException(

85 "The algorithm may not be reseted while it is

running.");

86 }

87 }

88

89 public void resetParameters() {

90 checkStateForSettingParameters();

91 this.subgraph = null;

92 vertexCount = -1;

93 edgeCount = -1;

94 disableOptionalResults();

95 }

96

97 public abstract void disableOptionalResults();

The method getState() simply returns the algorithm state. The method reset() reini-
tializes all runtime variables and changes the algorithm object’s state to INITIALIZED.
This may only be done if the algorithm object is not in the state RUNNING. The method
resetParameters() assigns each durable parameter its default value. The method
disableOptionalResults() deactivates the computation of optional results if the algo-
rithm class provides some. Optional results are activated through special setter classes. Exam-
ples can be found in section 5.3.4.5.
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Listing 5.7 shows methods that check the algorithm state and throw an exception if the algo-
rithm is in the wrong state.

Listing 5.7: State checks

98 public void checkStateForResult() {

99 if (state != AlgorithmState.FINISHED

100 && state != AlgorithmState.STOPPED) {

101 throw new IllegalStateException(

102 "The result cannot be obtained while in this state: "

103 + state);

104 }

105 }

106

107 public void checkStateForSettingParameters() {

108 if (getState() != AlgorithmState.INITIALIZED) {

109 throw new IllegalStateException(

110 "Parameters may not be changed while in state " +

state);

111 }

112 }

113

114 public void checkStateForSettingVisitors() {

115 if (getState() == AlgorithmState.RUNNING

116 || getState() == AlgorithmState.CANCELED) {

117 throw new IllegalStateException(

118 "Parameters may not be changed while in state " +

state);

119 }

120 }

The method checkStateForResults() is called whenever a result is obtained. Results may
only be obtained when the algorithm is terminated or interrupted (FINISHED or STOPPED).
The method checkStateForSettingParameters() is called whenever a parameter is
changed. Parameters may only be changed if the algorithm object is in the state INITIALIZED.
The method checkStateForSettingVisitors() is called whenever a visitor is added or
removed. Visitors may only be altered if the algorithm object is not in the state RUNNING or
CANCELED.
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Listing 5.8 shows methods called by the execute method for controlling the algorithm object’s
state.

Listing 5.8: State control methods

121 protected void startRunning() {

122 if (state == AlgorithmState.INITIALIZED

123 || state == AlgorithmState.STOPPED) {

124 state = AlgorithmState.RUNNING;

125 } else {

126 throw new IllegalStateException(

127 "The algorithm cannot be started, when in state " +

state);

128 }

129 }

130

131 protected abstract void done();

The method startRunning() is called when the execute method is invoked. It ensures that
it is only invoked if the algorithm is either in the state INITIALIZED or STOPPED and sets it to
RUNNING. The method done() is called when the execute method is finished. This method sets
the state of the algorithm object either to STOPPED or FINISHED. It depends on the algorithm
which state is the correct one.

Listing 5.9 shows methods for registering and unregistering visitors. The method

Listing 5.9: Methods for handling visitors
132 public abstract void addVisitor(Visitor visitor);
133

134 public abstract void removeVisitor(Visitor visitor);

addVisitor(...) registers a visitor with the algorithm object and adds it to its visitor
list. This method throws an exception if the wrong type of visitor is passed. The method
removeVisitor(...) removes a registered visitor from the algorithm object’s visitor list.
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Early termination for algorithms

Listing 5.10 shows methods for handling early algorithm termination.

Listing 5.10: Terminating algorithms

135 public void terminate() throws AlgorithmTerminatedException {

136 if (getState() == AlgorithmState.RUNNING) {

137 done();

138 throw new AlgorithmTerminatedException("Terminated by

algorithm.");

139 } else {

140 throw new IllegalStateException(

141 "The algorithm may only be terminated, when in state "

142 + AlgorithmState.RUNNING);

143 }

144 }

145

146 protected synchronized void cancelIfInterrupted() throws

AlgorithmTerminatedException {

147 if (Thread.interrupted()) {

148 state = AlgorithmState.CANCELED;

149 Thread.currentThread().interrupt();

150 throw new AlgorithmTerminatedException("Thread interrupted.");

151 }

152 }

153 }

The method terminate() terminates the algorithm from inside. It is generally called by vis-
itors and can also be called by the algorithm itself for indicating an early termination. The
AlgorithmTerminatedException is used for aborting the execution of the algorithm. The
method cancelIfInterrupted() indirectly terminates the algorithm from outside. It is
called multiple times by each algorithm that supports external termination. This mechanism
allows users to terminate an algorithm by interrupting the Thread the algorithm runs in. A sup-
porting algorithm has to ensure that this method is called periodically. Currently all algorithms
in Algolib support this feature.

Both termination mechanisms use the same type of exception if the algorithm terminates. Only
the state of the algorithm object allows users to distinguish between the two termination vari-
ants. The external termination always sets the algorithm object in the state CANCELED. The in-
ternal termination invokes the method done() (see below) for setting the correct state, which
is either STOPPED or FINISHED.
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5.3.4.4 The class StructureOrientedAlgorithm

The class StructureOrientedAlgorithm unites all common features of algorithms relying
on the graph structure (they follow the edges during their run). Listings 5.11-5.15 show the
source code of this class. Currently all algorithms in Algolib rely on the graph structure and are
derived from this class. However, there are currently unimplemented graph algorithms that
do not rely on it. For allowing such algorithms to be added to Algolib in the future, the class
StructureOrientedAlgorithm is separated from the class GraphAlgorithm.

Listing 5.11 shows the member variables of StructureOrientedAlgorithm.

Listing 5.11: Member variables

1 public abstract class StructureOrientedAlgorithm extends GraphAlgorithm

implements

2 TraversalSolver {

3 public static final EdgeDirection DEFAULT_TRAVERSAL_DIRECTION =

EdgeDirection.OUT;

4 protected BooleanFunction<Edge> navigable;

5 protected EdgeDirection traversalDirection;

navigable is a function that decides if an edge is navigable independently from the function
subgraph. traversalDirection indicates the direction edges are traversed. The default
value can be found in the constant DEFAULT TRAVERSAL DIRECTION and is set to OUT. The
Java enum EdgeDirection has been described in section 3.1.3 on page 31.

Listing 5.12 shows the constructors of StructureOrientedAlgorithm.

Listing 5.12: Constructors

6 public StructureOrientedAlgorithm(Graph graph) {

7 this(graph, null, null);

8 }

9

10 public StructureOrientedAlgorithm(Graph graph,

11 BooleanFunction<GraphElement> subgraph,

12 BooleanFunction<Edge> navigable) {

13 super(graph, subgraph);

14 this.navigable = navigable;

15 }

In Algolib all graph algorithms provide two constructors. The first one only provides the graph
as durable parameter. The second one provides all durable parameters.

Listing 5.13 shows the getter and setter methods for the function navigable and for
traversalDirection.
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Listing 5.13: Getters and setters

16 @Override

17 public void setNavigable(BooleanFunction<Edge> navigable) {

18 checkStateForSettingParameters();

19 this.navigable = navigable;

20 }

21

22 public void setTraversalDirection(EdgeDirection traversalDirection) {

23 checkStateForSettingParameters();

24 if (!isHybrid()) {

25 if (isDirected() && traversalDirection == EdgeDirection.INOUT)

{

26 throw new UnsupportedOperationException(

27 "This algorithm does not support undirected

graphs.");

28 } else if (!isDirected() && traversalDirection !=

EdgeDirection.INOUT) {

29 throw new UnsupportedOperationException(

30 "This algorithm does not support directed

graphs.");

31 }

32 }

33 this.traversalDirection = traversalDirection;

34 }

35

36 public EdgeDirection getTraversalDirection() {

37 return traversalDirection;

38 }

39

40 public BooleanFunction<Edge> getNavigable() {

41 return navigable;

42 }

setNavigable changes the function navigable. It uses the method
checkStateForSettingParameters() for ensuring that the algorithm object is in
the correct state. setTraversalDirection changes the direction the edges are traversed.
In the case of algorithms that rely on the graph structure, this value also decides if the current
graph is interpreted as directed or undirected graph. The meaning of the possible values was
already introduced in section 3.1.3 on page 31. If a graph algorithm is only capable to work on
either directed or undirected graphs (!isHybrid()), the method throws an exception if the
graph type would be changed. The remaining two methods are simply getter methods.
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Listing 5.14 shows the reset methods for StructureOrientedAlgorithm.

Listing 5.14: Reset methods

43 @Override

44 public void resetParameters() {

45 super.resetParameters();

46 this.navigable = null;

47 this.searchDirection = DEFAULT_SEARCH_DIRECTION;

48 }

Here only resetParameters() is overridden, because StructureOrientedAlgorithm

does not introduce new runtime variables. After calling the method resetParameters()

from GraphAlgorithm, it sets the two durable parameters to their default values.

Listing 5.15 shows some convenience methods for setting the parameter
traversalDirection.

Listing 5.15: Convenience methods

49 public StructureOrientedAlgorithm normal() {

50 setTraversalDirection(EdgeDirection.OUT);

51 return this;

52 }

53

54 public StructureOrientedAlgorithm reversed() {

55 setTraversalDirection(EdgeDirection.IN);

56 return this;

57 }

58

59 public StructureOrientedAlgorithm undirected() {

60 setTraversalDirection(EdgeDirection.INOUT);

61 return this;

62 }

63

64 @Override

65 public boolean isDirected() {

66 return searchDirection != EdgeDirection.INOUT;

67 }

68

69 }

normal() sets traversalDirection to OUT. reversed() sets traversalDirection to
IN. undirected() sets traversalDirection to INOUT. All three methods return this for
convenience. E.g., the algorithm class BreadthFirstSearch can be instantiated with:

BreadthFirstSearch bfs = new BreadthFirstSearch(graph).undirected();
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This creates a new algorithm object that operates on undirected graphs in one line.

5.3.4.5 Example: Search algorithms

This section gives an example on how concrete algorithms are implemented in Algolib. For
this purpose the implementation of search algorithms is shown. As seen in chapter 3, search
algorithms share some parameters and results. They also share some of the runtime variables.
In Algolib this is exploited for creating an abstract class defining all common features of search
algorithms. This class is called SearchAlgorithm. Listings 5.16-5.21 show the source code of
this class.

Listing 5.16 shows the member variables of SearchAlgorithm.

Listing 5.16: Member variables

1 public abstract class SearchAlgorithm extends StructureOrientedAlgorithm

implements

2 TraversalFromVertexSolver, CompleteTraversalSolver {

3 protected Vertex[] vertexOrder;

4 protected Edge[] edgeOrder;

5

6 protected BooleanFunction<Vertex> visitedVertices;

7 protected BooleanFunction<Edge> visitedEdges;

8 protected int num;

9 protected int eNum;

10

11 protected IntFunction<Vertex> level;

12 protected IntFunction<Vertex> number;

13 protected IntFunction<Edge> enumber;

14 protected Function<Vertex, Edge> parent;

vertexOrder and edgeOrder are internal representations of the results.
visitedVertices, visitedEdges, num and eNum are runtime variables, where the
first two are functions for marking which graph elements have already been visited. num

and eNum are counters that are required for the computation of the results. level, number,
enumber and parent are optional results.

The constructors are left out here, because they have the same signatures as the constructors of
StructureOrientedAlgorithm and only delegate to them.

Listing 5.17 shows the methods for handling the optional results.

For each optional parameter there is a method with prefix with for activating its computation
and a method with prefix without for deactivating its computation. They follow the same
convenience schema as the methods normal(), reversed() and undirected(). Optional
results are only computed if their reference is not null. Additionally there is the method
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Listing 5.17: Methods for optional results
15 public SearchAlgorithm withLevel() {
16 checkStateForSettingParameters();
17 level = new IntegerVertexMarker(graph);
18 return this;
19 }
20

21 public SearchAlgorithm withoutLevel() {
22 checkStateForSettingParameters();
23 level = null;
24 return this;
25 }
26 // analogously for number, enumber, and parent
27

28 @Override
29 public void disableOptionalResults() {
30 checkStateForSettingParameters();
31 level = null;
32 number = null;
33 enumber = null;
34 parent = null;
35 }

disableOptionalResults() which can be used for deactivating the computation of all op-
tional results. This method is required to enable the deactivation of optional results in the
method resetParameters() in the class GraphAlgorithm (see listing 5.6 on page 88).

Listing 5.18 shows the reset methods for SearchAlgorithm.

Listing 5.18: Reset methods

36 @Override

37 public void reset() {

38 super.reset();

39 vertexOrder = new Vertex[getVertexCount() + 1];

40 edgeOrder = new Edge[getEdgeCount() + 1];

41

42 visitedVertices = new BitSetVertexMarker(graph);

43 visitedEdges = new BitSetEdgeMarker(graph);

44 num = 1;

45 eNum = 1;

46

47 level = level == null ? null : new IntegerVertexMarker(graph);

48 number = number == null ? null : new IntegerVertexMarker(graph);

49 enumber = enumber == null ? null : new IntegerEdgeMarker(graph);

50 parent = parent == null ? null : new

ArrayVertexMarker<Edge>(graph);

51 }
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Here only the method reset() is overridden, because there are no new parameters in this
class. The arrays vertexOrder and edgeOrder are initialized with the correct length, with
respect to the subgraph. In Algolib, by convention, the index 0 is not used, so the arrays have to
be one element longer than the graph element count. This happens in analogy to the indexing
in JGraLab. The runtime variables are re-instantiated or set to their start value respectively. The
variables for optional results are only re-instantiated if they should be computed.

Listing 5.19 contains methods for retrieving intermediate results. These are mainly required by
visitors. By convention they provide the internal representation of the result without perform-
ing any state checks. This means, intermediate results can always be obtained.

Listing 5.19: Methods for retrieving intermediate results

52 public Vertex[] getInternalVertexOrder() {

53 return vertexOrder;

54 }

55 // analogously for edgeOrder, level, number, enumber, and parent

56

57 public BooleanFunction<Vertex> getVisitedVertices() {

58 return visitedVertices;

59 }

60 // analogously for visitedEdges, num and eNum

For (optional) results, these getter methods contain the infix Internal for distinguishing them
from the getter methods for the results (see listing 5.21). These methods have to be public,
because visitors are not necessarily in the same package as the algorithm class.

Listing 5.20 contains several methods concerning the algorithm itself.

Listing 5.20: Algorithm related methods

61 @Override

62 public boolean isHybrid() {

63 return true;

64 }

65

66 @Override

67 public abstract SearchAlgorithm execute(Vertex root) throws

AlgorithmTerminatedException;

68

69 @Override

70 public SearchAlgorithm execute() throws AlgorithmTerminatedException {

71 for (Vertex currentRoot : graph.vertices()) {

72 execute(currentRoot);

73 if (state == AlgorithmState.FINISHED) {

74 break;

75 }

97



Algolib, a generic algorithm library for JGraLab

76 }

77 assert (state == AlgorithmState.FINISHED);

78 return this;

79 }

80

81 @Override

82 protected void done() {

83 if (state != AlgorithmState.CANCELED) {

84 state = num < getVertexCount() + 1 ? AlgorithmState.STOPPED

85 : AlgorithmState.FINISHED;

86 }

87 }

isHybrid() always returns true, because all search algorithms in Algolib are implemented
to work on directed and undirected graphs. execute(Vertex root) is inherited from the
interface TraversalFromVertexSolver and implements the actual search algorithm that
searches the reachable subgraph from the given vertex root. It is implemented in the concrete
classes for search algorithms. execute() implements the execute method of the problem in-
terface CompleteTraversal. It iterates over all vertices in the order the vertices are stored
in the graph. For each vertex it invokes the execute method of the actual search algorithm
implementation. done() sets the algorithm state after one run of the actual search algorithm
implementation is done according to the number of vertices that have been visited. If all ver-
tices in the subgraph have been visited, the state is set to FINISHED

Listing 5.21 shows the methods for retrieving the results of the search algorithm.

Listing 5.21: Results

89 @Override

90 public Permutation<Vertex> getVertexOrder() {

91 checkStateForResult();

92 return new ArrayPermutation<Vertex>(vertexOrder);

93 }

94 // analogously for edgeOrder

95

96 public IntFunction<Vertex> getLevel() {

97 checkStateForResult();

98 return level;

99 }

100 // analogously for number, enumber, and parent

101 }

These methods return the results in the desired output format. In the case of search
algorithms, the two results vertexOrder and edgeOrder are each wrapped in an in-
stance of ArrayPermutation, which is a convenience class that implements the interface
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Permutation for arrays. If for some reason the actual array is needed, the methods for the
internal representation can still be used. If the internal representation of a result is identical to
the desired output format, which is true for level, number, and parent, the getter methods
for the results are identical to the getter methods for retrieving their internal representation,
except for the state check. This is done for achieving a high level of analogy. In doing this, all
internal representations are treated in the same way and all results are treated in the same way.

The class BreadthFirstSearch

This section shows the implementation of breadth first search using the class
SearchAlgorithm described above. Listings 5.22-5.26 show extracts from the source
code of the class BreadthFirstSearch.

Listing 5.22 shows the member variables.

Listing 5.22: Member variables

1 public class BreadthFirstSearch extends SearchAlgorithm implements

2 TraversalFromVertexSolver {

3

4 private SearchVisitorList visitors;

5 private int firstV;

visitors is the visitor list that stores all visitors for this BFS algorithm. firstV is the runtime
variable that is required to turn the array vertexOrder into a queue (see section 3.3.1.6 on
page 38 for details). Since firstV is a runtime variable, it also has a getter (not shown here),
so visitors can access its value.

The constructors are left out here, because they have the same signatures as the constructors of
SearchAlgorithm and only delegate to them.

The convenience methods for deciding the graph interpretation and the handling of optional
results have to get the correct signature in this class. As an example the method withLevel()

is shown in listing 5.23.

Listing 5.23: Convenience methods

7 @Override

8 public BreadthFirstSearch withLevel() {

9 super.withLevel();

10 return this;

11 }

12 // analogously for the other convenience methods

The return type is changed to BreadthFirstSearch, so users can still operate on an instance
of BreadthFirstSearch instead of SearchAlgorithm. After the method withLevel()

99



Algolib, a generic algorithm library for JGraLab

from SearchAlgorithm is called, the correct this reference is returned. The other conve-
nience methods have to be redefined analogously.

Listing 5.24 shows the reset methods.

Listing 5.24: Reset methods

13 @Override

14 public void reset() {

15 super.reset();

16 firstV = 1;

17 visitors.reset();

18 }

19

20 @Override

21 public void resetParameters() {

22 super.resetParameters();

23 visitors = new SearchVisitorList();

24 }

reset() sets the runtime variable firstV to its initial value and calls the method reset()

for all visitors. resetParameters() re-initializes the visitor list.

Listing 5.25 shows how visitors can be registered with and removed from a BFS algorithm.

Listing 5.25: Registering and removing visitors

25 @Override

26 public void addVisitor(Visitor visitor) {

27 checkStateForSettingVisitors();

28 visitor.setAlgorithm(this);

29 visitors.addVisitor(visitor);

30 }

31

32 @Override

33 public void removeVisitor(Visitor visitor) {

34 checkStateForSettingVisitors();

35 visitors.removeVisitor(visitor);

36 }

addVisitor(...) registers the given visitor with this algorithm. First, this algorithm object
is set as algorithm for the visitor. Then the visitor is added to the visitor list. Please note that
a type check is performed in the method setAlgorithm(...) in the given visitor. Only
the visitor can decide if this algorithm object is compatible. removeVisitor(...) simply
removes the given visitor from the visitor list.
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Listing 5.26 finally shows the actual implementation of the breadth first search. In addition to
the algorithm draft from section 3.3.1.6 on page 3.3.1.6, several implementation specific modi-
fications can be found.

Listing 5.26: The execute method

37 @Override

38 public BreadthFirstSearch execute(Vertex root) throws

AlgorithmTerminatedException {

39 if (subgraph != null && !subgraph.get(root)

40 || visitedVertices.get(root)) {

41 return this;

42 }

43 startRunning();

44 vertexOrder[num] = root;

45

46 if (level != null) {

47 level.set(root, 0);

48 }

49 visitors.visitRoot(root);

50

51 if (number != null) {

52 number.set(root, num);

53 }

54 visitors.visitVertex(root);

55

56 visitedVertices.set(root, true);

57 num++;

58 while (firstV < num && vertexOrder[firstV] != null) {

59 Vertex currentVertex = vertexOrder[firstV++]; // pop

60 for (Edge currentEdge :

currentVertex.incidences(traversalDirection)) {

61 cancelIfInterrupted();

62 if (visitedEdges.get(currentEdge) || subgraph != null

63 && !subgraph.get(currentEdge) || navigable != null

64 && !navigable.get(currentEdge)) {

65 continue;

66 }

67 Vertex nextVertex = currentEdge.getThat();

68 assert (subgraph == null || subgraph.get(nextVertex));

69

70 edgeOrder[eNum] = currentEdge;

71 if(enumber != null){

72 enumber.set(currentEdge, eNum);

73 }

74 visitors.visitEdge(currentEdge);
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75 visitedEdges.set(currentEdge, true);

76 eNum++;

77

78 if (visitedVertices.get(nextVertex)) {

79 visitors.visitFrond(currentEdge);

80 } else {

81 visitors.visitTreeEdge(currentEdge);

82 vertexOrder[num] = nextVertex;

83 if (level != null) {

84 level.set(nextVertex, level.get(currentVertex) +

1);

85 }

86 if (parent != null) {

87 parent.set(currentEdge.getThat(), currentEdge);

88 }

89 if (number != null) {

90 number.set(nextVertex, num);

91 }

92 visitors.visitVertex(nextVertex);

93 visitedVertices.set(nextVertex, true);

94 num++;

95 }

96 }

97 }

98 done();

99 return this;

100 }

101 }

Lines 39-42 ensure that the algorithm is only executed, if the given vertex is part of the sub-
graph and has not been visited yet. This is especially useful for the method execute() from
SearchAlgorithm that implements the complete traversal. Line 43 sets the algorithm object’s
state to RUNNING. The computation of optional results is controlled using null checks (E.g., line
46). They look ugly and inflate the code tremendously, but experiments have shown that they
are very efficient because they practically have no significant overhead. The calls to the visit
methods (e.g., line 49) are done at the working points. Please note that the computation of
(optional) results always occur at the working points and that visitor calls always happen after
the computation of (optional) results. This is done, because most visitors rely on intermediate
results at a specific working point.

The for loop, starting at line 60, iterates over all incident edges filtered by
traversalDirection. In line 61 the method cancelIfInterrupted is called for abort-
ing the algorithm if the current Thread has been interrupted. Lines 62-66 skip the current edge,
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if it has already been visited (this can only occur with undirected graphs), if it is not part of the
subgraph or if it is not navigable.

The rest of the algorithm is in analogy to the draft from chapter 3. The execute method for
complete traversal is redefined in the same way as the convenience methods are.

The implementation of depth first search

Algolib provides two implementations of the depth first search. The common variables
and methods can be found in the class DepthFirstSearch, which is derived from
SearchAlgorithm. Instead of a SearchVisitorList, a DFSVisitorList is used. It de-
clares the runtime variables rNum and rnumber for computing the additional result rnumber.
The functions rnumber and number are mandatory for DFS, because they are needed for dis-
tinguishing between the different frond types. Since SearchAlgorithm declares number

as optional result, DepthFirstSearch has to override this. For doing this, the method
withoutNumber() throw an exception. DepthFirstSearch introduces a new optional re-
sult rorder, which is the inverse function of rnumber.

The only method that is not implemented in DepthFirstSearch, is execute(Vertex

root). The first actual implementation of DFS can be found in the class RecursiveDFS.
It implements the DFS in analogy to the draft from section 3.3.1.7 on page 40. The implemen-
tation specific modifications for subgraph handling, navigability, and optional results are in
analogy to the implementation of BFS.

For large graphs the recursive DFS can cause a StackOverflowError due to an overflow
of the JVM’s implicit call stack. For avoiding this problem, Algolib provides an alternative
implementation for DFS that behaves exactly the same way as the recursive implementation,
but is implemented iteratively. Its class is called IterativeDepthFirstSearch. Instead of
using the implicit call stack, it uses an explicit stack of vertices and a graph marker that assigns
each vertex the information about which incident edges have not been traversed yet1. For
implementing the working point leaveTreeEdge, the information from the function parent
is used, which makes this additional result mandatory for the iterative implementation. The
latter is the only disadvantage of this implementation, because more memory is required. A
user of Algolib can decide which implementation to use.

It is also possible to try running the algorithm with the recursive implementation first and
catch the StackOverflowError. If it occurs, the search can be restarted with the iterative
implementation.

1the explicit iterators for incident edges
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5.3.5 The Implementation of algorithms using other algorithms

In Algolib it is possible to implement algorithms that depend on executing other algorithms.
They behave like normal algorithms but delegate the actual work to the algorithm object of
the algorithm they use. Before they execute the algorithm, they configure it according to their
requirements.

5.3.5.1 Example: ShortestPathsWithBFS

The easiest example in Algolib is the algorithm class ShortestPathsWithBFS. It solves the
problems shortest paths from vertex and distance from vertex. It uses breadth first search with
computing the optional results parent and level (see section 3.3.3 on page 48). Listings
5.27-5.29 show the source code of ShortestPathsWithBFS.

Listing 5.27 illustrates how the reference to the algorithm object of BreadthFirstSearch is
handled.

Listing 5.27: Constructors

1 public class ShortestPathsWithBFS extends StructureOrientedAlgorithm

implements

2 DistanceFromVertexSolver, ShortestPathsFromVertexSolver {

3

4 private BreadthFirstSearch bfs;

5

6 public ShortestPathsWithBFS(Graph graph, BreadthFirstSearch bfs) {

7 this(graph, null, bfs, null);

8 }

9

10 public ShortestPathsWithBFS(Graph graph,

11 BooleanFunction<GraphElement> subgraph, BreadthFirstSearch bfs,

12 BooleanFunction<Edge> navigable) {

13 super(graph, subgraph, navigable);

14 this.bfs = bfs;

15 }

bfs is a member variable of ShortestPathsWithBFS and has to be provided at initialization.
This requires the algorithm object to be instantiated by the user. In doing it that way, the user
has the option to configure the algorithm object before it is used in ShortestPathsWithBFS

for solving another probably custom problem simultaneously (e.g., computing number). The
remaining parameters are delegated to the super class as usual.
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Listing 5.28 shows methods that are inherited from the abstract super classes.

Listing 5.28: Inherited methods

16 @Override

17 public void addVisitor(Visitor visitor) {

18 checkStateForSettingVisitors();

19 bfs.addVisitor(visitor);

20 }

21 // analogously for removeVisitor

22

23 @Override

24 public ShortestPathsWithBFS normal() {

25 super.normal();

26 return this;

27 }

28 // analogously for the other convenience methods

29

30 @Override

31 public boolean isHybrid() {

32 return true;

33 }

The handling of visitors is completely delegated to bfs. The other methods are implemented
as usual.

Listing 5.29 shows the execute method.

Listing 5.29: The execute method

34 @Override

35 public ShortestPathsWithBFS execute(Vertex start) throws

AlgorithmTerminatedException {

36 bfs.reset();

37 bfs.setGraph(graph);

38 bfs.setSubgraph(subgraph);

39 bfs.setNavigable(navigable);

40 bfs.setTraversalDirection(traversalDirection);

41 startRunning();

42 try {

43 bfs.withLevel().withParent().execute(start);

44 } catch (AlgorithmTerminatedException e) {

45 }

46 done();

47 return this;

48 }

49

50 @Override
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51 protected void done() {

52 state = bfs.getState() == AlgorithmState.STOPPED ?

AlgorithmState.FINISHED

53 : bfs.getState();

54 }

Before bfs is executed, its resetmethod is called (line 36) and the parameters are copied (lines
37-40). When executing the algorithm, the optional results are activated using the convenience
methods (line 43). The invocation of the algorithm happens inside of a try-catch block, for
reacting correctly to early algorithm termination. The method done() sets the algorithm state
according to the state of bfs. The only difference is, ShortestPathsWithBFS may enter
FINISHED, even if bfs is only in the state STOPPED.

Listing 5.30 shows the methods for retrieving the results.

Listing 5.30: Results

55 @Override

56 public IntFunction<Vertex> getDistance() {

57 checkStateForResult();

58 return bfs.getLevel();

59 }

60 // analogously for parent

61 }

They are simply delegated to the corresponding results computed by bfs.

5.3.5.2 Adapting Visitors

In Algolib it is possible to create an algorithm using another algorithm and also use a different
type of visitor. The algorithm class TopologicalOrderWithDFS computes a topological or-
der using an instance of DepthFirstSearch. Algolib provides a visitor for visiting vertices in
topological order called TopologicalOrderVisitor. This visitor however, is incompatible
with DepthFirstSearch. In order to use TopologicalOrderVisitors, a DFSVisitor

has to be adapted. Listings 5.31-5.35 show the source code of TopologicalOrderWithDFS.
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Listing 5.31 shows the member variables.

Listing 5.31: Member variables

1 public class TopologicalOrderWithDFS extends StructureOrientedAlgorithm

implements

2 AcyclicitySolver, TopologicalOrderSolver {

3

4 private DepthFirstSearch dfs;

5 private DFSVisitorAdapter torderVisitorAdapter;

6 private boolean acyclic;

7 private TopologicalOrderVisitorList visitors;

dfs is the reference to the depth first search algorithm that is used, in analogy to bfs in sec-
tion 5.3.5.1. torderVisitorAdapter is a reference to the visitor adapter that is declared
and passed to dfs below. acyclic is a result of the algorithm. visitors is a visitor
list for TopologicalOrderVisitor and works in analogy to the other visitor lists shown
in section 5.3.3.2 on page 82. The constructors work in analogy to the constructors from
ShortestPathsWithBFS from section 5.3.5.1 and are not shown here.

Listing 5.32 shows the handling of visitors.

Listing 5.32: Visitors

9 @Override

10 public void addVisitor(Visitor visitor) {

11 checkStateForSettingVisitors();

12 if (visitor instanceof TopologicalOrderVisitor) {

13 visitor.setAlgorithm(this);

14 visitors.addVisitor(visitor);

15 } else {

16 dfs.addVisitor(visitor);

17 }

18 }

19 // removeVisitor is defined analogously

Here the type of visitor is determined for deciding which algorithm object will handle it. Only if
the given visitor is a TopologicalOrderVisitor, it is added to or removed from the visitor
list of this algorithm object, otherwise it is delegated to dfs.

The methods normal() and reversed() are defined in analogy to the methods from
ShortestPathsWithBFS (see listing 5.28 on page 105). The method isHybrid() returns
false, because the problem is only defined for directed graphs.
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Listing 5.33 shows the reset methods.

Listing 5.33: Reset methods

20 @Override

21 public void resetParameters() {

22 super.resetParameters();

23 visitors = new TopologicalOrderVisitorList();

24 torderVisitorAdapter = new DFSVisitorAdapter() {

25 @Override

26 public void visitBackwardArc(Edge e) {

27 acyclic = false;

28 dfs.terminate();

29 }

30

31 @Override

32 public void leaveVertex(Vertex v) {

33 visitors.visitVertexInTopologicalOrder(v);

34 }

35 };

36 this.normal();

37 }

38

39 @Override

40 public void reset() {

41 super.reset();

42 acyclic = true;

43 }

The method reset() sets the result acyclic to true.

The method resetParameters() creates the visitor torderVisitorAdapter as anony-
mous class. It only implements two of the visit methods. In visitBackwardArc(...), the
existence of a cycle is detected, which causes the result acyclic to be set to false and ter-
minates dfs. In leaveVertex(...), the adaptation to TopologicalOrderVisitor hap-
pens. When searching in reversed orientation, the vertices are left in topological order, so the
method visitVertexInTopologicalOrder(...) is called here.

After the declaration of the visitor, the orientation is set to normal, where the orientation of dfs
is set to reversed.
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Listing 5.34 shows the execute method.

Listing 5.34: The execute method

44 @Override

45 public TopologicalOrderWithDFS execute() throws

AlgorithmTerminatedException {

46 dfs.reset();

47 dfs.setGraph(graph);

48 dfs.setSubgraph(subgraph);

49 dfs.setNavigable(navigable);

50 if(traversalDirection == EdgeDirection.OUT){ //normal

51 dfs.reversed();

52 } else { // reversed

53 dfs.normal();

54 }

55 dfs.addVisitor(torderVisitorAdapter);

56 startRunning();

57 try {

58 dfs.withRorder().execute();

59 } catch (AlgorithmTerminatedException e) {

60 }

61 done();

62 dfs.removeVisitor(torderVisitorAdapter);

63 return this;

64 }

65

66 @Override

67 protected void done() {

68 state = dfs.getState();

69 }

The execute method works in analogy to the execute method of ShortestPathsWithBFS.
However, there are two differences. The algorithm operates the depth first search in reverse
orientation. Before the execution of the algorithm, the orientation is adapted accordingly to the
desired orientation. For providing the working point visitVertexInTopologicalOrder,
the visitor torderVisitorAdapter is added to dfs before its execution. After the execution
it is removed from dfs. This is one reason, why visitors can be altered in the states STOPPED
and FINISHED.

After the execution, the method done() copies the state from dfs. This is correct, because dfs
searches in the whole graph.
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Listing 5.35 shows the getter methods for the results.

Listing 5.35: The getter methods for the results

70 @Override

71 public Permutation<Vertex> getTopologicalOrder() {

72 checkStateForResult();

73 return dfs.getRorder();

74 }

75

76 @Override

77 public boolean isAcyclic() {

78 checkStateForResult();

79 return acyclic;

80 }

81 }
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6 Using Algolib

Before the implementation of Algolib is described, this chapter gives some examples on how
graph algorithms, provided by Algolib, are used. The purpose is to motivate JGraLab users to
use Algolib’s algorithms instead of implementing a domain specific variant of an algorithm.

6.1 Routing in JGStreetMap

Before Algolib was introduced, graph algorithms had to be implemented for specific domains.
One of these domains is the project JGStreetMap ( [Zie]). This project uses the data provided by
the open street map project1(OSM) for routing. OSM is a software for demonstrating a practical
use of JGraLab.

6.1.1 The OSM project

The open street map project (OSM project) is a project who’s goal is generating a free map of
the world for everyone. Anyone, owning a GPS device, can contribute to the project by adding
new data to the map. The map itself is stored in a database. It is possible to export parts from
this database in several formats, including xml. The exported data can be used for several
purposes, including rendering a map. E.g., the OSM project itself uses Mapnik2 for rendering
the maps shown on their websites.

6.1.1.1 OSM graphs in JGraLab

JGStreetMap can import the OSM xml files and transform them to TGraphs. The imported
graph contains the nodes and relations that are declared in the xml file. Figure 6.1 shows a part
of the OSM schema. It only contains the classes that are needed for importing the graph from
the xml file.

The data in the OSM database mainly consists of Nodes. The attributes of the graph element
classes are taken directly from the OSM data model. The most important part of OSM’s data

1http://www.openstreetmap.org (December 2010)
2http://mapnik.org/ (December 2010)
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Figure 6.1: Part of the OSM schema for the imported data

model is the map of tags in OsmPrimitive. Here, all relevant data for classifying the ele-
ments of the map can be found.

Streets are modeled by vertices of the type Way. Since the streets are modeled by vertices
instead of edges, a computation of shortest paths with standard algorithms is not possible
using this model. So the OSM schema has been extended with a class Segment, which allows
edges between Nodes that can be used for routing with standard algorithms. Figure 6.2 shows
this extension.

Figure 6.2: Part of the OSM schema for routing

The types Node and Segment are the only relevant types for routing. The enumeration
SegmentType classifies the type of way that is represented by a segment. This information
is taken from the map of tags in the represented Way. The other vertex and edge classes from
figure 6.1 are only relevant for rendering the map.
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6.1.1.2 Routing in OSM graphs

JGStreetMap ships with an implementation of the Dijkstra algorithm, which is used for com-
puting the shortest paths, representing shortest routes, in OSM graphs. An OSM graph is
generally interpreted as undirected graph. This is done for minimizing the number of gener-
ated segments. However, some edges are interpreted as directed edges. It is especially true
for segments representing a one-way road. For segments representing one-way roads, the class
Segment has the attribute oneway. Only if this attribute is true, the edge is interpreted as
directed edge. Furthermore many segments are not important for routing. E.g., when comput-
ing a route for driving by car, the segments representing footways are ignored. JGStreetMap
computes routes for driving by car by default. Alternatively it is possible to compute routes for
riding a bike and for walking. In the following, routes for driving by car are assumed.

The information, which segments are relevant, the edge direction interpretation and the edge
weight function are directly embedded into the implementation. As a consequence, this imple-
mentation of Dijkstra is hardly reusable. So it is feasible to have a reusable implementation of
Dijkstra, that can also be used in the domain of JGStreetMap. The following section shows how
Algolib’s implementation of Dijkstra can be used in JGStreetMap.

6.1.2 Adjusting Algolib for JGStreetMap

Algolib also ships with an implementation of the Dijkstra algorithm. However, this implemen-
tation is very generic and has to be configured properly for using it with JGStreetMap.

6.1.2.1 Defining the subgraph

The schema introduced above suggests that an instance of an OSM graph contains more graph
elements than needed for routing. For filtering relevant graph elements, Algolib provides the
concept of subgraphs (see chapter 4). Subgraphs can either be defined by a graph marker or
by a wrapped method call. Since creating a graph marker takes some time (O(max(m,n))) and
the definition of a proper subgraph for this domain can be defined by a simple predicate, a
wrapped method call is used. Listing 6.1 shows how this can be defined in Algolib.

Listing 6.1: The subgraph definition for OSM graphs

1 private static BooleanFunction<GraphElement> subgraph = new

MethodCallToBooleanFunctionAdapter<GraphElement>() {

2 @Override

3 public boolean get(GraphElement parameter) {

4 return parameter.getM1Class() instanceof Segment

5 || parameter.getM1Class() instanceof Node;

6 }

7 };
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When using this subgraph, only the vertices of type Node and the edges of type Segment are
considered.

6.1.2.2 Defining the navigability

As mentioned above, not all segments are relevant for routing and some edges are treated
differently (e.g., edges representing one-way roads). For deciding whether an edge is navigable
or not, Algolib allows defining a function navigable. For the OSM domain, this function has to
ensure that only specific segments are navigable and that some segments are treated differently.
Listing 6.2 shows the definition of the function navigable for OSM graphs when computing
routes for driving by car.

Listing 6.2: The navigable definition for OSM graphs

8 private static BooleanFunction<Edge> navigable = new

MethodCallToBooleanFunctionAdapter<Edge>() {

9

10 private Set<SegmentType> relevantTypes;

11 {

12 relevantTypes = new HashSet<SegmentType>();

13 // fill with relevant types ...

14 }

15

16 @Override

17 public boolean get(Edge parameter) {

18 if(parameter instanceof Segment)

19 Segment currentSegment = (Segment) parameter;

20 return relevantTypes.contains(currentSegment.get_wayType())

21 && (currentSegment.isNormal() || !currentSegment

22 .is_oneway());

23 } else {

24 return false;

25 }

26 }

27

28 };

For filtering out irrelevant segment types, simply a set of relevant segment types is used. The
more interesting part is the way segments are treated differently. Lines 20 and 21 ensure that
relevant segments with normal edge orientation are always considered, whereas reversed ori-
ented segments are only considered, if the segment does not model a one-way road (line 22).
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6.1.2.3 Defining the edge weight

Algolib’s implementation of the Dijkstra algorithm needs to know the weight of each relevant
edge. JGStreetmap provides several possible weights, but for simplicity reasons, only the
length of a segment is taken as example. The type Segment has an attribute length that
contains the length of the segment in meters. The weight function, for this example, is sim-
ply a wrapped method call that delegates to the getter of this attribute. Listing 6.3 shows this
wrapper.

Listing 6.3: The edge weight function

29 private static DoubleFunction<Edge> edgeWeight = new

MethodCallToDoubleFunctionAdapter<Edge>() {

30

31 @Override

32 public double get(Edge parameter) {

33 return ((Segment) parameter).get_length();

34 }

35

36 };

6.1.2.4 Executing the algorithm

Now finally Algolib’s implementation of Dijkstra can be run with the information provided
above. Listing 6.4 shows how this is done.

Listing 6.4: Running Dijkstra

37 DijkstraAlgorithm dijkstra = new DijkstraAlgorithm(graph, subgraph,

38 navigable, edgeWeight).undirected();

39 try {

40 dijkstra.execute(start);

41 } catch (AlgorithmTerminatedException e) {

42 }

43 Function<Vertex, Edge> parent = dijkstra.getParent();

graph is a reference to an OSM graph instance. start is a reference to the start node. During
the instantiation of the algorithm object, all required functions are passed as parameters. After
the instantiation, the algorithm object is configured for interpreting the graph as undirected
graph. The desired result is the function parent. It describes a tree containing all shortest
paths from the start node to any reachable node. It can be used for deriving an actual path to a
reachable destination.
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6.1.3 Speed comparison

In order to show the efficiency of Algolib’s generic approach, a speed comparison between
JGStreetMap’s built-in implementation of Dijkstra and Algolib’s generic implementation of Di-
jkstra was performed. The results of this comparison are shown in this section. Furthermore,
the overhead of adding visitors to Algolib’s implementation of Dijkstra was analyzed.

6.1.3.1 Setup

For measuring the runtime of a variant implementation of Dijkstra, multiple runs have been
performed, and the final result was determined by the mean of the durations for each run.
More specifically, 150 runs have been made per variant. The final result was calculated based
on the mean of all results ignoring the 8 lowest (roughly 5%) and 30 (roughly 20%) highest
results. The latter was necessary because some runs of JGStreetMap’s internal implementation
of Dijkstra have been disturbed by the garbage collector, resulting in extremely high duration
values (e.g., 6 seconds instead of 0.7 seconds).

The input graph was an older map of Rhineland-Palatinate that has been imported using
JGStreetMap’s importer for OSM-XML files. The number of graph elements for this graph
is 3301351, with 900870 vertices and 2400481 edges. The number of graph elements relevant for
computing shortest routes for driving by car is 826770 with 402920 nodes and 423850 segments.
All measurements have been made for the same start node, which is located at the University
of Koblenz.

A program was written which executed the different implementations one after another,
recorded the results and computed the final result. The tested implementations included the
implementation of Dijkstra, that ships with JGStreetmap, a variant of this implementation us-
ing a different set of graph markers (see section 6.1.3.2 for details) and finally the generic im-
plementation of Dijkstra, that is included in Algolib. The latter was measured with different
numbers of empty visitors (0 up to 15) for judging the overhead created by visitors.

The system executing the measuring program was an AMD Phenom II X4 with 3GHz and 4GB
of RAM running a 64 bit version of Ubuntu 10.04. It was executed directly from within Eclipse
with a maximum heap size of 3GB.

6.1.3.2 Results

Table 6.1 contains the results of the comparison between the implementation of JGStreetMap’s
and Algolib’s implementation of the Dijkstra algorithm.

JGStreetMap’s original implementation of Dijkstra runs slower than Algolib’s generic imple-
mentation. It also required the usage of the garbage collector more frequently than Algolib’s
implementation. The reason for both is the handling of temporary attributes. Both approaches
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use graph markers, but Algolib’s implementation uses one graph marker per temporary at-
tribute and JGStreetMap’s uses one graph marker for all temporary attributes. This one graph
marker marks the graph elements with tuples containing the values for the attributes. An
instance of such a tuple requires the overhead of creating objects and destroying them. The
former causes the additional runtime and the latter causes the garbage collector to be called
more frequently.

For a fairer comparison, a variant of JGStreetMap’s implementation has been created, that uses
multiple graph markers for avoiding the tuples. The runtime result for this variant can be
found in the rightmost column of table 6.1.

The runtime measurement shows that a domain specific implementation can be faster than
Algolib’s generic implementation, if the former is implemented properly. However, the generic
implementation is sufficiently fast for competing with the domain specific implementation.

The overhead of visitors

One of Algolib’s biggest advantages over domain specific implementations is the extendability
with visitors. Naturally, adding visitors slows down the runtime of algorithms supporting
them.

The Dijkstra algorithm supports the GraphVisitor and thus is extendible at two working
points. Figure 6.3 illustrates the runtime increase when adding empty visitors to the algorithm.
The runtime increases linearly according to the number of visitors.

Please note that this measurement only considered the overhead caused by visitors. When
using actual visitors, the actual runtime increase will be higher, depending on the task that is
performed by the visitor. Also note that the slope of the runtime increase will be steeper for
algorithms with more than two working points. If a visitor increases the asymptotic complexity
of an algorithm, the runtime increase will not remain linear.

This measurement shows that Algolib’s visitor concept keeps the overhead caused by visitors
fairly low. Even after adding 15 visitors to an algorithm, which is expected to be a rare case,
the runtime is less than twice the runtime of the algorithm without visitors.

JGStreetMap original Algolib without visitors JGStreeMap variant
756.21 ms 597.45 ms 469.63 ms

Table 6.1: Mean runtime of different implementations of the Dijkstra algorithm (in ms)
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Figure 6.3: Runtime increase when adding visitors
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7 Extending Algolib

Chapter 5 gave an overview on how algorithms are implemented in Algolib. Even though some
rules for algorithm creation are denoted, no concrete rules have been phrased. So this chapter
uses the information from chapter 5 for creating rules that have to be followed by developers
who want to extend Algolib with further problems and algorithms.

Section 7.1 lists all rules for creating new problem interfaces. Section 7.2 lists all rules for creat-
ing new algorithm classes. Section 7.3 lists all rules for using visitors. Section 7.4 lists all rules
for creating new visitors.

7.1 Rules for creating problem interfaces

This section introduces the rules for creating new problem interfaces.

• Problem interfaces have to be placed in the package problems.
• The name of a problem interface has to include the problem name and has to contain the

suffix Solver.
• All problem interfaces have to be derived from ProblemSolver (directly or indirectly).
• The Javadoc of a problem interface has to contain:

– information whether the problem is defined for both directed and undirected graphs
or only one of them,

– the description of all further input parameters that are not specified by
ProblemSolver or the information that there are no further parameters, and

– the description of all results.
• The Javadoc of a durable parameter’s setter method may contain implementation specific

information (e.g., what happens if the parameter is set to null).
• The Javadoc of a results’s getter method may also contain implementation specific infor-

mation (e.g., what happens if the method is called in the wrong state).
• The Javadoc of the execute method may contain further information about

the transient parameters and should describe the functionality of the
AlgorithmTerminatedException.

Listing 7.1 shows the problem interface TraversalFromVertexSolver as an example for
the rules above.
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Listing 7.1: Example of a problem interface
1 /**
2 * The problem <b>traversal from vertex</b> is defined for directed and
3 * undirected graphs. The only further input parameter is the <i>start
4 * vertex<\i>. The results are a <i>permutation of vertices<\i> and a
5 * <i>permutation of edges</i> of the reachable subgraph from the start
6 * vertex.
7 */
8 public interface TraversalFromVertexSolver extends TraversalSolver {
9 /**

10 * Solves the problem <b>traversal from vertex</b>.
11 * @param root
12 * the vertex to start the traversal at
13 * @return this algorithm object
14 * @throws AlgorithmTerminatedException
15 * if this algorithm terminates before the actual
16 * execution is completed. This can happen from
17 * inside (early termination) or from outside
18 * (Thread interruption). The algorithm state
19 * changes accordingly.
20 */
21 public TraversalFromVertexSolver execute(Vertex root) throws

AlgorithmTerminatedException;
22

23 /**
24 * Retrieves the result <code>vertexOrder</code> as permutation of
25 * vertices.
26 *
27 * @return the result <code>vertexOrder</code>.
28 * @throws IllegalStateException
29 * if the result is requested without being available
30 */
31 public Permutation<Vertex> getVertexOrder();
32 // getEdgeOrder() analogously
33 }

Please note that the parameters graph, subgraph, and navigable are inherited from the
super interfaces ProblemSolver and TraversalSolver and therefore not described in this
interface.

7.2 Rules for creating algorithm classes

This section introduces the rules for creating new algorithm classes.

General rules

• Algorithm classes have to be placed in the package algorithms.
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• An algorithm class has to be placed in the subpackage of the problem group it belongs to.
If such a subpackage does not exist yet, a new subpackage should be created for it.
• The name of an algorithm class has to contain the name of the algorithm it implements

with the suffix Algorithm (e.g., WarshallAlgorithm). Search algorithms may have
the suffix Search instead. Algorithms using other algorithms are named after one prob-
lem they solve1 and the algorithm they use (e.g., StrongComponentsWithDFS).
• Algorithm classes have to be derived from GraphAlgorithm (directly or indirectly).
• Algorithm classes have to implement all corresponding problem interfaces of problems

they solve. The execute methods of the problem interfaces should be compatible, mean-
ing they should have the same parameter list. E.g., KahnKnuthAlgorithm implements
AcyclicitySolver and TopologicalOrderSolver. Exceptions may occur for sim-
ilar problems with slightly different execute methods (e.g., DijkstraAlgorithm).
• Each algorithm class has to provide at least two constructors. The first constructor may

only takes durable parameters that cannot be set to a default value. In all cases this
includes a reference to the graph. If an algorithm class depends on another algorithm
class, this constructor also takes an instance of the required algorithm. The second con-
structor takes all durable parameters. If the class does not introduce new parameters,
the constructors may simply delegate their calls to the superclass. If new parameters are
introduced, the first constructor should delegate to the second setting all additional pa-
rameters to null. In this case only the second constructor delegates to the superclass’
constructor.
• An algorithm class should have a reference to one visitor list of the matching visitor type.
• Each algorithm class should override the methods reset() and resetParameters().

In these methods, the first statement has to be a call to the corresponding method of the
superclass, because these methods handle the state checks in the class GraphAlgorithm.
The method resetParameters() sets all durable parameters to their default values.
So for newly introduced durable parameters this behavior has to be implemented. The
method reset() has to be implemented so it initializes all runtime variables. Please
note that both methods are called implicitly by the constructor of GraphAlgorithm,
which is called before the constructors of actual algorithm classes. This means, ac-
cessing member variables, that are not initialized by these methods, would cause a
NullpointerException and has to be avoided.
• Every execute method always returns this. The execute method’s return type is always

the concrete algorithm class. If an algorithm class inherits an execute methods (e.g., con-
crete search algorithms inherit the execute method for complete traversal), this method
has to be overridden with the correct return type, delegate the call to the superclass and
finally return this.

1This should be the most important problem, e.g., TopologicalOrderWithDFS also solves the problem acyclic-
ity, but the problem topological order is considered more important. The choice however is made by the developer
of the algorithm class.
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• The method isHybrid() has to be implemented for telling whether the algorithm is
able to work on directed and undirected graphs or only on one of them.
• The method isDirected() has to be implemented for telling whether the algorithm is

(currently) working on a directed or undirected graph.

Rules for parameters, runtime variables and results

• Setter methods for durable parameters have to check the state first. The method
checkStateForSettingParameters() should be used for this purpose.
• All runtime variables have to be made accessible through getters. If a runtime variable is

an internal representation of a result, the getter method must have the infix Internal.
If the internal representation of a result is identical to the result type (e.g., the function
number in search algorithms), nevertheless there has to be a getter method for the run-
time variable. There is no state check required for runtime variables.
• All results (mandatory or optional) have to be made accessible through getter

methods. These getter methods have to provide a state check. The method
checkStateForResult() should be used for this purpose.
• Every optional result requires two convenience methods for enabling and disabling its

computation. These methods have the prefixes with or without respectively. Since the
decision, if a specific optional result should be computed or not, is considered a durable
parameter, the convenience methods for optional results have to perform the correspond-
ing state check using the method checkStateForSettingParameters(). These con-
venience methods always return this and use the concrete type of the algorithm class as
return type (in analogy to the execute method). This also means inherited convenience
methods have to be overridden and adapted to the specialized class. By convention, the
computation of an optional result is controlled by the instantiation of its internal represen-
tation. If it not instantiated (null), the corresponding optional result is not computed. If
optional results are possible, the method disableOptionalResults() has to be over-
ridden and implemented so it sets all internal representations of optional results to null.
This method is also called by the method resetParameters() from GraphAlgorithm

for disabling all optional parameters by default.

Rules for the actual algorithm implementation

• The methods startRunning() has to be called at the beginning and done() has to be
called in the end of the execute method.
• The method done() must be overridden to set the algorithm state correctly after the

algorithm terminated (either STOPPED or FINISHED)
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• Whenever a graph element is accessed, the function subgraph has to be consulted first,
if it is set. This means, first a null-check has to be performed on this function, followed
by querying it in case it is not null, before actually accessing the graph element.
• Every algorithm that supports visitors, has to provide working points for each visit

method of the visitor they are compatible with. If these working points include steps
for the computation of (optional) results, these have to be performed before the corre-
sponding visit method is called. This is important for visit methods in order to benefit
from intermediate results.
• Every working point should be placed, so it is at most called once per graph element.
• Whenever an optional result is computed, a null-check has to ensure that its computa-

tion is actually activated.

The implementation of the breadth first search (listing 5.26 on page 101) is a good example for
these rules.

Rules for algorithms relying on the graph structure

• Algorithms relying on the graph structure have to be derived from
StructureOrientedAlgorithm for retrieving the durable parameter navigable.
• The function navigable has to be used in addition to subgraph for deciding whether

an edge is navigable or not. This function may be null and has to be handled analo-
gously to subgraph.
• The inherited convenience methods normal(), reversed() and undirected()

have to be overridden and adapted in analogy to the convenience methods for
optional results. If the algorithm only works on directed graphs, the method
undirected() does not need to be overridden, because the implementation in
StructureOrientedAlgorithm handles this. In analogy, if the algorithm only works
on undirected graphs, the methods normal() and reversed() do not need to be over-
ridden.
• For algorithms that work for both, directed and undirected graphs, the member variable
traversalDirection should be used for deciding which incident edges are consid-
ered. While doing this, it has to be ensured that each edge is handled only once per
working point. This can be done by a graph marker that stores which edges have already
been visited (e.g., the search algorithms use such a graph marker).

Rules for creating algorithms using other algorithms

An example for algorithms that use other algorithms has been shown in section 5.3.5.1 on
page 104. Here the rules for creating such algorithms are summarized. When an algorithm
a is implemented using an algorithm b, a is called the dependent algorithm and b is called the
required algorithm in the following.
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• The name of a dependent algorithm class has to include the name of the required algo-
rithm (e.g., StrongComponentsWithDFS).
• An instance of the required algorithm class has to be passed to the dependent algorithm

class’ constructor.
• The dependent algorithm can have a compatible visitor type which does not

match the visitor type that is expected by the required algorithm class (e.g.,
TopologicalOrderVisitor in TopologicalOrderWithDFS). So the dependent al-
gorithm class only handles its own visitor type and delegates other visitors to the required
algorithm object. This happens in the method addVisitor(...) and requires a type
check. If the algorithm class does not have such a visitor type, the visitors are simply
passed to the algorithm object of the required algorithm class. Section 7.3 contains more
information about visitor types of dependent visitors and how they are used in the algo-
rithm.
• Dependent algorithm classes are not allowed to declare methods for delegating the set-

ting of parameters to the required algorithm object. This also includes the delegation of
convenience methods. Doing this would cause too much confusion when using these al-
gorithms. It would also require to define methods for delegating results that are not com-
puted by the dependent algorithm. If calling these methods is required, this can happen
before the algorithm object of the dependent algorithm is created. E.g., if the algorithm
ShortestPathsWithBFS is executed and the required BFS should also compute the op-
tional result level, this can be achieved by calling the method withLevel() before the
instance of ShortestPathsWithBFS is created. The result level can only be returned
by the instance of BreadthFirstSearch because the getter methods for results of the
required algorithm objects are generally not delegated.
• The methods reset() and resetParameters() of the dependent algorithm class

are not allowed to delegate to the corresponding methods from the required algo-
rithm class. The required algorithm object is a member variable. Accessing it in
resetParameters() would cause a NullPointerException, because it is called in
the constructor of GraphAlgorithm, which is called before the constructor of the depen-
dent algorithm class is executed.
• The execute method of a dependent algorithm class sets up the algorithm object of the

required algorithm so it can solve the problem. This includes
– resetting,
– copying (or adapting2) the parameters from the dependent algorithm (e.g., the

graph),
– enabling optional results that are required for the computation,
– registering a visitor adapter (see section 7.3),
– call startRunning() and execute() for the required algorithm object,
– call the method done(), and finally

2E.g., in TopologicalOrderWithDFS the traversal direction is inverted.
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– remove the visitor adapter that was registered earlier.
• The method done() has to set the final state of the dependent algorithm object using the

final state of the required algorithm object. In most of the cases it can be just copied, but
it depends on the algorithm (e.g., in ReachabilityWithSearch it is set to FINISHED

even if the search algorithm is in the state STOPPED).
• The getter methods for results can delegate to getter methods of the required algorithm

object if the result of the required algorithm corresponds to a result of the dependent
algorithm. If the result was computed in runtime variables of the dependent algorithm
object, the getter methods are implemented in the same way as for normal algorithm
classes. In both cases a call to checkStateForResult() is required.

7.3 Rules for using visitors

This section describes how visitors are actually used in Algolib. Using a visitor means imple-
menting a visitor interface (e.g., by creating a subclass of a visitor adapter class) and registering
an instance with an algorithm object.

• The method setAlgorithm(...) has to check if the passed algorithm is compatible
with the visitor, even if it does not need to access its runtime variables. The method
addVisitor(...) from GraphAlgorithm relies on this check. If a reference to the
algorithm is required, it has to be set in this method. If the algorithm is compatible,
the method reset() has to be called for (re-)initializing the visitor’s runtime variables.
When using SearchVisitor or DFSVisitor, this method is already implemented in
the corresponding visitor adapter classes. The attribute algorithm is used for accessing
the algorithm object of SearchAlgorithm or DepthFirstSearch respectively.
• The method reset() works in analogy to the corresponding method from
GraphAlgorithm. It initializes all runtime variables used by the visitor.
• Only the required visit methods have to be overridden.
• If the visitor uses runtime variables, it needs to provide getter methods for them. This

happens in analogy to the getter methods of runtime variables in algorithm classes and
allows dependent visitors to access them.
• If the visitor depends on another visitor, its constructor has to take the required visitor

and set a reference to it. Also the documentation of such a visitor has to clarify this
dependency relation.
• If the visitor computes a result, it has to provide a getter method for this result. It has to

call the method checkStateForResult() from the algorithm object before returning
the result.
• When registering visitors with an algorithm that include dependency constraints, the

user is responsible for registering them in correct order. Required visitors have to be
registered before their dependent visitors are registered.
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Visitors adapting other visitors

As mentioned above, algorithms classes depending on other algorithm classes generally have
a visitor type of their own matching the problem they solve. In general this visitor type is
incompatible with the required algorithm class. For such algorithms, a special visitor, which is
compatible with the required algorithm class, has to adapt the calls to the visitor list containing
the visitors of the dependent algorithm class. Section 5.3.5.2 on page 106 shows an example for
it.

• An adapting visitor should be declared as anonymous nested classes for accessing the
runtime variables of the dependent algorithm. It implements the interface of visitors
compatible with the required algorithm. In doing it that way, the adapting visitor can
also access the runtime variables of both, the dependent and the required algorithm class.
• The implemented visit methods can call the visit methods of the visitor list declared in

the dependent algorithm class.
• The adapting visitor object has to be registered with the algorithm object of the required

algorithm class before the execute method of the required algorithm object is called.
• The adapting visitor has to be removed from the required algorithm object after the

method done() was called.

In Algolib currently the algorithm classes

• ShortestPathsWithBFS,
• ReachabilityWithSearch,
• TopologicalOrderWithDFS and
• StrongComponentsWithDFS.

use adapting visitors

7.4 Rules for creating new visitor interfaces

This section describes the rules for creating a new visitor interface.

• The new visitor interface has to be derived from the interface Visitor (directly or indi-
rectly).
• New visitors require the definition of a visitor adapter that implements all inherited meth-

ods as empty stubs. If the new visitor interface is indirectly derived from Visitor, it has
to be derived from the visitor adapter belonging to the interface it is directly derived from
(e.g., SearchVisitorAdapter is directly derived from GraphVisitorAdapter, be-
cause SearchVisitor is derived from GraphVisitor.
• They also require the definition of a visitor list in analogy to the other visitor lists that can

be found in Algolib. This includes:
– deriving it from the corresponding visitor list in analogy to the visitor adapter,

126



Algolib, a generic algorithm library for JGraLab

– defining a list of visitors that does not allow duplicate entries,
– initialize the list as array list in the constructor,
– checking the type of a visitor before it is added,
– passing the added visitor to the superclass of the visitor list and
– implementing the visit methods by iterating through all visitors in the ArrayList

using their index instead of an iterator.
The implementations of the visitor lists that are already defined can serve as orientation
for implementing a custom visitor list.

Listing 7.2 shows the visitor list for SearchVisitor.

Listing 7.2: The visitor list of SearchVisitor

1 public class SearchVisitorList extends GraphVisitorList implements

2 SearchVisitor {

3

4 private List<SearchVisitor> visitors;

5

6 public SearchVisitorList(){

7 visitors = new ArrayList<SearchVisitor>();

8 }

9

10 @Override

11 public void addVisitor(Visitor visitor) {

12 super.addVisitor(visitor);

13 if (visitor instanceof SearchVisitor) {

14 if (!visitors.contains(visitor)) {

15 visitors.add((SearchVisitor) visitor);

16 }

17 }

18 }

19

20 @Override

21 public void removeVisitor(Visitor visitor) {

22 super.removeVisitor(visitor);

23 if (visitor instanceof SearchVisitor) {

24 visitors.remove(visitor);

25 }

26 }

27

28 @Override

29 public void clearVisitors() {

30 super.clearVisitors();

31 visitors.clear();

32 }

33
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34 @Override

35 public void visitFrond(Edge e) throws AlgorithmTerminatedException {

36 int n = visitors.size();

37 for (int i = 0; i < n; i++) {

38 visitors.get(i).visitFrond(e);

39 }

40 }

41

42 // the other visit methods are declared analogously

43 }

The method addVisitor(...) shows how to ensure that no duplicate entries are added to
the list. Using an array list also preserves the relative order of the added visitors.

The remaining methods show how the other rules from above should be applied. By not using
iterator objects the runtime efficiency is significantly improved, because otherwise for each visit
method a creation of a visitor object would be required.
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8 Summary

This final chapter concludes this mid-study thesis. In section 8.1, it is evaluated if the goals
from section 1.3 on page 15 have been reached with the implementation of Algolib. Finally
section 8.2 predicts some future work based on Algolib.

8.1 Evaluating the goals

8.1.1 Generic nature

The first goal was the generic nature of Algolib. This included the capability of adjusting an
algorithm to arbitrary domains. This goal was reached by introducing several optional param-
eters to all graph algorithms.

The most important one is the parameter subgraph, which allows all algorithms to run on sup-
graphs. Chapter 6 showed that a subgraph can be declared as a simple method call.

The other important parameters are navigable for all structure oriented algorithms and edge
weight for all algorithms working on edge weighted graphs. Furthermore many algorithms
allow the user decide if the graph is interpreted as directed or undirected graph. So-far, all
structure oriented algorithms, operating on directed graphs, allow for operating in reverse edge
direction, which allows interesting applications (e.g. the online computation of a topological
order using DFS).

Taking all this into consideration, Algolib’s graph algorithms are applicable to many domains
where these graph algorithms can be used for solving domain specific problems. So they are
sufficiently generic for reaching this goal.

8.1.2 Extensibility

The second goal was the extensibility of Algolib. This means the ability of the algorithms for
solving problems they are normally not designed to solve.

Algolib addresses this by using optional visitor objects for computing additional results during
an algorithm run. Several examples have been shown, how the visitor objects are used for
this purpose (e.g. the computation of strong components using DFS). At least those algorithms
supporting visitor objects, which is the majority, can be called extensible.
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Algolib itself is also extensible, because one result of this thesis is a rule-set for creating further
graph algorithms and adding them to Algolib.

So this goal has also been reached.

8.1.3 Efficiency

The final goal of Algolib was being fast (meaning efficient).

This goal addresses two aspects. Firstly, Algolib’s algorithms, that have been adjusted to specific
domains, are required to be similarly fast in comparison to a domain specific implementation
of corresponding algorithms. Secondly, Algolib’s overhead for adding visitors has to be kept
low in order to remain this efficiency even when extending an algorithm.

Both aspects have been analyzed in chapter 6. The first result was, specialized graph algo-
rithms are sometimes implemented less efficient then expected. The second result was, if im-
plementing specialized algorithms properly, Algolib still performs well in comparison. It is far
from taking twice as much time as a specialized implementation. The third result was, the im-
plementation of visitors has been done sufficiently efficient. The overhead, when running an
algorithm with several visitors, is fairly low. When adding more visitors, the growth is linear
and the slope is low.

Taking the example form chapter 6 into consideration, it is possible to say that the goal of
efficiency has been reached.

8.2 Future work

of Professor Ebert Algolib so-far does not include all important graph algorithms. So the obvi-
ous future work is including further algorithm implementations into the library.

Currently only a few domains with domain-specific algorithm implementations exist.
Those could be replaced by their Algolib counterparts. Especially the implementation of
JGStreetMap’s Dijkstra should be replaced by Algolib’s implementation.

The working group for Software Technology at the university of Koblenz, especially Daniel
Bildhauer, is currently doing some research on so-called Distributed Hieracical Hyper-TGraphs
(DHHT graphs) [BE11]. Algolib could be adjusted to those graphs, e.g. for supporting parallel
search on distributed graphs.
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8.3 Conclusion

Algolib is a complex, but useful enrichment for JGraLab. The work on it was fun, but it took
longer than initially expected. A very hard part was dissolving friction between the conception
and the implementation of the graph algorithms.

I learned much about graphs and graph algorithms, which I consider valuable knowledge.
Even though this work took so much time, I am satisfied with the final result.
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