

Fachbereich 4: Informatik Institut für Wirtschafts- und

Verwaltungsinformatik

Methods to visualize ontology

Bachelor Thesis

To obtain the degree Bachelor of Science in Information Management

Submitted by

Vivek Srivastava

Matriculation number: 202120817

First supervisor: Prof. Dr. Maria A. Wimmer
Research Group eGovernment

Second supervisor: Christian Schneider

Research Group eGovernment

Koblenz, 14th July 2011

ii

Erklärung
Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die
Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde
vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde.
Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als
solche gekennzeichnet.

Die Richtlinien der Forschungsgruppe für Qualifikationsarbeiten habe ich gelesen
und anerkannt, insbesondere die Regelung des Nutzungsrechts.
Mit der Einstellung dieser Arbeit in die Bibliothek bin ich
einverstanden

Ja [x] Nein []

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. Ja [x] Nein []

Koblenz, den 14.07.2011

Vivek Srivastavat

iii

Dedicated to My

Master

H.H. Paramsant Dr. Chaturbhuj Sahaiji

iv

Zusammenfassung

Wir leben in einer Welt, in der sich die Menge von Informationen nicht bloß
vergrößert, sondern geradezu explodiert. Mehr und mehr Informationen sind
verfügbar und nur einen Klick entfernt. Auf der einen Seite ergeben sich aus dieser
Informationsexplosion neue Herausforderungen, die dann auf der anderen Seite die
Forscher motivieren diese Herausforderungen anzunehmen und neue Lösungen zu
finden. Eine Herausforderung die sich aus dieser Explosion ergibt ist das Verwalten,
Organisieren und Strukturieren von Informationen. Um die Informationsverwaltung
und -organisation zu optimieren, sollten Informationen durch einheitliche Begriffe
charakterisiert werden. Das heißt, während dem Lesen, Hören oder Verweisen auf
eine bestimmte Information sollte jeder dieselbe Bedeutung dieser Information
verwenden und verstehen. Das gemeinsame Verständnis wird durch den Einsatz von
Ontologien erreicht.

Zum einheitlichen Verständnis und zur einheitlichen Charakterisierung von
Ontologien werden diese in maschinenlesbaren Sprachen wie RDF, OWL, usw.
geschrieben. Wenn sie groß und komplex werden, ist es jedoch schwierig sie zu
verstehen und zu analysieren. Um das Verständnis zu erleichtern wurden
verschiedene Ansätze entwickelt Ontologien zu visualisieren. Da die Entwickler,
Besitzer und Benutzer von Ontologien über die ganze Welt verteilt sind, ist eine
Visualisierung von Ontologien über das World Wide Web (WWW) erstrebenswert.
Während es bereits einige Evaluierungen der aktuell verfügbaren
Visualisierungstools für Ontologien gibt, so wurde die Visualisierung von Ontologien
im WWW bisher selten betrachtet. Bei einer Visualisierung im WWW spielen neben
Anzeige und Navigation auch nicht-funktionale Aspekte wie Skalierbarkeit,
Reaktionszeiten und Ladezeiten eine sehr wichtige Rolle. Weitere wichtige
Bewertungskriterien sind die Erweiterbarkeit bzgl. zukünftiger Bedürfnisse und die
Möglichkeit der individuellen Anpassung an bestimmte Anforderungen.

In dieser Arbeit werden vier der derzeit verfügbaren webbasierten
Visualisierungstools evaluiert (FlexViz, Jambalaya applet, Experimental jOWL
TouchGraph, Plone ontology). Im Rahmen dieser Arbeit werden weiterhin folgende
Fragen erforscht:

1. Welche Anforderungen an die Visualisierung von Ontologien können definiert
werden?

2. Wie kann eine Bewertung und Analyse durchgeführt werden?

3. Wie kann eine ausgewählte Methode getestet werden?

Basierend auf den Ergebnissen dieser Fragestellungen stellte sich die
Visualisierungsmethode FlexViz im gegebenen Szenario als beste heraus. FlexViz
wurde eingesetzt, indem es in das Content Management System Plone integriert
wurde. Es wurde mit VCD Ontologien getestet und schließlich aus der Sicht
verschiedener Interessengruppen analysiert. Es zeigte sich, dass FlexViz ein gutes
Tool zum Visualisieren, Verstehen und Analysieren von bereits entwickelten
Ontologien ist, da die Benutzeroberfläche benutzerfreundlich und interaktiv ist.
Jedoch zeigt FlexViz deutliche Schwächen bzgl. dem Bearbeiten, Erweitern und
Entwickeln von Ontologien.

v

Abstract

We are living in a world in which information is not just expanding, but exploding.
More and more information is available with just a click. On one hand, this explosion
of information raises new challenges, and on the other hand, it motivate scientists to
move forward and discover new solutions to meet these challenges. One of the
challenges which has resulted from the explosion of information is the management,
organization and structuring of information. To optimize information management and
organization, information should be characterized by a uniformity of terms. This
means that while reading, hearing or referring to some piece of information, all
recipients should use and understand the same meaning of the information. This
need for common understanding of concepts is satisfied by the use of ontology.

To give uniformity of understanding and characterization, ontologies are written in
languages like RDF, OWL and others which are machine readable. It becomes more
challenging to understand and analyze them when they are very large and complex.
To ease the understanding of ontologies, various visualization approaches have
been developed. Ontology developers, owners and users are spread across the
world, which creates new challenges regarding the visualization of ontologies over
the World Wide Web (WWW). Even though there are a few evaluations available for
currently available ontology visualization tools, not much work has been done with a
focus on ontology visualization over the Web. For visualization over the web, apart
from display and navigation functionalities, non-functional issues, such as scalability,
reaction time and loading time, play much significant roles. Other important aspects
are the possibility of extension to meet future needs and the customization of the
visualization tool for specific domain requirements.

In this study, the author evaluates four visualization methods (FlexViz, the Jambalaya
applet, Experimental jOWL TouchGraph, and Plone ontology) from the pool of
currently available web based visualization methods. Further, this study attempts to
answer of the following research questions:

1. What are the requirements for ontology visualization?

2. How is comparative analysis and evaluation carried out?

3. How can a chosen method be tested?

Based on the results of the evaluation, the visualization method FlexViz was found to
be the most suitable for the given scenario. The deployment of FlexViz was carried
out and integrated within Plone CMS and logical parts of the VCD ontology are
tested. Finally, FlexViz was analyzed from different stakeholder’s perspectives.
Results showed that FleViz is a reliable tool for visualizing, understanding and
analyzing a developed ontology because of its user-friendly and interactive interface,
but performs poorly in regards to the editing, extension and development process

vi

Acknowledgement

Man is a social animal – but life makes man learn the lessons of rising from
dependence to independence and from independence to interdependence. The
odyssey of life becomes easier when we move together. This thesis is a synergistic
product of many minds. I am grateful for this opportunity to express my gratitude
towards them all.

Foremost, I feel an exceptional deep sense of gratitude for my late father who
nurtured my vision and taught me the good things that really matters in life. His
happy memories will always remain fresh in my mind and his values and principles
shall provide a constant inspiration throughout my life. His complex-free, simple, yet
so powerful and exemplary life shall stay as a beacon not only as a guiding light, but
as a driving force in all my work. His presence like fragrance is still everywhere
around me. The need for that soft, gentle and divine embrace will perpetually remain
throughout my life.

I owe a debt of gratitude to Prof. Dr. Maria Wimmer for allowing me to carry out this
thesis work in Research Group eGovernment, University of Koblenz-Landau. I greatly
appreciate her wisdom, objectivity, and generous assistance which are so
uncommon. She was totally committed and with her considerable conceptual talent
and insights contributed a lot in bring out this work. It is her effort which brought the
best out of me, and for her ceaseless inspiration and unending support, without
which I would not have ventured in this field.

I am grateful to my second supervisor Mr. Christian Schneider Research Group
eGovernment, University of Koblenz-Landau who is calm and always ready to help
with a smiling face. Also, my gratitude goes to him, for giving me immense support,
guidance and assistance. I am also grateful to him for sincerely inquiring about the
progress of my work from time to time.

I would like to acknowledge the continuing support of my brothers Sh. Sanjiv Kumar
Ji and Amit Utkarsh. I thank them for their tender guidance, tough comments,
accompanied with their gentle support like elder brothers.

The chain of gratitude would definitely be incomplete without my dear family
members and lovely wife Manisha which provides an additional blissful dimension to
my life.

vii

Table of Contents

ZUSAMMENFASSUNG .. IV
ABSTRACT .. V
ACKNOWLEDGEMENT.. VI
LIST OF FIGURES .. IX
LIST OF TABLES .. X

LIST OF ACRONYMS ... XI
1 INTRODUCTION ... 1

1.1 Research design .. 1

1.2 Structure of thesis .. 2

2 BASICS OF ONTOLOGY .. 3

2.1 Ontology from philosophy to computer science ... 3

2.2 Importance of ontology .. 5

2.3 Types of ontologies .. 6

2.3.1 Top-level ontology .. 7

2.3.2 Domain ontology .. 7

2.3.3 Task ontology ... 7

2.3.4 Application ontology ... 8

2.4 Ontology representation languages ... 8

2.4.1 XML and XML Schema ...10

2.4.2 RDF and RDF Schema ...10

2.4.3 Web Ontology Language (OWL) ...11

2.5 Conclusion ... 12

3 ONTOLOGY VISUALIZATION .. 13

3.1 Significance of ontology visualization... 13

3.2 Characteristics of good visualization tool ... 13

3.3 Analysis of existing ontology visualization methods 14

3.4 Web-based ontology visualization ... 15

3.5 Conclusion ... 16

4 EPROCUREMENT AND VIRTUAL COMPANY DOSSIER ONTOLOGY 17

4.1 Virtual Company dossier (VCD) ... 17

4.2 VCD ontology ... 18

4.3 Stakeholders in VCD System ... 23

4.4 Conclusion ... 23

5 EVALUATION DESIGN ... 24

5.1 Evaluation Criterion.. 25

5.2 Evaluation matrix ... 29

5.3 Conclusion ... 29

viii

6 EVALUATION OF ONTOLOGY VISUALIZATION TOOLS 30

6.1 Selection of visualization tools ... 30

6.1.1 FlexViz ..31

6.1.2 Jambalaya...32

6.1.3 jOWL TouchGraph visualization (Experimental) ..34

6.1.4 Plone ontology ..35

6.2 Evaluation of visualization methods ... 36

6.3 Testing ... 40

6.4 Conclusion ... 45

7 REVIEW, CRITICAL ANALYSIS & RECOMMENDATIONS 46
8 CONCLUSION ... 48
9 BIBLIOGRAPHY ... 50

ix

List of Figures

Figure 1: Research steps ... 2

Figure 2 : Vehicle and other classes and relationship between them [7] 4

Figure 3: Types of ontologies [9] .. 7

Figure 4: History of ontology related technologies [11] ... 8

Figure 5: W3C Semantic Web Activity "layer cake" diagram [11] 9

Figure 6: Working of VCD system showing stakeholders and eProcurement process
[30] ... 18

Figure 7: Logical parts of VCD ontology [33] .. 18

Figure 8: Common-schema [34] ... 19

Figure 9: TendererSchema [34] .. 20

Figure 10: Tenderer-criterion-schema [34] ... 21

Figure 11: Collector-schema [34] .. 21

Figure 12: VCD ontology [34] ... 22

Figure 13: Criterion classification .. 25

Figure 14: FlexViz demo ... 32

Figure 15: Jambalaya plug-in applet demo ... 33

Figure 16: jOWL TouchGraph visualization (Experimental) demo 35

Figure 17: Plone ontology demo .. 36

Figure 18: Multiple inheritance in FlexViz ... 37

Figure 19: Testing the implementation ... 41

Figure 20: Adobe Flash Builder 4.5 overview ... 42

Figure 21: Graph editing for ontology mapping ... 43

Figure 22: Plone Site local test ... 44

Figure 23: Uploading SWF files in Plone .. 44

Figure 24: Visualization of CollectorSchema ontology locally in Plone 45

file:///E:/Dropbox/Thesis/Thesis/Thesis_v082.docx%23_Toc298368549

x

List of Tables

Table 1: Evaluation matrix .. 29

Table 2: Visualization tools grouping based on technology used 30

Table 3: Evaluation results ... 40

xi

List of Acronyms

2D..2 Dimensional

AI..Artificial Intelligence

CA…………………..………….Contracting Authority

CMS..Content Management System

DAML……….....................................…………………DARPA Agent Markup Language

DARPA.. Defense Advanced Research Projects Agency

DOM...Document Object Model

DTD…...Document Type Definition

EDI……………..………………Electronic Data Interchange

EIF…………………..............................………….European Interoperability Framework

EO…..Economic Operator

EU…..European Union

EVS…………..…………………European VCD System

HTML…………...……………….Hypertext Markup Language

ICT………………...................…………….Information and Communication Technology

MXML..Magic eXtensible Markup Language

NVS…..National VCD System

OIL…………….....................................……………….Ontology Interchange Language

OMS…..Ontology Management System

OWL…...Web Ontology Language

OWL DL……………....................…………Web Ontology Language Description Logic

PEPPOL…..Pan-European Public Procurement Online

RDF…...Resource Description Framework

RDFS………………..…………RDF Schema

RIF………………………...…….Rule Interchange Format

SDK...Software Development Kit

SGML…………………..................………Standardized Generalized Markup Language

SHriMP..Simple Hierarchical Multi-Perspective

SP…..Solution Provider

SVG...Scalable Vector Graphic

SWF..Shock Wave Flash (file format)

UNSPSC.....................Universal Standard Products and Services Classification Code

xii

UI...User Interface

URI…………………..………Uniform Resource Identifier

URL…...Uniform Resource Locator

VCD………………………...……Virtual Company Dossier

VRML…………………..................................……….Virtual Reality Modeling Language

W3C…………..…………………World Wide Web Consortium

XML……………………..………eXtensible Markup Language

ZUI..Zoomable User Interface

Page 1 of 65

1 Introduction

In today’s society, a huge amount of information is shared by many participants. This
information must be characterized by a uniformity of terms. In a similar context,
everyone should understand or and the same meaning of a word when they are
reading, hearing or referring it. Among different computer science disciplines, this
need for a common understating of concepts is satisfied by the creation of an
ontology, which in turn led to the creation of the semantic web and personalized
information management. [1]

Web Ontology Language (OWL) has been defined by the World Wide Web
consortium (W3C). OWL is the proposed standard for web ontology. Practically, OWL
is created for publishing, sharing and providing mechanisms for creating all the
components of ontologies, which are concepts, instances, relations and axioms. It
describes the semantics of knowledge in a machine-accessible and machine-
readable way. At first glance, OWL ontology may seem as complex. So in order to
enhance the understanding of ontologies, several visualization approaches have
been developed, some of which are domain-independent and graph-based, while
others are not. [2]

The World Wide Web (WWW) has provided a common platform for researchers,
developers and users; they collaborate, share and develop applications together
while in different parts of the world. The requirements and characteristics of
visualization tools also change as they over the Web. Any visualization tool should
display its contents and offer ways to navigate, but loading time, reaction time and
scalability play a more vital role when the tool is web-based. Therefore, web-based
ontology visualization tools must be analyzed and evaluated with a few additional
criteria. Even though some evaluations are done for ontology visualization tools in
general, not much work has been done with a focus on web-based visualization
tools.

For any piece of software, there are different interest groups or stakeholders. The
different stakeholder groups have different requirements and needs. The developer is
interested in editing and testing, while the user looks for the interactivity as well as
the user-friendliness of the software. Available evaluations of visualization tools lag in
addressing the usefulness of the tools for various stakeholders.

1.1 Research design

The overall objective of this thesis is to analyze and evaluate four visualization
methods and run a test case of logical parts of the Virtual Company Dossier (VCD)
ontology locally for one of the highest scored visualization methods in the evaluation.

This thesis will attempt to answer the following research questions:

1. What will be the requirements for a special domain of ontology visualization?

2. How is the comparative analysis and evaluation carried out?

3. How can a chosen method be tested?

Page 2 of 65

To answer the above questions, this study was carried out by initiating a literature
review, analyzing the requirements of a special domain, evaluating four visualization
methods, choosing the best-rated tool, deploying it with available logical parts of the
VCD ontologies and embedding it in Plone CMS(Figure 1).

Figure 1: Research steps

1.2 Structure of thesis

The contents of this thesis are divided into three major groups.

Group 1: Theoretical Background

Group 2: Practical Work

Group 3: Results

Group 1 (Chapters 2-4) will describe the basic theoretical foundation needed to carry
out this work by covering the topics relevant to this thesis. Chapter 2 will present
previous work done on ontology, its importance, types, and representation
languages. Chapter 3 will explain the importance of the visualization of ontologies. It
also gives insight regarding the special requirements and challenges of specific
domains. Further Chapter 4 describes the test case, the VCD ontology, and
discusses various stakeholders associated with it.

In Group 2 (Chapters 5-6), we will describe the design of a matrix, which will form the
basis of the evaluation of different ontology visualization packages. Specifically, we
will discuss the criteria, how they are grouped and how the evaluation matrix is
prepared. Chapter 6 will present four web-based visualization methods from a pool of
available web-based visualized methods and discuss the rationale for short listing
them. Thereafter, these methods will be evaluated and highest-scoring method will
be chosen for deployment. We will also explain how the Plone Content Management
System (CMS) is locally installed to embed the highest-scoring visualization method
on the logical parts of the VCD ontology.

Group 3 (Chapters 7-8) will describe the outcome of the testing and analysis of the
results. Recommendations regarding future work will also be discussed.

Page 3 of 65

2 Basics of ontology

Ontology is a branch of philosophy that deals with nature and the organization of
reality. Although in computer science the term “ontology” is derived from philosophy,
it is used with a different meaning. [3] In this chapter, we will look closely at the
concept of ontology. Section 2.1 will show how the term ontology has been adopted
in the computer science discipline and what the basic building blocks of ontology are.
We will further discuss the importance of ontology in Section 2.2. Section 2.3 will
present the classification of ontology, and finally, in Section 2.4, ontology
representation languages are discussed.

2.1 Ontology from philosophy to computer science

Since the beginning of human history it has been a profound endeavor for mankind to
define “being” or to define what is meant by “essence” Aristotle, the father of
metaphysics said that everything has got something (property) that makes it “a thing”.
Metaphysics attempted to clarify the fundamental notions by which people
understand the world, its existence, definitions of objects, property, space, time, and
possibility. A branch of metaphysics which investigates the basic categories of being
and how they relate to each other is ontology. [4]

In computer science, the term “ontology” is being adopted by the in Artificial
intelligence, Software Engineering and Database communities. As all these areas of
computer science deal with knowledge representation, they borrowed the term
”ontology” from philosophy. [5] Artificial intelligence aims to make intelligent
machines that can make autonomous decisions which require the representation of
knowledge. In object oriented programming objects are created to perform
operations. This paradigm classifies the whole world into objects that represent a
metaphor of the real world. Those elements have some basic characteristics
(properties) and methods (functions). In designing a database, high-level conceptual
models are needed to give an abstract representation of a domain of problems
without considering the issues of implementation. In each of the above domains, the
representation of knowledge is addressed in a different manner because each one is
interested in a different problem, but all the three areas require the representation of
knowledge or concepts. [5]

A comprehensive definition and explanation of ontology is given by Studer:

“An ontology is a formal, explicit specification of a shared conceptualization” [6] [7]

Conceptualization refers to an abstract model of some phenomenon in the world by
having identified the relevant concepts of that phenomenon. Explicit means that the
type of concepts used, and the constraints on their use, are explicitly defined. Formal
refers to the fact that the ontology should be machine-readable. Share reflects the
notion that an ontology captures consensual knowledge. That is, it is not the private
knowledge of some individual, but accepted by a group. [6]

World Wide Web Consortium (W3C) gives another definition of ontology:
“An ontology defines the terms used to describe and represent an area of knowledge.

Page 4 of 65

Ontologies are used by people, databases, and applications that need to share
domain information. Ontologies include computer-usable definitions of basic
concepts in the domain and the relationships among them. They encode knowledge
in a domain and also knowledge that spans domains. In this way, they make that
knowledge reusable. Ontologies are usually expressed in a logic-based language, so
that detailed, accurate, consistent, sound, and meaningful distinctions can be made
among the classes, properties, and relations” [6]

In summary, ontologies describe the basic concepts of a domain and also define the
relationships among them. Regardless of the language in which ontologies are
expressed, they share some structural similarities. These common structural
similarities are the building blocks of ontology. Most of the ontologies contain
classes, attributes, relationships and instances. We will explain each of these in
detail [8]:

Classes: Classes are concepts that are referred to as type, sort, category or kind.
They are abstract groups, sets or collections of objects. They can contain a collection
of classes, objects or both.

Figure 2 shows an example of the vehicles class along with other classes and
relationships between them. (Figure 2):

Figure 2 : Vehicle and other classes and relationship between them [9]

Attributes: In ontology, the properties of the object are attributes. Each attribute has
a name and a value and is used to store values that are specific to the respective
object.

For example, Ford Explorer object has attributes such as:

 Name: Ford Explorer

 Number of doors: 4

Page 5 of 65

Relationship: How objects in ontology are related to other objects is specified by the
relationships or relations. A relation is of a type or class that specifies in what sense
the object is related to the other objects in the ontology.

For example, the ontology that contains the concepts Ford Explorer and Ford Bronco
can have the following attribute:

 successorOf: Ford Explorer.

This relationship shows that the Ford Explorer is replaced by the Ford Bronco [8]

The most important type of relation is the is-a relation, which explains the
hierarchical taxonomy.

For example, a Ford Explorer is-a 4-wheel drive vehicle, which is-a Car. [8]

Another common type of relation is the meronymy relation, written as part-of. It
represents how objects combine together to form composite objects. [8]

For example, since a steering wheel is a component of a car and a Ford Explorer is-a
Car. It can be said that “steering wheel is-part-of Ford Explorer”. [8]

Instances: The ground level components of ontology are instances. They may
include concrete as well abstract objects. Ontology might or might not contain
instances but it provides a means of classifying instances or objects. [8]

In the next section we will see why ontology is important.

2.2 Importance of ontology

To share common information in a domain, ontology provides a common vocabulary
for researchers. It provides machine readable definitions of basic concepts in the
domain and the relations among them. Its importance can be highlighted as follows:

 Ontology shares a common understanding of the structure of information among
people and software agents

 Ontology enables the reuse of domain knowledge

 Ontology makes domain assumptions explicit

 Ontology separates domain knowledge from operational knowledge

 Ontology helps to analyze domain knowledge

Sharing a common understanding of the structure of information among
people and software agents: Ontology provides unique, unambiguous definitions of
expressions, avoiding semantic conflicts. For example, there are various portals on
the internet which provide medical information or medical e-commerce services. If all
these portals share and publish the same underlying ontology of terms, then software
agents can aggregate the extracted information from these sites. Also, agents can
use this aggregated information to answer users queries or as input data for other
applications [10] [6]

Page 6 of 65

Enabling the reuse of domain knowledge: By allowing sharing, an ontology also
contributes to the extension of existing work and preventing the duplication of effort.
Any interested individual can search the existing knowledge base, use earlier work
as a base and contribute further. In order to build a large ontology, several existing
ontologies that describe the portions of the large domain can be integrted. One can
also use a general ontology, such as Universal Standard Products and Services
Classification Code (UNSPSC) ontology, and extend it further to describe the domain
of interest. [10]

Explicitly make domain assumptions: In ontology all assumptions are stated
clearly, so that there are no errors made due to false assumptions. For example
there are several assumptions and various notations that are being used by software
programmers across the world, and it becomes difficult for a person who has to
maintain this software code if he/she is not aware of these notations and
assumptions. Our only intent should be to have clear assumptions that are made
explicit. Explicit assumption of domain knowledge are useful for new users, who can
quickly learn what a particular term in a specific domain means [10]

Seperation of domain knowledge from operational knowledge: In ontology
domain knowledge can be seperated from operational knowledge. McGuiness in
1998 emphasized the importance of having a clear demarkation between domain
knowledge and its operational usage as creating a system is quite different than
using it. For example, nucelar energy concepts in the domain knowledge area remain
the same, but its application as power generator or as a weapon are completely
different. Therefore one must have different sets of principles and a clear line drawn
between research and its opreational activites. [10]

Analysis of domain knowledge: Ontology helps to analyse existing terminologies
and check their relevance as it can be used either to build them further or to use the
existing system. [10]

In the next section we will describe the classification of ontologies.

2.3 Types of ontologies

There are several classifications of ontologies in computer science. Van Heijst,
Schreiber and Wieringa (1996) classified ontologies based on their use as
terminilogical ontologies, information ontologies, knowledge modeling ontologies etc.
Gomez-Perez, Fernandez-Lopez and Corcho (2003) classified ontologies based on
the level of specification of their relationships as lightweight and heavyweight
ontologies. Based on Guarino’s (1998) [3] classification ontologies can be divided
into following categories (Figure 3) [5], this classification seems most logical and
descriptive Therefore, we describe it in brief.

 Top-level ontology

 Domain ontology

 Task ontology and

 Application ontology

Page 7 of 65

Figure 3: Types of ontologies [11]

2.3.1 Top-level ontology

Top level ontologies are models of common objects that are generally applicable
across a wide range of ontologies. They contain a core glossary in which terms and
objects in a set of domains can be described. It describes general concepts and
events that are independent of a particular problem or domain. [11]

2.3.2 Domain ontology

Domain ontology describes the vocabulary related to a generic domain by
specializing the concepts introduced in the top-level ontology. It models a specific
domain, or part of the world. It represents the particular meanings of terms as they
apply to that domain. For example, the word jaguar can have many different
meanings. The ontology regarding the domain of automobile would model the
meaning of “jaguar” as a car where as the ontology about the wild life domain would
model the meaning of “jaguar” as an animal. [11]

2.3.3 Task ontology

The intention of task ontology is to gather building blocks and create human problem
solving processes. Task ontology creates a step by step procedure for solving any
problem; designing, manufacturing, scheduling etc. Task ontology is used to solve
real-world, problems, by creating a knowledge base system. Task ontology should be
able to provide theory (concepts/models) that is required for human problem solving
processes. [8]

Task ontology should support following concepts:

 Task roles reflecting the roles played by the domain objects in the problem
solving process

 Task actions representing unit activities appearing in the problem solving process

 States of the objects

 Other concepts specific to the task.

Page 8 of 65

2.3.4 Application ontology

Application ontologies are ontologies that are made based on use cases. These
ontologies are engineered for a certain activity or specific use. This ontology uses
canonical engineering methods and is widely used to explain applications that are
cross domains. Application ontology is primarily used in areas of Biotechnology and
also data driven outcomes of certain processes. [3]

After the classification of ontologies, the next step is to examine the representation of
ontologies. In the next section, the various ontology representation languages are
discussed.

2.4 Ontology representation languages

Collaboration and cooperation among various agents as well as the interchange of
ontologies across Web led to the development of a new ontology language based on
standards such as eXtensible Markup Language (XML), for the formal specification of
ontologies. It is aimed to allow the interchange of ontologies across the Web and the
representation of the knowledge contained in the ontologies in a human readable
form. [12]

The development of ontology representation languages in computer science begins
with Hypertext Markup Language (HTML). Figure 4 shows the development path of
ontology representation languages.

Figure 4: History of ontology related technologies [13]

Page 9 of 65

Figure 5 shows various development languages that were used for the
representation of Ontology; every new language in the sequence has some
advantage over the preceding one. As the figure resembles layers of cake it was
named as Layer Cake Diagram by Tim Berners-Lee. [14]

 XML is used as a base for syntax to allow interoperability on the web.

 XML Schema is used as a database for structuring capability for web objects
comparable to database schema.

 RDF’s Layer provides a simple language for expressing ontological concepts and
relations in XML syntax.

 DAML + OIL or OWL defines more expressive ontologies which use an RDF level
to represent instances of ontology constructs.

Although all of these layers are expressed in XML syntax, specific interpreters are
still needed to understand each language. In general the higher language interpreters
can correctly interpret every layer below their language level, which means that an
OWL interpreter can use any embedded or referenced RDF or XML schema data
type construct, in addition to OWL specific code. Finally the reasoning and proof
methods and “web of trust” layer is near the top, which uses automated proof as well
as security and identity features that remains relatively less understood and less
mature. At the very top are the User Interface and domain applications that can
utilize the entire semantic web to offer more intelligent services. [13]

Figure 5: W3C Semantic Web Activity "layer cake" diagram [13]

As discussed above XML furnishes the base syntax for interoperability on the Web
but its shortcomings regarding ontology representation language led to the
development of RDS and later OWL is evolved. We will see in the following section

Page 10 of 65

why a new language came into existence and how the former language provided a
base for the development of the latter language. [12]

2.4.1 XML and XML Schema

XML is a very simple language and does not have predefined tags like HTML. XML
was designed keeping in mind the challenge of large scale data publishing. It also
plays a very vital role in information interchange on the World Wide Web. XML is
application independent and is one of the best mediums for describing information.
There are two schemas that XML can use. It can be XML schema or Document Type
Definition (DTD). [15] [16]

The advantage of XML over HTML is that XML has a standard syntax for metadata
and a standard structure for both documents and data. It also separates data from
HTML and stores it outside HTML. [15]

XML was not created with ontology in mind and inferences cannot be made through
XML. It has no special features for the specification of ontologies. Therefore, it simply
becomes a medium of information interchange covering ontology exchange needs.
[15]

XML Schema is based on the syntax of XML and is a relatively richer language than
XML, as it offers the definition and structure of XML documents. XML schema is quite
similar to database structure; it provides freedom to create tables and similar fashion.
[16]

Although XML Schema is a step forward from XML, the nesting of tags still does not
have a standard meaning. The semantics are accessible to human, but not
machines. It does not provide a means of discussing the semantics of data. It is
suited for close collaboration, where domain based vocabularies are used, but not
suited for global communication because collaboration can only be supported if there
is a shared understanding of vocabulary. This shortcoming led the development of
the Resource Description Framework (RDF), which will be discussed in the following
section. [16]

2.4.2 RDF and RDF Schema

RDF was developed and designed to offer a common way to describe information
which can be read and understood by computer agents or applications. It is not
designed to be displayed on the web. RDF is an approach to reference semantics in
documents specified in external ontologies. RDF format is <Subject, Predicate,
Object>. That means it has URIs along with anchor IDs which are optional For
example Subject; Predicate would include properties, relationships, and
characteristics, while all these statements would value to a specific resource i.e.
object. An object itself can again be described by a further RDF triple, which is
reification. RDF statements consist of subject, predicate and object but they have no
way to describe the relationship between them or their meaning. [13]

RDF describes the named properties and their values of the resources, while
Resource Description Framework Schema (RDFS) describes vocabularies used for

Page 11 of 65

the description of RDF. These vocabularies describe properties, classes or resources
and the relationships among them. RDFS has introduced basic ontological concepts
or building blocks of ontology, such as the concept of class, subclass properties etc.
It defined how concepts and resources can belong to a class or to more than one
class, in the same way subclasses describe the properties of hierarchies. These can
be used to define that subject and object of a property which belongs to the
respective class. [17]

RDF and RDFS are much more useful than XML. Still they have a few drawbacks.
For example, they do not support more expressive concepts like equivalence, inverse
relations or cardinality constraints. The need to develop a more expressive ontology
language gave birth to Web Ontology Language (OWL), which is an extension of
RDFS and is more powerful as compared to its predecessors. [13]

2.4.3 Web Ontology Language (OWL)

As discussed in the previous section, to overcome the limited expressivity of RDF
and RDFS, a more powerful language Web Ontology Language (OWL) was
developed. OWL was also developed in order to create a standard and broadly
accepted ontology language. [18]

Some of the advantages of OWL over previous languages are that it offers a vast
vocabulary as compared to RDFS and provides greater and stronger interpretation to
computer applications.

OWL empowers users to write more explicit and formal concepts in domain models.
OWL has very strong syntax and a very detailed semantics. It also has a well
organized reasoning support and adequate expressive power. OWL has three
sublanguages which will be discussed in the following section.

2.4.3.1 Three sublanguages of OWL

OWL Lite: OWL Lite is the least complex of the OWL languages. It is used for basic
classification of hierarchies and for creating simple constraints. It also enables easier
and smoother migration of thesauri and taxonomies, as it does not have many
complexities. OWL Lite is a subset of OWL DL. [18]

OWL DL: The DL in the name stands for Description Logics, a field of research
regarding the logic supported development of OWL DL. Therefore, it supports
computation and logic though being expressive, and all conclusions that can be
drawn are completely revalidated mathematically or logically. It also ensures that all
computation is finished within a stipulated period of time. DL consists of almost all
constructs of OWL, an exception being the utilization of sub classes by other classes.
[18]

The only restriction of OWL DL is that it loses full compatibility with RDF. RDF should
be enhanced so that it can be synchronized with DL. Also, every Legal OWL DL is a
Legal RDF but, every RDF is not a valid OWL DL unless enhanced. [18]

OWL Full: OWL Full provides users a great amount freedom of expression. It not
only allows a class to be a collection of objects but also allows usages of class as an

Page 12 of 65

object, which was not supported in earlier languages. It also supports the merger of
ontology with predefined vocabularies such as (RDF and OWL). [18]

OWL LITE is subset of OWL DL which in turn is a subset of OWL Full. [18]

All processes and conclusions of LITE are available in DL and all processes and
conclusions of DL are available in the universal set of OWL Full. [18]

It is recommended that, based on usage, ontology developer should decide which
language suits him/her the most. If functions are simple and not very logic driven
then LITE may be most optimum solution. However, if a system needs to be
expressive and also driven by logic that must be clear and traceable, then the
optimum solution would be to use OWL DL.

If a system needs to merge with a predefined vocabulary and needs classes to be
used as object at times and for other classes there is no requirement to validate
logic, then OWL FULL is the optimum solution.

2.5 Conclusion

We have seen that Owl has been designed to meet the requirements for a Web
Ontology Language. It is definitely promising for the future of the Web, in which
information is given explicit meaning, making it easier for machines to automatically
process and integrate information available on the web. OWL adds a great
vocabulary for describing properties and classes: among others, the relations
between classes, cardinality, equality, richer typing of properties, characteristics of
properties and enumerated classes. Therefore, OWL is also our choice for this work
[19].

This chapter has explained the term ontology as well as its building blocks,
importance and classification. Then, ontology representation languages were
discussed. As stated earlier ontologies are machine readable and needs some way
to visualize so that they can be understood better and make the analysis and
development easier. The next chapter will examine visualization, its importance and
the proposed methods of visualization over the Web.

Page 13 of 65

3 Ontology Visualization

Ontology representation languages were designed to offer a common way to process
the content of information, rather than to display it. Ontologies are written to be read
and interpreted by computers and not human beings. Therefore, some means of
visualization is needed for humans to understand them. For very large and complex
ontology visualization, it is vital to help the user to comprehend and use it. Because
of the progress of the Web more and more information must be processed,
structured and interpreted. Many researchers and users are contributing to the
development of various domains. These researchers, developers or users of
ontology might not necessarily belong to the ontology development team or have an
in depth knowledge of ontology and visualization of ontology will surely be a great aid
to such stakeholders.

3.1 Significance of ontology visualization

In this section we will discuss the significance of ontology Later in chapter 4 we will
also see that how the visualization of ontologies can aid different stakeholders
groups within a specific domain.

Visualization is forming a picture of something in order to understand or remember it.
It is a means by which our minds comprehend information much more easily than
that information which is written in long paragraphs. Visualization techniques, in
general, facilitate a better understanding of complex systems. Much research has
been done within the field of visualization of ontologies. Bergh has argued in his
master’s thesis that ontology visualization techniques are the only tools currently
available that facilitate the understanding of ontologies. [20] Ontology visualization
tools not only aid the process of understanding, but also retain the expressiveness of
ontology by hiding the formal terminology that is used behind it. [21] Those
stakeholders who have an interest in understanding or using the ontology do not
need to know ontology representation languages. Moreover, it fosters the
development, extension and editing process.

We have seen that ontology visualization tools are very useful for the understanding
and development of ontology. In the subsequent section, we will describe what
characterizes a good ontology visualization tool.

3.2 Characteristics of good visualization tool

A good ontology visualization tool should be able to display what it is supposed to
visualize. It should offer some way for the user to interact with it, and it should be
reasonably scalable. [1]

Display

As discussed in Section 2.1, there are several components of ontology such as
classes, relations, properties etc. A good visualization tool should support the
presentation and visualize them graphically. The hierarchical structure must be
contrasted or related to one another so that the user can differentiate the items easily
by using color, size, shape or layout alignment. [22]

Page 14 of 65

Interaction

Simply displaying the contents of ontology does not make ontology visualization tool
good enough, it must have interactive possibility as well. This means it should
contain good navigation techniques such as overview, zoom, filter, details-on-
demand, history and extract. For example within a large ontology visualization the
user should be able to experience where he is within the hierarchy, where he can go
and from where he came from. [22] [1]

Scalability

Little is known regarding the scalability issues in visualizing large hierarchies. Katifori
has stated in his survey that current systems face problems in visualizing more than
10000 visible nodes. A good ontology visualization tool should not have a loading
problem within the expected/defined limits. [1]

These characteristics have formed the basis of our evaluation design and these
points with some additional criteria will be revisited in more detail in Section 5.1

3.3 Analysis of existing ontology visualization methods

 “Visualizing the semantic web, XML-based internet and information visualization” is
a pioneering book which has presented the state of the art in the area of semantic
web visualization. It focuses on several topics, including the visualization of semantic
data and meta data, topic maps, ontology visualization, SVG/X3D for semantic web,
etc. [23] Katifori [1] has provided a detailed overview of the existing visualization
methods as well as their pros and cons. These methods are grouped under many
categories: indented list, node-link and tree, zoomable, focus+context, space-filling,
and 3D information landscapes. Catenazzi [24] suggested that among the above six
categories the most frequently used for ontology visualization are the first four, which
we describe briefly:

 The indented list methods represent the classification of the ontology following
the file system explorer-tree view. One example is the Protégé Class browser.
These indented list methods are instinctive and simple to implement. These
findings aret confirmed as a consequence of user evaluation [25] when different
visualization methods are compared. Their main disadvantage is that they
represent a tree hierarchy and not a graph, and they also do not visualize role
relations [24].

 The node-link and tree methods are another approach that is frequently used for
ontology visualization. A set of interconnected nodes represents the ontology in
this case. By this method the user gets a clear overview of the hierarchy and
connections. However, it can produce a cluttered display when more than a
hundred of nodes are used in this visualization. Some examples of these methods
are OWLViz , OntoViz and RDF Gravity [24].

 The zoomable methods are used when the nodes in the lower levels of the
hierarchy are located inside their parents and displayed in a smaller size. A user
may zoom-in to a child node in order to enlarge it. One illustration of this
approach is Jambalaya [26] [27]. Such methods appear successful for browsing in
order to locate a specific node or nodes. However, these are not effective in

Page 15 of 65

displaying the overview of the hierarchical structure, and are likely to produce
disorientation after zooming-in several times. In order to avoid this loss of context
problem, some orientation clues can be added. [24]

 The focus + context methods are used when the node being focused is in the
centre, and the rest of the connected nodes are around it, although usually
reduced in size. An example of this is the TGVizTab Protégé plug-in [28]. This
technique is effective for providing a global overview, focusing on specific nodes,
and quick browsing. However, it may result in a messy visualization and the user
may find it difficult to create a mental model of the ontology user as the graph is
continuously redrawn and node positions are re-arranged. [24]

Keeping in mind that there are various methods and approaches to visualizing
ontologies, the question arises as to which method should be chosen. The specific
user task that the visualization method should support is the main point to be
considered, e.g. overview, zoom, filtering, editing, etc. Ontology scalability is also
another factor that requires consideration. The end-user profile should also be
considered. An ontology expert can easily understand the ontology “syntax” yet, in
order to be able to use them to create a conceptualization of the domain it is the
domain expert who will require the concept of the ontology constructs [24].

In conclusion there is no one method that is always the best. Katifori [5] suggests
giving the user a choice to choose among several visualization methods. Despite the
differences in the techniques given above, the following features should always be
available [24]:

 A query mechanism which identifies nodes and relations of interest

 Filtering to facilitate hide or display a part of the ontology

 Reduction of information overload

 The incorporation of reasoning mechanisms, and the visualization of their effects

3.4 Web-based ontology visualization

This thesis focuses on web-based visualization methods. Therefore it becomes more
relevant for us in reference to eProcurement ontology in which different stakeholders
are scattered EU-wide. In this section, we will discuss the need for and usefulness of
web-based visualization methods. Thereafter, the discussion will move to the current
technologies used in web-based visualization.

The scientific community has been quick to exploit the potential of the Web for
marketing and promotion, and research groups present their work as multimedia
documents, with images and animations of their results. However this is just the
beginning. These images and video clips are passive views of the research, in which
the visualization is created by the publisher of the data and the viewer merely looks
at the pictures as though leafing through a book. The medium of the Web offers far
greater opportunities. It also encourages the active participation of the viewer in the
way data is visualized. Indeed, the potential of Web can be exploited by using it as
an analysis tool, rather than just as a tool for the presentation of results [29]. From
the perspective of ontology visualization, it offer great possibilities for sharing and
collaboration between users and developers are in different parts of the world. A few
advantages of web-based visualization methods are be listed below:

Page 16 of 65

 No special software is needed as the visualization runs in a standard web-
browser

 It offers platform independence, providing the same experience across different
operating systems

 It is easy for the developers to push new updates and fix bugs without requiring
any action from the user

 Fosters collaboration and development

The Java applet is one of the technologies used for web-based ontology
visualization. It has a number of advantages such as, portability and independence of
the environment/browser. Java is safe and the applet environment is secure. It can
be loaded when needed and there is no need to install or manage them. It began as
a way to integrate desktop applications within the web browser environment. Despite
its initial success, its success slowed down due to slow download and start up time
unpredictable behavior on different operating systems and lack of standard security
model [21]:

Flash/Flex based technologies have provided several advantages over java applets.
They can also be embedded in web pages, but are compatible with different
operating systems and have much faster load time than java applets. Adobe1 claims
that, as of December 2010 more than 98.8 % of internet users have the flash plug in
installed on their system.

Recent trends on the web show that, by the employment of Ajax technology or jowl
many of Java-applets issues can be resolved [30]. This approach encourages user
interaction by way of utilizing asynchronous Hypertext Transfer Protocol (http)
requests to the server. This avoids reloading the whole page after a user action and
only fetches the relevant parts of the page which need to be updated, thus providing
a more responsive experience. Ajax applications rely a lot on Java Script that is well
supported by major web browser leading to consistent visualization [21].

3.5 Conclusion

In this chapter we have seen the significance of ontologies, characteristics which
make ontology visualization tool successful, and the related work done. Finally the
issues related to web-based visualization tools were discussed. The next chapter
begins with the Virtual Company Dossier ontology in eProcurement domain which will
move this work further from general theoretical background to a domain specific.

1
 http://www.adobe.com/products/player_census/flashplayer/version_penetration.html (Accessed 14th

July 2011)

http://www.adobe.com/products/player_census/flashplayer/version_penetration.html

Page 17 of 65

4 eProcurement and Virtual Company Dossier ontology

One of the objectives of this thesis is to investigate and test the deployment of a web-
based visualization method for the eProcurement domain. In this chapter Pan
European Public eProcurement On-Line (PEPPOL) and the Virtual Company Dossier
(VCD) service are introduced. PEPPOL is a unique project of its kind because of its
heterogeneity and complexity. The role of stakeholder’s changes in each scenario,
legal specifications are different in different countries and many more. For our thesis
VCD system’s framework, VCD’s ontology and associated stakeholders are relevant
and we will address these within the framework of our thesis.

European Union (EU) spent annually 1,500 billion Euros every year, which accounts
for 16 percent of Europe’s GDP. PEPPOL an EU project cofounded by European
Commission was set up to leverage and facilitate EU-wide interoperability in public
eProcurement without borders, which conjointly exist with national infrastructures.
This consortium comprises of 18 leading public eProcurement agencies in 12
countries. PEPPOL envisions a future where any company in the EU (in particular
small and medium-sized enterprises) can communicate electronically with any
European governmental institution for the entire procurement process. Project has
several building blocks which enables seamless use of EU-wide eProcurement
solutions ranging from eSignatures to electronic invoices. One of the key building
blocks out of all building blocks of the PEPPOL project is VCD and will be discussed
in the following section. [31] [32] [33]

4.1 Virtual Company dossier (VCD)

VCD has been developed to address the demand for better interoperability in
eTendering and provide simplification, transparency and electronic monitoring of
supplier qualifications in public procurements. It is an electronic cross-border
document container that carries attestations and candidate statements required in
public tendering procedures.

Figure 6 shows the VCD system that provides a comprehensive set of tools
supporting public buyers and suppliers in the tendering phase, for both national and
cross-border procurement in the EU. The VCD tools can be used by suppliers to
identify and collect suitable evidences and to submit their qualifications as part of
tenders to public buyers. They can in turn use the tools to receive legally accurate
qualifications in a structured way and to prove the suitability of tenderers. The Figure
6 also shows the transnational procurement procedures, which has several
difficulties for the participating parties involved. The set of legal rules that apply to
each party differs. Therefore, the qualitative selection criteria do not point towards
any specific evidences as some evidences may not exist in a country or may exist in
a different form. Besides, competent issuing authorities are not known across
borders as a result the documents have to be legalized and may require to be
translated by the Economic Operator. Some of these barriers may be reduced or
overcome by the Virtual Company Dossier (VCD) that aims to provide an
interoperable electronic document solution that supports the exchange of evidences.
Contracting Authorities can use it for monitoring eligibility and suitability of national
and foreign candidates. [31] [33] [32]

Page 18 of 65

Figure 6: Working of VCD system showing stakeholders and eProcurement process [31]

Figure 6 shows the three main components of the VCD system viz. Central
Components, National VCD System (NVS) and VCD Viewer. The rules and criterions
are represented as machine interpretable ontologies. The editing and management
functionality for the different ontologies are provided by the Ontology Management
System (OMS). The Ontology Management System is capable of being used
simultaneously by the different ontology editing teams in order to keep up to date the
legal rule sets. In the next section we will detail the logical parts of VCD ontology.
[31]

4.2 VCD ontology

Figure 12 shows the complete VCD ontology, which is split into five logical parts.
These five logical parts can be further grouped into 3 groups (Figure 7):

Figure 7: Logical parts of VCD ontology [34]

1. Group 1:The first group contains the common-schema which has some
common classes and properties used by the other two groups

Page 19 of 65

2. Group 2: Second group comprises of criterion-schema, tenderer-schema,
tenderer-criterion-schma and contains the schemas for specifying criteria,
evidences, tenderer structure and the relationship between them.

3. Group 3: Third group has collector-schema and contains the schema for
specifying input and output for the reasoning steps.

These logical parts of the VCD ontology are described below:

Common-schema

Figure 8 shows the visualization of ontology of common-schema. It contains classes
and properties that will be used throughout the VCD ontology, such as
owlx:AbstractClass and owlx:InstantiableClass. Both are subclass of owl:Class but
distinguishes by instance existence possibility or not. [34]

Figure 8: Common-schema [34]

Other classes which are defined in this logical part are Classname, Propertyname,
Named class. It also contains classes of National Objects annotating open tasks. [34]

Criterion-schema

Criterion-schema (Figure 12) defines the schema for criteria and evidences. They
can be grouped hierarchically using the class CriterionGroup to model the structure
of legal documents. In this schema there are five instantiable classes viz.
EUCriterion, NationalAtomicCriterion, NationalCombinedCriterion, VirtualEUCriterion
and NationalPseudoCriterion. [34]

VirtualEUCriteria are not reflected in EU directive, but are only included to allow
mapping of national criteria that could not be mapped otherwise.
NationalPseudoCriteria are used where there is no correspondence in the national
law, still EU criterion might need to be proven. At the national level, combinations of
criteria are possible. Tenderer has to prove all sub-criterions to prove combined
criteria. [34]

Page 20 of 65

Evidences can be issued by a competent issuing body or by a tenderer and can be
assigned a priority. Evidences can be distinguished as primary or secondary
evidence. Primary evidence is “backed by law” whereas secondary evidence is not
backed by law but still often accepted by contracting authorities. [34]

Tenderer-schema

Tenderer-schema (Figure 9) specifies how a tenderer structure is represented in the
ontology. Different aspects of a tenderer are modeled in distinct classes. [34]

Figure 9: TendererSchema [34]

This Schema models two different dimensions of a company in eTendering process.
On one hand, they have characteristics that describe them as a company and on the
other hand their characteristics describe their role in the tendering process.
VCDRequest is also defined here to create a VCD request. Various subclasses of
TenderStructureSubject describe how different companies cooperate for the tender
at hand. Partner and its subclasses show the structure of companies. [34]

All the classes in this schema are instances of the class TendererType specified in
tenderer-criterion-schema which is the next section. [34]

Tenderer-criterion-schema

Tenderer-criterion-schema (Figure 10) is defined for two distinct kinds of rules.

First, types of rules are ones that govern which criteria have to be proven by whom.
Those are called the criterion requirements and are represented by the class
CriterionRequirement. These are only required if we want to provide a suggestion of
probable criteria based on tenderer data; they are not needed if we expect the
tenderer to provide the criteria he wants to prove by himself. [34]

The second kind of rule specified by this schema governs limitations of availability of
evidences. For example, criminal records might only be available for natural persons,

Page 21 of 65

but not for legal entities. These rules are called evidence restrictions and are
represented by the class EvidenceRestriction. [34]

Figure 10: Tenderer-criterion-schema [34]

Collector-schema

Collector-schema (Figure 11) provides the classes and properties used as input and
output for the reasoning deriving evidences from required criteria. [34]

The input for the reasoning is specified by linking the Tenderer Structure Subjects to
the criteria we want to prove for them with the wantsToProveCANC property. [34]

The output of the reasoning will be grouped into so-called collectors. The collectors
are structured so that they show the actual path from ca-national criteria via EU
criteria to the national criteria and finally evidences. [34]

Figure 11: Collector-schema [34]

Page 22 of 65

Figure 12: VCD ontology [34]

Page 23 of 65

4.3 Stakeholders in VCD System

Stakeholders in PEPPOL play an important role as the project establishes
interoperable solutions supplementing national frameworks, rather than replacing
them. Stakeholder (groups) can be differentiated according to their geographical
coverage and field of interest with regard to VCD System. Within a complex system
the roles of stakeholders changes in different frames. From Figure 6 we can see
three major stakeholder groups’ viz. Economic Operators (EO), Contracting
Authorities (CA) and eTendering Solution Providers (SP), but CA, EO, or SP can be
influenced by many other stakeholders, which make it more important and complex in
OMS. We will briefly discuss their interests in VCD ontology visualization. [32]

Solution Providers

eTendering solution providers are the system builders of the OMS. They develop,
edit and extend the VCD ontology. They are interested in understanding and editing
the ontology. For them visualization fosters the development process, moreover they
prefer a visualization tool blended with ontology editor tool.

Contracting Authorities

Contracting Authorities are interested in ontology visualization because they specify
various criterions for tendering. They work on criterion editor to edit the criterion
specification for EU criterion and National criterion. Other stakeholders like European
Commission, Legal departments and other beneficiaries also influence CA. CA is
interested in editing, and understanding VCD ontologies where as other stakeholders
who influence CA might be only interested in viewing and understanding of
ontologies.

Economic Operators

A Economic operator has interest in understanding the VCD ontologies so that they
he/she can understand the criterion and evidences.

Within EU the role of stakeholders also changes for example EO can also become a
CA in a given scenario or vice versa. All together SP, CA and EO are all interested in
ontologies either to understand various logical parts of VCD ontology or to edit the
VCD ontology to define criterion/evidences.

4.4 Conclusion

In this chapter we have seen the VCD and the logical parts of VCD ontology within
the domain of eProcurement. We have also seen the perspective of various
stakeholders who are interested in VCD ontology. With this the background of thesis
work is concluded. In the next chapter we will begin with the design of evaluation
strategy to determine the most suitable design of a evaluation strategy to determine
the most suitable ontology visualization tool for the VCD ontology.

Page 24 of 65

5 Evaluation design

In order to evaluate web-based ontology visualization methods and get fair results, a
good evaluation design is necessary. While the previous sections discussed the
importance of ontology, visualization of ontology and ontology-schema in VCD, in this
chapter we develop our strategy for evaluation of the ontologies.

In most of prior approaches to group the evaluation criterion, either unipolar or
bipolar scales are used to evaluate the criterion. A unipolar or bipolar evaluation
result show the presence or absence of a particular criterion, but it does not gives the
magnitude of the criterion being measured. For this thesis we have chosen not to use
uni-polar or bipolar scales but a numerical scale. A score from 1 to 5 is assigned to
every criterion. Numerical scale gives the magnitude of the criterion being measured
and tells us not just its presence or absence rather throws some light on its
magnitude also. [1]

5 = Excellent
4 = Good
3 = Fair
2 = Poor
1 = Bad

After choosing the numerical scale, the next step in evaluation design is listing and
grouping of relevant criteria (Figure 13). Since, visualization method is a piece of
software therefore it is appropriate to choose the criterion based on the
recommendations of Sommerville (Sommerville, 2004) as functional and non
functional. Accordingly, we have grouped all criterions in functional and non-
functional criterion. An ontology visualization tool shall display its elements and
provide a means to navigate within the displaying ontology therefore; functional
criterions are further divided into two sub groups viz. elements display and
navigation. For a web-based tool apart from its functionally other issues like
availability of software, support, performance, integration with a CMS are the other
issues which shall be addressed too. Hence, non-functional criterions are also
divided into two sub groups viz. software and performance. [35]

Page 25 of 65

Figure 13: Criterion classification

Functional criterion:

1. Elements display: As explained in the ontology section, ontology is

composed of several elements and those elements should be displayed in a

way that user can easily retrieve the information. Criterions chosen in this

group are based on the suggestions of Katifori in his visualization tool survey.

[1]

2. Navigation: Navigation techniques help the user to interact dynamically with

the ontology. This group is characterized by the categorization of tasks based

on the task analysis proposed by Shneiderman [36] who presented seven

high-level tasks that an information visualization application should support.

Apart from seven high-level tasks editing and query customization possibilities

will also be explored.

Non-functional criterion:

1. Software: This group contains the criterion which focuses on type of software

and general software related issues.

2. Performance: Performance and scalability related tasks will be evaluated in

this group.

5.1 Evaluation Criterion

Functional criterion

Elements Display

Page 26 of 65

1. Classes: The visualization method should display all the ontology classes,

either directly or upon the request of the user, providing at least their name, in

an intelligible manner. A score of 5 indicates that the respective method

displays all the classes and 1 does not display classes at all. [1]

2. Instances: The actual data that is associated with the ontology are the

instances. In many cases user is interested in instances and the information

associated with it. However, representing them as nodes connected to a class

is not always effective because of their great number and other alternatives

should be used, e.g., presenting the instances of a selected class as a list

within a separate window. [1] A score of 5 indicates that the respective method

displays instances and 1 does not display instances at all.

3. Taxonomy (Isa relations): To understand the inheritance relations between

classes, it is important to display the taxonomy on which the respective

ontology is based. The system should display, in a hierarchical representation.

Partial views, allowing the user to focus on a portion of the taxonomy, are also

a desirable feature. Score 5 means the respective method displays taxonomy

and 1 does not display taxonomy at all.

4. Multiple inheritance: In case where a class has more than one parent along

with representation of the effective taxonomy is not always easy to display.

The cases where a class has more than one parents are not easy to represent

in combination with an effective representation of the taxonomy. It is desirable

for the visualization to indicate nodes with multiple parents and provide

efficient means to view all nodes which are direct ancestors. It should be

noted here that many of the presented ontology visualizations support multiple

inheritance by replicating child nodes under all their parents. [1] Score 5

means the respective method displays multiple inheritance and 1 fails to do

so.

5. Role relations: Role relations and multiple inheritances are two types of links

that transform ontology from a hierarchal structure to a graph which is more

difficult to represent than graph. Apart from the link that is visible, a label with

the link name shall also be displayed with an option of display/hide. [1] Score

5 means the respective method displays role relations and 1 fails display.

6. Properties: The properties associated with an entity are also very important

and a visualization method should show them, either on the main ontology

visualization or within separate window. [1] Score 5 means the respective

method displays properties and 1 does not display properties at all.

Navigation

Page 27 of 65

1. Overview: Visualization method shall an overview of the entire collection,

view total number of classes, total number of instances and depth of hierarchy

either directly or on demand of user. [36] Score 5 means the respective

method gives an overview and 1 means no overview display at all.

2. Zoom: Visualization method should have an option to zoom in on items of

interest. When zooming, it is important that global context can be retained and

views the sub hierarchy. [36] It is important to provide user an option of

focusing on a specific node. Score 5 means the respective method offers

zooming option and 1 does not offer zoom option.

3. Filter: Visualization method should have an option to filter out uninteresting

items. [36] Score 5 tells that visualization method has a filter option while 1

means no filter option.

4. Details-on-demand: Visualization methods should have a possibility of

selecting an item or group and get details when needed like class/instance

properties, class siblings, number of subclass etc. [36] Score 5 offers details-

on-demand while 1 offers no details-on-demand.

5. Search: Keyword search is very essential when ontology is large and

complex. Although it is not directly relevant to ontology visualization, but

visualization method which contains keyword search option definitely makes it

navigation friendly for user. [1] Score 5 will be assigned if respective

visualization method offers keyword search and 1 if it has no keyword search.

6. History: Keep a history of actions to support undo, replay, and progressive

refinement is very useful which makes it an indispensible option. It will allow

user to retrace his/her steps during browsing. [36] Score 5 means the

respective method keeps history and 1 means no history saving option at all.

7. Extract: Visualization method shall allow extraction of sub collections and

query parameters. [36] Score 5 will be given if the visualization method allows

extraction while 1 is its absence.

8. Editing: It is probably not useful for a normal user but for a developer it is

important to know if visualization method offers adding, editing and deleting of

ontologies. Score 5 means the respective method allow user/admin to edit the

ontology and 1 means no editing option.

9. Query customization: User can run, customize query and search through the

results of the query. Score 5 means the respective method offers query

customization and 1 shows no query customization.

Non-functional criterion

Page 28 of 65

Software

1. Web-based: This criteria check if the visualization method is Web-based or

not. Web-based methods includes methods which can run directly on a web

browser (Firefox) or through a Firefox plug-in. Score 5 signifies that respective

visualization method is 100 % web based and 1 shows that it is not a web-

based method rather a desktop-based

2. Software availability: This criterion evaluates if the software is open source,

free, shareware or commercial. Score of 5 shows that the evaluation method

is an open source method and is freely available and 1 signifies purely

commercial.

3. Future Support/Development: It is also important to investigate the

possibility of future support and development so that the respective method

can be updated, extended and developed if required. Score 5 means the

respective method has an active support and development whereas score 1

shows that so significant development has been done in the last 1 years.

4. Plone Integration: eProcurement project is Plone based hence it would be

interesting to know the possibilities of plone integration. Score 5 shows that

the respective method can be completely integrated with Plone based website

whereas rating 1 signifies that it cannot be at all integrated with Plone.

5. Collaboration: Collaboration will throw a light on the possibilities of working

and collaboration over a network. Score 5 on a scale of 5 shows that the

respective method can be collaborated over a network and 1 shows no

possibility of collaboration.

6. User group management: Various stakeholder groups are interested in

various aspects of ontology and this criterion will find out if various user

groups can be managed and administered. Score 5 means all the user groups

can be managed and 1 means no possibility of user group management.

Performance

1. Scalability: Little is known about scalability of visualizing large ontologies.
Ernst and Storey [1] in a user survey categorized them in five categories: 1 for
less than 100 nodes, 2 for nodes between 101 and 1000, 3 for nodes between
1001 and 10,000, 4 for nodes between 10,000 and 100,000 and 5 for more
than 100,001 nodes. [1]

2. Loading time: Loading time is very important when visualization method is
web-based and ontology is very large. Score 5 means the respective method
takes less than 10 seconds in loading and rating 1 means loading time is more
than 5 minutes.

Page 29 of 65

3. Reaction time: Checks the reaction time after mouse click. Score 5 means
the respective method has a reaction time less than 5 second and rating 1
means reaction time is more than 1 minute.

5.2 Evaluation matrix

Based on the grouping criterion described in the Section 5.1, we have prepared a
matrix for evaluation of visualization methods (Table 1).

Table 1: Evaluation matrix

5.3 Conclusion

In this chapter we have designed an evaluation strategy. We have also defined
various criterion and scale based on score to evaluate visualization method. Finally
we have prepared an evaluation matrix which we will use in our evaluation in the
subsequent chapters.

Page 30 of 65

6 Evaluation of ontology visualization tools

Among the few available comparisons of comparisons of ontology visualization tools,
- Katifori has done the most extensive and detailed survey in his work. [1] A focused
comparison based on a specific requirement is seldom done. In this work we have
focused on web-based visualization tools to meet the needs of future challenges. In
the past, groups have focused on analysis of single methods. For example Katifori
[25] has done a comparative study of four visualization methods for information
retrieval task by choosing a single tool i.e. Protégé and has evaluated plug ins used
in Protégé class browser. Since then, existing ontology visualization tools have
become better and new technologies have emerged to meet the requirements of the
user. Therefore, instead of trying variation of the same technology, we evaluated four
different technologies to get a broad view of the current possibilities of visualization
tools. There are not many web-based visualization tools available currently. In our
research we have found the following web-based visualization tools: FlexViz2,
Jambalaya plugin3, GoBar [1], GrOWL [37], jOWL TouchGraph visualization
(Experimental)4 and Plone ontology5. These tools can be grouped, based on the
technology they are using (Table 2):

Table 2: Visualization tools grouping based on technology used

6.1 Selection of visualization tools

As discussed above we have analyzed the following technologies and chosen four
visualization tools which are web-based:

Adobe Flex: FlexViz is a graph based visualization tool with a very simple and user
friendly interface. It generates a shockwave-flash (SWF) file which is portable and
can be embedded in a web page. It is very interactive tool. [38] There is only one tool
available which used Adobe Flex hence a clear choice.

Java applet: Jambalaya is a plug-in created for Protégé and uses Shrimp to
visualize the knowledge bases created by user. Jambalaya can also be used as a
java applet which can be embedded in a web page. Running as a standalone java

2
 http://www.thechiselgroup.org/flexviz (Accessed 14th July 2011)

3
 http://www.thechiselgroup.org/jambalaya (Accessed 14th July 2011)

4
 http://jowl.ontologyonline.org/TouchGraph.html (Accessed 14th July 2011)

5
 http://plone.org/products/ploneontology (Accessed 14th July 2011)

http://www.thechiselgroup.org/flexviz
http://www.thechiselgroup.org/jambalaya
http://jowl.ontologyonline.org/TouchGraph.html
http://plone.org/products/ploneontology

Page 31 of 65

applet gave us a strong reason to choose Jambalaya among other plug-ins created
for Protégé. [26] GrOWL can also be implemented as a Java applet or a standalone
Java application. [37] We have chosen Jambalaya over GrOWL for three reasons.
Firstly, A demo of Jambalaya applet is available online and no demo is available for
GrOWL. Secondly, Sourcecode for Jambalaya is available on sourceforce and link
indicated for sourcecode of GrOWL is dead6. Thirdly Jambalaya can be used as a
Protégé plug in as well as applet.

Touch Graph: David Decraene in his website has experimented jOWL a javascript
library for traversing OWL RDFS documents based TouchGraph like visualization.
Although it is still in the development phase but because of its light score interactivity
it can offer a promising future for ontology visualization over WWW which has
motivated us to evaluate and analyze it. [30]

GraphViz: There are two ontology visualization methods which use GraphViz7. Plone
ontology can easily be integrated in Plone CMS Therefore, Plone ontology is a
complete solution where one does not have to worry about its integration with CMS.
Sourcecode for Plone ontology is available but sourcecode of GoBar could not be
found. Therefore, we have decided to evaluate Plone ontology instead of GoBar as
our fourth choice.

6.1.1 FlexViz

Graphs are the basic concepts in discrete mathematics and data structure. The
applications of graphs are very extensive and vary from common events to complex
mathematical or computer science problems. The building blocks of a graph are
vertices (nodes) and edges. Ontologies can be represented as a graph by using the
basic properties of graphs, such as directed graphs.

FlexViz is a graph based visualization tool written is Adobe Flex. It supports single
ontology browsing. Nodes of graph are mapped as concepts and relationships
(edges) between nodes (eg. “is_a”, “depends_on”) are represented as arcs. It is
designed to provide a light-score, interactive, and visually accessible ontologies on
Web. [38]

Figure below (Figure 14) shows a demo of FlexViz. As discussed in Section 3.4,
web-based visualization primarily render static images or text representations.
However, FlexViz greatly enhance user tasks and promotes new technologies by
making it very interactive and light-weight.

6
 http://www.uvm.edu/~skrivov/growl/ (Accessed 4

th
 July 2011)

7
 http://www.graphviz.org/ (Accessed 4

th
 July 2011)

http://www.uvm.edu/~skrivov/growl/
http://www.graphviz.org/

Page 32 of 65

Figure 14: FlexViz demo
8

FlexViz has many interesting features and can be summarized as follows:

 Filtering based on nodes (concepts) and edges (relationships)

 searching

 Results may be viewed in various graphical layout

 customization of node and edge (arc) labels is possible

 customizing node and arc tooltips

 zooming

 forcibly staying node in the screen (can cause nodes to overlap)

 back and forward button to navigate history

 Nodes can be expanded or collapsed to show or hide children

 Colors of nodes, edges are customizable

 Visualization can be displayed as a widget on a web page with a fixed ontology

 Graph can be exported as a image data or a xml file

 Source code is released in SourceForge9 which offers customization and
extension based on requirement

6.1.2 Jambalaya

Protégé10 is a very popular open source knowledge-base framework and ontology
editor. It is java based, extensible and provides a plug-and-play environment which

8
 http://keg.cs.uvic.ca/ncbo/flexviz/FlexoViz.html# (Accessed 14th July, 2011)

9
 http://sourceforge.net/projects/flexviz/ (Accessed 14th July, 2011)

10
 http://protege.stanford.edu/ (Accessed 14th July, 2011)

http://keg.cs.uvic.ca/ncbo/flexviz/FlexoViz.html
http://sourceforge.net/projects/flexviz/
http://protege.stanford.edu/

Page 33 of 65

makes it very flexible for application development. Jambalaya is one of the many
Protégé plug ins for visualization.

Simple Hierarchical Multi-Perspective (SHriMP) 2 Dimensional (2D) visualization
techniques written in java is a domain-independent visualization technique designed
to enhance how people browse, explore and interact with complex information.

Jambalaya is developed by Chisel group at University of Victoria 11 as an extension
of the SHriMP graph visualization toolkit reconfigured as a plug-in for Protégé with
additional features to increase understanding of RDF/OWL projects (Figure 15). [39]

Figure 15: Jambalaya plug-in applet demo
12

Our second choice Jambalaya has following features:

11
 http://www.thechiselgroup.org/jambalaya (Accessed 11th June, 2011)

12
 http://webhome.cs.uvic.ca/~chisel/projects/shrimp/demo/jambalayalite_applet.html (Accessed 11th

June, 2011)

http://www.thechiselgroup.org/jambalaya
http://webhome.cs.uvic.ca/~chisel/projects/shrimp/demo/jambalayalite_applet.html

Page 34 of 65

 Classes and instances are represented as nodes in a graph

 Different types may be represented using different colors

 Directed edges (arcs) are used to represent relationships between concepts and
instances.

 Jambalaya offers a Zoomable User Interface (ZUI)

 It has nested changeable hierarchy

 “Hyper linking” between concepts

 It offers Magnify, fisheye, select, zoom in, zoom out

 Back, forward, home and refresh buttons

 Advanced keyword search

 Various layouts like, radial, spring, vertical and horizontal tree

 Filtering / unfilter nodes and arcs

 Customization of node color and tooltip by any attribute

 Expand/collapse children

 Can be embed in a web page as java applet

 Source code is released in SourceForge13 which offers customization and
extension based on requirement

6.1.3 jOWL TouchGraph visualization (Experimental)

TouchGraph14 is a software developed, to visualize graphs which supports different
types of relationships. David Decraene tried to visualize OWL data such as
TouchGraph but based on javascript. He has made a challenging attempt to rely
purely on Document Object Model (DOM) –HTML manipulations and did not use
Scalable Vector Graphic (SVG) elements or flash, which are used to draw/embed
more advanced graphics in HTML pages. His attempt seems to be promising and
attractive. Graph works in a way that nodes repel each other, yet bonds between
them keep them together. He had assumed that without bonds two nodes would
keep drifting away from each other until they leave the screen. [30]

If nodes have children they can be expanded by double clicking them. Children are
added in a batch of 8 at a time. Clicking node multiple times reveal more children.
Demo of wine ontology can be seen in Figure 1615:

13
 http://sourceforge.net/projects/chiselgroup/files/Jambalaya/ (Accessed 14th July, 2011)

14
 http://www.touchgraph.com (Accessed 14th July, 2011)

15
 http://jowl.ontologyonline.org/TouchGraph.html (Accessed 14th July, 2011)

http://sourceforge.net/projects/chiselgroup/files/Jambalaya/
http://www.touchgraph.com/
http://jowl.ontologyonline.org/TouchGraph.html

Page 35 of 65

Figure 16: jOWL TouchGraph visualization (Experimental) demo
16

6.1.4 Plone ontology

Replacement for the existing keyword mechanism in Plone is Plone ontology. It
maintains a relationally structured vocabulary of keywords for content classification,
searching and navigation. It uses GraphViz17 open source visualization software for
visualization. Example of Plone ontology can be shown in Figure 17:

Plone ontology has the following features18:

 It classifies content with keywords from an expandable ontology

 Related content is displayed in a portlet, even if not classified with the same
keyword

 Within the Plone CMS tools it is possible to collaborate, build, extend and manage
ontologies

 Users may propose terms and relations to other terms

 Relation properties may be specified

 Import / export of OWL ontology

 For classification or keyword adding javascript is available

16
 http://jowl.ontologyonline.org/TouchGraph.html (Accessed 11th June, 2011)

17
 http://www.graphviz.org/ (Accessed 11th June, 2011)

18
 http://plone.org/products/ploneontology/ (Accessed 11th June, 2011)

http://jowl.ontologyonline.org/TouchGraph.html
http://www.graphviz.org/
http://plone.org/products/ploneontology/

Page 36 of 65

Figure 17: Plone ontology demo
19

6.2 Evaluation of visualization methods

We evaluated the demos available on the websites of each of the visualization
methods. Since plone ontology does not offer an online demo, the evaluations are
based on the information provided on the website20. In this section we will see the
results of the evaluation of each component and analysis of results will be done in
subsequent section.

Functional criterion

Elements Display

1. Classes: FlexViz, Jambalaya, jOWL and Plone all have given score 5 as the

first three shows all the classes. FlexViz does not show all the classes directly

but on demand by expanding the nodes. Jambalaya applet shows all the

classes directly or on demand. jOWL shows all the classes by double clicking

on the node. Plone also shows all the classes in the screenshot available on

the website.

2. Instances: FlexViz and Jambalaya have been assigned a score 5, Plone and

jOWL a score 1. In FlexViz and Jambalaya instances can be viewed in a

19
 http://plone.org/products/ploneontology/ (Accessed 11th June, 2011)

20
 http://plone.org/products/ploneontology/ (Accessed 14. June 2011)

http://plone.org/products/ploneontology/
http://plone.org/products/ploneontology/

Page 37 of 65

different color and filtered. Jambalaya has an instance browser which displays

instance related information in it. Plone ontology does not indicate any

information about instances; therefore we assign it a score of 1. jOWL does

not show any way to identify or differentiate between class and instance.

3. Taxonomy (Isa relations): FlexViz, Jambalaya and Plone have assigned a

score 5 and jOWL 1. FlexViz, Jambalaya and Plone display relationships

between nodes and can be customized, while jOWL does not show any

taxonomy for the relationship between nodes. It just shows that nodes are

connected but taxonomy is missing.

4. Multiple inheritance: All four methods have given score 5. Jambalaya, jOWL

and Plone show multiple inheritances clearly. FlexViz has also given a score 5

because it is a graph based method where arcs can be defined from starting

node to end node and this has been tested locally also (Figure 18).

Figure 18: Multiple inheritance in FlexViz

5. Role relations: FlexViz, Jambalaya and Plone have given score 5 and jOWL

a score 1. In FlexViz, Jambalaya and Plone Role relations are displayed and

can be customized. In jOWL nodes are connected but their relationship is not

evident in visualization.

6. Properties: FlexViz, Jambalaya and Plone have given score 5 as they display

the properties on a side bar. jOWL has given score 1 as it does not display

properties of a class or instance.

Navigation

1. Overview: FlexViz, and Jambalaya have given score 5 and jOWL a score 1.

Plone has given score 2 as it does give an overview but it is not complete.

Page 38 of 65

2. Zoom: FlexViz and Jambalaya have given score 5 as they both offer zoom

function. jOWL and Plone have score 1 as there is no zoom option.

3. Filter: FlexViz and Jambalaya have score 5 as they both have an option of

filtering unwanted elements. For example in FlexViz one can filter orphan

node, instances, classes or relationship. jOWL and Plone have given a score

1 as they offer no filtering.

4. Details-on-demand: FlexViz and Jambalaya have given score 5. Details of a

particular node or selected nodes can be displayed. jOWL and Plone have

given score 1 while they do not have this possibility.

5. Search: FlexViz and Jambalaya have given score 5. Keyword search can be

done within the displayed ontology. jOWL has given score 1 while it does not

have this possibility. Plone has given a score 3 because from the features

written in website it is evident that it has a keyword search option but how well

it works cannot be checked.

6. History: FlexViz, Jambalaya have back forward button therefore given score

5. jOWL and Plone have given a score 1.

7. Extract: FlexViz and Jambalaya have given a score 2 as information is

displayed upon extraction but it is not complete while jOWL and Plone have

score 1

8. Editing: FlexViz and Jambalaya have given a score 2 as in FlexViz editing is

possible in the code file and not directly in the SWF file whereas in Jambalaya

editing is possible in Protégé plug in. Plone has given a score 3 as features

written in webpage claims that editing is possible with the CMS tool. jOWL has

score 1.

9. Query customization: FlexViz, jOWL and Plone have given score 1 and

Jambalaya a score 2 as queries can be customized in Protégé plug in, not

directly in applet.

Non-functional criterion

Software

1. Web-based: All four methods have given score 4 as all are web-based to

allow ontologies to be displayed within the browser.

2. Software availability: FlexViz, Jambalaya and Plone have given score 5 as

there codes are freely available. jOWL has given score 3 not 1 because it

uses a java script library which can be downloaded.

Page 39 of 65

3. Future Support/Development: The latest version of FlexViz was released in

December 2010 but neither support site is very active nor a good

documentation is available therefore it is given score 4. Jambalaya has given

a score 2 has the last release in March 2009 and again has little support and

documentation. jOWL has also given a score 2 as it was developed in January

2009 but since then no development is done. Plone has given a score 1 as the

available latest release was in July 2007 with a support for Plone version 2.5;

meanwhile currently Plone version 4 is available.

4. Plone Integration: FlexViz SWF file, Jambalaya applet can be embedded in a

Plone page therefore given a score 5. Plone ontology is developed for Plone

CMS therefore it has a score 5. jOWL is given score 3 as it does not claim a

Plone integration but it uses java script library and java script can be run on a

Plone site.

5. Collaboration: For collaboration FlexViz, Jambalaya and jOWL have a low

score because they are like ready to display and not developed for

collaboration therefore given a score 1. From the information available from

Plone site it is evident that it offers collaboration with CMS tool therefore given

score 3.

6. User group management: None of the visualization methods offers user

groups’ management therefore given score 1.

Performance

1. Scalability: FlexViz is developed by Chisel group to visualize biomedical
ontologies which are relatively very large. On the demo site we have tested
cell ontology which has more than 2000 nodes therefore given a score 3.
Katifori [1] in his survey grouped Jambalaya within 1000 nodes group
therefore has given score 2. jOWL has been tested on wine ontology which
has above 200 nodes hence given a score 2 as well. Plone does not provide
any such information hence given score 1.

2. Loading time: Loading time of FlexViz and jOWL is very fast. It loads almost
immediately and therefore given score 5. Jambalaya has two applet version 21
one full version with a size of 14.5 MB. We have tried to load it several times
but it could not be loaded at all. The lighter version of Jambalaya applet is 3.5
MB large and took an average time of 20.05 seconds22 and therefore given a
score 1. It is difficult to calculate loading time for Plone as there is no demo
available, hence given a score 1.

21
 http://webhome.cs.uvic.ca/~chisel/projects/shrimp/demo/applets.html (Accessed 15. June 2011)

22
 Stopwatch is used to measure the loading time.

http://webhome.cs.uvic.ca/~chisel/projects/shrimp/demo/applets.html

Page 40 of 65

3. Reaction time: Reaction time of FlexViz, Jambalaya and jOWL is very short

therefore given a score 5. Plone ontology reaction time cannot be calculated
therefore given score 1.

Complete overview of the evaluation scores can be seen in Table 3Table 3:
Evaluation results. We can see from the results table that scores of FlexViz and
Jambalaya are higher than the other two. They both have almost equal scores in
functional criterions but FlexViz has higher scores in non-functional criterions. For
web-based visualization method performance and future support are very important.
Despite being verry efficient Jambalaya fails to perform optimally therefore we have
chosen FlexViz to test and implement.

Table 3: Evaluation results

6.3 Testing

Figure 19 shows the steps taken for the testing of FlexViz package.

Page 41 of 65

Figure 19: Testing the implementation

1. Adobe Flex installation

As we have discussed in Section 6.1.1 that FlexViz is written in Adobe Flex.
Therefore, foremost step of testing is installation of Adobe Flex.

Adobe Flex is a software development kit (SDK) for the development of cross
platform internet application based on Adobe Flash platform. Flex applications can be
developed using free Flex SDK or Adobe® Flash® Builder™ software. For our testing
we have used Adobe Flash Builder 4.5 Premium 60 day’s trial version, which can be
downloaded from the website of Adobe23.

2. Import FlexViz package

Next step after installing Adobe Flash Builder locally is downloading FlexViz source
code from sourceforge24. For our testing we have used FlexViz version 2.3.0
released on 22nd December 2010. After downloading FlexViz source code, it is
imported in Adobe Flash Builder.

FlexViz source code contains the following 5 projects (Figure 20):

 Ca.uvic.cs.chisel.flexviz_flex4: the main library project

 Ca.uvic.cs.chisel.flexviz.layouts: the optional library project which contains the
layout algorithms

 Ca.uvic.cs.chisel.flexviz.test_flex4: the flex project which contains the sample
applications

 Flex.util_flex4: a flex library project containing useful basic static functions

23
 https://www.adobe.com/cfusion/tdrc/index.cfm?product=flash_builder (Accessed 23.06.2011)

24
 http://sourceforge.net/projects/flexviz/files/FlexViz/ (Accessed 24.06.2011)

https://www.adobe.com/cfusion/tdrc/index.cfm?product=flash_builder
http://sourceforge.net/projects/flexviz/files/FlexViz/

Page 42 of 65

 Flex.utils.ui_flex4: a utility flex library project that contains useful user interface
components.

Figure 20: Adobe Flash Builder 4.5 overview

3. Edit and customization of code

A Flex-Application can be developed with the help of Magic eXtensible Markup
Language (MXML) which is a declarative XML-based language and object-oriented
ActionScript programming language. MXML is used to describe user interface layout
and behaviours while ActionScript is used to create client logic.

FlexViz is a generic graph library project and does not know anything about
ontologies. It only understands graphs: nodes, arcs and layouts.

The main classes of FlexViz project are:

 FlexGraph component, which provides the basic canvas

 ExtendedFlexGraph, which provides the canvas plus toolbar, searchbar, and
 right hand pane which contains the node/arc filter panels

The graph contains a model (IGraphModel/DefaultGraphModel) object which stores
all the graph data elements. Each data element is then mapped to a visual
UIComponent that is of the type specified by the nodeRenderer and properties. It
uses the ca.uvic.cs.chisel.flexviz.layouts library project to run the layouts.

The graph uses the ca.uvic.cs.chisel.flexviz.test project to run the sample
applications that use the FlexGraph and ExtendedFlexGraph components.

Page 43 of 65

First step of editing begins with listing the different types of nodes and arcs required
for the respective ontology and define them in SimpleGraphModel.as in
ca.uvic.cs.chisel.flexviz.test_felx4.simplemodel. Node types like class, interface etc
will be defined in nodeType and arc types like is_a, part_of etc. can be defined in
arcType.

In the next step list of all nodes and arcs are defined in the mxml file (Figure 21)

Figure 21: Graph editing for ontology mapping

Each node is defined as a variable with the name of the node (Figure 21), thereafter
each arc is defined from the originating node to the end node. For example in Figure
20 first arc is is_a relationship between nationaEvidence and thing, directing is_a
relationship from nationalEvidence to thing.

In the same manner all the logical parts of VCD ontology are mapped and saved in
different mxml files.

4. Generation of SWF file

Once the nodes and arcs are defined SWF files can be generated by running the
mxml application. Six SWF files are generated for parts of VCD ontologies which are
ready to use or embed in a webpage.

5. Plone installation

For our testing we have used Plone 4 CMS which can be downloaded from the Plone
site for different platforms25. In our case we have installed it for Windows by following
the installation quick guide available at the Plone site26.

25
 http://plone.org/products/plone (Accessed 10th July 2011)

http://plone.org/products/plone

Page 44 of 65

Once Plone CMS is installed different pages are created to display the SWF files
generated for parts VCD ontologies.

6. Embed SWF file in Plone

After creating pages for each logical part of VCD ontology (Figure 22) all the SWF
files can be uploaded and linked to the respective pages (Figure 23).

Figure 22: Plone Site local test

Figure 23: Uploading SWF files in Plone

Once all the SWF files are uploaded and linked with the respective ontology page,
the visualization of the respective ontology can be seen (Figure 24).

26
 http://plone.org/documentation/manual/installing-plone/installing-on-windows (Accessed 10th July

2011)

http://plone.org/documentation/manual/installing-plone/installing-on-windows

Page 45 of 65

Figure 24: Visualization of CollectorSchema ontology locally in Plone

6.4 Conclusion

In this chapter we have identified four promising visualization methods based on four
different technologies. Those methods are then evaluated and the highest rated
method i.e. FlexViz is deployed by installing Plone CMS and integrating it within
Plone. In the next chapter, we will discuss the analysis of testing and provide
recommendations.

Page 46 of 65

7 Review, critical analysis & recommendations

This chapter provides a review of the evaluation and testing done by summarizing
the outcomes and related issues. After the critical analysis, the limitations of this
study are discussed and the chapter is concluded with recommendations.

The goal of this thesis is to identify promising candidates from a pool of available
web-based visualization methods, evaluate them and choose the highest scoring
method. Thereafter, the task is to integrate the chosen method with Plone CMS and
test parts of the VCD ontology. Finally, we analyzed the usefulness of the tool from
the perspective of associated stakeholders, such as economic operators, contracting
authorities and service providers.

FlexViz was found to be the best choice for the given requirements. The outcome of
the testing in one statement can be written as following:

“FlexViz offers a high-quality end product, albeit with a poor development process”

Once the SWF file is generated and embedded, it offers a very wide range of display
options and has many interactive ways to navigate the ontology. It’s a great end
product, but with its own advantages and disadvantages. The advantages include a
user friendly appearance, display capability and navigation options. The main
disadvantage is the limited options for editing the ontology. To make a small change,
one has to go through the entire process from mxml to SWF to embedding in the
Plone site. We believe this is not a serious drawback if the ontology is well-defined
and unlikely to undergo regular changes.

For economic operators and contracting authorities, FlexViz can be a very useful tool
because of its wide display and navigation options. Also, its short loading time makes
this tool more attractive as compared to the other available web-based visualization
tools, such as Jambalaya, which has a much longer loading time. As we have seen in
Chapter 4, economic operators do not edit or develop ontology. Therefore they are
not interested in the process running behind the visualization. In different scenarios,
an economic operator can be a contracting authority and a contracting authority can
be an economic operator. Still they both have an interest in analyzing the complete
ontology, or a part of it, and for that purpose, this tool is fairly good.

For service providers, FlexViz is not a useful tool. During the development process of
ontology, a developer has to edit and test several times, and the offerings of this tool
in regard to those functions are not attractive at all. To make a small change, the
developer must go through the entire process from mxml to a SWF file, which
increases the development difficulty. Moreover, the development process is
dependent on the Adobe Flex framework, which makes it difficult to collaborate in
real time with other collaborators in distant locations.

This tool is not recommended during the development process, but once the ontology
is developed, FlexViz can be used to analyze it.

Another significant drawback of the FlexViz application is its lack of ability to read
owl/rdf files, which creates a wide gap between ontology development and

Page 47 of 65

visualization. Classes and their relationships must be mapped manually in the mxml
file. This can be a very severe limitation when the ontology is very large and
complex. Once an SWF file is generated after the compilation of the mxml file, the
SWF file cannot be extended, edited or changed. One has to start from the mxml file
again, which is then used to generate an SWF file, which is then embedded in Plone.
From the creation of the mxml file to the embedding of SWF file, this becomes a long
and difficult process, which also requires basic programming knowledge.

User-friendliness and interactivity makes FlexViz a tool with great potential. Since the
source code is available, it offers developers the opportunity to develop it according
to their requirements. The author has the following two recommendations, which can
enable developers to exploit the potential of this tool to a greater extent.

1. A module in FlexViz can be developed which will enable users to directly upload
the OWL or RDF ontologies and visualize them.

2. Alternatively, encourage the development of a plug-in or interface which can
convert OWL or RDF files to mxml files. Such a plug-in could reduce the effort of
the manual mapping of classes, and ontologies can be analyzed quickly.

Page 48 of 65

8 Conclusion

In today’s information age, the explosion of information raises new challenges to the
management, organization and structuring of information so that all users understand
it in the same way. This need for a common understanding is satisfied by ontology.
Ontologies are represented through ontology representation languages, which are
machine readable and hard for humans to understand without visualization tools.
Collaboration and development over the Web created a need for web-based
visualization methods, which is the focus of this study.

In the beginning of this work, we raised three research questions. Here are the
answers to those questions:

1. What are the requirements for ontology visualization?

Answer: After researching the literature, we found that visualization tools should
display the elements of ontology and offer a means to navigate within the ontology.
Moreover, for web-based tool have a few additional advantages, such as software
independence, platform independence, ease of updating and bugs fixing, etc. This
was discussed in Chapters 2 and 3.

2. How is the comparative analysis and evaluation carried out?

Answer: The answer to this question is found in Chapter 5, which is by designing an
evaluation matrix, the basis of which is Sommerville’s [34] division of functional and
non-functional criteria. Further functional criteria are divided into two subgroups:
elements display (adapted from katifori [20]) and navigation (adapted from
schneidermann [35]). Non-functional groups are divided into subgroups of software
issues and performance, which play a vital role in web-based methods.

3. How can a chosen method be tested?

Answer: A chosen method is tested by integrating it within Plone CMS, using parts of
the e-Procurement VCD ontology.

The outcome of this thesis in a sentence is:

There exists no web-based visualization tool which suits the requirements of all user
groups or stakeholders; every method is useful for one user group or another.

The recommended tool, FlexViz, is a very interactive tool, but has a complicated
process of converting ontology into an SWF file.

Jambalaya is also a very interactive tool, which performed poorly in loading and
reaction time. However, Jambalaya can be useful for developers who edit and test
ontologies. If, in the future, the loading time of the Jamabalya applet can be reduced,
then it can be a useful web-based applet that can fulfill the requirements of vast user
groups.

Page 49 of 65

Experimental jOWL TouchGraph is a promising tool. It is in an initial development
stage, but it offers the possibility of embedding emerging technologies, such as Ajax.

Plone ontology also offers a unique and complete web solution. It allows the
importing/exporting of OWL files, which makes it suitable for use in collaboration over
the Web However, it has not been undergoing development for several years. If
developed further, it could also meet the requirements of many user groups.

After evaluating four visualization methods and testing FlexViz with parts of the e-
Procurement VCD ontology, we found that most of the tools are still in the
development phases. The interest groups, requirements and applications of
ontologies are so vast that it is difficult to bring them under one umbrella. There is no
“one method for all.” This gives researchers many unanswered questions to
investigate.

Page 50 of 65

9 Bibliography

[1] Akrivi Katifori, Constantin Halatsis, George Lepouras, Costas Vassilakis, and
Eugenia Giannopoulou, "Ontology visualization methods - a survey.," , 2007, pp.
Bd. 39. Nr. 4. S. 10:1 - 10:25.

[2] Iikka Niskanen, "An interactive ontology visualization approach for the domain of
networked home environments," 2007.

[3] Nicola Guarino, Daniel Oberle, and Steffen Staab, What Is an Ontology? in
"Handbook on Ontologies", 2nd ed., Steffen Staab and Rudi Studer, Eds.:
Springer, 2009.

[4] Ned Hall. (2010, January) Stanford Encclopedia of Philosophy Fall 2010 Edition.
[Online]. http://plato.stanford.edu/archives/fall2010/entries/lewis-metaphysics/

[5] Diana Marcela Sanchez, Jose Maria Cavero, and Esperanza Marcos Martinez,
"The road toward ontologies" in ONTOLOGIES : A handbookof priciples,
concepts and applications in information. London: Springer pp. 3-20, 2006.

[6] Maria A. Wimmer, "Ontology for an e-participation virtual resource centre," in
ICEGOV '07 Proceedings of the 1st international conference on Theory and
practice of electronic governance, 2007, pp. 89-98.

[7] T., R. Gruber, "A Translation Approach to Portable Ontology Specifications,"
Knowledge Systems Laboratory Technical Report KSL 92-71, 1993.

[8] C. A. Nisha. (2011, June) Master of Technology Project. [Online].
www.seminarprojects.com/Thread-ontology-visualization-full-report

[9] Santtu Toivonen. (2011, June) www.cs.uta-fi. [Online].
www.cs.uta.fi/sat/lectures/lecture-14-02/sat-lecture-14-02.ppt

[10] Natalya F. Noy and Deborah L McGuinness, "Ontology Development 101: A
guide to Creating Your First Ontology," 2001.

[11] Nocola Guarino, "Formal Ontology and Information Systems," in FOIS'98,
Trento, Itlay, 1998, pp. 3-15.

[12] Oscar Corcho and Asuncion Gomez-Perez, "A Roadmap to ontology
specification languages," in EKAW '00 proceedings of the 12th European
workshop on knowledge acquisition, modeling and management, London, 2000,
pp. 80-96.

[13] Nordman Kore, "Standardization of Ontologies," 2009.

[14] T. Berners-Lee, J. Hendler, and O Lassila, "The Semantic Web," Scientific
American 284(5), 2001.

[15] Vijay Raghavan. (2011, July) Laboratory for Internet Computing. [Online].
http://lincweb.cacs.louisiana.edu:90/group-
seminars/seminarspring2008/ontology-and-semantic-web-series/understanding-
ontology-and-ontology-languages-for

[16] Grigoris Antoniou and Frank van harmelen, A Semantic Web Primer, second
edition, 2nd ed.: The MIT Press, 2008.

[17] B. McBride, "The Resource Description Framework(RDF) and its Vocabulary
Description Language RDFS," in The Handbook on Ontologies in Information
Systems.: Springer Verlag, 2003, pp. 51-66.

[18] Grigoris Antoniou and Frank van Harmelen, "Web Ontology Language: OWL," in
The Handbook on Ontologies in Information Systems.: Springer Verlag, 2003,

http://plato.stanford.edu/archives/fall2010/entries/lewis-metaphysics/
www.seminarprojects.com/Thread-ontology-visualization-full-report
www.cs.uta.fi/sat/lectures/lecture-14-02/sat-lecture-14-02.ppt
http://lincweb.cacs.louisiana.edu:90/group-seminars/seminarspring2008/ontology-and-semantic-web-series/understanding-ontology-and-ontology-languages-for
http://lincweb.cacs.louisiana.edu:90/group-seminars/seminarspring2008/ontology-and-semantic-web-series/understanding-ontology-and-ontology-languages-for
http://lincweb.cacs.louisiana.edu:90/group-seminars/seminarspring2008/ontology-and-semantic-web-series/understanding-ontology-and-ontology-languages-for

Page 51 of 65

pp. 67-92.

[19] Deborah L. McGuinness and Frank van harmelen. (2009) www.w3c.org. [Online].
http://www.w3.org/TR/owl-features/

[20] Johann Rath Bergh, "Ontology comprehension," University of Stellenbosch,
Master Thesis 2010.

[21] Ioannis Papadakis and Machalis Stefanidakis, "Visualizing Ontologies on the
Web," in Studies in Computational Intelligence, Volume 142.: Springer-Verlag,
2008, pp. 303-312.

[22] Andreas Rosendahl, "Visualization of knowledge in the eParticipation ontology,".

[23] V Geroimenko and C (Eds) Chen, Visualizing the Semantic Web, XML-based
Internet and Information Visualization.: Springer, 2004.

[24] Nadia Catenazzi, Lorenzo Sommaruga, and Riccardo Mazza, "User-friendly
ontology editing and visualization tools: the OWLeasyViz approach," in 13th
International Conference Information Visualisation, 2009.

[25] A. Katifori, E. Torou, C. Vassilakis, G. Lepouras, and C. Halatsis, "Selected
results of a comparative study of four ontology visualization methods for
information retrieval tasks," in Second International Conference on Research
Challenges in Information Science, 2008. RCIS 2008., Marrakech, 2008, pp. 133
- 140.

[26] (2011, May) Chisel, computer human interaction and software engineering lab.
[Online]. http://www.thechiselgroup.org/jambalaya

[27] Margaret-anne Storey, Mark Mausen John Silva, Neil Ernst, Ray Fergerson, and
Natasha Noy, "Jambalaya: Interactive visualization to enhance ontology
authoring and knowledge acquisition (2001)," 2001.

[28] H. Alani. TGVizTab. [Online]. http://users.ecs.soton.ac.uk/ha/TGVizTab/

[29] Jason Wood, Ken Brodlie, and Helen Wright, "Visualization over the World Wide
Web and its application to environmental data," in Proceedings of the 7th
conference on Visualization '96, 1996.

[30] David Decraene. (2011, June) Online Ontology Visualization. [Online].
http://ontologyonline.blogspot.com/2009/01/experimental-touchgraph-
visualization.html

[31] (2011, Mar.) Peppol Pan-European public procurement online. [Online].
http://www.peppol.eu/work_in_progress/wp2-virtual-company-dossier/vcd-
brochure/VCD%20System%20Brochure.pdf

[32] Ansgar Mondorf, Damiel M. Schmidt, and Maria A. Wimmer, "Ensuring
sustainable operation in complex environment: The PEPPOL project and its VCD
system," in MCIS 2010 Proceedings Paper 61., 2010.

[33] Ansgar Mondorf and Maria A. Wimmer, "The European VCD Service: Facilitating
Public Procurement through Criteria-to-Evidence Mapping," in What Kind of
Information Society? Governance, Virtuality, Surveillance, Sustainability,
Resilience.: Springer Boston, 2010, pp. 73-85.

[34] Wolfgang Groiss. (2011, May) http://www.peppol.eu. [Online].
http://www.peppol.eu/work_in_progress/wp2-virtual-company-dossier/vcd-
artefacts-1/the-european-vcd-system-1/ontology-and-reasoning-
specification/Ontology%20and%20Reasoning%20specification.pdf/view

[35] Ian Sommerville, Software Engineering 7th Edition; pp 115-129.: Pearson
Education, 2004.

http://www.w3.org/TR/owl-features/
http://www.thechiselgroup.org/jambalaya
http://users.ecs.soton.ac.uk/ha/TGVizTab/
http://ontologyonline.blogspot.com/2009/01/experimental-touchgraph-visualization.html
http://ontologyonline.blogspot.com/2009/01/experimental-touchgraph-visualization.html
http://www.peppol.eu/work_in_progress/wp2-virtual-company-dossier/vcd-brochure/VCD%20System%20Brochure.pdf
http://www.peppol.eu/work_in_progress/wp2-virtual-company-dossier/vcd-brochure/VCD%20System%20Brochure.pdf
http://www.peppol.eu/work_in_progress/wp2-virtual-company-dossier/vcd-artefacts-1/the-european-vcd-system-1/ontology-and-reasoning-specification/Ontology%20and%20Reasoning%20specification.pdf/view
http://www.peppol.eu/work_in_progress/wp2-virtual-company-dossier/vcd-artefacts-1/the-european-vcd-system-1/ontology-and-reasoning-specification/Ontology%20and%20Reasoning%20specification.pdf/view
http://www.peppol.eu/work_in_progress/wp2-virtual-company-dossier/vcd-artefacts-1/the-european-vcd-system-1/ontology-and-reasoning-specification/Ontology%20and%20Reasoning%20specification.pdf/view

Page 52 of 65

[36] Ben Shneiderman, "The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations," , 1996.

[37] Sergey Krivov, Richard Williams, and Ferdinando Villa, "GrOWL: A tool for
visualization and editing of OWL ontologies," Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 5, no. 2, pp. 54-57, June 2007.

[38] Sean M. Falconer, Chris Callendar, and Margaret-anne Storey, "FLEXVIZ:
Visualizing Biomedical Ontologies on the Web," in International Conference on
Biomedical Ontology, Software Demonstration, Buffalo, NY, 2009.

[39] Robert Lintern and Margaret-Anne Storey, "Jambalaya Express:on demand
knowledge visualization," in 8th International Protégé Conference (Protege),
2005.

Page 53 of 65

