
Fachbereich 4: Informatik

Profile-based selection of answer
candidates for LogAnswer

Diplomarbeit
zur Erlangung des Grades eines Diplom-Informatikers

im Studiengang Informatik

vorgelegt von

Timo Eifler

Erstgutachter: Prof. Dr. Ulrich Furbach
(Institut für Informatik, AG Künstliche Intelligenz)

Zweitgutachter: Dipl. Inf. Björn Pelzer
(Institut für Informatik, AG Künstliche Intelligenz)

Koblenz, im Januar 2012

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und kei-
ne anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Unterschrift)

i

ii

Deutsche Zusammenfassung

In dieser Ausarbeitung beschreibe ich die Ergebnisse meiner Untersuchun-
gen zur Erweiterung des LogAnswer-Systems mit nutzerspezifischen Profil-
informationen. LogAnswer ist ein natürlichsprachliches open-domain Fra-
ge-Antwort-System. Das heißt: es beantwortet Fragen zu beliebigen The-
men und liefert dabei konkrete (möglichst knappe und korrekte) Antwor-
ten zurück. Das System wird im Rahmen eines Gemeinschaftsprojekts der
Arbeitsgruppe für künstliche Intelligenz von Professor Ulrich Furbach an
der Universität Koblenz-Landau und der Arbeitsgruppe Intelligent Infor-
mation and Communication Systems (IICS) von Professor Hermann Hel-
big an der Fernuniversität Hagen entwickelt. Die Motivation meiner Ar-
beit war die Idee, dass der Prozess der Antwortfindung optimiert werden
kann, wenn das Themengebiet, auf das die Frage abzielt, im Vorhinein be-
stimmt werden kann. Dazu versuchte ich im Rahmen meiner Arbeit die
Interessensgebiete von Nutzern basierend auf Profilinformationen zu be-
stimmen. Das Semantic Desktop System NEPOMUK wurde verwendet um
diese Profilinformationen zu erhalten. NEPOMUK wird verwendet um al-
le Daten, Dokumente und Informationen, die ein Nutzer auf seinem Rech-
ner hat zu strukturieren. Dazu nutzt das System ein sogenanntes Personal
Information Model (PIMO) in Form einer Ontologie. Diese Ontologie ent-
hält unter anderem eine Klasse “Topic”, welche die wichtigste Grundlage
für das Erstellen der in meiner Arbeit verwendeten Nutzerprofile bildete.
Konkret wurde die RDF-Anfragesprache SPARQL verwendet, um eine Lis-
te aller für den Nutzer relevanten Themen aus der Ontologie zu filtern.

Die zentrale Idee meiner Arbeit war es nun diese Profilinformationen
zur Optimierung des Ranking von Antwortkandidaten einzusetzen. In Log-
Answer werden zu jeder gestellten Frage bis zu 200 potentiell relevante
Textstellen aus der deutschen Wikipedia extrahiert. Diese Textstellen wer-
den auf Basis von Eigenschaften (wie z.B. lexikalische Übereinstimmun-
gen zwischen Frage und Textstelle) geordnet, da innerhalb des zur Verfü-
gung stehenden Zeitlimits nicht alle Kandidaten bearbeitet werden kön-
nen. Mein Ansatz verfolgte das Ziel, diesen Algorithmus durch Nutzer-
profile so zu erweitern, dass Antwortkandidaten, welche für den Benut-
zer relevante Informationen enthalten, höher in der Rangfolge eingeordnet
werden.

Zur Umsetzung dieser Idee musste eine Methode gefunden werden,
um zu bestimmen ob ein Antwortkandidat mit dem Profil übereinstimmt.
Da sich die in einer Textstelle enthaltenen Informationen in den meisten
Fällen auf das übergeordnete Thema des Artikels beziehen, ohne den Na-
men des Artikels explizit zu erwähnen, wurde in meiner Implementierung
der Artikelname betrachtet, um zu ermitteln, zu welchem Themengebiet
die Textstelle Informationen liefert. Als zusätzliches Hilfsmittel wurde au-
ßerdem die DBpedia-Ontologie eingesetzt, welche die Informationen der

iii

Wikipedia strukturiert im RDF Format enthält. Mit Hilfe dieser Ontologie
war es möglich, jeden Artikel in Kategorien einzuordnen, die dann mit den
im Profil enthaltenen Stichworten verglichen wurden.

Zur Untersuchung der Auswirkungen des Ansatzes auf das Ranking-
Verfahren wurden mehrere Testläufe mit je 200 Testfragen durchgeführt.
Die erste Testmenge bestand aus zufällig ausgewählten Fragen, die mit
meinem eigenen Nutzerprofil getestet wurden. Dieser Testlauf lieferte kaum
nutzbare Ergebnisse, da nur bei 29 der getesteten Fragen überhaupt ein
Antwortkandidat mit dem Profil in Verbindung gebracht werden konnte.
Außerdem konnte eine potentielle Verbesserung der Ergebnisse nur bei ei-
ner dieser 29 Fragen festgestellt werden, was zu der Schlussfolgerung führ-
te, dass der Einsatz von Profildaten nicht für Anwendungsfälle geeignet ist,
in denen die Fragen keine Korrelation mit dem genutzten Profil aufwei-
sen. Da die Grundannahme meiner Arbeit war, dass Nutzer in erster Linie
Fragen zu den Interessensgebieten stellen, welche sich aus ihrem Profil ab-
leiten lassen, sollten die weiteren Testläufe genau diesen Fall beleuchten.
Dazu wurden 200 Testfragen aus dem Bereich Sport ausgewählt und mit
einem Profil getestet, welches Stichworte zu unterschiedlichen Sportarten
enthielt. Die Tests mit den Sportfragen waren wesentlich aussagekräftiger.
Auch hier deuteten die Ergebnisse darauf hin, dass der Ansatz kein großes
Potential zur Verbesserung des Rankings hat. Eine genauere Betrachtung
einiger ausgewählter Beispiele zeigte allerdings, dass die Integration von
Profildaten für bestimmte Anwendungsfälle, wie z.B. offene Fragen für
die es mehr als eine korrekte Antwort gibt, durchaus zu einer Verbesse-
rung der Ergebnisse führen kann. Außerdem wurde festgestellt, dass vie-
le der schlechten Ergebnisse auf Inkosistenzen in der DBpedia-Ontologie
und grundsätzliche Probleme im Umgang mit Wissensbasen in natürlicher
Sprache beruhen. Die Schlussvolgerung meiner Arbeit ist, dass der in die-
ser Arbeit vorgestellte Ansatz zur Integration von Profilinformationen für
den aktuellen Anwendungsfall von LogAnswer nicht geeignet ist, da vor
allem Faktenwissen aus sehr unterschiedlichen Domänen abgefragt wird
und offene Fragen nur einen geringen Anteil ausmachen.

iv

Contents

1 Introduction 1
1.1 Motivation . 1

2 Fundamentals 3
2.1 Knowledge Representation 3

2.1.1 Semantic Web . 3
2.2 User Profiles . 5
2.3 LogAnswer . 6
2.4 NEPOMUK Semantic Desktop 8

3 Approach 10
3.1 Integrating Profile Information into LogAnswer 11
3.2 Obtaining the Profile Information 12
3.3 Finding Matches . 13

3.3.1 Utilizing the DBpedia Ontology 14
3.3.2 Matching Strings . 16

3.4 Implementation . 18

4 Validation 22
4.1 Evalutation Criteria . 22
4.2 Test Sets . 23
4.3 Results and Evaluation . 24

4.3.1 Statistics . 24
4.3.2 Positive Examples . 25
4.3.3 Negative Examples . 28
4.3.4 Problems with the DBpedia 30

5 Conclusion and Future Work 33

6 Appendix i

v

vi

1 Introduction

In this paper I present the results of my work on enhancing the question an-
swering system LogAnswer with profile-based information. The impulse
for my work had been to integrate the ontology of the NEPOMUK semantic
desktop system into LogAnswer. After some elaboration the task evolved
to using the NEPOMUK system as a source for user related information
(i.e. a user profile) which is then used to personalize the question answer-
ing process. Specifically the user profile is used to enhance the ranking
of text passages which the LogAnswer system selects from the wikipedia
as potential answer candidates. The goal here is to identify text passages
containing information which is relevant to the user.

In chapter 2 I explain some of the basic instruments I used in my work
and also give a short introduction to LogAnswer and the NEPOMUK se-
mantic desktop system. In chapter 3 I give a detailed description of my ap-
proach. I start by describing why it is suggestive to use profile information
in natural language question answering systems and show how I tried to
integrate profile information into LogAnswer in particular. I explain how a
profile looks like and how it can be obtained from the NEPOMUK system
and also give a notion for alternative approaches. In chapter 3.3 I explain
how the profile was used to match answer candidates relevant to the user
and I describe how the DBpedia ontology was utilized as a core component
of my approach. Chapter 3.4 contains details about the implementation I
used for the validation of my approach which is then detailed in chapter
4. This chapter also contains various examples showcasing the problems
which came up during my work. Finally I give a conclusion of my work
and a short outlook for future work in chapter 5.

1.1 Motivation

Personalization is an ever-growing topic not only in the field of computer
science. In a world where applications become more and more complex
users have high expectations when they try out a new technology. New
users expect services to work and deliver results according to their antici-
pation. Therefore many developers try to adjust the implementation of
their services to satisfy their customers. For example in [RLJL97] the au-
thors describe a machine learning method to integrate the driver’s familiar
routes into the route planning algorithm of the car-IT-system. So when a
new driver uses the system, it will learn his preferred routes and try to
act accordingly. Another example can be found in [WBW+02] where the
authors describe how mobile devices can be personalized by matching the
user’s profile with the semantically enriched description of services. In
this example user profiles are used to automatically select, compose and
execute services which are relevant for the user.

1

In the field of question answering the applications for personalization
might not be as obvious. The main idea which motivated my work is that
it is easier to answer a question if you know which knowledge domain is
targeted or what the questioner had in mind when posing the question.
While in this paper only artificial systems (or rather only LogAnswer in
particular) are regarded, this statement could also be made for humans. If
a person is asked a question to which he does not know the answer imme-
diately, it is easier to answer it, if he knows in which direction he has to
think. The knowledge about the domain might give him a notion of what
the questioner wants to know. If the person does not know the answer at
all, he can at least make a guess which is not totally out of place. A good
example are open questions for which no one correct answer exists. While
there are often multiple correct answers for questions of this type only some
of the answers might be relevant for the questioner. In this case knowing
the fields of interest of the questioner (i.e. the targeted domain) can help to
identify relevant answers and hence improve the answering process.

2

2 Fundamentals

2.1 Knowledge Representation

For my work different types of knowledge representation are important.
Since LogAnswer is a natural language question answering system most
of the data I work with is represented in natural language only. All the
input data for the LogAnswer system is represented in natural language:
The question is entered manually by the user and the background know-
ledge is extracted from the German wikipedia. This type of data is mostly
unstructured and therefore not machine readable. Special mechanisms like
natural language parsing have to be used to access information contained
in this data. The natural language parser used in the LogAnswer system
generates a semantic representation of the data in the Multinet formalism
(for a detailed description see [Hel06]). With this step the data is trans-
formed into a more structured representation which also offers some form
of inference. As the reasoning part of the system is logic based, the rep-
resentation of the question as well as the background knowledge has to be
transformed again into first-order logic. Well-defined inference rules can
be used to reason over this type of data. I only mentioned these two types
of knowledge representation for the sake of completeness but since they
are not directly relevant for my work I will not go into detail about them.

2.1.1 Semantic Web

Another type of knowledge representation which is very important for my
work is linked data. It is most often used in the context of the Semantic
Web. The World Wide Web Consortium (W3C) describes the Semantic Web
as follows:

In addition to the classic “Web of documents” W3C is helping to
build a technology stack to support a “Web of data,” the sort of
data you find in databases. The ultimate goal of the Web of data
is to enable computers to do more useful work and to develop
systems that can support trusted interactions over the network.
The term “Semantic Web” refers to W3C’s vision of the Web of
linked data. Semantic Web technologies enable people to cre-
ate data stores on the Web, build vocabularies, and write rules
for handling data. Linked data are empowered by technologies
such as RDF, SPARQL, OWL, and SKOS. 1

So the Semantic Web tries to make the data on the web as easy to access as
data in databases. Another advantage of linked data (as the name suggests)
is that different datasets can be linked to each other. So ideally starting from

1http://www.w3.org/standards/semanticweb/

3

a given RDF graph, it is possible to explore more knowledge incrementally
by following the links to other graphs.

The common data format is RDF. Here is a short description of the RDF
standard, also given by the W3C:

RDF is a standard model for data interchange on the Web. RDF
has features that facilitate data merging even if the underly-
ing schemas differ, and it specifically supports the evolution of
schemas over time without requiring all the data consumers to
be changed.

RDF extends the linking structure of the Web to use URIs to
name the relationship between things as well as the two ends
of the link (this is usually referred to as a “triple”). Using this
simple model, it allows structured and semi-structured data to
be mixed, exposed, and shared across different applications.

This linking structure forms a directed, labeled graph, where
the edges represent the named link between two resources, rep-
resented by the graph nodes.2

Each entitiy which is described in an RDF graph is called a resource and is
identified by a URI. Usually the URI is a weblink which points to the RDF
document where the description of the entity can be found. Information
is stored in so called RDF triples: SUBJECT PREDICATE OBJECT. The
PREDICATE describes the relation in which two resources (the SUBJECT
and the OBJECT) are connected. For example:

die_glocke has_author schiller

With query languages such as SPARQL this knowledge can be accessed dir-
ectly by programs. SPARQL is reminiscent of the database query language
SQL. A simple SPARQL query could look like this:

SELECT ?s WHERE {?s hasAuthor schiller}

The “?” indicates that s is a variable. So this query selects all subjects
that are related to the object “schiller” by the relation “hasAuthor” (i.e. it
selects each document whose author is Schiller). The fact that more and
more knowledge is represented in this way means that information which
was only available in natural language is now machine readable which also
opens possibilites for new innovative applications. A perfect example for
this is the DBpedia ontology [CB09] which contains the information of the
wikipedia formatted in RDF. This ontology is also used in my work (see

2http://www.w3.org/RDF/

4

chapter 3.3.1). Another use case for linked data is showcased in the Se-
mantic Desktop project NEPOMUK which I used in my work to extract pro-
file information (see chapter 2.4). Figure 1 shows an extract of the PIMO on-
tology (which is used in the NEPOMUK system) as an example for an RDF
graph. It shows the description of the class “Topic”. Each tag line (marked
with “< >”) represents one RDF triple. The tags contain a PREDICATE
(e.g. “rdf:type”) and an OBJECT (e.g. “http://www.w3.org/2000/01/rdf-
schema#Class”). The SUBJECT of each triple is the resource which the de-
scription refers to (in this case the class “Topic”).

<rdf:Description rdf:about="http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#Topic">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Topic</rdfs:label>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
<rdfs:subClassOf rdf:resource=
"http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#ClassOrThingOrPropertyOrAssociation"/>
<rdfs:subClassOf rdf:resource="http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#Topic"/>
<rdfs:subClassOf rdf:resource="http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#ClassOrThing"/>
<rdfs:subClassOf rdf:resource="http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#Thing"/>
<rdfs:subClassOf rdf:resource="http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#Thing"/>
<rdfs:comment>
A topic is the subject of a discussion or document.
Topics are distinguished from Things in their taxonomic nature,
examples are scientific areas such as "Information Science", "Biology",
or categories used in content syndication such as "Sports", "Politics".
They are specific to the user’s domain.
</rdfs:comment>
<nrl:directSubClassOf rdf:resource="http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#Thing"/>
<nrl:instanceCount>9</nrl:instanceCount>
</rdf:Description>

Figure 1: Extract from the PIMO ontology showing the description of the “Topic”
class

2.2 User Profiles

A user profile is a collection of information about a person. There are vari-
ous areas of application for the usage of user profiles and each of them has
different requirements. Therefore a user might have a number of profiles
which are very distinct from each other because they are all constructed
for different purposes. While I only use one specific type of profile in my
work the results might be used to extend my approach for use cases with
different profile-types which is why I describe different types of profiles
here. The most obvious distinction between different profiles is the type
of information contained in them. For example a user profile covering the
personal taste in music compared to one that contains information about
the user’s style of driving. These two profiles might even be used in the
same system (e.g. a car-IT-system) but they are not interchangeable at all.

Another distinctive feature is the structure of the profile. While the mu-
sic taste could be described by a simple list of music genres, the description
of a driving style may need different attributes and predefined scales and
values. With these it is possible to directly access specific data in the pro-

5

file and directly base decisions on it. Hence a profile which contains more
structured information also offers more possibilities for processing the in-
formation.

Different types of profiles also differ in the way they are created and the
resources they are based on. The most obvious way to create a profile is to
offer a form which the user manually fills in. This approach involves some
difficulties though. To ensure that all data which is needed for the applica-
tion is contained in the profile the corresponding fields in the form can be
made mandatory. Still things like spelling mistakes, nonsensical or wrong
input (intentional or unintentional) and sometimes even input in a differ-
ent language might cause problems. First and foremost the user has to be
willing to create a profile. These factors have to be considered when imple-
menting an application that uses manually created profile data and some-
times it is not even possible to circumvent all of them. Another method to
create user profiles which is often used, is to collect information about the
user by observing his actions and analyzing his data. A perfect example for
this are profiles created by online shops like for example Amazon. By col-
lecting and evaluating data about the user’s buying behaviour (e.g. which
products he is interested in and which products he buys in combination),
detailed profiles about a customer can be created automatically. These kind
of profiles however highly depend on the data evaluation and therefore
might not always be accurate. Though if the data is accurate and there is
no need for evaluation then the resulting profile is also guaranteed to be
accurate. A profile describing the user’s style of driving for example might
contain attributes like “average speed”, “maximum speed”, “average fuel
consumption” etc. This kind of data is collected directly by sensors and
does not have to be evaluated. Thus the corresponding application can use
the profile as a reliable source.

The data which is used in my work is extracted from an ontology de-
scribing the personal information model of the user. As described above
this offers the possibility to directly access the data with a query language
like SPARQL. This way parts of the ontology can be extracted and com-
posed into a profile which then contains only the information needed for
the application (e.g. LogAnswer). A detailed description of how the PIMO
ontology is used to create a user profile can be found in chapter 3.2

2.3 LogAnswer

Loganswer [FGHP08] is an open-domain, natural language question an-
swering system. This means that the system is not restricted to a specific
domain like for example an expert system which could only answer ques-
tions corresponding to that one domain. Using profile information in such
expert systems would not make much sense since if every question targets
the same domain there is no need to determine it in advance. In contrast

6

Figure 2: Architecture of the LogAnswer system with the relevant part for my
work marked (adapted from [FGHP10])

to regular search engines a natural language question answering system
processes questions as a whole instead of unconnected keywords. Another
main difference is that the system returns a specific answer which should
ideally be concise and correct instead of a list of references. LogAnswer
uses the German wikipedia as its main background knowledge to retrieve
these answers. The system is developed within a joint project of the work-
ing group artificial intelligence (AGKI) of Prof. Dr. Ulrich Furbach at the
University of Koblenz and the working group Intelligent Information and
Communication Systems (IICS) of Prof. Dr. Hermann Helbig at the Uni-
versity of Hagen. In this paper I will only give a short overview over the
main components of the system and will refer to more specific documents
for readers who are interested in details of the system’s architecture.

The easiest way to access the system is provided through the web in-
terface at www.loganswer.de. When a question has been entered into
the web search box it will be parsed and a representation in the MultiNet
formalism [Hel06] will be created. After that the system will select up to
200 pre-analyzed passages which might contain the answer to the ques-
tion. These passages are then ranked using a machine learning approach
based on different features [Glö08, Glö09, GP08]. This is also the part of
the system where my work is applied. Therefore more details about the

7

ranking process and how my work affects it will be presented in the fol-
lowing chapters. In the next step a logical representation of the question
is generated and LogAnswer tries to prove it with each passage and the
background knowledge using the theorem prover E-KRHyper [PW07]. The
passages are processed in the order of their ranking since time constraints
prevent the system from reasoning over all 200 passages. If a proof is found
for one of them an answer is extracted accordingly. LogAnswer will also
extract some logic-based features which are then used for a reranking of the
extracted answer candidates. After this reranking and some sanity checks
[Glö07] the five answers with the best ranking are presented together with
the text passages from which they were retrieved. Figure 2 gives an over-
view of the system’s architecture. The relevant part for my work (the rank-
ing of the answer candidates) is marked.

2.4 NEPOMUK Semantic Desktop

The idea of the Semantic Desktop [Sau07] is to implement the concepts of
the Semantic Web into a desktop system to organize and integrate all of
the user’s personal data and applications. The Social Semantic Desktop
developed in the NEPOMUK project [GHM+07] goes even one step fur-
ther by connecting and integrating multiple desktop systems and sharing
information between those. The main advantage of this system in particu-
lar is that it offers very detailed documentation for developers on the pro-
ject’s website (http://nepomuk.semanticdesktop.org/). This made
working with the system very comfortable and it was also one reason why
this system in particular was chosen for my approach. The common know-
ledge representation format in the system which is also adapted from the
Semantic Web is RDF (Resource Description Format)3. As described above
RDF offers structured information that can easily be queried for. The NEPO-
MUK Semantic Desktop stores all the information about the users data in
an ontology called PIMO (Personal Information Model). [SED07] describes
PIMO as follows:

It is a formal representation of the structures and concepts an
individual knowledge worker needs, according to her or his
personal mental model. It is an application-independent and
domain-independent representation.

Figure 6 in the appendix shows a screenshot of the NEPOMUK applica-
tion with the PIMO perspective opened. This perspective offers an inter-
face which makes exploring and editing the contents of the ontology very
comfortable. Every element in the PIMO ontology is part of the superclass
“Thing”, as that is the root of the ontology. There are some predefined sub-
classes like “Person”, “Document”, “Organization”, “Location” or “Topic”

3http://www.w3.org/RDF/

8

but each user may also define his own classes. The structure and the com-
plexity of the ontology therefore depend on how much effort the user puts
into it. Regarding my work the crucial part of PIMO is that it can be used to
extract a profile of the user. The predifined class “Topic” contains keywords
which are used to sort and categorize the user’s data. As each document
in the user’s system can be related to a topic the elements of this class po-
tentially offer very detailed information about the user’s fields of interest.
Hence it is very easy to query the ontology for all topics that the user is
interested in. The RDF repository which contains the ontology can be ac-
cessed through an integrated server which makes extracting the informa-
tion even easier. Chapter 3.2 contains detailed information on how the user
profiles can be obtained from the NEPOMUK system.

9

3 Approach

There are two main ideas behind my work: The first idea is that people will
most often ask questions about domains in which they are interested. So
identifying a user’s fields of interest could be used as a heuristic to guess
what domains are targeted by the questions he asks. This in order makes
answering the questions easier. The second idea is that knowing the fields
of interest of a user can be very helpfull when answering open questions
which may have multiple correct answers. Here the user’s profile could be
used to filter away the answers which are not relevant for this particular
user.

If knowledge about the targeted domain of a question is helpful for arti-
ficial systems depends among other things on the background knowledge
which is used to find an answer. Usually the background knowledge is
structured in some way and may even be sorted by topics to a certain de-
gree. So if the topic of a question is known, it is also evident which part
of the knowledge base has to be regarded (and which parts may be omit-
ted). In the case of LogAnswer the main background knowledge is the
German Wikipedia4. Here the structure is given by the partitioning into
different articles. Each article contains information about a different topic
which can be identified by its title. Using the DBpedia ontology it is even
possible to group topics by categories which makes it possible to filter all
articles from a given domain. Depending on the scope of the domain this
step has the potential to cut down the search space for answers consider-
ably. The integration of the DBpedia ontology is detailed in chapter 3.3.1.
On the other hand however if the background knowledge is not structured
at all, it becomes more difficult to apply this method. For example in the
2011 CLEF competition5 the competing systems were only allowed to use
unstructured texts (i.e. speeches) as sources for answering the given ques-
tions. Besides the fact that the LogAnswer system participated in this com-
petition, this use case will not be covered in this paper and I will instead
focus on the common application of the system.

To be able to filter the knowledge base as described above, the domain
of the question has to be known in the first place. There are scenarios where
this additional information is available or at least methods (or heuristics)
exist to determine it. A perfect example for this is the IBM Jeopardy Chal-
lenge [DFW10]. Here the categories of the questions offer additional in-
formation that may be used to derive the domain which is targeted. In
the current setting for LogAnswer however, such additional information is
not available. So the idea of my approach is to use information about the
interests of the questioner to derive the targeted domain. Assuming that

4http://www.wikipedia.de
5http://clef2011.org/

10

people will often ask questions on specific domains (in which they are es-
pecially interested), the question answering process could be optimized by
identifying these. Of course this means that there is no definite knowledge
about the domain since users will also ask questions which differ from their
customary interests. In these cases it is possible that the consideration of the
user’s profile causes a worsening of the results. Detailed information about
this effect is provided in chapter 4.

3.1 Integrating Profile Information into LogAnswer

The first step in my work was to identify the best way to integrate the pro-
file information into the LogAnswer System. The initial idea was, to use
the ontologies from the NEPOMUK Semantic Desktop as additional back-
ground knowledge for the reasoning part. As the PIMO ontology is used to
structure the user’s data, it can be used to retrieve additional knowledge.
Since there are already attempts to use ontologies such as Opencyc 6 to
extend the background knowledge, this approach seemed promising. The
problem with this approach is that the additional knowledge provided by
the PIMO ontology is already known to the user, since he created it himself
while maintaining the ontology. So it is very unlikely that the user would
ask a question whose answer can be derived using his personal information
model. Therefore this idea was dismissed.

Using the ontology to extract a user profile which could then be used to
enhance the ranking of the retrieved answer passages proved to be a much
better approach. There are two ways to combine the profile information
with the ranking process. One way is to integrate the information directly.
The ranking of the candidate passages is done using machine learning al-
gorithms. As described in [Glö09] shallow features like for example “lexical
overlap between question and candidate passage” are used to construct a
decision tree. So a correlation between the questioner’s profile and a given
answer passage could simply be used as one additional feature for the ma-
chine learning. The constructed decision tree would then automatically
rank those passages higher. The only disadvantage here is that the results
depend on the training program of the machine learning algorithm and
therefore it becomes difficult to evaluate the results.

The other way to use the profile information in combination with the
ranking of passages is to use it as a filter. In this approach every can-
didate passage which does not correlate with the user’s profile is entirely
skipped. Of course the outcome depends strongly on the use case. The
perfect scenario would be one where for all questions asked the correlation
with the used profile is ensured. Again a situation similar to the IBM Jeop-
ardy Challenge is a good example where this condition is met. In [DFW10]

6http://www.cyc.com/opencyc

11

the authors suggest that the usage of Watson as an expert system to sup-
port professionals is the major area of application. In business scenarios it is
very likely that each user will only be interested in information about their
fields of work. If the special fields of each user are described in his profile
the question answering system can use this profile as a hard filter. How-
ever in an open domain application where users will ask questions from
very mixed categories which often differ from their common domains of
interest, this approach is not very effective. As the user’s profile is usually
narrowed down to the user’s main fields of interest, too many otherwise
correct answers would be ignored because they do not match. On the other
hand if the profile was extended to mitigate this effect, it would also be-
come less effective, as for each question more irrelevant candidate passages
would pass the filter.

During my work both mentioned approaches were regarded. In chapter
4 where I present detailed test results the pros and cons as well as different
use cases for both approaches are described.

3.2 Obtaining the Profile Information

To obtain the profile information needed for my approach from the NEPO-
MUK system you first have to decide which types of information from the
ontology should be included. As can be seen in Figure 6 the PIMO onto-
logy defines different subclasses of “Thing” (the superclass of all resources
in the ontology) like “Location”, “Group of Persons” or “Topic” which the
user can use to classify his data. While it is also possible to define new
classes and subclasses I decided to confine myself to the predefined classes
to ensure that my method is usable with the standard configuration of the
system. The most relevant subclass is “Topic” since it reflects the idea of
representing knowledge domains in the profile the best. Therefore I in-
cluded the elements of this subclass in all the profiles I used during my
work. The other subclasses I tried to use in some of the profiles are “Loc-
ation”, “Event” and “Organization”. Typical examples for the class “Loca-
tion” are cities and and countries which are potentially good additions to
a user’s profile if he is interested in information about these locations and
uses the question answering system to gather this information. But having
locations in the user profile also has some special disadvantages which will
be discussed in chapter 4. The problem with events is the fact that a partic-
ular event has to be known to the background knowledge-base used for an-
swering the questions, which should only be the case for very big or annual
events. If this is not the case, then knowing that the user is interested in this
event is not useful. Quite the contrary finding matches with the terms in
the name of the event could lead to worse results. While the same argu-
ments apply for the inclusion of names of organizations into the profile,
these often have unique names which are unlikely to misguide the answer-

12

ing process. PIMO also contains classes like “Document”, “Task” or “Per-
son” which are not suited at all to be used in my approach. Theses classes
are important for the actual use case of NEPOMUK to classify the corres-
ponding entities. However the instances of these classes can not really be
viewed as knowledge domains and their names will rarely be helpful in de-
termining the fields of interest of the user. One could argue that the names
of documents might be useful, but the topics of the interesting documents
should already be represented in the “Topic” class.

After deciding which classes of the PIMO ontology would be used to
create the profile the instances of these classes had to be extracted from
the system to create the actual profile. Since the data is stored in an RDF
repository the instances can be accessed with a simple SPARQL query. The
result of this query can then be used as a list of keywords which forms the
user’s profile. For example to extract all topics which the user is interested
in (i.e. all instances of the “Topic” subclass) the following query can be
used:

SELECT ?s WHERE {?s rdf:type pimo:Topic}

Extending the profile (for example by names of organizations which are
relevant for the user) can be achieved with a query like this one:

SELECT ?s
WHERE {{?s rdf:type pimo:Topic }
UNION {?s rdf:type pimo:Organization}}

The NEPOMUK system is the only source of user specific data which is
regarded in my work. However there are many other potential sources to
extract comparable data. For example social network platforms like Face-
book store extensive user profiles which may be used in future implementa-
tions of natural language answering systems. For LogAnswer in particular
it also seems reasonable to implement user accounts where each user can
create its personal profile manually by choosing topics which he is inter-
ested in. The implementation of my approach is very flexible in this regard
since the interface for the profile information expects just a list of keywords
representing the fields of interest of the user. So as long as the profile still
consists of a list of keywords the results of my work would be applicable.

3.3 Finding Matches

To be able to integrate the user’s profile into LogAnswer a method to find
matches between the candidate passages and the profile had to be found.
The Wikipedia which is the source of the candidate passages is divided
into different articles. This is reflected by the way texts in the Wikipedia
are written. Since it is obvious that each statement in an article is made

13

with regards to its topic, the name of the topic itself (e.g. the title of the
article) is rarely used in the text. So to find out to which topic the inform-
ation in a given text passage is related it is not very helpful to look at the
text itself. Another reason for this is that in the LogAnswer system in its
current state, it is not possible to combine information over the boundaries
of one sentence without further ado. Therefore it is not possible to relate
information about an object to it, if it is not directly referenced in the same
sentence. Example: “Schon kurz nach Fertigstellung stand das Schloss bei
Abwesenheit des Königs Besuchern zur Besichtigung offen”7 This sentence
provides information about the castle “Schloss Stolzenfels” and is extrac-
ted from the corresponding Wikipedia article. But without that knowledge
it is not possible to relate the text passage to a specific castle. For my work I
tried to exploit this structure of the Wikipedia. While not every piece of in-
formation contained in an article is directly related to the articles title most
of the statements refer to it. So the task of matching a candidate passage
to a user’s profile is transformed into matching the title of the article to
which the passage belongs to the profile. Because if the user is interested
in the main topic of an article it is likely that he is interested in the pieces of
information contained in that article too.

3.3.1 Utilizing the DBpedia Ontology

A user’s profile only consists of a relative short list of keywords which of-
fers a more or less detailed description of the domains the user is inter-
ested in. However each knowledge domain might have many (sometimes
very specific) subdomains which can not be related to the user’s profile in
a trivial way. For example a profile might contain the keyword “sports”
which indicates that its owner is interested in sports in general. Without
additional efforts however it is not possible to match an article about “ten-
nis” to that profile even if it clearly should match (assuming the profile
does not also contain the keyword “tennis”). To infer if an article belongs
to a given domain an additional knowledge base is needed. Conveniently
for my use case such a knowledge base already exists in the form of the
DBpedia ontology [CB09]. It contains the information of the Wikipedia in a
structured format (RDF) and also offers additional information in the form
of semantic taggings. Since LogAnswer uses the German Wikipedia as its
background knowledge I also use the German version of the DBpedia 8. For
the examples regarding the DBpedia ontology I will use a more convenient
notation: Since each resource in the DBpedia starts with the same prefix:
http://de.dbpedia.org/resource/ I will use the short replacement
“Resource:” from here on whenever I refer to a DBpedia resource. There

7Short after its completion the castle was already open for visitors while the king was
absent

8http://de.dbpedia.org/

14

are two relations in that ontology in particular that are very usefull. The
first (and most important one) ist the subject relation:

http://purl.org/dc/terms/subject

which I will refer to as “Subject” from here on. In the RDF document
which contains the description of this relation it is commented with “The
topic of the resource”, which describes it pretty well. In the DBpedia on-
tology it relates resources (in this case articles) to broader knowledge do-
mains (i.e. categories). The article about the castle “Schloss Stolzenfels” for
example is represented in the DBpedia by the resource:
Resource:Schloss_Stolzenfels. The categories related to this re-
source by the Subject relation can be retrieved with the following SPARQL
query:

SELECT ?category
WHERE {Resource:Schloss_Stolzenfels>

Subject ?category}

The result of this query is this list of resources:
Resource:Kategorie:Erbaut_im_13._Jahrhundert
Resource:Kategorie:Architektur_(Preußen)
Resource:Kategorie:Erbaut_in_den_1840er_Jahren
Resource:Kategorie:Kulturdenkmal_in_Koblenz
Resource:Kategorie:

Kulturlandschaft_Oberes_Mittelrheintal
Resource:Kategorie:Geschütztes_Kulturgut_in_Koblenz
Resource:Kategorie:

Neugotisches_Bauwerk_in_Rheinland-Pfalz
Resource:Kategorie:Schloss_am_Mittelrhein
Resource:Kategorie:Schloss_in_Koblenz
Resource:Kategorie:Museum_in_Koblenz

All of these resources have the prefix “Kategorie:” (i.e. category) which
is why I refer to them as “categories” rather than “topics”. Each of the
categories describes a different feature of the resource it is related to. For
example the categories here state amongst other things that the castle was
built in the 13th century, that it is situated in the Middle Rhine region and
that it is a cultural monument in Coblence. This additional information
could also be used to infer knowledge about a given resource but I will not
go into detail about this. In the context of this work the categories will be
used to decide if the corresponding article is potentially relevant for the
questioner by matching the categories with the user’s profile. The advant-
age of looking at the categories is that they act as a generalization since
they classify the article in a larger scope. This makes it possible to relate

15

even very specific articles to a broader knowledge domain if the article is
categorized accordingly.

The second relation that I found usefull for my work is:

http://dbpedia.org/ontology/wikiPageRedirects

which I will refer to as Redirect from here on. Although I already
explained how I try to find relevant articles by matching the profile to the
categories of that article I still have to look at the title of the article itself.
Since if you look at the example of the castle “Schloss Stolzenfels” again
one can see that the term “Stolzenfels” does not actually appear anywhere
in the categories. If there happens to be a user who is interested in “Stolzen-
fels” (whether it is the castle in particular or the Coblence district which is
also called “Stolzenfels”) and therefore has this keyword in its profile, this
article about the castle should be a match to that profile. For this reason
I also look for direct matches between the title of an article and the pro-
file. On this occasion I also search for matches with terms which redirect
to the given article using the Redirect relation. In most cases this rela-
tion is used to handle synonyms but sometimes it is also used to redirect a
search for a term without its own article to the article where its description
can be found (for example in the German Wikipedia a search for “Speich-
erbedarf”9 will be redirected to the Wikipedia article “Arbeitsspeicher”10).
Hence if for some reason a synonym is used as a keyword in a user’s profile
instead of the constituted title of an article, it can be matched using the list
of redirects given by the Redirect relation.

I also considered other relations which are used in the DBpedia. For
example the relation

http://dbpedia.org/ontology/wikiPageWikiLink

relates an article to all other Wikipedia articles that are referenced by a hy-
perlink within the article. Using this information did not prove to be useful
since there are too much hyperlinks in an average article and the domains
covered by the linked articles often differ too much. Therefore finding a
match with a linked article gave no real indication if the root article should
also be regarded as a match. After all the Subject and Redirect relations
offered the best results in my test runs which is why I confined myself with
these.

3.3.2 Matching Strings

For the actual comparison between two strings I used a matching func-
tion which is already integrated in the LogAnswer system. The WOCADI

9memory consumption
10main memory

16

parser [Har02] is used to perform a linguistic analysis of two input strings
and the matching function returns a value between 0 and 1 as a measure of
equality. Each input string is divided into tokens (i.e. words) of different
categories which are assigned different quantifiers (“category-weights”).
The categories (with corresponding quantifiers) I used are:

• proper names (1.0)

• numbers (0.9)

• nouns (0.9)

• base word of a compound (0.8)
(e.g. “Verfahren” in “Eilverfahren”)

• adjectives (0.8)

• modificator of a compound (0.7)
(e.g. “Eil(e) in “Eilverfahren”)

• adverbs (0.7)

• default (0.4)
(all uncategorized word types)

Simply described the weights are used to decide which word classes are
more important when determining if two phrases should match. Obvi-
ously matching names or nouns give a much stronger indication for equal-
ity than matching prepositions which is reflected by the scores. For ex-
ample “Die Bibel” should not match with “Die Glocke” but “Fußball” should
match with “Fußballspieler”. Besides this “category-weights” the matcher
can also be modified by different “criteria-scores” which define quantifiers
for different matching criterias. The criterias (with corresponding quantifi-
ers) I used are:

• case-sensitve comparisson (1.0)

• non case-senstive comparison (0.9)

• lemma comparison (0.9)

• concept comparison (0.8)
(meaning of the words using a lexicon)

• comparison of close synonyms (0.7)

• comparison of all synonyms (0.6)
(all synonyms know to LogAnswer)

17

• comparison including nominalisations
and adjective-attribute relations (0.5)
(e.g. “lieben” vs. “liebe”, “hoch” vs. “höhe”)

• default (0)

The use of the criterias is pretty self explanatory. Since this default config-
uration as well as the the configuration of the “category-weights” offered
good results I did not change any of the scores. I used 0.5 as a threshold,
which means that I regarded two strings as a match if the matcher returned
a result greater than 0.5. For my test runs this threshold offered good res-
ults since I wanted to have a relative low acceptance barrier. However for
future uses the parameters might have to be adjusted to the area of applic-
ation and the respective requirements. For example the threshold could be
set to a higher level to accept only more exact matches to the profile.

3.4 Implementation

In this chapter I am going to describe the system I used for the valida-
tion of my approach. Figure 3 gives an overview of the different compon-
ents and how they were used. The source code can be found at http:
//userpages.uni-koblenz.de/~eifler/ProfileTest/src/

One requirement for my work was that my approach could be tested
without having to change the code in the actual LogAnswer system. There-
fore a test environment was created which made it possible to access the
LogAnswer server to ask questions and then work on the results localy. Be-
sides the use of the matching function which is needed for the actual test
runs I did not implement a direct connection to the system. The reason
was that if my results showed that the inclusion of profile information had
potential, my approach would have to be reimplimented directly into the
system anyway. Since the test environment was optimized for a manual in-
teraction via console commands, I used simple shell scripts to get the data
I needed. I used a Java application to analyze the output of the LogAnswer
test environment and to interact with the DBpedia, the NEPOMUK system
and the MySQL database which I used to store the results of the test runs
(Figure 5 in the appendix shows an ERM diagram of this database). I chose
Java since this enabled me to use the Jena framework 11 which makes work-
ing with RDF data very comfortable. For example Jena offers predefined
classes for accessing SPARQL endpoints and processing the results. I used
these classes to send the queries to the SPARQL endpoint of the DBpedia:
http://de.dbpedia.org/sparql and to extract the profile informa-
tion from the PIMO ontology via a local SPARQL endpoint.

11http://jena.sourceforge.net/

18

LogAnswer System

Java Application
uses

 Request question data /
 Use matching function

MySQL Database

Store Results

Use ontology to
enhance question data

 Extract
Profile Information

Figure 3: System components used for the test runs

For each test run the question data had to be provided in the local Log-
Answer environment. Thus the corresponding questions were sent to the
server to retrieve the ranked answer candidates in advance. The PIMO
ontology on which the individual profile information is based also had to
be created before the actual test run. However since the NEPOMUK sys-
tem is only an exemplary source for the user related information, the ac-
tual implementation of the profile is just a list of keywords (i.e. the topics)
to ensure flexibility. Because the interfaces of the methods are implemen-
ted accordingly the user profile could also be extracted from a different
source or created manually. After these requirements are met the actual
test run was started. The question data which consisted of 200 questions,
their unique identifiers and 20 ranked answer candidates each was loaded.

19

For each answer candidate the name of the article from which it was taken
was extracted. Since the article names directly correspond to resources in
the DBpedia ontology it is very easy to query for the related subjects and re-
directs (as described in chapter 3.3.1). The results were processed and used
to enhance the candidate data. Now for each candidate a list of associated
keywords was created which consisted of the articlename, the correspond-
ing categories and the redirects. To compare this list to the user profile the
matching function of the LogAnswer system was called once for each pair
of keywords (so for n associated keywords and m keywords in the user pro-
file the function had to be called n*m times). The candidate was regarded
as a match, if at least one call of the matching function returned a value
greater than the threshold of 0.5 which meant that any one keyword from
the profile matched with any one keyword associated to the answer can-
didate (title of the article, redirect or category). The matches were stored
together with question and profile data in a MySQL database. The execu-
tion of one test run is also detailed in a sequence diagram in Figure 4.

20

Figure 4: Sequence diagramm showing the execution steps of one test run

21

4 Validation

During my research I tested the effect of the inclusion of profile data into
LogAnswer with numerous small test runs using different profiles and
question sets. These tests were mostly used to determine the optimal con-
figuration for my approach. The type of profile which should be used (i.e.
the relevant classes of the PIMO ontology) had to be chosen. The best way
to match the answer candidates with the profile data had to be identified.
In the same step the best way to utilize the DBpedia ontology had to be
figured out. Finally the configuration of the matching function had to be
evaluated. Though to test the effect of the final configuration a detailed
validation was necessary.

4.1 Evalutation Criteria

To decide if the use of profile information could lead to an improvement
of the candidate ranking for a particular question, I looked at the rank
of the matched candidates and compared it to the rank of the candiates
which contained a correct answer. Only questions where at least one an-
swer candidate matched the profile were regarded in detail since other-
wise the ranking is not affected at all. If at least one candidate matched
and the matched candidates did not contain correct answers a potential for
improvement could be ruled out. In this case I looked at the highest ranked
candidate containing a correct answer and checked if its rank was higher
than the rank of any of the matched candidates. If this was the case it could
lead to a worsening of the results since the wrong answer candidate could
potentially get ranked higher than the correct answer candidate because
it matched the profile. If all correct answer candidates had a lower rank-
ing than the matched (but incorrect) candidates or if no correct candidates
existed the use of the profile would have no effect. An improvement was
only possible if at least one of the matched candidates contained a correct
answer. I regarded a question as potentially improvable if no other correct
answer candidate with a higher ranking existed and the matched (and cor-
rect) answer candidate was not already ranked first. If in this case other
matched candidates not containing a correct answer existed, the potential
negative effect was ignored since the goal to rank candidates with correct
answers as high as possible was achieved nevertheless. Another critical as-
pect I looked at was the fact that the top 5 answers are the ones actually
presented to the user in the end. While the top 5 answer candidates are not
of necessity the same as the top 5 answers there is certainly a correlation.
Therefore it was relevant if a change of the ranking causes a correct answer
to get into the top 5 or if it caused it to be ranked lower. Some examples
where this was relevant are detailed in chapter 4.3.

As each answer candidate had to be examined manually to evaluate if

22

it offers a correct answer to the corresponding question it was not feasible
to regard all 200 candidates for each question. Therefore only the top 20
answer candidates for each question were regarded. As the ranking func-
tion already offers relative good results it was unlikely that a significant
amount of correct answers were lost through this limitation (this assump-
tion is backed by the test results).

4.2 Test Sets

For the thorough evaluation of my approach two different sets of questions
were used. The questions for both test sets were chosen from a list of 8000
questions which were entered into LogAnswer over time. The first set con-
sists of 200 randomly chosen questions which is why I will refer to it as
“random set” from here on. This set was chosen to evaluate the effect of
my approach on questions which do not necessarily have any correlation
with the used profile. This also reflects the idea that a user will not only
ask questions targeting domains which are covered by his profile. It was
also suggested that for some questions the usage of a profile might improve
the results in general. For example open questions where no single correct
answer exists are well suited for the use of profile information and might
therefore be improvable in general.

The questions of the second test set had to belong to knowledge do-
mains which are reflected by a corresponding profile since the basic as-
sumption of my approach is that a user will mostly ask questions related
to his fields of interest. To have a single clear cut criterion for choosing
the questions for this test set I decided to take all questions from a single
knowledge domain: sports. So the second test set consists of 200 questions
(also chosen from the list of 8000 LogAnswer questions) which are more or
less related to sports and I will therefore refer to it as the “sport set”.

I used three different profiles for the evaluation. The first one is my
own profile which is directly extracted from my NEPOMUK system. The
following list which forms the profile includes all instances of the PIMO
classes “Topic”, “Organization” and “Location”:

Brettspiele, Informatik, Japan, Karlsruhe, Koblenz, Künstliche
Intelligenz, Kyoto, Magic The Gathering, Rollenspiel, Schottland,
Tischtennis, Wizards of the coast

The other two profiles were specifically created for the test runs with the
sport set. The first one consists of only one keyword: “Sport”. This profile
reflects the criterion which was used to select the 200 sport questions. Since
“Sport” is a very generic domain there was the possibility of it matching
with many of the answer candidates which would distort the test results.
Therefore I put this particular keyword in a separate profile to test how
many answer candidates would actually match with it. Accordingly the

23

last profile I used contains keywords which represent more specific topics
from the sports domain:

Bundesliga, DTM, FC Schalke 04, Ferrari, Formel 1, Fußball,
Leichtathletik, Olympische Spiele, Snooker

4.3 Results and Evaluation

4.3.1 Statistics

The first test run was carried out with the random set and my own user
profile. In total 3719 answer candidates for the 200 questions were regarded
(for each question the top 20 at most). 53 of these candidates matched with
the profile. The matching candidates were divided on 29 questions which
means that over 85% of the questions would not be affected at all by the
use of profile information. So as a first conclusion I noted that if the other
results showed that profiles should be used as a hard filter, one would have
to implement it in a way that the filter is only applied for questions, where
at least one candidate matches with the profile. Of the 29 questions where
this is the case only one offered the potential for improvement based on the
use of the profile. This question was also the only open question among the
29. Details about this example question and the potential upsides of my ap-
proach when dealing with open questions can be found in the next chapter
(4.3.2). For all other questions using the profile would either change noth-
ing or even lead to a worsening of the results. So these results indicated
that my approach is not well suited for questions which do not correlate
with the used profile.

In the other two test runs I conducted I used the sport set with the two
sport profiles. For the sport set 3639 answer candidates had to be regarded
(again for each question the top 20 at most). 140 of these matched with
the keyword “Sport” and 481 matched with the profile containing the more
specific topics. The 140 candidates matching “Sport” were divided over 61
questions. If the ranking process for these 61 questions was modified by
just looking at matches with “Sport” 5 would potentially improve and 15
potentially worsen. The 481 candidates which matched with the specific
keywords were divided over 116 questions of which 9 would potentially
improve and 30 potentially worsen after integrating the profile informa-
tion into the ranking. Combining the two profiles results in 533 candidates
being matched which means that 88 candidates matched with both profiles.
In total these 533 candidates are divided over 129 questions. The inclusion
of profiles into the ranking would cause an improvement in 10 cases and a
worsening in 33 cases. These results indicate that enhancing the ranking of
answer candidates with profile information is not recommendable. How-
ever to understand why these results emerged and what could be done to
improve the approach, one has to look at the results in detail. Therefore I

24

present some selected examples which showcase the observations I made
during the evaluation of the test runs.

4.3.2 Positive Examples

Open questions for which no one single correct answer exists are one ex-
ample for positive effects of the use of profile information. If several an-
swers can be regarded as correct it is likely that some of them are more
relevant for the questioner than others or that the question was asked with
a specific answer in mind. So an answer which might be regarded as cor-
rect by one user could be regarded as wrong by others. Now if the user’s
profile can be used to select the answers that are actually relevant for the
questioner this would offer a clear improvement to the answering system.
Of course this is only true if the used profile is somehow related to the
question and hence at least one of the answer candidates matches. For
example the random set contains some open questions where none of the
answer candidates matched with the profile during the test runs. However
it also contains one question which showcases the potential for improve-
ment when dealing with open questions: “Welche Schlösser am Rhein sind
Dir bekannt?”12. The following text passage was extracted as one pos-
sible answer candidate: “Das Schloss Stolzenfels steht über dem nach ihm
benannten Koblenzer Stadtteil Stolzenfels auf der linken Seite des Rheins,
gegenüber der Lahnmündung.”13 With “Schloss Stolzenfels” this text pas-
sage obviously offers a correct answer to the question. The answer can-
didate was extracted from the Wikipedia article about the castle which is
related to the following categories by the Subject relation in the DBpedia
ontology:

Resource:Kategorie:Erbaut_im_13._Jahrhundert
Resource:Kategorie:Architektur_(Preußen)
Resource:Kategorie:Erbaut_in_den_1840er_Jahren
Resource:Kategorie:Kulturdenkmal_in_Koblenz
Resource:Kategorie:

Kulturlandschaft_Oberes_Mittelrheintal
Resource:Kategorie:Geschütztes_Kulturgut_in_Koblenz
Resource:Kategorie:

Neugotisches_Bauwerk_in_Rheinland-Pfalz
Resource:Kategorie:Schloss_am_Mittelrhein
Resource:Kategorie:Schloss_in_Koblenz
Resource:Kategorie:Museum_in_Koblenz

12Which castles located at the Rhine do you know?
13The castle “Schloss Stolzenfels” is located above the Stolzenfels district of Coblence

(which is named after the castle) at the left side of the rhine, across the mouth of the Lahn.

25

Some of these categories denote the location of the castle: “Koblenz”. As I
study at the University of Koblenz my profile contains the keyword “Kob-
lenz” and therefore matched with this answer candidate. Since I am (for
whatever reason) interested in the city of Coblence and I asked a question
about castles at the Rhine it is very likely that I am also interested in castles
located near Coblence. In another fictive scenario a person might have in-
cluded Coblence in her profile because she has a meeting there. Therefore
she might be especially interested in castles around Coblence when ask-
ing that question. One could argue that a questioner with this intention
would phrase the question differently (for example: “Welche Schlösser in
der Nähe von Koblenz sind Dir bekannt?”14) But in the mentioned scen-
ario the questioner might not even have the intention to find castles near
Coblence when posing the question about castles at the Rhine. Maybe she
forgot about the meeting or did not think about it at that particular mo-
ment and therefore she could still be interested in castles near a location
where she will stay. This answer candidate was ranked 4th which means
that it is very likely that the resulting answer “Schloss Stolzenfels” would
be ranked in the top 5 too (given that LogAnswer manages to extract the
answer from the passage in the reasoning step). This means that in this
case the use of profile information does not offer an improvement in the
sense that a correct answer was found which was not found before, since
the answer would have been presented to the user anyway. However it is
still an improvement if the correct answer is ranked higher since the top
ranked answer should ideally also be the best. For this example in particu-
lar it is to note though that another answer candidate which also contained
a correct answer was not matched with the profile. This candidate was ex-
tracted from the Wikipedia article “Rheinhöhenweg” and contains this text
passage: “Am Rheinhöhenweg liegen zahlreiche Burgen und Schlösser wie
die Godesburg, Burg Lahneck, Schloss Stolzenfels, Burg Rheineck, Burg
Rheinstein, Drachenburg und viele andere.”15 This candidate also contains
“Schloss Stolzenfels” as an answer and additionally a whole list of castles
located at the Rhine. While this candidate was only ranked 5th it is fair
to say that this is a perfect answer to the question. However it was not
matched to the profile since the DBpedia only contains the following cat-
egories as related subjects for the article “Rheinhöhenweg” and the title
itself did not match either:

ResourceKategorie:Rhein
Resource:Kategorie:Wanderweg_(Hessen)
Resource:Kategorie:Wanderweg_(Rheinland-Pfalz)

14Which castles located near Coblence do you know?
15Numerous castles like the “Godesburg”, “Burg Lahneck”, “Schloss Stolzenfels”, “Burg

Rheineck”, “Burg Rheineck”, “Burg Rheinstein”, “Drachenburg” and many others lie at the
“Rheinhöhenweg”.

26

Resource:Kategorie:Wanderweg_(Nordrhein-Westfalen)

While this answer candidate should clearly be ranked very high (likely it
should be ranked first) one could argue that a user who is particularly inter-
ested in castles around Coblence expects an answer containing only those
castles. Therefore an answer containing a list of castles which has to be
sorted out by the user afterwards may be inferior to one that contains just
the name of one castle which is near Coblence. Though again in this case
the questioner might have phrased the question differently. But if we look
again at a fictive example where a user is interested in hiking (profile con-
tains keyword “Wandern”) we see that this candidate would match. It is
also very likely that a hiker would ask a question like this when searching
for interesting travel destinations. In this scenario the use of profile inform-
ation would improve the answering process by offering the perfect answer
to the user.

Another type of questions for which the use of profile information is
suited well are questions which contain homonyms or other ambivalent
phrases. Such an ambiguity issue often makes it difficult to determine the
domain which is targeted by the question. If one of the possible mean-
ings of the question belongs to a domain which the user is interested in,
it is very likely that he had this meaning in mind when asking the ques-
tion. Now if this domain can be identified using the keywords from the
user’s profile, the corresponding answer candidates can be ranked higher
to solve the ambiguity problem. Of course it is always possible that the
user asks a question about something which is outside of his usual domain
of interest in which case the use of profile information could lead to worse
results. While this is a general problem of my approach it is less of an is-
sue when dealing with ambiguity since it is unlikely that a user will often
ask questions targeting topics with the exact opposite meaning than a topic
contained in the user’s profile.

A typical example which came up several times during my test runs
where questions regarding persons whose name is not unique in the know-
ledge base. For example for the question “Wo wurde Ben Johnson ge-
boren?”16 answer candidates regarding the athlete as well as candidates
regarding the actor were found by the LogAnswer system. This question
was part of the sport set and was therefore tested with the detailed sport
profile which contains the keyword “Leichtathletik”17. So in this case the
goal is to find the birthplace of the athlete Ben Johnson because the profile
clearly indicates that this is the domain the questioner is interested in. The
only text passage which contains this information was ranked second and
it did match with the profile. So if the profile information was included in

16Where was Ben Johnson born?
17athletics

27

the ranking the answer would likely be ranked first which is an obvious
improvement. Regarding the fact that the first and third ranked answer
candidates refer to the actor Ben Johnson, this question also offers a good
example for the utilization of profiles as a filter. While the third ranked
candidate also contains a technically correct answer to the question, it is
very likely not relevant for the questioner. If both answers are displayed,
the user would have to look at the text passages from which the answers
were taken to decide which is the one he actually asked for. However if
this answer was dismissed because it did not match the profile, only one
correct answer would be presented to the questioner which is the optimal
case.

Another typical example are inaccurate questions like for example: “Wie
heißt der deutsche Nationaltrainer?”18. This question gives no indication
about which sport it refers to. Again the user profile can be used to “guess”
which domain the questioner had in mind. In the test run with the sport
set one answer candidate for this question which was ranked 4th matched
with the detailed sports profile. The text passage contained the name of the
German national soccer team coach “Joachim Löw” and it matched with
the keyword “Fußball”. Assuming the question was targeting this inform-
ation the use of the profile would again lead to an improvement. If a user
was generally interested in information about the soccer domain the util-
ization of the profile as a filter would again make sense. In this case only
the one candidate which contains the relevant information would pass the
filter.

4.3.3 Negative Examples

There are many scenarios where the usage of user profiles can lead to a
worsening of the answering process. Some of the most obvious ones (like
for example users asking questions about domains which are not reflected
by their profile) were already mentioned in this paper. However in this
chapter I will present some examples where the usage of profile informa-
tion should in theory be practicable or where the reason for the worsening
is not obvious.

In chapter 3.2 I talked about special disadvantages when dealing with
locations (i.e. names of cities or countries) in the user profiles. The fol-
lowing example showcases these problems: “Wie hoch ist der Fernsehturm
in Stuttgart?”19. For this question one answer candidate extracted from
the article “Fernmeldeturm_Koblenz” matched with my profile (keyword
“Koblenz”). While this example showcases a general problem of my ap-
proach which is that the profile may accidentally match with wrong answer

18What is the name of the German national coach?
19How tall is the television tower in Stuttgart?

28

candidates the test runs showed that this problem occurs especially often
when dealing with names of cities or countries. The reason for this is that
statements about locations are often phrased in a similar way. Therefore
the LogAnswer system will likely select pretty similar answer candidates
which just differ in the name of the location they refer to. As in this example
almost all the answer candidates contained information about a tower.

At first glance the next example question, taken from the sport set,
seems to be perfectly suited for the use of profile information: “Welche
Mannschaftssportarten kennst du?”20. It is an open question with many
possible correct answers and the profile could in theory be used to provide
the most fitting answers to the user. On top of this the sports profile which
was used for the test run fits the domain of the question which should
guarantee some positive results. However only two answer candidates
matched with the profile and both did not contain a correct answer. The
first one was taken from the Wikipedia article “Eckstoß”21 and contains
the following text passage: “Auch in anderen Mannschaftssportarten ex-
istiert der Eckstoß.”22. It should be mentioned that in the next sentence
of the article the team sports which this text passage refers to are named
(soccer and fieldhockey). So if the LogAnswer system was able to core-
late information across the boundaries of one sentence this text passage
could deliver a correct answer. But since this is not possible at the time of
writing this paper it has to be ignored in the evaluation. This candidate
matched with the keyword “Fußball” from the profile because the article
is part of the category “Fußballregel”. The second matched candidate was
taken from the article “Sønderjysk Elitesport” and contains the following
text passage: “Der Sønderjysk Elitesport (SønderjyskE) ist ein dänischer
Sportverein, der in mehreren Mannschaftssportarten aktiv und erfolgreich
ist.”. This candidate also matched with the keyword “Fußball” because the
article is part of the category “Dänischer_Fußballverein”. These two can-
didates were ranked 5th and 12th. Eight answer candidates on the ranks
1,8,9,16,17,18,19 and 20 contained correct answers which means that the use
of profile information would have lead to a worsening of the ranking in this
case. The correct answer candidates were for example extracted from art-
icles about hockey and polo which did not match with the profile. This ex-
ample showcases a general problem regarding the use of profiles: Even if a
profile technically fits the domain of the question, certain keywords might
be needed to match the correct answer candidates which were extracted
(e.g. hockey and polo). Even if the keywords contained in the profile might
in theory match with potential answers to a question this does not help if
these answers are not contained in the 200 extracted text passages.

20Which types of team sport do you know?
21corner kick
22The corner kick also exists in other team sports

29

The next example is again a question from the sport set: “Wie ist der
aktuelle Weltrekord im 100m-Lauf?”23. While seven answer candidates for
this question matched with the detailed sport profile none of those con-
tained a correct answer. However the answer candidate which was ranked
first contained a correct answer. This candidate was extracted from the
Wikipedia article “August 2009” which contains a summary of important
events and facts related to that month. Obviously this article did not match
with the sports profiles and since it is not particularly related to the sports
domain it certainly should not. There are many cases where the correct
answer to a question can be found in an article which is not directly re-
lated to the domain of the question. The reason for this is that the know-
ledge contained in the Wikipedia is not strictly sorted by topic. While it is
structured in different articles there are many articles containing informa-
tion from various domains and each article also contains information which
does not directly refer to its main topic. This means not only that answers
for questions can sometimes be found in unexpected articles but also that
relevant information for a user can sometimes be found in articles which
do not match with his profile.

In a few cases unexpected results which would potentially worsen the
ranking occured because the matching function (see chapter 3.3.2) did not
return the expected result. For example it may be expectable that the two
strings “Fußball-Weltmeisterschaft 1982” and “Fußball” are regarded as a
match. However the matching function only returned a value of 0.448
which did not pass the threshold of 0.5. Though removing the hyphen
in the first string would cause the matching value to raise to 0.757 be-
cause then “Fußball” is regarded as a separate token which can directly
be matched with the second string. Another example are the two strings
“Olympische Sommerspiele 1980/Basketball” and “Olympische Spiele”
which should be regarded as matching but the matching function returned
0.0 which indicates no match at all. These examples show a potential for
improvement in the matching function. However dealing with this type
of natural language issues is a general task of the question answering field
and therefore not directly related to my approach.

4.3.4 Problems with the DBpedia

One major problem I discovered during the test runs are problems with the
DBpedia ontology which are the cause of some of the bad results in my
work. The related subjects for the Wikipedia articles are not used consist-
ently. The following examples showcase this flaw and the effect it has on
my work. The first example I will look at is the question: “Wer ist Bastian
Schweinsteiger?”24. The text passage which presumably contains the best

23What is the current world record in 100-metre dash?
24Who is Bastian Schweinsteiger?

30

answer to this question is taken from the Wikipedia article about Bastian
Schweinsteiger. The DBpedia ontology relates the following subjects with
this article:

Resource:Kategorie:Mann
Resource:Kategorie:

Fußballnationalspieler_(Deutschland)
Resource:Kategorie:Deutscher_Meister_(Fußball)
Resource:Kategorie:Kategorie:Geboren_1984

This article does not match with the keyword “Sport”, since this phrase
neither appears in any of the categories nor in the title (the article has no
redirects). Another answer candidate (taken from the article
“TSV_1860_Rosenheim”) which also contained a correct answer matched
with “Sport” but this answer was not as precise. Though when I looked at
another example question from the sport set and compared it to this one I
recognized an inconsistency. The question “Wer ist Lukas Podolski?”25 is
a pretty similar question and in this case again the best answer candidate
was taken from the main Wikipedia article about the person in question
(i.e. Lukas Podolski). For my test run in particular both articles matched
the user profile since the detailed sports profile I used also contains the
keyword “Fußball. However looking at the related subjects of this article it
is obvious that this time the candidate matches with the keyword “Sport”:

Resource:Kategorie:Mann
Resource:Kategorie:Pole
Resource:Kategorie:Person_(Schlesien)
Resource:Kategorie:

Fußballnationalspieler_(Deutschland)
Resource:Kategorie:Deutscher_Meister_(Fußball)
Resource:Kategorie:Kategorie:Geboren_1985
Resource:Kategorie:Sportler_(Köln)

All the categories listed for the article about Bastian Schweinsteiger have
an equivalent in this list of categories but there are also some additional
ones. While it is obvious that different persons also have different attrib-
utes, the inconsistency resulting from using some type of attribute only for
some of the resources where it would be applicable, harms the usability
of the ontology. In this example the resource “Kategorie:Sportler_(Köln)”
identifies the related resource (i.e. Lukas Podolski) as a sportsman from
Köln. The DBpedia contains many analogical resources referring to dif-
ferent cities (e.g. “Kategorie:Sportler_(Berlin)”) which could all be used to

25Who is Lukas Podolski?

31

classify sportsmen. However since this type of categorie is not used consist-
ently for all sportsmen it does not offer a reliable criteria. Other examples
confirm this observation as for instance the article “UEFA Women’s Cham-
pions League” is related to the category “Kategorie:Frauenfußball” while
the article “UEFA Champions League” is only related to the category “Kat-
egorie:UEFA_Champions_League”. Of course this effect is not restricted to
the sports domain. For example the article “Mont Blanc” can be matched
with “Geographie” while the article “Mount Everest” can not. It is fair to
say that my approach would have delivered better results if these incon-
sistencies did not exist.

32

5 Conclusion and Future Work

The raw numbers presented in chapter 4.3.1 suggest that the approach
which I presented in this paper does not offer a potential for an improve-
ment of the system. Some of the negative effects which are showcased in
the examples can not be circumvented. For example the fact that relevant
information for the user can sometimes be found in articles which do not
match with his fields of interest is directly based on the structure of the
Wikipedia. Since knowledge taken from sources in natural language will
never be strictly sorted by topic this problem is unavoidable. Also the fact
that the profile can accidentally match with wrong answer candidates can
hardly be circumvented. However the positive examples show that the ap-
proach still has the potential for improvement. From the beginning of my
work it was clear that the approach would be well suited for open ques-
tions and this was backed by the test results. The problem here is that most
of the questions in the LogAnswer system and hence most of the questions
in my test sets were questions targeting factual knowledge. Using profiles
can often lead to a worsening of the results for this type of question. Thus
in a different scenario where open questions are more frequent, the utiliz-
ation of profile information could be very useful to filter relevant answers
and thus improve the quality of the system. Another problem with the
current LogAnswer application is that users will ask questions from vari-
ous domains. The test results in my work showed that the use of profile
information is not effective at all if the profile does not directly correlate
with the asked questions. Here again in a different scenario, where each
user will only ask questions about some specific domains which are expli-
citly represented by his profile, my approach would be of much better use.
However in the end the conclusion must be that my approach is not suited
for the common area of application in which LogAnswer is currently used.

My suggestions for future work are primarily related to the usage of
the profile. In my approach I used a very simple type of profile consisting
of just a list of keywords. Using a more detailed profile which could be
extracted from a different source could potentially reduce the amount mis-
takenly matched answers. Another possibility could be to create a profile
based on the last questions posed by a user and use this information as a
heuristic. If a user asks multiple questions about the same or related top-
ics, this approach could be used to identify the corresponding domain cur-
rently researched by that user. In my paper I also mentioned some possible
enhancements for my approach. Reevaluating the results of my approach
with a more consistent ontology and with an improved matching function
could definitely lead to better results in the future.

33

References

[CB09] CHRISTIAN BIZER, Georgi Kobilarov-Sören Auer Christian
Becker Richard Cyganiak Sebastian H. Jens Lehmann L.
Jens Lehmann: DBpedia A Crystallization Point for the Web of
Data. In: Journal of Web Semantics: Science, Services and Agents
on the World Wide Web Issue 7, Pages 154 - 165 (2009)

[DFW10] DAVID FERRUCCI, Jennifer Chu-Carroll James Fan David
Gondek Aditya A. Kalyanpur Adam Lally J. William Murdock
Eric Nyberg John Prager Nico S. Eric Brown B. Eric Brown ;
WELTY, Chris: Building Watson: An Overview of the DeepQA
Project. In: AI Magazine (2010). http://www.stanford.
edu/class/cs124/AIMagzine-DeepQA.pdf

[FGHP08] FURBACH, Ulrich ; GLÖCKNER, Ingo ; HELBIG, Hermann ;
PELZER, Björn: LogAnswer - A Deduction-Based Question An-
swering System. In: IJCAR 2008 - 4th International Joint Confer-
ence on Automated Reasoning, Sydney, Australia, 10th - 15th Au-
gust, 2008, Proceedings, to appear, Springer, 2008 (Lecture Notes
in Computer Science)

[FGHP10] FURBACH, Ulrich ; GLÖCKNER, Ingo ; HELBIG, Her-
mann ; PELZER, Björn: Logic-Based Question An-
swering. In: KI - Künstliche Intelligenz 24 (2010), Nr.
1, S. 51–55. http://dx.doi.org/http://doi.
acm.org/10.1007/s13218-010-0010-x. – DOI
http://doi.acm.org/10.1007/s13218–010–0010–x. – Spe-
cial Issue on Automated Deduction

[GHM+07] GROZA, Tudor ; HANDSCHUH, Siegfried ; MOELLER, Knud
; GRIMNES, Gunnar ; SAUERMANN, Leo ; MINACK, Enrico ;
MESNAGE, Cedric ; JAZAYERI, Mehdi ; REIF, Gerald ; GUD-
JONSDOTTIR, Rosa: The NEPOMUK Project - On the way to
the Social Semantic Desktop. In: PELLEGRINI, Tassilo (Hrsg.)
; SCHAFFERT, Sebastian (Hrsg.): Proceedings of I-Semantics’ 07,
JUCS, 2007, pp. 201-211

[Glö07] GLÖCKNER, Ingo: University of Hagen at QA@CLEF 2007:
Answer validation exercise. In: Results of the CLEF 2007 Cross-
Language System Evaluation Campaign, Working Notes for the
CLEF 2007 Workshop. Budapest, Hungary, 2007

[Glö08] GLÖCKNER, Ingo: Towards logic-based question answer-
ing under time constraints. In: Proceedings of the IAENG In-
ternational Conference on Artificial Intelligence and Applications
(ICAIA-08), S. 13-18, Hong Kong, 2008

34

[Glö09] GLÖCKNER, Ingo: Finding Answer Passages with Rank Op-
timizing Decision Trees. In: Proceedings of the Eighth Interna-
tional Conference on Machine Learning and Applications (ICMLA-
09), IEEE Press, 2009, pp. 208-214, 2009

[GP08] GLÖCKNER, Ingo ; PELZER, Björn: Exploring Robustness En-
hancements for Logic-Based Passage Filtering. In: Proceed-
ings of the 12th International Conference on Knowledge-Based and
Intelligent Information & Engineering Systems (KES-08), Zagreb,
September 2008

[Har02] HARTRUMPF, Sven: Hybrid Disambiguation in Natural Lan-
guage Analysis. Hagen, Germany, FernUniversität Hagen,
Fachbereich Informatik, Diss., Juni 2002

[Hel06] HELBIG, Hermann: Knowledge Representation and the Semantics
of Natural Language. Springer, 2006

[PW07] PELZER, Björn ; WERNHARD, Christoph: System Description:
E-KRHyper. In: PFENNIG, Frank (Hrsg.): Automated Deduction:
CADE-21 Bd. 4603, Springer, 2007 (LNAI), 503–513

[RLJL97] ROGERS, Seth ; LANGLEY, Pat ; JOHNSON, Bryan ; LIU, Anna-
bel: Personalization of the Automotive Information Environ-
ment. In: Proceedings of the workshop on Machine Learning in the
real world; Methodological Aspects and Implications, 1997, S. 28–33

[Sau07] SAUERMANN, Leo: Semantic Web am Desktop. In:
Entwickler Magazin 2008 (2007), 12, Nr. 1, 119-122.
http://entwickler-magazin.de/zonen/magazine/
psecom,id,17,ausgabe,234,p,0.html. – Aimed for
Popular Science and Developers

[SED07] SAUERMANN, Leo ; ELST, Ludger van ; DENGEL, Andreas:
PIMO - a Framework for Representing Personal Information
Models. In: PELLEGRINI, Tassilo (Hrsg.) ; SCHAFFERT, Se-
bastian (Hrsg.): Proceedings of I-Semantics’ 07, JUCS, 2007, pp.
270-277

[WBW+02] WAGNER, M. ; BALKE, W.-T. ; WAGNER, Matthias ; BALKE,
Wolf tilo ; HIRSCHFELD, R. ; KELLERER, W.: A Roadmap to
Advanced Personalization of Mobile Services. 2002

35

6 Appendix

Figure 5: Database architecture for the implementation of the test runs

i

Figure 6: Screenshot of the NEPOMUK Semantic Desktop PIMO perspective

ii

