
Fachbereich 4: Informatik

Design Patterns for API Analysis &
Migration

Diplomarbeit
zur Erlangung des Grades eines Diplom-Informatikers

im Studiengang Informatik

vorgelegt von

Joachim Pehl

Erstgutachter: Prof. Dr. Ralf Lämmel
Institut für Informatik

Zweitgutachter: Dr. Markus Kaiser
Institut für Informatik

Koblenz, im Januar 2012

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einver-
standen.

� �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Unterschrift)

Acknowledgments

I would like to thank my adviser Prof. Dr. Ralf Lämmel for offering me this interesting
topic and for his assistance during the developement of this thesis. He provided me with
assistance during the implementation of the tools mentioned in this thesis and with many
interesting ideas.

I would also like to thank Dr. Markus Kaiser for his advises regarding the structure of
my thesis.

Furthermore, I would like to thank the members of the Software Languages Team,
especially Ekaterina Pek, David Klauer and Jan Baltzer whose implementations for the
API 2.0 project became a foundation of this thesis.

I am also grateful to Cecile Zedtwitz and Marc Zobel for proofreading my thesis.
Finally, I would like to thank my family, especially my parents, for their support and

patience during my studies.

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Related work . 3
1.3 Outline . 6

2 Pattern and Technology Overview 8
2.1 Analysis Patterns . 8
2.2 Migration Patterns . 9
2.3 Main Technologies . 10

3 Analysis Patterns 11
3.1 Configure - Analyze - Export (CAE) . 11

3.1.1 Intent . 11
3.1.2 Motivation . 11
3.1.3 Applicability . 11
3.1.4 Structure . 12
3.1.5 Participants . 13
3.1.6 Implementation . 13
3.1.7 Related Patterns . 14

3.2 Variable Analyzer . 14
3.2.1 Intent . 14
3.2.2 Applicability . 14
3.2.3 Motivation . 14
3.2.4 Structure . 14
3.2.5 Participants . 16
3.2.6 Implementation . 16
3.2.7 Related Patterns . 18

3.3 Independent Data Model . 18
3.3.1 Intent . 18
3.3.2 Applicability . 19
3.3.3 Motivation . 19
3.3.4 Structure . 19
3.3.5 Participants . 19
3.3.6 Implementation . 20
3.3.7 Related Patterns . 21

3.4 Multiple Outputs . 21
3.4.1 Intent . 21
3.4.2 Motivation . 21

i

CONTENTS ii

3.4.3 Applicability . 22
3.4.4 Structure . 22
3.4.5 Participants . 22
3.4.6 Implementation . 23
3.4.7 Related Patterns . 25

4 Migration Patterns 26
4.1 Simple Mapping Language . 26

4.1.1 Intent . 26
4.1.2 Motivation . 26
4.1.3 Applicability . 27
4.1.4 Structure . 27
4.1.5 Participants . 28
4.1.6 Implementation . 29
4.1.7 Related Patterns . 31

4.2 Mapping Language Extension . 31
4.2.1 Intent . 31
4.2.2 Motivation . 32
4.2.3 Applicability . 32
4.2.4 Structure . 32
4.2.5 Participants . 33
4.2.6 Implementation . 34
4.2.7 Related Patterns . 39

4.3 Mapping Error Tracking . 39
4.3.1 Intent . 39
4.3.2 Motivation . 39
4.3.3 Applicability . 40
4.3.4 Structure . 40
4.3.5 Participants . 41
4.3.6 Implementation . 42
4.3.7 Related Patterns . 45

4.4 Generic Wrapper Recycler . 46
4.4.1 Intent . 46
4.4.2 Motivation . 46
4.4.3 Applicability . 47
4.4.4 Structure . 47
4.4.5 Participants . 47
4.4.6 Implementation . 48
4.4.7 Related Patterns . 53

4.5 Wrapper Creator . 53
4.5.1 Intent . 53
4.5.2 Motivation . 53
4.5.3 Applicability . 53
4.5.4 Structure . 53
4.5.5 Participants . 53
4.5.6 Implementation . 55
4.5.7 Related Patterns . 58

4.6 AST Migrator . 58
4.6.1 Intent . 58

ii

CONTENTS iii

4.6.2 Motivation . 58
4.6.3 Structure . 59
4.6.4 Applicability . 59
4.6.5 Participants . 60
4.6.6 Implementation . 60
4.6.7 Related Patterns . 62

5 Observations and Conclusions 64
5.1 API analysis patterns . 64
5.2 API migration patterns . 65
5.3 Future work . 66

6 Appendix 67
6.1 Tool Introduction . 67

6.1.1 Fundamental differences between analyzers 67
6.1.2 ASM . 68
6.1.3 Recoder . 70
6.1.4 JDT . 72
6.1.5 Other tools . 75

6.2 JDT AST Nodes . 76
6.3 Complete DTD . 76
6.4 Example grammar for the Simple Mapping Language 78
6.5 Mapping complexity . 78

iii

Abstract

Software projects typically rely on several, external libraries. The interface provided by
such a library is called API (application programming interface). APIs often evolve over
time, thereby implying the need to adapt applications that use them. There are also reasons
which may call for the replacement of one library by another one, what also results in a
need to adapt the applications where the library is replaced.

The process of adapting applications to use a different API is called API migration.
Doing API migration manually is a cumbersome task. Automated API migration is an
active research field.

A related field of research is API analysis which can also provide data for developing
API migration tools. The following thesis investigates techniques and technologies for API
analysis and API migration frameworks. To this end, design patterns are leveraged. These
patterns are based on experience with API analysis and migration within the Software
Languages Team.

Deutsche Zusammenfassung
Software Projekte nutzen typischerweise mehrere externe Programmblibliotheken. Die
Schnittstelle, die solch eine Programmblibliothek zur Verfügung stellt, wird als API (ap-
plication programming interface) bezeichnet. APIs werden üblicherweise laufend weiter-
entwickelt, was es notwendig macht, dass die Anwendungen, welche sie verwenden, ent-
sprechend modifiziert werden. Zudem kann es kann vorkommen, dass eine Programm-
blibliothek durch eine andere ersetzt werden soll, was ebenfalls zur Folge hat, dass die
Anwendungen, wo die API verwendet wurde, modifiziert werden müssen.

Den Vorgang eine Anwendung so zu modifizieren, dass eine andere API verwendet
wird, bezeichnet man als API Migration. Manuelle API Migration ist eine mühselige und
zeitintensive Aufgabe, deshalb ist automatische API Migration ein aktives Forschungsfeld.

Ein verwandtes Forschungsgebiet ist API Analyse, welches Daten zur Verfügung stellt,
die helfen können Werkzeuge für API Migration zu entwickeln. Die hier vorliegende
Arbeit behandelt Techniken und Technologien für die Entwicklung von Werkzeugen für
API Analyse und API Migration. Die Ergebnisse werden als Design Patterns präsentiert,
welche auf unseren Erfahrungen mit API Analyse und API Migration innerhalb des Soft-
ware Language Teams basieren.

1

Chapter 1

Introduction

1.1 Motivation
Modern developers often use third-party software libraries for certain tasks. While the pro-
grammer has to learn the interface (API or application programmer interface) of a library,
he does not have to reimplement the features of the libraries and once learned he can easily
use it in other software projects. Since most commonly used APIs are highly sophisti-
cated, the usage of APIs often improves the quality of the code and save developement
time. However, software libraries and their respective APIs evolve over time. It may also
happen that a developer decides to switch to a different API (for example, for performance
reasons). In both cases he has to adapt the software to the new API. The process of switch-
ing APIs is called API migration. API migration is usually done manually, which can be a
time-consuming task and it has to be applied to every software projects which use the API
in question. Therefore, there is a high interest in (semi)automatic API migration.

A field of research related to API migration is API analysis which can provide facts
usefully for API migration (for example, by providing information about API usage). Fur-
thermore, API analysis may help to improve code quality by granting a better understand-
ing of the properties of software projects, for example, by comparing the API usage be-
tween software projects.

During our own research, regarding API analysis and API migration, we designed sev-
eral tools for API analysis and migration. A big amount of time was spent for redesigning
them. Dong et. al specified the problem with such developement cycles precisely:

”Many software developers routinely apply design patterns in their software systems
to reuse expert design experience and record design decisions. However, such high-level
design information is typically lost in system source code when the systems are deployed.
The architectural design document is normally not deployed with source code. Even the
design document is available, it may not be consistent with the source code after the system
has evolved and been changed due to new requirements.” [DZ07]

After seeing that other analysis/migration tools had similar problems (and used similar
solutions), we decided to extract domain-specific design patterns out of our tools, respec-
tively out of the experienced gained during the developement of the tools, for later reuse.

Design patterns provide guidelines for developing software which has certain prop-
erties. Furthermore, usage of design patterns should improve the readability of the code,
since the programmer may recognize the pattern, and the resulting software should be easy
to expand.

2

1.2. RELATED WORK 3

Design patterns may vary strongly in scope, the most well-known catalogue of gen-
eral design patterns ”Design Patterns: Elements of Reusable Object-Oriented Software”
[GHJV95] already contains patterns that go from single classes (Singleton for example) to
patterns like the Flyweight pattern which are designed for a large structure. Other works
describe even smaller patterns (for example, ”Micro patterns in Java code” [GM05]) or
patterns which are restricted to a specific domain (for example, ”An analysis pattern for
invoice processing” by Fernandez et al. [FY10]). While domain-specific patterns are usu-
ally not useful for other domains, they are very helpful for developing code in that specific
domain. They usually already consider domain-specific problems. Many domain-specific
patterns can be seen as special cases of other patterns or as composed versions of multiple
patterns.

This thesis presents the patterns which we recognized during our work.

1.2 Related work
We have multiple key aspects throughout this thesis. Therefore this section is split into
three parts:

Design Patterns Here we mention work related to design patterns in general and specific
patterns which are used or are helpful for the patterns described in this thesis.

Migration Here we will mention some important work about API migration.

Language Technologies The last part presents some technologies and tools for code ana-
lysis and transformation.

In addition to the following works, there are two projects which should be mentioned.
This thesis was not planned from the start, but resulted from two different projects. The
first project had the goal to analyze API usage. We developed several tools for the two
iterations of that project which are referenced as API 1.0 and API 2.0 throughout this
thesis [LPS11].

The second project was going to be a thesis about API migration. While, at the time of
writing, the project did not produce enough scientific data for a thesis, we gained a lot of
experience for developing API migration tools. This experience is presented in this thesis
in the form of the API migration patterns.

Design Patterns
As mentioned above, the patterns presented in this thesis were created by extracting them
from the source code of our developed tools and/or by creating them based on the problems
and requirements we observed during their implementation and maintenance. This made
sense since they are domain-specific unlike the patterns specified in [GHJV95]. Further-
more, we incorporated features and limitation of the Java language [GJS05].

While this approach worked for us, developing procedures for mining or creating of
design patterns is an ongoing research field. Winters et al. (”Dealing with abstraction: Case
study generalization as a method for eliciting design patterns” [WM09]) have a catalogue
of possible technologies and are proposing a methodology for pattern mining/creation by
generalisation. Another possible approach was identified by Claudia Iacob (”A Design
Pattern Mining Method for Interaction Design” [Iac11]). She proposes a structured method
of detecting patterns based on the results of workshops on a specific design issue.

3

1.2. RELATED WORK 4

Of course most of the patterns presented in this thesis are related or composed of other
patterns. Some of these relations are mentioned in the ”related patterns” section at the
end of each presented pattern. The patterns out of the pattern catalog [GHJV95] are well-
known so we do not need to explain them here in more detail, but we also mention some
less-known patterns. Those are explained in more detail below.

Even if one (or multiple) pattern(s) are present for a problem and a programmer is
aware of them, it will not be certain that he will apply them due to time constraints or a
misinterpretation of the problem space. Jensen et al. (”On the Use of Genetic Program-
ming for Automated Refactoring and the Introduction of Design Patterns” [JC10]) propose
an approach to introduce design patterns automatically during the refactoring process based
on software engineering metrics and genetic programming. A related problem is improper
usage of a pattern. It might be the case that a pattern is not applied as it should be due
to later changes or misinterpretation from the programmer. A pattern which is applied
improperly may render the pattern’s properties invalid. Blewitt et al. (”Automatic Verifi-
cation of Design Patterns in Java” [BBS05]) present a pattern specification language called
SPINE and a proof engine for that language.

Interesting patterns Multiple of our patterns require a Factory of some kind. Welicki
et al. described a pattern which provides big amounts of flexibility since it is driven by
Metadata (”The Dynamic Factory Pattern” [WYWB08]), Welicki et al. also described a
related pattern which allows to manipulate existing objects by reloading their Metadata
definitions (Adaptive Object Model Builder [WYWB10]). If an AST based technology is
used, it will often be necessary to traverse ASTs with a big amount of different ASTNodes.
Bringert et al. presented a pattern which is focused on traversing the AST and effective
reuse of that traversal component (A Pattern for Almost Compositional Functions [BR06]).

The Model View Controller pattern [KP88] is a rather universal structural pattern. The
structural patterns for API analysis, presented in this thesis, focuses on other parts of the
analysis software. But, if these patterns were used together, they could be seen as an
implementation of the MVC pattern.

Some of the patterns presented in this thesis require configuration information, for ex-
ample, all frameworks where a third-party tool is used for analyzing code, will need some
kind of configuration. The Variable Analyzer pattern (see 3.2) focuses on the configuration
file itself. However, it is also necessary to consider how to handle the configuration, read
it every time, save it in memory etc. The Configuration Data Caching Pattern [Wel06] by
Leon Welicki provides a structure that enables the code to handle effectively the configu-
ration. Summarized, it stores the configuration in memory in a repository that only parses
the configuration files if necessary.

Guerra et al. present ”A Pattern Language for Metadata-based Frameworks” [GSF10].
While most of the patterns presented in this thesis used an AST, representing the facts from
the analyzer as Metadata is also a sensible approach. Therefore, multiple of the pattern
presented by Guerra et al. are useful for our approaches. The following patterns are the
most important ones (regarding this thesis):

Metadata Container This pattern separates the reading of the metadata from the frame-
work which uses them.

Metadata Repository This pattern provides a repository for accessing the data and elimi-
nating unnecessary readings of the metadata.

Some more useful patterns can be found in Nock Clifton’s Data Access pattern cat-
alogue (”Data Access Patterns: Database Interactions in Object-Oriented Applications”

4

1.2. RELATED WORK 5

[Noc03]). Especially interesting are:

Data Accessor which decouples data reading and data access in the framework. The pre-
viously mentioned MetaData Container pattern is based on the same principle.

Demand Cache which populates the data lazily on framework demand.

Active Domain Object which abstracts the semantics of a data model (and its access de-
tails) for the framework and provides the client with an easy solution to retrieve and
modify the requested data.

Cache Collector which, similar to a garbage collector, deletes data sets which are no
longer needed.

Domain Object Assembler which is a Factory pattern for populating a data repository.

Primed Cache which tries to populate a cache first with the most frequently required ob-
jects.

Object-relational map which decouples domain objects from their underlying data mod-
els and data access operations.

Migration
Basically we can group the ongoing research regarding API migration into three groups.
The first group is migration between different versions of the same API, this is often ap-
plied by improved refactoring capabilities. An example would be CatchUp! by Henkel
et. al [HD05]. In that approach the refactorings applied to the API by its designer are
recorded via CatchUp!. A user who wants to migrate to another version of that API can
use CatchUp! and the saved refactorings on his code. A related approach is ComeBack!
by Savga et. al [SRG08], it also stores the refactoring steps, but it tries to generate an
Adapter for the upgraded API. Another approach in that area is proposed by Tammo Freese
(”Refactoring-aware version control” [Fre06]). Freese tries to capture the refactorings by
an extended version control system, which has the advantage that it has no problem han-
dling updates done by multiple developers. A suitable way for expressing refactoring steps
is presented by Tip et al. (”Refactoring Using Type Constraints” [TFK+11]), which is
used by Balaban et al. for class library migration (”Refactoring support for class library
migration” [BTF05])

These solutions have the drawback that they wont work if the refactoring step is applied
without tool assistance. Dig et. al propose an approach to locate these refactorings later.
The found refactorings can than be applied in a similar way. For example, by migration or
by an adapter layer (”Automated Upgrading of Component-Based Applications” [DJ06]).

The next group is migration between different APIs, this includes our own research
interest.

The last group is migration between APIs in different languages. Zhong et al. de-
veloped an algorithm (and an implementation of it) that mines mapping relations between
API classes and methods by comparing two versions of the same project written in different
languages (”Mining API Mapping for Language Migration” [ZTX+10]).

Language technologies
Our main interest for API analysis is to gain knowledge about API usage [LPS11].

5

1.3. OUTLINE 6

One problem big that occurs in real world examples is the inclusion of API code in the
source code of a program. This means that either the programmer copied the code or that
he reimplemented it. Kawrykow et al. proposed a technique to find such cases (”Improving
API Usage through Automatic Detection of Redundant Code” [KR09]).

We mentioned multiple works to focus on migration between different versions of
the same API, these techniques have in common that there is a need for analyzing the
differences between these versions. Neamtio et. al. developed an algorithm and a tool for
analyzing the differences by matching the ASTs of the parsed programs (in that case C
programs), what could also be a basis for a migration framework (”Understanding Source
Code Evolution Using Abstract Syntax Tree Matching” [NFH05]).

Kniesel et al. provided a comparison between various analyzer frameworks, by using
them for design pattern detection (”Comparison of LogicBased Infrastructures for Concern
Detection and Extraction” [KHR07]). Amongst others, JTransformer [JTr] and JQuery
[JDV03] which are mentioned below.

Many of the used frameworks are relying on an AST for data storage. Since we are
usually interested in analyzing the whole structure, this makes sense. However, if we want
to know specific traits of a class, it will be annoying to traverse the whole AST. Therefore,
tools that are made for assisting direct code developement, usually use other approaches,
for example the JTransformer framework provides a Prolog interface for easily querying
the source code (internally it still works on the JDT AST). Another example would be the
Java Tool Language (JTL) by Cohen et al.[CGM06] which allows queries ”formulated in
First Order Predicate Logic augmented with transitive closure (FOPL*)” on Java code.

Other Frameworks One interesting framework, which was already mentioned, is the
JTransformer [JTr] framework which is a query and transformation engine for Java source
code. It uses the JDT libraries to analyze Java source code and represents the data as Prolog
facts. The facts can be manipulated by using conditional transformations.

A tool designed for browsing the source code is JQuery [JDV03]. It is implemented
on top of an expressive logic query language. While it lacks code manipulation features, it
tries to combine the advantages of hierarchical code browsers and query tools.

Another interesting work is JastADD (”The JastAdd extensible Java compiler” [EH07])
presented by Ekman, Torbjörn and Hedin, Görel. It is a Java compiler which allows the
user to extend Java with new language constructs. It is also usable for building a static
analysis tool. The paper ”Building Semantic Editors using JastAdd” [SH11], by the same
authors, presents an example application for JastADD.

1.3 Outline
Used terminology The following list explains some terms which are used in this thesis.

Target Language The target language is the programming language in which the APIs
are written. In this thesis this always means Java, but the presented patterns are not
restricted to Java.

Source API The source API is the API which is in use before the migration process.

Target API The target API is the API which we want to use after the migration process.

Source/Target Method Similar to source and target API, we use the term source method
to specify the method which is used before the migration process and the target
method indicates the method which should be used after the migration.

6

1.3. OUTLINE 7

Mapping A mapping is a description written in a mapping language.

Data Consumer A data consumer is a piece of software that reads data from an analysis
process and uses it in some way. For example, by formatting and storing them to a
file.

Mapping Complexity The mapping complexity is a classification of the requirements for
migrating a specific method. It is described more precisely in Section 6.5 of the
appendix and in the pattern description where it is used.

Pattern presentation The patterns described in this thesis will be structured in the
following manner:1

Intent A short explanation of the intention behind this pattern.

Motivation An explanation of the motivation behind the described pattern.

Applicability A description of the most common scenarios where this pattern can or
should be applied.

Structure This section will usually contain an UML diagram of the code structure for the
described pattern. For some pattens we will also discuss the structure of important
files.

Participants At that place we will explain the role of the elements shown in the structure
section.

Implementation The implementation section explains the components of the UML dia-
gram in more detail and contains example code. Furthermore, possible implementa-
tion issues and variants are mentioned here. This section differs a lot for the different
pattern since the scope of the patterns presented in this thesis varies highly.

Related Patterns If the presented pattern has a close relation to other patterns, these pat-
terns will be mentioned there. Furthermore, we will mention patterns or technolo-
gies that can assist the presented pattern.

Chapter outline This chapter explained our motivation and related work for this thesis.
The second chapter will give an overview over the patterns presented in this thesis, the

relationship between the patterns and the used technologies.
Chapter 3 contains the patterns for API analysis while the fourth chapter contains the

patterns for API migration. Both chapters are the main contribution of this work.
Chapter 5 will summarize our conclusions and observations and discuss possible future

work regarding this thesis.
The last chapter contains the appendix. It consists of an introduction to the main anal-

ysis and transformation frameworks which are used by us. It also contains some additional
information which we consider interesting or helpful, but these information would bloat
their respective sections (for example, complete versions of code snippets in the imple-
mentation sections).

1We did chose a presentation related to the one used in [GHJV95].

7

Chapter 2

Pattern and Technology Overview

This chapter will present a short overview over the patterns which we identified. The
relationship between these patterns will also be explained. For a more detailed explanation
for each pattern read their respective ”intent” or ”motivation” section.

We will also mention the used technologies. A more detailed introduction to the dif-
ferent tools can be found in the appendix (see Section 6.1).

2.1 Analysis Patterns
This section introduces the patterns we identified for creating an analysis framework.

Configure - Analyze - Export

Multiple Outputs

Variable Analyzer

Independent Data Model

supports supports

supports

provides data

 centralizes the configuration

Figure 2.1: Relations between the analysis patterns

Figure 2.1 shows you the relations between the analysis patterns described in this thesis
(each entity in the diagram represents one of the analysis patterns).

The four patterns are:

Configure - Analyze - Export It provides the basic structure for an analyzer.

Independent Data Model It supports the structure provided by CAE, stores the generated
data in memory and provides an interface for accessing the data.

8

2.2. MIGRATION PATTERNS 9

Multiple Outputs It handles the consumer accessing the data generated by the analyzer.

Variable Analyzer It configures the analyzer.

If all four patterns are applied we will have an analyzer that meets our requirements
for a flexible analysis framework.

These patterns emphasize heavily that it is important to be able to switch easily the
analyzer framework. Besides possible technical aspects, the analyzers are either source
code or bytecode based, which results in strong differences between the analyzers’ results.
In summary, the compiler is able to change the syntax of the source code. This is not
limited to some special cases but this effect is noticeable in many cases. We strongly
advise to read Section 6.1.1 where this is explained in more detail.

2.2 Migration Patterns
The patterns introduced in this section are the patterns we identified for an API migration
framework. These migration patterns can be divided into three groups.

Mapping Specification The Simple Mapping Language and Mapping Language Exten-
sion provide a guideline how to setup the grammar for the mapping and a software
structure for parsing them.

Migration Assist The Wrapper Creator and AST Migrator patterns are meant to assist the
API migration process.

Runtime Assist The Mapping Error Tracking and Generic Wrapper Recycler patterns are
supposed to assist a migrated software during runtime.

Migration Framework Main Process Parser

Mapping in Memory

Migrator

May use the Simple Mapping Language or

Language Extension pattern

May be an implementation of

the Wrapper Creator pattern.
<<create>>

start(mapping_files)

<<create>>

<<create>>

mappingReference

start(mappingReference)

read

mapping

migratedProject

May use the AST Migrator

pattern.

Figure 2.2: An overview of the relation between the migration patterns

9

2.3. MAIN TECHNOLOGIES 10

Figure 2.2 shows an overview about the migration patterns that are used for the mi-
gration part of the software. Simple Mapping Language and Mapping Language Extension
are providing a specification for the mapping and a software structure for the parser. The
Wrapper Creator and AST Migrator patterns are useful for the migration part of the frame-
work.

The two remaining patterns are shown in Figure 2.3. They assist the migrated software.

Migrated SoftwareGeneric Wrapper Recycler Error Tracker

<<create>>

askForWrapper(wrappee)

wrapper

<<create>>

error(details)

warning(details)

User

send(log)

Only if a wrapper is used.

Figure 2.3: An overview of the relations between the Migration patterns

These four patterns can be used together but they are more independent from each
other than the analysis patterns. They are more problem-oriented and a possible user has to
consider carefully what else he needs for a migration framework. But the Simple Mapping
Language and Mapping Language Extension patterns provide a basis for such a framework.

2.3 Main Technologies
Programming Language The patterns presented in this thesis were implemented in
Java. The target projects for our migration and analysis tests were also implemented in
Java. Because of that, we incorporated features and problems of the Java language into
the description of the patterns, but that does not mean that these patterns are limited to
the Java language. The only additional language which was used was Prolog, mainly for
maintaining and querying the facts generated from the analysis. We will mention that in
the implementation section of the pattens where Prolog was used.

Important Frameworks Three major APIs were used for the implementation of the
tools which we used for our API analysis and API migration tests, these are ASM [Eri], Re-
coder [rec] and the JDT libraries [JDT] from the Eclipse system [ecl]. A short introduction
to these tools and a short comparison can be found in Section 6.1.

10

Chapter 3

Analysis Patterns

This chapter contains the patterns we identified for API analysis. An overview over these
patterns is in section 2.1.

3.1 Configure - Analyze - Export (CAE)

3.1.1 Intent
Provide a software structure which simplifies common modifications to the analyzer and
switching of the components of an analyzer framework.

3.1.2 Motivation
As already explained in section 1.2, we developed several tools for analyzing APIs. During
that work the structure of the tools was heavily changed in order to improve our generated
datasets or to broaden the scope of our tools.

We noticed that the necessary code changes can be assigned to the following three sets:

1. Refinement of the analyzer’s configuration process.

2. Refinement of the analysis code.

3. Refinement of the output.

By separating these three parts of the code we were able to reduce heavily the amount of
recoding if one of these three parts needed to be changed or extended.

So we suggest in this pattern that the structure of an API analyzer framework is based
upon these three sets.

3.1.3 Applicability
This pattern provides a basic structure for an API analyzer. It is intended to be used for
statical API analysis. Its applicability for dynamical analysis depends on the used analyzer
framework and the demands to the performance of your program.

11

3.1. CONFIGURE - ANALYZE - EXPORT (CAE) 12

3.1.4 Structure
We described three sets of code changes in the motivation section of this pattern.

This means that we want to split the functionality of the framework in 3 corresponding
parts:

• Configure

• Analyze

• Export

Figure 3.1 depicts a sequence diagram, showing an example for our suggested data
flow in an analyzer framework.

Main Process

Analyzer

Configurator

Printer

<<create>>

start(Sources)

Configuration

start(Configuration)

data

<<create>>

<<create>>

print(data)

Figure 3.1: Configure - Analyze - Export sequence diagram

12

3.1. CONFIGURE - ANALYZE - EXPORT (CAE) 13

3.1.5 Participants
The participants of the sequence diagram in figure 3.1 are a client process and three distinct
objects which contain the functionality of the framework:

Configurator It is responsible for configuring the analyzer. In this simple example
it creates a configuration object which is returned to the client and passed to the
Analyzer.

Analyzer It takes a configuration object, runs the analysis and returns the results to the
client.

Printer This object is responsible for exporting the data. Later patterns will call this
part a data consumer, because it is not restricted to printing the data.

3.1.6 Implementation
Communication The three distinct parts of the analyzer framework have to communi-
cate. The sequence diagram in figure 3.1 shows that an argument is passed back from the
Analyzer to the main client which passes it to the Printer. However, this is not fea-
sible for large data sets. So you most likely want to provide an interface for these classes.
The Independent Data Model pattern provides a possible interface. For the communication
between the Configurator and the Analyzer take a look at the Variable Analyzer
pattern. It will give you a guideline how to setup the configurator and how communication
between the Configurator and the Analyzer could be handled.

Configurator The Configurator is responsible for providing the necessary settings
for the Analyzer. The Configurator should have the following properties:

• Easily extensible.

• High readability.

• Independent from the Analyzer.

The first two properties are self-explanatory, the third one means that there should be no
settings specific to the used analyzer library.

For an example implementation, take a look at our Variable Analyzer pattern (see
section 3.2).

Analyzer The implementation of the Analyzer depends heavily on the used analyzer
framework (see section 6.1 for some suggestions).

Printer The Printer part is responsible for exporting the generated data to the client.
While this can be easily implemented in a trivial way (for example, by simply writing the
data straight to some text files), you should consider the case that you want to change the
way how to export the data later. In that case take a look at the Multiple Outputs pattern
(see section 3.4).

13

3.2. VARIABLE ANALYZER 14

3.1.7 Related Patterns
CAE can be seen as the foundation for the other analysis patterns, described in this thesis.
Therefore, it is connected with them and we already mentioned several other patterns in
the implementation section of this pattern.

The Model View Controller paradigm MVC [KP88]) splits the different responsibili-
ties of a given software into three parts, a project that uses the CAE pattern and the In-
dependent Data Model pattern can be considered as an implementation of a Model View
Controller system. The Model is represented by the data model used for the Independent
Data Model pattern. The View is represented by the output capabilities of the software
and the Controller is represented by the analyzer (the configuration capabilities also
belong to the Controller). If Independent Data Model is not used, the Model will be
represented by the data model of the analyzer. But in that case Controller (analyzer’s
data model) and View (analyzer) are a single entity, thereby not meeting the requirements
of MVC.

3.2 Variable Analyzer

3.2.1 Intent
Provide an independent and extensible configuration process for the analyzer.

3.2.2 Applicability
This pattern will be applicable if the Configure - Analyze - Export pattern is used or if the
configuration options of the framework are going to be extended later.

3.2.3 Motivation
It is easy to imagine a simple analyzer which analyzes the public signatures of APIs used
by different projects. For such an analyzer it would be sufficient to place all APIs in a
single location. In such a scenario you only need two distinct modes for the analyzer:
analyze a given *.jar file or all *.jar files in a specific directory.

Our first version of the ASM analyzer worked in that way. Later on we broadened the
scope of the tool and used more features of the analyzer framework. This resulted in a
rather unwieldy configuration. In order to remove that problem we redesigned the starting
process in two ways.

1. We started to use XML files for configuration, since XML code will be easily ex-
tensible and will have a high readability if used correctly.

2. We removed all settings specific to the analyzer.

This pattern will show you a possible software structure for the configuration process,
a list of options which we found to be useful and it will discuss sensible possible configu-
ration options for the framework.

3.2.4 Structure
The structure section of this pattern consists of two parts.

• An UML diagram presenting a possible code structure.

14

3.2. VARIABLE ANALYZER 15

• An informal description of a possible structure for configuration files.

Code Structure Figure 3.2 shows an example structure for a possible configurator.

<<interface>>

AbstractConfigurationParser

+parse(f:File): Configuration

Analyzer

+reset()

+analyze(config:Configuration)

Configuration

creates

MainClient

+config: Configuration

+parser: AbstractConfigurationParser

+analyze()

invokes invokes

reads

ConcreteConfigurationParser

Figure 3.2: Structure of the code

File Structure This section discusses the basic structure of possible configuration files
for the analyzer.

Task configuration This part should be at the top level of the configuration file
and the mode of the analysis should be configured there.

You will most likely need at least two modes for the framework. An unguided mode
where the framework analyzes a restricted number of files, and a guided one where addi-
tional information are passed to the analyzer. A simple example for a guided mode is to
analyze all elements in a file that lists all *.jar files and all classes that where created during
the compilation of a given project.

Source configuration It is necessary to specify the sources to analyze. That would
be the files (or projects) that should be analyzed or the files for a guided analysis.

Furthermore, sometimes you will need to specify additional sources or information,
for example, if your analyzer needs third-party libraries or if you are building the project
at the start of the analysis.

Analysis configuration It is possible for most analysis frameworks to specify how
much should be analyzed. For example, if no information about local variables were
needed, you could disable type-binding in the JDT (see section 6.1.4) or configure ASM
(see section 6.1.2) so that it skips debug information provided by the Java compiler. In
most cases you want to do that because it heavily impacts performance. Literature about
the used frameworks usually mentions which options increase the calculation time.

For our tools we usually wanted either a complete analysis or an analysis on the visible
elements (visible in this context means accessible for the programmer). So we consider it
useful to implement both as possible default modes:

15

3.2. VARIABLE ANALYZER 16

Blackbox mode Analyze only the visible signature.

Whitebox mode Complete analysis.

You should also provide a way for the user to specify the analysis in detail.

Output configuration This part should contain the information for the data con-
sumer. A detailed description of the output elements is not feasible, since it is highly
depending on the output engines you are using. For example, it may be the case that you
store them in a database or that you store them on a disk and so on.

3.2.5 Participants
AbstractConfigurationParser The interface for the parser.

ConcreteParser A concrete implementation of a parser.

Configuration This object is created by a concrete parser, it contains the information
for the analyzer.

MainClient The MainClient represents the framework starting the analysis. It in-
vokes the ConfigurationParser and passes the configuration to the analyzer.

Analyzer The framework doing the actual analysis. It reads the created configuration.

3.2.6 Implementation
This section will show an example for a configuration file. As it is important that the
configuration is easily extensible, we will use the XML format in this example.

The Header

The following code snippet shows the header for our example DTD.

Listing 3.1: DTD for the header
1 <!ELEMENT RUN (TASK)+>
2 <!ELEMENT TASK (SOURCES,ANALYZE, OUTPUT)>
3 <!ATTLIST TASK mode (l i s t | p r o j e c t) #REQUIRED>

RUN is the XMl main attribute. It contains at least one TASK. Each TASK consists of three
elements which resemble the SOURCES, ANALYSIS and OUTPUT configuration options,
we mentioned in the previous section.

As already explained, you should at least have two possible modes for the analyzer,
which is the case in this example. Most likely you are going to add additional modes later.

The two modes in the DTD above are:

list An unguided mode, it just analyzes a list of given files.

project A guided mode, it analyzes certain files in a project.

16

3.2. VARIABLE ANALYZER 17

Sources

Listing 3.2: DTD for the SOURCES element
1 <!ELEMENT SOURCES(DIRECTORY)>
2 <!ATTLIST SOURCES a d d i t i o n a l c o n f i g u r a t i o n CDATA #IMPLIED>
3 <!ELEMENT DIRECTORY>
4 <!ATTLIST DIRECTORY l o c a t i o n CDATA #REQUIRED>
5 <!ATTLIST DIRECTORY s u b d i r e c t o r i e s (t r u e | f a l s e) ’ f a l s e ’>

The listing above shows a possibility for specifying the sources. It consists of a simple list-
ing of the possible source directories and an attribute containing the path to additional con-
figuration files. The subdirectories attribute will describe if subdirectories should
also be included for the analysis. In that section you will most likely have attributes that
only matter for a certain mode. For example, the subdirectories attribute will only
be useful if there are directories which are going to be searched for class files.

Analyze

Listing 3.3: DTD for the ANALYZE element
1 <!ELEMENT ANALYZE(CONFIG) ?>
2 <!ATTLIST ANALYZE mode
3 (whi t ebox | b l a c k b o x | s p e c i a l i z e d) #REQUIRED>
4 <!ATTLIST ANALYZE a n a l y z e m e t h o d c a l l s (t r u e | f a l s e) f a l s e>
5 <!ELEMENT CONFIG>
6 <!ATTLIST CONFIG
7 c l a s s e s (p u b l i c | p r i v a t e | p r o t e c t e d | d e f a u l t) ” p u b l i c ”
8 methods (p u b l i c | p r i v a t e | p r o t e c t e d | d e f a u l t | f a l s e) ” p u b l i c ”
9 f i e l d s (p u b l i c | p r i v a t e | p r o t e c t e d | d e f a u l t | f a l s e) ” p u b l i c ”

10 l o c a l f i e l d s (t r u e | f a l s e) ” f a l s e ”>

A simple configuration for a Java analyzer which is similar to the one we use. You can
either use the whitebox or blackbox default configuration, or specify the depth of the
analysis in detail.

Output

Listing 3.4: DTD for the OUTPUT element
1 <!ELEMENT OUTPUT(CLAUSES)>
2 <!ELEMENT CLAUSES>
3 <!ATTLIST CLAUSES d i r e c t o r y CDATA #REQUIRED>

The OUTPUT element is rather simple. We assume that the analysis data are stored as
Prolog clauses. The only necessary information for the OUTPUT part of the analyzer is
the target directory for storing the data. It may easily happen that you need to extend
the options for an OUTPUT element later, or that you need to add additional ones. If the
Multiple Outputs pattern is used, it makes sense to have an OUTPUT element for each used
data consumer.

17

3.3. INDEPENDENT DATA MODEL 18

Independency of the configuration file

When setting the outline for the configuration (for example, by designing a DTD for XML)
you should try to keep all settings as general as possible. It may be the case that you want
to switch the analysis framework later, because you need a more efficient or more powerful
framework.

For example, the used framework is ASM and we want to specify if it needs to read the
debug information of a class. Such a setting would be meaningless for another framework,
hence it is more useful to add a setting for the desired results. That would mean a setting
had to be added which specifies if local variables should be analyzed. This information
can be used by every analysis framework.

Extensibility

We mentioned that the configuration should be extensible. During the development of our
tools the following parts of the configuration were extended:

• More modes for the analyzer.

• The settings for the analyzer got more detailed.

• More detailed options for the output part.

These extensions require very different measures. It is important that it should be possible
to extend the configuration and it should still retain its readability. This can be done by
using XML or a similar technology.

When adding more details to the analyzer, it is important that all added settings have
a sensible default setting, so that old configuration files can still be used. Due to our expe-
rience, when you discover that you need more detailed settings, these settings will only be
needed in some cases. It will be inefficient if you make older files invalid just because they
do not use those settings. Furthermore, in most cases your analysis framework will already
contain default settings, but it makes more sense if you add default settings manually. If
you would just use the default settings of a framework, it would lead to confusion if the
new framework uses different settings. By providing these defaults yourself (and clearly
documenting them) you can avoid confusion.

3.2.7 Related Patterns
This pattern showed the possible variance of an analyzer. By separating the configuration
from the actual analyzer it supports the CAE pattern.

For handling effectively the parsed information, you may consider to use the Configu-
ration Data Caching Pattern by Welicke et al. (see Section 1.2 or [Wel06]).

3.3 Independent Data Model

3.3.1 Intent
Provide a (non-persistent) data model, which is independent from the analyzer, for the facts
generated by an analysis tool.

18

3.3. INDEPENDENT DATA MODEL 19

3.3.2 Applicability
This pattern will be applicable if a strong disjunction between the analyzer and the data
consumption is needed, for example, if you want to be able to switch easily the analyzer
framework.

3.3.3 Motivation
There are three possible ways to handle the analyzer’s output:

1. Keep the data model which is created by the analyzer.

2. Use the data immediately.

3. Keep the data in a data model independent from the analyzer.

The first option will be useful if you are sure that you will keep the analyzer framework
and if the framework provides a good data structure. An example for that is the JDT (see
Section 6.1.4). The JDT provides an AST closely related to the Java model and it can be
used directly to modify Java code.

Our first analyzer used the second option, it stored its output directly in a SQL database,
we switched later to a system that stored the facts as Prolog clauses. This showed us two
shortcomings of our tool.

1. We had no simple way to add a new format (or switch to a new one) (this problem
is also related to the Multiple Outputs pattern (see 3.5)).

2. The SQL commands were scattered in the analyzer’s source code.

Because of that, we were forced to rewrite more parts of the code than necessary.
In order to avoid such problems it is advisable to use the third option. Doing so helps

to disjoint the analysis framework and the data consumption and leads to two major advan-
tages:

• The analyzer and the data export classes are independent and can easily be changed
without modifying the other part.

• If the analyzer framework changes, the necessary code changes will be minimized.

This pattern will describe how to design a suitable structure for a non-persistent data
model. This pattern is heavily inter-weaved with other patterns presented in this thesis.
Since we gain the most benefit from this pattern. If analyzer and data consumer will be
separated and if analyzer and data consumer will be prone to be changed or extended, we
assume that the CAE pattern and the Multiple Outputs pattern are used.

3.3.4 Structure
Figure 3.3 shows an UML diagram of an independent data model as it is envisioned for
this pattern.

3.3.5 Participants
Independent Data Model This entity represents the data structure.

Factory The Factory is responsible for populating the independent data model.

19

3.3. INDEPENDENT DATA MODEL 20

Independant Data Model

Analyzer

Client

Factory

acesses

creates

calls

creates

Data

reads

notifies

Figure 3.3: Software Structure

Data The data in the form created by the analyzer, which is used by the Factory.

Analyzer This class represents the analyzer.

Client The Client represents the class accessing the data, for example an implemen-
tation of the Multiple Outputs pattern.

3.3.6 Implementation

Structure of the data

Usually it is advisable to keep the structure close to the target language. This has several
advantages:

1. It will be easy to understand the data model if the users knows the target language.

2. The transformation of the analyzer data should be straight forward as the data struc-
ture often resembles the data structure of the language.

One possible drawback is, if you are aiming for a framework that accepts several lan-
guages, it will most likely be hard for a user, not knowing the language being the inspiration
for the data model, to understand the data model. However, implementing a data model
for each language that can be analyzed by the framework, is not feasible. Therefore, this
drawback can usually be neglected. Furthermore, you are aiming most likely for languages
that share similarities in the first place. For example, object-oriented languages like Java
and C++.

Another important design decision will be if the data model should be modifiable. An
example where a modifiable database is used is JTransformer [JTr].

The UML diagram in Figure 3.4 shows a simple example model for Java.

20

3.4. MULTIPLE OUTPUTS 21

<<interface>>

DataNode

+getChildren()

ClassNode

+abstractClass: boolean

+interaface: boolean

+name: String

FieldNode

MethodNode

InterfaceNode

Figure 3.4: An example for a simple Java data model

3.3.7 Related Patterns
We had rather low requirements for the data model regarding performance. If you have
to care about that, chances will be high that design patterns for caches will be able to
provide help. A solid source for them is Nock Clifton’s Data Access pattern catalogue
[Noc03]. For example, the Primed Cache is a useful candidate since it provides a cache
that is populated depending on the usage of the data or the Demand Cache which populates
the cache lazily depending on the demand of the framework. In general Independent Data
Model has similarities to a cache, but the main purpose of Independent Data Model is not
easy of efficient access of the data, but the clean separation between the analyzer, the data
consumer and the data model.

3.4 Multiple Outputs

3.4.1 Intent
Provides an analyzer with multiple data consumer that can easily be modified, removed or
exchanged.

3.4.2 Motivation
As already mentioned, we first stored the data from the analysis in a SQL database and
later switched to storing the data as Prolog facts. This switch required a lot of recoding,
since the code responsible to store the data was nested in the analysis code. In order to
avoid such a problem in the future we separated the data exporting part of the software
from the analyzer. The classes that export the data will be referenced as data consumer in
this pattern.

The separation between the analyzer and the data consumers ensured that we mini-
mized recoding if we want to modify a data consumer. It also helps if the analyzer is
modified. This separation is part of the CAE pattern. We also want to allow multiple data

21

3.4. MULTIPLE OUTPUTS 22

consumers. For example, if we are storing the data in a SQL database and want to store
them locally as Prolog facts.

Another feature we want is a built-in logging function. We needed that for our tools,
since we measured the analysis time for the different projects in order to improve the
performance of our tools. Of course, it would have been possible to dump that information
into the usual logging files of the tool, but in our opinion it is a better choice to offer the
user a separate logging mechanism for two reasons:

• It is easier to turn them off without affecting the overall analysis.

• Since the data sets are isolated it is easier to analyze them.

In conclusion we want a framework where:

1. Multiple data consumers are possible.

2. It is easy to add, delete or modify data consumer without modifying the analyzer.

3. It is easy to add additional logging information, independent from the general log-
ging features of the framework.

This pattern describes a structure that meets these requirements.

3.4.3 Applicability
This pattern is applicable if it is important to easily add, modify the data consumer and/or
multiple data consumers are needed.

3.4.4 Structure
Figure 3.5 shows an UML diagram for the Multiple Outputs pattern.

3.4.5 Participants
AbstractDataConsumer This abstract class is the base for all data consumers. It has

an abstract saveInfo(Database db) method which starts the data consump-
tion.

ConcreteDataConsumer It is a basic subclass of AbstractDataConsumer.

ConsumerControl The ConsumerControl class is able to manage the different
consumers. It has methods for adding and removing consumers and one method
which starts the consumers.

Config An object of a class that implements the Config interface is used for config-
uring a consumer. For example, most data consumers will need a target where they
should store their results.

Database The Database class holds or has access to the data model of the analy-
sis1. The ConsumerControl will forward the database objects to its registered
consumers.

MainClient This package represents the main class of the framework using that pat-
tern.

1If the Independent Data Model pattern is used, the Database will access that data model.

22

3.4. MULTIPLE OUTPUTS 23

AbstractDataConsumer

-c: Config

+AbstractDataConsumer(c:Config)

+saveInfo(data:Database)

+getConfig(): Config

ConsumerControl

-consumer: List<AbstractDataConsumer>

-db: Database

+ConsumerControl(db:Database)

+setDatabase(db:Database)

+getDatabase()

+addConsumer(c:AbstractDataConsumer)

+removeConsumer(c:AbstractDataConsumer): boolean

+printToLog(s:String)

ConcreteDataConsumer

 saveInfo(data:Database)

<<interfacce>>

Config

ConcreteConfig

invokes

Database

MainClient

Figure 3.5: UML diagram for the Multiple Outputs pattern

3.4.6 Implementation
AbstractDataConsumer The code in Listing 3.5 shows a rather simple possible Data-
Consumer and an appropriate Config.

Listing 3.5: A consumer and its config class
1 p u b l i c c l a s s M y P r i n t e r C o n f i g implements Conf ig {
2 p r i v a t e F i l e t a r g e t = n u l l ;
3 p u b l i c boolean append = n u l l ;
4 p u b l i c M y P r i n t e r C o n f i g (F i l e t , boolean a){
5 t a r g e t = t ;
6 append = a ;
7 }
8 p u b l i c F i l e g e t T a r g e t () {
9 re turn t a r g e t ;

10 }
11 }
12 p u b l i c c l a s s M y P r i n t e r implements Abs t r ac tDa taConsumer {

23

3.4. MULTIPLE OUTPUTS 24

13 p u b l i c s a v e I n f o (D a t a b a s e db){
14 S t r i n g [] d a t a = db . g e t D a t a S e t s () ;
15 F i l e t a r g e t = t h i s . g e t C o n f i g () . g e t T a r g e t () ;
16 i f (! t h i s . g e t C o n f i g () . append){
17 / / c l e a r F i l e t a r g e t
18 }
19 f o r (S t r i n g d : d a t a){
20 / / add S t r i n g d t o t a r g e t
21 }
22 }
23 }

The MyPrinterConfig class has two fields, a File, representing a local file, and a
boolean that will indicate if the data sets are going to be appended to the file. When
the saveInfo() method is called by the ConsumerControl, it forwards the current
data model to the printer which reads all data and saves it in the file that is specified in the
MyPrinterConfig object. In general, each class that realizes the AbstractData-
Consumer interface will need a specific realization of the Config interface. If the re-
alizations of AbstractDataConsumer and Config were small, like in the example
above, it could make sense that both are realized by a single class.

ConsumerControl The following code shows a basic ConsumerControl.

Listing 3.6: The ConsumerControl
1 p u b l i c c l a s s ConsumerCont ro l {
2 p r i v a t e DataBase db = n u l l ;
3 p r i v a t e ConsumerCont ro l () {
4 }
5 p r i v a t e Vector<Abs t rac tDa taConsumer> p r i n t e r s =
6 new Vector<Abs t rac tDa taConsumer > () ;
7
8 p r i v a t e s t a t i c ConsumerCont ro l i n s t a n c e =
9 n u l l ;

10 p u b l i c D a t a b a s e g e t D a t a b a s e () {
11 re turn db ;
12 }
13 p u b l i c D a t a b a s e s e t D a t a b a s e (D a t a b a s e db){
14 t h i s . db=db ;
15 }
16 p u b l i c s t a t i c ConsumerCont ro l g e t I n s t a n c e (D a t a b a s e db){
17 i f (i n s t a n c e == n u l l){
18 i n s t a n c e = new ConsumerCont ro l () ;
19 i n s t a n c e . s e t D a t a b a s e (db) ;
20 re turn i n s t a n c e ;
21 }
22 }
23
24 p u b l i c vo id addConsumer (A bs t r ac tDa taConsumer dp){
25 p r i n t e r s . add (dp) ;

24

3.4. MULTIPLE OUTPUTS 25

26 }
27
28 p u b l i c boolean removeConsumer (Ab s t r ac tDa t aConsumer dp){
29 re turn p r i n t e r s . remove (dp) ;
30 }
31
32 p u b l i c vo id s a v e I n f o () {
33 f o r (A b s t r ac t Da t aC n su m er dp : p r i n t e r s){
34 t r y {
35 dp . s a v e I n f o (db) ;
36 } catch (E x c e p t i o n e){
37 System . e r r . p r i n t l n (e) ;
38 }
39 }
40 }
41 p u b l i c vo id p r i n t T o L o g (S t r i n g s){
42 / / W r i t e t h e S t r i n g t o some l o g f i l e
43 }
44 }

Listing 3.6 shows a possible ConsumerControl. The code should be self-explanatory.
Of course, the exception handling should be more sophisticated in a real program.

You may notice that the Singleton pattern was used. It is not absolutely necessary to
take advantage of it. However, in our opinion it is advisable for the ConsumerControl,
because we think that multiple ConsumerControl objects would only lead to confu-
sion.

Database The Database represents or accesses the data model of the framework. This
could be the data model of the used analyzer or an implementation of the Independent Data
Model pattern. In both cases the Database acts as an interface for reading the data. If
transformation methods are necessary, a suitable location for them will be the Database
class. Of course, it would also make sense to add them to the AbstractDataConsumer
which needs them. But that may cause a problem. If another AbstractDataConsumer
also needs the same method you will either have a duplicate implementation of the method
or a confusing cross-reference between two independent classes. So we propose to imple-
ment these formatting methods either in the Database class or in a designated class for
such methods.

3.4.7 Related Patterns
We used the Singleton for the ConsumerControl class.

The core of this pattern, the various data consumers, can be seen as an implementation
of the Strategy pattern.

25

Chapter 4

Migration Patterns

This chapter will present the patterns we identified for API migration. An overview over
these patterns and their relationship can be found in Section 2.2.

4.1 Simple Mapping Language

4.1.1 Intent
Provide a mapping language for specifying a simple migration job.

4.1.2 Motivation
The purpose behind a mapping language is to provide the user with an effective way to
describe the relations between the classes and methods of two related APIs.

We started the development of our migration framework with a very simple mapping
language. It worked for our first test case, a mapping between java.util.Vector and
java.util.ArrayList. However, as we tried to apply it to a more complex case1,
our language was lacking multiple necessary features. The Mapping Language Extension
pattern tries to solve that problem. If we have a simple case, we benefit from a small
mapping language. A simple mapping language has the following advantages (compared
to a complex solution):

• The more compact mappings are more comprehensible to understand for a reader.

• It is easier to apply the language for other programming languages.

• The footprint of the mapping in memory is small.

• The structure of the mapping language is easier to enforce.

This pattern will give you a guideline how to setup such a language and a proposal for
the structure of the parsing part of the framework.

1A mapping between two XML libraries.

26

4.1. SIMPLE MAPPING LANGUAGE 27

4.1.3 Applicability
Mapping via a simple mapping language is reasonable for API migration if the APIs in
question have a similar signature2.

4.1.4 Structure

Mapping Structure

This section will discuss how to design such a language.

Resemblance to target language You have to consider that your mapping language
should resemble an existing language. The main advantage is that the finished language is
easier to read for someone who knows the existing language. A possible drawback is that
it encourages the developer of the mapping to integrate more features of the language than
necessary.

Keywords In addition to keywords originating from the target language you should also
add keywords for the following entities:

The current target class instance Basically the equivalent to the this operator in Java.
While it would be possible to use this, a new keyword simplifies the parsing of
the mapping. For example, if a wrapper is created, the parser will have to decide
whether the this operator is a reference to the wrappee or to the wrapper.

An indication that a mapping follows In order to differentiate between an usual class
and a mapping.

Helper methods As long as there is exactly one method in the target API for each
method in the original API and there is no need for non-trivial transformation of the method
arguments, you can keep the language relatively simple. However, this scenario will not
happen in most cases. If the target API is a newer version of the original API we will most
likely have such a case which is realistic in a real-world example. But even then you may
encounter some cases where it is not possible to map directly between all methods. So you
will need a way to handle these methods which can not be simply replaced with another
method in the target API. Usually you will encounter three cases (or combinations of these
three).

• You have to perform non-trivial transformations on the method arguments.

• You have to invoke multiple methods.

• The target API misses that functionality.

In these cases you have to define a new method which simulates that functionality of the
target method. We call these methods helper methods.

A possible solution which does not complicate the mapping language is to design a
utility class where you add the missing methods and refer to them in the mapping.

2For example, two different version of the same library.

27

4.1. SIMPLE MAPPING LANGUAGE 28

Sensible language constructs This section will discuss some language constructs
which might be suitable candidates for including them in the mapping language.

Casts You might encounter mappings where method arguments do not belong to the same
class, but are compatible. For example, if the target and the source method return a
LinkedList and the signature of the target method only specifies that a List is
returned a simple cast will be sufficient.

Simple Arithmetic It might be usefule to allow simple arithmetic operations like incre-
menting or decrementing a value.

Constructor Calls The ”new” keyword will be useful if there is a relation between a
method in the original API and a constructor in the target API.

Default values It might be the case that the source API features a method and a simplified
version of it while the target API only has the complex version. It is often possible
to simulate the simplified version by using default values for the argument which
are not needed by the simplified version.

Code Structure

Figure 4.1 shows an UML diagram for a possible framework that uses a mapping language.

4.1.5 Participants
ClassMapping Represents the mapping in memory. It consists of further Class-

Mapping objects, representing inner classes, and various instances of the Method-
Mapping class.

MethodMapping A MethodMapping represents a relation between a method in the
source API and one in the target API.

ArgumentMatching An ArgumentMatching specifies the location of an argument
from the source method in the argument list of the target method. The additional-
Options Field can be used for storing additional informations, for example, stor-
ing a cast.

Call A Call object represents a method call.

Parser The Parser package in the diagram is a placeholder for the code that parses
the mapping files. Its purpose is to generate the ClassMapping objects.

Migrator The migrator package in the diagram is a placeholder for the API migration
famework that uses the mapping, for example, an implementation of the Wrapper
Creator pattern.

MappingProvider The MappingProvider calls the parser used by the framework
and is the bridge between the Migrator and the ClassMapping. If Factory
were used methods for creating the mapping classes, it could make sense to add
these methods to the MappingProvider class.

28

4.1. SIMPLE MAPPING LANGUAGE 29

MethodMapping

+from: Call

+to: Call

+helper: boolean

+match: ArgumentMatching

+MethodMapping(from:Call,to:Call)

ClassMapping

+methods: List<MethodMapping

+from: String

+to: String

+package: String

+imports: List<String>

+innerMappings: List<ClassMapping>

Call

+hostingClass: String

+name: String

+arguments: List<Argument>

+isConstructor(): boolean

+Call(hc:String,name:String,arguments:List<String>)

1

2

1

*

1

0..*

creates

reads

ArgumentMatching

+position: int[]

+additionalOptions: Option[]
11

Parser

Migrator

calls

MappingProvider

+getMapping(m:File[]): List<ClassMapping>

calls

Figure 4.1: Parser for a mapping language

4.1.6 Implementation
Here we will discuss a possible mapping language for Java.

The following keywords are used.

that This keyword is a reference to the wrappee.

util We envisage that a utility class is used for helper methods. The util keyword is a
placeholder for the qualified name of that class.

map This keyword precedes a mapping.

to This keyword is placed between the source and target class (or method).

The grammar for the header is shown in Figure 4.2. An example for a valid header is
shown in listing 4.1. The header is similar to that of a Java class. You could consider to
remove the import arguments because they could be pulled from the original file. However,

29

4.1. SIMPLE MAPPING LANGUAGE 30

⟨MAPPING FILE⟩→⟨JAVA CLASS⟩|⟨MAPPING⟩
⟨MAPPING⟩→⟨HEADER⟩ ’{’ ⟨BODY⟩ ’}’
⟨HEADER⟩→[⟨PACKAGE⟩] [⟨IMPORT⟩] ⟨UTILCLASS⟩
⟨MAPSTART⟩
⟨PACKAGE⟩→’package’ ⟨JAVA QUALIFIEDNAME⟩ ’;’
⟨JAVA IMPORT⟩→⟨JAVA QUALIFIEDNAME⟩ [’.*’] ’;’
⟨IMPORT⟩→ ’import’ ⟨JAVA IMPORT⟩ [⟨IMPORT⟩]
⟨UTILCLASS⟩→’util’ ’=’ (’null’ | ⟨JAVA QUALIFIEDNAME⟩)
⟨MAPSTART⟩→ ’map’ ⟨JAVA NAME⟩ ’to’
⟨JAVA QUALIFIEDNAME⟩ ’{’⟨MAPBODY⟩’}’

Figure 4.2: The header

Listing 4.1: Example of a header

1 package j a v a . u t i l . m i g r a t i o n ;
2 import j a v a . u t i l . ∗ ;
3 map Ve c t o r to A r r a y L i s t {
4 }

by fetching them from the APIs, we would most likely fetch unnecessary imports. Further-
more, we might need to import additional classes. The disadvantage is, that it makes the
mapping longer. As it only affects the header, this effect is negligible.

Next is the type declaration. We dropped the visibility modifier as they can be pulled
from the the source API, if they are needed. The map and to keywords specify that this
is a mapping. It is not absolutely necessary, because a mapping could also be identified by
the additional classname in the declaration. But we think that the improved readability is
more important.

You will notice that we omitted generics. This was done to keep the example as simple
as possible. In fact, the latest version of our mapping language allows generics. But
allowing generics adds a lot of complexity, so you should carefully consider to support
them or not.

Figure 4.3 shows the remaining part of the grammar (specifying the relation between
the methods). The MAPBODY is similar to the body of a Java class declaration and may
contain fields, methods and inner mappings. A method (or constructor) delegates between
a single method in the source API and one method in the target API. We dropped again the
visibility modifier and the return type of the method. Both can be extracted out of the API.

UTIL METHOD is a call to a static method in an external class. Listing 4.2 is an
example for a valid MAPBODY according to our grammar. The grammar was split in this
section in order to improve the readability of this section. A complete version is listed in
the appendix of this thesis (see Section 6.4).

30

4.2. MAPPING LANGUAGE EXTENSION 31

⟨MAPBODY⟩→(⟨FIELD⟩|⟨METHOD⟩|⟨INNER CLASS⟩|
⟨INNER MAP⟩)[⟨MAPBODY⟩]
⟨FIELD⟩→⟨FIELD DECLARATION⟩ [’=’
(⟨DEFAULT VALUE⟩|⟨UTIL METHOD⟩)] ’;’
⟨METHOD⟩→’map’ ⟨JAVA QUALIFIEDNAME⟩ ’(’
⟨PARAMETER DECLARATION⟩’)’ ’to’
(⟨CONSTRUCTOR⟩|⟨METHOD CALL⟩|⟨UTIL METHOD⟩) ’;’
⟨CONSTRUCTOR⟩→ ’new’ ⟨JAVA QUALIFIEDNAME⟩’
(’⟨PARAMETER⟩’)’
⟨UTIL METHOD⟩→’util.’ ⟨JAVA NAME⟩’(’⟨PARAMTER⟩’)’

Figure 4.3: Classbody and methods

Listing 4.2: Example of a MAPBODY

1 Vec t o r () to new A r r a y L i s t () ;
2 Vec t o r (C o l l e c t i o n c)
3 to new A r r a y L i s t (c) ;
4
5 add (O b j e c t o) to t h a t . add (o) ;
6 add (i n t i , O b j e c t o) to t h a t . add (i , o) ;
7 c o p y I n t o (O b j e c t [] t a r g e t)
8 to U t i l . c o p y I n t o (t h a t , t a r g e t) ;

4.1.7 Related Patterns
It might be useful to use a Factory for populating the ClassMapping objects. Since
the mapping language is prone to be extended and changed during its developement and
usage, you might consider to use a flexible Factory pattern from the start. For example,
The Dynamic Factory Pattern by Welicki et al. [WYWB08] 3

.
Depending on the features of your framework you might consider a special data model

for the mapping. For example, you could store them as Prolog facts in order to be able
to use Prolog for querying the data. Two interesting patterns for storing the data are the
MetaData Container pattern and the MetaData Repository pattern [GSF10].

4.2 Mapping Language Extension

4.2.1 Intent
Provide a mapping language which allows to specify a mapping for a migration scenario
that is to complex for the Simple Mapping Language pattern.

3see 1.2 for more information.

31

4.2. MAPPING LANGUAGE EXTENSION 32

4.2.2 Motivation
The mapping language we showed in the previous pattern is suitable for cases where source
and target API are highly related. However, it will not be feasible if there is a certain
amount of differences between source and target API.

We tried to use the mapping language presented in the previous pattern, for writing a
mapping that resembles a XOM-JDOM wrapper [BCLS09]. Unfortunately, the mappings
mostly consisted of calls to helper methods, the main reason for that was that most methods
from the source API could not be replaced by a single method from the target API. Because
of that we decided to allow to map to multiple Java statements, but enforced a specific
structure for the statements.

Unfortunately, if it is allowed to map to multiple statements, it will be necessary to
implement much more concepts of the target language. Due to time constraints we tried to
find a solution which would allow us to reuse existing techniques. So, instead of writing
a mapping language from scratch, we decided to expand the Java language. This had the
following advantages:

• It is possible to reuse existing parsing technologies.

• It is easier to read a mapping for someone who is experienced with the target lan-
guage.

• If the target language and the used parsing technology are updated, it wont be al-
ways necessary to update your extension. However, if you are not using an existing
language and its tools, it will always be necessary.

Of course, there are also good reasons for not using an existing technology for parsing
the code of the target language, for example, a lack of tools that fulfill your requirements.
But for the Java language, where our focus on analysis and migration lies, are multiple
good tools available. This pattern will focuses on such a scenario.

4.2.3 Applicability
This pattern is applicable if the migration scenario is too complex for a Simple Mapping
Language.

4.2.4 Structure

Workflow for a call of a migrated method

Figure 4.4 shows an activity diagram representing the workflow of a call to a migrated
method. The suggestions for building a language extension in the implementation section
of this pattern are based on it. In that figure we mention mapping complexity. During the
implementation of our tools we categorized the possible scenarios which may be encoun-
tered during a migration process. For this pattern we only care whether it is possible to
simulate the source method with one call of the target method or not. If it is possible, we
will have a mapping complexity less or equal to 2. A complete list of the possible scenarios
and more detailed description of the mapping complexity is in the appendix of this thesis
(see Section 6.5).

32

4.2. MAPPING LANGUAGE EXTENSION 33

[mapping complexity <=2]

execute target method

[mapping complexity >2]

check preconditions

manipulate arguments

execute main functionality

replace exception

[exception of original API was thrown]

[preconditions fullfilled][preconditions not fullfilled]

throw appropriate exception

Figure 4.4: An activity diagram for a language extension

Structure of the framework

The UML diagram in Figure 4.5 represents a possible framework for using a mapping,
based on a language extension that uses a preprocessor and does not modify the existing
parsing tools directly.

4.2.5 Participants
MainParser This class steers the parsing process.

Preprocessor This class preprocesses the mapping and controls the CoreParser.

CoreParser The CoreParser is an external parser for the target language.

Mapping Represents the mapping in memory.

DataConsumer The DataConsumer represents the client that will use the mapping,
an example would be a Wrapper Creator4.

4Wrapper Creator Pattern (4.5)

33

4.2. MAPPING LANGUAGE EXTENSION 34

CoreParser

Preprocessor

MainParser

+readConfig(f:File)

+parseAll(): Mapping

+parseClass(className:String): Mapping

Mapping

DataConsumer

+startMigration(m:MappingFile,target:File[])

invokes

creates

reads

Figure 4.5: Structure of the framework

4.2.6 Implementation

The Parser

We already mentioned that we want to use an existing parser for most parts of the code,
since this has the following advantages:

• You do not have to implement all features of the target language yourself.

• You are more inclined to add as few language constructs as possible.

• If the language gets an update, the chances are higher not to have to modify your
preprocessor.

• You may be able to reuse the data model of the parser.

Designing the language extension

Figure 4.4 shows what should happen if a migrated method was called. The language
extension should allow the user to configure the method so that the framework can create an
appropriate method declaration. Furthermore, it should allow the user to set all necessary
information.

The header of the class The only necessary change to the header would be the ability
to express that it is a mapping and the target of the mapping (for example, if a wrapper is
created, you will need the target class to determine the class of the wrappee object).

34

4.2. MAPPING LANGUAGE EXTENSION 35

Listing 4.3: Example for a header
1 package nu . xom ;
2 import j a v a . n e t . URI ;
3 import j a v a . n e t . URISyn taxExcep t ion ;
4 import j a v a . u t i l . L i s t ;
5 p u b l i c c l a s s A t t r i b u t e ex tends Node to org . jdom . A t t r i b u t e {
6 / / Body o f t h e mapping
7 }

This example was taken out of our mapping from XOM to JDOM. The only difference is
the keyword to and the target class (org.jdom.Attribute in this case).

There are 2 cases which you must allow for a mapping language which can handle
complex migration scenarios:

1. The target API does not implement all features of the source API. In that case you
have to reimplement the features. Most of the time it will be limited to missing
methods, but in the worst case you will have to implement multiple classes. There-
fore, it should be allowed to add normal classes to the mapping. In order to clarify
the purpose of the class to a reader. It might still be useful to classify it as a mapping,
for example, by stating that the target is null.

2. The case that there are multiple target classes for a single source class. If you allow
multiple target classes, you will also need a way to distinct between these classes.
You can distinct them by their qualified name. But it could become cumbersome
and you might consider to allow access them by a keyword and an identifier. For
example, in the Simple Mapping Language pattern we used the keyword that as
a reference to the instance of the target class. If we had multiple targets we could
address them as that(0),.., that(n) where n is the amount of targets and
the order is set by their declaration in the mapping.

Fields We did not change the fields, since we can not easily redirect from one field to
another in Java.

Inner Classes Inner classes could either be a mapping or a normal class.

Methods This is where the bulk of the additions are applied. Take a look at the activity
diagram in figure 4.4. First, there are two cases, depending on the mapping complexity. If
the semantics of the original method can be expressed by a single method we will be able
to map them directly.

Listing 4.4: Simple method mapping
1 p u b l i c boolean ad dA l l (C o l l e c t i o n <? ex tends E> c)
2 t o t h a t . a dd Al l (c) ;

The difference to the example in the Simple Mapping Language pattern is that we allow
every method call as a mapping target, that means more complex statements are possible.
Of course, the programmer could use this to avoid the constraints of being a simple method
call. But, we are of the opinion that it is not feasible to prohibit it on a technical side, since
some relaxations could prove quite useful.

Listing 4.5 shows an example for a complete method mapping for a non-trivial case.

35

4.2. MAPPING LANGUAGE EXTENSION 36

Listing 4.5: Complex method mapping
1 p u b l i c A t t r i b u t e (S t r i n g name , S t r i n g v a l u e) to {
2 prepare {
3 i n t i n d e x = name . indexOf (” : ”) ;
4 S t r i n g p r e f i x = n u l l ;
5 S t r i n g localName = name ;
6 boolean p r e f i x P r e s e n t = f a l s e ;
7 i f (i n d e x != −1) {
8 p r e f i x = name . s u b s t r i n g (0 , i n d e x) ;
9 localName = name . s u b s t r i n g (i n d e x + 1 , name . l e n g t h ()) ;

10 }
11 }
12 r e q u i r e s {
13 i f (p r e f i x P r e s e n t && p r e f i x . e q u a l s (” xml ”)) {
14 throw new N a m e s p a c e C o n f l i c t E x c e p t i o n (
15 ” c r e a t i n g xml : p r e f i x a t t r i b u t e ”+
16 ” w i t h o u t p r o p e r namespace ”) ;
17 }
18 i f (p r e f i x P r e s e n t && p r e f i x . e q u a l s (” xmlns ”)) {
19 throw new I l l e g a l N a m e E x c e p t i o n (
20 ” c r e a t i n g xmlns a t t r i b u t e ” , name) ;
21 }
22 }
23 t r y {
24 t h a t = new org . jdom . A t t r i b u t e (localName , v a l u e) ;
25 } catch (o rg . jdom . I l l e g a l D a t a E x c e p t i o n e) to {
26 throw new I l l e g a l D a t a E x c e p t i o n (e , v a l u e) ;
27 } catch (o rg . jdom . I l l e g a l N a m e E x c e p t i o n e)
28 to (e , loca lName : S t r i n g) {
29 throw new I l l e g a l N a m e E x c e p t i o n (e , loca lName) ;
30 }
31 }

Again we use the keyword to to indicate a mapping. Subsequently the method is split
into three blocks.

Prepare Before the requires block is code which should be executed before precon-
ditions are checked. The main reason for this block is to keep the preconditions as
simple and readable as possible. The code inside this block should have no side ef-
fects, so it makes sense to copy the variables which are going to be modified. There
is no need for a keyword since this part is defined by the location of the requires
keyword.

Preconditions After the prepare block follows the preconditions, what is indicated by
the keyword requires. If possible, these preconditions should be of the form
if (boolean check) throw new exception. If there is a necessity for additional code,
preceding the preconditions, it should be in the prepare block.

Run The remaining code is responsible for providing the actual features of the method.

36

4.2. MAPPING LANGUAGE EXTENSION 37

Exceptions There is another necessary step during the call of a migrated method. If an
exception is thrown from the target API and a wrapper is used for migration, the exception
object will have to be wrapped. We realize this by introducing an exception mapping. If
a catch clause is followed by the to keyword, an exception mapping will follow. In the
example above, the first to is followed by the replacement code (the meaning of the second
catch clause is explained later). If the migration approach does not require to change the
exception, the preprocessor will simply discard the exception mappings.

As it may easily happen that the same exception mapping is used multiple times, it
could make sense to specify these mappings globally (for example, on class or package
level).

Listing 4.6: Exception mapping
1 O l d E x c e p t i o n (i n t i) t o {
2 / / do
3 throw new MyException {}
4 }
5 O l d E x c e p t i o n (S t r i n g s) t o MyException (s) ;

Listing 4.6 shows an example for a global exception mapping. It looks like a method call
mapping, but it has no return value. Therefore, the parser can differentiate it from normal
method calls or mappings (and from constructors via its name). The code after to has to
be either another exception or a code block (which should result in throwing the correct
exception). The example in Listing 4.7 shows how the mapping should be applied.

Listing 4.7: Applying the exception mapping
1 t r y { foo () ; }
2 catch (O l d E x c e p t i o n e) t o (e , i n t : i)}
3 t r y { foo2 () ; }
4 catch (O l d E x c e p t i o n e) t o (e , S t r i n g : s)}
5
6 / / s h o u l d become
7
8 t r y { foo () ; }
9 catch (O l d E x c e p t i o n e) { throw new MyException {}}

10 t r y { foo2 () ; }
11 catch (O l d E x c e p t i o n e) { throw new MyException (s)}

Both foo methods may throw an OldException. The first argument inside the paren-
theses is always the variable containing the thrown exception. It is followed by an arbi-
trary amount of variables followed by a colon and the type of the variable. While this
example does not use the variables you will often need runtime variables for creating the
exceptions. You could consider dropping the type declaration for the variables besides the
original exception. Unfortunately, this requires that your parser is able to identify the type
of the variable, in order to replace it with the correct exception mapping. Also, you will
encounter problems if you have to specify mappings which are using different but compat-
ible variable types. Therefore, we think it is a better solution to specify the types directly.
As we require that the first variable is the reference to the thrown exception, we do not
need to specify its type again.

Keywords The following lines are a summary of the used keywords in this extension.

37

4.2. MAPPING LANGUAGE EXTENSION 38

SimpleMethodMapping

+from: Call

+to: Call

+match: ArgumentMatching

+MethodMapping(from:Call,to:Call)

ClassMapping

+methods: List<MethodSource>

+from: String

+to: String

+package: String

+imports: List<String>

+innerMappings: List<ClassSource>

+fields: GFieldDeclaration[]

+exceptionMaps: ExceptionMapping[]

Call

+hostingClass: String

+name: String

+arguments: List<Argument>

+isConstructor(): boolean

+Call(hc:String,name:String,arguments:List<String>)

1

2

1 *

ArgumentMatching

+position: int[]

+additionalOptions: Option[]

1

1

GClass

<<interface>>

ClassSource

<<interface>>

MethodSource

+getFrom(): Call

GMethod

ComplexMethodMapping

+from: Call

+prepare: GCode

+postconditions: GCode[]

+executeCode: GCode

+MethodMapping(from:Call,to:Call)

ExceptionMapping

+FromType: String

+argumentTypes: String[]

+argumentNames: String[]

+to: GCode

All Types that have a leading captial G

are meant to be generated by the CoreParser.

Figure 4.6: Example UML diagram for a mapping

that This keyword represents the wrappee. If multiple wrappees are allowed for a single
class, you will have to be able to differentiate between the wrappees, for example,
by putting an index behind that.

to This keyword indicates that a mapping is going to follow.

requires The requires keyword specifies the location of the three blocks (prepare,
preconditions, run) of a migrated method.

In order to avoid name clashes it might be suitable to put a special sign before the
keywords which are allowed in the language. For example, a $ sign would be reasonable for
Java since it works fine for the compiler, but should not be used besides machine generated
code according to Java naming conventions.

Mapping in memory Figure 4.6 shows a UML diagram which represents a possible
structure for a mapping in the memory. The part which resembles simple mappings is
based on the one we used in the Simple Mapping Language pattern (see Figure 4.1).

Additions are the ExceptionMapping class with represents an exception mapping
(see Section 4.2.6), the GClass and GMethod classes which represents normal classes

38

4.3. MAPPING ERROR TRACKING 39

and methods parsed with the Coreparser and the ComplexMethodMapping which
resembles a method mapping according to this pattern.

4.2.7 Related Patterns
If the client, using the mapping has to keep the data in memory, you should prepare your
implementation to have an efficent way to access the data and to store them. The paper ”A
pattern language for metadata-based frameworks” [GSF10] by Guerra et al. states some
patterns capable of handling efficiently metadata. For example Metadata Repository would
be a reasonable approach to store the mapping. These patterns are based on some of the
patterns in the Data Access Patterns catalogue5, interesting are the Data Accessor, Demand
Cache and Primed Cache pattern (see the related works section 1.2) for more details on
these patterns.

Another possibility for extending the Java language is the JastADD compiler (”The
JastAdd extensible Java compiler” [EH07]) presented by Ekman, Torbjörn and Hedin,
Görel.

4.3 Mapping Error Tracking

4.3.1 Intent
There is a high potential for errors or situations resulting from the migration process that
should be forwarded to the user. The intent of this pattern is to add logging features, inde-
pendent from existing logging in the software, which are generated out of a specification
in the mapping language.

4.3.2 Motivation
The reasons we think that additional error/warning tracking capabilities are useful or even
needed are:

1. While most software projects already have logging capabilities for warning and
errors, we want to separate warnings and errors introduced by the migration from
those that are already used in the software project.

2. We want to ensure that migrations specific warnings can be generated. For example,
imagine that we have a method which converts a given String. The source API
transforms the String even if it contains illegal characters, while the target API
throws an error. The migrated version of that method would also have to accept
illegal String arguments. In such a case it might be interesting to know how often
an illegal String was passed to the migrated method.

3. We want to be able to track exactly the origin of an error introduced by the migra-
tion, since there is no guarantee to differentiate between errors correctly, thrown by
the target method and errors thrown by precondition checks.

4. It may be the case that you need more information from runtime variables than the
information visible through the caught exception.

5Data Access Patterns: Database Interactions in Object-Oriented Applications – [Noc03]

39

4.3. MAPPING ERROR TRACKING 40

5. We want to ensure that all preconditions of a method will be checked even if one
fails.

Listing 4.8 shows a simple method which illustrates some of our reasons above.

Listing 4.8: Simple Error Check
1 p u b l i c S t r i n g c o n v e r t S t r i n g (S t r i n g a rg1)
2 throws I l l e g a l A r g u m e n t E x c e p t i o n {
3
4 i f (a rg1 == n u l l)
5 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
6
7 i f (! syn taxCheck (a rg1))
8 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
9

10 /∗
11 Method code
12 ∗ /
13 }

The method takes a String as an argument. It performs some syntax checking on
the String and tests if String is null. If it is not the case, an IllegalArgument-
Exception will be thrown.

There are some cases to notice. First, if both errors happen only the first one will be
seen since the following tests wont be performed.

Second, depending on the way the client forwards the error to the user, he might not
be able to check whether the error was thrown due to a syntax check or arg was a null
reference.

Third, we might be interested how often a specific value was given to that method,
for example, if arg was the empty String. Another example, where it is useful to get
additional information, would be if we had two String converters with slightly different
specifications. Both are expecting a number. The old version accepts comma and dot as a
separator for a decimal fraction, while the new one only accepts dots. It is relatively easy to
modify the code on the fly, but you might be interested in how often this situation occurs.
Therefore, we want to be able to specify warnings.

4.3.3 Applicability
This pattern will be applicable if more detailed error tracing capabilities are required for
the migrated software.

4.3.4 Structure
Structure of an error Independent from how error checks are specified in the map-
ping, you must ensure the following:

• Each error has an unique ID.

• There is a way to specify additional information (usually the current state of some
variables during runtime).

40

4.3. MAPPING ERROR TRACKING 41

Structure of the Tracker

Tracker
implements
Serializable

-errors: HashMap<String,List<Error>>

+notifyErrorTracker(id:String,note:String,args:Object...)

+getErrors(id:String): List<Error>

+save(f:File): void

Error
implements
Serializable

#id: String

#warning: boolean

#note: String

#tVariables: List<Object>

#time: double

#sVariables: List<Serializable>

#Error()

+getX(): Object

ErrorFactory

-c$ID(note:String,values:Object[]): Error

+createError(id:String,

 note:String,

 args:Object[])

creates

Migrated Software

calls

calls

WarningException

may throw

Belong to the same package

Figure 4.7: UML diagram for a tracker

Figure 4.7 displays a UML diagram for an error tracker.

4.3.5 Participants
Migrated Software This package represents a migrated software project which uses this

pattern.

Tracker The Tracker is responsible for tracking the errors and warnings during run-
time. It is called by the migrated software and calls the ErrorFactory. The
warnings can be accessed by its getters or stored for later analysis.

Error An object of this class represents a warning/error that has occurred. It has the
following fields (and appropriate getters):

id The unique ID of the error (specified in the mapping file).

warning A boolean indicating if this object is an error or only a warning.

note Some additional description about the error.

sVariables This list stores the important objects, regarding the error/warning,
which can be serialized.

41

4.3. MAPPING ERROR TRACKING 42

tVariables This list stores the important objects, regarding the error/warning,
which can not be serialized. This field is transient.

time A timestamp when the error occurred.

ErrorFactory The ErrorFactory is responsible for creating the Warning ob-
jects.

WarningException A WarningException indicates a warning during the run of
the program. This is explained in more detail in the implementation section. If
warnings are not supported or if the Tracker is implemented differently, the
WarningException will become obsolete.

4.3.6 Implementation
When using this pattern, you have to design/implement 3 parts:

• Extend a migration language so that it is possible to specify errors or warnings.

• Design how the migration software should implement calls to the tracker.

• Design the tracker library.

The first two items are explained in this section. The tracker library should be implemented
according to the UML diagram shown in the structure section of this pattern.

Specification of errors and warnings

Listing 4.9 shows an example for a possible error specification.

Listing 4.9: Extended requires
1 p u b l i c S t r i n g c o n v e r t S t r i n g (S t r i n g a r g)
2 throws I l l e g a l A r g u m e n t E x c e p t i o n {
3
4 r e q u i r e s (id1 , ” n u l l ” , a r g){
5 i f (a rg1 == n u l l)
6 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
7 }
8 }
9 r e q u i r e s (id2 , ” s y n t a x check f a i l e d ” , a r g){

10 t h i s . syn taxCheck (a r g) ;
11 }
12 n o t i f y (id3 , ” empty s t r i n g ”){
13 i f (a r g =” ”) throw new Warn ingExcep t ion () ;
14 }
15 /∗
16 Method code
17 ∗ /
18 }

The example is related to the examples in the Mapping Language Extension pattern’s im-
plementation section. It features an extended requires clause.
Instead of one requires block, containing all preconditions, we have multiple requires

42

4.3. MAPPING ERROR TRACKING 43

statements. Each requires statement represents a precondition and is followed by
brackets with 2 or more arguments. The first argument is the ID representing the error,
the second one is a String that may hold a note about the error and the last arguments
are a variable number of Java statements which usually should be runtime variables. For
our implementation to work it is necessary that an exception has to be thrown by the code
inside the requires block if an error has to be caught.

The third statement, in the mapping above, is not a requires clause but a notify
clause, which we use to indicate a warning. Instead of using a second keyword, you could
also assign a level to each requires clause which would be useful if you need further
distinction between the errors. You might need this, for example, if you have preconditions
where you must not check the remaining preconditions, thereby using effectively three kind
of errors.

The WarningException is not an exception from the migrated API, but it is needed
for indicating that a warning should be saved by the Tracker, similar to the requirement
for the requires block that an exception has to be thrown.

Notifying the tracker

Listing 4.10: Simple Error check extended
1 p u b l i c S t r i n g c o n v e r t S t r i n g (S t r i n g a r g)
2 throws I l l e g a l A r g u m e n t E x c e p t i o n {
3
4 boolean i d 1 $ b o o l e a n = f a l s e ;
5 E x c e p t i o n i d 1 $ e x c e p t i o n = n u l l ;
6
7 boolean i d 2 $ b o o l e a n = f a l s e ;
8 E x c e p t i o n i d 2 $ e x c e p t i o n = n u l l ;
9

10 t r y {
11 i f (a r g == n u l l)
12 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
13 } ca tch (E x c e p t i o n e){
14 i d 1 $ e x c e p t i o n = e ;
15 i d 1 $ b o o l e a n = t rue ;
16 n o t i f y E r r o r T r a c k e r (” i d 1 ” , a rg1) ;
17 }
18 t r y {
19 t h i s . syn taxCheck (a r g) ;
20 } ca tch (E x c e p t i o n e){
21 i d 2 $ e x c e p t i o n = e ;
22 i d 2 $ b o o l e a n = t rue ;
23 n o t i f y E r r o r T r a c k e r (” i d 2 ” , a r g) ;
24 }
25 t r y {
26 i f (a r g =” ”) throw new Warn ingExcep t ion () ;
27 } catch (E x c e p t i o n e){
28 n o t i f y E r r o r T r a c k e r (” i d 3 ” , a r g) ;
29 }

43

4.3. MAPPING ERROR TRACKING 44

30 i f (i d 1 $ b o o l e a n) throw i d 1 $ e x c e p t i o n ;
31 i f (i d 2 $ b o o l e a n) throw i d 2 $ e x c e p t i o n ;
32 /∗
33 Method code
34 ∗ /
35 }

The code in listing 4.10 can be generated out of the mapping shown in Listing 4.9. First, a
boolean and an Exception variable are generated for each requires clause in the
mapping. After that follows a try catch block for each requires and notify clause.
The code inside each try block is similar to the code inside the corresponding requires
or notify block. Inside the catch block the exception is stored, the boolean variable is
set to true and the notifyErrorTracker method is called (its arguments are the ID,
the note and the statements specified in the mapping). In the case of the block originating
from the notify block, we only notify the Tracker.

After the try catch blocks, we throw the caught exceptions again (of course, not the
WarningException). This approach ensures that all preconditions were checked and
recorded by the Tracker.

By ensuring that all checks are applied, you may change the semantics of the code.
While these checks should be side-effect free, in a real world example it is quite possible
that it is not the case.

Tracker and ErrorFactory

The Tracker and the ErrorFactory should be created automatically out of the map-
ping.

1 p u b l i c c l a s s T r a c k e r implements S e r i a l i z a b l e {
2 p r i v a t e HashMap e r r o r s <S t r i n g , L i s t <E r r o r>> =
3 new HashMap<S t r i n g , L i s t <E r r o r >>();
4 p u b l i c vo id n o t i f y E r r o r T r a c k e r (
5 S t r i n g id , S t r i n g note , O b j e c t . . . a r g s){
6 L i s t <E r r o r> l = n u l l ;
7 i f ((l = e r r o r s . g e t (i d))== n u l l){
8 l =new L i n k e d L i s t<E r r o r > () ;
9 e r r o r s . p u t (id , l) ;

10 }
11 l . add (E r r o r F a c t o r y . c r e a t e E r r o r (id , no te , a r g s)) ;
12 }
13
14 p u b l i c boolean s a f e (F i l e f){
15 / / S t o r e t h e t r a c k e r t o f
16 }
17 p u b l i c L i s t <E r r o r> g e t E r r o r s (S t r i n g i d){
18 re turn e r r o r s . g e t (i d) ;
19 }
20 }

Listing 4.3.6 shows a possible ErrorTracker. It has a HashMap containing the errors,
the keys of the HashMap are the various errors’ IDs. The ErrorTracker implements
the Serializable interface for easy storage.

44

4.3. MAPPING ERROR TRACKING 45

1 p u b l i c c l a s s E r r o r F a c t o r y {
2 p u b l i c E r r o r c r e a t e E r r o r (
3 S t r i n g id , S t r i n g note , O b j e c t [] a r g s){
4 i f (i d . e q u a l s (” i d 1 ”)) {
5 re turn c $ i d 1 (no te , a r g s) ;
6 }
7 i f (i d . e q u a l s (” i d 2 ”)) {
8 re turn c $ i d 2 (no te , a r g s) ;
9 }

10 i f (i d . e q u a l s (” i d 3 ”)) {
11 re turn c $ i d 3 (no te , a r g s) ;
12 }
13 . . .
14 }
15 p r i v a t e c $ i d 1 (S t r i n g note , O b j e c t [] a r g s){
16 E r r o r r e t = new E r r o r () ;
17 r e t . i d = ” i d 1 ” ;
18 r e t . warn ing = f a l s e ;
19 r e t . n o t e = n o t e ;
20 r e t . t V a r i a b l e s = new L i n k e d L i s t<Objec t > () ;
21 r e t . s V a r i a b l e s = new L i n k e d L i s t<S e r i a l i z a b l e > () ;
22 r e t . t ime = System . c u r r e n t T i m e M i l l i s () ;
23 f o r (O b j e c t o : a r g s){
24 i f (o i n s t a n c e o f S e r i a l i z a b l e)
25 r e t . s V a r i a b l e s . add (o) ; e l s e
26 r e t . t V a r i a b l e s . add (o) ;
27 }
28 }
29 p r i v a t e c $ i d 2 (S t r i n g note , O b j e c t [] a r g s){
30 / / S i m i l a r t o c$ id1 , o n l y w i t h t h e c o r r e c t i d
31 }
32 p r i v a t e c $ i d 3 (S t r i n g note , O b j e c t [] a r g s){
33 / / S i m i l a r t o c$ id1 , o n l y w i t h t h e c o r r e c t i d
34 / / and warning s e t t o t r u e
35 }
36 }

Listing 4.3.6 shows an ErrorFactory created out of the mapping in Listing 4.9. In our
example we assumed that the Tracker can be stored by serializing it. The code in the
ErrorFactory example simply separates the objects which implement the Serializ-
able interface from those which do not implement it. If a user wants to change the error
creation for a specific error, he can simply change the generated c$ID method. If you
assume that this might often be the case, you might want to extend the mapping language
further so that the user can specify the error creation method in the mapping.

4.3.7 Related Patterns
This pattern is designed as an extension to a mapping language. It is possible to add
this capabilities to a simple mapping language, like that in the Simple Mapping Language

45

4.4. GENERIC WRAPPER RECYCLER 46

pattern. Yet, we do not suggest it since it would not fit with the premise that it is used
for the simple cases. This pattern is more suitable for the cases presented in the Mapping
Language Extension pattern.

The WarningFactory is an instance of the Factory pattern. The Tracker itself
should be unique to the client, so the Singleton pattern is useful.

4.4 Generic Wrapper Recycler

4.4.1 Intent
Provide a class that handles the wrapper-wrappee relations.

4.4.2 Motivation
In a trivial environment you will generate exactly one wrapper for each wrappee and no
other object has a reference to the wrappee. However, in a more realistic scenario, it
might be the case that there are wrappees where it is unknown if a wrapper was already
generated. Even if we know that a wrapper was generated at some point, we will need to
get the corresponding wrapper.

Take a look at the code in Listing 4.11, which illustrates the problem which will appear
if no Generic Wrapper Recycler is used.

Listing 4.11: An example illustrating the problem
1 C o l l e c t i o n <Wrapper> c ;
2 f o r (Wrapper w: c){
3 i f (w. n e e d s M o d i f i c a t i o n ())
4 F a c t o r y . consumeWrappee (w. getWrappee ()) ;
5 }
6 / /
7 / / At a l a t e r p o i n t d u r i n g t h e program e x e c u t e t i o n
8 / /
9 TreeSe t<Wrapper> c ;

10 C o l l e c t i o n <Wrappee> m = F a c t o r y . ge tMod i f i edWrappees () ;
11 f o r (Wrappee we :m){
12 Wrapper wr = new Wrapper (we) ;
13 i f (! c . c o n t a i n s (wr)) c . add (wr) ;
14 }

In Listing 4.11, we have a list of wrappers given to an external class which modifies the
wrappees.

Afterward, the modified wrappees should be added to a list of wrappers. Some of the
wrappees and their respective wrappers are already in that list. All wrappees that are not
already in the list should be added. This will be done by creating a new wrapper for the
wrappee and adding it to the list if c.contains() returns false.

The semantics of the code depends on the way how the equality of the wrappers is
checked. If it was checked by the content of the wrappee (in other words the appropri-
ate methods were overridden), it should work. Therefore, a wrapper, which is already
inside the collection and the newly created wrapper, will delegate the method calls by the
TreeSet to the appropriate method in the same wrappee. However, if equality is checked

46

4.4. GENERIC WRAPPER RECYCLER 47

by reference, it will not work as the reference of the old wrapper and the reference of the
new wrapper are not identical, which will lead to the case where we have the same wrappee
twice in the collection. If we were able to trace the existing wrapper from the wrappee, we
would be able to use the existing wrapper. By doing so we could keep the semantics of the
code.

The solution presented in this pattern is that we use a class which stores wrapper-
wrappee relations, thereby allowing us to find an existing wrapper just by access to the
wrappee.

With such a class available, our example could now looks like this:

Listing 4.12: An example
1 TreeSe t<Wrapper> c ;
2 C o l l e c t i o n <Wrappee> m = F a c t o r y . ge tMod i f i edWrappees () ;
3 f o r (Wrappee we :m){
4 Wrapper wr =
5 Wrappe rRecyc le r . ge tWrapperForWrappee (we) ;
6 i f (! c . c o n t a i n s (wr)) c . add (wr) ;
7 }

Instead of generating a new wrapper, the WrapperRecycler is asked for the appropriate
wrapper.

4.4.3 Applicability
This pattern is applicable if a wrapper is used and it might happen that the wrapper and the
wrappee will become disconnected.

4.4.4 Structure
Figure 4.8 depicts the structure for a Generic Wrapper Recycler.

4.4.5 Participants
WrapperRecycler This class handles the wrapper-wrappee relations. It consists of the

following:

• A map pointing from a class object to a map that contains the relation between
wrappees and their respective wrappers.

• A method to get the correct wrapper for a wrappee.

• A method for binding a wrapper to a wrappee.

• A private method which creates a wrapper for a wrapperless wrappee.

WrapperReference The WrapperReference is either a weak or a strong refer-
ence to a Wrapper. The necessity is explained in the implementation section (see
section 4.4.6). It consists of a constructor and several methods for changing the kind
of reference.

Wrapper This interface is the contract for each wrapper.

ConcreteWrapper An example for an implementation of a Wrapper. It contains a
static field. This field must be implemented by each wrapper.

47

4.4. GENERIC WRAPPER RECYCLER 48

WrapperReference<E>

+weak: WeakReference<Wrapper<E>>

+strong: Wrapper<E>

+WrapperReference(strong:boolean,w:Wrapper<E>)

+getWrapper(): Wrapper<E>

+isStrong(): boolean

+makeStrong(): void

+makeWeak(): void

<<interface>>

Wrapper<E>

+createNewWrapper(wrappee:E)

+getWrappee(): E

WrapperRecycler

-map: Map<Class<?>,Map<Object,WrapperReference<?>>>

+getWrapper(strong:boolean,wrappee:T,wrapper:Class<T>): Wrapper<T>

+registerWrapper(strong:boolean,w:Wrapper)

-createWrapper(strong:boolean,wrappee:T,c:Class<? extends Wrapper<T>>): WrapperReference<T>

ConcreteWrapper

+defaultWrapper: ConcreteWrapper

-wrappee: ConcreteType

1

*

1

1

IncompatibleWrapperException

WrapperContractException

RuntimeException

EmptyWrapper

Figure 4.8: UML diagram of the Generic Wrapper Recycler

WrapperContractException A runtime exception which should be thrown if a
wrapper broke the wrapper contract.

IncompatibleWrapperException A runtime exception which should be thrown
if you tried to wrap a wrappee with an incompatible Wrapper.

EmptyWrapper The EmptyWrapper class is optional. We used it in our example as
an easy way to ensure that a DefaultWrapper is created.

Wrapper The Wrapper interface serves as a contract for possible wrappers.

4.4.6 Implementation
Here we will show one concrete implementation of a WrapperRecycler and explain
the design decisions in more detail.

First, we will talk about the structure of the map, storing the wrapper-wrappee rela-
tions. Here we split the list of all different wrappees by their respective classes.

Listing 4.13: The map
1 Map<Class <?>,Map<Objec t , WrapperReference<?>>> map = n u l l ;
2
3 p r i v a t e Map<Objec t , WrapperReference<?>>
4 c r e a t e H a s h M a p f o r C l a s s I f N e c e s s a r y (Class <?>c){
5 Map<Objec t , WrapperReference<?>> m = map . g e t (c) ;
6 i f (m== n u l l){
7 m =new WeakHashMap<Objec t , WrapperReference <?>>();
8 System . o u t . p r i n t l n (”Map c r e a t e d f o r ”+c) ;

48

4.4. GENERIC WRAPPER RECYCLER 49

9 map . p u t (c , m) ;
10 }
11 re turn m;
12 }

The private method should be called if the WrapperRecycler tried to obtain a wrapper.
It returns the appropriate map for the class of the wrappee. If no map is stored for the class,
a new one will be created and returned. It is important that a WeakHashMap is used. If
we use a normal Hashmap, the Garbage Collector would not be allowed to delete the
wrappee, because there is a reference to the wrappee in the wrapper and a reference to the
wrapper in the HashMap. By using a WeakHashMap the Garbage Collector may delete
the wrapper in question if there was no strong reference to it besides the weak reference in
the WrapperRecycler.

Listing 4.14: The wrapper getter
1 p u b l i c <T> Wrapper<T> ge tWrapper (
2 boolean s t r o n g , T wrappee , C las s <? ex tends Wrapper<T>> c){
3 Map<Objec t , WrapperReference<?>> m =
4 c r e a t e H a s h M a p f o r C l a s s I f N e c e s s a r y (wrappee . g e t C l a s s ()) ;
5 WrapperReference<T> r e t = n u l l ;
6 r e t = (WrapperReference<T>) m. g e t (wrappee) ;
7 i f (r e t == n u l l){
8 r e t = c r e a t e W r a p p e r (s t r o n g , wrappee , c) ;
9 m. p u t (wrappee , r e t) ;

10 }
11 re turn r e t . ge tWrapper () ;
12 }

First, the WrapperRecycler accesses the appropriate map for the given class. Then it
checks if there was already a wrapper for this wrappee. If a wrapper was found, it will be
returned. Otherwise, it tries to create a new Wrapper, which will be returned and stored in
the map for later access.

Listing 4.15: Creating a new Wrapper
1 p r i v a t e <T>WrapperReference<T> c r e a t e W r a p p e r (
2 boolean s t r o n g , T o , Class <? ex tends Wrapper<T>> c){
3 WrapperReference<T> r e t = n u l l ;
4 F i e l d f = n u l l ;
5 t r y {
6 f =c . g e t D e c l a r e d F i e l d (” d e f a u l t W r a p p e r ”) ;
7 } ca tch (S e c u r i t y E x c e p t i o n e) {
8 throw new W r a p p e r C o n t r a c t E x c e p t i o n () ;
9 } ca tch (N o S u c h F i e l d E x c e p t i o n e) {

10 throw new W r a p p e r C o n t r a c t E x c e p t i o n () ;
11 }
12 Wrapper<T> d e f a u l t W r a p p e r = n u l l ;
13 t r y {
14 d e f a u l t W r a p p e r = (Wrapper<T>) f . g e t (n u l l) ;
15 } ca tch (I l l e g a l A r g u m e n t E x c e p t i o n e) {
16 throw new W r a p p e r C o n t r a c t E x c e p t i o n () ;

49

4.4. GENERIC WRAPPER RECYCLER 50

17 } ca tch (I l l e g a l A c c e s s E x c e p t i o n e) {
18 throw new W r a p p e r C o n t r a c t E x c e p t i o n () ;
19 } ca tch (C l a s s C a s t E x c e p t i o n e){
20 throw new I n c o m p a t i b l e W r a p p e r E x c e p t i o n () ;
21 }
22 r e t =new WrapperReference<T>(
23 s t r o n g , d e f a u l t W r a p p e r . c rea teNewWrapper (o)) ;
24 re turn r e t ;
25 }
26 }

The code above is responsible for creating a new wrapper. It tries to get the static field
defaultWrapper from the given Wrapper class. If it does not get the field, the wrap-
per will break the contract. If that happened, a WrapperContractException should
be thrown. Unfortunately, with Java it is not possible to enforce the inclusion of that field
or of a static method with the same purpose. We also can not use an abstract class for the
wrapper contract because that would prohibit that a wrapper has another super class (at
least if the programming language is Java). So we settled for the static field.

If the field is present, createNewWrapperwill be invoked. createNewWrapper
must be implemented due to the Wrapper interface, and the new wrapper will be returned.

A ClassCastException may occur. This will be the case if the given class is
not compatible with Wrapper<wrappee.class>. In that case an exception will be
thrown.

Listing 4.16: Register a Wrapper
1 publ ic<T> boolean r e g i s t e r W r a p p e r (
2 boolean s t r o n g , Wrapper<T> w){
3 T wrappee =w. getWrappee () ;
4 Map<Objec t , WrapperReference<?>>
5 m= c r e a t e H a s h M a p f o r C l a s s I f N e c e s s a r y (
6 wrappee . g e t C l a s s ()) ;
7 WrapperReference<T> r e t =
8 (WrapperReference<T>) m. g e t (wrappee) ;
9 i f (r e t == n u l l){

10 m. p u t (wrappee , new WrapperReference<T>(s t r o n g ,w)) ;
11 } e l s e {
12 i f (r e t . ge tWrapper () ! =w) re turn f a l s e ;
13 }
14 re turn t r ue ;
15 }

The code in Listing 4.16 stores a wrapper. If the wrapper is already stored or if none is
registered for the wrappee, it will return true. If there already was a wrapper for the
wrappee and it is different from the given wrapper, the method will return false.

The following example shows an implementation of the WrapperReference.

Listing 4.17: The Wrapper reference.
1 c l a s s WrapperReference<E> {
2 p r i v a t e WeakReference<Wrapper<E>> weak = n u l l ;
3 p r i v a t e Wrapper<E> s t r o n g = n u l l ;

50

4.4. GENERIC WRAPPER RECYCLER 51

4
5 p u b l i c WrapperRefe rence (Wrapper<E> e){
6 t h i s (f a l s e , e) ;
7 }
8 p u b l i c WrapperRefe rence (boolean s t r o n g , Wrapper<E> e){
9 i f (s t r o n g){

10 t h i s . s t r o n g =e ;
11 } e l s e {
12 t h i s . weak=new WeakReference<Wrapper<E>>(e) ;
13 }
14 }
15 p u b l i c boolean i s S t r o n g () {
16 re turn s t r o n g != n u l l ;
17 }
18 p u b l i c vo id makeWeak () {
19 i f (i s S t r o n g ()) {
20 weak = new WeakReference<Wrapper<E>>(s t r o n g) ;
21 s t r o n g = n u l l ;
22 }
23 }
24 p u b l i c vo id makeStrong () {
25 i f (! i s S t r o n g ()) {
26 s t r o n g = weak . g e t () ;
27 weak= n u l l ;
28 }
29 }
30 p u b l i c Wrapper<E> ge tWrapper () {
31 Wrapper<E> r e t = s t r o n g ;
32 i f (r e t == n u l l){
33 r e t =weak . g e t () ;
34 }
35 re turn r e t ;
36 }
37 }

The WeakReference class is part of the JavaCore API. It serves as a wrapper for a
reference. The difference between this and a usual reference (also called strong reference)
is that the Java Garbage Collector ignores the WeakReference instances. That means if
an object is only reachable through a WeakReferences, the Garbage Collector will be
able to delete that object.

As mentioned before, we would basically eliminate the features of the Garbage Col-
lector for all wrappers and for all wrapped objects if we would use only strong references.
As soon as the references would be registered in the WrapperRecycler we will always
have a strong reference to the wrapper and to the wrapper reference. We could of course
create a method which deletes an object from the map, but consequently we would have
to check or know when an Object is no longer needed. Furthermore, we would run into
scaling issues as soon as the program uses a high enough amount of objects.

Usually it will be sufficient if a WeakReference is used, because the main program
should always have a strong reference to the wrapper as long as it is needed. However, it
may be the case that only a reference to the original wrappee exists, a wrapper was already

51

4.4. GENERIC WRAPPER RECYCLER 52

created and it is necessary to keep that exact wrapper. In that case a strong reference should
be used. For example, the wrapper stores additional information about the wrappee. The
class also features methods to change the kind of the used reference.

Listing 4.18: The Wrapper interface
1 p u b l i c i n t e r f a c e Wrapper<E> {
2 p u b l i c a b s t r a c t E getWrappee () ;
3 p u b l i c a b s t r a c t Wrapper<E> crea teNewWrapper (E e) ;
4 }

Listing 4.18 shows the contract for each Wrapper class. One method for creating a
new wrapper and one which returns the wrappee.

Listing 4.19: A concrete Wrapper
1 p u b l i c c l a s s Concre teWrapper implements Wrapper<S t r i n g > {
2
3 p u b l i c s t a t i c Concre teWrapper d e f a u l t W r a p p e r = n u l l ;
4 s t a t i c {
5 d e f a u l t W r a p p e r =
6 new Concre teWrapper ((EmptyWrapper) n u l l) ;
7 }
8 p r i v a t e S t r i n g wrappee = n u l l ;
9 Concre teWrapper (S t r i n g e){

10 wrappee = e ;
11 }
12 p r i v a t e Concre teWrapper (EmptyWrapper n i l l){
13 }
14
15 @Override
16 p u b l i c Wrapper<S t r i n g > crea teNewWrapper (S t r i n g e) {
17 re turn new Concre teWrapper (e) ;
18 }
19
20 @Override
21 p u b l i c S t r i n g getWrappee () {
22 re turn wrappee ;
23 }
24 }

Figure 4.19 is an example for a concrete wrapper. In that case a wrapper for a String.
Note, we only implemented the methods, essential for our WrapperRecycler. In order
to be a complete wrapper we would have to implement the whole signature of the String
class.

This wrapper is straight forward, it has a constructor which creates a new wrapper for
a given String.

The purpose of the defaultWrapper is to gain access to the non-static create-
NewWrapper() method. In order to avoid type clashes we added a constructor which
accepts an EmptyWrapper as an argument.

52

4.5. WRAPPER CREATOR 53

4.4.7 Related Patterns
It is advisable that the WrapperRecycler is unique to its client. Therefore the Singleton
pattern is useful.

4.5 Wrapper Creator

4.5.1 Intent
Provide a basic framework for creating a wrapper automatically out of a mapping.

4.5.2 Motivation
The Simple Mapping Language and Mapping Language Extension pattern (see Section 4.1
& 4.2) should help to specify the relations between two APIs. However, we also want to put
these to practical use. This pattern will describe a possible basic structure of a framework
that creates a wrapper out of a provided mapping.

Advantages of a wrapper for migration are (in comparison to migration via code inlin-
ing):

• You do not have to inline the method code. That is beneficial because you can easily
run into non-trivial problems.

• If you have a working wrapper, you will be able to use it by simply switching the
libraries of the program which is going to use it. Of course, there are cases where
you can not simply switch the libraries. For example, the project copied the source
code of the API instead of using the provided libraries.

The disadvantages are:

• You may run into problems concerning object identity (a subset of this problem can
be solved with a wrapper recycler 6).

• The code gets longer as it features the calls to the original API and the wrapper
code.

4.5.3 Applicability
This pattern will be applicable for automatically creating a wrapper if a mapping is present.

4.5.4 Structure
Figure 4.9 depicts a UML diagram of a possible Wrapper Creator according to this pattern.

4.5.5 Participants
MappingReader The purpose of the MappingReader is to parse the mappings and

to store the data in memory.
The MappingReader contains one public method which starts the parsing and
returns the mapping as an object.

6See Section 4.4 for the Generic Wrapper Recycler pattern.

53

4.5. WRAPPER CREATOR 54

MappingReader

+readMapping(mappings:File[]): boolean

WrapperCreator

-StructureCreator: StructureProvider

-ClassCreator: ClassProvider

+createWrapper(m:Mapping)

StructureProvider

+createStructure(m:Mapping)

-createPackages()

-createWrapperRecycler()

-copyHelperClasses()

ClassWriter

+createClass(m:Mapping)

-createFields(m:Mapping)

-createMethods(m:Mapping)

-createInnerClass(m:Mapping)

1

1

1

1

creates

reads

Mapping

Analyzer

Only necessary if the Mapping

doesn’t provide sufficient informations

Figure 4.9: UML diagram of a WrapperCreator

Mapping The Mapping represents the mapping in memory.

WrapperCreator The WrapperCreator is responsible for creating the wrapper.
However, it makes sense to split its features into the following classes

StructureProvider The StructureProvider creates the file structure
for your wrapper by creating the necessary directories and the creation of as-
sisting classes (for example, creating an implementation of a Generic Wrap-
per Recycler).

ClassProvider The ClassProvider creates the actual wrappers. It has a
private method for creating the class header, the fields, the methods, and the
inner classes.

Analyzer The Analyzer package represents a class (or a set of classes), capable to
read the code structure of the original API. If the mapping has sufficient information
this wont be necessary. For example, if a small mapping language is used or you are
planning to remove the dependencies on the mapping later, you will need to use an
analyzer to gain the signatures of the non-private classes and classmembers of the
source API.

54

4.5. WRAPPER CREATOR 55

4.5.6 Implementation

Parsing the mapping

The Simple Mapping Language and Mapping Language Extension patterns feature some
UML diagrams outlining a possible structure for the parser and some recommendations for
parsing technologies.

The StructureProvider

The StructureProvider is responsible for creating the following entities:

The File Directories The StructureProvider should create the directories needed
by the wrapper. That means the package hierarchy and directories for assisting
classes. In the case of the Vector-Arraylist wrapper that would be a directory for
the highest hierarchy, for example the java.util directory. Depending on the
framework that creates the java files, it might also be useful to create empty files for
the source-files at that point following.

Generic Wrapper Recycler If the Generic Wrapper Recycler pattern was applied, its files
should be created by the StructureProvider, unless this is done via an im-
ported project.

Mapping Error Tracking If the Mapping Error Tracking pattern was used, its necessary
classes should also be created by the StructureProvider, with the exception
of the WarningFactory which should be populated by the ClassWriter.

The ClassWriter

The ClassWriter is responsible for populating the packages (or classes) which were
created by the StructureProvider.

Listing 4.20 shows an example for the header of a created wrapper.

Listing 4.20: An example wrapper (header)
1 p u b l i c c l a s s Source implements Wrappee<Targe t >{
2
3 p u b l i c s t a t i c Source d e f a u l t W r a p p e r = n u l l ;
4 s t a t i c {
5 d e f a u l t W r a p p e r = new Source ((EmptyWrapper) n u l l) ;
6 }
7
8 p r i v a t e Source (EmptyWrapper n i l l){
9 / / o n l y f o r d e f a u l t Wrapper}

10
11 p r i v a t e T a r g e t wrappee = n u l l ;
12
13 Source (T a r g e t t){
14 wrappee = t ;
15 }
16
17 @Override
18 p u b l i c Wrapper<Targe t> crea teNewWrapper (T a r g e t t) {

55

4.5. WRAPPER CREATOR 56

19 re turn new Source (t) ;
20 }
21
22 @Override
23 p u b l i c T a r g e t getWrappee () {
24 re turn wrappee ;
25 }

This code is independent from the mapping. Therefore, it could also be created by the
StructureProvider. This possibility depends on the technology used by the Class-
Writer. If the ClassWriter can not populate easily such files, it will make more sense
that the ClassWriter creates the whole file.

Listing 4.21 shows an example for the body of a wrapper.

Listing 4.21: An example wrapper (body)
1 p u b l i c s t a t i c f i n a l i n t PROVIDED CONSTANT = 0 ;
2
3 p u b l i c Source (i n t i){
4 T a r g e t t = new T a r g e t (i) ;
5 wrappee = t ;
6 r e g i s t e r W r a p p e r (f a l s e , t h i s) ;
7 }
8
9 p u b l i c Source (S t r i n g s) throws S o u r c e E x c e p t i o n {

10 t r y {
11 T a r g e t . syn taxCheck (s) ;
12 } ca tch (T a r g e t E x c e p t i o n t e){
13 throw new S o u r c e E x c e p t i o n (s) ;
14 }
15 T a r g e t t = new T a r g e t (s) ;
16 r e g i s t e r W r a p p e r (f a l s e , t h i s) ;
17 wrappee = t ;
18 }
19 p u b l i c S t r i n g d o S t u f f (S t r i n g name , i n t v a l u e)
20 throws S o u r c e E x c e p t i o n , I l l e g a l A r g u m e n t E x c e p t i o n {
21 S t r i n g p r e f i x =” ” ;
22 i f ((name . l e n g t h ()) >1)
23 p r e f i x = name . s u b s t r i n g (0 , 1) ;
24 i f (name . l e n g t h <3){
25 throw new S o u r c e E x c e p t i o n () ;
26 }
27 i f (va lue <0 | | v a l u e >200){
28 throw new S o u r c e E x c e p t i o n () ;
29 }
30 i f (wrappee . check (name)== f a l s e)
31 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
32 i f (p r e f i x . e q u a l s {” $ ” }){
33 name = name . s u b s t r i n g (1 , name . l e n g t h ()) ;
34 }
35 t r y {

56

4.5. WRAPPER CREATOR 57

36 re turn wrappee . c o n v e r t (name , (s h o r t) v a l u e) ;
37 } ca tch (T a r g e t E x c e p t i o n t){
38 throw new S o u r c e E x c e p t i o n (t . g e t V a l u e ()) ;
39 }
40 }

It consists of two constructors and one method. Listing 4.22 is the appropriate mapping
for this class. The main work of the WrapperCreator is to remove the new keywords,
to replace calls to thatwith the appropriate call, to add calls to the WrapperRecycler,
to remove name clashes and to add calls to the error tracker (if the Mapping Error Tracking
pattern was used).

Listing 4.22: An example wrapper (mapping)
1 p u b l i c c l a s s Source to T a r g e t {
2 p u b l i c s t a t i c f i n a l i n t PROVIDED CONSTANT = 0 ;
3 p u b l i c Source (i n t i) to new T a r g e t (i) ;
4 p u b l i c Source (S t r i n g s) throws S o u r c e E x c e p t i o n to {
5
6 r e q u i r e s {
7 t r y {
8 T a r g e t . syn taxCheck (s) ;
9 } ca tch (T a r g e t E x c e p t i o n t e){

10 throw new S o u r c e E x c e p t i o n (s) ;
11 }
12 }
13 t h a t = new T a r g e t (s) ;
14 }
15 p u b l i c S t r i n g d o S t u f f (S t r i n g name , i n t v a l u e)
16 throws S o u r c e E x c e p t i o n , I l l e g a l A r g u m e n t E x c e p t i o n to {
17 prepare {
18 S t r i n g p r e f i x =” ” ;
19 i f ((name . l e n g t h ()) >1)
20 p r e f i x = name . s u b s t r i n g (0 , 1) ;
21 }
22 r e q u i r e s {
23 i f (name . l e n g t h <3){
24 throw new S o u r c e E x c e p t i o n () ;
25 }
26 i f (va lue <0 | | v a l u e >200){
27 throw new S o u r c e E x c e p t i o n () ;
28 }
29 i f (wrappee . check (name)== f a l s e)
30 throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;
31
32 i f (p r e f i x . e q u a l s {” $ ” }){
33 name = name . s u b s t r i n g (1 , name . l e n g t h ()) ;
34 }
35 }
36 t r y {
37 re turn wrappee . c o n v e r t (name , (s h o r t) v a l u e) ;

57

4.6. AST MIGRATOR 58

38 } ca tch (T a r g e t E x c e p t i o n t){
39 throw new S o r u c e E x c e p t i o n (t . g e t V a l u e ()) ;
40 }
41 }
42 }

4.5.7 Related Patterns
There is no need for multiple instances of the classes used in this pattern. So you should
consider using the Singleton pattern. If you were using an AST for the mapping, the
Factory pattern could make sense.

If you are using a wrapper for migration, you will have to consider the necessity of
wrapper recycling. Therefore, it is highly advisable that a generic wrapper creator has the
capability to create a basic implementation of the Generic Wrapper Recycler pattern.

If you are using the Mapping Error Tracking pattern it also will be the responsibility
of the WrapperCreator to add the necessary classes and calls.

4.6 AST Migrator

4.6.1 Intent
Provide a technique for migrating an AST based structure independent to the transforma-
tion capabilities of the AST.

4.6.2 Motivation
This pattern originates from a problem that we encountered using the JDT. There are two
ways to modify a JDT AST. Either manipulate the AST directly and the changes will be
recorded by the JDT API in an ASTRewrite object, or create an empty ASTRewrite
object and specify the modifications directly. In both cases you will encounter problems
if you manipulate a method call and its arguments in one step. That problem forced us
to handle the AST in a different way. It took more time than we were comfortable with
to implement the original migration, notice the error and locate the reason of the error.
So we tried to implement a solution that is as independent to the features of the AST as
possible. Usually it is not recommendable to not use existing features of a used framework.
However, in this case there are some interesting advantages:

• It is trivial to change the migrator during program execution. A possible scenario
is where you want to apply a different migrator or no none at all for the childs of a
node.

• This technique works for an immutable AST.

• If the AST is switched with the AST of another framework, it wont be necessary to
learn the technique for modifying the AST provided by the framework.

• The resulting code is strongly structured and therefore should be quite comprehen-
sible.

58

4.6. AST MIGRATOR 59

Our solution copies the tree and adjusts it while traversing it (very similar to a typical
Visitor). Of course, it is necessary that the framework provides a way for the user to create
AST nodes. We think that this requirement is fulfilled by most used ASTs.

However, there are some disadvantages that result from the fact that the whole tree is
copied:

• The code is usually longer because it is necessary implement a copy method for
each possible AST node.

• If the the AST received an update, it could be that you need to update code for
several AST nodes.

• You may encounter performance problems.

4.6.3 Structure
Figure 4.10 shows an UML diagram for an ASTMigrator.

ASTRewriter

-ASTRewriter instance

-ASTRewriter()

+getInstance(): ASTRewriter

+copyOrMigrate(target:ASTNode,m:AbstractMigrator): ASTNode

+copyOrMigrate(target:SpecificASTNode,m:AbstractMigrator): SpecificASTNode

AST uses

creates

reads

<<interface>>

AbstractMigrator

+supports(target:ASTNode): boolean

+migrate(target:ASTNode): ASTNode

ConcreteMigrator

+migrate(t:SpecificASTNode)

calls for Migration

calls for childnodes

1

*

calls for child nodes

UnsupportedTypeException

+UnsupportedTypeException(cause:ASTNode)

MigrationException

+MigrationException(cause:ASTNode,m:AbstractMigrator)

may throw

may throw

ASTNodeFactory

Figure 4.10: UML diagram for an ASTMigrator

4.6.4 Applicability
This pattern will be applicable if you have an AST that offers constructors or Factory meth-
ods and you do not want to rely on the transformation features provided by the framework
of the AST (or the AST does not provide such feature).

It wont be applicable (or at least not recommendable) if performance is an important
factor and you have large trees. Furthermore, if you are sure that the AST is not changed

59

4.6. AST MIGRATOR 60

and the frameworks already offers highly sophisticated transformation methods, you will
have to consider carefully the application of this pattern.

4.6.5 Participants
AST This package represents the AST.

ASTRewriter This class is responsible for creating the new AST. The method
copyOrMigrate(target ASTNode, m AbstractMigrator) delegates
the ASTRewriter to the method which handles the specific ASTNode. Then it
will check if the object is supposed to be migrated or copied. For the first case,
the ASTRewriter will call the ConcreteMigrator. For the second case, the
node is copied and copyOrMigrate is called for the child nodes.

ASTNodeFactory It resembles a Factory which creates the individual ASTNode ob-
jects.

AbstractMigrator This is the interface which must be implemented by a migrator.
It has two methods:

supports(ASTNode n) This method checks if the migrator supports n.

migrate(ASTNode target) This method will delegate to the correct migrate
method for the specific AST node.

ConcreteMigrator This class realizes the AbstractMigrator interface. Besides
the methods required due to the the interface, it also contains the methods which
will migrate the specific AST nodes.

UnsupportedTypeException Such an exception should be thrown if a
copyOrMigrate method was called with an unknown ASTNode.

MigrationException A MigrationExceptionwill be thrown if something went
wrong during the migration step.

4.6.6 Implementation
The following lines will show an example implementation for this pattern and explain it in
more detail.

Copy capabilities

Listing 4.23: Skeleton of main copyOrMigrate
1 p u b l i c ASTNode copyOrMigra te (
2 ASTNode t a r g e t , A b s t r a c t M i g r a t o r m){
3 i f (t a r g e t i n s t a n c e O f Specif icASTNode1){
4 re turn copyOrMigra te ((Specif icASTNode1) t a r g e t , m) ;
5 . . .
6 i f (t a r g e t i n s t a n c e O f SpecificASTNodeN){
7 re turn copyOrMigra te ((SpecificASTNodeN) t a r g e t , m) ;
8 }
9 }

60

4.6. AST MIGRATOR 61

The code above shows the Java code for the main copyOrMigrate method. It checks
the type of the target argument and calls the copyOrMigrate method for that specific
type.

Listing 4.24: Skeleton of specific copyOrMigrate
1 p u b l i c ASTNode copyOrMigra te (
2 Specif icASTNode t a r g e t , A b s t r a c t M i g r a t o r m){
3 i f (m. s u p p o r t s (t a r g e t)) re turn m. m i g r a t e (t a r g e t) e l s e {
4 /∗
5 f o r (c h i l d N o d e s c){
6 copyOrMigra te (c ,m) ;
7 }
8 ∗ /
9 re turn ASTNodeFactory . c r e a t e S p e c i f i c A S T N o d e (a rgumen t s) ;

10 }
11 }

An example for a specific copyOrMigrate method. First, it is checked whether the
migrator class supports that specific ASTNode (this may also depend on some fields of
the node). If it is supported, the migrator will migrate it. Otherwise, copyOrMigrate
is called for all child nodes of target and the node is copied (in this example, this is
invoked by the call to the ASTNodeFactory). If you are going to apply a different
migrator for the child-nodes (or none at all), this can be achieved easily by using the new
migrator for the child-nodes. If you are just overwriting the ASTRewriter, you will have
to use a flag variable for the ASTRewriter or a similar approach.

The code snippet in Listing 4.25 shows an optional but useful migrator, its support
method always returns false. Therefore, its sole purpose is to ensure that all nodes are
copied. If you do not use such a NullMigrator and the migrator variable is set to null,
it will be necessary to add a null check to every specific copyOrMigrate method of
the ASTRewriter.

Listing 4.25: Null Migrator
1 p u b l i c s t a t i c c l a s s N u l l M i g r a t o r
2 implements A b s t r a c t M i g r a t o r {
3 p u b l i c N u l l M i g r a t o r (){}
4 p u b l i c boolean s u p p o r t s (ASTNode t a r g e t){
5 re turn f a l s e ;
6 }
7 p u b l i c ASTNode m i g r a t e (ASTNode t a r g e t){
8 throw new U n s u p p o r t e d O p e r a t i o n E x c e p t i o n () ;
9 }

10 }

Migration capability A realisation of the AbstractMigrator interface has a struc-
ture similar to the ASTRewriter structure. One method (which is enforced due to the
interface) that delegates to the migrate method for the specific ASTNode type, the methods
for the specific ASTNode types and one method which provides a fast check if the node
should be migrated. The following code shows an example for such class.

61

4.6. AST MIGRATOR 62

Listing 4.26: Pseudo code example for an AbstractMigrator
1 p u b l i c c l a s s MyMigrator implements A b s t r a c t M i g r a t o r {
2 p u b l i c boolean s u p p o r t s (ASTNode node){
3 i f (/∗ node i s a m e t h o d c a l l and i s name i s oldDo ∗ /)
4 re turn tru e ;
5 re turn f a l s e ;
6 }
7 p u b l i c ASTNode m i g r a t e (ASTNode t a r g e t){
8 i f (t a r g e t i n s t a n c e o f m e t h o d c a l l)
9 re turn m i g r a t e ((m e t h o d c a l l) t a r g e t) ;

10 throw new S u p p o r t T y p e C l a s h E x c e p t i o n (t a r g e t , t h i s) ;
11 }
12 p u b l i c m e t h o d c a l l m i g r a t e (m e t h o d c a l l t a r g e t){
13
14 / / I t i s a l r e a d y checked t h a t t h e name i s oldDo
15 S t r i n g methodname = ”newDo” ;
16 Arguments [] a r g s =
17 new Arguments [t a r g e t . ge tArguments . s i z e ()] ;
18 f o r (i n t i =0 ; i<a r g s . l e n g t h ; i ++){
19 a r g s [i]= copyOrMigra te (
20 ASTRewri ter . g e t I n s t a n c e () .
21 copyOrMigra te (t a r g e t . ge tArguments () [i] , t h i s)) ;
22
23 re turn ASTNodeFactory . c r e a t e M e t h o d C a l l (methodname , a r g s) ;
24 } e l s e throw new M i g r a t i o n E x c e p t i o n (t a r g e t , t h i s) ;
25 }
26 }

The code above shows a simple migrator which purpose is to rename all method calls
oldDo to newDo. The supports method only returns true if the ASTNode is an
instance of the methodcall class and its name field is equal to oldDo. The main mi-
grate method delegates to the migrate method for methodcall objects. If migrate is
called with an ASTNode type different from methodcall, it will throw a Migration-
Exception.

The specific migrate method migrates the name and delegates the nodes in the ar-
guments back to the ASTRewriter. Afterward, the ASTNodeFactory is called for
creating a new methodcall which is returned.

4.6.7 Related Patterns
It makes sense to implement the ASTRewriter as a Singleton.

For creating the ASTNodes a Factory is proposed, it may be useful to use a more flex-
ible variant for the ASTNodeFactory since it must be updated whenever the underlying
AST structure changes. For example, the Dynamic Factory pattern by Welicki et al. 7 (see
Section 1.2 for more information).

This pattern is very close to an implementation of a Visitor. But we do not imple-
ment the migration functionality by specialized visitors but by replacing the appropriate
methods. You can still use it like a regular Visitor by removing the calls to the migrators

7The Dynamic Factory Pattern – [WYWB08]

62

4.6. AST MIGRATOR 63

and subclassing the ASTRewriter. But we think that our implementation has a higher
readability. Furthermore, it is easy to switch the migrator on the fly.

Bringert et al. specified a pattern with similar capabilities (”A pattern for almost com-
positional functions” [BR06]), but for a general purpose.

The AST’s you encounter might become quite big. It might be useful to supply tool
support for visualizing the AST. One such tool is VAST by Martinez et al. (”VAST –
Visualization of Abstract Syntax Trees within Language Processors” [AMUFVI08]).

63

Chapter 5

Observations and Conclusions

This chapter summarizes our observations and conclusions regarding this thesis. It will
summarize our thoughts and impressions for the patterns presented in Chapter 3 and 4.
Possible future work is discussed in Section 5.3.

5.1 API analysis patterns
Configure - Analyze - Export provides a base for the structure of a flexible static analyzer
which should be easy to extend and maintain as it groups the components of the framework
in a sensible way. While this pattern is simple, it is easily the most important one of the
analysis patterns. The programmer does not have to follow the pattern extremely close, but
it is very important that he considers carefully how he should separate the components of
his framework.

Variable Analyzer ensures that the framework is easy to configure, that the configura-
tion is independent from the other components and that it is easy to extend. This pattern
provides assistance to the Configure - Analyze - Export pattern. The Variable Analyzer
seems not to be so important, but in our opinion this is not correct. If a user wants to utilize
a new framework, first he will have to understand how it is configured. In our experience
it is very likely that the configuration of the framework gets constantly refined during its
implementation and usage. So, providing a solid configuration process is very important.

Independent Data Model separates the analyzer from the data model and thereby in-
creases the advantages gained by the Configure - Analyze - Export pattern and simplifies
the application of the Multiple Outputs pattern. Its necessity is strongly influenced by the
possibility that the analyzer framework is changed and by the quality of the analyzer’s data
model. An actual need for it should arise in fewer cases than with the other patterns, but
its benefits should be enormous if it happened. In addition, it would be a cumbersome task
to apply this pattern later since the data model is used by most parts of the software.

The Multiple Outputs pattern ensures that it easy to add new ways to consume the data
of the analyzer and adds the ability to use multiple data consumers. It is, in our opinion,
not as essential as the other three patterns, since it may easily be the case that the user is
sure that only one data consumer is used. But, even if only one consumer was used, it
could be advisable to use a structure similar to the one proposed by the Multiple Outputs
pattern, since it also simplifies the modification or a complete exchange of the consumer.

These four patterns represent the knowledge we got during the implementation and
usage of our API analysis tools. The analysis patterns provide a base for implementing a

64

5.2. API MIGRATION PATTERNS 65

static API analyzer and they may also provide help for implementing tools for dynamical
API analysis. If these four patterns are used for an analyzer, or at least CAE, Independent
Data Model and Variable Analyzer, the resulting framework should be suitable for most
analysis tasks and easy to extend and maintain.

5.2 API migration patterns
The Simple Mapping Language and Mapping Language Extension patterns provide the
user with a basis for defining a suitable mapping language and software structure for his
migration framework. Simple Mapping Language is more suitable for simple scenarios,
while the Mapping Language Extension pattern will be recommendable if the differences
between source and target API are too big. If the target API is just a different version of
the source API, Simple Mapping Language will be sufficient in most cases. Both patterns
are rather open. We expect that these patterns have to be refined during further work in
that field (what already happened since the the Mapping Language Extension pattern can
be seen as a specialization of the Simple Mapping Language pattern). But we think that
they are sufficient so far as a first version or as a foundation for a mapping language.

The Wrapper Creator pattern shows one way how an existing mapping could be used
to migrate an API. We decided for the ”migration by wrapper” technique as we have more
experience and better examples with it. But the structure of a framework that uses a dif-
ferent technique should have many similarities to the structure of an implementation of the
Wrapper Creator pattern.

The Generic Wrapper Recycler pattern helps to counter the identity problem that will
appear if a wrapper is used. The structure of this pattern is a little bloated which results
mostly from properties of the Java language. It may have been a better solution to present
a more generalized version in this thesis. However, a user who wants to implement a
Generic Wrapper Recycler for another programming language should not be distracted
since we already explained the design decisions in detail and the resulting pattern will be
more useful if it is used in a Java scenario.

The Mapping Error Tracking pattern can be applied to get a better understanding of er-
rors and problems that occur during the execution of a migrated software. If API migration
becomes more common and well-understood, it will be a question whether this feature will
be necessary or not. At the moment we consider Mapping Error Tracking to be quite use-
ful as it prevents that the programmer later on recognizes that he could use such a feature
and implements it in a way that decreases the quality of the code. Since the error tracking
capabilities are encoded in the mapping, it will be easy to ignore them for the migration
framework if they are no longer needed.

The AST Migrator pattern shows a way how to migrate an AST with as few as pos-
sible dependencies on the transformation capabilities of the AST. It may be that there is
a more efficient process for a specific AST migration scenario or that the transformation
capabilities of the framework work are especially good. But it was also our intention for
that pattern to animate the user to consider carefully if he wants to use the transformation
capabilities provided by the AST.

These API migration patterns should provide assistance for implementing an API mi-
gration framework suitable for the user’s requirements. In contrary to the API analysis
patterns the API migration patterns are not intended to be used as a whole. The API mi-
gration patterns try to provide solutions for specific problems in the API migration field.
Furthermore, they are more open than the analysis patterns. That means that the patterns
most likely need to be adapted while further experience with API migration is gained.

65

5.3. FUTURE WORK 66

5.3 Future work
This thesis is the result of two active projects. We are confident that our analysis tools
are not going to be heavily modified in the near future, except some polishing and main-
tenance. The next interesting question from a technical point of view would be how to
handle effectively the data generated by the analysis. The Multiple Outputs pattern allows
multiple ways to use the data. But we still have to recognize the advantages and disadvan-
tages of the different ways to save the data sets. Now, as we have the necessary tools we
have to learn how to configure them best. Of course, this depends on the actual research
question that we wish to answer with an analysis. While we have some ideas, it would be
necessary to apply case studies to support these ideas. Another interesting aspect would
be to adapt the patterns for dynamical analysis. We think that the solutions presented in
this patterns are also helpful for dynamical analysis, but currently we lack experience in
that field. Another point would be the user interface. All patterns in this thesis are about
internal processes and configuration and besides some advices in the Variable Analyzer
pattern, we do not consider interaction with the user. This will be even more important if
this work is adapted for dynamical analysis.

Another aspect that could be researched, would be patterns for using the transforma-
tion capabilities of the analyzer. All three of our used analyzers have code transformation
features (which are invoked in different ways). It would be helpful to have a code structure
which also allows easy access for the user to the transformation features. It would also
be helpful if this access was disconnected from the analyzer, so that the analyzer can be
exchanged easily (similar to the disconnection between the analyzer and the data model,
provided by the Independent Data Model pattern). Furthermore, such a structure could be
useful for an API migration framework, too.

The patterns for API migration are more open, respectively more problem-oriented.
Since API migration is still an active field of research it is likely that there are more com-
mon problems which could be handled with patterns which are similar to the Generic
Wrapper Recycler pattern. By pushing the API migration tools and techniques further or
by analyzing data on API usage, it is likely that more such problems can be classified.
So, improving our understanding of the API usage, specifying problems that appear during
API migration and finding approaches to handle these problems would be a possible future
goal. Furthermore, it is likely that more experience with API migration could be used to
improve the Simple Mapping Language and Mapping Language Extension patterns.

At the moment we intensively push the ”migration by wrapper approach”, due to the
difficulties from code-inlining. However, with better understanding the migration scenarios
it might be possible to develop better inlining techniques. In addition to getting a better
understanding on API usage, it would be interesting to make case studies on scenarios
where API migration was applied.

66

Chapter 6

Appendix

6.1 Tool Introduction
The following sections will present the three major frameworks which were used for our
tools.

Each section will give you a brief introduction to the tool, mention some interesting
properties and a code example for a simple analyzer which analyzes a single class and
exports the classes classname, declared fields and the signature of its declared methods.

The following class is used as an analysis example:

Listing 6.1: A simple class for demonstrating the capabilities of an analyzer frame-
works

1 p u b l i c c l a s s AnalyzeMe {
2 p u b l i c f i n a l S t r i n g CONST = ” c o n s t ” ;
3 p r i v a t e s t a t i c i n t temp = 0 ;
4 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
5 }
6 p u b l i c AnalyzeMe () {
7 }
8 p u b l i c vo id foo () {
9 }

10 p u b l i c S t r i n g foo (S t r i n g s){
11 re turn s ;
12 }
13 p u b l i c vo id foo (i n t i){
14 }
15 }

6.1.1 Fundamental differences between analyzers
The presented tools either analyze the source code or the bytecode of the target file(s). This
leads to some interesting differences between the analysis’ results.

This is partially caused by the fact that most compilers do modify the code during
compilation. While the compiler keeps the semantics, it often changes the syntax. Usually,

67

6.1. TOOL INTRODUCTION 68

either for increasing the performance1 or to transform it2. So, a source code based analyzer
would see a method call which was removed during compilation while a bytecode based
compiler would not see it (for example, unreachable code is often removed during compi-
lation). Another possible cause for different results is explained below. Take a look at the
following example:

Listing 6.2: Compiler preprocessing
1 p u b l i c c l a s s MyClass{
2 p u b l i c S t r i n g d= d o S t u f f () ;
3 p u b l i c MyClass (S t r i n g s){
4 S y s t e n . o u t . p r i n t l n (s+ d o S t u f f ()) ;
5 }
6 p u b l i c MyClass () {
7 }
8 }

If we would analyze this code snippet in order to know how often the programmer used
doStuff(), we would expect a result of 2. However, if we use ASM to analyze this code
snippet, we will get the result of 3. The reason for that is, whenever a MyClass object
is created, all initializers of MyClass are called. Therefore doStuff() is called two
times in the first constructor and one time during the second constructor. In other words,
a bytecode analyzer sees how often a method is called in the code, while a source code
analyzer sees how often a method call is declared. This change is similar to changes like
removing generics, but it is not as obvious.

6.1.2 ASM
Introduction to ASM ASM [Eri] is a bytecode manipulation and analysis framework.
One advantage of ASM is that it only needs the bytecode of the classes which you want to
analyze. The other presented frameworks do require all dependencies of the project which
is going to be analyzed.

Tool Requirements As already mentioned above, ASM only needs the bytecode of
its targets. However, sometimes you need bytecode created with debug informations (for
example, you need debug information for analyzing local variables).

ASM does not need further third-party APIs (respectively, they are provided in the
ASM library).

Code example There are two ways to access the data generated by ASM, either by
overwriting the various ASM listener which are called during the analysis or by reading
the fields of the generated objects. The following code shows a simple analyzer:

Listing 6.3: A simple ASM analyzer
1 p u b l i c s t a t i c vo id p r i n t M e t h o d S i g n a t u r e s (I n p u t S t r e a m f i s)
2 throws IOEx cep t ion {

1For example, by removing redundant reads or unreachable code.
2For example, Java generics are transformed during compilation in order to preserve backward

compatibility.

68

6.1. TOOL INTRODUCTION 69

3 C l a s s R e a d e r c r = new C l a s s R e a d e r (f i s) ;
4 ClassNode cn = new ClassNode () ;
5 c r . a c c e p t (cn ,
6 C l a s s R e a d e r . SKIP DEBUG | C l a s s R e a d e r . SKIP CODE) ;
7 S t r i n g className = cn . name ; / / j a v a / l ang / O b j e c t
8 System . o u t . p r i n t l n (c lassName) ;
9 L i s t <?> methods = cn . methods ;

10 L i s t <?> f i e l d s = cn . f i e l d s ;
11 f o r (O b j e c t o : f i e l d s){
12 Fie ldNode node =(F ie ldNode) o ;
13 S t r i n g nname = node . name ;
14 Type t y p e =
15 org . o b j e c t w e b . asm . Type . ge tType (node . de sc) ;
16 i n t acc = node . a c c e s s ;
17 System . o u t . p r i n t l n (acc + ” ” +
18 t y p e . ge tClassName () + ” ”+nname+” ; ”) ;
19 }
20 f o r (O b j e c t o : methods){
21 MethodNode node = (MethodNode) o ;
22 i n t acc = node . a c c e s s ;
23 S t r i n g mname = node . name ;
24 Type [] t y p e = org . o b j e c t w e b . asm . Type .
25 getArgumentTypes (node . de sc) ;
26 S t r i n g r = n u l l ;
27 r = Type . g e t R e t u r n T y p e (node . de sc) .
28 getClassName () ;
29 System . o u t . p r i n t (acc + ” ” + r + ” ”+mname+” (”) ;
30 f o r (i n t i =0 ; i<t y p e . l e n g t h ; i ++){
31 i f (i<t y p e . l e n g t h −1)
32 System . o u t . p r i n t (t y p e [i]+ ” , ”) ;
33 e l s e System . o u t . p r i n t (t y p e [i] . ge tClassName ()) ;
34 }
35 System . o u t . p r i n t l n (”) ”) ;
36 }
37 }

First an InputStream is needed, usually this will be a FileInputStream. Then a
ClassReader object and a ClassNode object are created. The ClassReader is a
Visitor and the ClassNode will contain the data from the analysis.

The method call cr.accept(arg1, arg2) starts the analysis and after that call
is processed, it is possible to access the data from the analysis, the arg1 argument is the
Visitor and the arg2 argument holds flags which configure ASM (for example, if local
variables are not needed, the SKIP DEBUG flag may be used).

The following code is a simple way to access the data from the analysis. In order
to access the necessary data, the content of the ClassNode fields are read. One minor
annoyance is that most values have to be converted, the modifiers are coded by an integer
(access) and the type names are in the desc field. For the type, there are static conve-
nience methods in the org.objectweb.asm.Type class. A second annoyance is that
the current version of ASM does not use generics, which leads to some unnecessary casts
like those above to FieldNode or MethodNode.

69

6.1. TOOL INTRODUCTION 70

Below are the results of the analysis for the example file shown in listing 6.1 by using
the ASM analyzer in Listing 6.3.

Listing 6.4: Output for our simple analyzer
1 AnalyzeMe
2 17 j a v a . l a n g . S t r i n g CONST;
3 10 i n t temp ;
4 8 void < c l i n i t >()
5 9 void main (j a v a . l a n g . S t r i n g [])
6 1 void < i n i t >()
7 1 void foo ()
8 1 j a v a . l a n g . S t r i n g foo (j a v a . l a n g . S t r i n g)
9 1 void foo (i n t)

Each line is started with an integer value representing the access modifiers3. If the
line represents a field, the access code will be followed by the field’s name. If the line
represents a method, the access code will be followed by the method’s return type, name
and argument types. The qualified names of the types can be transformed to the usual
format by the .getClassName() method.

There are two important method names which act as a keyword, <init> is the default
method name given to a constructor by ASM. <clinit> is the default method name given
to static initializers by ASM. In our example, the static was included by the Java compiler
in order to initialize the fields.

6.1.3 Recoder
Introduction to Recoder Recoder [rec] is a source code based analyzer. See Section
6.1.1 for an explanation of the difference to bytecode based analyzers.

Tool requirements Recoder needs compilable code and all dependencies of the code
must be fulfilled. While it should be possible to partially analyze code where we do not
have all dependencies, our results were not satisfying for that. The old version of Recoder
featured a hand-written bytecode parser, since version 0.94 this one has been replaced by
an ASM driven parser and Recoder needs the ASM API.

Code example

Listing 6.5: A basic analyzer for Recoder
1 p u b l i c s t a t i c vo id
2 p r i n t M e t h o d S i g n a t u r e s (F i l e f){
3 C r o s s R e f e r e n c e S e r v i c e C o n f i g u r a t i o n c r s c
4 = new C r o s s R e f e r e n c e S e r v i c e C o n f i g u r a t i o n () ;
5 c r s c . g e t P r o j e c t S e t t i n g s () . s e t P r o p e r t y (
6 Proper tyNames . INPUT PATH ,
7 f . g e t A b s o l u t e P a t h ()) ;
8

3you can find the corresponding opcodes in org.objectweb.asm.Opcodes

70

6.1. TOOL INTRODUCTION 71

9 c r s c . g e t P r o j e c t S e t t i n g s () .
10 e n s u r e S y s t e m C l a s s e s A r e I n P a t h () ;
11 c r s c . g e t P r o j e c t S e t t i n g s () .
12 e n s u r e E x t e n s i o n C l a s s e s A r e I n P a t h () ;
13 S o u r c e F i l e R e p o s i t o r y s f r =
14 c r s c . g e t S o u r c e F i l e R e p o s i t o r y () ;
15 L i s t <C o m p i l a t i o n U n i t> c u l = n u l l ;
16 t r y {
17 c u l = s f r . g e t A l l C o m p i l a t i o n U n i t s F r o m P a t h () ;
18 } ca tch (P a r s e r E x c e p t i o n e) {
19 e . p r i n t S t a c k T r a c e () ;
20 }
21
22 c r s c . g e t C h a n g e H i s t o r y () . updateModel () ;
23
24 f o r (C o m p i l a t i o n U n i t cu : c u l) {
25 TreeWalker tw = new TreeWalker (cu) ;
26 T y p e D e c l a r a t i o n t d =
27 cu . g e t P r i m a r y T y p e D e c l a r a t i o n () ;
28 System . o u t . p r i n t l n (t d . ge tFu l lName ()) ;
29 L i s t <F i e l d S p e c i f i c a t i o n > f i e l d s = t d . g e t F i e l d s () ;
30 f o r (F i e l d S p e c i f i c a t i o n f s p : f i e l d s){
31 System . o u t . p r i n t l n (f s p . ge tType () . getName () +
32 ” ”+ f s p . getName () + ” ; ”) ;
33 }
34 L i s t <Method> methods = t d . ge tMethods () ;
35 methods . a dd Al l (t d . g e t C o n s t r u c t o r s ()) ;
36 f o r (Method m: methods){
37 S t r i n g s i g = ” ” ;
38 i f (m. i s P u b l i c ()) s i g +=” p u b l i c ” ;
39 i f (m. i s P r i v a t e ()) s i g +=” p r i v a t e ” ;
40 i f (m. i s P r o t e c t e d ()) s i g +=” p r o t e c t e d ” ;
41 i f (m. i s S t a t i c ()) s i g +=” s t a t i c ” ;
42 i f (m. i s S t r i c t F p ()) s i g +=” s t r i c t f p ” ;
43 i f (m. i s A b s t r a c t ()) s i g +=” a b s t r a c t ” ;
44 i f (m. i s F i n a l ()) s i g +=” f i n a l ” ;
45 i f (m. i s N a t i v e ()) s i g +=” n a t i c ” ;
46 i f (m. i s S y n c h r o n i z e d ()) s i g +=” s y n c h r o n i z e d ” ;
47 S t r i n g r e t =” ” ;
48 i f (! (m i n s t a n c e o f C o n s t r u c t o r))
49 i f (m. g e t R e t u r n T y p e ()== n u l l) r e t =” vo id ” ; e l s e
50 r e t +=m. g e t R e t u r n T y p e () . getName () + ” ” ;
51 System . o u t . p r i n t (s i g + r e t +m. getName () + ” (”) ;
52 f o r (Type t y p e :m. g e t S i g n a t u r e ()) {
53 System . o u t . p r i n t (” ”+ t y p e . getName ()) ;
54 }
55 System . o u t . p r i n t l n (”) ”) ;
56
57 }

71

6.1. TOOL INTRODUCTION 72

58 }

The first two statements initialize Recoder, the following two statements ensure that
the necessary classes are in the classpath (in this example the Java API). The method
call sfr.getAllCompilationUnitsFromPath(); causes Recoder to parse the
source files. However, the data is only accessible for the user after the updateModel()
method call which updates the data model.

In order to read the data, the user can either use a Visitor to traverse the AST or
read the respective fields. The code for reading the data in this example is rather easy to
understand and similar to the code in the ASM example. However, there are two interesting
differences to the ASM code:

1. We already have convenience methods for reading the modifiers for the fields and
methods.

2. Recoder uses generics.

The code in Listing 6.6 is the output of a run of that program with our example class
in Listing 6.1.

Listing 6.6: Output for the basic Recoder analyzer
1 AnalyzeMe
2 S t r i n g CONST;
3 i n t temp ;
4 p u b l i c s t a t i c vo id main (S t r i n g [])
5 p u b l i c vo id foo ()
6 p u b l i c S t r i n g foo (S t r i n g)
7 p u b l i c vo id foo (i n t)
8 p u b l i c AnalyzeMe ()

The output is as expected. Differences to the ASM output are:

• The modifiers are not encoded, since we did use the available transformation meth-
ods.

• Recoder distinguish between constructors and methods on an AST level and uses
the classname as the name of the constructor.

• There are no static initializer methods. Recoder can only analyze static intializers
that are specified by the programmer.

6.1.4 JDT
Introduction to JDT The JDT or Java Developement Tools4 are an API present in the
Eclipse system [ecl]. It is used for code analysis and transformation by the Eclipse system.

Like Recoder, it is a source code based analyzer (see Section 6.1.1).
A significant advantage of the JDT is its name resolution. The JDT is capable to

provide the user with a full name and (static) type resolution for all variables in the source
code.

4See http://www.eclipse.org/jdt/

72

6.1. TOOL INTRODUCTION 73

Tool requirements In order to be able to use all features of the JDT, the source code
must be able to compile and all of its dependencies are needed. However, the JDT is pretty
error prone, it is able to analyze incorrect Java files up to a certain degree, which makes
the JDT especially useful for code development assistance.

The JDT is designed to be used as an Eclipse plugin. It is possible to use the JDT API
outside of Eclipse. However, it uses many other Eclipse libraries and it is a cumbersome
process to provide the JDT parser with all necessary files and libraries. If the JDT API is
used within the Eclipse system, it is easier to find the dependencies since JDT can access
the dependencies configured in the project settings.

Code example The following code example is similar to those described in the ASM
and Recoder section. However, it is not implemented as a standalone analyzer but as a
minimal Eclipse plugin.

The following code shows a simple JDT analyzer.

Listing 6.7: A basic analyzer using the JDT
1 p u b l i c s t a t i c vo id p r i n t M e t h o d S i g n a t u r e s
2 (I C o m p i l a t i o n U n i t i c u){
3 ASTParser p a r s e r = ASTParser . newPar se r (AST . JLS3) ;
4 p a r s e r . s e t K i n d (ASTParser . K COMPILATION UNIT) ;
5 p a r s e r . s e t S o u r c e (i c u) ;
6 p a r s e r . s e t R e s o l v e B i n d i n g s (t rue) ;
7 C o m p i l a t i o n U n i t cu = (C o m p i l a t i o n U n i t)
8 p a r s e r . c rea teAST (n u l l) ;
9 ASTVis i to r av = new ASTVis i to r () {

10 p u b l i c vo id p r i n t M o d i f i e r (i n t m o d i f i e r){
11 i f (M o d i f i e r . i s P u b l i c (m o d i f i e r))
12 System . o u t . p r i n t (” p u b l i c ”) ;
13 i f (M o d i f i e r . i s P r i v a t e (m o d i f i e r))
14 System . o u t . p r i n t (” p r i v a t e ”) ;
15 i f (M o d i f i e r . i s P r o t e c t e d (m o d i f i e r))
16 System . o u t . p r i n t (” p r o t e c t e d ”) ;
17 i f (M o d i f i e r . i s F i n a l (m o d i f i e r))
18 System . o u t . p r i n t (” f i n a l ”) ;
19 i f (M o d i f i e r . i s A b s t r a c t (m o d i f i e r))
20 System . o u t . p r i n t (” a b s t r a c t ”) ;
21 i f (M o d i f i e r . i s S t a t i c (m o d i f i e r))
22 System . o u t . p r i n t (” s t a t i c ”) ;
23 i f (M o d i f i e r . i s S y n c h r o n i z e d (m o d i f i e r))
24 System . o u t . p r i n t (” s y n c h r o n i z e d ”) ;
25 i f (M o d i f i e r . i s V o l a t i l e (m o d i f i e r))
26 System . o u t . p r i n t (” v o l a t i l e ”) ;
27 i f (M o d i f i e r . i s S t r i c t f p (m o d i f i e r))
28 System . o u t . p r i n t (” s t r i c t f p ”) ;
29 i f (M o d i f i e r . i s N a t i v e (m o d i f i e r))
30 System . o u t . p r i n t (” n a t i v e ”) ;
31 i f (M o d i f i e r . i s T r a n s i e n t (m o d i f i e r))
32 System . o u t . p r i n t (” t r a n s i e n t ”) ;
33 }

73

6.1. TOOL INTRODUCTION 74

34
35 @Override
36 p u b l i c boolean v i s i t (T y p e D e c l a r a t i o n node) {
37 System . o u t . p r i n t l n (node . getName ()) ;
38 re turn super . v i s i t (node) ;
39 }
40
41 @Override
42 p u b l i c boolean v i s i t (F i e l d D e c l a r a t i o n node) {
43 p r i n t M o d i f i e r (node . g e t M o d i f i e r s ()) ;
44 i n t i =0 ;
45 System . o u t . p r i n t (node . ge tType () . t o S t r i n g () + ” ”) ;
46 f o r (O b j e c t o : node . f r a g m e n t s ()) {
47 V a r i a b l e D e c l a r a t i o n F r a g m e n t vdf =
48 (V a r i a b l e D e c l a r a t i o n F r a g m e n t) o ;
49 System . o u t . p r i n t (vdf . getName ()) ;
50 i ++;
51 i f (i<node . f r a g m e n t s () . s i z e ())
52 System . o u t . p r i n t (” , ”) ;
53 }
54 System . o u t . p r i n t l n (” ; ”) ;
55 re turn super . v i s i t (node) ;
56 }
57
58 @Override
59 p u b l i c boolean v i s i t (M e t h o d D e c l a r a t i o n node) {
60 p r i n t M o d i f i e r (node . g e t M o d i f i e r s ()) ;
61 Type t = node . g e t R e t u r n T y p e 2 () ;
62 i f (t != n u l l) System . o u t . p r i n t (t . t o S t r i n g () + ” ”) ;
63 System . o u t . p r i n t (node . getName () + ” (”) ;
64 i n t i =0 ;
65 f o r (O b j e c t o : node . p a r a m e t e r s ()) {
66 S i n g l e V a r i a b l e D e c l a r a t i o n svd =
67 (S i n g l e V a r i a b l e D e c l a r a t i o n) o ;
68 System . o u t . p r i n t (svd . ge tType () . t o S t r i n g ()) ;
69 i ++;
70 i f (i<node . p a r a m e t e r s () . s i z e ())
71 System . o u t . p r i n t (” , ”) ;
72 }
73 System . o u t . p r i n t l n (”) ”) ;
74 re turn super . v i s i t (node) ;
75 }} ;
76 cu . a c c e p t (av) ;
77 }

First, the parser is configured by setting the Java Language Specification that should
be used and the source which should be parsed. In this case the source code is given
as an ICompilationUnit which represents a source code file in an Eclipse project,
that makes it possible for Eclipse to access its dependencies. In addition to setting the
source, the kind of the source (in our case ASTParser.K COMPILATION UNIT must

74

6.1. TOOL INTRODUCTION 75

be specified. The line parser.setResolveBindings(true); is optional, if it is
set, the parsing step will need more memory and takes longer. The advantage is that the
static type information for the variables are analyzed.

The anonymous class ASTVisitor av = new ASTVisitor()... is the Vis-
itor which is used for fetching the data from the analysis. Contrary to ASM and Recoder,
there are no fields that can be accessed directly for the information.

The first method in the Visitor formats and prints the modifier of an ASTNode. The
modifiers are stored encoded as an integer and the Modifier class has static methods
for decoding them. The next three methods will be called if a TypeDeclaration, a
FieldDeclaration or a MethodDeclaration is visited. An overview over all
JDT ASTNode is given in the Appendix (see section 6.2).

The code should be easy to understand, but there is some inconsistency within the JDT
API. For example, the return type of a MethodDeclaration is accessible by a getter
while the method parameters are stored in a public field of the MethodDeclaration
and there is no getter for them.

The following code is the output of a run of that program with our example class in
Listing 6.1.

Listing 6.8: Output for the basic JDT analyzer
1 AnalyzeMe
2 p u b l i c f i n a l S t r i n g CONST;
3 p r i v a t e s t a t i c i n t temp ;
4 p u b l i c s t a t i c vo id main (S t r i n g [])
5 p u b l i c AnalyzeMe ()
6 p u b l i c vo id foo ()
7 p u b l i c S t r i n g foo (S t r i n g)
8 p u b l i c vo id foo (i n t)

The output is similar to the Recoder output. The output would differ if we had a nested
class. The fields of Recoder (or ASM) only store data belonging to the current class,
while the example JDT analyzer above visits all MethodDeclarations and Field-
Declarations in a class. Normally, it would be necessary to overwrite the visit method
for nested classes so that the Visitor stops there.

6.1.5 Other tools
This section introduced the the three tools which we primarily used for code analysis (and
in the case of JDT for API migration).

Another interesting tool is JTransformer 5 which uses the JDT API for analysis and
code transformation and allows the user to use Prolog queries to gather data.

Another possible approach is to use the Java compiler (which es used for our first
analyzer). There is a tool called APT (APT - Annotation Processing Tool [APT]) which
allows the user to access the annotations of a program during compilation time, it is also
possible (but not clearly documented) to access the AST of the java compiler, which allows
the user to analyze the currently compiled program. We do not recommend this, since we
encountered some strange problems using that, but it was mostly sufficient for the API 1.0
analysis project (see Section 1.2).

5See the related works section in Section 1.2 for more information.

75

6.2. JDT AST NODES 76

6.2 JDT AST Nodes
Figure 6.2 shows all ASTNodes of the current JDT API.

6.3 Complete DTD

Listing 6.9: Complete DTD of the variable analyzer
1 <!ELEMENT RUN (TASK)+>
2 <!ELEMENT TASK (SOURCES,ANALYZE, OUTPUT)>
3 <!ATTLIST TASK mode (l i s t | p r o j e c t | s u b s e t) #REQUIRED>
4 <!ELEMENT SOURCES(DIRECTORY)>
5 <!ATTLIST SOURCES a d d i t i o n a l c o n f i g u r a t i o n CDATA #IMPLIED>
6 <!ELEMENT DIRECTORY>
7 <!ATTLIST DIRECTORY l o c a t i o n CDATA #REQUIRED>
8 <!ATTLIST DIRECTORY s u b d i r e c t o r i e s (t r u e | f a l s e) ’ f a l s e ’>
9 <!ELEMENT ANALYZE(CONFIG) ?>

10 <!ATTLIST ANALYZE mode
11 (whi t ebox | b l a c k b o x | s p e c i a l i z e d) #REQUIRED>
12 <!ATTLIST ANALYZE a n a l y z e m e t h o d c a l l s (t r u e | f a l s e) f a l s e>
13 <!ELEMENT CONFIG>
14 <!ATTLIST CONFIG
15 c l a s s e s (p u b l i c | p r i v a t e | p r o t e c t e d | d e f a u l t) ” p u b l i c ”
16 methods (p u b l i c | p r i v a t e | p r o t e c t e d | d e f a u l t | f a l s e) ” p u b l i c ”
17 f i e l d s (p u b l i c | p r i v a t e | p r o t e c t e d | d e f a u l t | f a l s e) ” p u b l i c ”
18 l o c a l f i e l d s (t r u e | f a l s e) ” f a l s e ”
19 >
20 <!ELEMENT OUTPUT(CLAUSES)>
21 <!ELEMENT CLAUSES>
22 <!ATTLIST CLAUSES d i r e c t o r y CDATA #REQUIRED>

76

6.3. COMPLETE DTD 77

• AnnotationTypeDeclaration

• AnnotationTypeMemberDeclaration

• AnonymousClassDeclaration

• ArrayAccess

• ArrayCreation

• ArrayInitializer

• ArrayType

• AssertStatement

• Assignment

• Block

• BlockComment

• BooleanLiteral

• BreakStatement

• CastExpression

• CatchClause

• CharacterLiteral

• ClassInstanceCreation

• CompilationUnit

• ConditionalExpression

• ConstructorInvocation

• ContinueStatement

• DoStatement

• EmptyStatement

• EnhancedForStatement

• EnumConstantDeclaration

• EnumDeclaration

• ExpressionStatement

• FieldAccess

• FieldDeclaration

• ForStatement

• IfStatement

• ImportDeclaration

• InfixExpression

• InstanceofExpression

• Initializer

• Javadoc

• LabeledStatement

• LineComment

• MarkerAnnotation

• MemberRef

• MemberValuePair

• MethodRef

• MethodRefParameter

• MethodDeclaration

• MethodInvocation

• Modifier

• NormalAnnotation

• NullLiteral

• NumberLiteral

• PackageDeclaration

• ParameterizedType

• ParenthesizedExpression

• PostfixExpression

• PrefixExpression

• PrimitiveType

• QualifiedName

• QualifiedType

• ReturnStatement

• SimpleName

• SimpleType

• SingleMemberAnnotation

• SingleVariableDeclaration

• StringLiteral

• SuperConstructorInvocation

• SuperFieldAccess

• SuperMethodInvocation

• SwitchCase

• SwitchStatement

• SynchronizedStatement

• TagElement

• TextElement

• ThisExpression

• ThrowStatement

• TryStatement

• TypeDeclaration

• TypeDeclarationStatement

• TypeLiteral

• TypeParameter

• VariableDeclarationExpression

• VariableDeclarationStatement

• VariableDeclarationFragment

• WhileStatement

• WildcardTypetrue

Figure 6.1: All JDT AST nodes

77

6.4. EXAMPLE GRAMMAR FOR THE SIMPLE MAPPING LANGUAGE 78

6.4 Example grammar for the Simple Mapping Language

⟨MAPPING FILE⟩→⟨JAVA CLASS⟩|⟨MAPPING⟩
⟨MAPPING⟩→⟨HEADER⟩ ’{’ ⟨BODY⟩ ’}’
⟨HEADER⟩→[⟨PACKAGE⟩] [⟨IMPORT⟩] ⟨UTILCLASS⟩
⟨MAPSTART⟩
⟨PACKAGE⟩→’package’ ⟨JAVA QUALIFIEDNAME⟩ ’;’
⟨JAVA IMPORT⟩→⟨JAVA QUALIFIEDNAME⟩ [’.*’] ’;’
⟨IMPORT⟩→ ’import’ ⟨JAVA IMPORT⟩ [⟨IMPORT⟩]
⟨UTILCLASS⟩→’util’ ’=’ (’null’ | ⟨JAVA QUALIFIEDNAME⟩)
⟨MAPSTART⟩→ ’map’ ⟨JAVA NAME⟩ ’to’
⟨JAVA QUALIFIEDNAME⟩ ’{’⟨MAPBODY⟩’}’
⟨MAPBODY⟩→(⟨FIELD⟩|⟨METHOD⟩|⟨INNER CLASS⟩|
⟨INNER MAP⟩)[⟨MAPBODY⟩]
⟨FIELD⟩→⟨FIELD DECLARATION⟩ [’=’
(⟨DEFAULT VALUE⟩|⟨UTIL METHOD⟩)] ’;’
⟨METHOD⟩→’map’ ⟨JAVA QUALIFIEDNAME⟩ ’(’
⟨PARAMETER DECLARATION⟩’)’ ’to’
(⟨CONSTRUCTOR⟩|⟨METHOD CALL⟩|⟨UTIL METHOD⟩) ’;’
⟨CONSTRUCTOR⟩→ ’new’ ⟨JAVA QUALIFIEDNAME⟩’
(’⟨PARAMETER⟩’)’
⟨UTIL METHOD⟩→’util.’ ⟨JAVA NAME⟩’(’⟨PARAMTER⟩’)’

Figure 6.2: The example grammar for the Simple Mapping Language pattern

6.5 Mapping complexity
In the easiest case it is possible to map directly between a single method of the source API
and a single method of the target API. In the worst case a new method must be written. Here
is a classification of the complexity of a mapping, which was used during the developement
of our tools and mentioned in the Mapping Language Extension pattern. 6

Level 1 If we have a level 1 relation we can delegate from a method m1 to a method m2
directly, by only changing the name of the method and rearranging the arguments.

Level 2 In addition to the possible steps for a level 1 relation the arguments may be slightly
modified. It is allowed to use constants, casts and to use less or more arguments.
Simple arithmetic operations (adding or subtracting constants) are also allowed.

Level 3 Everything is allowed that is possible in the target language.

6These classifications are loosely based on the levels of adaption specified in [BCLS09], but take
into account implementation details from a Java perspective

78

Bibliography

[AMUFVI08] ALMEIDA-MARTÍNEZ, Francisco J. ; URQUIZA-FUENTES, Jaime ;
VELÁZQUEZ-ITURBIDE, J. :̇ VAST: visualization of abstract syntax trees
within language processors courses. In: Proceedings of the 4th ACM sym-
posium on Software visualization. New York, NY, USA : ACM, 2008 (Soft-
Vis ’08). – ISBN 978–1–60558–112–5, 209–210

[APT] APT - Annotation Processing Tool. http://download.oracle.
com/javase/1,5.0/docs/guide/apt/GettingStarted.
html

[BBS05] BLEWITT, Alex ; BUNDY, Alan ; STARK, Ian: Automatic verification
of design patterns in Java. In: Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineering. New York, NY,
USA : ACM, 2005 (ASE ’05). – ISBN 1–58113–993–4, 224–232

[BCLS09] BARTOLOMEI, Thiago T. ; CZARNECKI, Krzysztof ; LÄMMEL, Ralf ;
STORM, Tijs van d.: Study of an API Migration for Two XML APIs. In:
SLE, 2009, S. 42–61

[BDF+11] BARTOLOMEI, Thiago T. ; DERAKHSHANMANESH, Mahdi ; FUHR, An-
dreas ; KOCH, Peter ; KONRATH, Mathias ; LÄMMEL, Ralf ; WINNEBECK,
Heiko: Combining multiple dimensions of knowledge in API migration.
In: First International Workshop on Model-Driven Software Migration
(MDSM 2011), CEUR, 2011. – 4 pages. To appear.

[BR06] BRINGERT, Björn ; RANTA, Aarne: A pattern for almost compositional
functions. In: Proceedings of the eleventh ACM SIGPLAN international
conference on Functional programming. New York, NY, USA : ACM,
2006 (ICFP ’06). – ISBN 1–59593–309–3, 216–226

[BTF05] BALABAN, Ittai ; TIP, Frank ; FUHRER, Robert: Refactoring support for
class library migration. In: Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and ap-
plications. New York, NY, USA : ACM, 2005 (OOPSLA ’05). – ISBN
1–59593–031–0, 265–279

[CGM06] COHEN, Tal ; GIL, Joseph (. ; MAMAN, Itay: JTL: the Java tools language.
In: SIGPLAN Not. 41 (2006), October, 89–108. http://dx.doi.org/
http://doi.acm.org/10.1145/1167515.1167481. – DOI
http://doi.acm.org/10.1145/1167515.1167481. – ISSN 0362–1340

79

BIBLIOGRAPHY 80

[DJ06] DIG, Danny ; JOHNSON, Ralph: Automated upgrading of component-
based applications. In: Companion to the 21st ACM SIGPLAN sympo-
sium on Object-oriented programming systems, languages, and applica-
tions. New York, NY, USA : ACM, 2006 (OOPSLA ’06). – ISBN 1–
59593–491–X, 675–676

[DZ07] DONG, Jing ; ZHAO, Yajing: Experiments on Design Pattern Discovery.
In: Proceedings of the Third International Workshop on Predictor Models
in Software Engineering. Washington, DC, USA : IEEE Computer Society,
2007 (PROMISE ’07). – ISBN 0–7695–2954–2, 12–

[ecl] The Eclipse project. http://www.eclipse.org/

[EH07] EKMAN, Torbjörn ; HEDIN, Görel: The JastAdd extensible Java compiler.
In: Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion. New York, NY, USA :
ACM, 2007 (OOPSLA ’07). – ISBN 978–1–59593–865–7, 884–885

[Eri] ERIC BRUNETON AND REMI FORAX AND EUGENE KULESHOV AND
ANDREI LOSKUTOV: ASM Framework Homepage. http://asm.ow2.
org/

[Fre06] FREESE, Tammo: Refactoring-aware version control. In: Proceedings of
the 28th international conference on Software engineering. New York, NY,
USA : ACM, 2006 (ICSE ’06). – ISBN 1–59593–375–1, 953–956

[FY10] FERNANDEZ, Eduardo B. ; YUAN, Xiaohong: An analysis pattern for
invoice processing. In: Proceedings of the 16th Conference on Pattern
Languages of Programs. New York, NY, USA : ACM, 2010 (PLoP ’09). –
ISBN 978–1–60558–873–5, 10:1–10:10

[GHJV95] GAMMA, Erich ; HELM, Richard ; JOHNSON, Ralph E. ; VLISSIDES, John:
Design Patterns: Elements of Reusable Object-Oriented Software. Read-
ing, MA : Addison-Wesley, 1995. – ISBN 978–0–201–63361–0

[GJS05] GOSLING, James ; JOY, Bill ; STEELE, Guy L.: The Java Language Spec-
ification - Third Edition. Addison-Wesley Longman, 2005

[GM05] GIL, Joseph (. ; MAMAN, Itay: Micro patterns in Java code. In: Pro-
ceedings of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. New York, NY, USA
: ACM, 2005 (OOPSLA ’05). – ISBN 1–59593–031–0, 97–116

[GSF10] GUERRA, Eduardo M. ; SOUZA, Jerffeson T. ; FERNANDES, Clovis T.: A
pattern language for metadata-based frameworks. In: Proceedings of the
16th Conference on Pattern Languages of Programs. New York, NY, USA
: ACM, 2010 (PLoP ’09). – ISBN 978–1–60558–873–5, 3:1–3:29

[HD05] HENKEL, Johannes ; DIWAN, Amer: CatchUp!: capturing and replaying
refactorings to support API evolution. In: Proceedings of the 27th interna-
tional conference on Software engineering. New York, NY, USA : ACM,
2005 (ICSE ’05). – ISBN 1–58113–963–2, 274–283

80

BIBLIOGRAPHY 81

[Iac11] IACOB, Claudia: A design pattern mining method for interaction design.
In: Proceedings of the 3rd ACM SIGCHI symposium on Engineering inter-
active computing systems. New York, NY, USA : ACM, 2011 (EICS ’11).
– ISBN 978–1–4503–0670–6, 217–222

[JC10] JENSEN, Adam C. ; CHENG, Betty H.: On the use of genetic program-
ming for automated refactoring and the introduction of design patterns. In:
Proceedings of the 12th annual conference on Genetic and evolutionary
computation. New York, NY, USA : ACM, 2010 (GECCO ’10). – ISBN
978–1–4503–0072–8, 1341–1348

[JDT] Java Develeopement Tools. http://www.eclipse.org/jdt/

[JDV03] JANZEN, Doug ; DE VOLDER, Kris: Navigating and querying code without
getting lost. In: Proceedings of the 2nd international conference on Aspect-
oriented software development. New York, NY, USA : ACM, 2003 (AOSD
’03). – ISBN 1–58113–660–9, 178–187

[JTr] The JTransformer project. https://sewiki.iai.uni-bonn.de/
research/jtransformer/start

[KHR07] KNIESEL, Günter ; HANNEMANN, Jan ; RHO, Tobias: A comparison of
logic-based infrastructures for concern detection and extraction. In: Pro-
ceedings of the 3rd workshop on Linking aspect technology and evolution.
New York, NY, USA : ACM, 2007 (LATE ’07). – ISBN 978–1–59593–
655–4

[KP88] KRASNER, Glenn E. ; POPE, Stephen T.: A cookbook for using the model-
view controller user interface paradigm in Smalltalk-80. In: J. Object Ori-
ented Program. 1 (1988), August, 26–49. http://portal.acm.org/
citation.cfm?id=50757.50759. – ISSN 0896–8438

[KR09] KAWRYKOW, David ; ROBILLARD, Martin P.: Improving API Usage
through Automatic Detection of Redundant Code. In: Proceedings of the
2009 IEEE/ACM International Conference on Automated Software Engi-
neering. Washington, DC, USA : IEEE Computer Society, 2009 (ASE
’09). – ISBN 978–0–7695–3891–4, 111–122

[LPS11] LÄMMEL, Ralf ; PEK, Ekaterina ; STAREK, Jürgen: Large-scale, AST-
based API-usage analysis of open-source Java projects. In: SAC’11 -
ACM 2011 SYMPOSIUM ON APPLIED COMPUTING, Technical Track
on “Programming Languages”, 2011

[NFH05] NEAMTIU, Iulian ; FOSTER, Jeffrey S. ; HICKS, Michael: Understanding
source code evolution using abstract syntax tree matching. In: Proceedings
of the 2005 international workshop on Mining software repositories. New
York, NY, USA : ACM, 2005 (MSR ’05). – ISBN 1–59593–123–6, 1–5

[Noc03] NOCK, Clifton: Data Access Patterns: Database Interactions in Object-
Oriented Applications. Prentice Hall Professional Technical Reference,
2003. – ISBN 0131401572

81

BIBLIOGRAPHY 82

[rec] ReCoder. http://sourceforge.net/apps/mediawiki/
recoder/index.php?title=Main_Page

[SH11] SÖDERBERG, Emma ; HEDIN, Görel: Building semantic editors using
JastAdd: tool demonstration. In: Proceedings of the Eleventh Workshop
on Language Descriptions, Tools and Applications. New York, NY, USA :
ACM, 2011 (LDTA ’11). – ISBN 978–1–4503–0665–2, 11:1–11:6

[SRG08] SAVGA, Ilie ; RUDOLF, Michael ; GOETZ, Sebastian: ComeBack!: a
refactoring-based tool for binary-compatible framework upgrade. In: Com-
panion of the 30th international conference on Software engineering. New
York, NY, USA : ACM, 2008 (ICSE Companion ’08). – ISBN 978–1–
60558–079–1, 941–942

[TFK+11] TIP, Frank ; FUHRER, Robert M. ; KIEŻUN, Adam ; ERNST,
Michael D. ; BALABAN, Ittai ; SUTTER, Bjorn D.: Refac-
toring using type constraints. In: ACM Trans. Program. Lang.
Syst. 33 (2011), May, 9:1–9:47. http://dx.doi.org/http:
//doi.acm.org/10.1145/1961204.1961205. – DOI
http://doi.acm.org/10.1145/1961204.1961205. – ISSN 0164–0925

[Wel06] WELICKI, Leon: The configuration data caching pattern. In: Proceedings
of the 2006 conference on Pattern languages of programs. New York, NY,
USA : ACM, 2006 (PLoP ’06). – ISBN 978–1–60558–372–3, 28:1–28:6

[WM09] WINTERS, Niall ; MOR, Yishay: Dealing with abstraction: Case study
generalisation as a method for eliciting design patterns. In: Comput. Hum.
Behav. 25 (2009), September, 1079–1088. http://dx.doi.org/
10.1016/j.chb.2009.01.007. – DOI 10.1016/j.chb.2009.01.007.
– ISSN 0747–5632

[WYWB08] WELICKI, León ; YODER, Joseph W. ; WIRFS-BROCK, Rebecca: The
dynamic factory pattern. In: Proceedings of the 15th Conference on Pattern
Languages of Programs. New York, NY, USA : ACM, 2008 (PLoP ’08). –
ISBN 978–1–60558–151–4, 9:1–9:7

[WYWB10] WELICKI, León ; YODER, Joseph W. ; WIRFS-BROCK, Rebecca: Adaptive
object-model builder. In: Proceedings of the 16th Conference on Pattern
Languages of Programs. New York, NY, USA : ACM, 2010 (PLoP ’09). –
ISBN 978–1–60558–873–5, 4:1–4:8

[ZTX+10] ZHONG, Hao ; THUMMALAPENTA, Suresh ; XIE, Tao ; ZHANG, Lu ;
WANG, Qing: Mining API mapping for language migration. In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software En-
gineering - Volume 1. New York, NY, USA : ACM, 2010 (ICSE ’10). –
ISBN 978–1–60558–719–6, 195–204

82

