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Kurzfassung

Das Ziel dieser Masterarbeit ist, dass der Roboter Lisa komplexe Befehle verar-
beiten und Information aus einem Kommando extrahieren kann, die benotigt
werden, um eine komplexe Aufgabe als eine Sequenz von kleineren Aufgaben
auszufithren. Um dieses Ziel zu erreichen wird das Bild, das Lisa von ihrer Um-
gebung hat, mit semantischen Informationen angereichert. Diese Informationen
werden in ihre Karte eingefiigt werden.

Es wird angenommen, dass der komplexe Befehl bereits geparst worden ist.
Deshalb ist die Verarbeitung des Inputs, um daraus einen geparsten Befehl zu
erstellen, kein Teil dieser Masterarbeit.

Die Karten, die Lisa aufbaut, werden mit semantischen Anmerkungen anno-
tiert. Zu diesen Anmerkungen gehort jede Art von Informationen, die niitzlich
zur Ausfithrung allgemeiner Aufgaben sein konnte. Das kann zum Beispiel eine
hierarchische Klassifizierungen von Orten, Objekten und Flachen sein.

Die Abarbeitung des Befehls mit den zugehorigen Informationen tiiber die
Umgebung wird eine Sequenz von Aufgaben auslosen. Diese Aufgaben sind
die bereits implementierten Fahigkeiten von Lisa, wie zum Beispiel Objekter-
kennung oder Navigation. Das Ziel dieser Masterarbeit ist aber nicht nur, die
vorhandenen Aufgaben zu nutzen, sondern auch das Hinzufiigen von neuen
Aufgaben zu erleichtern.



Abstract

The purpose of this master thesis is to enable the Robot Lisa to process complex
commands and extract the necessary information in order to perform a complex
task as a sequence of smaller tasks. This is intended to be achieved by the im-
provement of the understanding that Lisa has of her environment by adding
semantics to the maps that she builds.

The complex command itself will be expected to be already parsed. There-
fore the way the input is processed to become a parsed command is out of the
scope of this work.

Maps that Lisa builds will be improved by the addition of semantic anno-
tations that can include any kind of information that might be useful for the
performance of generic tasks. This can include (but not necessarily limited to)
hierarchical classifications of locations, objects and surfaces.

The processing of the command in addition to some information of the en-
vironment shall trigger the performance of a sequence of actions. These actions
are expected to be included in Lisa’s currently implemented tasks and will rely
on the currently existing modules that perform them. Nevertheless the aim of
this work is not only to be able to use currently implemented tasks in a more
complex sequence of actions but also make it easier to add new tasks to the
complex commands that Lisa can perform.
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Chapter 1

Introduction

1.1 Motivation

Robotics have evolved quickly along time from a very experimental field to a
rich, purposeful area of study. If people will ever have household robots in the
future, these robots must evolve in order to encompass a broader set of house-
hold tasks. To this end, they need to develop an understanding of their environ-
ment as well as a human-friendly language to communicate with their users.
Semantic knowledge about the environment is therefore a desirable feature any
household robot should have in order to be useful as a human companion.

However, the nature of Lisa’s project sometimes entails difficulties to inte-
grate new features to the current existing software. The main reason for this
is that projects like Lisa and Robbie often start as small experiments and grow
with many different people’s contributions along time. When software evolves
in this fashion it is usual that it becomes bigger than expected and many fea-
tures that were not planned in advance are also added, with the consequent
adaptation of the software.

Indeed, sometimes the initial design of the software is not ready for an easy
addition of these features. As a result, there are usually moments where it seems
difficult to preserve the unity of these projects and the effort that needs to be
made in order to maintain this code grows exponentially with the size of the
software. This is the reason why sometimes it is necessary to stop walking
forward for a moment and consider some restructuring that allows a project
to go further on its way.

Accordingly, in order to allow robots to grow further and endow them with
the ability to undertake new tasks with an easy integration of them, there is the
need to rethink and reengineer their architecture in order to facilitate their adap-
tation to the always changing set of tasks they are required to tackle. Moreover,
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1.2. GOAL

there is the further necessity to include in their perception of their environment
general and factual knowledge about the world.

1.2 Goal

The aim of this master’s thesis is to provide support and infrastructure to hold
together these new parts of the software that have been growing independently
and enable an easier further development in either new modules and features or
currently existing ones. The already implemented modules will also be adapted
to the new structure with the purpose of making the growth of the project faster
and more effective and facilitating the job of developers, making it easier to
combine already implemented tasks and create new ones.

At the same time, it intends to develop a structure that can endow robots
with increasing generality in their skills. In order to accomplish this, they will be
equipped with a better understanding and knowledge about their environment.
This addition of knowledge is also intented to be performed in a fashion that
allows further growth in the future.

1.3 Structure

This work is organized as follows. Chapter 2 shows an overview of what the
scientific community has already done in the past years to address similar prob-
lems to the one this work intends to solve. Considering all the information
gathered, chapter 3 depicts the theoretical approach chosen and explains the
process of developing the software and the software itself. The results obtained
are described and evaluated in chapter 4. Chapter 5 is a reference for the pos-
sible further work once this is accomplished and finally chapter 6 shows some
conclusions obtained after the completion of this master’s thesis.

20



Chapter 2

State of the art

This chapter is an overview of the current work of the scientific community in
the fields related to this work. Section 2.1 describes the current state of art re-
garding task planning. Section 2.2 analyses the existing work in semantics rep-
resentation, specially related to the area of robotics, and section 2.3 explains the
sources found in string command extraction and natural language processing.

2.1 Task planning

This section describes the current approaches used in task planning for robots.
The main approaches will be discussed along with their advantages and disad-
vantages.

2.1.1 Introduction

From the early times of artificial intelligence (Al), the main goal of this field has
been to produce intelligent systems and understand human intelligence. From
this beginning the scientific community has been ambitious about the possibili-
ties and there were thoughts about being able to build intelligent robots. This is
one of the main reasons why the fields of Al and robotics have been influencing
the work in each other since the very beginnings of both [Bro91b].

Several approaches have been considered in order to make robots behave in
an intelligent fashion. The part of this job considered as task planning or prob-
lem solving, which encompasses the process of planning a high-level sequence
of actions that would allow a certain agent to achieve a goal or perform a task,
has been a broad field of research in Al for a long time. Even before its applica-
tion to the field of robotics, some examples of problem solving predecesors can
be found in the literature. Traditionally two main solutions have been given
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2.1. TASK PLANNING

to this problem: finite-state machine behavior and logics-based problem solv-
ing.

2.1.2 Finite-state machine behavior

One of the main approaches used to solve the task planning problem in a robot
are finite-state machines (FSMs). FSMs are a mathematical abstraction designed
to model behavior regarding a finite set of possible states and transitions be-
tween these states. In this way, a robot would be in one of its finite set of pos-
sible states according to its internal values. In addition, its current state would
change depending on internal changes or external stimuli caught by its sensors.

Finite-state machines allow a layered decomposition of tasks, endowing ro-
bots with increasing abilities. The traditional approach to this idea is shown
in figure 2.1. It built a chain of information processing modules that passed
the information from the layer connected to sensors to the layer in control of
actuators, where every layer between these two only interacted with the layers
immediately next to it [Bro91b]. Several authors have applied this traditional
approach in the past.

One example of this is Shakey [Nil84], a mobile robot that navigated through
a specially designed environment trying to satisfy a given goal. Its structure
consisted of what Nilsson called Low-Level Actions, which defined the inter-
face with the robot’s hardware, Intermediate-Level Actions, which controlled the
performance of the Low-Level Actions and communicated with a planning sys-
tem layer. This planning system layer communicated with the executive layer,
which had access to the actuators.

Another example is given by J. Crowley [Cro85], where the local model is
updated by the lowest layer. This layer has access to the information supplied
by the sensors and the rest of the framework relies on this model. The local
model includes dynamic information about surfaces and obstacles detected by
the sensors. The remaining modules have access to this model and the highest
layer, in this case the Path execution layer, is the only one accessing motion com-
mands. Note that in this case the layering is not as strict. Nevertheless, it still
isolates the layers that can access the sensors and actuators.

Further approaches changed this view to one where every layer could have
access to sensors and actuators but that kept the layered structure. This was
done by augmented finite-state machines (AFSMs) and was given the name of
subsumption architecture [Bro86]. As shown in figure 2.2, each layer in a sub-
sumption architecture is able to inject information in the layers below in order
to change the usual flow of data. According to this, the control is not central-
ized [Bro91a], since every layer has its own set of inner states. They change
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2.1. TASK PLANNING

Sensors — —»  Actuators

perception
modelling

planning
task execution
motor control

Figure 2.1: Traditional decomposition of the control system of a robot [Bro91b]. Here,
only the perception layer is affected by sensors and only the motor control layer can
access the actuators.

accordingly to the messages they receive, the values of inner variables that can
include also specified timeouts to handle the possibility of misperceptions or
error states.

There are some more authors that have used finite state machines to model
a robot behavior. For instance, Jerry E. Pratt used a simple state machine for
the Stupid walking algorithm of his biped walking robot [Pra95]. Collins and
Ruina’s bipedal robot [CR05] also has a control hierarchy based in a finite state
machine, where all inputs are switches and the outputs are on/off activations.

Finite-state machines seem to be an efficient option where a quick answer
is needed. One of the problems found by the AI community is that sometimes
reasoning systems needed to perform such amount of processing that the an-
swer was not fast enough for a dynamic real world. Moreover, it is reasonable
to think that intelligence should be reactive to some aspects of the environment
(e.g. collision avoidance) [Bro91b].

Additionally, Agre and Chapman pinpointed that most of people’s daily life
activity does not really involve problem solving and planning but routines in a
dynamic and changing but benevolent environment instead [Bro91b].

All in all, finite-state machines have been broadly chosen as an efficient op-
tion that can endow robots with a reactive behavior. This behavior can be mod-
elled through a layered architecture in an either strict or flexible fashion. More-
over, it allows the designer to encapsulate and control the access to sensors
and actuators, although some proposals [Bro91b] suggest leaving free access to
them.
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2.1. TASK PLANNING

reason about behavior of objects

plan changes to the world

identify objects

monitor changes

Sensors —» build maps — > Actuators

explore

wander

avoid objects

Figure 2.2: Robot control system decomposition in levels of competence as proposed by
R. Brooks [Bro91a]. Every layer has access to sensors and actuators although each layer
is supported by the layers under it.

2.1.3 Logics-based problem solving

Another main approach that has been broadly considered to provide robots
with intelligent behavior is the use of logics. A relevant early example of these
logics-based problem solving can be found in [Gre69]. There, the resolution
proof procedure is used to solve problems in an automated way. As an applica-
tion, an approach on simple robot problem-solving is given.

Following this line of logical reasoning about the world state and change,
Stanford Research Institute developed STRIPS! [FN71], a problem solver based
on first-order predicate calculus. STRIPS tries to find a sequence of steps that
lead from an initial world model to a final world model, in which a certain goal
condition can be proven to be true. Its search space is therefore conformed by
the initial world model, the goal statement and a set of operators that can trans-
form a world model into another. Each world model is a set of well-formed
formulas and the goal statement is also a well-formed formula. The operators
that transform a world model into another are as well defined by two parts. The
first is a description of the conditions that need to be met in the current world
model so the operator can be applied. The second is a description of the effect
that the operator has in the current world model in the form of two sets of well-

1STanford Research Institute Problem Solver
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2.1. TASK PLANNING

formed formulas: the ones that need to be added to the world model and the
ones that will no longer be met and need to be removed from it. One application
of STRIPS was the mobile robot Shakey [Nil84], whose sequence of actions in
its upper planning layer mentioned in the previous section were generated by
STRIPS, and these plans further refined by feedback with its sensors. Neverthe-
less, it has been claimed that Shakey only worked well because its environment
was very carefully engineered [Bro91b].

Another application of logics to problem solving in robotics can be seen in
PLANNER [Hew?70]. PLANNER uses deductive logical reasoning over a set
of statements or assertions about the state of the world together with a set of
problem-solving primitives that can be applied to achieve certain goals.

These beginnings grounded the way to more modern and complex logic-
based systems aimed for task planning in robots. This is the case of GOLOG?
[LRL*94], a logic programming language based on an extended version of situ-
ation calculus and implemented in Prolog that handles a dynamic domain. As
a result, programs are able to reason about the current state of the world and
changes that could be made. The solution is presented in the form of a linear
plan of actions.

GOLOG has been broadly applied and extended in a diverse set of fields.
A practical application of it to robotics can be found in RHINO, the interactive
museum tour-guide robot deployed in the "Deutsches Museum Bonn” [BCF98].
RHINO uses an extension of GOLOG called GOLEX, which increases the func-
tionality of the original system with a hierarchical and conditional plan struc-
ture. In addition, it supplies monitoring to the execution of this sequence of
actions with time-out mechanisms and default actions added when these time-
outs are met, enhancing the robot behavior with default error handling. Later,
the same team developed Minerva [TBB*99], another mobile robot designed for
touring and entertaining people in public places. Minerva’s decision making
was implemented in RPL*[McD91], a language based on Lisp used for reactive
planning. This decision making level was built on top of lower-level control
structures using GOLEX.

More adaptations and extensions of GOLOG have been done by De Gia-
como and Lespérance [DGLL00], who describe an extension of GOLOG called
ConGolog, for prioritized concurrency and recursive processes monitoring. Ad-
ditionally, Mcllraith and Son [MS02] built a version of GOLOG for their com-
position of Semantic Web Services to enable users to customize it by adding
personal constraints, making it more generic and usable.

2GOLOG stands for "alGOl in LOGic”.
Reactive Plan Language.
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2.1. TASK PLANNING

2.1.4 Limitations of logic-based approaches

Although there is a considerable number of authors that support logics as a
useful tool for robot task planning and many languages and systems have been
developed, logics have several drawbacks:

e Symbolic representation of the world. In order to deliver a solution to a
problem, a logic-based robot task planning system must have a symbolic
representation of the world. Nevertheless, this representation is heavily
task dependent, and therefore makes it difficult to have a generic task
planner based on it. [Bro90]

e The Frame Problem. As McCarthy and Hayes already pointed out [MH69],
logic-based approaches force the developer to explicitly state which ac-
tions change any value of an object and which actions do not. For example,
an object’s size does not change by picking it up or opening the window.
Thus, there are numerous conditions that need to be written down and
most likely many to be forgotten by the human writer, since these invari-
ants might not be so obvious for a human mind. Some solutions to this
problem have been already proposed. For instance, separation between
theorem proving and searching through a space of world models was con-
sidered in STRIPS [FN71]. Furthermore, an automated generation of all
these frame axioms can be found in GOLOG [LRL194].

e Rigurous nature of logics. Even the simplest of the problems requires a
considerable number of statements and predicates in order to accomplish
any goal. One example of this can be the Monkey and the Bananas problem,
in which a monkey must solve the problem of taking some bananas hang-
ing from a ceiling, and for this purpose he can only move a box under
the bananas, climb it and pick them. A solution to this problem using a
logic-based problem solver is described in [Gre69] and it already involves
a reasonable number of axioms and predicates considering the simplicity
of the problem.

o Artificial sense of generality. While working with logics it is easy to think
that at some point it will be possible to have a very general problem solver
that could virtually reach a solution to any problem that could be stated
in terms of its logic. However, most of the time there is no such generality,
since the problem solver reasoning relies on the symbolic representation of
the world, which is task dependent. Indeed, problem solvers are usually
circumscribed to a certain domain of expertise and within it is where they
are useful for [Bro90].
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2.2. SEMANTICS IN MAPS AND DATA REPRESENTATION

2.1.5 Situated agents: A hybrid approach

Although the two main approaches to solving the task planning problem have
been traditionally Finite State Machines and Logics-based approaches, some
authors have tried to reach a compromise between both in order to find a bal-
ance between their advantages and disadvantages. This is the case of Kaelbling
and Rosenschein, who suggest a situated representation in [RK95], based on
situated automata theory [Ros85]. They point out the importance of the rela-
tionship between the internal state of an agent and the conditions that are met
in its environment. Thus, whereas logics-based approaches state the triggering
of a task in an agent in terms of the state of its environment: when P is true in
the agent’s environment, then agent should do A, situated automata theory suggests
that the triggering should be executed in terms of the agent’s own inner state:
when P’ is true in the agent’s inner state, then agent should do A. The relationship
between the agent and its environment is then the problem to be solved. If it
is possible to find an inner state P’ that implies the state of the environment P,
P’ will be enough to execute action A. Hence a systematic representation of the
relationship between P and P’ is needed. Situated agents are therefore a hybrid
approach that use traditional automata as a base and try to build a meaningful
relationship between it and its environment through logics.

2.2 Semantics in maps and data representation

This section addresses work developed within the scientific community related
to maps, semantics and data and knowledge representation.

2.2.1 Introduction

Approximately twenty years of research have made robot 2D mapping a mature
tield. It already allows robots to develop very detailed maps of complex indoor
environments in real-time [Thr02]. Nevertheless, there are still several issues
that need to be addressed regarding the ability of robots to interact with their
environment.

Therefore, one of the topics this work is intended to cover is the internal rep-
resentation and understanding that a robot has of its environment. This plays
a very relevant role not only in the extension of the set of tasks that a robot
can perform, but also in its future as a human companion. The use of robots
is every day going further from areas where only trained operators interact
with them towards the general public. As a result, robots will be expected to
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2.2. SEMANTICS IN MAPS AND DATA REPRESENTATION

interact and communicate in ways that are easily understandable for humans
[VGNS07, GSC*05, MJZ*07].

2.2.2 Navigation-oriented mapping

The start point of the first approaches to mapping and mobile robotics were
mathematical theories of space where points (sometimes also lines) are the main
primitive spatial entities [CCPR02, Coh99].

Robot mapping has been long time aimed to solve navigation-oriented prob-
lems. As a result, there are two categories in which robot mapping has been
traditionally classified: metric and topological [VGNS07, TGBK98]. The first
one is only concerned about geometrical features present in the physical envi-
ronment of the robot. The second one, topological mapping, considers the rela-
tionships and connections between areas that allow the robot to navigate from
one place to another.

Regarding to the metric category, gridmaps [E1f89, Mor88] have been broadly
used [BBC195, BCF198, Thr02]. Gridmaps are sampled domains where the pres-
ence of an obstacle is represented by a confidence value. Further work during
the 1990s focused on probabilistic techniques, such as SLAM*[DDWB00] and
CML?[LF00].

Other ways of representing space made regions become the main spatial
entity. This is the case of QSR®, where QR” has been applied to space, taking
regions as their basic spatial entity. The principal aim of QSR is to offer a theo-
retical tool to reason and represent space without the need for the usual quanti-
tative approaches present in computer vision or graphics [Coh99]. To this end,
it supports ontologies with qualitative topological notions (i.e. graph-like rep-
resentation) that allow robotic environmental knowledge [CCPR02].

On the other hand, the topological approach generates graph-like descrip-
tions of environments where nodes represent places and edges the connections
between these areas [TGBK98]. Some authors relate topology to the cognitive
representation that humans have of space. Kuipers states in his Spatial Semantic
Hierarchy (SSH) [Kui00] that topological information, spetially with hierarchical
structure, is effective for planning and not necessarily relies on the existence of
metric information at the moment of developing the plan, although this metric
information could be used later for further improvement of it. Krieg-Briickner
et al. also use topology as an important layer in the building of their Route Graph

*Simutaneous Localization And Mapping
>Concurrent Mapping and Localization
®Qualitative Space Reasoning
’Qualitative Reasoning
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model [WKBHO0O0]. Here, route-finding problems are approached by a topolog-
ical representation that consists of places, paths and regions, that are ultimately
represented in a graph. Furthermore, another application of the topological ap-
proach can be found in [BNKO09]. In this case topology is applied to represent
complex relationships between 3D objects through the partitioning of rooms
into smaller spatial units. These units are called cells and facilitate tasks like
route finding.

Either purely metric or topological approaches to solve the navigation prob-
lem have been since long time ago recognized to have several drawbacks. Only
metric approaches have scalability problems, since their representation and pro-
cessing usually involves high memory needs and time complexity. On the
other hand, purely topological approaches result on difficulties distinguishing
between different places [Thr02]. Thrun and Buecken [Thr98] accomplished a
successful integration of both approaches based on the world models in [CL85].
This integration was done in two stages, a first topological stage and a second
metric mapping stage. In the topological phase a set of significant places are dis-
covered and later a metric map is produced.

2.2.3 Usefulness of semantic information

Although the need for semantic information in maps has been addressed for a
long time [CL85], the natural tendency in robotic mapping has been to focus on
improving metric and topological mapping, making the perception the robot
has from its environment very precise and complex [Thr02]. However, as this
tield has been further developed it has become clear that semantic information
should really be taken into account if robots will ever be able to perform a di-
verse set of tasks.

Several abilities would be improved in a robot by the addition of semantics
[GFMGSO07]:

e Inferring new, not-observed knowledge from its environment. For ex-
ample, if a robot is located in a bedroom and it knows that bedrooms al-
ways contain at least a bed, it can infer that there must be a bed in it, even
if it has not been observed yet.

e Improving human-robot interaction using a more human-like language.
People that are not familiar with computers or robots would find their
interaction with these easier when the language they need to use is not
very different from the one that they use to talk to each other.

e Handling errors by the use of semantic information. Continuing with the
previous example, if the robot knows it is in a bedroom and finds a shower
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it may reach the conclusion that it must be an error, since bedrooms are not
supposed to contain showers. Also, this information could even help to
correct the mistaken information, and the robot may realize in some way
that what was identified as a shower is a fridge instead.

e Increasing efficiency in task planning by reducing the search space. One
example of this could be that a robot is asked to retrieve a certain object,
a jacket. It could have information that states that clothes are usually in
a wardrobe and that the wardrobe is in the bedroom, so it would start its
search there and would not try to look for it in any of the other rooms,
reducing considerably the search space from the whole environment to a
single room.

2.2.4 Integrating semantics in maps

In order to be able to process and use semantic information, it must be linked
in some way to the metric and topological information of the map built by the
robot.

A layered architecture has been suggested by several authors in order to
handle this task.

For Maio and Rizzi [MR93] each layer corresponds to a meaningful envi-
ronment abstraction. Here, an intelligent autonomous agent can obtain infor-
mation from its environment via three different channels: (i) the metric channel,
which is responsible for the current robot position, (ii) the visual channel, which
involves all the images a robot can get from its surroundings (i.e. by camera
or sonar), and (iii) the symbolic channel, which allows tagging points of inter-
est with information that can be obtained for instance by reading a sign or text.
This knowledge is then processed and organized in several layers, which in-
clude only significant information used for a family of tasks, reducing their pro-
cessing complexity. Each layer is built from the layer below through a process
of clustering, where nodes that belong to the same category are mapped to the
same node in the upper layers, like it is shown in figure 2.3, where a building
example is shown. The top building layer is built by clustering the floor layer,
which relies on the room layer, that also is a basis for the clustering that yields
the department layer. Every layer depends ultimately on the sensor measures.

Zender, Jensfelt, Mozos et al. [ZJMMB07] also suggest to structure the spa-
tial knowledge in layers, based on a metric map. From it they build a navigation
map, establishing a graph-based model of connectivity where nodes are door-
ways and rooms. Over this layer a topological map is placed, and the highest
layer of the hierarchy corresponds to a conceptual map. Each element in the
topological layer is linked to a category in the conceptual map.
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building layer
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Figure 2.3: Example of a layered architecture proposed by Maio and Rizzi [MR93]. Each
layer is built from the lower layers by a process of clustering.
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Figure 2.4: Layered architecture for knowledge representation proposed by Zender,
Jensfelt, Mozos et al. [ZJ]MMBO07]

Galindo et al. [GFMGS08] propose to separate the semantic contents in two
highly related parts called Spatial Box (or S-Box) and Terminological box (or T-Box).
The first part contains information about the actual state of the environment,
connecting metric information (e.g. mapping and camera images) to symbolic
representations that are part of a topological graph. These symbolic represen-
tations are associated to a category in the T-Box, which contains general knowl-
edge in form of concepts and relations between them. On further work, Zender,
Jensfelt, Mozos et al. also refer to S-Box and T-Box as a way of differentiation
between general knowledge about the world and spatial information [ZM]J*08].
As it is shown in figure 2.5, the symbolic level captures information about the
visual appearance of objects, that are linked to a node in the S-Box. This node,
which also has a symbolic name (e.g. obj-2, obj-3) is situated in some space unit
that also includes information about topology (i.e. obj-2 is in area-1, which is
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conected to area-2). These instances in the S-Box are connected to a category in
the T-Box, from which semantic information can be obtained.
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Figure 2.5: Galindo ef al. semantic representation [GFMGS08]. Each symbolic represen-
tation in the Spatial Box is linked to a category in the Terminological Box.

2.2.5 Knowledge structure

Whether it corresponds to a layer in an architecture or not, the semantic infor-
mation itself must be structured in a certain fashion. Ontologies and description
logic are broadly used in this topic [GFMGS08, MJZ*07]. Ontologies are shared
specifications of conceptualizations of a domain [Gru93]. They can be defined
as a formally specified model that depicts a domain of knowledge and the rela-
tions between the concepts within it [CCPR02].

Further domain information can be added by description logics. This knowl-
edge about a certain domain is therefore structured as an acyclic graph where
concepts are related to their super- and sub- concepts, making it possible to in-
fer new knowledge through a reasoner. OWL-DL has been used in [ZM]*08] as
a language to implement this knowledge.
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2.2.6 Acquisition of semantic knowledge

Once the knowledge is structured in a certain fashion there are several ways in
which a robot can acquire this information. There are already numerous works
about automated ways to obtain semantic information about the robot’s envi-
ronment that encompass fields of study such as scene interpretation or object
recognition.

These techniques can be also mixed with human interaction in order to ob-
tain a semi-automated mapping process, like the one described by Diosi, Taylor
and Kleeman in [DTKO05]. Here, an occupancy map is created at the same time
the robot is following an operator around the environment. The operator gives
the robot comments regarding the current location and the robot generates an-
notations in the map accordingly to these verbal sentences.

These automated and semi-automated approaches to the acquisition of knowl-
edge are however out of the scope of this master thesis. Nevertheless, they can
be added to the resulting system as further work. The current work focuses
on the semantic structure itself and tries to make it as general as possible. Re-
garding this process of creation of semantic knowledge, human intelligence is
necessary for it and it cannot be fully generated in an automatic way [SS09].

2.3 Natural Language Processing

This section describes briefly the work done in the field of human-robot interac-
tion regarding natural language processing.

2.3.1 Introduction

The way humans interact with machines and in this case with robots is evolv-
ing everyday towards a more human-friendly communication. This is usually
referred to as natural interaction and encompasses a broad set of different fields
such as gesture recognition and natural language processing. A fluent dialogue
that resembles the natural language as much as possible has been suggested
[MJZ*07] as a powerful tool to improve human-robot interaction.

2.3.2 Human-computer interaction cycle

Traditionally, human-computer interaction has been decomposed in several pro-
cessing stages that, including the user, form what is called the interaction cycle
[FMO09]. As shown in figure 2.6, first the system captures the user input and
processes it. In the case of a speech-based system it would be a microphone
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Figure 2.6: Human-Computer interaction cycle by Filipe and Mamede [FM09].

that records the user’s voice, which would be processed afterwards with some
Speech Recognition component. This component sends the recognized words to
the Language Understanding component and it sends the related speech acts to
the Dialogue Manager. With this information and some domain database infor-
mation it calls the Response Generator and it uses a Speech Output module in order
to generate sound.

2.3.3 Language parsing and understanding

Once the Speech Recognition module has done its work and parsed the user’s
speech, the result is a sentence that needs to be processed in order to produce
an action or an answer. This problem belongs to the field of natural language
processing and it has been addressed for many years.

One decision that needs to be made when addressing this problem is whether
the goal is to produce human-like conversation or the user’s input should be re-
stricted in order to simplify the language processing. In the first case the choices
that the user could make are expanded during the dialogue [ABD*00]. This case
has been often related to the concept of intelligent machine. Alan Turing formu-
lated this point of view with his famous Turing Test, where a machine would be
considered intelligent if an interrogator can mistake it for a human when com-
municating with the machine via teletype [Tur50]. Although this definition of
intelligence is controversial and also is the Turing Test itself [Fre90], the fact is
that whether a machine would be considered intelligent because of its language
skills or not, it is true that having a good language understanding ability would
improve human-robot interaction [MJZ*07].
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However, specially regarding speech-based dialogue systems, a restriction
in the dialogue possibilities would enhance the performance of both speech
recognition and language processing components. This does not mean that the
accepted language should be too limited. For example, menu-based dialogue
systems are usually frustrating for its users. By any means, this input language
should be general enough to enable the user to express his goals in the most
natural way possible [ABD*00].

2.3.4 Models and algorithms

Over the last 50 years, many theories have been developed to enable computers
to work with natural language. Coming from the usual computer science tools
one can found plenty of models and theories well-known for every computer
scientist.

A set of tools including deterministic and non-deterministic state machines,
formal rule based models, such as context-free and regular grammars and log-
ics are the most spread and long-lived ones. These led to algorithms such as
state space search and dynamic programming algorithms. Including probabil-
ity these basic tools can be transformed into weighted automata, Markov mod-
els and hidden Markov models considering the first ones, and also stochastic
or probabilistic context-free grammars, in which each production is augmented
with a probability.

Usually these systems include a search through a space of possible states re-
garding an input, and to this end there are many well-known graph algorithms
such as A* search, depth-first and best-first.

In addition, regarding logics there is also a wide set of familiar tools that,
among others, include first order logic and predicate calculus [JMOO].

35






Chapter 3

Integrating Task Planning and
Semantics

This chapter depicts a solution proposal that encompasses both a theoretical
approach and its practical development. It is structured in four main sections.
Section 3.1 shows a system overview to give the reader an idea of the whole
system. The following three sections describe the main parts of the software in
detail. A solution to task planning is discussed in section 3.2. Section 3.3 shows
the solution to maps and semantics and section 3.4 explains how the problem of
string command extraction is addressed.

3.1 Overview of the system

This section describes the main parts involved in the system and how they in-
teract in order to perform the intended task.

As it is shown in figure 3.1, the input to perform a task is expected to be
in form of a string. It is a sentence that represents the sequence of tasks that
need to be carried out. The structure of this sentence and the processing of it
by the Simple Command Extractor is described in detail in section 3.4. Once
this input has been processed, a TaskinfoM message is sent by this module
to the Task Planner. This message contains the necessary information to de-
scribe these tasks. This will be performed and monitorized in a sequential way
by the Task Planner, which uses simpler tasks that are properly wrapped and
offer a generic message interface. This interface consists of messages that al-
low this Task Planner to start, stop, restart and check their status. Wrapping
and task planning are described in detail in section 3.2. Sometimes, in order
to perform some tasks, a certain knowledge about the environment is needed.
This semantic information is represented in the Domain Reasoner and in the
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Semantic Map Layers. These correspond to the T-Box and S-Box described in
[GEMGS08], respectively. Section 3.3 describes the structure of both in detail.
The semantic information that can be found in the map is added manually by
an operator that interacts with the GUL
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Figure 3.1: System overview. Interaction between all parts of the software.

3.2 Task planning

This section includes a description of the abilities Lisa already has regarding
task planning and some discussion about their usability. Furthermore, an expla-
nation of a theoretical approach to the proposed task planning and a description
of its software development is provided.

3.2.1 Current state of task planning

At this moment, Lisa does not have task planning in a way that allows develop-
ers to freely use current implemented modules and develop new abilities that
involve already acquired ones.

Everytime a new module has to be designed a considerable amount of new
code, that most of the time is repeated somewhere in another module, is pro-
duced. As it is shown in figure 3.2, the reason for this is that modules are
conceived as glue code. Thus, every module is handcrafted to hold together
different parts of the project that are properly encapsulated. This course of ac-
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tion implies not only many hours of work to create new modules but also results

that are difficult to maintain.
. Device Hard-
| Module ‘[DevmeH driver H ware

Application

Hard- Third
ware Device Module Module [{Worker party
software
Application software

Application indep. software
Glue code
Technical software

O
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O
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Message queue

Figure 3.2: Lisa’s software architecture.

Regarding RoboCup@Home games [NDFD*11] it entails several problems.
Indeed, these games are usually a composition of already implemented tasks
and they should be easy to manage as long as there is already a main set of
abilities implemented. Unfortunately, this is not always the case, since there are
many messages that need to be sent and states that need to be checked just to
achieve a simple already implemented task (e.g. grabbing an object). This prob-
lem, together with a lack of documentation about how the modules themselves
work, leads the programmer to multiple hours of reading and understanding
unknown (but already working) code, copying what is needed to other mod-
ules and making the amount of code that needs heavy maintainance increase
everyday.
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Figure 3.3: Representation of the current interaction between modules. Since every in-
terface is different, developers need to handcraft the specific interaction for the needed
modules.

It could be argued that this is not a real problem because @Home games are
a fixed set of tests that do not have considerable changes from one year to the
next one. Accordingly, after some time of development they would be ready
and working so the need for maintainance would be low. Nevertheless, there
are at least two games every year that need new development:

e Open Challenge. It is an open game where every team shows different
features that make their robot worthier.

e Demo Challenge. A semi-open challenge where some topic is fixed and
teams show their creativity applying the capabilities of their robot to this
fixed topic.

In addition, when a lot of time is invested for these modules, there is not
much time left for improving already existing capabilities or developing com-
pletely new ones.

The initial interaction between Lisa’s modules can be seen in figure 3.3. There,
every message interface is different (represented by different shapes in the of-
fered and required interfaces). A rather relevant concern about this design is
what happens if one of the basic modules needs to change its interface. If this
ever happened, this interface would need to be changed in every single module
that uses it, generating a considerable amount of work and probably a source
of future errors.

Besides, a household robot’s abilities should be general and it should be pos-
sible to combine them in order to enable a user to interact with it and obtain
an efficient service. This is the aim of General Purpose game, where a robot
is given a complex command (i.e. Go to the kitchen, take the cup and bring it to
Mike) and must process it, break it down into simpler tasks and perform them.
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Figure 3.4: Representation of the proposed interaction between modules. Wrapper
modules abstract the different message interfaces offered by the basic modules and
offer the same interface to their external side. The Task Planner this way is only dealing
with these messages and the TaskInfo messages sent by the rest of the modules.

According to the current state of the project, this means a module of consider-
able size where most of the code is copied from basic modules (i.e. navigation,
grabbing). This module is therefore difficult to maintain and test. Until now,
our @Home team has not earned any points at RoboCup@Home competition
with this module.

Considering these reasons, an intermediate abstraction layer is proposed. As
it is shown in figure 3.4, each basic module will interact with a wrapper module.
These wrappers will be the ones that make an abstraction offering all the same
generic message interface to upper layers. Moreover, there will be a task plan-
ner module that will have a control position over these modules, being able to
perform complex tasks that involve arbitrary combinations of the basic ones.
Ideally, any new module would only need to interact with this task planner
through a defined interface that would not change. This would increase the
system maintainability and scalability. In the case mentioned before, where one
of the basic modules changed its interface, only its wrapper would need to be
changed, making the impact on the whole system much slighter than before.
Regarding scalability, whenever a new basic ability is implemented, it would
only need a wrapper and some minor changes to be used with the task planner.
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3.2.2 Task planning approach

The first choice that needs to be made is which kind of approach is most suitable
for the problem that intends to be solved. According to this, the decision made
has been to continue with the current finite-state machine behavior and add
an abstraction level that enables developers to easily use implemented tasks as
encapsulated modules.

One reason is an incremental approach point of view. Iterative and incre-
mental approaches to software development have been used since long time
ago [LB03]. Besides the fact that Lisa’s project is already running software that
grows naturally in an incremental way, there are several advantages that need
to be taken into account in order to understand why it is indeed a good choice
[LBO3]:

e Verification of the software. When the development is done in an incre-
mental way, each iteration is easier to verify and test than a whole system
developed through a traditional waterfall model.

e Learning from experience. Developers have the opportunity to apply
what they have learned while developing previous versions of the sys-
tem. This makes the quality of the software and the effectiveness of the
development increase along time.

e Smalls steps at a time. Taking small steps each time minimizes the risk. If
the step taken is discovered to be wrong or not suitable it is possible to go
back to the previous version without a considerable impact to the project.

It seems therefore reasonable to think that if it is possible for the software to
grow in a consistent way, an incremental approach is a suitable one. To this end,
the aim of this work has been focused on building a steady abstraction layer
that enables further iterations to easily improve and enhance the system with
new features.

In addition, household robots are not expected to do high-level reasoning
about the world yet. They are rather needed to perform already well-defined
tasks efficiently in a benevolent environment [Bro91b]. According to this, some-
times reasoning can make the system slower in a way that the robot is not able
to give an answer in a reasonable amount of time. On the other hand, the finite-
state machine approach seems to provide a faster solution [Bro91b].

This does not mean that robots will never be expected to do complex rea-
soning about the world. This is the reason why it is necessary that this work
provides a steady structure on which further development can be added in the
future. This basis is strengthened by adding semantic knowledge about the en-
vironment. However, this will be discussed in detail in the next section.
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3.2.3 Abstraction of tasks and wrapping.

In order to encapsulate the current tasks, there are several things that need to be
done. It is necessary to understand what a task exactly is and which information
is needed in order to represent it.

First of all, a task consists, directly or indirectly, of different parts of the
already running software that will be addressed in this work as devices, workers
and skills'.

Device. Devices are class abstractions that handle the necessary interaction
with the hardware components from the robot and enable the rest of the soft-
ware to interact with them through an interface.

Worker. Workers are classes that encapsulate basic computation and algorithms
needed for higher level modules.

Skill. A skill is an implemented ability that allows a robot to achieve some
goal but does not necessary have a meaning to the end user. A skill is imple-
mented in a module, uses devices and workers when necessary and exchanges
messages with other modules. Skills include abilities like:

e Path planning.

Face detection.

People detection.

Speech recognition.

Arm planning and gripping.

Grippable object detection.

A repeated use of the software and further development of @Home games
in the project has made it clear that there are certain sequences of skills that
are frequently used together. This happens because they are meaningful whole
units that encompass a feature that would most likely be a requirement for an
end user. As a result the definition of Task appears naturally:

'Note that the definition of skill is made to help the reader to understand the concept of task.
However, whereas workers and devices are explicitly defined as such in the current framework,
the entities addressed as skill are just modules or @Home games.
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Task. A task represents a meaningful action that is performed by a robot and
solves an @Home problem. This includes any of the usual abilities that a house-
hold robot shows and that could be interesting as a unit for an end user. There-
fore, there is here a higher level of abstraction from skills, and more than one of
them could be included in one task. The currently available tasks are:

e Navigation. Driving to some Location.

e Grabbing. Taking an object.

e Releasing. Dropping or giving an object.

e Bringing. Carrying one object to a place.

e Learning. Learning the face of someone or the appearance of an object.
e Recognizing. Recognizing someone or something previously learned.
e Talking. Saying a sentence or sequence of them.

e Waiting for an answer. Waiting for a specific sentence.

e Following. Driving after an operator.

For instance, the task following includes several skills that are already imple-
mented, like detecting persons, tracking them and path planning. These skills
eventually use devices and workers as well.

This set of tasks can of course be extended with more that include new de-
veloped skills or that represent new needs discovered in the end user.

Since a task is an abstraction that will allow higher level software to interact
with these actions in a general way, there is the need to define what information
is required to perform a task, which should be common to every type.

Taking as a guide the currently identified set of tasks, it is clear that any ac-
tion is performed somewhere. Therefore, a Location  is always needed in order
to represent a task. In addition, some of these tasks have a target. This target
can be either a person or an object that is somewhere in the world. Additionally,
regarding the case where there is speech involved, text is needed. In order to
match the naming policy of the already implemented software, every class that
represents a running task ends with the name Module .
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Figure 3.5: Task design class structure. Methods and attributes of each class are dis-
cussed in the text and a detailed implementation diagram is shown in section 3.2.6.

To be able to talk about Locations and PhysicalObjects it is also nec-
essary to define what they are.

A Location is a specification of space within the map. As shown in figure
3.5, it can be just a point (the Worker class PointOfinterest , which is already
in the project, is used) or an Area . This is one of the ideas that have been added
to the mapping concepts. Subsequently, now it is possible to specify areas in
the map and these will not be limited to points. One reason for this is that the
@Home arena is always partitioned in rooms, being the identification of them
in the map more useful when they are regions and not just points. One example
of this is the case where a navigation task to a room is started, but the robot is
already standing in it. At the moment there is not a possible way to know this,
whereas it would be possible if rooms were specified as areas instead of points.
Moreover, some objects that need to appear in the map occupy a significant
amount of space that is obviously more than just a point.
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The point-in-polygon algorithm

Regarding the situation described in the previous subsection, where it is nec-
essary to know whether a PointOfinterest is part of a Location  or not,
the virtual method belongsTo has been implemented. When a Location is a
point, it calculates whether the distance to it is less than a threshold that can be
passed as a parameter and whose default value is 0. When the Location is an
Area , it checks whether the point is within it or not. In order to ascertain this,
the algorithm point-in-polygon, also known as even-odd test has been used. The
algorithm is shown in algorithm 1. Roughly, a horizontal scanline through the
target point is drawn and its intersections with the edges of the polygon until
reaching the target point are counted. When this number is odd, the point is
inside. There are some exceptions that are omitted in this count. These excep-
tions are that the current edge is horizontal (therefore parallel to the scanline) or
that the intersection point is one end point of the edge (thus, would be counted
twice and the result would not be the expected). A more detailed discussion
about this broadly used algorithm can be found in [Hec94].

Algorithm 1 Point-in-Polygon algorithm.

—_

: Given: polygon P, point X

2: Output: boolean value. trueif X is inside P, falseotherwise.
3:
4: [+ 0
5: for all m edge in P do
6:  h < horizontal through X
7: s < intersection point between h and m
8  sx < Xx coordinate s
9:  xx <+ Xx coordinate X
10:  if m is not horizontal and / cuts m and s is not an end of m and sz < zx
then
11: [« 1{+1
12:  endif
13: end for
14:

15: if [ is odd then
16: return true
17: else

18:  return false
19: end if
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Regarding PhysicalObject objects, they can be either persons or things
that are target of the action defined in the task. The information needed to
characterize a target object is therefore a name, the Location it occupies and
the Category it belongs to. Semantics, categories and their relation with the
class PhysicalObject are discussed in more detail in section 3.3.

3.2.4 Generalization of the messages

Although Tasks are an abstraction made to be able to work with actions in a
general way, they are still threads running in the system and the way in which
the communication with them is established is through messages. To this end,
there is also the need to generalize the messages used.

Considering that a task is an action performed by a robot, the following
messages along with their possible parameters? have been considered:

e Start TaskM It makes a task start. Its parameters are a Location , a
PhysicalObject and some text when necessary.

e Rest art TaskM Restarts the requested task. It is expected that a task that
is requested to restart already has its parameters set and will try to repeat
its action from the beginning.

e TaskSt at usM Contains information about the current state of the task.
Its main parameter is an enumerate whose value can be: NOT_DEFINED
NOT_STARTEPRUNNING ERRORSUCCESSIn addition, an extra info
field has been added to include some more information to enable the
TaskPlanner to make decissions when necessary.

e CheckTaskSt at usM Request for a TaskStatusM . When the TaskType
is not assigned, all the Tasks will answer even when they are not execut-
ing.

e St opTaskM Stops the execution of the desired Task.

3.2.5 State machine specification

As it has been discussed before, the decision made to handle task planning is
the further use of finite-state machines. Consequently, each task must have a
defined set of states. Indeed, each task has the same set of states and all of them

2All of them include a TaskType parameter that indicates to which task it is related. For
simplicity, this has been omitted. The assumption that only one task from one type is performed
at a time has been made.
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are defined in the parent class. This is what is included in the TaskModule and
shown in figure 3.6.

TDM &&
IrestartReq

CLEANING UP Je—

CheckTaskStatusM / TaskStatusM

StartTaskM / TDM

TDM / TaskStatusM::SUCCESS

only in some tasks

TDM &é&
restartReq
/ TDM TDM / StarkTaskM / TDM

TaskStatusM::SUCCESS

TDM /
TaskStatusM::ERROR

StopTaskM | |
RestartTaskM
/ TDM

RestartTaskM | |
StopTaskM / TDM RestartTaskM | |

StopTaskM / TDM

Figure 3.6: State diagram for the state machine present in each task. This set of states is
shared by every task. The acronym TDM stands for Task-Dependent Message, which
depends on the task that is wrapped.

There are five possible states:

READY. A task is in this state when waiting for a StartTaskM
PERFORM NG_TASK. The task is running normally.
ERROR Something is not working and the task cannot continue.

CLEANI NG_UP. The cleaning up is being carried out. This process can
include setting the robot devices to initial positions when necessary and
also resetting inner attribute values.

FI NI SHED. The task has finished successfully. Only tasks that depend
on other tasks after them stay in this state. For instance, in the case that
there has been a request to grab an object and bring it somewhere, the
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second task depends on the success of the first, and the first cannot be
ready again until the second has finished (i.e. the Katana arm cannot go
to initial position until the other task is performed). This control is left to
the TaskPlannerModule

Regarding the transitions between states, a task goes from the READYstate
to the PERFORMING_TASHKtate when a StartTaskM  message is received. It
will stay in this state until the task is performed or an error occurs. In this tran-
sition, a TDM is sent to activate the underlying modules that are encapsulated
by this task. During the time that the task stays in this state, it can receive
a CheckTaskStatusM message, that will be answered by a TaskStatusM
to inform the task planner* with the current status of the task. At some mo-
ment during the execution of the task, it will receive a TDMinforming from
success or a result, depending on the type of task. In this case, it will go to
the CLEANING_UPstate (or the FINISHED state in some cases) while send-
ing a TaskStatusM::SUCCESS message to inform the TaskPlannerModule
Whenever a task performs the transition to CLEANING_UPstate, it performs
a general procedure that includes resetting the values of its attributes to valid
ones that allow it to start again when necessary. On the other hand, it is pos-
sible that something does not work properly in the underlying module and a
TDMmeaning error is received while the task is still running. In this case, it
would go to ERRORstate and send a TaskStatusM::ERROR message to the
TaskPlannerModule . Another possibility is that no TDMis received at all be-
cause some underlying module is waiting as well, frozen or in a not-reported
error state. A task will also go to a ERRORmessage in this case, only when it
is defined as timed and the specified timeout is gone®. In addition, from any
of the mentioned states it is possible to receive a StopStaskM that will make
the task to perform its CLEANING_UProutine and be READYagain, and also a
RestartTaskM  that will start over again with the performance of the task with
the same parameters as it was started before.

3.2.6 Implementation of the tasks

This subsection explains in detail the key points in the implementation of each
one of the tasks. First, there is a description of the general features shared by all
of them and their implementation in the general TaskModule class. Then, the
specific features in each task are shown. In figure 3.7 a detailed implementation
class diagram is shown. For simplicity, setter and getter methods and methods

3Task-Dependent Message.
*In this text. task planner always refers to the TaskPlannerModule
The timing of the tasks will be discussed in the implementation
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that are inherited from the ActiveMessageModule  class already in the project
are omitted®.

<<Singleton>>
TaskPlannerModule

-checkTaskTimer: GameTimer
-maxNumRetries: int
-nunRetries: int DomainReasoner
_g:??ég’:}_;?ﬁ?ein?(}d -hierarchy: SceneGraph

-katanaBusy: bool
-gripperBusy: bool 1 1

#verifyParameters(info:TaskInfo,loc:Location,

+hasChildren(category:string): bool
+isObject(name:string): bool
isCategory(string:category): bool
+getDirectChildren(category:string): vector<string>

. i : . With
#startNextTask(): \t/siget :PhysicalObject, text:string): bool reasonswi +getAllChildren(category:string): vector<string>
#startTask(info:i’askInfo) : void +getPa rent(element: st rlng) ; string
#errortandler (message : TaskStatusM): void +isChild(parent:string,child:string): bool
#cleanUp(): void 98+ . +isAscendant(ascendant:string,descendant:string): bool
#processTaskStatusM(message:TaskStatusM): void 1

#processTaskInfoM(message:TaskInfoM): void
#processFastRobotPoseM(message:FastRobotPoseM): void
#processSemanticMapLayerM(message:SemanticMapLayerM): void

1 0.%
FollowingTaskModule Taskinfo
-maxDistance: double I :Eﬁ?:ét;:;gygirmg
-maxAngle: doublg interactsWith -locationName: string
#startTask(): void -talkingText: string
NavigationTaskModule — Area
-distanceToTarget: double 0.* -contour: Polygon2D

#processTargetReachedM() : void
#processTargetUnreachableM(): void
#startTask(): void TaskModule

#extraStatusInfo: string
#moduleMachine: StateMachine<ModuleStateT>

GrabbingTaskModule #talkingTesk: string
N R #taskType: TaskType
grabItAlUflode. ?001‘ - #timedTask: bool Location
#processObjectGrippingStatusM(): void #timeOut: int 1 1 -
#processObjectSearchStatusM(): void #timeOutTimer: GameTimer #center: PointOfInterest
. i . in [#focus: PointOfInterest
#startTask(): void D #cleaningUp() : void takes place in = =
- - #processStartTaskM(m: StartTaskM): void tbelongsTo(): boo
DeliveringTaskModule #processStopTaskM(m:StopTaskM) : void 0.%

#processRestartTaskM(m:RestartTaskM): void

-currentMove: int
_defaultArmAnglesGive: vector<doubles #processCheckTaskStatusM(m:CheckTaskStatusM): void
#specificCleaningUp(): void

#processRobotArmMoveFinishedM(): void X q
#processRobotArmStateM() : void #startTask(): void
#startTask(): void 0.4

TalkingTaskModule —

has target

#processSpeechOutStatusM(): void
#startTask(): void

GettingAnswerTaskModule —

0.1 0.k
#processUserInputM(): void
#startTask(): void PhysicalObject
N -name: strin
LearningTaskModule 1 -location: Lgcatlon

-imageCount: int

-srcCamera: ImageSources::Sourceld
-filterFaces: int
#processORAutoLearningStatusM(): void
#startTask(): void
#specificCleaningUp(): void

RecognizingTaskModule

-personRecognized: bool —
#processORMatchResult(): void
#startTask(): void

Figure 3.7: Implementation class diagram for the TaskModule related classes.

®For more information about the implementation details, see the doxygen documentation
attached to this text.
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TaskModul e: The parent class

One of the main goals of the development of this part of the software during
its whole design and implementation has been to keep the extensibility and
maintainability to the maximum possible. In terms of implementation, keeping
as much code as possible in the general TaskModule is good for both, since
there is not repeated code and the amount of implementation needed to add a
new TaskModule is reduced.

According to this, the transitions between the states explained in subsection
3.2.5 subsections as well as the subscriptions to the generic messages’ are imple-
mented here. Furthermore, a general cleaning up protocol is implemented here
as well and called when necessary from any TaskModule . From this cleaning
up protocol it is possible to add some specific cleaning up for the task depen-
dent variables, but the general behavior is coded in the parent class.

There are only few things that need to be implemented when adding a new
TaskModule , and these are related to the TaskDependentMessages men-
tioned before. Each of these tasks needs to subscribe to messages that depend
on the underlying modules and handle them as necessary. The only TDMnheeded
to be sent by each TaskModule when a StartTaskM  is received is encapsulated
in the virtual method startTask  which is called by the processStartTaskM
present in the parent class. Even in this case, there are some common things that
are done that are also shared by every task. Therefore, the only part that is im-
plemented is the sending of the message. The rest belongs also to TaskModule
module.

Another relevant detail in the implementation is that although the subscrip-
tion to and processing of this generic messages is done in the TaskModule class,
the reception of them is done in each of the task wrappers.

The monitoring of the underlying modules” execution is also a job done
by each task wrapper, which sends the necessary TDMmessages and throws
TaskStatusM messages containing the necessary information for the task plan-
ner to monitorize it.

Considering the possibility that some of these underlying modules become
stuck at some point in their execution, subsquently stopping the execution of
the task wrapper, which waits for a status message from them, there is the pos-
sibility of setting a timeout and establishing any type of task as timed. When a
task is timed, a timer starts when transitioning to the state PERFORMING_TASK
and checked in the idle process of the thread. When the timeout is reached, the
task transitions to the ERRORstate and sends a TaskStatusM message with
TaskSTatusM::ERROR value to the TaskPlannerModule

’StartTaskM , StopTaskM , RestartTaskM , CheckTaskStatusM
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Fol | owi ngTaskModul e

Description. Among all tasks, following is the only one that has not a prede-
fined end, but waits until an operator asks the robot to stop following. Tasks are
expected to monitor their own execution in the meaning that they control the
underlying modules and receive status messages from them, but they are not
designed to interact with the user or with other modules without the help of a
TaskPlannerModule . The reason of this is avoiding conflicts between mod-
ules that subscribe to or broadcast the same kind of messages. Thus, the com-
munication with the user and the sending of a required StopTaskM message
by the TaskPlannerModule  will be explained in detail in the next subsection.
Sent messages: TaskStatusM , StartFollowingM , StopFollowingM
Subscribed to messages: None®.

CGetti ngAnswer TaskMbdul e

Description. This module waits until it receives a specific input. Experience has
shown that speech recognition is far from working perfectly because of many
circumstances (e.g. environmental noise, microphone settings, speech recogni-
tion software) that can make the robot unable to understand what an operator
said. Hence it is by default set as timed and there is a config value in the config
file to set the waiting time until it sends a timer error message.

Sent messages: TaskStatusM

Subscribed to messages: UserlnputM

Specific config values: m_TimeOut. Time to wait in seconds until a timer
error is sent.

Gr abbi ngTaskModul e

Description. This module is responsible for grabbing an object with the Katana
arm.
Sent messages: TaskStatusM , SearchGrippableObjectsM

Subscribed to messages: ObjectGrippingStatusM ,
ObjectSearchStatusM

Specific config values: m_GrabltAllMode . Determines what should be
done if the desired object is not recognized. When set to true, any object, recog-
nized or not, will be grabbed.

8As subclass of TaskModule , every Task is subscribed to the generic messages
CheckTaskStatusM , StopTaskM , StartTaskM , RestartTaskM . For simplicity, these are
omitted from all the descriptions.
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Lear ni ngTaskMbdul e

Description. This module learns automatically from a certain camera an object
or a person standing right in front. Experience has shown that if there is some
problem in the access to the source camera, the module could get frozen. In
addition, many times learning tasks are relevant but not always essential for
the performance of a sequence of tasks. Therefore this task has also been set
timed by default.

Sent messages: TaskStatusM , ORCommandM

Subscribed to messages: ORAutoLearnStatusM

Specific config values:

m_ImageCount . Number of images used to learn a face or an object.

m_SrcCamera. Represents from which camera the images will be taken.

m_FilterFaces . Config value for the learning of people.

m_TimeOut. Time to wait in seconds until a timer error is sent.

Navi gat i onTaskMbdul e

Description. This task is responsible for navigation to a certain Location . Be-
cause of the new definition of Location , the LOOKAt option present before in
the StartNavigationM is also encapsulated and only taken in account if there
is a focus defined in the map (i.e. there is another point with the same name and
Focus termination). This point is then taken as the default focus.
Sent messages: TaskStatusM , StopNavigationM , StartNavigationM
Subscribed to messages: TargetReachedM , TargetUnreachableM

Recogni zi ngTaskMbdul e

Description. This task encapsulated the recognition of a person or object in
front of the source camera.

Sent messages: TaskStatusM , ORCommandM

Subscribed to messages: ORMatchResult .

Rel easi ngTaskModul e

Description. This task encapsulates the releasing of an object that is currently
held by the Katana arm. One spetial feature of this task is that it has to interact
at least twice with the underlying arm control modules, since it does two move-
ments, one to put the katana in a reachable position for an operator to receive
the object, and another one after some time to open the Katana gripper.

Sent messages: TaskStatusM , RobotArmMoveM.

Subscribed to messages: RobotArmStateM , RobotArmMoveFinishedM
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Tal ki ngTaskModul e

Description. Says a sentence or text through the speakers.
Sent messages: TaskStatusM , SpeechOutM.
Subscribed to messages: SpeechOutStatusM

3.2.7 Executing the tasks: The TaskPl anner Modul e

The purpose of the module wrapping is adding a layer of abstraction over the
message interface offered by every control module. Once all the tasks have been
wrapped, all of them send the same generic messages and are also subscribed
to the same generic control messages. This way, whereas before every module
needed to be handcrafted in order to handle all the specific messages offered
by the underlying needed modules (e.g. katana control modules, navigation),
now a generic task planner can handle all the wrappers and perform arbitrary
combinations of them in sequence.

State machine

The TaskPlannerModule is also a state machine. It is a spetial module in
the sense that it does not offer the same interface as the rest of the wrapped
modules. Therefore, it is separated although it has as set of states a subset from
the states the other tasks have. If one takes an abstract perspective to look at
the job performed by the TaskPlannerModule  this is a reasonable idea, since
it also performs a task. The reason why it does not have exactly the same set
of states comes from the idea that this is a control module. Currently, there is no
other module or thread that monitors this module. Hence the ERRORstate is
not used. The FINISHED state is not needed either, since it will go directly to
READYafter the CLEANING_UPphase. However, this state could be added in
the future if higher layers of abstraction are built over the task planner in order
to increase the complexity of its behavior.

As it is shown in figure 3.8, the state diagram is quite simple. The main
cause for this is that the homogeneous interfaces of the wrappers simplify the
complexity of the state machine, since there are no message conflicts. Indeed,
the main execution process is rather simple: the TaskPlannerModule  waits
for a TaskinfoM containing all the needed information to perform a sequence
of tasks. One received, performs them one after another, monitoring them via
TaskStatusM messages. Once finished with the last task, performs the clean-
ing up and waits for further messages. Nevertheless, the diagram also shows
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TaskStatusM / StartTaskM

PERFORMING
TASK

TaskInfoM / StartTaskM

RobotArmMoveFinishedM
& & PanTiltFinishedM

TaskStatusM &&
m_CurrentTask == m_TasksInfo.size()

[ CLEANING UP

Figure 3.8: State diagram for the TaskPlannerModule

that there are some specific messages still in it. The reason for this is that there
is not a CleaningUpModule  that wraps this operation, abstracting these mes-
sages. Indeed, it could be a good feature to develop but it was not considered
in time to include it in the main set of tasks.

The CLEANING_UPprocess in this case is different to the one made in the
wrappers, which was mainly aimed to reset inner values of each module. In
this case it not only does that, but also sends messages to the hardware in order
to make every device go back to the initial state.

Regarding the TaskIinfoM , it is send by the SimpleCommandExtractor
module, whose job is extracting the necessary information from an input string
and transforming it into a more usable structure to be handled later by the
TaskPlannerModule  °. This message contains a sequence of Taskinfo  ob-
jects, which include each the TaskType , Location , PhysicalObject and
text when needed. This information is verified by the TaskPlannerModule
completed when necessary and possible and used for the starting of the current
task.

9The SimpleCommandExtractor  is discussed in detail in subsection 3.4
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Verifying the information received

Before starting any Task, the TaskPlannerModule  verifies the parameters re-
ceived in order to detect errors or missing information that could in some cases
be completed.

This checking is made regarding the type of task required, field that, need-
less to say, must always have a value. The following comprobations are made
for each kind of task:

e Navigation. First of all it is checked that there is a Location  assigned to
the task (i.e. the location name is in the map). Then it verifies that Lisa
is not already there. As a remark, the change from points to locations al-
lows Lisa to check whether she is inside a destination room already before
trying to drive. This is done by the algorithm Point-in-Polygon described
before in algorithm 1. In this case the verification throws a false result,
which is interpreted right now as skipping task.

e Talking. The verifying method checks whether there is a given text. If not,
this task is skipped.

e Grabbing. Checks if there is an object name. If not Lisa will still try to
find an object in front of her. When it is not an object name it checks if
it is a category via the DomainReasoner , which will be discussed later.
A list of candidate objects is obtained and the information of the desired
PhysicalObjects is updated.

e Releasing. Checks if it is holding anything from before. If not, will change
the task into navigation and only drive to the target.

e Bringing. Same as releasing, checks if she is holding anyhthing and changes
the task into navigation when necessary.

e Learning. Checks whether there is a name for the learned person. When
not, assigns a default name and continues with the task.

e Recognizing. No verification added, anyone in front of the robot will be
recognized.

e Following. No verification added, anyone next to the robot will be the
followed operator.

o Getting answer. Checks whether there is an expected sentence. If not, it
informs of it and skips the task.
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Monitoring the execution of tasks

Following with the same principle that says that performing tasks can get stuck
while waiting for a message, the TaskPlannerModule  keeps track of the exe-
cution state of the currently performing task by periodically sending a Check-
TaskStatusM  to it. The frequency with which these messages are sent is de-
fined by the user in the xml file, defining the timeout in seconds that will trigger
each message. In case of error, it calls the errorHandling method in order to
make a decision.

Besides the wrapped tasks described previously, two artificial types of task
have been added in order to allow the user to interrupt the current sequence of
tasks at any moment. These are the interruption types:

e STOPR. It stops the currently performing task and aborts the execution of
the whole sequence.

e CONTI NUE. It stops the currently performing task and moves on to the
next. This comes from the necessity to assign an arbitrary (i.e. decided by
an operator) end to otherwise endless tasks, as following. In the current
implementation of the software, a speech file has been added so the user
can say “Lisa continue” in order to trigger the next task.

Error handling

The error handling is not one of the main goals of this work. Nonetheless, it
has been considered in the task planning and some basic features have been
implemented. Among the errors that are currently handled are:

e Timeouts. Each timed task that runs out of time is sending a Timer error.
When this happens the errorHandler ~ method sends a RestartTaskM
as many times as allowed by the config value m_MaxNumRetries config-
urable in the xml file. After this number of retries the handler moves on
to the next task.

e Navigation errors. When there is an error trying to reach destiny the task
is also retried as many times as possible.

e Grabbing errors. When the problem is the recognition of the object be-
cause it is the wrong one or it was not recognized properly, it tries with
the next candidate in the list, when there is more than one desired object
in the list. This happens when the planner has been asked for a category
and not for a specific object, then it fills a list with possible candidates and
tries with all of them. If there are not more candidates, tries to restart as
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many times as possible. If no objects were found it also tries to restart,
because it will make Lisa drive around trying to get a better position. An-
other situation that handled is the error in grabbing that leads to errors in
subsequent tasks, such as bringing or releasing. In both cases the naviga-
tion is still done but the arm releasing movement is omitted in the latter
case!?. Moreover, in the case where she is asked to take an object when
she is already holding one, this second task is skipped.

3.2.8 Increasing the set of tasks

One of the main goals of this work is to enable the project to grow easily, adding
one higher abstraction layer that save developers the time to deal with specific
interfaces. Indeed, not only for using the already developed tasks, but also
facilitate the increase of the number of tasks.

To this end, a template for wrapping a general task has been created, giving
the developer the necessary information to include it in the task planning. A
user guide to the framework, describing its structure in a developer-oriented
fashion is described in detail in Appendix A.

3.3 Semantics in maps and data representation

This section describes the current features available in Lisa’s mapping, discusses
desirable information that should be added, how it has been structured and
added and the key points in the process of development and implementation.

3.3.1 Current map representation

Lisa’s current representation of her environment is only covered in a metric
approach (gridmap or occupancy map) that allows her to know which parts
of her surroundings are free and which are obstacles that she needs to avoid.
In addition, there is some information that is added as a layer on top of this
occupancy map, and covers obstacles in the form of lists of points that conform
polygons. This is mainly used for manually adding information about obstacles
that cannot be identified by Lisa’s sensors but are known a priori.

At this moment, Lisa is only able to gather empirical measurements of her
environment and build an occupancy map. This means that she is not really
able to understand it but to measure it. Therefore a closed door is the same

10Note that this behavior is arbitrarily chosen as the best possibility. However, the reaction to
this type of situations can be changed when required in the error handler

58



3.3. SEMANTICS IN MAPS AND DATA REPRESENTATION

as a wall for her as long as they both are obstacles through which she cannot
drive. Furthermore, she is able to grip objects does not understand whether a
bottle can contain a drink or a fridge can contain a bottle. She is not aware that
a table could have objects standing on it. She does not have any information
about the fact that people are dynamically moving and usually stand or seat, or
about the fact that walls cannot be moved but furniture can and usually is'!. By
any means she is not able to communicate with a user in a human-like fashion,
since she does not store any semantic nor topological information about her
environment.

Regarding to the three paradigms considered in section 2.2.2, Lisa’s current
implementation only addresses the metric approach. Therefore, in order to
make Lisa’s understanding of her environment more complete and useful, this
master thesis proposes to add to her representation of the world some semantic
information.

3.3.2 Structuring semantic knowledge

In order to be able to add and work with semantic knowledge, the first step to
take is to decide which kind of knowledge will be used and how.

Considering the fact that the approach proposed in this work does not in-
clude logical reasoning about properties, its main contribution will be a hierar-
chical classification of places and artifacts that can be used by the task planner
to make decisions. Hierarchical knowledge about the environment is a power-
ful tool for human-robot interaction and decision making. These categories will
include properties in order to make it possible in the future to add reasoning
without major changes in the structure of the software.

Once the decision of using a hierarchical classification is made, the next ques-
tion that arises is which categories should be included. Although the proposed
hierarchy is heavily based in the one proposed by Galindo et al. [GFMGS08],
some changes are suggested.

Regarding the Space hierarchy that is shown in figure 3.9, some categories
have been added. Historically Points have been the main space entity for nav-
igation, and therefore it has been considered an important category to include.
Furthermore, Corridors have been considered rooms whereas in the other hierar-
chy they are considered a different type of area. The reason for this is that mostly
in @Home games and in any activity that has been performed so far, corridors

Not all these types of information are covered by the approach described in this work, al-
though most of them could be adressed using as a base the proposed structure.
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have the same features as rooms and are treated the same way. In addition, the
category connector has been added and includes the class'? Doorway.

Space
Area Point
]

Room

4 Connector
Corridor| | Office BathRoom Kitchen ?

Doorway

LivingRoom

Figure 3.9: Proposed space knowledge hierarchy

Changes have also been proposed for the Artifact hierarchy in figure 3.10.
The main and most important difference is the inclusion of InteractiveArtifact
and NonlnteractiveArtifact categories. An InteractiveArtifact is any object present
in the @Home arena which Lisa is expected to interact with in a way that can
change the object’s state, being this its position, shape or any other feature like,
for instance, whether it is open or closed, empty or full (for the case of Contain-
ers). This is not a hundred percent real, since Lisa is not currently able to open
containers, but it would be logical to think that at some moment in the future
she could be able to do so and this should be modelled in the general knowledge
she has about her environment. Besides Container, the other main category in
InteractiveArtifact is GrippableObject. This includes anything that can be grabbed
by Lisa, either with her Katana arm or with her Gripper. On the other hand
there is the NonlInteractiveArtifact. This includes objects that can be found in the
@Home arena that cannot change their state because of Lisa. Among these Sur-
faceArtifacts can be found. These are objects (usually furniture) that have any
flat surface that can hold grippable objects on them. This distinction is made
with the idea that there can be reasoning about it for searching objects. Lastly,
there is the category OtherFurniture, which include other type of objects that are

121n this section, words class and category have the same meaning and are therefore exchange-
able.
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usually in the environment but with which Lisa cannot interact, either directly
or indirectly.

/\
| InteractiveArtifactl |NotInteractiveArtifact|
k;rippableObj ecli |Container| SurfaceArtifact
A AN

| |
Drink|  [Food] [Closet| [Refrigerator| [WashingMachine] [Shelf| |Table|

Figure 3.10: Proposed artifact knowledge hierarchy

3.3.3 Semantic knowledge representation

In order to be able to manipulate the previously defined knowledge, it is neces-
sary to choose a representation.

What is clear is that this knowledge needs to be stored with some structure
in a file that can after be loaded by the module that uses it. This enables the
developer to easily change the structure when needed, which is a desirable fea-
ture considering this knowledge is stated from common assumptions about the
environment and these assumptions can change with time because of culture,
new interactions and tasks that are developed or, why not, new artifacts that
become usual in home environments in the near future and need to be taken in
account.

Since the type of information that is being handled is semantic, the first idea
that is considered to represent it is OWL! in any of variants (OWL Lite, DL or
Full). This would endow the developer with a broad semantic expressiveness.
There are two main disadvantages in the use of OWL for the purpose of this
work. The first is that although it is a powerful tool for expressing semantics, it
can be difficult to read and understand and maybe for the purpose of classifying
categories and adding some simple properties it is not necessary. The second is
that the parsing of OWL files is mainly oriented for Java developers.

Considering the kind of information needed to be represented, XML seemed
to be a good option. An advantage of this approach is that the project includes
a XML parser. Indeed, there is a SceneGraph class that has a tree structure and

30ntology Web Language - http:/ /www.w3.org/TR/owl-features/
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that can be initialized from a XML file with the proper structure. This simplifies
the loading of the knowledge structure.

However, the consideration that maybe in the future a bigger capacity of se-
mantic representation is needed and maybe some reasoning about properties is
added should be also taken into account. For this purpose the knowledge about
the environment is encapsulated by the class DomainReasoner , that includes
the hierarchical classification and can answer some queries that can be extended
along time.

Queries considered for the first stage of task planning are mainly related to
ascendant/descendant relationship. It is possible to know, for a given category,
who is its parent category, who are its children (direct or its whole set of descen-
dants) and whether it has parent or children. Given two categories, whether
they are related in these terms. This type of knowledge is used by the task
planner to complete information and perform tasks when categories instead of
objects are present in the tasks received.

Categories and Properties  have been also added in order to represent
the type of information that should be handled by a DomainReasoner . How-
ever, they are not fully used since the logical reasoning about them has been left
out of the scope of this work. Nevertheless, further development in this class
could use them for the addition of this logical reasoning.

The relationship between these classes along with their attributes and meth-
ods can be seen in figure 3.11, where an implementation class diagram for this
part of the framework is shown. Here, every object belongs to a Category and
is represented in a MapLayer 4

3.3.4 New map layers for representing semantic annotations

General Knowledge about the environment is something that does not change
during running time. However, this is not the case for the information con-
tained on the map. This can of course be loaded from a file but it is very likely
that is modified during execution time.

For this reason there is the need for the creation of a new type of message
that includes all the semantic information included in the map. This way, when
a user interacts with the map adding or removing information, the updated
semantic layer will be sent as a message and the Task Planner will be aware of
it.

4These map layers are contained in the SemanticMapLayerM and do not appear explicitly
named as MapLayer .
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Figure 3.11: Implementation class diagram for the semantic information.

This is the case of the SemanticMapLayerM , which has been added to in-
clude information about the three considered layers, which are rooms, inter-
active artifacts and non-interactive artifacts. Each time a change is made in
the GUI, a SemanticMapLayerM message is sent by it and received by the
TaskPlannerModule , which updates its representation of the map.

3.3.5 Adding semantic information: GUI

In order to be able to add this new information to the map it is necessary to
change the map GUI already existing and enable it to work with the new layers.

Since Lisa’s GUI is already implemented as well and intending to keep the
code clean and the result of this master thesis as cleanly separated as possible,
the choice made was to add a inner tab inside the MapTab that contains the new
interaction needed.

The result is shown in figure 3.12. Some limited code needed to be added
to the MapTab class and also some new information needed to be added to the
MapDisplay class in order to display the rooms as well.
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Figure 3.12: Screenshot of the MapTab with the new Semantics Tab and the representa-
tion of the information in the MapDisplay.

3.4 String command extraction

This section discusses what kind of input should be accepted for command ex-
traction, describes it and explains how it is processed to generate the necessary
information for the Task Planner to perform a sequence of tasks.

3.4.1 Current input processing

Every user input is currently processed in every module that receives a UserinputM
Therefore, whenever a module is added to the project, there are many steps that
need to be done, including;:

e Implementing a new module with a new set of states.
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e Hard coding the expected user input within this new module.

e Adding a new Speech File and the subsequent config values to the xml
files.

There are several difficulties with this solution. Most of them are related to
the fact that speech and language are mixed together and scattered all over the
project and jeopardize some of the design goals of Robbie and Lisa project, such
as maintainability and extensibility [TSL*11].

One of them is that it is possible that different inputs are expected for the
same action. For instance, it could happen that in Game A a user could say “go
to the kitchen” and be understood, and when running Game B, the user needed
to say “move to the kitchen” to obtain the same result. In addition, this problem
could lead to its counterpart: same input could result in a different behavior
in different modules. Accordingly, a user in could say “find the water” and that
could lead to Lisa navigating to where the water is and grabbing it in Game A
and in Game B it could also include her bringing the water back to where the
user is. This is not only confusing for users but also difficult to maintain.

The second problem that comes from this is that there is language processing
in most of the modules and this leads to repeated code, which requires again
high maintenance effort. Considering the possibility of language processing or
speech recognition being improved in the future, it would be really difficult to
undertake a project like this when there are a considerable amount of modules
and the developer must work through all of them changing the required parts
of the code that are related to his work.

3.4.2 Definition of a desirable valid input

An idea that comes through the problems stated in the previous subsection is
that the accepted, valid input is not defined anywhere. There is some documen-
tation about speech commands in Lisa’s handbook but again only for games
and not for each module. As a result, it is sometimes necessary for users and
developers to read the code of a module and search the parts where the input
is processed in order to know which is the exactly sentence or word that will
trigger a certain action.

To this end, this work intends to define a desirable accepted valid input that
could theoretically be used in every module. This way there would be an only
documented definition that any user could read and it would be in one only
module, so the extension, maintenance or improvement of it would be limited
to the input parsing module.
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In order to separate speech recognition and language processing, this input
is expected to be already processed from speech. The format that has been cho-
sen for it is a vector of words, to keep the compatibility with the UserinputM
and also for its simplicity.

The following EBNF describes the first proposal for accepted input in the

system:

<input> ci=
<last_sentence> =

<sentence> =

<navigation_sent> ::=

<grabbing_sent> 1=

<delivering_sent> ::=

<talking_sent >

<introducing_sent> ::=

<learning_sent> =

<recognizing_sent> ::=

<following_sent> =
<location > =
<generic_0bject_name>

<generic_person_name >
<object >

Listing 3.1: Desired valid input EBNF

"

<sentence> [{[","] <sentence>} <last_sentence >]

"and" <sentence>

<navigation_sent>
<grabbing_sent>
<delivering_sent >
<talking_sent >
<introducing_sent>
<learning_sent>
<recognizing_sent>
<following_sent>

<navigation_verb> <direction_prep> ["the"] <location >

<grabbing_verb> ["the"] <object>
[<placement_prep> ["the"] <location >]

<delivering_verb> <object>

<placement_prep> ["the"] <location >

<delivering_verb> <object>

<direction_prep> ["the"] <location >

<delivering_verb> <object>

<direction_prep> <person> [<placement_prep> <location >]

<talking_verb> <string>
<talking_verb> <direction_prep> <person>
<talking_verb> <string> <direction_prep> <person>

'

'introduce_yourself"

<learning_verb> <object> [<placement_prep> <location >]
<learning_verb> <person> [<placement_prep> <location >]

<recognizing_verb> <generic_object_name>
<placement_prep> ["the"] <location >

<recognizing_verb> <generic_person_name >
<placement_prep> ["the"] <location >

<following_verb> <person> [ <placement_prep> <location> ]

<learned_location_name>

"there" | "here" | "in_front_of_you"
::= "object” | "thing"

;1= "person”

= <object_name_in_dictionary> | "it"
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<person> = <person_name_in_dictionary> | "him" | "her"
| "the_person" | "person" | "someone" | "somebody"

<placement_prep> = "in" | "at" | "on" | "of"

<direction_prep> = "to"

<navigation_verb> = "go" | "navigate" | "drive" | "move"

<grabbing_verb> = "grab" | "take" | "get"

<delivering_verb> = "deliver" | ... | "put"

<talking_verb> = "say" | "talk"

<learning_verb > = "learn" | "memorize"

<recognizing_verb> = "recognize" | "identify"

<following_verb> = "follow"

This is a very strict syntactic definition of the input that should be accepted.
Although speech recognition is out of the scope of this work, it should be kept
in mind that eventually there is a speech recognition module that captures the
user’s command and converts it to a string or vector of strings that will be
processed by this simple command extractor. Therefore and considering the
current state of speech recognition, it would be unrealistic to expect that the
command extractor receives a complete sentence like:

Go to the kitchen, take the cup and give it to Michael.

Indeed, it is likely that many times the string parsed would be something
more similar to:

Go kitchen, take cup and give it the Michael.

The question here is whether it is necessary for the command extractor to
really process every linking word and preposition so the sentence is syntacti-
cally correct. Furthermore, another question is whether all these linking words,
prepositions and connectors add any necessary information to perform the tasks.
The truth is that they do not add such information, at least in the current range
of Lisa’s skills. As long as the words printed in bold are understood, the re-
quested tasks would be completely defined and they could be performed. How-
ever, they are necessary for the user to state a meaningful sentence. They are
meaningful in terms of Human-Robot Interaction. It would also be unrealistic
and not user-friendly at all to expect the user to talk using only the words that
will finally be processed to execute the tasks:

Go kitchen take cup give Michael.

Therefore, the decision made was to allow all these words as input but only
process the ones that contain semantic information. This way the set of valid
sentences is broader and the robustness of the command extractor is increased,
making it less vulnerable to errors in speech recognition.
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3.4.3 Implementation of the Simple command extractor

In order to extract the information from this vector of strings received in the
UserlnputM message, some already implemented tools were considered.

The first idea was to use Flex!® and Bison'®. Flex is a tool used for gener-
ating scanners and Bison is a parser generator that can convert a free-context
grammar into a LR parser. They are usually used together to generate com-
pilers, where Flex generates a sequence of tokens that are after analyzed and
processed by the software generated by Bison.

This solution entailed one problem, which is the integration with the current
software. Parsers generated by Bison are C code and there was no easy way to
include this code in a module that is loaded when starting Robbie server. In
addition, the process needed to include the new generated parser anytime there
was change did not seem easy, since it would include at least steps like:

e Change the grammar specification and/or the tokens in Flex.
e Run Bison and Flex again to generate the new parser.

e Modify the necessary part to be able to inlcude it in the command extractor
module.

e Update the module.
e Compile again.

Moreover, the grammar could be specified by a regular expression and there-
fore it did not seem necessary to use a complex free-context grammar processor
when the input is a much more simpler, regular grammar.

Consequently, the second solution considered was to use the Boost regular
expression library'”. Boost is a portable set of libraries with a wide range of
applications, one of them regular expressions, very similar to the ones used in
Perl language. Another advantage of this decision was that Boost is already
included in the project, so it would be only using a library in the programming
of the module. Nevertheless, analysing the input in more detail it can be seen
that there is not a considerable use of regular expressions in the parsing. Instead,
there are a defined set of key words that are known and they are just searched
through the sentence.

On the other hand, one of the properties of English sentence structure is that
its word order is very rigid [VS00], spetially regarding to imperative sentences,

Bhttp:/ /flex.sourceforge.net
ohttp:/ /www.gnu.org/software/bison
http:/ /www.boost.org/doc/libs/1_47_0/libs/regex/doc/html/index.html
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where the verb is always first. In addition, although there might be some very
polite users that would like to communicate their wishes in another way, com-
mands given to a robot are expected to be in an imperative form. This makes the
sentence analysis very simple. The parser only needs to look for known verbs
that are previously known and classified by task types and analyse the follow-
ing words, which will relate to the current verb, comparing them with the also
known sets of locations and objects. All known words are grouped in synonym
sets that are defined in a config file. The CommandExtractorModule  main-
tains a dictionary that pairs every verb to its task type and also lists of known
objects, people and locations.

Considering this information, the final implementation considered the input
as a stream of words where each known verb is a token that marks the beginning
of a new sentence. The next words are analysed in terms of whether they are
objects or locations and they are associated to the current verb in a Taskinfo
object that will be part of the final TaskinfoM message this module will send
to the TaskPlannerModule

The two type of tasks that involve text are limited in their possible input
when the CommandExtractorModule  is used, since this text cannot contain as
words verbs that as used as tasks. In order to avoid this problem some marking
of the sentence should be added, but this is not realistic in a speech command
and was not considered relevant in the scope of this work.
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Chapter 4

Evaluation

This chapter intends to measure the quality of the work done. This is done
through some experiments that have as a goal obtaining a measure of the com-
plexity and usability of the new system against the old approach.

First of all, the first section discusses which values have been chosen to mea-
sure the quality of this work. The second section describes an application of the
proposed system to the General purpose game comparing the previous state
with the new approach. The third section does a similar comparison with RIPS!
game. Finally, the last section summarizes the results and discusses their qual-

ity.

4.1 Measuring quality

Whenever a work like this is done there is always the need to measure how
good the results are in order to be able to reach some conclusions and learn
from the process. Considering the fact that one of the aims of this work is to
guarantee the extensibility and maintainability of Lisa’s project, these features
should be taken in account in order to choose appropriate measures.

In order to measure whether the result is really more extensible than before,
the most straightforward way to confirm it is to add a new module and analyse
the effort needed. This effort will be measured in terms of complexity. A state
diagram is shown for each experiment in order to let the reader judge this com-
plexity in an intuitive way. However, since impressions are vague and cannot
reflect in an objective way the quality of the result, some numerical values have
been suggested as well. These values that are measured to reflect the complexity
of adding a module are lines of code, messages sent and messages received.

'Robot Inspection Poster Session.
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However, it could be irrelevant how good these results are if the modules
added do not work or perform the tasks in the expected way. In order to mea-
sure the performance of these modules, several tests have been made. For Gen-
eral Purpose, a random set of sentences has been tested and the percentage of
success is the choosen value.

4.2 General Purpose

General purpose has been the main application considered while working on
this master thesis. The reason for this is that both General purpose and task
planning have the same aim of making robots able to perform a generic set of
task in an arbitrary fashion.

According to this, evaluating the quality of this work through a comparison
with the previous state of General purpose game seems appropriate.

As it is shown in figures 4.1 and 4.2, the reduction in complexity is consider-
able. In this case all the processing work is done in the task planner. The only
step that needs to be taken by the module is send a TaskinfoM that includes
driving to some point inside the arena, as specified in the RoboCup@Home rule-
book [NDFD*11]. After that the sentence is processed and the tasks performed.

Regarding success rate, the previous state does not seem very difficult to im-
prove, since the old module did not really worked. Currently, no points have
been earned with it by our @Home team. Sometimes it was because of prob-
lems with the speech recognition, but mainly it was because the module was
not working. It took a long time to develop this module and the difficulties to
handle all the possible situations in just one module made it very difficult to de-
bug. Indeed, not all the possibilities are considered in it. At this point, only nav-
igation, grabbing, releasing and following are handled and not completely. As
an example, the module is subscribed to the message TargetUnreachableM
sent by the navigation module when there is an error reaching the target, but it
does not handle it.

However, in order to ascertain whether this resulting system is better, there
is the need to perform experiments and tests to check if the results obtained
are the expected. To this end, a small sentence generator was implemented. It
creates a small sentence that includes known names, objects, places and verbs.
The procedure was therefore to generate a set of sentences that include a num-
ber of tasks between 1 and 52 and note the differences between the expected

2Although the number of tasks is restricted to three in the general purpose game, an arbitrary
number between 1 and 5 is chosen to show the increased generality of the module. Note that
in addition, the task planner can handle any number of tasks, but for simplicity of the results’
analysis this number has been restricted to 5.
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result and the obtained one. Only when the expected result matched perfectly
the obtained result the task is considered as successful®.

It is also important to describe the conditions under which these tests were
made. In the config file the valid values introduced for locations were kitchen,
office, table and exit. The known objects were the juice and the pringles, which
belong to categories Drink and Food respectively. And the valid person names
were Carmen, Susi and Viktor. This means that any other object, location and
name is not understood by the command extractor. This is done to approach as
much as possible the behavior expected in general purpose games.

4.2.1 Test cases

Here are explicitly enumerated all the sentences that were used for the eval-
uation. These were generated by the small sentence generator and the ones
that were not successful are written in boldface. Following there is a discus-
sion about the situation in which these errors occurred and the reason found for
them. As it can be seen, the result is promising although there are some errors,
and some cases that have not been properly considered in the implementation
of the task planner, like the case where a person is also a location. This ambi-
guity is not properly handled by the simple command extractor and leads to
errors. These specific cases where the behavior was not exactly the expected are
discussed in subsection 4.2.2. Nevertheless, the success rate is 81.8%.

1. go to the kitchen and take the drink.

2. follow the person in front of you learn Carmen say hello my name is lisa
and grab the drink.

3. move to the exit.
4. talk hello my name is lisa and hear next task.

5. follow the person in front of you talk hello my name is lisa and recognize the
person in front of you.

6. drive to the table grab the drink learn Susi bring it to the kitchen and talk hello
my name is lisa.

7. follow the person in front of you get the food and drive to the office.

*Note that the expected behavior can be an expected handling of an error situation, e.g. when
trying to grab an object Lisa does not success, but goes on with the rest of the task in a reasonable
way. This expected behavior was arbitrarily decided and is the one described in section 3.2.7.
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9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. recognize the person in front of you learn Viktor follow the person in front of you

hear next task and identify the person in front of you.

drive to the office grip the food bring it to the exit follow the person in
front of you and hear next task.

follow the person in front of you.
recognize the person in front of you introduce yourself and drive to the office.

talk hello my name is lisa go to the kitchen hear next task and recognize the person
in front of you.

grasp the food and identify the person in front of you.

talk hello my name is lisa get the food give it to Susi talk hello my name
is lisa and hear next task.

move to the table grasp the food introduce yourself and put it in the table.
say hello my name is lisa recognize the person in front of you and hear next task.

get the juice hear next task go to the table and identify the person in front
of you.

talk hello my name is lisa and talk hello my name is lisa.

follow the person in front of you follow the person in front of you take the food
and navigate to the table.

learn Susi grab the food and hear next task.

learn Alyssa and follow the person in front of you.

take the drink talk hello my name is lisa and release it in the kitchen.
identify the person in front of you.

drive to the office and hear next task.
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4.2.2 Errors discussion
The following set of sentences yielded errors during execution:

1. follow the person in front of you learn Carmen say hello my name is lisa and
grab the drink. Here, the error was that the task planner got stucked in the
“learn Carmen” task. Apparently did not get the name but that should not
been a problem, because in that case a generic “User” name is used. One
reason can be the ORAutoLearningModule  or maybe a connection loss
with the kinect.

2. drive to the office grip the food bring it to the exit follow the person in front of you
and hear next task.. Here, the driving to exit was skipped after not being
able to grab the food, that was not in the office. The expected behavior is
that Lisa informs that she could not grip but she drives to the destination

anyway.

3. get the juice hear next task go to the table and identify the person in front of you.
In this case the hear next task got also stucked after one time out triggered
and went to the error state. It is likely that there is a bug in the error
handler but it was not found.

4. talk hello my name is lisa get the food give it to Susi talk hello my name is lisa
and hear next task. Here, the problem is that when Susi is not right in front
of lisa when she gets the food, she is not going around to find her. This
is in part an error of previous design, because this type of situation was
not considering when abstracting the task wrappers. The solution to this
could be adding a “find person” task, which would include navigation
and people detecting, and add it to the task planner.

4.3 RIPS

As a second example to test the complexity of adding a new module, RIPS has
been chosen. RIPS is a suitable candidate for the task planner because it has a
fixed course of action. It does not include conditions that need to be handled in
a certain way by the task planner and can therefore send directly a TaskinfoM

with a sequence of tasks that need to be performed. This can lead to a discussion
on whether the task planner is as general as it seems or it has limitations. Indeed,
the current design of the task planner has some limitations, since it is only able
to perform tasks in a fixed sequence. This means that neither conditions can
be modelled in a very easy way, nor alternative execution paths. This remains
to the task of the developer, who has now to interact with the task planner.
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However, although there are cases and games for which the task planner cannot
be used directly (it can always be adapted to more specific tasks) in its most
general fashion, it can be used as a base on which build further reasoning and
represent conditions.

Going back to RIPS, a smaller version of RIPS in the old system has been im-
plemented to perform this test. The reason for this is that the use of GiGo is not
addressed in this approach to the task planning and it would not be trustworthy
to count the lines of code of a module that performs different actions than the
module that is going to be implemented. Therefore, the smaller version of RIPS
only handles Lisa’s own introduction and registration, being it a sequence of
actions that could be expressed in a sentence, understandable by the command
extractor: drive to the table introduce yourself give the paper to the jury say i am ready
for my inspection hear exit now and drive to exit. Nevertheless, the module sends
a TaskinfoM message instead, as there is some ambiguity with the sentences
that can be included in a “say” task. The reason for this is that when the sen-
tence includes a verb that is already a task verb, it is not possible to tell whether
the user wants Lisa to actually say this verb or perform it. Some kind of text
marking would be necessary, and this is not user friendly in a speech command
interface.

Once implemented both old and new version of the small RIPS game, they
were tested and both working. The difference in complexity was considerable
and is shown in section 4.4.

4.4 Results overview

Once implemented and tested the evaluation modules, it is possible to analyse
whether the quality is good enough. As tables 4.1 and 4.2 show, the difference in
complexity between the new modules and the old one is considerable. It seems
that the reduction in work and maintainance is big. In the case of the General
Purpose module it could be said that the maintainance of it is the same as the
maintainance of the task planner itself, because the only action performed by
the module is driving inside the arena once the game starts and then wait until
the task planner and the command extractor module do their work. As a re-
mark, if the number of lines of code from the old General Purpose mode is com-
pared to the task planner module, General Purpose still has slightly more code
than the task planner and considerably less generality. Furthermore, whereas
the old general purpose module is subscribed to 13 different types of messages,
the task planner only subscribes to 5. This means that only the wrapping of the
modules has helped reducing by more than a 50% the number of messages that
need to be handled in the module.
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However, since one of the aims of this work was general purpose, this is
not surprising. It is also interesting therefore to try to apply the task planner
to another module and see if it can be used for anything else. The limitations
of generality have been already discussed in the previous section, but it is also
promising that one module for which the task planner was not adapted can also
be beneficiated by the use of the new system.

All in all, the results prove that the intermediate abstraction layer can really
facilitate the further building of new tasks and modules. Although the task plan-
ner has been shown to have its limitations as well as the semantic representation
of the environment that sometimes makes it difficult to handle some ambiguity,
the test results have shown that some of the main goals, such as extensibility
and maintainability have been met.

Game || Old | New || % Reduction
GP 857 90 89.50
RIPS | 396 | 106 73.25

Table 4.1: Lines of code in the old and new system in the two evaluated modules. The
reduction value is relative to the old number of lines of code.

Subscribed Sent % Reduction
Game | old | new | old | new || Subscribed | Sent
GP 13 2 10 1 84.6 90.0
RIPS || 12 2 7 1 83.3 85.7

Table 4.2: Number of subscribed and sent messages per module in the old and new
system, in absolute numbers.
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& & counter == 2

counter < 2 &&
/ SpeechOutM (TargetReachedM | |
UserInputM(“Sto 1\/? following”)
Object ehvered / counter++ &&
(StopFollowingM | | T SpeechOutM)
Figure 4.1: State diagram of the old GeneralPurposeModule . For simplicity, not

every task dependent message is shown. The counter represents the current sentence.
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4.4. RESULTS OVERVIEW

StartTaskM / TaskInfoM

PERFORMING
READY TASK
Figure 4.2: State diagram of the new GeneralPurposeModule . It sends a

TaskinfoM  to the task planner so Lisa drives into the room and after lets it and the
CommandExtractorModule  do the rest of the work.
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Chapter 5

Further work

This master thesis is in part conceived as a basis structure or reengineering
work. Accordingly, after its completion there are many features that can be
added or improved opening several doors to the development and growth of
Lisa’s project. The structure of the software is modular enough to improve any
of these parts independently with a very slight impact on the rest.

Considering the area of Semantics, there are many ways in which this work
could be improved and broadened. The addition of properties to the categories
in the general knowledge about the environment would allow Lisa to reason
about her perception of the world. This includes developing logical reasoning
that could be used for correction of wrong information or completion of vague
information through the perception of the environment. In addition, the acqui-
sition of any knowledge, which is now manually added, could be completed by
automated or semi-automated acquisition of knowledge (i.e. scene interpreta-
tion, object recognition).

Regarding Task Planning, a more structured handling of errors coming from
any of the tasks, making decisions when the information perceived and the gen-
eral knowledge about the world do not match are possible. Furthermore, in-
cluding alternative courses of action that are triggered by conditions would be
an interesting improvement of the task performance, which is sequential at the
moment.

In the area of Human-Robot Interaction, the valid input could be enhanced
so users can express a broader set of goals and wishes. However, this last im-
provement relies heavily on the effectiveness of the speech-recognition, whose
improvement would also have a positive impact in the usability of this work.
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Chapter 6

Summary

During the development of this work, the purpose has always been to be con-
sistent to the goal stated at the beginning. Overall, this means providing the
necessary basis for Lisa to develop in a more general way as a human com-
panion. More in detail, this also means generalizing the use of the tasks she is
able to perform and improving the representation she has of the world along
with her general knowledge about it. This needed to be done in a way that not
only produces results now, but also allows further tasks and knowledge to be
included in the framework.

Since this goal encompasses different fields of computer science, such as task
planning, semantics, logics, mapping and natural language processing, a broad
initial research phase was needed. Considering the information gathered dur-
ing this phase and analysing which of the solutions already proposed by the sci-
entific community suited best the problem adressed, some relevant choices were
made. State-machine behavior instead logics was chosen as the most suitable
approach to the task planner, leaving to further logic reasoning an open door in
the future. Semantics were added as a new set of layers in the map and these
separated parts were integrated into the system and with one another through
a deep study of the current running software. To this end, some reengineering
of the existing basic modules was done and also the user interface needed to be
enhanced.

The diverse nature of this work made it necessary to design every part tak-
ing generality and extensibility as an essential priority. The fact that the result
obtained should be an improvement in the framework, and that this improve-
ment should be useful for further features developed by the @Home team made
it also necessary that maintainability and reduction of complexity were also im-
portant priorities. There would be no use for this project if the result was too
complex to be used by anyone.
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Taking these priorities in account, once the software was designed and de-
veloped, the terms that should be used to verify and evaluate the result came
naturally. Some measures of complexity were taken and the overall description
of the complexity reduction was shown. This was done by adressing two exist-
ing @Home games and reimplementing them with the new framework, in order
to analyse the improvements obtained.

The impression obtained from the evaluation is that the results are promis-
ing, although it is also true that this work has been proven to have some lim-
itations, such as alternative courses of action and limited reasoning about the
world. However, it has also been proven to be an effective solution with a high
rate of success. The expectations at this moment are that the offered solution
is general enough to evolve with new modules and overcome this limitations,
including new features without increasing its complexity.

Taking a look into the future, some improvements seem possible after the
completion of this work. These include fields as diverse as logical reasoning,
increasing of semantic knowledge in an automated or semi-automated way
and non-fixed or conditional planning of tasks. All in all, the perspective ob-
tained is that the result of this work is a start point for further development of
Lisa’s project. Nevertheless, only the use of these results and the time will show
whether the quality of the proposed solution enables the project to grow this
way.
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Appendix A

Framework user guide

This appendix is a user guide for current developers. Section A.l is a brief
overview of how the system works. Then, in section A.2, wrappers are de-
scribed and also a small how-to guide for the adding of new wrappers is ex-
plained in section A.3. The next section includes a how-to guide for creating
modules that just interact with the task planner sending to it a fixed sequence
of tasks. Section A.5 explains the work done in the Domain Reasoner and sec-
tion A.6 gives the user some information about the new part of the map GUIL
Finally, the last section includes some FAQ and troubleshooting while in use of
this framework.

A.1 How does the system work?

The main idea of the system is to add an abstraction layer to the modules so it
is possible to interact with them in a general way. Before, every module had its
own message interface and it was necessary to look up the necessary messages
to send and handle, repeating a lot of code and reading also a lot of it.

Basically, every module that is intended to be used as a general task is cov-
ered with a wrapper module that shows a general interface that is always the
same. This way, the task planner does not have to deal with every specific dif-
ferent message, and it can monitorize and control their execution by sending
general messages that can start, stop, restart and check status *.

As it is shown in figure A.1, if any new task is added, the only thing that is
necessary for it to work with the task planner is a wrapper module. When the

IThese messages are described in detail in the documentation of the code
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A.2. HOW DO WRAPPERS WORK?

Simple Command
Extractor — o Task Planner
TaskInfo
interface é) fl\ Generic message interface
Recognize Following Navigation Learn
Wrapper ves Wrapper Wrapper Wrapper

Game Module —< < A i » N 4 rm v A
p Ry P9y

Recognize s Following | |Navigation Learn
Complex Module —< Module Module Module Module

Figure A.1: Representation of the interaction between modules. Wrapper modules ab-
stract the different message interfaces offered by the basic modules and offer the same
interface to their external side. The Task Planner this way is only dealing with these
messages and the TaskInfo messages sent by the rest of the modules.

task added is a fully developed new one, it could be easier just to match with
this interface instead of wrapping. This option is left to the developer’s choice.

A.2 How do wrappers work?

Wrappers are modules like any other in the project. They are threads that com-
municate through messages with other modules, and that behave like state ma-
chines according to the messages they receive. The special feature about them
is that they all have the same set of states and they represent the performance
of a general task.

The parent class of all the wrappers is called TaskModule and abstracts all
the operations that are common to them. Since every wrapper is a module, the
main operations represent processing of messages. On one side, the messages
from the task planner? are processed. On the other side, the underlying modules
communicate with these wrappers with TDMs>.

Let’s take the very simple TalkingTaskModule  as an example. It commu-
nicates with the underlying module through a SpeechOutM message, which is
sent when the task planner sends a StartTaskM  to it. When the talking is fin-
ished, the wrapper also receives a SpeechOutStatusM indicating that it has

2start, stop, restart and check status
3Task-Dependent Messages
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A.2. HOW DO WRAPPERS WORK?

finished, and then the wrapper goes to the READYstate and informs the task
planner that everything went OK with a TaskStatusM

StartTaskM,
CheckTaskStatusM, TaskStatusM
StopTaskM, \IJ
RestartTaskM

TalkingTask
Module

SpeechOutM SpeechOutStatusM

SpeechOut
Module

Figure A.2: Representation of the interaction between a wrapper and an underlying
module. Here, the TalkingTaskModule abstracts the speaking interface with the
messages SpeechOutM and SpeechOutStatusM

Basically, all the processing is done in the TaskModule wrapper, so if you
want to add a new module you do not really have to worry about the processing
of any of the messages. The only thing that needs to be specified is the interac-
tion with the underlying module, because this is the only thing that changes
from one wrapper to another. Therefore, you only need to subscribe to the nec-
essary messages, process them approppriately and inform the task planner of
it with necessary. On the other hand, you also need to specify which messages
will be sent to these underlying messages when a StartTaskM message is re-
ceived. This is done in a virtual method called startTask() and that needs to
be implemented in every new module.

The detailed processing the TaskModule does of these messages is depicted
in detail in figure A.3.
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A.3. HOW TO CREATE A NEW WRAPPER

TDM &&
IrestartReq

CLEANING UP Je—

CheckTaskStatusM / TaskStatusM

StartTaskM / TDM

TDM / TaskStatusM::SUCCESS

only in some tasks

TDM &&
restartReq

/ TDM

TDM / StarkTaskM / TDM
TaskStatusM::SUCCESS

FINISHED

StopTaskM | | TDM /
RestartTaskM TaskStatusM::ERROR

/ TDM

RestartTaskM | |
StopTaskM / TDM

RestartTaskM | |
StopTaskM / TDM

Figure A.3: State diagram for the state machine present in each task. This set of states
is shared by every task. The acronym TDM stands for Task-Dependent Message, which
depends on the task that is wrapped.

A3

Once

How to create a new wrapper

you know about how the wrappers work and want to add one new to the

possibilities of the task planning, there is a sequence of steps that you need to
take, including the usual steps for adding a new module to the project:

1.
2.

AL

Add new TaskType to: Modules/TaskPlanning/TaskTypes.h

Copy the files MyTaskWrapperModule.h , MyTaskWrapperModule.cpp
into TaskPlanning/TaskWrappers with the new name.

Replace all MyTaskWrapper in both with the new name.
Add files to CMakelLists.txt in TaskPlanning/TaskWrappers
Add module to ModuleObjects.cpp

Subscribe to underlying messages in the constructor, and also assign the
new TaskType value to the attribute m_TaskType *

4This works like an ID for the wrapper, who can know with it if the messages received are
for it or for other modules. This way this can be done in the TaskModule class.
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A.4. HOW TO USE TASKS THAT ARE ALREADY WRAPPED

7. Process the underlying subscribed methods properly.

8. Implement startTask() method, which should just send the necessary
messages to the underlying module (usually it does not take more than
one or two messages).

9. When there are some specific things you want to do when cleaning up,
you can add some specificCleaningUp().

10. Add the module to the taskPlanning  profile in thefile AtHome.xml .
Otherwise it will not be loaded.

If you want also that this task you added has a verb assigned and is parsed
by the CommandExtractorModule , which is the usual expected behavior, you
will also need to do the next few steps:

11. Add the synonym verbs to the <Synonyms> in the taskPlanning profile.

12. Add the line addVerbType(...) in the method initVerbTypes in the
CommandExtractorModule . This is done so it can parse them and send
the appropriate TaskinfoM .

When the new task you added needs some specific error handling or param-
eter verifying, you might need to check this in the task planner module. This is
done in the methods errorHandler  and verifyParameters 5,

A.4 How to use tasks that are already wrapped

This is probably the easiest thing to do with this framework. The only thing that
you need to do in your module is to send a TaskinfoM to the task planner.
In addition, you need to add to your module’s profile in the xml file the
taskPlanning  profile as a parent. It would then look like:
<yourProfileName parents="taskPlanning”>
set your config values here

</yourProfileName>
A TaskInfoM only contains a vector of objects of the class Taskinfo , and
this is a very simple class that contains only 4 things:

SNOTE: Only do this if you are already familiar with the behavior of the task planner. Oth-
erwise the behavior of the task performing could change and some errors could appear while
performing other type of already existing tasks
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A.5. SEMANTIC KNOWLEDGE STRUCTURE

e Type of the task to perform.
e Name of the location where the task is performed.

e Name of the object that is target of the task. This can be an object or a
person.

o Text necessary to perform the task (e.g. when the task involves talking or
hearing).

The task planner will then perform every task sequentially, and will handle
the possible errors in the way defined in the errorHandler

A.5 Semantic Knowledge structure

Right now, some reasoning is done about the general knowledge about the en-
vironment. The task planner has a domain reasoner®, which basically abstracts
a semantic hierarchy that is represented in the xml file config/Semantic-
Hierarchy.xml . This including knowing whether a object belongs to one
category, or which objects belong to it, finding parents, children, etc. If any
improvement to this is made, this class is the place where it should go. There
are also categories implemented, although they are not used yet. They are also
described in the software documentation.

A.6 GUI general information

The Map tab has now a new sub tab that allows the user to include information
like artifacts, interactive artifacts and rooms. This is all done in a very similar
way to the way in the POI tab. When adding a room, the center is the first point
that is clicked on and the area is defined in the usual way in the map widget.
This is, by pressing shift while clicking. Then, a rectangle appears that can be
modified by dragging and dropping the corners.

When clicking apply the map is updated with the new room. Note that if the
center is not inside this area the GUI will not allow you to add the room.

6See class DomainReasoner in the software documentation.
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A.7. FAQ AND TROUBLESHOOTING

& Rooms

® Region }
& Non-Interactive Artifacts
Point
vH W Interactive Artifacts

| kitchen

! i

m hy *
i POIs & Robi | Anti s Mov T Mouse p Zoom fac

@ RobotSiate:  Waiting for start Pioneer battery status normal. | i

Figure A.4: Screenshot of the MapTab with the Semantics Tab.

A.7 FAQ and Troubleshooting

Here are some answers to some FAQ and errors that can occur while using this
framework. If you have any problem that does not appear here and you solve it
successfully, please feel free to update this FAQ. Also, if you have any problem
in general with the software or you find some bug and you do not find the
solution, please feel free to contact me and I will try my best to help you7.

I added my module and compiled it, but when I run the software I cannot
make Lisa perform the new task.

This can happen for many reasons:

7Email:carmennavarro@gmail.com
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A.7. FAQ AND TROUBLESHOOTING

e Is the module loaded? You can check this in the System tab in the GUL
If not, it could be that you did not add the module to the Modules in
the taskPlanning  profile. Another reason could be that you did not
add the module to the ModuleObjects.cpp file, or that it is not in the
CMakelLists.txt

e Are you using the CommandExtractorModule ? If so, and when you