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Kurzfassung

Particle Swarm Optimization ist ein Optimierungsverfahren, das auf der Simula-
tion von Schwärmen basiert. In dieser Arbeit wird ein modifizierter Algorithmus,
der durch Khan et al. 2010 eingeführt wurde, zur Schätzung der lokalen Kame-
rapose in 6DOF verwendet. Die Poseschätzung basiert auf kontinuierlichen Farb-
und Tiefendaten, die durch einen RGB-D Sensor zur Verfügung gestellt werden.
Daten werden von unterschiedlichen Posen aufgenommen und als gemeinsames Mo-
del registriert. Die Genauigkeit und Berechnungsdauer der Implementierung wird
mit aktuellen Algorithmen verglichen und in unterschiedlichen Konfigurationen
evaluiert.

Abstract

Particle swarm optimization is an optimization technique based on simulation of
the social behavior of swarms. The goal of this thesis is to solve 6DOF local
pose estimation using a modified particle swarm technique introduced by Khan
et al. in 2010. Local pose estimation is achieved by using continuous depth and
color data from a RGB-D sensor. Datasets are aquired from different camera
poses and registered into a common model. Accuracy and computation time of
the implementation is compared to state of the art algorithms and evaluated in
different configurations.
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Chapter 1

Introduction

Particle swarm optimization (PSO) is an optimization technique based on simula-
tion of the social behavior of swarms like a flock of birds or school of fish. A swarm
is a collection of particles, which is characterized by stochastic behavior synchro-
nized with certain movement rules. These rules are derived from each particle’s
history and a selection of neighbors.

Figure 1.1: Movement behavior of particles: seperation, alignment and cohe-
sion [Rey87]. Particles are represented as arrows. The dotted blue arrow indicates
the desired movement direction of the particle, which is marked with a black dot in its
origin.

Members of the swarm stay seperate by moving away from each other if they are
located close to other particles. However, they head in the same general direction
as other members. This is called alignment of the swarm. In the meantime particles
keep the swarm together to assure cohesion (see Figure 1.1).

The reason for this behavior is considered as an evolutionary survival strategy:
avoidance of collisions, protection from predators or as an effective search pattern
for food. Collision avoidance is realized simply by moving away from each other.

13



14 CHAPTER 1. INTRODUCTION

Protection from predators is based on the confusion about their unique goal due
to the apparently random movement of a huge number of preys. It makes the
predators impossible to focus on a single target and predict their movement in
order to adapt their own behavior. The reason for coordinated swarm behavior
as a search pattern for food is the most interesting aspect of swarm simulation.
It led Eberhart and Kennedy [KE95] in 1995 to the idea to introduce PSO as
an optimization algorithm. The food target of natural swarms was replaced by a
target optimum for the optimization algorithm. The members of the swarm are
distributed in search-space and represent possible solutions.

PSO is able to optimize nonlinear functions. It has become popular, because
it is simple and efficient to compute. Furthermore, it is adaptable to various
problems [NdMM06]. In this thesis PSO is exploited to determine a 6DOF pose
estimation. Each particle represents a candidate pose solution of the movement
of the camera in 6DOF space. The pose of a camera is given by translation and
rotation in R

3, respectively (x, y, z, rx, ry, rz) (see Figure 1.2).

x

y

z

rx

ry

rz

Figure 1.2: Search-space of particles in 6DOF

The optimization algorithm in this work is used to find the best possible pose
transformation of the camera compared to its last known pose. The general concept
of optimization is described in [HHH98] as follows

“Trying variations on an initial concept and using the informa-
tion gained to improve the idea.“

In the work at hand, variations of the latest camera pose are evaluated. The
initial concept is represented as the initial distribution of particles in search-space
(see Figure 1.3). The information gained during the optimization procedure is
represented as a cost or fitness value derived from the particles’ positions in search-
space. This value is used to further improve the result in the successive iterations
by moving the particles towards a closer position to optima in search-space. The
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movement rules of particles in optimization are similar to the movement of swarm
members in nature introduced at the beginning of this chapter.

...

camera

particle 0
particle 1 particle 2

particle n

x

y

z

rxry
rz

Figure 1.3: Estimation of camera movement using a particle swarm. The camera
coordinate system is the last known position of the sensor with n particles as possible
new pose solution of the camera

In this thesis, continuous sensor measurements containing color and depth in-
formation from a RGB-D sensor are used as input data. A similarity measurement
technique has to be developed in order to compute a cost or fitness value for
each particle’s position in search-space. The algorithm has to be fast, robust and
invariant to transformation, occlusion, and the limited field of view of this sen-
sor. Otherwise the swarm is not able to converge with an optimal solution in an
adequate amount of time.

An application for local pose estimation is 3D perception for robotics such as
generation of object models or maps of the environment. The field of view of
single sensor measurements without multi-view registration is too constrained in
order to enable enhanced perception of the world. Therefore, datasets need to be
aquired from different camera poses and registered into a common model. These
models are able to serve as a basis for enhanced perception of the world. However,
not only robots are able to gain advantage of algorithms for 3D registration using
commercial RGB-D sensors. The generation of complete and accurate 3D models
of e.g. furniture are a useful tool for designers and interior architects.
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1.1 Outline

In this chapter a general introduction to optimization and the problem adressed in
this thesis was given. One focus of this thesis is put in techniques and applications
of PSO and the other is similarity measurement techniques for RGB-D data. A
visual overview of all chapters is given in Figure 1.4.

A more detailed and formal definition of 6 DOF local pose estimation using
a PSO technique is given in Chapter 2 where challenges and approaches for the
solution of this problem are discussed. In Chapter 3 state of the art algorithms for
3D registration are presented and compared to the approach in this thesis. A more
detailed insight into PSO and to (the used) modified version, is given in Chapter 4.
This is followed by Chapter 5, which describes similarity measurement techniques
required for optimization using PSO. The concept of the implementation is pre-
sented in Chapter 6, where applications, configurations and visualizations related
to the theoretical concepts of previous chapters are proposed. Experiments and
evaluations are presented and analyzed in Chapter 7. Finally, Chapter 8 summa-
rizes the results of this thesis, draws conclusions and gives an outlook to future
work.
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Chapter 1 : Introduction

Chapter 2: Specification of the Problem

Chapter 3 : 3D Registration

Chapter 4 :
Particle Swarm Optimization

Chapter 5 :
Similiarity Measurement Techniques

Chapter 6 : Implementation

Chapter 7 : Experiments and Evaluation

Chapter 8 : Conclusion

Figure 1.4: Outline of the thesis: Highly related chapters are grouped in one box.





Chapter 2

Specification of the Problems

The alignment of partial datasets from different views into a globally consistent
model is called registration [Rus09]. In this work, a new dataset (floating data) is
taken from a different view than the reference data. The floating data needs
to be transformed to make it overlap perfectly in a common coordinate system.

2.1 Optimization

The optimization problem is stated as follows

T ∗ = argmin
α
O(P1, Tα(P2)) (2.1)

T ∗ computes the maximum similarity between reference P1 and floating point
cloud P2 by altering Tα from an initial guess to the optimal solution [KN10]. The
resulting transformation T ∗ solves the pose estimation problem. An objective
function O evaluates the estimated solution by using a cost or fitness function
f . The function type constitutes whether the optimization problem has to be
maximized or minimized. In this thesis f is used as a cost function, which leads
to f=0 as being the optimal solution. The input for registration is a stream
of point clouds where each point pi contains three-dimensional position and color
information. A collection of points pi is the point cloud structure P as in [RCG11].
All {xi, yi, zi} coordinates of pi ∈ P are located in a fixed coordinate system with
its origin in the center of the camera. They represent the distance from the sensor
to the surface in the world. The structure of one point pi is adaptable to the certain
needs of the application, e.g. by its normal or color information. Therefore, a point
in this thesis is represented as {xi, yi, zi, ri, gi, bi, ni}. The data from the sensor is
not assumed to be dense i.e. not every sensor measurement is valid. Furthermore,
the environment is assumed to be static while the camera is allowed to move in
three-dimensional space. This results in a 6DOF local pose estimation problem.

19
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2.2 Perception of Data

An overview of sensors for surface registration is given in [SMFF07]. Common
methods for the perception of 3D point cloud data are:

• time-of-flight lasers

• laser scanning

• stereovision

• pattern projection or structured light

All techniques have in common that they never perceive full 3D information
from the environment due to occlusions and the limited field of view. However,
the alignment of successive sensor measurements is required for the creation of
complete models from the environment. In this thesis 3D range data is provided
by pattern projection from the Microsoft Kinect sensor [Pri] (see Figure 2.1).

Figure 2.1: Microsoft Kinect1

Recently, this sensor has become increasingly popular for home entertainment
and gaming [HKH+10]. As a consumer technology the Kinect has become afford-
able and therefore widely spread in the research community [IKH+11].

The perception of depth information is achieved by projection of structured
light into the scene as a fixed infrared pattern(see Figure 2.2). The projected
IR pattern is perceived by the CMOS sensor. The depth images are computed
from correspondences between projected and sensed pattern similar to stereo vi-
sion [Nüc09]. Finally, color and depth information are fused by a calibration matrix.
The combination of both color and depth information allows not only to perceive
an environment without any visual features but also without any illumination.
Registered RGB and depth images are captured with a resolution of 640x480 at a
rate of 30 frames per second[HKH+10]. The accuracy of depth measurements from
the Kinect is decreasing with increasing distance: it is about 1 cm at 1.5m and
3 cm at 3m distance [I H].The depth limit is from 0.6m to less than 5m and the

1http://gnvr.co.uk/2011/12/03/microsoft-kinect-is-coming-to-windows/,

accessed 03.01.2012

http://gnvr.co.uk/2011/12/03/microsoft-kinect-is-coming-to-windows/
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Figure 2.2: Kinect IR pattern and projection

field of view is constrained to 60 degrees. For comparision: point clouds acquired
from tilting 2D or 3D laser scanners, such as the Velodyne, contain dense data
with a large field of view (180 degrees) and high depth precision[MS11].

The data is often disturbed by occlusion, the limited field of view and other
sensor noise like shadow borders (see Figure 2.3). The point clouds are not dense,
i.e. there may be holes in the data, resulting from reflecting surfaces such as mirrors
or glass, from light absorbing black surfaces or invalid distances to the measured
surface [IKH+11]. The properties of the Kinect sensor is mostly comparable to a
SwissRanger SR40002 time-of-flight laser as a 3D perception technique. However,
it has a lower resolution of 176x144 pixels and is expensive. Frame rate and range
are slightly higher, but also depend on the model.

2.3 Computational Challenges

In this thesis the optimization algorithm minimizes the distance between two
datasets from the RGB-D sensor introduced in the previous section. However,
it is difficult to find the optimum as there is no knowledge of the camera’s position
in the multidimensional search space (see Figure 1.2). Given two sets of points
pi ∈ P1 and qj ∈ P2 one can compare the coordinates of points pi and qj and merge
them together in a single model. However, due to sensor noise and movement of
the camera, the data will almost never be identical. Missing or erroneous mea-
surements mislead to solutions in local minima. The properties of RGB-D data
challenges the algorithms required for registration. Compared to other sensors like
3D laser range finders, the data is not accurate and has a limited field of view.

2http://www.mesa-imaging.ch

http://www.mesa-imaging.ch
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Figure 2.3: Comparison between RGB and depth image. White values in the depth
image indicate that there is no valid sensor measurement. The top images are captured
from the evaluation database of [SME+11] and bottom row by [HKH+10]

Though, the data rate of 30Hz enables realtime applications. However, high data
rate comes with high computation time.

2.4 Approaches and Solutions

The runtime of PSO algorithms benefits from contrains in search space. In this
thesis, the camera is assumed to move “naturally”. This means, successive sensor
measurements are assumed to be located in the vicinity to one another. Literally,
the camera will not “jump” 5 meters in 1

30
seconds. The more accurate the initial

distribution of particles is in search space, the faster an optimum is reached. The
Kinect is also equipped with an accelerometers and a tilt motor. In robotics an
inertial measurement unit (imu) is used to balance sensors on moving plattforms
e.g. a 2D laser range finder mounted on a pan-tilt unit for map building. The
imu data can be used to enhance the initial distribution of particles in search
space. If the sensor is pointing in a certain direction, the initial range of particles’
positions and orientations should be set to this view. If the initial pose is set in a
proper position, the optimization process will be able to converge faster and large
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errors in pose estimation will be avoided. It is possible to limit the amount of
iterations by lowering the number of particles, which are initialized in the swarm.
Due to the smart movement characteristics of particles in search space, also a few
particles are able to find an optimum in 6DOF. Futhermore, an iteration step
can be parallelized. The cost value of particles benefits not only from geometric
but also appearance information, which is delivered from the RGB-D sensor. The
color and depth values are registered to one another and therefore allow to extract
more accurate information about their similarity. RGB-D data allows to relieve
irrelevant and extract robust information to enhance performance and robustness.
As the amount of data is huge and particle swarm optimization requires several
iterations until convergence is reached, the distance measurement technique has
to be fast.

2.5 Summary

The application of PSO for point cloud registration is a challenging problem due to
the sensor characteristics and runtime challenges. In this chapter challenges and
possible approaches to weaken these constrains were introduced. An outline to
possible solutions adressed in this thesis was given considering the specific sensor
characteristics and advantages of PSO as an optimization method. In the following
chapter state of the art registration methods will be examined. It will be discussed
how registration benefits from applying PSO instead of other common techniques.





Chapter 3

3D Registration

In this chapter state of the art approaches for local pose estimation, including
point cloud registration systems using a RGB-D sensor and related approaches are
discussed. It also gives an overview of different groups of algorithms and compares
it to PSO.

3.1 Overview

Registration algorithms obtain sparse or dense data as input data. Sparse data
is represented by features or landmarks. Dense data registration processes the
complete point cloud for optimization. Features or downsampled point clouds are
more efficient to compute. One sensor measurement may contain up to 300,000
points. Data reduction to its essential properties is a useful tool to enhance ro-
bustness and speed. However, using complete point clouds lead to more accurate
solutions. In [RBB09] registration methods are categorized in global and local
approaches. Genetic or evolutionary optimization techniques are considered as
global approaches. Unfortunately, they suffer from high computation time. A pop-
ular approach in local optimization is Iterative Closest Point (ICP) [SHT09]. It
is called local, because the result of the final optimum is dependent on the initial
transformation whereas global approaches are able to find global optima. ICP has
the tendency to converge in a local optimum if the datasets are not properly ini-
tially aligned [HKH+10]. In [SBB05] registration methods are divided in coarse
and fine registration. It describes the accuracy of the result of the registration
process. Some approaches also combine a coarse registration step, followed by a fine
registration step like ICP [SBB05]. For the registration of successive point clouds,
algorithms are proposed which examine only RGB-D or depth data. For most
situations depth data provides sufficient information. It leads to smaller datasets
for correspondence estimation. Furthermore, these approaches are invariant to
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changing lightening conditions. However, in scenarios where depth information
is not a reliable similarity indicator, additional appearance-based information is
necessary. e.g. wallpapers on a flat wall.

3.2 State of the Art

The approaches presented in this chapter are categorized as correspondence-based
or pose-space search methods as outlined in Silva et al. [SBB05]. The more gen-
eralized term, search-space-based, is used here instead of pose-space search. A
common approach for correspondence-based search is ICP [SHT09]. The following
simplified steps are performed iteratively in ICP, if an initial transformation is
available: find corresponding points between two sensor measurements and then
find a transformation that minimizes the distance iteratively. In this process pairs
of correspondences are selected for optimization or marked as outliers.

Correspondence-Based Search

• find correspondences between sensor measurements

• compute transformation to minimize distance

For local pose estimation by population-based approaches, like PSO, a search-
space-based search is performed. The steps are processed repeatedly, in reverse-
like order compared to ICP: transformations are computed by past experience in
order to minimize the distance between two sensor measurements, then the current
cost is used to compute future transformations until an optimum is reached.

Search-Space-Based Search

• compute transformations by past experience to minimize cost

• compute cost

The main difference between these concepts is that either correspondences are
considered to compute an optimized transformation or correspondences are used
to compute a similarity measure, which is then used to guess a new transformation.
However, of course both concepts search an optimum transformation in search-
space and compute a distance measure based on correspondences. To be more
specific, the terms describe how the successive transformation is derived: from
correspondences or “guessing” in the search-space based on cost values. Several
approaches for algorithms based on correspondence-based and search-space-based
search are discussed in the following sections. A detailed insight on similarity
measurement techniques, required for both approaches, will be given in Chapter 5.
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3.2.1 Correspondence-Based Search

This section is an introduction to point cloud registration techniques which are ex-
ploiting RGB-D data for correspondence estimation in frame sets. The approach
RGB-D-ICP of Henry et al. [HKH+10] applies Scale Invariant Feature Transform
(SIFT) as data representation. First, SIFT features are extracted from reference
and floating image. Secondly, the 3D locations of the 2D features are extracted
from the depth map in order to get point-to-point 3D correspondences. The trans-
formation between the 3D feature correspondences of successive sensor measure-
ments is estimated using RANSAC. This initial feature-based alignment is further
improved by ICP using both appearance and depth information. The processing
step is described as RGB-D-ICP: The transformation error is iteratively improved
by ICP, based on the error of feature-correspondences using euclidean distance
and point-to-plane distance of dense point cloud data. The algorithm converges
when a minimum error change or a maximum number of iterations is reached. The
complete model is represented by small surface patches called surfels. Surfels are
a representation method for point clouds, which allows to resample a model to rel-
evant surface information. This processing step is crucial for large model building
in order to minimize required data storage. In order to minimize the cumulative
error of frame-to-frame alignments, loop-closing and global optimization is exe-
cuted using a graph structure. The algorithm does not run in real-time: it takes
about 150ms for feature extraction, 80 ms for RANSAC, 500 ms for ICP and 6
seconds for surfel generation. Experiments show improving results using RGB-D-
ICP compared to ICP or SIFT alone. The alignment error decreases significantly
using graph optimization.

The approach RGB-D SLAM by Engelhard et al. [Eng11] is similar to the
previous approach: Speeded Up Robust Feature (SURF) are applied for 3D cor-
respondence estimation. Features-correspondences are extracted as described in
RGB-D-ICP. The initial transformation is also estimated using RANSAC. The
Generalized ICP approach of Segal et al. [SHT09] is applied for refinement. The
local correspondence information is added to a pose graph for optimization. Fi-
nally, a globally consistent 3D model, represented as a colored point cloud, is the
result of the algorithm. The computational complexity makes this approach not
suitable for real-time applications.

The approach Realtime Visual and Point Cloud SLAM of Fioraio et
al. [FK11] performs real-time registration. The input data for generalized-ICP is
subsampled and filtered to about 1000 points. Corresponding points are searched
via a projection method and rejected if the distance is to large or the angle of the
point normals differs too much. The pose is prealigned by performing RANSAC on
visual feature points. The global alignment of two frames by bundle-adjustment
takes about 60-70ms.
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The approach KinectFusion published by Izadi et al. [IKH+11] creates 3D
models using full depth data only. There is no feature extraction step required as
ICP runs directly on point cloud data computing euclidean point-to-plane distance.
A globally consistent volumetric surface-based model of the environment is created
and further refined similar to superresolution. It is also extended to non static
environments, e.g. to enable users interacting in front of the sensor. Therefore, a
reconstruction and interaction mode is available that either builds a model from the
complete sensor data or only uses the static background for reconstruction during
user interaction. The application areas of this work are focused on segmentation
and tracking of objects for augmented reality and physics-based interactions. The
algorithm is working in real-time on the GPU.

3.2.2 Search-Space-Based Search

ICP struggles with the requirement of accurate prealignment of sensor data, be-
cause it is not robust to outliers from noise or low overlap. Therefore, it easily
converges in local optima. To our best knowledge, there is no approach available in
literature using a particle swarm technique for RGB-D pose estimation. However,
there exist several approaches for search-space-based 3D registration.

For single-slice biomedical images to 3D volume registration Wachowiak et
al. [WSZ+04] introduced a method using a hybrid Particle Swarm Optimiza-
tion (PSO) technique. Silva et al. [SBB05] published a Surface Interpenetration
Measure (SIM) for range image registration using a Genetic Algoritm (GA).
In GA a popoluation of individuals encode solutions by their chromosomes. These
are evaluated by a evolutionary procedure: Only the fittest members survive and
reproduce in order to create new individuals by crossover and mutation. The algo-
rithm converges at the end of the evolutionary process with the fittest individual
containing the best set of chromosomes, i.e. the optimal configuration. PSO has
a rather social behavior compared to the “survival of the fittest” concept of GA.
An experiment in this publication shows that the registration of about 10.000 3D
points takes 5 minutes on a 1.7GHz Pentium IV processor. The algorithm is robust
towards low overlap and doesn’t need accurate prealignment.

The problems of ICP are also adressed by Lomonosov et al. [LCE06] by extend-
ing a Trimmed Iterative Closest Point algorithm (TrICP) with genetic algorithms.
It allows to precisely and fully automatically register 3D data with no prealign-
ment. The processing steps are as follows: GA is used for pre-registration of the
datasets, then the result is further refined by TrICP.

Other approaches for registration in search-space are only applied in 2D space.
In the approach of Jankó et al. [JCE06][JCE07] a genetic algorithm is applied
to register a pair of 2D images to an untextured 3D model. Only the texture
information is used to build 3D surface models. A visual based SLAM system
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using modified PSO is presented by Low et al. [LNY10]. It builds feature-based
geometric maps in 2D space. Optimization is performed on the feature positions
and not on the camera pose itself. A particle represents the location where a feature
is observed. When a feature is re-observed, a new particle is added. Therefore,
each landmark has its own swarm of particles. As similarity function, the distance
to the gravitational center of the swarm is considered. When a swarm converges
only one particle is kept to represent the feature location.

3.3 Summary

A wide range of applications emerged with the hype of affordable RGB-D sen-
sors. Since that time, the computer vision community uses this technology in-
creasingly for 3D registration applications. Current approaches for point cloud
registration systems using RGB-D sensors still struggle with real-time require-
ments. However, GPU based approaches allow short computation times. The
popular correspondence-based search approach of ICP is commonly used to solve
the problem of registration. Anyhow, it suffers from low overlap in sensor data
caused by sensor measurements from different field of views and varying discretiza-
tions of the surface. It also requires an accurate inital transformation, otherwise it
easily converges in local optima. Search-space-based approaches are able to jump
out of local optima and do not need an accurate initial alignment. In literature,
a combination of both approaches are proposed: a search-space-based optimiza-
tion for coarse registration and correspondence based for refinement. The research
of search-space-based approaches in 3D registration does not seem to be fully ex-
ploited. Fast distance measurement techniques and the ability to jump out of local
minima provide opportunities for improvement of the registration process.





Chapter 4

Particle Swarm Optimization

This chapter gives an introduction to PSO in Section 4.1 and elucidates a selection
of available topologies for PSO in Section 4.2. This is followed by a basic algorithm
for PSO and a modified approach which is also applied in this thesis (Section 4.3
and 4.4).

4.1 Introduction

The general concept of PSO was introduced by Eberhart and Shi in [ES04]: The
algorithm is initialized by a population of solutions represented as particles. Each
particle is located at a random position in search-space. It changes its position
according to a velocity term influenced by its own history and its neighbors.

In [KE95] Eberhart and Kennedy describe the developement of PSO from a
simulation to an optimization algorithm: The first attempt was to simluate swarms
based on nearest neighbor velocity matching and “craziness”. Agents were defined
as collision-free birds. They were randomly distributed over a pixel grid with 2D
velocity vectors. In each iteration step, the velocity of each bird was updated ac-
cording to its neighbor’s velocity. On this way the birds moved synchronously, but
never changed their direction once they were synchronized. Therefore, a “craziness”-
factor was required, which adds a stochastical component to the birds’ movements.
This approach created a swarm behavior, but still appeared to be rather artificial.
In the successive approach the “craziness” was omitted. A dynamic force was added
to the simulation, which globally attracts the whole swarm. However, in real life
birds don’t know where their swarm’s global target position is located. Addition-
ally a “cornfield vector” was introduced, which represents a two-dimensional grid
with X and Y pixel coordinates. Each agent stores its best value together with the
corresponding 2D position in this grid. This value was called pbest. The velocites
of the agents were computed by a simple rule: The current velocity is weighted
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with a negative or positive random value depending on its current position rela-
tive to pbest. The global best position was represented by gbest and available to
all agents. Most optimization problems require multiple dimensions and are not
linear, e.g. the training of a neural network. It was reasonable to enhance the
approach from 2 × n dimensions (x and y position for all n agents) to D × n. In
further experiments, the simple rules for velocitiy computations were improved.

The research of PSO is categorized by Eberhart and Shi in the following areas:

• applications

• algorithms

• topologies

• parameters

• merging/combination with other evolutionary computation techniques

Applications for PSO are similar to other evolutionary computation techniques
e.g. neural networks, tracking of dynamic systems, reactive power and voltage
control for industrial systems, biomedical image registration [KN10][WSZ+04] or
staff scheduling [GN09].

PSO algorithms are separated in global and local approaches: In order to find
an optimum the global version considers all particles, while the local version is
limited to a neighborhood defined by a certain topology. The global version is able
to converge fast while the local version is capable of finding good solutions slowly
(see Section 4.2 on topologies). The velocity of particles consists of a cognitive, a
social and a momentum part. The cognitive component describes the ability of the
particle to move through search-space according to its own history combined with a
random deviation. It attracts the particle back to its own best position. The social
part reflects the influence from the behavior of other particles in the neighborhood.
The momentum keeps the particle at its current velocity. A new parameter called
inertia weight was added to the original version of PSO to control global and local
search abilities [SE98]. Another parameter, the so called constriction coefficient,
was added in order to let the algorithm always converge [Cle02]. However, in the
history of PSO modifications of the algorithm and its parameters were presented
e.g. by introducing new parameters or removing original parts. The applications
of these parameters will be described precisely in Section 4.3 and 4.4.
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4.2 Topologies

Topologies influence the effectiveness of a particle heading to an optimum solution.
They determine a subset of particles which are socially influenced by each other’s
movement. The best particle in a neighborhood attracts all other particles of this
neighborhood to its position. An introduction and comparison of various topology
concepts is given in [GN09]. In the global approach gBest each particle checks all
neighbors, i.e. the whole population in order to find the optimum (see Figure 4.1).

Figure 4.1: Neighborhood topologies: global, wheel, circle and local (k=4)

The global strategy leads to fast solutions, because each particle knows the
current global optimum. However, it may converge to a local optimum because
no other solutions will be examined when the first global optimum was found.
The lbest strategy only considers a subset of particles i.e. the particle’s neighbors.
The parameter k represents the number of neighbors that will be considered. In
Figure 4.1 a global topology (k=n-1) with n being the total number of particles
in the population, wheel (k=1), a circle (k=2) and a topology with 4 neighbors
(k=4) are visualized.

The local approach leads to slower convergence than the global approach, al-
though it is more likely that a global optimum is found. The exploration of search-
space is more extensive if subsets of particles optimize their local best position
instead of all particles optimizing one global best position. Other promising vari-
ations of topologies are described in [GN09]: e.g. a topology changing the size of
the neighborhood from k=1 to k=n-1 during execution.

The choice of a suitable social network in order to distribute the information
about local best position depends on the problem and according to [GN09] cannot
be stated in general. Figures 4.2 and 4.3 show the local best position for global
topology and Figure 4.4 and 4.5 for ring topology. During the update step of
local best within the swarm, every particle is checked for its neighbors’ cost. The
particle’s neighborhood is defined as including not only other particles, but also
the particle itself. The particle’s lbest value is updated to the neighbor’s current
cost and position, if it improves its cost value. In the first update step of lbest for
particle i = 0, see Figure 4.4 and 4.5, the cost values of its neighbors i = 1 and



34 CHAPTER 4. PARTICLE SWARM OPTIMIZATION

i = 0

i = 1
i = 2

i = 3

i = 4

i = 5

i f(xi)
0 0.3
1 0.4
2 0.2
3 0.3
4 0.4
5 0.1

Figure 4.2: Indices of particles and cost table for local best in global topology
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Figure 4.3: Local best in global topology containing 6 particles. The update of lbest is
performed by iterating from i = 0 to i = 5 from left to right. The particles of the active
social network are marked with gray background.
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Figure 4.4: Indices of particles and cost table for local best in ring or circle topology
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Figure 4.5: Local best in ring or circle topology containing 6 particles. The update of
lbest is performed by iterating from i = 0 to i = 5 from left to right. The particles of
the active social network are marked with gray background.

i = 5 are checked. The smallest cost among 0.1, 0.3 and 0.4 is given by particle
i = 5 with a value of 0.1. Therefore, this value is assigned to lbest of particle i = 0.
Next, lbest of particle i = 1 is updated considering its neighbors i = 0 and i = 2
and so forth. In general, a high number of neighbors k results in fast convergence
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of the algorithm, but is accompanied by a spare exploration of the search-space.
This behavior leads to convergence in a local optimum solution. This behavior is
shown in Figure 4.5: Particles with indices 1, 2, 3 and 4, 5, 0 move to the indiviual
local best position in their social group. However, in the global topology as in
Figure 4.3 only one best position is followed.

4.3 Basic Particle Swarm Optimization

The following section explains the computation steps of basic PSO as presented
in [NdMM06]. The processing steps of the algorithm are also available in List-
ing A.1 in the appendix.

At the beginning the swarm members need to be initialized in search-space in
order to give a first clue about possible solutions. The following attributes of each
particle i are set:

• current position xi for each dimension j

• velocity vi for each dimension j

Position and velocity are initialized with random values of uniform distribution,
because there is no other information about possible optima available yet. However,
the range of random variables is limited in order to constrain the search-space.
During the execution of the algorithm the particles move through search-space in
order to find good solutions. The initial position is only used as a starting point to
explore the search-space at the beginning. For instance, the dimensions of search-
space in 2D image registration are defined by the parameters for position, scale
and rotation in case of rigid transformations. However, they always need to be
adapted to the problem to be solved.

Each particle i stores the following attributes during search:

• its current position xi and cost f(xi)

• its current velocity vi

• its best position pbest yi and cost f(yi) so far

• the best position in the neighborhood lbest ȳi and cost f(ȳi) so far

During one iteration step of PSO, the position of a particle is updated by the
following formula:
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Figure 4.6: Update of position according to Equation 4.1
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In order to solve this formula, the velocity for the new time step k+1 is derived
in each dimension j from the following equation:

vk+1

ij = ω vkij
︸︷︷︸

momentum

+ c1r1j{ykij − xkij}
︸ ︷︷ ︸

cognitive component

+ c2r2j{ȳkij − xkij}
︸ ︷︷ ︸

social component

(4.2)
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Figure 4.7: Update of velocity according to Equation 4.2.

The variables r1 and r2 are random variables in the range [0, 1]. They are used
as coefficients for the “self-recognition”, cognitive component, and “social part” or
also called social component. The variable ω is called inertia weight. It con-
trols the amount of influence of the last velocity to the following velocity. If the
inertia weight is set too high, the particles’ position in search-space can easily “ex-
plode”. To avoid an exponentialy increasing velocity of the particle, it is possible
to add constrains to the search-space such as reinitializing a particle that “got
lost”. Figure 4.7 shows the update of the velocity according to Equation 4.2 in a
2-dimensional search-space. The velocity vkij of the last time step is weighed by ω
and then summed up with the social and cognitive component. The vector ci is
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part of the cognitive component. It is the vector {ykij − xkij} between the personal
best and the current position of particle i. The vector si is part of the social
component and is the vector {ȳkij − xkij} between the neighborhood best position
and the current position of particle i.
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Figure 4.8: Update of position in PSO (adapted from [KN10])
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Figure 4.9: Example configurations of cognitive and social component in PSO.

Figure 4.8 shows the geometrical description of the position update considering
the influence of cognitive and social component. In this illustration the particle’s
position xk

i is at the origin. As ci and si are multiplied by the random variables
of uniform distribution r1 and r2 in the range [0, 1], the position xk+1

i in the next
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time step will always be located in the dotted rectangle (when ω, c1 and c2 are set
to 1). Figure 4.9 shows how the cognitive and social component are influenced by
different values of r1 and r2. The amount of influence from social and cognitive
component specifies the range of possible next positions xk+1

i .
The maximum number of iterations searching for the optimal solution in search-

space is limited by different strategies [NdMM06]:

1. fixed maximum number of iteration with improvement

2. fixed maximum number of iterations without improvement

3. threshold for minimum cost

The first strategy is not a good solution in terms of optimizing the search
process since a fixed number has to be predefined. The second approach converges
when no further improvements of the registration result were made for a predefined
number of times. It improves the disadvantage of limited improvement of the first
one, but due to the stochastic nature of the algorithm it may leave a local optimum
and still be able to find a good solution after more iterations. If a threshold of
the objective function is taken as a criterion, it surely converges with the expected
quality. However, if no good solution is found the algorithm may run forever.
A combination of all criteria may offer the best solution for fast and accurate
convergence. Another approach was implemented in this thesis: A delta value and
a maximum number of iteration has to be defined by the user. The algorithm
converges if the best pose in search-space has a derivation smaller than delta for
the given maximum number of iterations. The difference to the second convergence
criterion is that the delta is not defined on the cost value, but on the pose change
in search-space. Therefore, it allows the user to define a required accuracy for pose
estimation independent of the distance metric.

4.4 Modified Particle Swarm Optimization

A modified version of PSO in the context of medical image registration is presented
in [KN10]. The following presented PSO modification is used within this thesis.
In contrast to the basic PSO, the exploration strategy follows a combination of
Gaussian and uniform distribution. This section explains how this new strategy
is applied to PSO. The steps of the algorithm are specified in Listing A.2. For
initialization all particles are distributed uniformly in search-space as in basic
PSO, in order to give a representation of all possible solutions. The following
steps are repeated until a stopping condition is reached:
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The position of each particle is updated as in basic PSO (see Equation 4.1). In
order to solve Equation 4.1 the velocity for time step k + 1 has to be found for
each dimension j. The following equation consists of a momemtum, cognitive and
social component combined with a constriction coefficient β:

vk+1

ij = β[ vkij
︸︷︷︸

momentum

+ c1r1j{ykij − xkij}
︸ ︷︷ ︸

cognitive component

+ c2r2j{ȳkij − xkij}
︸ ︷︷ ︸

social component

] (4.3)
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Figure 4.10: Update of velocity according to Equation 4.3

The difference to Equation 4.2 consists in the use of brackets which alters the
inertia weight ω to a constriction coefficient β, which is also shown in Figure 4.10.
The constriction coefficient was introduced by Clerc et al. in [Cle02].

The constant values c1 and c2 set the balance between the impact of cognitive
and social component. For each particle i the vectors ci and si are computed as
in basic PSO.
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Figure 4.11: Uniform (left) between [0, 1] and normal distribution (right) with zero
mean and unit variance
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Depending on the signs of both vectors the velocity of the particle is updated
either by random vectors r1 and r2 using a uniform or normal distribution (see Fig-
ure 4.11). This is the significant advantage of the proposed modification by Khan
et al. [KN10], because using only a uniform distribution often leads to convergence
in local minima whereas a normal distribution allows the particle to jump far away.
This aims to combine the advantages of both strategies: On the one hand a Gaus-
sian distribution easily converges in local minima, on the other hand it has good
exploration characteristics. Meanwhile a uniform distribution is able to exploit
the search-space, but lacks exploration abilities.

Figure 4.12 shows the new possible positions of the particle using a normal
distribution, which will be located inside the dotted ellipse. In this example the
current position of the particle is at the origin, c1 = c2 = 1 and ω is also set to 1.
The new position xk+1

i given by Equation 4.1 is summed up by the current position
xk
i and velocity vk+1

i from Equation 4.3. The velocity results from the multiplica-
tion of ci and si with random vectors r1 and r2 of a Gaussian distribution, which
will always be located in the ellipses with the respective color. Note that this
non-uniform probability actually cannot be displayed as values in a certain region
and thus are simplified here as an ellipse for visualization purposes.
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Figure 4.12: Update of position in MPSO (adapted from [KN10]).
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Figure 4.13: Example configurations of cognitive and social component.

Both vectors ci and si have the same sign in all dimensions j if they lie in the
same quadrant as in Figure 4.12. In this case a Gaussian distribution is applied,
otherwise a uniform distribution as in Figure 4.13. The reason for this distinction
is that new positions have the possibility to be located in a larger area compared
to the application of a uniform distribution. This behavior is requested if both
components agree in their quadrants in order to reach high exploration of search-
space. However, if both disagree in signs of dimensions, a uniform distribution
constrains the variance of the new position.

Until now the constriction coefficient β was not considered when updating the
position of the particles. It is computed by the following formula:

β =
2κ

|2− ψ −
√

(ψ(ψ − 4))|
(4.4)
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Figure 4.14: Range values of constriction coefficient (c1 = c2 = 2.05)
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The coefficient is defined by the constant κ ∈ [0, 1] and ψ = c1 + c2. The value
of κ is often set to 1. A deeper mathematical insight is given in [Cle02]. The values
of c1 and c2 are often set both equally to 2.05 as described in Khan et al. [KN10].
This results in ψ=4.1, which is larger than 4.0 and thus allows to compute the root
of the non-negative term. The value of β controls speed and convergence: large
values cause slower and small values lead to faster convergence. The function is
linear as depicted in Figure 4.14.

4.5 Summary

This chapter gave an introduction to basic concepts of PSO. The algorithm is used
to solve a variety of non-linear optimization problems. In this thesis, the modi-
fied PSO approach by [KN10] is applied in order to solve local pose estimation.
Contrary to the basic approach, the modified PSO approach uses a normal dis-
tribution to move particles in search-space. The successive positions of particles
are influenced by either applying a normal or uniform distribution to random vari-
ables within the update of the velocity vector. If cognitive and social component
are drawn in the same direction, a normal distribution is chosen and if they are
aiming in different quadrants, a uniform distribution keeps them from jumping
too far away. This behavior leads to exploration and exploitation of search-space
at the same time. Exploration is improved by the normal distribution, because it
avoids to converge in local optima. Exploitation is achieved by the application of
a uniform distribution, which lets particles move in a rather constrained search-
space. The main challenge about PSO is to find a suitable similarity measurement
in order to apply a cost to each particle. Also, the dimensions of search-space have
to be adapted to the problem. These questions will be adressed in detail in the
following chapter.



Chapter 5

Similarity Measurement Techniques

Each particle in PSO requires a cost value in order to evaluate its current position.
The choice of a cost function is dependent on the kind and quality of input data.
The major objective of the thesis at hand is to evaluate similarity measurements
in order to efficiently apply them to input data.

5.1 Computational Problems

Various approaches for the comparison of images or point clouds for 2D and 3D
registration are available in literature [Gos05] [GHT11]. In this thesis a fast imple-
mentation considering appearance and geometry-based features is required. There
are scenarios where geometric or appearance-based approaches will fail, if only one
approach is applied. For instance: a room with lots of textured items (geometry
and appearance features), an empty room or corridor (only geometry features),
a planar wall with posters or pictures (only appearance features) or a uniformly
colored wall (no features are available and therefore not considered here). Con-
sequently, a combination of features is required for robust registration of point
clouds. Different characteristics need to be extracted from the environment and,
in case of various feature types, mapped to one cost value.

In this chapter an overview of appropriate techniques is presented to address
this problem. In the context of PSO for local pose estimation, one has to struggle
with computational costs due to the relatively high number of transformations
and similarity computations required until convergence is reached (see Chapter 3).
Therefore, in this thesis only distinctive feature points, which implement a reliable
representation of their neighborhood, are considered and analyzed by a metric cor-
responding to their specific properties. In literature, these points are also known
as interest points, point landmarks, corner points or control points [Gos05]. These
feature points or a combination of them need to be invariant to rotation, trans-

43



44 CHAPTER 5. SIMILARITY MEASUREMENT TECHNIQUES

lation, scale and viewpoint. Thereby, computational cost is reduced compared to
the processing of complete point clouds. Furthermore, the robustness of similarity
measurements is increased when irrelevant or erroneous information as described
in Chapter 2 is omitted.

The following computation steps are applied in order to compute the similarity
between two sensor measurements:

1. extraction of feature points (Section 5.2)

2. search for correspondences (Section 5.3)

3. computation of cost by distance metric(Section 5.4)

4. mapping of cost values (Section 5.5)

These steps will be adressed in the following sections in the presented order.

5.2 Extraction of Feature Points

In the last decade, major research has been reported in computer vision to de-
tect and represent features in 2D images: lines, blobs, regions of interest, interest
point detectors and descriptors like SIFT, SURF, SUSAN or Harris corner detec-
tor [BGRM07][JKFB06]. These algorithms are also applied in 3D by transforming
point clouds to depth images, where each pixel contains depth information en-
coded as a gray scale value. In the recent years, 3D interest point detectors and
descriptors have come in focus of research, e.g. Normal Aligned Radial Feature
(NARF) by Steder et al. [SRKB10] or Fast Point Feature Histograms (FPFH) of
Rusu et al.[RBB09]. For local pose estimation using PSO, computational expensive
detectors and descriptors are not sufficient, due to the computational complexity.

Various techniques for the extraction of representative points will be discussed
in the following sections. Not all points pi for a set of points P = {p1 · · ·pn} are
sufficiently distinctive to be detected in subsequent sensor measurements. There-
fore, a set of specific points P̄ ∈ P are extracted from the point cloud as feature
points, which give a robust and comprehensive representation of the cloud. In the
following chapters P will represent the feature points of the point cloud and not
the complete cloud itself. The similarity measures are applicable to feature as well
as to dense point clouds.

5.2.1 Corners

In computer vision, corner detectors such as Harris can be applied to range or
RGB image in order to find distinctive points [Gos05].
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Figure 5.1: Depth Corners (marked as blue points) from dataset [SME+11]

Figure 5.2: Appearance Corners (marked as blue points) from dataset [SME+11]

Figure 5.1 shows an example for detected corners in a depth image, which
are reprojected to the point cloud. Appearance corners are extracted using the
RGB image as input source. The 2D locations of corners from the RGB data are
reprojected to the point cloud. Figure 5.2 shows detected corners in the RGB
image.
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The computation steps of the Harris corner detector are described in [BGRM07]
as follows: The image is divided into patches. A gradient image Ix and Iy for
horizontal and vertical direction for each image patch is computed. The gradient
matrix C(x, y) for the interest point (x, y) is derived from:

C(x, y) =

( ∑
I2x

∑
IxIy∑

IxIy
∑
I2y

)

(5.1)

R = λ1λ2 − k(λ1 + λ2)
2 (5.2)

The eigenvalues of C(x, y) are λ1 and λ2. The variable k is set to a constant
value. The auto-correlation function R has maxima where both eigenvalues are
high. It is likely that a corner was found at these points. The algorithm is invariant
to changes in rotation and translation. However, corner points are detected rather
unstable in noisy depth images [SGB10]. In depth images, corners are detected
in areas of depth transition. Normals in these areas are not stable to compute,
because the neighborhood itself has no stable surface. Therefore, a similarity
measure including the surface normal does not lead to feasible results. Also, due
to the depth inaccuracy of the sensor, these corner points are not visible in every
sensor measurement.

5.2.2 Borders

Borders in range images are extracted by considering the transitions between fore-
ground and background. There are different types of border points: obstacle
borders, veil points and shadow borders (see Figure 5.3). Obstacle borders belong
to the ”object” itself, while veil and shadow points are artifacts of the sensor’s
data acquisition for instance due to the limited field of view or occlusion. The
object’s borders are more distinctive and robust to detect compared to corners.
The information about veil or shadow points are also used to filter invalid feature
points, which were detected by other methods.

Figure 5.4 shows the detected object borders compared to Figure 5.5, which
shows shadow borders and veil points from the same scene. Border points are far
more stable than the corner points presented in the previous section. In order to
extract borders, the Difference of Gaussians method is adapted from 2D computer
vision. However, the detected borders are lying on unstable areas considering
their normals. An algorithm for the detection of stable object boundaries in 3D
range scans is provided by Steder et al. [SRKB11]. The change of distance in the
neighborhood of a point is taken as an indicator for stable borders.
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Figure 5.3: Border point types from [SRKB11]

Figure 5.4: Borders of obstacles (marked as blue points) from dataset [SME+11]

5.2.3 Planes

Planar regions are important features of the environment, because they are dis-
tinctive and stable to detect. They are view invariant and found in man-made
environments. However, they do not provide the possibility of exact localization,
because when a point lies anywhere on a plane it can still be an inlier. Figure 5.6
shows the largest detected plane, where the points within the planes are downsam-
pled.

An introduction to plane segmentation methods is given in Holz et al. [HHRB11]
and Rusu et al.[RBB09]. Plane detection always requires the detection of normals
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Figure 5.5: Shadow borders and veil points (marked as blue points) from
dataset [SME+11]

Figure 5.6: Downsampled plane point (marked as blue points) from dataset [SME+11]

in the first step. The normals of a common scene are shown in Figure 5.7. The
local surface normals for a point pi are defined by its neighborhood Pi. This neigh-
borhood is derived from k nearest neighbors or by points within a given radius of
point pi. Normals are computed by cross product of this point with its neighbors.
Clusters of normals with a similiar pointing direction belong to a common plane.
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Figure 5.7: Normals of point cloud from dataset[SME+11]

5.3 Search for Correspondences

Correspondences are required in order to decide whether two point clouds are
similar. Subsets of these point clouds need to be extracted in order to apply a
distance metric on these points. This process is comparable to template matching
in 2D computer vision. Outliers should not be considered for similarity estimation
as they result from the motion of the camera or other sensor noise. However, the
similarity cannot be measured if there is no common subset of points available.

Reference and floating cloud do not necessarily have the same number of points.
Additionally, even distinctive points are unlikely to appear again on exactly the
same position. Therefore, each point of the first pointset has to find a closest
neighbor in the other pointset for correspondence estimation. The definition of
the closest neighbor of a point is defined by the selected metric. The concept of
neighbor of a given point pq for a set of points P k = {pk

1
· · ·pk

2} is given in [Rus09]
as

‖pi − qj‖2 ≤ d

with the maximum allowed distance d and || · || as a norm. Here the squared
euclidean distance is given as an example. The most basic approach to find the
closest neighbor is to iterate over both clouds and look for points that fullfill these
constrains. However, this approach is too time consuming. In detail: the Kinect
has a framerate of 30 Hz where each frame contains a point set with about 300, 000
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points. This means that there are 300, 0002 comparisons required to compute
the similarity between two clouds. Fortunately, k-d trees address the problem of
finding neighbors quickly by building a k-dimensional search tree to minimize the
number of required comparisions.

Figures 5.8 and 5.9 show a schematic example for correspondences between
two clouds. The points outside of the field of view should not be considered for
similarity estimation. Otherwise the quality of the transformation estimation of
the seconds cloud decreases, because a large camera movement with an increasing
number of outliers is punished. In Figure 5.8 the clouds are shown and in 5.9 they
are transformed by a particle’s pose in search-space.

Figure 5.8: Example input datasets for similarity estimation for two clouds

Figure 5.9: Example input datasets aligned according to a particle position.

The points outside of the overlapping area will be dismissed in Figure 5.9. Also
in the valid area, the point with no corresponding neighbor will not be considered
for similarity estimation.
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5.4 Distance Metrics

This section describes distance metrices for cost computation between two point
clouds. A normalization step for different distance metrics is described and geo-
metric and appearance-based metrics for point clouds are introduced.

5.4.1 Normalization

Different kinds of error metrics are required in order to measure appearance and
geometry feature point similarity individually. In order to use these metrics for
PSO, they need to be combined in a common cost value. Therefore, a normalization
is performed for all metrics. Also, each metric is normalized individually if it has
no fixed boundaries per se.

The cost function f will be introduced as an objective function for point clouds.
In order to obtain values in range of f(P1, P2) ∈ [0, 1] the cost function between
the point clouds P1 and P2 is computed as follows

f(P1, P2) =
1

|P1|·dmax

∑

i∈P1

{

d(pi, qj) if neighbor qj available

dmax else
(5.3)

where pi ∈ P1 and qj ∈ P2. By iterating over i in P1, qj is always defined
as the corresponding neighbor to pi. Therefore, the index j will not be redefined
for each of the following distance measures in this chapter. The value dmax is
the maximum distance, which is the maximum cost of the chosen error metric
d. In case of euclidean distance it is the maximum distance for the definition
of neighborhood. If points pi without any neighborhood correspondence qj are
not considered by adding a cost value dmax, outliers will not receive a penalty.
Literally, point clouds with no corresponding points would be evaluated with best
cost values. Finally, the cost value is normalized to [0, 1] by the number of points
in the point cloud P1 and dmax.

5.4.2 Geometry

This section describes error metrics for geometric features. An overview of further
basic distance metrics is given in [Rus09].

Point-to-Point

To estimate the distance between two point clouds the most basic way is to measure
the Eudlidiean distance or also called L2 norm between the neighboring points
pi ∈ P1 and qj ∈ P2
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f(P1, P2) =

√
√
√
√

n∑

i=1

(pi − qj)
2 (5.4)

However, the squared euclidean distance is often prefered in order to apply a
larger cost on points that are far away. This distance measurement technique is
also applied as the classical ICP error function [Rus09]. It minimizes the sum of
squares distance between corresponding points with the following equation

f(P1, P2) =

n∑

i=1

‖pi − qj‖2 (5.5)

This error metric is inserted in Equation 5.3 as

d(pi, qj) = ‖pi − qj‖2 (5.6)

Point-to-Plane

The point-to-plane or point-to-surface distance is derived from the Hessian normal
form for planes and is given as follows

f(P1, P2) =
n∑

i=1

‖(pi − qj)·n‖ (5.7)

where n is the normal of point qj . The equation describes the distance between
the point pi and the surface of qj defined by the distance along the normal n. The
point-to-plane distance d in R

2 is shown in Figure 5.10 as a point-to-line distance.

pi

qj n

d

Figure 5.10: Point-to-plane distance in R
2 as a point-to-line distance

The advantage of point-to-plane distance compared to point-to-point distance is
that it considers the local geometrical surface around this point. However, normals
are not stable at every point in a point cloud (see Figure 5.6). The computation
of normals depends on the selection of neighboring points. They are only stable
in locally planar areas.
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5.4.3 Appearance

Appearance-based distance metrics for point clouds are found in 2D image registra-
tion algorithms [Zit03]. Major categories are area-based and feature-based meth-
ods. Due to the previous feature point extraction step presented in Section 5.2,
there are constrains in the application of matching techniques. For example, if
only border feature points were extracted from the original point cloud, it does
not make sense to perform an area-based registration methods as there are liter-
ally no areas which can be compared. Therefore, the choice of the proper image
matching technique is dependent on the type of feature points or regions which
were extracted.

In this section, techniques for matching of reference to floating data will be
discussed which are also referred as template matching in 2D image registration.
In [Gos05] the most common similarity measures are presented: sum of abso-
lute differences, cross-correlation coefficients, moments, Fourier transform coeffi-
cients, Mellin transform coefficients, Haar transform coefficients, Walsh-Hadamard
transform coefficients, K-S test and mutual information. However, only basic ap-
proaches will be presented in this section.

Cross-Correlation

Area-based method like cross-correlation (CC) match intensity values without con-
sidering the surrounding texture. The formula for normalized CC (NCC) is given
in [BH01]

λ =

∑

x,y(f(x, y)− f̄u,v
)(
t(x− u, y − v)− t̄

)

√
∑

x,y(f(x, y)− f̄u,v
)2∑

x,y

(
t(x− u, y − v)− t̄

)2

where f is the reference image and t is the template or floating image, f̄u,v is the
mean of f(x, y) within the template area. The template area is defined by u for the
shift in x- and v for y-direction, respectively. The mean of the template image is
defined by t̄. The normalization by the denominator ensures invariance to changes
in brightness or contrast. The range of λ is [−1, 1] where 1 expresses the highest
similarity, 0 the lowest and −1 indicate a mirrored sensed image. Therefore, values
have to be scaled before they are used as a cost or fitness function for PSO.

Normalized cross correlation is also used as a similarity measure for MPSO in
medical image registration by [KN10]. In this thesis, for the application of NCC in
PSO, the shift u, v for the template is determined by the particle’s position. This
leads to the following distance function for point clouds P1 and P2:
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f(P1, P2) =

∑

i,j(pi − P̄1

)(
qj − P̄2

)

√
∑

i(pi − P̄1

)2∑

j

(
qj − P̄2

)2

if all points in P1 and P2 have neighbors pi and qj . The drawback of tech-
niques like template matching in image registration is the diffculty of finding the
right template window. This optimization process is accomplished by PSO. The
algorithm is robust towards slight changes in rotation and scaling, but not towards
more complex transformations of the image. Also, intensity changes by noise or
illumination may alter the results.

Intensity distance

A faster but less accurate approach than NCC is the simple sum of absolute dif-
ferences of intensity values [Gos05]

f(P1, P2) =
∑

i,j

(pi − qj)

if all points in P1 and P2 have neighbors pi and qj . It returns a cost value,
where smaller values are interpreted as a higher similarity between the input data.
The cost value has to be normalized as in Equation 5.3.

Color distance

Color similarity provides more distinctive information than just intensity measures.
In [SC97] color distance in HSV color space is proposed. Compared to RGB it
represents color in hue, saturation and intensity. The transformation from RGB
to HSV color space is described in [SC96]. In this thesis, the similarity between
two colors mi = (hi, si, vi) and mj = (hj , sj, vj) is given by

ai,j = 1− 1√
5
[(vi − vj)

2 + (si coshi − sj coshj)
2 + (si sin hi − sj sin hj)

2]
1

2

The distance of the cylindrical HSV color space between these two colors is
measured. If regions instead of point-to-point distances are examined, color his-
tograms can be applied to represent distributions of colors.

5.5 Mapping of Cost Values

The final step of similarity estimation is the mapping of cost values from different
domains to one value. However, the combination of geometric and appearance-
based features has not yet been examined intensively [HKH+10]. Appearance
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information alone may lead to wrong correspondences, such as shadows on unicol-
ored walls. The combination of depth and appearance information is the key to
robust measurements. A simple approach is to compute the mean of all distance
measures and weigh them equally as in the following equation

f(P1, P2) =
1

n

n∑

i=1

fi(P1, P2) (5.8)

where i is the index of the distance metric applied by function f .

The RGBD-ICP approach by Henry et al. [HKH+10] combines appearance
and geometry information by the following steps: First, visual features of point
clouds P1 and P2 are extracted. The corresponding features are initialy aligned.
Then, an ICP loop on dense point cloud data is performed. The goal is to find the
optimal transformation t∗ between P1 and P2 by minimizing the distance between
feature point correspondences Af and dense points Ad. A balancing coefficient α is
used to balance the influence of appearance and geometry. The geometric distance
of the point clouds is computed by a point-to-plane measure. However, in this
thesis no features such as SIFT or SURF are applied, which are used in [HKH+10]
as an initial alignment. The reason is that the computation of feature descriptors
and correspondence estimation are too time consuming for the application in PSO.
Equation 5.8 provides a tool for mapping of several distance measures. However,
it does not solve the problem that distance values of various metrics are hard
to compare even though they are normalized to the same range. Though, the
influence of different domains is essential to the quality of similarity estimation.

5.6 Summary

In this chapter an approach for cost computation between reference and floating
data of point clouds was introduced. First, methods for feature point extraction in
various domains were presented. This was followed by a definition of neighborhood
and an introduction to distance metrics. Finally, methods for mapping of cost
values from various domains to one cost value ∈ [0, 1] was presented.





Chapter 6

Implementation of Local Pose

Estimation System

The implementation of the system for local pose estimation between two sensor
frames is based on the framework “Robot Operating System” (ROS)1 and is written
in C++. In this thesis, the ROS release “electric” is utilized. ROS was introduced by
Morgan et al. [QGC+]. It provides a modular software architecture, libraries, hard-
ware drivers and tools for visualization. ROS is a distributed system of processes,
which aims at providing reusable code for robotic research and development. The
code is organized in stacks, which are collections of packages. Nodes are executable
programs and wrapped up in packages. The communication between nodes is real-
ized by messages. Each message has a type, e.g. for laser data, and a unique topic
name, for example “top-laser”. If a node wants to subscribe to a certain topic it has
to provide a callback function for the message type. The distributed nature of the
system allows to add external packages. They are able to exchange data between
nodes, which are implemented within a package. The configuration parameters of
ROS-nodes can be altered during runtime.

The Point Cloud Library (PCL) is used for 3D point cloud processing (version
1.3). Tasks like filtering, segmentation, surface reconstruction and model fitting of
point clouds are provided by the large scale open source project2. In this thesis,
the concept of the implementation aims at a modular object oriented structure,
which should be easy to understand and well documented. The code is distributed
in independent nodes or libraries in order to simplify extension and exchange
of components. The formatting and documentation follows the ROS C++ Style
Guide3.

1http://www.ros.org
2http://pointclouds.org/
3http://www.ros.org/wiki/CppStyleGuide
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This chapter gives an overview of the implementation of a PSO libary and its
application for RGB-D registration. Section 6.1 discusses the employment of the
Kinect sensor and its simulation for test environments. The local pose estimation
system is introduced in Section 6.2. The implementation of PSO is described in
Section 6.3, followed by similarity measures in Section 6.4. Finally, Section 6.5
gives a summary of this implementation.

6.1 Hardware

The initial step for the registration of RGB-D data is sensor data aquisition. Here,
the data is provided through message-passing from the ROS node openni_node4.
The raw sensor RGB and depth data needs to be processed in a calibration step in
order to create registered RGB-D point clouds. For evaluation purposes the simu-
lation of sensor data is required in order to make results reproducible. Therefore,
logfiles of point cloud data are recorded in order to replace the sensor.

6.1.1 Sensor Calibration

The Kinect sensor has a factory calibration, however in order to obtain more
accurate data a manual calibration can be performed by the camera_calibration5

package. This package provides a calibration tool using a checkerboard as in the
default OpenCV camera calibration. The calibration data is stored in yaml file
format and can be loaded by the openni driver using the reference to this camera
calibration file.

Figure 6.1: Calibration of color (left) and depth data (right)

4http://www.ros.org/wiki/openni_camera
5http://www.ros.org/wiki/openni_camera/calibration

http://www.ros.org/wiki/openni_camera
http://www.ros.org/wiki/openni_camera/calibration
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The calibration tool locates the checkerboard with 8 × 6 squares of size 2.45
cm in the given camera image and take samples on different x,y positions, size and
skews of the board. An image of the detected checkerboard during the calibration
data aquisition is depicted in Figure 6.1. In order to get a suitable IR image, the
structured light projected from the sensor’s IR light source needs to be covered.
The detection of the calibration pattern can be improved with an external infrared
light source like sunlight or a plastic sheet on the sensor’s IR light source in order
to diffuse the structured pattern. The simultaneous calibration of depth and color
data is not available, because the sensor allows only the aquisition of color or
depth information at a time. Therefore the data is not absolutely synchronuous
and cannot be calibrated at once.

6.1.2 Logging and Playback

ROS provides tools for saving and playing back message data in “bags”. Bagfiles
are able to store sensor data for the requested message topics. With bagfiles
repeatable tests of algorithms are possible as will be shown in the Chapter 7 on
evaluation.

6.2 Local Pose Estimation System

The local pose estimation system is based on a tree of coordinate systems with
a fixed basis and a moving camera coordinate system. The camera coordinate
system is surrounded by particles searching for the successive camera position.
The particle movement is implemented by a wrapper for PSO. The software is
started in the user GUI or via command line and configured in launch-files. For
visualization the ROS visualization tool rviz is applied in order to let the user
trace the swarm’s movement and the construction of the point cloud model.

In Section 6.2.1 the different coordinate frames and their purposes are intro-
duced. The wrapper for PSO will be explained in Section 6.2.2. A control GUI is
presented in Section 6.2.3, followed by the extensive visualization techniques for
the internal behavior of the algorithms in Section 6.2.4.

6.2.1 Coordinate Frames

Coordinate systems are managed by using the tf package6. It allows to listen and
broadcast transformations of a tree structure over time. An overview of all coordi-
nate frames in a common hierarchy is shown in Figure 6.2. The basis is the world
coordinate system, which is always located at a fixed position and serves as a static

6http://www.ros.org/wiki/tf

http://www.ros.org/wiki/tf
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...

world
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camera_link

camera_rgb_frame camera_depth_frame

camera_depth_framecamera_rgb_optical_frame

particle 0
particle 1

particle n

Figure 6.2: Hierarchical view of coordiante frames of own approach

root of all other systems. Therefore, the registered point clouds will be stored in
this global coordinate system. The left side of the tree, containing the camera_link
as a root node, is broadcasted by the Kinect ROS node. RGB-D point clouds with
depth registration enabled are available in the camera_rgb_optical_frame. The
other branch of the tree is created for the local pose estimation system. The
camera frame represents the current position of the camera relative to the fixed
world coordinate system. There are n particle frames that are transformed using
the current camera position as an origin. The camera coordinate sytem is right
handed and follows the coordinate frame conventions defined in7.

6.2.2 Wrapper for Particle Swarm Optimization

Particle swarm optimization is wrapped by an abstract class called PSO, which
allows to derive different implementations of PSO. It implements the import of
configuration parameters and the publication of swarm, camera and point cloud
information for visualization. However, its most important task is to initialize
the particle swarm and schedule the optimization process in parallel threads. Fig-
ure 6.3 shows a schematic overview of classes containing only the most important
properties.

In this thesis two approaches are implemented: the basic approach is designed
to process downsampled point clouds for similarity estimation. The feature based
approach extracts feature points as described in Chapter 5. The classes, which
are derived from the abstract PSO class, need to implement the virtual function
processParticle in order to assign each particle a cost value. The actual optimiza-

7ROS wiki for coordinate frame conventions http://www.ros.org/reps/rep-0103.html

http://www.ros.org/reps/rep-0103.html
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Figure 6.3: Wrapper for Particle Swarm Optimization

tion is performed in the PSO class. The derived classes implement the interface
between the PSO library for optimization, the similarity estimation measures for
RGB-D data and the perception of point cloud data. The implementation of PSO
will be described in detail in Section 6.3 followed by the similarity measurement
techniques in Section 6.4.

6.2.3 User Interface

A basic user interface was developed to start different scenarios without the com-
mand line (see Figure 6.4). It is implemented as a seperate package called con-
trol_gui.

Figure 6.4: Control GUI as a user interface to start nodes.

Various configurations of the ROS visualization tool rviz are available for basic
or feature-based PSO defined by the corresponding rviz buttons. Also debugging
by controlling interactive particles is possible. More details will be given in Sec-
tion 6.4.2. Bagfiles are started and played in a loop or replayed without having
to choose the file again by the rxbag play button. Loop means that a file is aut-
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matically replayed when it is finished. On the contrary, replay does not restart a
file automatically. Only when the rxbag play button is pushed the file dialog is
omitted and the last file is selected automatically for playback.

6.2.4 Visualization

For visualization rviz provides extensive tools for sensor data visualization and
possibilities for configuration. Figure 6.5 shows the user interface with subscrip-
tions to various message types like point clouds, coordinate frames, camera images
and markers on the left and the visualization of these data structures on the right.

Figure 6.5: Visualization of local pose estimation using rviz : Subscriptions to vari-
ous message types are located on the left. They are configured directly and enabled
or disabled through checkboxes. The visualization of data structures is shown in the
interactive 3D view on the right. Its coordinate system depends on the selected root
coordinate frame in the configuration bar.

Particles are literaly moving through search space while a point cloud model
is built from incoming sensor measurements. The user is able to navigate within
the 3D view. Reference and floating point clouds as well as feature points can be
examined during the registration process. The visualization is an essential tool
for debugging and demonstration of the internal workings of the algorithm like
the movement and distributions of particles and the camera’s estimated trajectory.
The result of successive pose estimation is given in Figure 6.6. The estimated
trajectory of the camera is compared to ground truth data in the evaluation of
Chapter 7.
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Figure 6.6: Visualization of the estimated trajectory. Camera positions are visualized
as blue arrows with the latest pose marked in green. The successive camera poses are
connected by a blue line. The number of the registered poses and the current cost of the
best particle is printed in digits.

Particles moving through search space can be observed in two different visual-
ization modes. If the ID of each particle is represented by a unique color, particles
are easily tracked visually (see Figure 6.7). It enables the user to understand each
particle’s behavior while exploring the seach space. Different distributions and
velocities can be examined directly from looking at the visualization. It is recom-
mended to apply the current cost value as a color intensity, if the distribution of
cost values in search space is in the center of interest. In Figure 6.7 on the right,
the particles were initially located at the last known camera position. However,
their color turns dark for high costs, because the camera has already moved away
from the last known position. The swarm starts to explore the search space origi-
nating from the last known camera position. The particles’ color gets increasingy
bright as the swarm is drawn to the subsequent estimated pose.

PSO is configured using different types of topologies. Here, these social net-
works are visualized as lines connecting two particles with each other. In Figure 6.8
a swarm with global topology is pictured. This topology defines a connection from
each particle to all other particles, which is shown in the global topology pattern
as well as in the visualization of the implementation. Furthermore, Figure 6.9 and
6.10 demonstrate ring and wheel topology, respectively. Ring topology has two
connection lines for two neighbors, but wheel topology has only one. Therefore, in
global topology the swarm is much more drawn together as an optimum is propa-
gated fastly among the swarm’s members. In ring and even more in wheel topology
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Figure 6.7: Visualization of particles with color representing the ID (left) and intensity
for cost values (right), where lower cost equal brighter color.

there are less “communication lines” available and therefore the particles explore
the search space rather individually. Experience shows that global topology on
the one hand converges faster than other topologies with less neighbors. On the
other hand, the exploration of search space is worse, which leads to convergence
in local optima. Taking into account the other extreme using wheel topology with
only one neighbor, the communication within the swarm is restricted and conver-
gence is time consuming. Wheel topology has shown to be a good tradeoff between
exploration and exploitation of search space. This means that particles have the
freedom to move around in search space (exploration) and in the meantime are
drawn together in regions of optima (exploitation). Thus, ring topology is used as
a default topology in this implementation.

6.3 Particle Swarm Optimization

The implementation of PSO is adapted from Khan et al. [KN10] as a generic PSO
library. Here, generic means that there is a modular component in the framework
which is adaptable to optimize also other problems than local pose estimation. It
provides a swarm with a dynamic number of dimensions of search space. During
the construction of the swarm various parameters are given which define its search
behavior. These parameters may be changed depending on the problem to be
solved, e.g. pose range and delta need to be defined depending on the expected
distance between successive sensor measurements. The configuration parameters
of the swarm are shown in Table 6.1.

The swarm converges if one of the predefined stopping condition are met. In
this thesis, the convergence criteria of Table 6.2 were implemented. The default
convergence criteria consists of a maximum number of iterations combined with
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Figure 6.8: Visualization of a swarm with global topology and its schematic pattern

Figure 6.9: Visualization of a swarm with ring topology and its schematic pattern
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Figure 6.10: Visualization of a swarm with wheel topology and its schematic pattern

topology global, ring or wheel topology; default: ring
size of the swarm needs to have at least 3 members
c1 and c2 weighing factors for cognitive and social component;

default: 2.05
κ influences speed of convergence; default: 1
σ sigma of normal distribution for velocity
pose range range of initial pose of each particle
pose delta defines the range where a particle needs to be reset
velocity initial velocity of each particle

Table 6.1: Configuration parameters of a swarm in the PSO library

min error threshold minimum cost value for convergence
max iteration (pose delta) number of iterations with given pose delta
max iterations (zero delta) number of iterations without improvement
max iterations maximum number of iterations

Table 6.2: Convergence criteria of a swarm in the PSO library

the maximum number of iteration with a pose delta. Thus, a value for accuracy is
defined and convergence time is limited by a maximum number of iterations. The
iteration steps of the optimization algorithm are listed in appendix A.2.
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6.3.1 Class Hierarchy

Figure 6.11: Class hierarchy of PSO library

The structure of the implementation of PSO is shown in Figure 6.11. The
diagram shows a simplified version of the implementation (some functions and
members are omitted for clearness). The Swarm class operates as the manager
of all particles. The swarm’s members, topology and behavior are created and
controled from here. During optimization the iteration steps are performed by the
swarm until convergence is reached. Each member in the swarm is represented as
an instance of the Particle class. It stores the current position, its best position
so far and best position in the neighborhood as an instance of ParticlePose. The
ParticlePose class holds position and cost data. It is applied to represent xi and
cost f(xi), yi and f(yi) or ȳi and f(ȳi) of a particle. The topology of a swarm is
implemented as a set of references to other particles in each particle. Each particle
has a unique ID, which is required to identify each particles for visualization.

The Particle class implements the essential steps of the MPSO algorithm: up-
dateVelocity computes the particle’s velocity considering previous velocity, cogni-
tive and social component and random vectors r1 for the cognitive component r2
for the social component. In order to update the particle’s position, updatePosi-
tion considers the previous position and new velocity of the particle. The variable
personal best yi and cost f(yi) are updated by updatePersonalBest and local best
ȳi and cost f(ȳi) by updateLocalBest. These update functions are called when
executing the doIteration function of the Swarm class. First, personal yi and local
best ȳi are updated together with their cost. Then, new velocities for all particles
are computed according to the direction of vectors for personal yi and local best
pose ȳi originating from current pose xi. Either a uniform or normal distribution
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Domain Properties
Obstacle borders RangeImageBorderExtractor from PCL, see Section 5.2.2
Planes SACSegmentation from PCL, see Section 5.2.3
Depth corners goodFeaturesToTrack8 from OpenCV, see Section 5.2.1
Visual corners goodFeaturesToTrack8 from OpenCV, see Section 5.2.1
Clusters EuclideanClusterExtraction from PCL [Rus09]

Table 6.3: Domains of feature clouds

Similiarity measure Properties
Point-to-Point Squared euclidean distance,

see Section 5.4.2
Point-to-Plane Point-to-plane distance between point clouds,

see Section 5.4.2
NCC Normalized Cross correlation of intensity values,

see Section 5.4.3
Euclidean distance color Euclidean distance between RGB values
SAD Normalized sum of absolute distances between

intensity values, see Section 5.4.3
HSV Distance in HSV color space, see Section 5.4.3

Table 6.4: Similarity measures

is applied to the velocity update depending on the directions of personal and local
best position. Finally, the position is updated and the swarm’s members are sorted
according to cost f(ȳi) of personal best yi in descending order.

6.4 Similarity Measures

For feature-based PSO, various domains for the representation of point clouds were
implemented. An overview is given in Table 6.3 together with a reference to the
applied libraries in the implementation. In case of basic PSO, no feature points are
extracted. However, in order to reduce the amount of data, the orginal point cloud
is downsampled using the VoxelGrid filter from PCL. The point cloud is put into
a 3D voxel grid. For each box in the grid, all inlying points are approximated by
their centroid. For each domain it is possible to select an individual error metric.
The implemented metrics are listed in Table 6.4.

8http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.

html

http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html
http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.html
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6.4.1 Class Hierarchy

Figure 6.12: Class hierarchy for feature clouds

Figure 6.13: Class hierarchy for similarity estimation

In feature-based PSO, point clouds are organized as a FeatureCloud. The class
hierarchy of feature representations for reference and floating cloud is shown in Fig-
ure 6.12 and 6.13. An instance of FeatureCloud contains the original cloud and its
normals. Normals are computed using IntegralImageNormalEstimation from PCL.
There are several normal estimation modes available: COVARIANCE_MATRIX,
AVERAGE_3D_GRADIENT and AVERAGE_DEPTH_CHANGE. In order to
compute the normal for a point, 9, 6 or one integral images are created, respec-
tively. In the implementation, the AVERAGE_3D_GRADIENT has shown to
provide good results. The FeatureExtractor class is applied to extract feature
points from the original cloud. They are stored as a map of feature points for
each feature domain available in the FeatureExtractor class. Using these feature
clouds, the ObjectiveFunction class computes the similarity distance between two
feature clouds using the selected similarity measure and transformation defined by
the particle pose (see Figure 6.13).
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6.4.2 Visualization

A tool for testing of similarity measures was developed using interactive markers9

in rviz. Interactive markers are geometrical primitives, which can be manipulated
by the user in the 3D view of rviz. In this thesis, the transformation of such an
item is accessed and applied to an “artifical particle” or “interactive particle“. This
means that the particle is not controlled by the swarm’s behavior, but by the in-
teractive particle’s transformation. The interactive particle’s position is controlled
by the user in 6DOF space. Thus, various distance measures can be applied to a
reference and floating point cloud. The resulting cost values are visualized during
the manipulation of the interactive particle. An interactive particle is visualized

Figure 6.14: Camera coordinate frame (left) and interactive particle (right)

in Figure 6.14. The reference coordinate tree of the last known camera position
is visualized on the left. The transformation vector is printed as an arrow from
the interactive particle to the camera coordinate system. The marker has three
rotational and translational axes. In Figure 6.15 and 6.17 the application of an
interactive particle is shown. The reference point cloud is fixed to the camera
coordinate frame and the floating cloud is transformed by the user. The particle
has a context menu, which allows the user to reset the particle’s position to the
origin of the camera coordinate sytem, to get a new point cloud or add the current
particle position as the new camera pose. In this example, the floating cloud is
downsampled by a voxel grid filter and point-to-point distance is applied.

6.5 Summary

In this chapter, the implementation of a framework for PSO on RGB-D data was
presented. An example for registered point clouds is shown in Figure 6.16. Initially,
the connection of hardware components, a calibration procedure and logging of
data for playback was introduced. A local pose estimation system, a library for
PSO and tools for visualization and debugging were implemented. In the following
Chapter 7 the implementation will be evaluated.

9http://www.ros.org/wiki/interactive_markers

http://www.ros.org/wiki/interactive_markers
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Figure 6.15: Application of an interactive particle with context menu and cost value
of particle’s transformation with the number of neighboring points in brackets on the
bottom

Figure 6.16: Registered point clouds using the PSO local pose estimation. The down-
sampling step of the complete point cloud after each registration step leads to ”layers“ of
points, which are visible on the outer scene areas caused by camera motion. The sensor
data acquisition from different views has almost covered the invisible area behind the red
can. Meanwhile, the points on the can itself are registered correctly.
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Figure 6.17: Application of interactive particle using point-to-point distance with cost
0 (28,683 correspondences), 0.0038 (28,683) and 0.1499 (24,733) from top to bottom



Chapter 7

Experiments and Evaluation

In this chapter an evaluation is performed, which compares the algorithms devel-
oped in this thesis to state of the art RGB-D SLAM systems. Furthermore, the
configuration parameters of PSO are evaluated in order to optimize the configura-
tion and understand the influence of parameters. In [KSD+09] various approaches
for the evaluation of SLAM system are presented. Feature-based approaches use
the distance between measured and true landmark positions in order to evaluate
the quality of algorithms. The evaluation of grid based approaches relies on visual
inspection or overlaying with blueprints if available. However, comparing absolute
positions has disadvantages as it may not be possible to overlay the data directly.
In general, the comparision of map data originating from different algorithms and
sensor data may not be possible due to different sensor modalities. In this thesis,
the trajectory of the sensor is examined. A benchmark for the evaluation based
on the sensor’s trajectory is proposed in [SME+11], which also provides a large
database containing RGB-D data and ground-truth camera trajectories.

7.1 Database

The evaluation database of [SME+11] contains the following data

• color and depth images of a Microsoft Kinect sensor:
full frame rate of 30 Hz and sensor resolution of 640x480 pixels

• groundtruth trajectory of camera poses
rate of 100 Hz

• IMU data from the accelerometer
rate of 500 Hz

73
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Figure 7.1: Experimental setup for camera pose recording in [SME+11]

Ground-truth data was generated by using a high-accuracy motion-capture
system from MotionAnalysis with 8 high-speed tracking cameras at 100 Hz. Re-
flective markers were added to the Kinect as well as to a calibration board in order
to track the sensor and the motion-capturing coordiante system (see Figure 7.1).
The Kinect data was recorded using the PrimeSense OpenNi-driver with a Laptop
running Ubuntu 10.10 and ROS Diamondback. The recorded scenes take place in
typical office environments at various scales (one or more pieces of furniture up
to a whole room) and contain trajectories with different translational and angular
velocities. Furthermore, basic trajectories were provided for debugging, such as
moving along or rotating around a specific axis. The data is stored as ROS bag
files and available online1. The trajectories are stored in a file as ’timestamp tx
ty tz qx qy qz qw’ for every pose pair, which will be used for comparison with
ground-truth data.

7.2 Quality Criterion

In order to compare trajectories, which were generated by a visual SLAM algo-
rithm, an evaluation criterion is required. The following evaluation modes are
available in order to compare the estimated trajectory with ground-truth data

• absolute trajectory error (ATE)

• relative pose error (RPE) for pose pairs

ATE is adequate for the evaluation of visual SLAM systems, because they aim
at building a globally consistent model. In ATE, the difference of absolute pose
values corresponding to timestamps is measured. The alignment of estimated and
ground-truth trajectory is accomplished by singular value decomposition. The

1http://cvpr.in.tum.de/data/datasets/rgbd-dataset

http://cvpr.in.tum.de/data/datasets/rgbd-dataset
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difference between the resulting pose pairs is used to compute root mean square
error, mean, median, standart deviation, minimum and maximum error. For visual
odometry systems or local pose estimation as in this thesis, RPE is applied. In
RPE the relative error between pairs of timestamps is computed.

7.3 Experiments

All experiments were executed using a Laptop (Intel Core i5 at 2,50 GHz with 4
GB DDR3 RAM) running Ubuntu 10.10 with ROS electric.

7.3.1 Evaluation of own approach

In this section, the configuration parameters of the local pose estimation system,
which was developed in this thesis, is evaluated. The following sequences of the
evaluation database [SME+11] will be applied:

• freiburg2_xyz with translations in x-,y- and z-direction (Figure 7.2 left)

• freiburg2_rpy with rotations of roll-pitch-yaw (Figure 7.2 right)

Figure 7.2: Sequences freiburg2_xyz (122.74 s) and freiburg2_rpy (109.97 s)

These sequences were recorded for debugging purposes: The camera motion is
quite slow and there is almost no motion blur or shutter effects. Therefore, it fits
perfectly for the evaluation of the parameters in this system. During the evaluation
process the queue size is set to 1. Therefore, the number of registered pose pairs
represents a measure for computation time.
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Domains and similarity measures

In Table 7.1 point-to-point metric is evaluated for various domains. Borders and
visual corners show similar error characteristics with borders allowing to estimate
a larger number of pose pairs. Visual corners have lots of points in common with
border points. However, unnecessary points are removed. Therefore, computation
time is reduced and the camera movement to the next frame is smaller with faster
registration. Planes show more accurate registration results than all other domains.
The number of pose pairs for planes are rather small. The reason is that planes
are not always available in a scene, cannot be extracted reliable or contain lots
of points, which leads to higher computation time. The translational error for
freiburg2_rpy is worse than for other domains, because planes per se cannot be
located at a specific position. Depth corners have the highest number of registered
pose pairs, but most results are worse than the other domains.

The evaluation of point-to-plane metric is listed in Table 7.2. For border points
the results are better than in point-to-point distance measure. It also leads to
a larger number of registered pose pairs. All other domains have higher error
rates, which may result from an unstable normal estimation at these points. The

Point-to-point translational (m) rotational (deg) pose pairs
Borders 0.0340 / 0.0402 1.5422 / 2.2693 93 / 64
Planes 0.0048 / 0.0581 0.0904 / 0.7692 36 / 16
Depth corners 0.0412 / 0.0498 1.6350 / 2.0117 135 / 47
Visual corners 0.0305 / 0.0448 1.3334 / 2.2765 62 / 47

Table 7.1: RPE mean error for point-to-point metric (freiburg2_xyz/_rpy)

Point-to-plane translational (m) rotational (deg) pose pairs
Borders 0.0241 / 0.0428 1.0668 / 2.3500 107 / 98
Planes 0.0117 / - 0.2397 / - 40 / -
Depth corners 0.0676 / 0.0695 2.0408 / 3.5446 144 / 116
Visual corners 0.0332 / 0.0565 1.5675 / 2.9572 109 / 90

Table 7.2: RPE mean error for point-to-plane metric (freiburg2_xyz/_rpy)

Eucl. color translational (m) rotational (deg) pose pairs
Borders 0.0334 / 0.0453 1.3515 / 2.5630 73 / 72
Planes 0.0055 / - 0.1298 / - 37 / -
Depth corners 0.0510 / 0.0616 1.8516 / 2.9820 129 / 85
Visual corners 0.0336 / 0.0375 1.3633 / 1.6442 62 / 46

Table 7.3: RPE mean error for euclidean distance of color (freiburg2_xyz/_rpy)
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application of euclidean distance using color is evaluated in Table 7.3. Visual
corners benefit from this type of distance measure. However, as in Table 7.1,
planes are not registered successfully, because they do not have significant visual
features. For HSV color distance, Table 7.4 shows similar results as euclidean
distance of color, but with slight improvement. The sum of absolute distances
similarity measure examines intensity values. It is faster to compute than HSV
or euclidean distance, which results in a higher number of registered pose pairs
(see Table 7.5). Even planes are registered successfully, but point-to-point distance
has still smaller error values in this domain. Table 7.6 shows the pose error for
NCC distance measure. Considering visual corners, it has smaller errors than
SAD distance and less pose pairs. Comparing to other color or intensity distance
measures, it has higher errors values in most areas.

HSV translational (m) rotational (deg) pose pairs
Borders 0.0369 / 0.0458 1.5466 / 2.5201 78 / 73
Planes 0.0071 / - 0.2220 / - 34 / -
Depth corners 0.0485 / 0.0615 1.6759 / 2.8485 136 / 106
Visual corners 0.0256 / 0.0527 1.2439 / 2.4988 58 / 24

Table 7.4: RPE mean error for HSV color distance (freiburg2_xyz/_rpy)

SAD translational (m) rotational (deg) pose pairs
Borders 0.0355 / 0.0589 1.6927 / 3.2225 118 / 103
Planes 0.0243 / 0.0193 1.1078 / 0.8599 38 / 20
Depth corners 0.0587 / 0.0888 2.3014 / 5.0014 171 / 130
Visual corners 0.0509 / 0.1112 2.1957 / 5.4905 111 / 96

Table 7.5: RPE mean error for sum of absolute distances of intensity values
(freiburg2_xyz/_rpy)

NCC translational (m) rotational (deg) pose pairs
Borders 0.0486 / 0.0577 2.1260 / 3.8492 92 / 89
Planes 0.0063 / - 0.1213 / - 21 / -
Depth corners 0.0657 / 0.1015 2.6672 / 5.6714 132 / 110
Visual corners 0.0616 / 0.0961 2.1098 / 4.3168 76 / 69

Table 7.6: RPE mean error for NCC distance (freiburg2_xyz/_rpy)

Summing up, the rotational error is always better when planes are considered (if
they are available in the scene). The most successful similarity measure for planes is
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point-to-point distance. Borders always provide better results than depth corners,
because they contain more robust points. The best results show optimization using
a point-to-plane metric. If depth corners are examined, point-to-point metric is
applicable. The distance of visual corners is best measured using euclidean distance
of color.

Combination of domains

In order to benefit from each others characteristic, a combination of domains is
evaluated in this section. Candidates are proposed in Table 7.7, which were derived
from the previous evaluation results. Depth corners are omitted, because they have
proven not to provide an advantage in accuracy towards border points.

Domain (metric) translational (m) rotational (deg) pose pairs
Borders (point-to-plane) 0.0241 / 0.0428 1.0668 / 2.3500 107 / 98
Planes (point-to-point) 0.0048 / 0.0581 0.0904 / 0.7692 36 / 16
Visual corners (eucl. color) 0.0336 / 0.0375 1.3633 / 1.6442 62 / 46

Table 7.7: Candidates for a combination of domains (freiburg2_xyz/_rpy)

Domain (metric) translational (m) rotational (deg) pose pairs
Borders (point-to-plane), 0.0030 / 0.0243 0.2022 / 1.1255 39 / 41
Visual corners (eucl. color)

Table 7.8: Evaluation of borders and visual corners (freiburg2_xyz/_rpy)

Domain (metric) translational (m) rotational (deg) pose pairs
Borders (point-to-plane) 0.0265 / 0.0406 1.2303 / 2.0987 188 / 196
Visual corners (eucl. color) 0.0400 / 0.0599 2.0104 / 3.7268 149 / 165
Borders (point-to-plane), 0.0274 / 0.0381 1.2295 / 2.0775 137 / 119
Visual corners (eucl. color)

Table 7.9: Evaluation with long callback queue (length 100) (freiburg2_xyz/_rpy)

In Table 7.8 borders are combined with visual corners using point-to-plane and
euclidean color distance, respectively. The combination of these domains shows
an enhancement of error values for both translation and rotation. However, the
combination of feature points leads to high computation cost. Therefore, less
point pairs are registered compared to the application of single domains. The
combination of borders and planes or visual corners and planes does not provide



7.3. EXPERIMENTS 79

a reasonable number of pose pairs. The application of planes already results in a
small number of registrations. If it is combined with another domain, the number
of pose pairs decreases even more.

The evaluation shows that the quality of the registration suffers from high
computation time, which leads to larger camera movements between frames and
again to higher computation time to find a proper transformation. In order to
measure accuracy with less influence of computation time, the queue size of the
callback function is set to 100 instead of 1 in the evaluation of Table 7.9. The
point clouds are received at a rate of 2 Hz. The experiment confirms that border
points with point-to-plane metric provide the best result for computation time
and accuracy. The overall number of registered pose pairs is higher compared
to previous experiments, but the complete error is also increased. The reason
for this behavior may result from an overflow of the queue, i.e. cached point
clouds are omitted when more messages are received than processed. However,
the high number of registered pose-pairs gives a realistic representation of the
camera trajectory even if error rates are slightly higher.

7.3.2 Comparison to RGB-D SLAM

In this section datasets with faster camera movements than in the previous ex-
periments are processed for evaluation. These sequences are shown in Figure 7.3.
The local pose estimation system implemented in this thesis is evaluated against
RGB-D SLAM by Engelhard et al. [Eng11]. The open-source implementation per-
forms global registration on Kinect data using visual features as correspondences.
SURF features are detected in the RGB images. Features are matched against
reference features from the previous sensor measurement. 3D correspondences are
determined from the feature correspondences using the depth image. The camera
transformation is estimated by using RANSAC and further refined by generalized
ICP. Finally, global optimization is performed by using a pose graph. However,
for evaluation the global optimization step is omitted in order to compare it to the
local pose estimation implemented in this thesis.

Table 7.10 shows the translational and rotational RPE for RGB-D SLAM. RGB-
D SLAM reaches higher accuracy and a larger number of pose-pairs. SURF feature
correspondences give a clue for the transformation between sensor measurements.
The implementation in this thesis is not able to achieve equal or better registration
results than RGB-D SLAM (see Table 7.11 for registration using PSO). However,
other scenarios without significant visual features do not lead to successful regis-
tration. The approach in this thesis is more adaptable to different kind of features
in the environment.
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freiburg1_360 freiburg1_desk2 freiburg1_desk

freiburg1_floor freiburg1_plant freiburg1_room

freiburg1_rpy freiburg1_teddy freiburg1_xyz

Figure 7.3: Sequences of evaluation database [SME+11]

Table 7.11 and 7.12 show the improvement of registration results, if border
points and visual corners are combined. Both, translational and rotational er-
ror descrease significantly. The swarm contains 50 particles, which is a sufficient
amount in order to converge in a global optimum. If too many particles are avail-
able, each iteration step becomes even more time consuming and does not allow
the particles to explore the search space in various iteration steps. The normal
distribution within the velocity update is set to σ = 0.1 even as the usually recom-
mended value is σ = 1. The higher this value, the further particles jump away if
they are likely to converge in a local optimum. In the meantime, they are not able
to move through the search space accuratly if they jump too far away. Therefore a
lower value provides better results as it still allows particles to jump in a sufficient
range.
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Sequence translational (m) rotational (deg) pose pairs
freiburg1_360 0.0976 3.3670 496
freiburg1_desk2 0.0609 3.4712 574
freiburg1_desk 0.0483 2.4897 542
freiburg1_floor 0.0152 0.7476 1045
freiburg1_plant 0.1123 7.7840 1071
freiburg1_room 0.0656 2.8124 1150
freiburg1_rpy 0.0482 2.6326 645
freiburg1_teddy 0.1521 6.7401 1127
freiburg1_xyz 0.0255 1.2753 753

Table 7.10: RPE mean error of RGB-D SLAM without global optimization

Sequence translational (m) rotational (deg) pose pairs
freiburg1_360 0.2597 15.0692 196
freiburg1_desk2 0.5384 23.6295 252
freiburg1_desk 0.3603 19.4626 173
freiburg1_floor 0.3796 20.6614 405
freiburg1_plant 0.3902 12.2048 288
freiburg1_room 0.3997 14.2119 546
freiburg1_rpy 0.1519 12.6398 190
freiburg1_teddy 0.3286 11.9628 459
freiburg1_xyz 0.2714 14.2810 296

Table 7.11: RPE mean error of PSO registration: border points (point-to-plane)

Sequence translational (m) rotational (deg) pose pairs
freiburg1_360 0.2050 9.4347 145
freiburg1_desk2 0.3718 15.8563 127
freiburg1_desk 0.3970 15.3534 124
freiburg1_floor 0.3097 10.9196 125
freiburg1_plant 0.3818 11.0306 216
freiburg1_room 0.3627 12.8764 439
freiburg1_rpy 0.1321 9.4812 124
freiburg1_teddy 0.3287 9.2768 366
freiburg1_xyz 0.1972 10.7017 184

Table 7.12: RPE mean error of PSO registration: border points (point-to-plane) and
visual corners (eucl. distance color)



82 CHAPTER 7. EXPERIMENTS AND EVALUATION

7.4 Results

The experiments in this chapter shows that the local pose estimation system of
this thesis is a good solution for the registration problem. One has to keep in mind
that experiments using a particle swarm technique provide slightly different results
for each test run, because of the random factor in the movement behavior of the
swarm. In order to provide stable quality measurements, the experiments would
have to be carried out for an infinite number of times repeatedly and averaged
over time.

In the first part of the experiments, domains and distance metrics were eval-
uated considering accuracy and the number of registration pairs. Configurations
for the comparison of this implemention towards other approaches were developed.
RGB-D SLAM was evaluated against the new PSO approach with 9 different se-
quences of the database containing ground-truth information.

In the current configuration, the registration process is able to process 1 frame
in 1-2 seconds when border points with a point-to-plane distance metric are applied.
The optimization process rather struggles with the effects of high computation
time than with accuracy. A larger movement distance between frames makes the
optimization process even harder. An increase of framerate would be possible by
altering parameters in order to optimize the algorithm for these sequences, e.g. a
smaller number of particles, lower thresholds for convergence or to skip a cloud.
However, these alterations form a tradeoff between performance and error rates.

The combination of domains and distance measures is able to improve the ac-
curacy of registration results. Accuracy can be enhanced by using more feature
points for registration or add more particles to the swarm. However, computation
time remains a problem even if dense point clouds are reduced to feature clouds.
Larger camera movements can be supported by a larger search space if more parti-
cles were available. In the current implementation the registration result is rather
a question of computation time than accuracy.



Chapter 8

Conclusions

The increasing number of affordable color and depth sensors has made RGB-D
registration a topic of high interest to a wide community. Not only robots need
consistent 3D models of the environment for enhanced perception and understand-
ing of the world, but also humans benefit from fastly captured and accurate 3D
models. The algorithms presented in this thesis are able to create detailed envi-
ronment models from continuous RGB-D sensor data. These models are the basic
source of information for autonomous robots interacting with their environment.
Partial views from only one sensor measurement are not sufficient to sense the
complete environment. Tasks like 3D collision avoidance, object recognition and
manipulation are based on perception. Also, further extraction of semantic infor-
mation of the environment needs a reliable and accurate model of the world. By
the establishment of these techniques mobile personal robots will be a daily source
of support for the aging population e.g. by completing tasks like search-and-bring,
pick-and-place or clean up.

8.1 Summary and Conclusions

One of the main challenges of local pose estimation of RGB-D data using a MPSO
technique is optimization in high dimensional 6DOF space. The search space
has to be explored in order to let particles converge in a global optimum. Also,
noise and the amount of data from the sensor are challenging for computation
time and require efficient solutions. Finally, computational challenges arise from
these difficulties. Approaches and solutions were discussed in order to solve these
problems. These are the limitations of search space due to its application for
registration of successive sensor measurements, parallelization of iteration steps
during optimization, the usage of RGB and depth data and its reduction to feature
points.
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State of the art algorithms were introduced and divided in correspondence-
based and search-space-based approaches. Commonly, local pose estimation is
solved by correspondence-based approaches. In this thesis, a search-space-based
approach is implemented. Its advantage is its ability to be used for global optimiza-
tion, no need for a coarse registration step and the requirement of a simple distance
measure, which projects reference and floating data to one distance value. There-
fore, the need for various iteration steps until convergence should be neutralized.
Techniques and applications of PSO were introduced and similarity measurement
techniques for RGB-D data discussed. Both research areas are combined by using
similarity measurement techniques as a cost function for MPSO. The cost values
are applied to particles in order to find the correct local pose transformation of
the camera in 6DOF space.

A library for optimization using MPSO as in [KN10] was proposed. The modifi-
cation in MPSO compared to the basic PSO approach originates in the application
of a random factor with normal distribution to the movement of particles in search
space. It allows the swarm to jump out of local optima compared to the imple-
mentation using only a uniform distribution. A tradeoff between exploration and
exploitation of search space is given with the type of distribution of the random fac-
tor. The default values are zero mean and unit variance for this function. However,
the larger the variance, the further away particles randomly jump. The exploration
in search space is increased, but it is also likely that the swarm will miss the op-
timum. If the variance is rather small, the exploitation increases, but it is likely
that the registration of larger camera movements fail. The default configuration
of the variance was modified in order to enhance accuracy. In the following section
on future work, an outlook will be given on how a variable variance could provide
better results for registration.

The topology of the swarm defines the communication behavior of particles
with one another. The influence of the social network is defined by the balance
between social and cognitive component of the swarm. In this thesis, global, ring
and wheel topologies were implemented. Ring topology was chosen as the most
promising configuration for the swarm’s network. Global topology converges fast,
but often results in a local optimum. In this case all particles know the best global
position of the swarm and are constrained in exploring the search space for other
solutions. Wheel has a contrary behavior: each particle has only one partner in the
network and therefore information is spread slowly. The ring topology, with two
neighbors for each particle, has a good exploration and exploitation characteristic
in search space. The dimensions of search space and other parameters of the MPSO
library are configured by parameters. Therefore, the algorithm is easily adaptable
to other problems which require optimization. Only the development of a function
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for the specific problem to be solved is required for cost computation in order to
run optimization using the MPSO library.

For similarity estimation of RGB-D data a technique was developed, which
extracts robust feature points from various domains such as planes, borders or
corners from depth and color data. Various distance metrics were introduced to
compute a cost value between two sets of feature clouds. The implementation is
based on ROS and PCL, which are state of the art frameworks for robotic applica-
tions and point cloud processing. A visualization using the ROS visualization tool
rviz was implemented, which allows the user to understand the internal behavior
of the swarm by observing its movement.

In order to evaluate the output of the registration algorithm with a configura-
tion of distance metrics and domains of feature types visually, a test mode was
developed. It allows the user to control a particle by moving its position in search
space. The particle determines the transformation of floating data and prints its
cost function.

Aside from visual inspectation of generated 3D models during the registration
of point cloud data, an evaluation was performed. So far, search-space-based al-
gorithms per se were considered as slow when it comes to high resolution data.
They are seldom used for 3D registration. However, the newly developed algo-
rithms based on particle swarm optimization show that it is possible to solve this
highly dimensional problem in adequate time. In this thesis, MPSO was executed
on RGB-D data by reducing point clouds to distinctive feature points and con-
training the search space. The iteration steps of MPSO were parallized so that the
computation time for all swarm members is accelarated. This this way registration
with an adequate camera movement distance is possible.

Constrains in computation time when using a PSO technique for point cloud
registration still remain unsettled. Accuracy and the number of registered pose
pairs were evaluated and compared to a state of the art correspondence-based
search approach. The performance of PSO registration is about 1 frame in 1-2
seconds using border points with a point-to-plane distance metric. The optimiza-
tion process rather struggles with the effects of high computation time than with
accuracy. The number of feature points, which are determined by a selection of
domains, are a tradeoff between performance and error rates. The swarm does not
need a lot of members in order to converge in a global optimum. Already a small
number of particles, e.g. 50 swarm members as in the experiments, are able to
reach an optimum due to their smart swarm behavior.

The combination of domains and distance measures is able to improve the ac-
curacy of registration results. Therefore, by putting more effort in optimization
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of computation time, local registration by MPSO is a competitive technique com-
pared to other well known correspondence-based methods. A coarse registration
step is not necessary and it is adaptable to different domains and distance measures.
Therefore, further research in this area is recommended. This new approach has
the ability to achieve competitive results by the implementation of the proposals
in following section on future work.

8.2 Future work

The local pose estimation algorithm developed in this thesis has shown to provide
good results. However, for a globally consistent 3D model, a global optimization
technique is required. The small error between each frame-to-frame registration
step increases to a larger error over time. A frame-to-model matching provides
more consistent information.

The visualization of the generated 3D model from the estimated camera tra-
jectory uses point clouds as a representation technique. Other methods, such as
surface or volumetric data structures, are means to enhance models iteratively
with more details and reduce the continuously growing amount of data. In this
thesis, the generated 3D model is represented as a point cloud and resampled after
each registration step by applying a voxel grid filter. The challenge of increasing
data and request for accuracy is also a field of interest for building of semantic
models of the world as 3D representations.

In 6DOF space, the computation time for 3D registration using search-space-
based approaches has always been a challenging problem. An idea to improve
performance of the optimization is to enhance the initial distribution of particles in
search space. The Kinect sensor is equipped with accelerometers and a tilt motor.
In robotics, an Inertial Measurement Unit (IMU) is used to balance sensors on
moving plattforms e.g. a 2D laser range finder mounted on a pan-tilt unit for map
building. Here, the idea is to use the IMU data to enhance the initial distribution of
particles in search space. If the sensor is pointing in a certain direction, the initial
range of the particles’ position and orientation should be set to this view. If the
initial pose is a proper position, the optimization process will be able to converge
faster and large errors in pose estimation will be avoided. The distribution of the
swarm members could be adapted to the IMU data by implementing a changing
variance of the random factor in the particles’ movement.

Another promising approach to increase performance is a GPU based imple-
mentation. The parallel processing of large data benefits from GPU based imple-
mentations like it was already shown in the KinectFusion project. In this thesis,
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the accuracy of the estimated camera transformation is highly dependend on the
quality of the detected feature points. The processing of complete point cloud
data for similarity estimation in PSO would be interesting to evaluate considering
performance and accuracy. The current CPU based implementation would not be
able to live up to a reasonable performance in this configuration.

When it comes to accuracy, an interesting area of research is the determination
of distinctive types of feature points and similarity measurement techniques. A
comparison between the registration of feature points and dense data would be
interesting considering its accuracy, because dense data actually provides more
information but also contains more noise. In computer vision, 2D features are well
known. In 3D the research for feature detectors and descriptors is still growing.
Information like scale, color, normals and curvature are distinctive properties of
point clouds, which were not available in this extent in 2D computer vision.
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Listing A.1: Basic PSO due to [NdMM06]

1 randomly distribute n particles in the search space
2 repeat
3 for each particle i=1,...,n do

4 % set the personal best position
5 if f(xi) < f(yi) then
6 yi = xi;
7 end if

8 % set the neighbourhood best position (global topology)
9 if f(yi) < f(ȳi) then

10 ȳi = yi

11 end if

12 end for

13 for each particle i=1,...,n do

14 update position using Equation 4.2 and 4.1
15 end for

16 until stopping condition is true
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Listing A.2: Modified PSO as Minimization Problem due to [KN10]

1 uniformly distribute n particles in the search space
2 repeat
3 for each particle i=1,...,n do

4 % set the personal best position
5 if f(xi) < f(yi) then
6 yi = xi;
7 end if

8 % set the neighbourhood best position
9 if f(yi) < f(ȳi) then

10 ȳi = yi

11 end if

12 end for

13 for each particle i=1,...,n do

14 pi = yi − xi;
15 ni = ȳi − xi;
16 if sign(pi is same as sign (ni) in all dimensions
17 then
18 update velocity vi

k+1
using Equation 4.3 with N(0, 1)

19 else

20 update velocity vi
k+1

using Equation 4.3 with U(0, 1)

21 end if

22 update position using Equation 4.1
23 end for

24 until stopping condition is true
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Glossary

P point cloud. 19

β constriction coefficient. 39, 41, 42

ω inertia weight. 36, 38–40

ci cognitive component of particle i. 36, 37, 39–41

pi point in three-dimensional space. 19

r1 random vector in cognitive component [0, 1]. 36–40

r2 random vector in social component [0, 1]. 36–40

si social component of particle i. 36, 37, 39–41

f definition of an objective function. 19, 51

j index of dimension in search space. 35, 36, 39, 41

k number of particles in neighborhood. 33, 34

n total number of particles. 33, 60, 90, 91

ȳi local best position of particle i. 35, 67, 90, 91

vi current velocity of particle i. 35

xi current position of particle i. 35, 67, 90, 91

yi personal best position of particle i. 35, 67, 68, 90, 91

f(ȳi) cost of local best position of particle i. 35, 67, 68, 90, 91

f(xi) cost of current position of particle i. 34, 35, 67, 90, 91

f(yi) cost of personal best position of particle i. 35, 67, 90, 91
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