
Fachbereich 4: Informatik Institute for Computer
Graphics and Vision

Extraction of Natural Feature
Descriptors on Mobile GPUs

Diplomarbeit
zur Erlangung des Grades eines Diplom-Informatikers

im Studiengang Computervisualistik

vorgelegt von

Robert Hofmann

Erstgutachter: Prof. Dr.-Ing. Stefan Müller
(Institut für Computervisualistik, AG Computergraphik)

Zweitgutachter: Dipl.-Ing. PhD Hartmut Seichter
(ICG, Technische Universität Graz, Österreich)

Koblenz, im Juni 2012

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Unterschrift)

i

ii

Institute for Computational Visualistics
Computer Graphics Center
Prof. Dr. Stefan Müller
Postfach 20 16 02
56 016 Koblenz, Germany
phone.: 0049-261-287-2727
fax: 0049-261-287-2735
email: stefanm@uni-koblenz.de

Department 4: Computer Science

Thesis Research Plan (Aufgabenstellung Diplomarbeit)

Robert Hofmann
(Student ID: 204210214)

Title: Extraction of Natural Feature Descriptors on Mobile GPUs

Since the advent of smartphones and tablet computers, augmented reality (AR) became increasingly
popular. The comprehensive hardware of those mobile devices enable handheld AR researchers and
developers to advance AR from desktops to large-scale indoor and outdoor environments.
Prerequisites for such mobile AR applications are markerless tracking methods using natural features
already present in the scene to estimate the mobile device's pose. But due to the hardware and
software restrictions of today's smartphones, natural feature tracking (NFT) for mobile AR is still a
heavy-duty task that requires thorough optimization.

Fortunately smartphones have become increasingly powerful and are now even equipped with multi-
core CPUs and GPUs. Additionally, with the introduction of programmable shaders to OpenGL ES
2.0 (the graphics API for embedded systems) general purpose computations on GPUs (GPGPU)
became practical for mobile devices. Although mobile GPUs are by far not as powerful as their
desktop counterparts, it still seems beneficial to investigate how the potential of mobile GPUs can be
exploited for NFT on smartphones.

The goal of this thesis is to investigate how the expensive extraction of local descriptors for natural
features can be optimized with a GPGPU approach. A feature descriptor suitable for GPU-accelerated
NFT is chosen and a prototype to extract such descriptors from an image through GPGPU is
implemented. The prototype is tested and evaluated on different mobile devices and compared to a
CPU implementation in terms of runtime and matching performance.

Main focus:

1. Research different feature descriptors and choose one suitable for NFT and GPGPU

2. Familiarize with GPGPU through OpenGL ES 2.0

3. Design and implementation of a prototype to extract feature descriptors on a mobile GPU

4. Evaluation of the runtime of the implementation and the robustness of the extracted descriptors

5. Documentation and presentation of the results

The thesis is accomplished in cooperation with the Christian Doppler Laboratory for Handheld
Augmented Reality, Institute for Computer Graphics and Vision, Graz University of Technology.

Thesis advisors: Prof. Dr. Stefan Müller
 Hartmut Seichter, PhD, Dipl.-Ing.

Koblenz, 03/13/2012 – Prof. Dr. Stefan Müller –

iv

Acknowledgments

The author of this thesis would like to thank Hartmut Seichter for his con-
stant support during writing this thesis as well as during creating and eval-
uating the prototype program, Gerhard Reitmayr for his valuable input and
ideas, and the ICG at the Graz University of Technology for the friendly
welcome. Research in this thesis has been conducted as part of the Chris-
tian Doppler Laboratory for Handheld Augmented Reality.

vi

Zusammenfassung

In dieser Arbeit wird der Nutzen von GPGPU (Allzweckberechnungen auf
Grafikprozessoren) zur robusten Deskription von natürlichen, markanten
Bildmerkmalen mit Hilfe der Grafikprozessoren mobiler Geräte bewertet.
Dazu wurde der SURF-Deskriptor [4] mit OpenGL ES 2.0/GLSL ES 1.0 im-
plementiert und dessen Performanz auf verschiedenen mobilen Geräten
ausgiebig evaluiert. Diese Implementation ist um ein Vielfaches schneller
als eine vergleichbare CPU-Variante auf dem gleichen Gerät. Die Ergeb-
nisse belegen die Tauglichkeit moderner, mobiler Grafikbeschleuniger für
GPGPU-Aufgaben, besonders für die Erkennungsphase von NFT-Syste-
men (Tracking mit natürlichen, markanten Bildmerkmalen), die in Aug-
mented-Reality-Anwendungen genutzt werden. Die nötigen Anpassungen
am Algorithmus des SURF-Deskriptors, um diesen effizient auf mobilen
GPUs nutzen zu können, werden dargelegt. Weiterhin wird ein Ausblick
auf ein GPGPU-gestütztes Tracking-Verfahren gegeben.

viii

Abstract

In this thesis the feasibility of a GPGPU (general-purpose computing on
graphics processing units) approach to natural feature description on mo-
bile phone GPUs is assessed. To this end, the SURF descriptor [4] has been
implemented with OpenGL ES 2.0/GLSL ES 1.0 and evaluated across dif-
ferent mobile devices. The implementation is multiple times faster than a
comparable CPU variant on the same device. The results proof the feasi-
bility of modern mobile graphics accelerators for GPGPU tasks especially
for the detection phase in natural feature tracking used in augmented re-
ality applications. Extensive analysis and benchmarking of this approach
in comparison to state of the art methods have been undertaken. Insights
into the modifications necessary to adapt and modify the SURF algorithm
to the limitations of a mobile GPU are presented. Further, an outlook for a
GPGPU-based tracking pipeline on a mobile device is provided.

x

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Contributions . 3
1.4 Methodology . 4
1.5 Outline of the Thesis . 4

2 Related Work 4
2.1 Natural Feature Tracking on Mobile Phones 4
2.2 General-Purpose Computing on GPUs 6

2.2.1 General-Purpose Computing on Mobile GPUs 6
2.3 Image Features . 8

2.3.1 Implementations of Feature Descriptors 13

3 Design 16
3.1 Background . 17

3.1.1 SURF: Speeded Up Robust Features 17
3.1.2 GPGPU with OpenGL ES 2.0 19

3.2 Performance Considerations 21
3.3 Parallelizing the SURF Descriptor 23
3.4 Wrapping the OpenGL ES 2.0 API for GPGPU 25
3.5 Interface of SURF-ES . 25

4 Implementation 27
4.1 Color to Grayscale Conversion 27
4.2 Sampling of Haar Responses 28
4.3 Descriptor Formation . 29
4.4 Descriptor Normalization . 30
4.5 Encoding of High-Precision Floats in Textures 31

5 Experimental Results 32
5.1 Runtime Performance . 34
5.2 Matching Performance . 39
5.3 Power Consumption . 42
5.4 Discussion . 45

6 Conclusion 47
6.1 Future Work . 48

xi

List of Figures

1 SURF descriptor window and Haar wavelets 17
2 SURF descriptor sums . 18
3 OpenGL ES 2.0 graphics pipeline 19
4 MinGPU-ES class diagram . 25
5 SURF-ES class diagram . 26
6 Overall runtime and CPU usage of SURF-ES 35
7 Runtime of OpenCV SURF . 35
8 Runtime of SURF-ES relative to number of keypoints 37
9 Runtime of SURF-ES relative to image size 37
10 Relative runtime of SURF-ES’ parts 38
11 Runtime of SURF-ES (36 descriptor bins) 38
12 Test set images . 41
13 Matching performance of SURF-ES (viewpoint change) . . . 43
14 Matching performance of SURF-ES (illumination change) . . 43
15 Matching performance of SURF-ES (blur) 44
16 Matching performance of SURF-ES (JPEG compression) . . . 44
17 Power consumption of SURF-ES 45

List of Tables

1 Encoding of floats in a texel 31
2 Device specifications . 33
3 Floating-point precision across GPUs 39

List of Listings

1 Encoding function . 33

xii

1 Introduction

Since smartphones and the more recent tablet computers hit the mass-mar-
ket, augmented reality (AR) became increasingly popular. Their inexpen-
sive price and comprehensive hardware make them the favorable platform
to handheld AR researchers and developers. Because such devices usually
feature a back side video camera and a relatively large display on the front,
they correspond very well to the intuitive “Magic Lens” metaphor [5]. In
this context the device acts as a “window” into the virtually augmented
real world. By tracking the device’s pose (i.e. its position and orientation)
relative to the world, virtual objects can be rendered perspectively correct
and superimposed on the video camera stream, which is then finally dis-
played on the device’s screen. The correct alignment of those virtual objects
with the view of the real world (registration) is the key to convincing and
immersive AR applications.

1.1 Problem Statement

In order to achieve a correct registration of the virtual augmentations, ac-
curate tracking techniques are essential. Since smartphones are usually
equipped with a video camera, it is reasonable to utilize it for that pur-
pose. Past research on this so called visual tracking has spawned several
tracking libraries including the popular ARToolKit [22], ARTag [13], AR-
ToolKitPlus [46] and the Studierstube Tracker [45].

Those libraries track the camera pose by searching for fiducial land-
marks with known size and shape (markers) in the camera images. As a re-
sult, AR applications are restricted to the environment where such markers
have been placed, which makes the AR device rather portable than mobile.
However, the goal is to drive handheld AR towards mobility in large-scale
outdoor environments.

Prerequisites for truly mobile AR are markerless visual tracking meth-
ods, which do tracking from distinctive features already present in the
scene. Since such natural features are seldom as distinctive as markers,
their detection is computationally more intensive. Furthermore, the local
area around a feature needs to be described in a way that the feature can
be matched against other features detected in a different camera frame. Ex-
tracting such a feature descriptor from the image data also is computation-
ally expensive when robustness against image transformations and illumi-
nation changes is required. This so called natural feature tracking (NFT)
therefore poses a challenge especially to the restricted computational capa-
bilities of smartphones.

1

1.2 Motivation

Despite its complexity and computational costs, it has been shown that
NFT is feasible on smartphones as long as the algorithms are carefully tai-
lored to the limitations of the device and the requirements of the AR appli-
cation [26, 44].

The computational power of a mobile device is in large part restricted
by its battery capacity. Yet, smartphones have become increasingly faster:
not only their clock rates grew, but also more complex and dedicated pro-
cessing units were introduced. The Nvidia Tegra 3, for example, features a
quad-core CPU, a twelve-core GPU and a companion core for low-power
modes [12]. Also programmable DSPs (digital signal processors) are fea-
tured on many platforms to process multimedia data. In order to spread
the load of an AR application it seems therefore advantageous to not only
utilize the available cores of a mobile CPU, but also the additional process-
ing units. In particular, mobile GPUs are becoming more and more pow-
erful in order to support the ever larger screen resolutions and demanding
visual appearance of mobile operating systems.

Bringing GPUs into use for problems outside the scope of computer
graphics has provided a leap of computation power on the desktop. Since
the standard graphics pipelines of OpenGL and Direct3D are fully pro-
grammable through so called shader programs, those APIs reached a level
of flexibility that made it possible to harness the specialized hardware of
GPUs for more general computations beyond rendering 3D computer graph-
ics. Such general-purpose computing on GPUs (GPGPU) can benefit from
the large number of processing units available on a GPU. As long as the
applied algorithm is data-parallel, i.e. there are no dependencies between
individual data elements and all of them are transformed by the same oper-
ation, it is possible for the GPU to process as many data elements in parallel
as there are processing units on the GPU. Mobile GPUs undergo the same
restrictions in terms of power efficiency as mobile CPUs. Consequently,
they are more restricted than their desktop counterparts. These restrictions
are reflected in computer graphics APIs such as OpenGL ES (OpenGL for
embedded systems), which is a subset of OpenGL with a few additions
to alleviate the limitations of embedded systems. Since programmable
shaders have been introduced in OpenGL ES 2.0, GPGPU became practi-
cal on many mobile devices supporting this API.

It seems beneficial to investigate how the potential of mobile GPUs can
be exploited for NFT on smartphones. Especially considering that the ma-
jority of operations required to describe trackable features in an image are
highly data-parallel pixel operations. However, due to the limitations of
mobile GPUs, research on GPGPU for mobile applications has not gained
as much attention as for desktop GPUs yet. This is particularly true for
mobile application scenarios such as AR requiring interactive or real-time

2

response speeds. With this work we therefore intent to contribute to the
research of GPGPU in the context of mobile NFT.

1.3 Contributions

Specifically, we want to evaluate whether it is feasible to off-load the expen-
sive generation of feature descriptors from the mobile CPU onto the mobile
GPU of a smartphone. Therefore, we are addressing the following research
questions in this thesis:

• What feature descriptors are suited for mobile GPGPU?

• How efficiently can feature descriptors be extracted from an image by
means of mobile GPGPU?

• Can CPU-based mobile NFT applications benefit from GPU-acceler-
ated feature descriptor extraction?

• How does a GPU-accelerated feature descriptor extraction perform
across different mobile devices?

• How does the reduced floating-point precision of mobile GPUs affect
the descriptor quality in terms of matching performance?

Mobile NFT systems often rely on the extraction of feature descriptors
for tracking initialization and recovery in the event of tracking failures.
Applying such tracking-by-detection methods as a general means is usu-
ally not feasible on mobile devices and therefore restricted to special cases.
Improving the efficiency of the descriptor extraction would allow more ro-
bust feature descriptions and more tracking stability. Furthermore, utiliz-
ing the mobile GPU disburdens the CPU of the mobile device, which frees
resources for other AR related computations1. GPGPU programs are also
very scalable and can easily profit from future mobile GPUs featuring more
shader units without further modifications.

Because smartphones are wide-spread and relatively inexpensive, mo-
bile AR experienced a significant popularization. The research presented
in this thesis is therefore relevant for a wide range of mobile AR applica-
tions. Note that the proposed GPGPU optimizations are also useful for
other mobile applications that rely on feature extraction and matching (e.g.
panorama stitching and object recognition).

1One still has to take into account that the mobile GPU may be occupied with render-
ing the virtual augmentations. Whether a mobile AR application actually can benefit from
GPGPU therefore depends on its general GPU load as well.

3

1.4 Methodology

In order to assess the feasibility of our mobile GPGPU approach to feature
descriptor extraction, we proceeded according to the following plan of ac-
tion:

1. Evaluate several state of the art feature descriptors and choose one
suited for mobile GPGPU.

2. Implement a method to extract such descriptors from images on mo-
bile GPUs.

3. Compare our implementation with a reference CPU implementation
of the descriptor in terms of runtime speed and matching perfor-
mance.

4. Compare our implementation’s performance across different mobile
devices.

1.5 Outline of the Thesis

Section 1 of this thesis briefly introduced the challenges of NFT on mobile
devices and why we consider them to be remediable by means of mobile
GPGPU. Section 2 reviews previous work related to NFT on mobile phones,
GPGPU with mobile GPUs, as well as CPU- and GPU-based approaches to
natural feature description. Section 3 first introduces deeper background
knowledge of the algorithms and tools we used and then proceeds with ex-
plicating our design considerations as well as presenting our design itself.
Section 4 explains our final implementation in detail. Our experimental re-
sults along with a discussion of those are presented in section 5. Section 6
summarizes the results based on our experiments and provides an outlook
towards the application of our implementation in an NFT pipeline.

2 Related Work

2.1 Natural Feature Tracking on Mobile Phones

To this time only a few NFT systems accomplish interactive or faster frame
rates for AR applications on mobile phones.

Wagner et al. [44] combined active search and tracking-by-detection to
achieve both real-time performance and robustness against tracking fail-
ures. Given a coarse pose of the mobile phone, their system efficiently
estimates the pose change between successive frames by cross-correlating
image patches with known features, which have been affinely warped and
back-projected into the current image frame. For initial pose estimation

4

and reinitialization in case the tracking fails, the system switches to a much
slower, yet more robust tracking-by-detection using a modified version of
SIFT [29].

In [33] Oberhofer et al. adapted the approach of combining two track-
ing techniques with orthogonal characteristics, but replaced SIFT with the
more lightweight BRIEF descriptor [8] for more efficient descriptor extrac-
tion and matching. Their NFT system is solely based on web technologies
like JavaScript, HTML5 and WebGL. It runs with any HTML5 compatible
browser and achieves real-time performance on desktop PCs and interac-
tive frame rates on the Samsung Galaxy S II smartphone.

Herling et al. [17] employ a two-phase approach in their NFT system
as well. It also relies on invariant descriptors of point features (in this
case a heavily modified version of SURF [4]) for initial pose estimation of
the mobile phone. But instead of switching to active search with normal-
ized cross-correlation (NCC) afterwards, their system matches un-oriented
SURF features between the local areas around predicted feature positions
and a feature map. The authors have shown that they were able to detect,
describe and match SURF-36 features in real-time but gave no further eval-
uation of their tracking system.

Lima et al. [28] use lines instead of point features to track three-dimen-
sional targets on the Windows Mobile Pocket PC platform. Depending on
the target complexity, their system runs at interactive frame rates or close
to real-time. To detect the visible edges of the tracking target, the graphics
hardware is utilized through OpenGL ES 1.0 by rendering a hypothetical
pose of the tracking target’s wireframe model.

A different approach took Klein et al. [26] with their NFT system coined
PTAM (parallel tracking and mapping). Instead of tracking a designated
target, their system builds a dynamic map of arbitrary visual features al-
ready present in the environment and searches for them in subsequent cam-
era frames for pose estimation. This concept is based on simultaneous lo-
calization and mapping (SLAM), which is common in autonomous robots
research. Although PTAM was originally designed for non-handheld se-
tups, the authors have also modified it to work on the Apple iPhone 3G [27].

Generally speaking, current NFT systems track the camera pose in two
different ways: extracting and matching either dense low-quality features
(e.g. corners as in PTAM [26]) or sparse high-quality features (e.g. SIFT
features as in [14]). The main difference being that the former approach
actively addresses the invariance problem (i.e. robustness against image
transformations, illumination change and perspective distortion) efficiently
during correspondence search, whereas the latter achieves better robust-
ness by extracting invariant feature descriptions in the first place. Although
such robust descriptors are computationally much more expensive, they
also exhibit more data-parallelism, since correspondence search becomes
decoupled from system state. Wagner et al. [44] exploited the orthogonality

5

of both approaches and fused them into a flexible two-lane NFT pipeline,
capable of switching between either of them depending on tracking sta-
bility. However, with the advent of increasingly powerful mobile graphics
hardware, it is to investigate how GPGPU can alleviate the shortcomings of
tracking-by-detection and invariant feature descriptors, by exploiting their
inherent parallelism.

2.2 General-Purpose Computing on GPUs

When programmable shaders were introduced to the graphics libraries Di-
rect3D and OpenGL, their fixed-function pipelines to render three-dimen-
sional geometry became flexible and allowed more complex visual effects.
This flexibility of GPU programming awoke the interest of researchers in
diverting those high-performance many-core processors from their intend-
ed use and employ them to solve problems beyond the scope of computer
graphics but with similar data-parallel characteristics.

However, GPGPU programming through shaders is complicated [16]:
algorithms have to be cast in terms of a graphics API, which sometimes
enforces severe restrictions on the data format and the computational ac-
curacy of the operation. To make matters worse, the underlying GPU ar-
chitecture was often not fully exposed or documented. Nevertheless, by
carefully remodeling a problem to fit the parallelization concepts of GPUs,
it is possible to achieve large speed-ups over a sequential CPU implemen-
tation.

With the release of Nvidia CUDA (compute unified device architecture)
and ATI Stream (formerly Close to Metal), GPGPU took a huge step for-
ward. GPUs were now programmable with more general APIs that disbur-
dened GPGPU developers from struggling with the peculiarities of graph-
ics libraries. However, each of those two GPGPU APIs is tied to graphics
hardware of the same vendor, thus making cross-platform development
cumbersome.

To provide more abstraction to parallel computing, the Khronos Group
later released the open standard OpenCL (open computing language). This
framework is designed for parallel programming on heterogeneous plat-
forms consisting of multi-core CPUs, GPUs and other processors like DSPs.
Consequently, OpenCL abstracts vendor-specific hardware details, which
means that an OpenCL program is executable on every hardware that im-
plements the OpenCL specification.

2.2.1 General-Purpose Computing on Mobile GPUs

Although advanced GPGPU APIs like OpenCL and CUDA are available on
many hardware devices for desktop PCs and scientific computing systems,

6

they are still lacking on mobile devices2. In order to ease adherence to the
OpenCL standard on embedded platforms, its specification also features an
“embedded profile” which relaxes the OpenCL compliance requirements
for handheld and embedded devices. Similar to the OpenCL “full profile”
specification, to date there are no end-user mobile devices exposing this
feature.

This means that GPGPU on mobile devices is currently only possible
through OpenGL ES. Since OpenGL ES 1.0 and 1.1 only support a fixed-
function pipeline, OpenGL ES 2.0 is the only reasonable choice for mobile
GPGPU. Fortunately, most newer devices support the 2.0 version, so we
have a wide-spread API at hand to develop for a wide range of embedded
systems (e.g. smartphones, tablets and development boards like the Pand-
aBoard).

Recent research work has shown that GPGPU can accelerate image pro-
cessing even on mobile devices. As a result of their limited potential for
parallelization compared to desktop GPUs, the most noticeable increase in
performance is achieved for pixel-wise operations with low complexity (i.e.
low shader instruction count and rare dynamic branching). Fortunately,
GPU implementations are highly scalable, so current systems will likely
profit from future mobile GPUs with more shader processors, increased
clock rates, and higher memory bandwidth.

A few attempts have been made to implement feature descriptors with
OpenGL ES 2.0. For reasons of coherence we will address those works in
section 2.3.1 after the feature descriptors in question have been introduced.

López et al. [6] employed NFT-related techniques, such as feature ex-
traction, matching, and camera motion estimation, to implement a pano-
rama builder for mobile phones. They applied GPGPU methods to con-
struct the final image panorama in a post-processing step. Even though the
used OpenGL ES 1.1 API is restricted to the fixed-function pipeline, which
only allows general purpose computations through texture combiners, the
authors achieved noticeable speed-ups for some parts of their system. For
the most parts, using GPGPU was not beneficial, since the overheads intro-
duced by the necessary data uploads and read-backs swallowed much of
the performance gain.

Using the OpenGL ES 2.0 API, several image processing algorithms, in-
cluding the Harris corner detector, have been ported to the GPU of a mobile
device in [41]. Depending on the input image size, the achieved perfor-
mance ranges from interactive to real-time. The authors did not provide a
comparison to implementations running on the mobile device’s CPU.

In [7] LBP (local binary pattern) feature extraction for face tracking has

2Even though some manufacturers of mobile GPUs already implemented OpenCL capa-
bilities for their products (e.g. as on the PowerVR SGX535 by Imagination), their customers
so far chose not to expose this feature to the end-user. This is probably due to reasons of
energy efficiency.

7

been implemented with GPGPU through OpenGL ES 2.0. Although their
GPU implementation is more energy efficient than an equivalent CPU im-
plementation, it’s runtime performance suffered from the GPU’s restric-
tions not allowing efficient binary arithmetic. Nevertheless, the authors
were able to improve their system’s performance by concurrently process-
ing two successive frames with the mobile CPU and GPU.

Wang et al. [47] implemented a face recognition system for Android
smartphones. Exploiting the graphics hardware to extract Gabor-based
face features, they could speed up their application’s response time by a
factor of four.

2.3 Image Features

The performance of a NFT system strongly depends on the method used to
detect trackable image features and the way those are described for robust
matching. To this day, numerous feature detectors and descriptors have
been proposed. Many of them largely differing in their invariance against
image transformations (translation, rotation, and scale), viewpoint change,
illumination variation, blur, noise, and image compression artifacts. Es-
pecially in the context of NFT on mobile devices, the computational cost
of detecting, describing, and matching features is another important factor
that must be taken into account when choosing the right method for feature
extraction.

Edges or, more generally, lines are a class of image features with in-
teresting properties (such as structural abstraction of the scene, resilience
against motion blur and suitability for three-dimensional tracking targets),
but also with significant drawbacks that make them impractical in our con-
text. Efficient line tracking for AR (e.g. as in [49] and [28]) requires at least a
wireframe model of the tracking target. Such a model, however, is consid-
erably harder to acquire than an image of the target’s surface. Additionally,
lines are not distinctive in a local sense, which makes one-to-one compar-
isons against match candidates unfeasible. Hence, matching is performed
globally by taking the geometric relations of the detected lines to one an-
other into account. From the perspective of GPGPU, features are preferred
to be fine-grained with no dependencies between them. Line features do
not match that preference: they are an abstract representation and intro-
duce dependencies between the elements they are composed of (the points
on the line) as well as between each other during matching (the aforemen-
tioned geometric relations). Point-like features, such as corners and blobs
(image regions with a center point), are more suitable for GPGPU, as they
are restricted to a local area around their position in the image and are in-
dependent of one another.

Extracting positions of point-like features from an image is done with a
feature detector. In the simplest case such a detector filters the image with

8

a certain operator, deciding for each image position whether it is “interest-
ing” or not. More advanced detectors also assign a measure of “interest-
ingness” (detector response strength) to the feature position and operate
on an image pyramid (i.e. multiple, differently sized versions of the input
image) to capture features of different size (scale). Such point-like features
are often referred to as keypoints.

Once all features have been detected, they are usually collected in a
list-like structure. Although this is naturally easy in a CPU program, it is a
significantly more challenging task to do on the GPU. Given the output of a
GPGPU feature detector as a sparse matrix in video memory, [11] and [52]
proposed two different ways to generate a point list from it on the GPU:
Cornelis et al. using CUDA and Ziegler et al. using a multi-pass technique
with programmable shaders. However, both approaches cannot be used on
a mobile GPU, because there is so far no support for high-level GPU APIs
like CUDA and multi-pass operations that require a very large number tex-
ture fetches are subject to significant slow-downs on mobile GPUs. The
remaining options are processing the detector output on the CPU or do-
ing feature detection on the CPU in the first place. Because the first option
introduces the bottleneck of downloading the detector output from video
into system memory, we therefore decided to use a CPU feature detector.

Although many different feature detectors have been proposed so far,
we will only briefly introduce the FAST detector here for further under-
standing, because of its interesting properties for mobile NFT and the focus
of this work on feature descriptor extraction.

FAST (features from accelerated segment test) [36] is a high-speed cor-
ner detector based on simple intensity comparisons between a center pixel
and the neighbor pixels in a Bresenham circle of given radius around it.
Later, those comparisons were optimized using machine learning [37, 35].
FAST is currently the fastest corner detector available. Originally it does
not support scale invariance, but it has been shown that FAST can effi-
ciently be applied to an image pyramid for scale-invariant features (e.g. in
[26], [44], and [48]). Furthermore, FAST has also been extended to calculate
reproducible feature orientations in [38].

Given a list of feature positions (ideally accompanied by a scale fac-
tor for each feature), one needs to compare this set of features to a set
of different features (e.g. from another camera frame or a feature map of
the tracking target), to find feature correspondences between images. This
matching is done by analyzing the local area around the feature positions
in question. One can then either directly compare intensity values of local
image patches or try to determine matches between more abstract represen-
tations of those patches (so called descriptors). The former is usually the
faster method, while the latter approach allows more robust matching (e.g.

9

in terms of invariance against different lighting conditions or viewpoint
change) at the cost of computing such a feature descriptor beforehand.

Below we will give a brief overview of feature descriptors that have
either been published recently or already been applied in the context of
mobile NFT.

SIFT (scale-invariant feature transform) [29] combines a feature detec-
tor and descriptor, designed to be invariant to image transformations and
partially invariant to changes in perspective and illumination. To detect
features, it searches for local extrema in a difference of Gaussians (DoG)
scale-space pyramid. For each such feature position a main orientation is
calculated and a gradient-based descriptor is extracted from a local patch
around the feature. Despite its high computational cost is SIFT very pop-
ular in computer vision for its excellent matching performance. When ap-
plied for mobile NFT, SIFT has to undergo major modifications to become
computationally feasible (e.g. as in [44]).

The fact that SIFT relies on gradient histograms, complicates an efficient
GPGPU implementation with OpenGL ES 2.0. Implementing a histogram
on a mobile GPU requires branching to sort the samples into the correct
bins, which is inherently disadvantageous for GPU parallelism. Other GP-
GPU methods to generate histograms require a high number of render
passes with numerous texture fetches or atomic write operations to prevent
multiple threads from incrementing a histogram bin at the same time. But
the former is not feasible and the latter not available on mobile GPUs yet. In
[39] race conditions between GPU threads are circumvented by scattering
point primitives and blending them to accumulate the histogram values.
But floating-point textures are required to avoid over-saturating histogram
bins due to lack of precision.

SURF (speeded up robust features) [4] tackles SIFT’s deficiencies by ex-
tensively using integral images [43] to avoid the costly construction of a
scale-space pyramid during a preprocessing step. The integral image en-
ables SURF to apply box filters of arbitrary scale to the input image in
almost constant time, rather than repeatedly down-sampling and Gaus-
sian filtering it altogether. Furthermore, the descriptor is based on gradient
sums instead of gradient histograms like in SIFT, which effectively makes
it smaller in size, faster to extract, and less sensitive to noise. Studies have
shown that SURF features are indeed much faster to compute, while pre-
serving a matching performance comparable to SIFT [3]. Even so, SURF
is not fast enough for real-time NFT applications, not to mention on mo-
bile devices, and therefore had to be approximated to be feasible for mobile
NFT in [17].

SURF’s gradient sums are a better match for GPU architecture than

10

SIFT’s gradient histograms are. Although they also require a costly gather-
ing operation (i.e. one fragment fetches and accumulates a relatively large
number of samples) in a mobile GPGPU implementation, they do not de-
pend on branching and can alternatively be approximated with mipmaps
(e.g. as in [11]). The construction of an integral image, however, is an ex-
pensive multi-pass operation for mobile GPUs. But as in [11], this step
can be avoided by constructing the scale-space pyramid through hardware-
accelerated mipmapping.

BRIEF (binary robust independent elementary features) [8] is a binary
string feature descriptor based on intensity difference tests of randomly
distributed point pairs around a feature position. To form 256 of such pairs
proved to be a good compromise between computational effort and match-
ing performance, thus yielding a 256 bit descriptor vector. Those descrip-
tors can be matched efficiently with the Hamming distance as a similarity
measure. The authors showed that BRIEF performs comparable to SURF
in terms of recognition rate, while being significantly faster to extract and
match. However, BRIEF does not offer any invariance against scale or rota-
tion.

Two things appear worth mentioning about BRIEF in the context of mo-
bile GPGPU. First, its dependence on randomly generated numbers ham-
pers efficient GPGPU parallelization, since in OpenGL ES 2.0 random num-
ber functions are non-standard and may only be exposed through exten-
sions. The common workaround would be to sample from Gaussian noise
textures generated by the CPU and copied into video memory. However,
this requires an additional preprocessing step for each frame. Second, the
BRIEF descriptor heavily relies on binary arithmetic for fast matching, but
since mobile GPUs usually do not support this feature, that advantage
would be lost in a GPU implementation. Although a GPGPU paralleliza-
tion of BRIEF may still be beneficial, it does not seem as advantageous as
with other, more robust feature descriptors judging from its GPU-unfriend-
ly nature.

ORB (oriented FAST and rotated BRIEF) [38] is combination of the FAST
detector and the BRIEF descriptor. The FAST detector has been extended to
calculate a measure for response strength and a reproducible orientation for
each feature positions. The orientation is determined as the vector between
the feature’s center and the intensity centroid of a circular patch around it.
Further has the BRIEF descriptor been modified, in that it does not rely on
randomly generated tests, since they become correlated when distributed
along feature orientation and therefor reduce descriptiveness of the feature
vector. Instead the authors use a set of uncorrelated tests determined by
a machine learning algorithm. It has been shown that ORB features are

11

significantly faster to compute than SIFT or SURF features, but are not as
robust as those two prominent descriptors [25].

Like BRIEF, does the ORB descriptor trades robustness for very fast
matching based on binary arithmetic. But, as mentioned above, a GPGPU
implementation of ORB with OpenGL ES 2.0 would not benefit from this.

OSID (ordinal spatial intensity distribution) [9] is descriptor designed
to be invariant to more complex illumination changes than the usually as-
sumed intensity shift or affine brightness changes. It is based on the idea
to use relative orderings of pixel intensities instead of their absolute val-
ues, since this ordering remains unchanged between local patches of cor-
responding image locations as long as the brightness change function is
monotonically increasing. For descriptiveness also the spatial information
of the local patches are captured by subdividing them into pie segments.
Both clusterings form a two-dimensional histogram, which is rasterized
into a 128 byte descriptor vector. The authors have shown that OSID out-
performs other descriptors under presence of nonlinear brightness change
functions like square or square root and applied it for automatic color cor-
rection and rectification of uncalibrated stereo image pairs.

OSID’s two-dimensional histogram and the necessity of sorting inten-
sities pose two particularly hard challenges for mobile GPGPU. An imple-
mentation with OpenGL ES 2.0 therefore seems not feasible, when runtime
performance is as important as in the context of NFT.

Normalized cross-correlation (NCC) is a distance measure used to com-
pare intensity values between an image and a search template directly. For
this purpose the intensities around a feature position constitute a very sim-
ple descriptor vector of that feature. Invariance against changes in illumi-
nation is achieved by normalizing the descriptor to unit length. However,
correlating such a descriptor with a whole image results in a high compu-
tational complexity. Therefore, the search region has to be narrowed down
by predicting correspondence locations. Sub-sampling the template and
the search window to reduce the dimensionality of the correlation can fur-
ther decrease the complexity of the comparison. Also an integral image can
be used to speed-up the calculation of the denominator for normalization.

Under certain circumstances NCC can be a very efficient tool to de-
termine correspondences between frames. For example, in [44] NCC is
used when the mobile device’s pose has been estimated with tracking-by-
detection and only small pose changes between frames are assumed. A
corresponding feature is then predicted to be located in a small image re-
gion, which reduces the complexity of NCC significantly. But because NCC
is by definition not invariant to scale and perspective distortions, these is-
sues have to be actively addressed with additional measures like applying

12

it on image pyramids and affinely warping the search template. This basi-
cally means that the generation of invariant feature descriptors and feature
matching are merged together in an inseparable way, which introduces de-
pendencies that complicate a GPGPU implementation. In our context, it is
therefore more reasonable to rely on descriptors addressing the invariance
problem during a separate descriptor generation step prior to matching, in
order to increase the parallelism of the task.

SIFT and SURF are the de facto standards for invariant feature detection
and description, with SURF being an efficient approximation of SIFT. Their
unmatched robustness comes at the price of a high computational complex-
ity. Despite from being faster to compute as SIFT, the SURF descriptor also
has the advantage of being a better fit for GPU architecture: instead of be-
ing histogram-based, SURF accumulates feature characteristics with sums,
which are easier to implement especially on the restrained GPUs of mobile
devices. From our survey on feature descriptors we therefore found the
SURF descriptor to have the most favorable properties in terms of robust-
ness and GPGPU compatibility. SIFT is also an interesting candidate, but
is ranked behind SURF due to the higher computational complexity of its
descriptor extraction part.

2.3.1 Implementations of Feature Descriptors

In this section we briefly review notable CPU and GPU implementations of
SURF and SIFT for both desktop PCs and mobile devices.

Implementations for Desktop PCs

• The original SURF3 and SIFT4 libraries are closed-source and cannot
be used for in-depth comparison to our implementation.

• The OpenCV library5 includes implementations of SIFT and SURF,
is open-source, and pre-compiled libraries are also available for An-
droid and ARM-based systems.

• OpenSURF6 is one of the earliest open-source implementations of
SURF and widely used.

• Pan-o-matic7 is an open-source software to automatize the generation
of panorama images. It includes a SURF implementation that yields
results which are identical to the original SURF library [15].

3http://www.vision.ee.ethz.ch/~surf/download.html
4http://www.cs.ubc.ca/~lowe/keypoints/
5http://opencv.willowgarage.com/wiki/
6http://www.chrisevansdev.com/computer-vision-opensurf.html
7http://aorlinsk2.free.fr/panomatic/

13

http://www.vision.ee.ethz.ch/~surf/download.html
http://www.cs.ubc.ca/~lowe/keypoints/
http://opencv.willowgarage.com/wiki/
http://www.chrisevansdev.com/computer-vision-opensurf.html
http://aorlinsk2.free.fr/panomatic/

• Parallel SURF8 is based on Pan-o-matic, but uses OpenMP to paral-
lelize SURF and spread its workload among the available CPU cores.

• SIFT++9 is an open-source C++ implementation of SIFT.

Due to the high computational cost of SURF and in particular SIFT,
many works accelerated both algorithms by means of GPGPU with tra-
ditional shaders, high-level GPGPU APIs or a mixture of both.

• In [11] a GPU implementation of SURF using the Cg shading lan-
guage and CUDA is proposed. In order to take full advantage of
the graphics hardware the authors made heavy use of mipmaps and
other methods closely related to graphics processing. For instance,
their implementation constructs a scale-space pyramid of the input
image with a mipmap instead of an integral image, which is a natural
fit for graphics hardware. The implementation extracts SURF feature
positions and descriptors in real-time and is available for download10

but closed-source.

• Terriberry et al. [42] implemented SURF using only OpenGL and Cg.
Their implementation features a heavily optimized 2D-parallel prefix-
sum algorithm to compute the integral image. To generate a list of the
detected features the authors used Ziegler et al.’s HistoPyramids [52].
Both algorithms require a very large number of render passes to com-
plete, but due to their high level of parallelization they are still very
efficient on desktop GPUs.

• Several works implemented SURF using APIs like CUDA (CUDA
SURF11, OpenCV also features a CUDA implementation of SURF)
and OpenCL (clsurf12, OpenSurfCL13). Because such high-level GP-
GPU APIs are not available on mobile devices yet, those works are
mentioned here only for completeness and will not be evaluated fur-
ther.

• Heymann et al. [18] implemented SIFT for GPUs with programmable
shaders. To maximize parallelization and to utilize modern GPUs’
SIMD14 architecture the authors remodeled many parts of the algo-
rithm, carefully restructuring the input data of computations to fit
into OpenGL’s texture formats.

8http://sourceforge.net/apps/mediawiki/parallelsurf/
9http://www.vlfeat.org/~vedaldi/code/siftpp.html

10http://homes.esat.kuleuven.be/~ncorneli/gpusurf/
11http://www.d2.mpi-inf.mpg.de/surf
12http://code.google.com/p/clsurf/
13http://sourceforge.net/projects/opensurfcl/
14Single instruction, multiple data—a parallelization concept often referring to data-

parallel vector computations. See section 3.1.2 for a more detailed explanation.

14

http://sourceforge.net/apps/mediawiki/parallelsurf/
http://www.vlfeat.org/~vedaldi/code/siftpp.html
http://homes.esat.kuleuven.be/~ncorneli/gpusurf/
http://www.d2.mpi-inf.mpg.de/surf
http://code.google.com/p/clsurf/
http://sourceforge.net/projects/opensurfcl/

• SiftGPU15 is a project offering two GPU implementations of SIFT: one
using OpenGL’s GLSL shading language and the other using CUDA.
The GLSL version uses an efficient GPU/CPU mixed method based
on the HistoPyramids algorithm to build a compact list of feature po-
sitions.

None of those GPGPU implementations can be used in our case. As al-
ready mentioned are high-level GPGPU APIs like CUDA and OpenCL cur-
rently not available for mobile GPUs, which renders such implementations
unusable in our context. The implementations based on programmable
shaders often use OpenGL features not supported by mobile GPUs or are
written in a shading language incompatible to GLSL ES.

Implementations for Mobile Devices

• Chen et al. [10] optimized the original SURF algorithm and achieved
an increase in performance by 30%. Their implementation is targeting
mobile CPUs and has been tested on the Nokia N95, on which it runs
about 22 times slower compared to a desktop PC.

• In [44] an optimized version of SIFT is used for tracking initializa-
tion. The authors dropped the expensive creation of a DoG scale-
space pyramid and applied the FAST detector on an image pyra-
mid to extract scale-invariant feature positions. The authors included
their SIFT variant into a tracking-by-detection pipeline running at ap-
proximately 25 Hz on the Asus P552w. On a desktop PC the system
runs about 10 times faster.

• In [17] an optimized variant of SURF targeting mobile devices has
been proposed. The authors mainly improved and simplified the
orientation assignment, added multi-core support and employed the
smaller SURF-36 descriptor. This optimized SURF is able to detect
and extract oriented SURF features on the Toshiba TG01 in less then
60 ms. On a desktop PC it runs about 15 times faster than the original
SURF library.

• In [48] Weimert et al. improved the runtime performance of SURF on
mobile devices by replacing its feature detector with a 3D-adaption
of the FAST detector. For that FAST has been adjusted to work on
scale-space pyramids of gradient images, in order to detect scale-
invariant blob features rather than corners lacking scale information.
An additional measure of detector response strength has been imple-
mented to allow for non-maximum suppression. The regular SURF

15http://cs.unc.edu/~ccwu/siftgpu/

15

http://cs.unc.edu/~ccwu/siftgpu/

algorithm was employed for orientation assignment and feature de-
scription. The authors could speed up the detection and extraction of
SURF features by 30%, but were not able to achieve real-time perfor-
mance on the Nokia N95-6. The construction of the image pyramid
and extraction of features turned out to be the most computationally
intensive parts.

The above four systems were all targeting mobile CPUs. To this date,
only very few approaches are known to utilize the mobile GPU for feature
detection and description..

• A GPU/CPU mixed implementation of the SURF algorithm is pre-
sented in [50]. The authors developed for a Nvidia Tegra platform
using OpenGL ES 2.0. Due to limitations of OpenGL ES, the imple-
mentation reads back results from video memory multiple times to
perform compaction and search operations with the CPU. The au-
thors did not report runtime measurements, but because of the read-
backs we expect it to be below the runtime requirements for NFT.

• The feasibility of mobile GPGPU is evaluated in [23]. The author de-
veloped a GPU/CPU mixed implementation of the SIFT feature de-
tector using OpenGL ES 2.0 on smartphones with Qualcomm Adreno
20x GPUs. The implementation requires over 900 ms to extract SIFT
feature positions from a 200×200 image. The author determined the
creation of the scale-space pyramid and a readback to generate the
keypoint list with the CPU to be the main cost drivers of the opera-
tion.

• SIFT for iPhone16 is an open-source GPU implementation of SIFT
with OpenGL ES 2.0. This system also reads back the feature detector
result to create a compact list of keypoints with the CPU.

3 Design

From our review of known feature descriptors and their implementations,
we chose SURF as our candidate for implementation. Both SIFT’s and
SURF’s robustness is superior to those of other feature descriptors. But,
SURF is computationally less complex and lends itself towards an easier
GPU implementation.

For the comparison of runtime and matching performances between the
desktop and mobile devices as well as between the mobile CPU and GPU,
we chose the SURF implementation featured in OpenCV as a reference,
because of its availability for Android, iOS and other mobile platforms.

16http://github.com/Moodstocks/sift-gpu-iphone

16

http://github.com/Moodstocks/sift-gpu-iphone

Our implementation uses OpenGL ES 2.0 and the GLSL ES 1.0 shading
language as they are available for many mobile platforms and is referred
to as SURF-ES throughout the rest of this thesis. In order to support as
much devices as possible, our implementation avoids utilizing OpenGL ES
extensions unless they are absolutely necessary.

3.1 Background

This section introduces the background knowledge necessary to under-
stand the implications that led to our design and implementation.

3.1.1 SURF: Speeded Up Robust Features

SURF is a combination of a feature detector and feature descriptor. Ex-
trema are extracted from a Hessian matrix-based image pyramid to obtain
scale-invariant blob features. To accelerate the construction of the scale-
space pyramid, the second-order Gaussian derivatives are approximated
with simple box filters, which can be computed very efficiently with the
help of integral images [43]. Using an integral image, the calculation of
a filter sum becomes independent of the filter’s scale, i.e. arbitrarily sized
box filters can be computed in almost constant time. Since this thesis fo-
cuses on SURF descriptor extraction, please refer to [4] for a more detailed
explanation of SURF’s “Fast Hessian” feature detector.

Figure 1: Depiction [42] of SURF’s sample grid and the Haar wavelets computed
at each samples position. Both are proportional to feature scale s.

In order to capture the image intensities surrounding a feature, the
SURF descriptor spans a sample grid proportional to the feature’s scale
s around it. In total, the image is sampled at 400 regularly spaced sam-
ple positions with a sample step of s yielding a descriptor window of size
20s×20s. Further, the descriptor window is split into 4×4 subregions, each
covering 5×5 sample positions, to capture spatial information as well. At

17

each sample position two gradients in orthogonal directions are computed
with Haar wavelets also proportional to the feature’s scale. Figure 1 shows
both the sample grid and wavelets used to compute the gradient informa-
tion. The Haar responses are weighted with a Gaussian (σ = 3.3s) centered
at the feature position to improve robustness against feature localization
errors and geometric deformations due to perspective changes.

The weighted gradients of a subregion are collected in four different
sums:

∑
dx,

∑
dy,

∑
|dx|, and

∑
|dy|, with dx and dy being the responses

of each Haar wavelet at a sample position. Accumulating absolute sums
enables the SURF descriptor to capture alternating gradients (e.g. repeating
texture patterns as illustrated in figure 2) as well. Four such sums for each
subregion constitute a 64-bin descriptor vector, which is normalized to gain
contrast invariance. Note that the Haar wavelets are box filters that can be
computed very efficiently with the help of a pre-computed integral image.

Figure 2: Illustration [4] how the SURF descriptor reacts to different intensity pat-
terns. Left: homogeneous regions leave only low signatures in all de-
scriptor sums. Middle: frequencies tend to become canceled out in the
regular sums, but are captured by the absolute sums. Right: gradually
increasing intensities are captured by both sum types.

Bay et al. also proposed a smaller descriptor window with 3×3 subre-
gions and a total of 15×15 sample positions yielding a 36-bin descriptor
vector. This so called SURF-36 descriptor is faster to compute and match
than the regular SURF-64 descriptor while preserving enough distinctive-
ness to ensure an acceptable matching performance [4].

In order to achieve invariance against in-plane rotations, the sample
grid is aligned to a feature orientation determined beforehand. Instead of
rotating the Haar wavelets only their responses in x- and y-direction are
rotated to save computation time. The dominant orientation of a feature is
determined by computing Gaussian-weighted Haar wavelets proportional
to feature scale around the feature. Summing those Haar responses in a
sliding window yields a maximal response vector that lends its orientation
to the feature. Please refer to [4] for a more detailed explanation, as this
approach to orientation assignment is not feasible on mobile GPUs due to
its reliance on computationally complex sort operations. The unoriented
SURF descriptor (coined upright SURF or U-SURF, for short) is invariant to

18

rotations of about ±15◦.

3.1.2 GPGPU with OpenGL ES 2.0

OpenGL ES 2.0 introduced the programmable graphics pipeline to mobile
devices. Before that, only a fixed-function pipeline was available, which
offered no (OpenGL ES 1.0) or only little possibilities (through texture com-
biners in OpenGL ES 1.1) to perform general-purpose computations on
GPUs. Figure 3 briefly illustrates the programmable pipeline of OpenGL
ES 2.0. The shaded boxes indicate the programmable stages of the pipeline.
The vertex shader executes user-defined per-vertex operations on the ver-
tices send to the graphics hardware. These operations include transfor-
mation of a verticis position and texture coordinates as well as generat-
ing new vertex attributes like shading. After vertex processing the vertices
are assembled into drawable primitives such as triangles, lines, or points.
The rasterizer converts each primitive from the previous stage into a set
of two-dimensional fragments, which represent the pixels to be drawn on
the screen. This stage also interpolates the vertex attributes between the
vertices of a primitive and assigns the results to the fragments that fill this
primitive. The next stage is again programmable and allows user-defined
per-fragment operations. The fragment shader might use the interpolated
output of the vertex shader as well as additional data from textures and
uniforms (constant data) to compute the fragment color. This RGBA vector
is the only output value of the fragment shader. After various additional
per-fragment operations (e.g. depth test, alpha test, and blending) the frag-
ment’s color is finally written to the framebuffer.

Figure 3: Illustration [32] of the OpenGL ES 2.0 graphics pipeline.

GPU architectures are designed to process the geometry fed to the graph-
ics hardware in parallel. Exploiting the data-parallelism of the rendering

19

task, each data element can be processed independently from other ele-
ments. This means, the more shader units a GPU has, the better it can paral-
lelize vertex and fragment processing. Usually, much more fragments than
vertices need to be processed during rendering. Additionally, vertex shader
units become idle during fragment processing, due to the pipelined archi-
tecture. GPU vendors therefore introduced unified shader units, which
unify the instruction sets of vertex and fragments shaders, in order to pro-
cess fragments with idle vertex shader units as well.

From a GPGPU point of view, the fragment shader offers the most po-
tential for parallelizing general-purpose computations. In the simplest case
one fragment is generated for each element of an input data array and each
element is processed by a user-defined fragment shader working as the
operator. Of course the result of such an operation must not depend on
the results of other elements, i.e. the operation must be data-parallel. The
input data must be uploaded into video memory where textures serve as
two-dimensional containers. To let the graphics hardware generate a frag-
ment for each texel (i.e. each input data element) one would render a tex-
tured quad orthogonal to the view axis of the camera while using an ortho-
graphic projection and setting the viewport to the size of the input array.
The rasterizer will then generate a fragment for each viewport pixel and
interpolate the texture coordinates of the vertices defining the quad. The
interpolated texture coordinates serve as a unique index of each fragment
to address elements in the input data.

Texture coordinates are normalized in OpenGL ES 2.0, i.e. they are float-
ing-point values between 0 and 1. When reading from a texture either the
value of the texel which center is closest to the coordinate or an interpola-
tion of the four closest texels is returned. Note that this bilinear interpola-
tion allows for subpixel-accurate sampling of the input data.

More complex operations often need to be separated into multiple ren-
der passes, where intermediate results of previous passes are reused in
subsequent passes. This can be accomplished by rendering to textures,
which then serve as containers for those intermediate results. To this end,
OpenGL ES 2.0 offers so called framebuffer objects (FBOs), which allow for
efficient switching between different render targets. OpenGL ES 2.0 does
not provide support for MRT (multiple render targets). Hence, OpenGL ES
applications cannot render to multiple textures at the same time.

Beside the parallel processing of vertices and fragments, GPU architec-
tures offer another level of parallelization: because most computations in
computer graphics are performed on four-dimensional vectors (e.g. RGBA
colors and homogeneous coordinates), GPU vendors included SIMD (sin-
gle instruction, multiple data) instruction sets into their hardware. Those
SIMD instructions can perform operations on each element of a 4D vector
in parallel. Therefore, packing data into textures accordingly not only re-
duces the input texture size by factor 4, but also parallelizes a GPGPU task

20

even more.
GLSL ES 1.0 introduced the precision qualifiers lowp, mediump, and

highp. These qualifiers let the shader author specify the precision with
which computations for a shader variable are performed. Declaring vari-
ables with low precision might result in faster execution and/or better
power efficiency of a shader program. Supporting highp variables is op-
tional. Note that it is not mandatory to actually implement different preci-
sions. Implementations might also ignore those qualifiers and perform all
computations with the highest precision.

Mipmapping is an important computer graphics tool to tackle aliasing
artifacts during texturing, hence improving the visual quality of a rendered
scene. A mipmap is defined as a chain of a texture image, where each sub-
sequent level is half as large in both dimensions as the one before it. The
top end of this mipmap chain is the originally specified texture, and the
bottom end a texture having a size of 1×1 tx. The texels in lower levels are
usually computed as the mean of the four corresponding texels in the next
highest level. OpenGL ES 2.0 offers automatic mipmap generation, which
is often implemented with graphics hardware acceleration. The texel val-
ues in lower mipmap levels can also be regarded as normalized sums of
different regions in the top level (i.e. the input data). Mipmaps can there-
fore allow for efficient box filtering. The discretized structure of mipmaps
can be efficiently circumvented by exploiting hardware-accelerated inter-
polation between mipmap levels (trilinear interpolation).

Before any rendering can take place, OpenGL ES 2.0 requires a render-
ing context and a drawing surface. Both can be created with the EGL API.
EGL serves as a platform-independent link between graphics libraries like
OpenGL ES and the native windowing system of the platform.

3.2 Performance Considerations

Mobile GPUs are far more restrained than their desktop counterparts: they
comprise only a fraction of the shader processors desktop GPUs have and
run at lower clock speeds to save battery power. The OpenGL ES 2.0 stan-
dard accounts for these restrictions by having significantly relaxed com-
pliance requirements. Consequently many features common on desktop
GPUs are not available on mobile GPUs. Therefore one has to consider
several aspects when implementing GPGPU applications targeting mobile
devices.

Texture formats: OpenGL ES only requires support for low-precision tex-
ture formats that store a color channel with one byte per value. Therefore
each channel of an RGBA texel is represented as a 8-bit fixed-point value
between 0 and 1. But, such a low precision is not sufficient to store SURF
descriptors or intermediate results of the SURF algorithm accurately. In

21

order to store four floating-point values in a texel one has to use exten-
sions that are not supported by all mobile GPUs. On devices with an ARM
Mali-400 MP GPU is the corresponding extension GL_OES_texture_float
not available. Because we aim to test our implementation on a wide range
of mobile devices we chose to employ a fixed-point format with higher pre-
cision, which uses four bytes (i.e. all color channels) to store a floating-point
value.

SIMD instructions: The fact that SURF requires high-precision floats for
most parts of its algorithm also has implications on how we can exploit the
GPU’s SIMD architecture. PowerVR SGX5xx GPUs, for example, can only
vectorize operations for mediump and lowp floats [21]. Squeezing four
highp floats into a vec4 will therefore not increase runtime performance
on those GPUs.

Texture fetch latency: Texture reads are significantly slower on mobile
GPUs than on desktop GPUs. It is therefore even more important to spa-
tially group texture fetches for optimal texture cache efficiency. Memory
latency can also be “hidden” with arithmetic operations on some GPUs.
PowerVR SGX5xx GPUs, for example, are capable of scheduling operations
from a pool of fragments when a fragment waits for a texture read to fin-
ish [20]. The ratio of texture fetches to arithmetic operations is referred to
as the arithmetic intensity of a shader program.

In a first attempt we parallelized the creation of an integral image as
proposed in [19]. This algorithm was disproportionately slower on mo-
bile GPUs than on desktop GPUs due to its large number of texture fetches
(4× number of image pixels) and its bad cache efficiency. Sengupta et al.
[40] proposed another parallelization of the problem with optimized tex-
ture cache usage. Although it is 4× faster on desktop GPUs, we expect
it to be even slower on mobile GPUs, because it requires more than twice
the number of texture fetches than Horn’s parallelization does. Therefore
we refrained from using an integral image at all and employed a mipmap
of the input image instead. Mipmaps are faster to generate while offering
similar scale-space properties. Using a mipmap also has the advantage of
an inherently better cache efficiency when sampling at arbitrary scales.

Note that high memory latencies also affect other multi-pass algorithms
that require too many texture reads. For instance, the HistoPyramids algo-
rithm [52], which could be used to generate a compact keypoint list from
the output matrix of a GPU feature detector, is also unfeasible on mobile
GPUs.

Data read-backs: Due to the reduced memory bandwidth of mobile GPUs
it is particularly problematic to copy data from video memory into system

22

memory. Such operations are blocking and therefore stall the rendering
pipeline for a disproportionately long time on mobile GPUs. It is important
to avoid such read-backs amidst a GPGPU processing pipeline in order to
compute intermediate results on the CPU, when fast frame rates are crucial.

Floating-point accuracy: How accurately a floating-point value can be
stored depends on the precision of a GPU’s floating-point format. The pre-
cision can be queried through the OpenGL ES 2.0 API and is represented
as an integer value. The Mali-400 MP, for example, calculates with a preci-
sion p = 10. I.e. the smallest representable value ε that satisfies 1 6= 1 + ε,
is calculated as ε = 2−p = 1/1024. This ε varies greatly across mobile GPUs
and must be taken into account when running computations requiring high
precision.

3.3 Parallelizing the SURF Descriptor

The obvious inherent parallelism of the SURF algorithm is that it treats each
detected feature independently of other features. Multi-threaded imple-
mentations of SURF targeting multi-core CPUs (e.g. [15] or [17]) exploit this
data-parallelism by assigning the tasks of describing different SURF fea-
tures to different threads. As a result, the more cores a CPU has, the more
descriptors can then be extracted in parallel. This coarse parallelization of
SURF is reasonable on multi-core CPUs as they are actually designed for
task parallelism and their individual cores are therefore loosely coupled.
Consequently, multi-threaded CPU implementations do not gain any extra
advantage from executing the same code on different data elements. Ad-
ditionally, thread creation and scheduling induce a significant overhead on
CPUs, which is reflected in the speed-ups multi-threaded CPU implemen-
tations can achieve relative to the number of available CPU cores. Although
the speed-up factor theoretically should be equal to the number of cores, in
practice it is slightly lower and degrades when the number of utilized cores
increases [15]. Because of their limited number of parallel processing units
and thread scheduling overheads, a more fine-grained parallelization is not
profitable on multi-core CPUs.

In contrast, GPUs are designed for data parallelism. The execution units
of a GPU core are tightly coupled and can run code concurrently as long
as it does not diverge due to branching. This restriction on the executed
code enables GPUs to dispatch a fetched instruction to multiple concurrent
threads at once. Additionally, the threads of a GPU’s execution unit are
light-weight and can be scheduled very efficiently. A GPU implementation
of the SURF descriptor has to account for this highly parallelized execution
model to achieve maximum efficiency. Because the output of a shader unit
is limited to a 4D vector (the fragment’s color), the task of extracting a SURF
descriptor has to be separated into several parallelized subtasks that reuse

23

intermediate results. This introduces an additional level of parallelization,
beyond the inherent keypoint-level parallelism, to the implementation. A
SURF descriptor is therefore extracted by several fragments and in multiple
render passes. The SURF descriptor algorithm can be separated into the
following subtasks (i.e. render passes):

1. Calculate weighted Haar responses at each sample position.

2. Accumulate descriptor sums.

3. Normalize descriptor.

(a) Calculate descriptor length (norm).

(b) Divide each descriptor bin by the norm.

Each of these subtasks might be parallelized, depending on the degree of
data-parallelism they exhibit.

The first subtask of calculating the Haar responses is highly data-paral-
lel. Each sample position can be handled by an individual fragment which
calculates the Haar responses in both directions and stores them in its out-
put color. The execution path of all fragments does not diverge in case
no border handling is necessary. Because the Haar wavelets of neighbor-
ing sample positions overlap, data reuse is not optimal. However, in case
neighboring fragments also fetch from neighboring texels in the input im-
age texture, reuse is automatically optimized by the texture cache.

Accumulating the descriptor sums allows for a parallelization at sub-
region level. One fragment can accumulate all Haar responses of a sub-
region to compute its four different descriptor sums. This parallelization
only works if the four sums can be stored in the four channels of the output
color. Otherwise, only a parallelization at descriptor-bin level is possible,
which quadruples the number of fragments. Letting one fragment accumu-
late all the 25 Haar responses on its own is suboptimal, because it results
in a shader with low arithmetic intensity. However, parallelizing this sub-
task with a more sophisticated reduction operation is not feasible on mobile
GPUs. A more promising optimization might be to align the sampling grid
to power-of-two dimensions and use mipmaps to compute the sums of the
Haar responses.

The third subtask is again not very data-parallel and only allows for
a parallelization at keypoint level: one fragment iterates over a whole de-
scriptor and computes its length. As this subtask is similar to the previous
one, the same optimizations might be considered.

The last subtask allows for a parallelization at descriptor-bin level due
to its good data-parallelism. As many fragments are generated as there are
descriptor bins and each fragment divides a bin value by the descriptor
norm.

24

3.4 Wrapping the OpenGL ES 2.0 API for GPGPU

In order to ease the cumbersome cross-platform GPGPU programming with
OpenGL ES 2.0, we abstracted its API to have a more simplified interface
comprising only three classes. This minimal interface is roughly inspired
by MinGPU [2] and therefore referred to as MinGPU-ES throughout this
thesis. Figure 4 shows a class diagram of MinGPU-ES.

Figure 4: Class diagram of MinGPU-ES.

The class GpuContext hides platform-specific details regarding the
creation of EGL and OpenGL ES contexts. It is implemented following
the singleton pattern to prevent the user from creating multiple contexts.
Additionally, a GpuContext serves as a simple renderer drawing a screen-
aligned textured quad. GpuProgram is responsible for reading, building
and linking shaders. The vertex shader is pre-defined as its sole purpose
is to pass through texture coordinates and ensure a 1:1 pixel-to-texel map-
ping by transforming each vertex with the orthographic projection matrix
defined in GpuContext. The fragment shader is provided by the user and
defines the operator applied to the input data. A GpuProgram instance
also triggers rendering when it is executed by the user. Finally, GpuArray
wraps the different texture types of OpenGL ES 2.0 for simplified use as
input and output data containers.

3.5 Interface of SURF-ES

The interface to SURF-ES is straightforward: only one class is accessed by
the user to initialize and execute our implementation. A class diagram of

25

SURF-ES can be seen in figure 5.

Figure 5: Class diagram of SURF-ES.

The main class SurfEs provides an initialization method to trigger the
allocation of video memory and shader creation prior to execution. Since
SURF-ES reuses its textures, it is fixed to the image size provided during
initialization. A second method executes the descriptor extraction and ex-
pects an RGB image as well as a list of feature positions where SURF de-
scriptors should be extracted. The two additional classes shown in the fig-
ure 5 are not accessed by the user and only encapsulate the different under-
lying tasks of SURF-ES.

26

4 Implementation

SURF-ES has been implemented with C/C++ and runs on virtually all sys-
tems that support OpenGL ES 2.0. For the detection of features in the input
image we use the CPU implementation of SURF in OpenCV 2.3.1. The im-
plementation realizes the interface presented in section 3.5. Additional Java
and Objective-C classes were necessary to embed SURF-ES in Android and
iOS apps. Note that SURF-ES does not assign orientations to features, thus
extracts U-SURF descriptors, which are not rotationally invariant.

When SURF-ES is being initialized with the desired number of descrip-
tor bins and a fixed image size, it creates all the necessary textures and
shader programs once and reuses them each time new input data is handed
to it. The upload of an RGB image to video memory works straightforward
when its data type is unsigned char: OpenGL ES automatically copies
each value to the correct texel and channel in an RGB texture and inter-
prets it as an 8-bit fixed-point value between 0 and 1. To store the list of n
keypoints with a subpixel position (x, y) and a scale s in a texture, we em-
ployed a simple encoding scheme. Each keypoint is stored in two RGBA
texels, yielding a texture of size 2×n tx. The x-position of keypoint i is
stored in the red, green and blue channel of texel (1, i) with the integral part
of the position stored in the red and green channel and the subpixel offset
stored in the blue channel. The keypoint’s y-position is stored analogously
in texel (2, i). The scale s of the keypoint is also split into its integral and
fractional part and stored separately in the two remaining alpha channels
of both texels.

The rest of this sections explains in detail how we implemented each
part of the SURF descriptor with OpenGL ES 2.0 and GLSL ES. The expla-
nations apply for the SURF-64 descriptor, but are of course analogous to
the smaller SURF-36 descriptor.

4.1 Color to Grayscale Conversion

Color-converting between simple color spaces like RGB and grayscale is a
particular easy task for GPUs: all image pixels are transformed by a linear
operator and therefore have no dependencies between each other. Hence
this task is implemented with a fairly simple fragment shader. Each frag-
ment fetches a RGB value from the texture holding the input image and
weights each color channel to obtain the pixel’s luminance l according to
the formula

l =

 0.299
0.587
0.114

 ·
 r

g
b

 ,

where · denotes the dot product of two vectors. To generate a fragment

27

for each image pixel, we render a textured quad with image dimensions.
OpenGL ES 2.0 stores a RGB value as a triplet of 8-bit fixed-point values
between 0 and 1. To increase the computational accuracy of the operation,
we convert them to integer values between 0 and 255 beforehand, round
the resulting l to the closest integer value, and convert it to a float within
the range [0, 1]. Finally the luminance is stored in the red channel of the
output texture. Because this output texture will be mipmapped later, it has
to have dimensions aligning to powers of two. In order to support input
images that do not meet this requirement, the color conversion shader also
pads the input image with black pixels on the right and bottom if necessary.

4.2 Sampling of Haar Responses

The SURF descriptor is based on 400 regularly spaced samples of Haar
wavelets as shown in figure 1. This sample grid is represented as a quad-
ratic 2D block of texels in an output texture so that each texel maps to one
sample position. A formation of multiple such texel blocks in the output
texture constitutes the set of descriptors to extract. Since texture dimen-
sions have an upper boundary, we limit the number of processable key-
points to 1020 requiring a texture of size 1020×400 tx (i.e. 51×20 sample
blocks). For each of those texels a fragment is generated by rendering a
quad of the same size. If there are less than 1020 keypoints, the viewport is
scaled down accordingly to avoid the generation of fragments that will not
do any work.

Each fragment then first calculates the numeric ID of the keypoint it is
associated with using its texture coordinates. Since the accuracy of floating-
point texture coordinates degrades with increasing texture sizes, they are
converted to integer coordinates beforehand17. The keypoint ID is con-
verted into a texture coordinate to fetch the keypoint’s position and scale
from the keypoint texture. With that data the fragment’s texture coor-
dinates are transformed into image space to obtain the subpixel-accurate
sample position. The keypoint’s scale also determines the size of the two
Haar samples (x- and y-direction) the fragment will compute.

In their original work, Bay et al. proposed to use an integral image for
efficient computation of arbitrarily sized box filters. However, since it is
unfeasible to create and read from integral images on mobile GPUs, we
opted for a mipmap of the input image instead (as proposed in [11]). For
that we divide the area covered by a Haar wavelet (figure 1 on the right)
into four equally sized quadrants. The intensity sum of each quadrant can
then be read from a lower mipmap level. Calculating both Haar responses
from those four sums is trivial. Using a mipmap has several advantages:

17The inbuilt fragment coordinates (gl_FragCoord) could not be used, because their
y-axis is flipped on Adreno GPUs.

28

instead of having to fetch eight widely spaced texels from an integral im-
age to calculate the wavelet responses for both directions, we only have to
fetch four neighboring texels with greatly improved spatial locality. The
filter results of both methods are identical as long as the Haar wavelets
have power of two dimensions. Of course this is seldom the case, but re-
sponses for different wavelet sizes can be approximated by interpolating
between mipmap levels. Furthermore, bilinear interpolation between tex-
els provides subpixel accuracy. The cost of additional texture fetches for
trilinear interpolation is tolerable due to good texture cache usage. Fetch-
ing from the correct mipmap level and trilinear interpolation are all done
automatically by the graphics hardware and no additional shader instruc-
tions are required.

The resulting Haar responses are weighted with an unnormalized Gaus-
sian (σ = 3.3s) centered at the feature position. Afterwards both responses
are stored in the four channels of the fragments output color (i.e. one texel
in the output texture). This means that there are 16 bits (two color chan-
nels) available to store each floating-point Haar response value. In theory,
the Haar responses are ranging from−2 to 2, but in practice are distributed
around 0 with very low variance. We chose a simple scheme to encode this
values into two 8-bit floats: splitting the values into their integral and frac-
tional part and storing both in separate color channels. To use all bits of the
channel storing the integral part, we first scale the Haar responses to the
range [−128, 128]. The fractional part can be stored directly, but the inte-
gral part must be converted to a float value between 0 and 1 before writing.
This conversion introduces a negligible error, because, with 8 bits, we can
“only” represent the range [−128, 127].

4.3 Descriptor Formation

For every bin of each SURF descriptor a fragment is generated to sum up
the Haar responses of a subregion. This is achieved by rendering a quad
of size n×64 px, n being the number of keypoints. Each fragment is then
associated to a descriptor window’s subregion by its texture coordinates
and computes one of the four sums that describe this subregion.

Because reduction operations are not feasible on mobile GPUs, we im-
plemented a simple gather operation to calculate the descriptor sums. Each
fragment iterates over a subregion with a nested loop, fetching the Haar
responses and adding them together. This means that each fragment does
25 texture fetches and only very few arithmetic operations resulting in a
low arithmetic intensity of this shader. We also implemented the more
efficient method proposed in [11], which uses mipmaps of float textures
(as provided with the extension GL_OES_texture_float). Unfortunately, we
encountered problems on mobile devices when we tried rendering to float
textures or mipmapping them.

29

Theoretically the sum values are in the range [−1671.8, 1671.8[(the sum
of 25 Gaussian-weighted Haar responses within the range [−128, 128[), how-
ever in practice they are again distributed around a mean relatively close
to 0 with very low variance. To cover such a wide range of magnitudes ac-
curately we had to employ a more sophisticated encoding than we used to
store the Haar responses in the previous step. Therefore the sum values are
encoded into all four channels of a texel as described in section 4.5. Before
encoding, the sums are scaled down to be within the range [−128, 128[.

In OpenGL ES 2.0, fragments have only one output color. Because all
four channels of a texel are required to store a single descriptor sum, we
need to generate four fragments to compute and write each of the four
sums of a subregion. This means that each subregion is visited four times
without the possibility to reuse fetched data. Again, this could be circum-
vented with the availability of renderable float textures.

The resulting output texture stores an unnormalized SURF descriptor
in each of its columns and is 1020 columns wide. Unused columns will
be undefined, because we adjust the viewport according to the number of
keypoints before rendering.

4.4 Descriptor Normalization

Normalizing the SURF descriptors is important to gain contrast invariance.
This step has been implemented in two straightforward render passes. The
first pass calculates the length of each descriptor vector and stores it in
an 1D texture. The second pass fetches the lengths from that texture and
normalizes the descriptor bins with it.

In the first pass we generate a fragment for each descriptor vector by
rendering a quad of size n×1 px, where n is the number of keypoints.
Each fragment then loops over the descriptor it is associated with by its
texture coordinates and calculates the descriptor’s vector length. This is
done by fetching from the texture generated in the previous step, squaring
each fetched bin value, adding them all together and calculating the square
root of that sum. Because the number of bins in the SURF-ES descriptor
can either be 64 or 36, but GLSL ES only supports constant loop expres-
sions [24], the shader source string is configured at runtime according to
the desired descriptor size. The computed vector length is in the theoreti-
cal range [0, 522.68[. Since the resulting values are much lower in practice,
we omit an extra down-scaling and store the length in the fragment’s out-
put color with the encoding described in section 4.5.

The second render pass divides each descriptor bin with the calculated
length of the descriptor it belongs to. This final step can be implemented
very efficiently with GPGPU, due to its strong data-parallel nature. By ren-
dering a quad with the dimensions n×64 px, one fragment is generated
for each descriptor bin. Each fragment then fetches an unnormalized bin

30

value and the corresponding descriptor length from the output textures of
the two previous steps, normalizes the bin value and stores it in the final
output texture using our encoding for high-precision floats.

The final descriptors reside in an RGBA texture of size 1020×64 tx in
video memory, with each column holding one SURF-64 descriptor. In case
less than 1020 keypoints have been passed to SURF-ES the unused columns
will be undefined.

4.5 Encoding of High-Precision Floats in Textures

Regular textures in OpenGL ES 2.0 can store floating-point values only with
an 8-bit fixed-point format. Although GLSL ES fragment shaders are re-
quired to perform floating-point computations with a precision of at least
10 [24], they can propagate their results to subsequent shader passes only
through low-precision textures. Textures supporting higher precision are
available as extensions but not on all mobile GPUs. By aiming to develop
for a wide range of devices, we implemented an encoding scheme to store a
single high-precision float in the four channels of an RGBA texel. The stor-
age precision of floating-point values differs largely across GPUs of dif-
ferent vendors. The Adreno 220 GPU by Qualcomm, for example, has a
precision of 24, whereas the ARM Mali-400 MP only offers a precision of
10. In order to exploit the full capabilities of high-precision GPUs, but also
support GPUs with lower precision, our encoding scheme takes the GPU’s
precision dynamically into account.

Essentially a floating-point value is stored in a texel by splitting it into
four parts: the integral part of the float is stored in the red channel and
the fractional part in the remaining three channels. Having only one byte
to store the integral part restricts our encoding to floats within the range
[−128, 128[. Larger values need to be scaled to this range before encoding
them. The encoding of the fractional part depends on the GPU’s floating-
point precision p, which we retrieve with glGetShaderPrecisionFor-
mat() and pass to the shaders as a uniform.

Red Green Blue Alpha
r − 128 g · 2−p b · 28−p a · 216−p

Table 1: The Encoding of a floating-point value in the color channels of a texel
taking the GPU’s available floating-point precision p into account. The
integral part is stored in the red channel and the fractional part is split
over the remaining channels. The values r, g, b and a are all integers
between 0 and 255.

Table 1 demonstrates how the fractional part of floating-point number is
represented as a sum of different powers of two, which are one byte apart.
The actual exponents and the number of summands are determined by the

31

available floating-point precision p of the GPU. If the GPU’s precision is
below 16, the value of the alpha channel awill always be set to 0 in order to
avoid superfluous computations. This data layout derives from the formal
expression of a floating-point value f in the range [−128, 128− 2−p] as

f = r − 128 +
g · 20 + b · 28 + a · 216

2p
,

where r, g, b, and a are the color values of a texel converted to integers in
the range [0, 255] under the condition that g · 20 + b · 28 + a · 216 < 2p holds
true.

Listing 1 shows how we implemented the encoding of floats in texels
with GLSL ES. It can be seen that the decision, whether the alpha chan-
nel of the texel will be used or not, is actually not based on the retrieved
precision p, but whether the macro GL_FRAGMENT_PRECISION_HIGH is
defined or not (i.e. highp floats are available or not). This could lead to an
overflow of the blue channel in case the GPU does not support highp floats
but its precision p exceeds 16. However, because the GLSL ES specification
makes a precision of 16 the minimum requirement for highp floats [24],
we consider this very unlikely to be the case. The advantage of an #ifdef-
directive over a regular if-statement is that it yields less shader instruc-
tions.

This format can accurately store floating-point values with a precision
up to 24. However, note that the encoding fails due to an overflow of the
alpha channel if the GPU supports a higher precision and the precision
value passed to the shader as uniform has not been clipped accordingly.
Decoding an encoded float value from a fetched texel is straightforward
and has been implemented by simply reversing the operations applied to
encode it.

5 Experimental Results

To assess the feasibility of our GPGPU approach to feature descriptor ex-
traction, we have tested our implementation on a wide range of state of the
art mobile devices. Table 2 lists all those devices along with their incorpo-
rated GPUs and CPUs. Mobile devices generally do not feature a separate
GPU and CPU, but so called SoCs (system on a chip), which integrate both
processing units (and others) into a single chip. Unfortunately, their archi-
tecture is often undisclosed and not accurately specified. Note that we did
not perform the full spectrum of tests on the iPhone 4S, the iPad 4G, and
the MSM8960 as these became only available recently. For comparison we
have also tested SURF-ES on a desktop PC using the PowerVR OpenGL ES
2.0 emulation libraries18.

18http://www.imgtec.com/powervr/insider/sdkdownloads/

32

http://www.imgtec.com/powervr/insider/sdkdownloads/

1 /** @precondition: precision = 2p ∧ −128 ≤ value ≤ 128− 2−p
*/

2 vec4 float2vec4(float value)
3 {
4 vec4 container;
5

6 // Convert fraction into an integer in range [0, 2p[.
7 float fraction = fract(value);
8 fraction = floor(fraction * precision);
9

10 #ifdef GL_FRAGMENT_PRECISION_HIGH
11 // Store multiples of 216.
12 container.a = floor(fraction / 65536.0);
13 fraction = fraction - container.a * 65536.0;
14 #else
15 container.a = 0.0;
16 #endif
17

18 // Store multiples of 28.
19 container.b = floor(fraction / 256.0);
20 fraction = fraction - container.b * 256.0;
21 // Store multiples of 20.
22 container.g = fraction;
23 // Store integral part accounting for sign.
24 container.r = floor(value) + 128.0;
25

26 // Convert 8-bit integers to 8-bit floats between 0 and 1.
27 return container / vec4(255.0);
28 }

Listing 1: Function to encode a float value into a texel. The variable precision
is passed as a uniform to the shader and is set to 2p.

Device (OS) GPU, CPU

Desktop PC Nvidia GeForce GTX 260
(Ubuntu 10.10 “Maverick Meerkat”) Intel Core 2 Quad (4 cores, 2.66 GHz)
Qualcomm Snapdragon S4 MSM8960 Qualcomm Adreno 225
(Android 4.0.3 “Ice Cream Sandwich”) Qualcomm Krait (2 cores, 1.5 GHz)
Apple iPad 4G PowerVR SGX543MP4
(iOS 5.1) Apple A5X (2 cores, 1 GHz)
Nvidia Tegra 3 ULP GeForce
(Android 3.2.1 “Honeycomb”) ARM Cortex-A9 (4 cores, 1.4 GHz)
Apple iPhone 4S PowerVR SGX543MP2
(iOS 5.1) Apple A5 (2 cores, 800 MHz)
HTC Evo 3D Qualcomm Adreno 220
(Android 2.3.4 “Gingerbread”) Qualcomm Scorpion (2 cores, 1.2 GHz)
Samsung Galaxy S II ARM Mali-400 MP
(Android 2.3.3 “Gingerbread”) ARM Cortex-A9 (2 cores, 1.2 GHz)
HTC Desire Z Qualcomm Adreno 205
(Android 2.3.3 “Gingerbread”) Qualcomm Scorpion (800 MHz)
Samsung Galaxy Nexus PowerVR SGX540
(Android 4.0.2 “Ice Cream Sandwich”) ARM Cortex-A9 (2 cores, 1.2 GHz)
Nokia N9 PowerVR SGX530
(MeeGo 1.2 “Harmattan”) ARM Cortex-A8 (1 GHz)

Table 2: Specifications of the tested devices. Please note that both the MSM8960
and the Tegra 3 are development devices.

33

5.1 Runtime Performance

To measure the runtime performance of SURF-ES, we executed it multiple
hundred times in a loop and determined the average duration of an iter-
ation for each mobile device. The device was reset before each test run
and we used the OS specific methods to stop unnecessary background pro-
cesses. In order to have comparable results to other papers in the domain
we used down-sampled versions of the first two images of the “graffiti” test
set [30]. Figure 6 shows the average time each device took to extract 1020
feature descriptors from an image of size 512×384 px. Those measurements
include uploading the input image and the list of keypoints to video mem-
ory, but exclude image loading and keypoint detection with OpenCV as
well as downloading the resulting descriptors from video memory. Just as
expected, novel mobile devices with up to date multi-core GPUs perform
significantly faster than older devices. Compared to the same implementa-
tion running on a desktop GPU the slowdown ranges from less than 10×
(MSM8960) to almost 120× (N9).

GPU vendors may choose to off-load render tasks to the mobile CPU.
Therefore, we also measured the CPU utilization of the SURF-ES process
during a GPGPU run. Those measurements are integrated in figure 6. For
the most devices CPU utilization is higher as expected. The majority of
the devices indeed seem to spread the workload of SURF-ES between their
GPU and CPU. Particularly, the Galaxy S II has a very high CPU load when
executing GPU tasks. We can also observe here that very similar GPUs
can yield different CPU utilizations. This originates in the handset produc-
ers’ choices for drivers, features on the SoC, and the like. When running
OpenCV SURF, CPU utilization easily reached 80–90% across all devices.

In order to determine the speed-up our GPU implementation can de-
liver on mobile devices, we compared SURF-ES to the CPU implementa-
tion of SURF featured in OpenCV. We used release builds of OpenCV with
device specific optimizations such as NEON intrinsics or VfP turned off.
Since SURF-ES is not rotationally invariant we configured OpenCV SURF
to extract U-SURF descriptors, which ignore feature orientation as well.
The runtime differences between the GPU and CPU of each mobile device,
when extracting 1020 SURF descriptors from a 512×384 image, are shown
in figure 7. Devices with a Cortex-A9 CPU, viz. the Tegra 3, the Galaxy
S II, and the Galaxy Nexus, perform similar and yield a GPGPU acceler-
ation by factor 2 to 5. The MSM8960’s Krait CPU is only slightly faster
but due to its much faster GPU the achieved speed-up is almost 10×. The
Scorpion CPUs on the two tested HTC devices (Evo 3D and Desire Z) are
significantly slower, which leads to an almost 8× speed-up on both of them.
Same can be said for the iPhone 4S (over 7×) and the iPad 4G (14×) with
comparatively slow CPUs but faster GPUs. OpenCV performed extremely
slow on the N9. We suspect a problem with the ARM EABI (armel) libraries

34

Figure 6: Runtime of SURF-ES to extract 1020 feature descriptors from a 512×384
image. Red bars denote the CPU utilization while running SURF-ES.

Figure 7: Runtime of OpenCV SURF to extract 1020 feature descriptors from a
512×384 image. Note that the red bar representing the OpenCV SURF
runtime on the N9 has been cut off.

35

of OpenCV for Meego 1.2 that we were not able to identify. On a desktop
PC SURF-ES runs 20× faster than OpenCV’s SURF implementation. Note
that OpenCV SURF is not multithreaded. Hence, the measurements rather
reflect a CPU’s per-core performance than its full potential.

Apart from the device SURF-ES is running on, two additional factors
influence its runtime: the size of the input image and the number of feature
descriptors to extract. Both are connected because a larger image can yield
more features. Figure 8 shows SURF-ES’ runtime plotted against the num-
ber of keypoints. Among the mobile devices, the MSM8960 and the iPad 4G
perform best also in terms of scalability. Overall it can be seen that newer
GPUs with more shader units scale better than older ones. The Galaxy S II
however scales badly, having an almost constant runtime independent of
the number of keypoints.

To evaluate the influence of the image size, we have tested SURF-ES on
images with several different sizes (256×256, 320×240, 512×512, 640×480,
800×600 and 1024×1024 px). The measurements of this test are presented
in figure 9. Keep in mind that the dimensions of the input image get
padded to powers of two during the RGB-to-grayscale conversion step (e.g.
an image of size 320×240 px is padded to 512×256 px), which influences
the performance of the subsequent mipmap generation and Haar wavelet
sampling step. The results are comparable to the ones presented in figure
8: newer GPUs outperform older ones, due to more shader units increasing
their parallel processing power. Once again, the Galaxy S II lacks scalabil-
ity and requires disproportional more runtime for larger images. The Tegra
3 on the contrary scales exceptionally well. The MSM8960 scales slightly
worse but is faster when comparing absolute runtimes. The N9 was ex-
cluded, because SURF-ES crashed on it when working with certain image
sizes for reasons we were not able to track down.

In order to gain insight into how each mobile GPU copes with the in-
dividual tasks of the SURF algorithm, we also measured the runtime for
the main computational steps of SURF-ES separately. Figure 10 shows the
runtime of each step relative to the absolute runtime of SURF-ES. Each bar
represents one device and each colored segment a part of the algorithm. Al-
though there are significant differences between the devices, one can still
note that the tasks with low arithmetic intensity (summation of the Haar re-
sponses and calculation of the descriptor length) generally perform worst.
This is not true for the Galaxy S II: the generation of the image mipmap
requires an extremely large part of the runtime, whereas the calculation of
the descriptor sums and length are performed very fast.

Additionally we measured the performance of the smaller but less ro-
bust SURF-36 descriptor. A comparison of those measurements in relation
to the runtime of the SURF-64 descriptor is shown in figure 11. Generally,
using the SURF-36 descriptor decreases the runtime by about 30%, except
for the Galaxy S II where only a speed-up by 8% is noticeable.

36

Figure 8: Runtime of SURF-ES relative to the number of keypoints in a 512×384
image. Note that the curves for the MSM8960 and the iPad 4G almost lie
on top of each other.

Figure 9: Runtime of SURF-ES relative to the image size.

37

Tegra 3 Evo 3D Galaxy S II Desire Z Galaxy Nexus N9
0

10

20

30

40

50

60

70

80

90

100
Normalization

Descriptor length

Descriptor sums

Haar samples

Mipmap

RGB to gray

Upload image +
keypoints

R
u
n
ti
m
e
in

%

Figure 10: Relative runtime of SURF-ES for each part of the algorithm.

Figure 11: Runtime of SURF-ES to extract 1020 SURF-36 descriptors from a
512×384 image.

38

5.2 Matching Performance

We evaluated the correctness of our SURF implementation with the de-
scriptor evaluation framework by Mikolajczyk et al. [31] using OpenCV’s
upright SURF implementation as reference. The evaluation has been run on
the test images19 provided by the authors. This image set comprises eight
image sequences addressing different changes in image conditions. Each
image sequence consists of one reference image, five images with increas-
ing degradation and five homography matrices, which serve as ground
truths for the image pairs. Because our SURF implementation is not rota-
tionally invariant we excluded images from the evaluation that were trans-
formed by a rotation greater than ~15◦. Figure 12 shows the sequences we
used in our evaluation. The “wall” sequence focuses on viewpoint changes
up to ~60◦. The “leuven” sequence consists of images of the same scene but
with decreasing illumination. The “bikes” sequence addresses image blur
and the “ubc” sequence JPEG compression artifacts.

The main purpose of this evaluation was to quantify the impact of re-
duced floating-point accuracy on the overall descriptor quality. Although
floating-point accuracy varies significantly across the tested devices, it is
the same for devices featuring a GPU of the same vendor. Therefore we
did not evaluate all mobile devices, but only a subset with actually differ-
ing floating-point precisions. Table 3 shows the different precisions among
the tested GPUs. The candidates for the matching performance evaluation
were: the HTC Evo 3D (featuring a Qualcomm Adreno 220 GPU with a
maximum precision of p = 24), the Samsung Galaxy Nexus (PowerVR SGX
540, p = 23), the Nvidia Tegra 3 (ULP GeForce, p = 13), and the Samsung
Galaxy S II (ARM Mali-400 MP, p = 10).

GPU
Floating-point precision
lowp mediump highp

Required minimum 8 10 16
Qualcomm Adreno 2xx 24 24 24
PowerVR SGX 5xx 8 10 23
Nvidia Tegra 3 8 13 n/a
ARM Mali-400 MP 10 10 n/a

Table 3: The fragment shader floating-point precision of different GPUs as re-
turned by glGetShaderPrecisionFormat(). The top row shows the
GLSL ES 1.0 compliance requirements [24]. Supporting highp floats is
optional.

For the evaluation we used the threshold-based similarity matching
provided by the framework. There the Euclidean distance de between two
descriptor vectors a and b works as the distance measure and is defined as

19http://www.robots.ox.ac.uk/~vgg/research/affine/

39

http://www.robots.ox.ac.uk/~vgg/research/affine/

de =
√
(a− b) · (a− b),

where · denotes the dot product. Two features are considered matching
when their distance in descriptor space is below a threshold t. If both de-
scriptors were extracted around corresponding feature positions then they
constitute a correct match and otherwise a false match. The maximum
number of correct matches is referred to as the number of correspondences.
The possible correspondences are calculated from the output of the em-
ployed feature detector and the provided ground truth homographies by
the evaluation framework.

Like Mikolajczyk et al. we used recall-precision as evaluation criterion.
Recall is defined as the ratio between the number of correctly matched fea-
tures and the number of possible matches:

recall =
number of correct matches
number of correspondences

.

Recall is measure of descriptor robustness, i.e. how well corresponding fea-
tures can be matched under different image conditions. The precision those
correct matches are attained with is expressed as 1-precision, which relates
the number of false matches to the total number of matches:

1− precision =
number of false matches

number of correct matches + number of false matches
.

Precision is a measure of descriptor distinctiveness, i.e. how well the unique
intensity structure of an image region is captured. Recall-precision is vi-
sualized by varying the distance threshold t during matching and plotting
recall against 1-precision for each t. Increasing t therefore also increases
recall but at the cost of decreasing matching precision.

Feature positions have been detected with the OpenCV SURF detector.
Because SURF-ES only supports a limited number of features, we selected
the 1020 features with the greatest detector response strength. To obtain one
graph for each image sequence we measured recall and 1-precision across
all five image pairs of a sequence and averaged the results. This process
has been repeated for each mobile device and the descriptors generated by
OpenCV’s SURF implementation.

Figures 13 to 16 show that SURF-ES generally performs comparable to
OpenCV SURF. Recall and 1-precision are distributed similarly across all
test sequences with 1-precision being only slightly lower for SURF-ES on
most devices.

The Tegra 3 has very low matching rates for all image sequences except
the least challenging “ubc” sequence. This is due to a descriptor extraction
error we were not able to identify exactly. During the summation of the

40

Figure 12: The first and the last image of each image sequence we used in our
evaluation. From top to bottom: “wall” sequence (viewpoint), “leuven”
sequence (illumination), “bikes” sequence (blur), “ubc” sequence (JPEG
compression).

41

Haar responses parts of the descriptor sums become corrupted with ran-
dom values. Since the Tegra 3 is a pre-production development kit and is
the only device exhibiting this behavior among all nine tested devices, we
suspect a driver-related problem.

Devices featuring GPUs with high floating-point precisions perform
best as expected. The Evo 3D and the Galaxy Nexus have recall-precisions
very close to OpenCV SURF and even slightly outperform the reference
in some sequences (“bikes” and “ubc”). The significantly lower floating-
point precision of the Mali-400 MP GPU has only a minor influence on
the matching performance of the Galaxy S II for most test sequences. The
“wall” sequence, however, poses a much greater challenge to the device. Its
low-precision floats are less sufficient to capture the very self-similar fea-
tures of this textured scene as accurately as OpenCV SURF does. Overall it
can be seen that floating-point precision correlates with 1-precision, i.e. the
distinctiveness of the generated descriptors. On GPUs with low floating-
point precisions smaller intensity differences in the image region around a
feature cannot be represented accurately enough and result in more false
positives during matching.

5.3 Power Consumption

Complex applications challenge mobile devices not only in terms of their
computational capabilities but also their energy efficiency. Minimizing the
power consumption of smartphone applications is therefore important to
prolong battery life. We tested if mobile GPGPU has an effect on energy
efficiency by comparing the power consumption of SURF-ES and OpenCV
SURF. Measurements have been taken with PowerTutor [51], which is avail-
able only for Android. Unfortunately, Xcode Instruments Energy Moni-
toring for the iPhone 4S and the iPad 4G did not yield reliable readings.
OpenCV SURF’s extremely long runtime on the N9 also inhibited a fair
comparison. Hence, we excluded those three devices and limited the test
to the six remaining Android devices.

Measurements were taken for both SURF-ES and OpenCV SURF when
extracting 1020 SURF-64 features from a 1024×1024 image. Since energy
measurements are not very accurate, we repeatedly measured power con-
sumption in a loop (1000 iterations) and averaged the results. To make the
measurements comparable across devices and more readable in the plot,
we subtracted an averaged base line that has been measured for each de-
vice when only standard Android features were running, network connec-
tions switched off and screen on brightest level to avoid effects of other
power saving techniques. Please note that these values are still approxima-
tions as we used the total power consumption and therefore cannot make
any judgment of the percentual influence of CPU or GPU.

The results of our tests are shown in figure 17. It can be seen that SURF-

42

Figure 13: Matching performance of SURF-ES for the “wall” sequence (viewpoint
change) on different mobile devices compared to OpenCV SURF. Note
that SURF-ES produces erroneous descriptors on the Tegra 3.

Figure 14: Matching performance of SURF-ES for the “leuven” sequence (illumi-
nation change) on different mobile devices compared to OpenCV SURF.

43

Figure 15: Matching performance of SURF-ES for the “bikes” sequence (blur) on
different mobile devices compared to OpenCV SURF.

Figure 16: Matching performance of SURF-ES for the “ubc” sequence (JPEG com-
pression) on different mobile devices compared to OpenCV SURF.

44

ES generally has a slightly reduced power consumption. Only on the Tegra
3 and the Galaxy Nexus SURF-ES exhibits significant power savings.

Figure 17: Power consumption of SURF-ES and OpenCV SURF. Note that only
Android devices have been included in this test to ensure a fair com-
parison.

5.4 Discussion

From the results of the runtime performance tests we can see that Moore’s
law also applies to mobile GPUs, indicating their increasing GPGPU fit-
ness. SURF-ES is able to extract about 1000 SURF descriptors from small
to medium sized images with 2 to 20 Hz, depending on the mobile device.
When applied in a practical context like the detection phase of a mobile AR
system with NFT, usually much less feature positions need to be described.
About 300 to 400 features, for example, can be described at 10 to 50 Hz
on all tested devices except the N9. Note that working on small images
and using the faster SURF-36 descriptor further decreases the runtime of
SURF-ES. We therefore assume that SURF-ES leaves enough frame time for
other NFT-related tasks like image acquisition, feature detection, matching,
and pose estimation, as long as they are also tailored to mobile platforms.
This is especially true for state of the art multi-core GPUs as featured in the
MSM8960 and the iPad 4G.

45

Our comparison of SURF-ES against a standard implementation of the
SURF descriptor has shown that GPGPU techniques can indeed improve
the performance of complex operations like SURF descriptor extraction
even on mobile GPUs. Although the attained speed gain is not as signifi-
cant as on desktop PCs (20×) and varies across devices (2–14×), the trend is
clearly for mobile GPUs to offer increasing acceleration as they mature. We
are aware that our comparison to a sequential CPU implementation is to
some degree unfair since many mobile devices already feature multi-core
CPUs. This is due to the fact that the only open-source multi-core imple-
mentation of SURF known to us (namely Parallel SURF [15]) uses OpenMP,
which is neither supported by Android nor by iOS.

Another advantage of SURF-ES over a CPU implementation is that it
can greatly reduce CPU utilization by offloading work onto the GPU. Note
that there is usually a low GPU load during the detection phase of an NFT
system as the virtual augmentations are not being rendered until a pose
has been estimated. SURF-ES therefore would not compete with other
GPU tasks when applied in such a context. The measured CPU loads
indicate that several mobile devices assign some render tasks to the mo-
bile CPU. Particularly the Galaxy S II appears to create mipmaps with the
help of its CPU. Because SURF-ES triggers mipmap generation for a tex-
ture that has been rendered to, this would explain the disproportionately
long runtime of this step on the Galaxy S II. The texture in question has to
be read-back from video memory, mipmapped and then uploaded again.
This would also explain the Galaxy S II’s lack of scalability as the process
becomes memory bound rather than processing unit bound. The number
of keypoints hardly influences performance because the real bottleneck is
mipmap creation accounting for over 70% of the overall runtime. On the
contrary, increasing the size of the input image drastically increases run-
time, because downloading large segments of video memory causes severe
performance hits.

On the other tested mobile devices we observed texture fetches as the
main bottleneck. Consequently, shader programs with low arithmetic in-
tensity perform worst. The shaders to compute a descriptor bin entry and
length take up 50 to 90% of the runtime, due to the relatively large num-
ber of fetches (25 and 64) and few arithmetic operations that can be sched-
uled during texture fetch latency. Desktop GPGPU overcomes such bot-
tlenecks by optimizing those gather operations with parallel reductions.
But because reduction operations significantly increase the number of frag-
ments, they are not feasible on mobile GPUs, which feature only a fraction
of the amount of shader units available on desktop GPUs. Other meth-
ods use mipmaps to compute such sums [11]. Because of the high dy-
namic range of SURF’s descriptor bin values, this is only sensible with
float textures. However, the OpenGL ES 2.0 specification for the exten-
sion GL_OES_texture_float does not require support for rendering to float

46

textures. Therefore, we encountered problems on mobile devices when we
tried to implement this optimization. This alone would be a great addition
for mobile GPGPU in future OpenGL ES APIs.

The matching tests have shown that the SURF descriptors generated
by OpenCV SURF and by GPUs with lower floating-point precision pro-
vide comparable distinctiveness as long as the scene’s features are not self-
similar. Among all test sequences does the “wall” sequence, addressing
invariance to perspective changes, expose the weakest matching perfor-
mance. Lowe [29] pointed out that this is caused by gradient samples lying
close to subregion borders, as they are likely to shift positions between de-
scriptor bins on perspective changes. Both SURF-ES and OpenCV do not
account for that. Agrawal et al. [1] proposed a GPGPU-friendly way to
cope with unstable sample-to-bin associations. By overlapping the subre-
gions and applying a second Gaussian weighting centered at the subregion
center, border samples also leave a signature in neighboring descriptor bins
depending on their distance to the subregion border. This method is eas-
ier to implement on GPUs than a bilinear interpolation approach (e.g. as
in SIFT and Pan-o-matic SURF). On the downside it drastically increases
the workload of the sample summation step by tripling the number of tex-
ture fetches and cannot be optimized with mipmaps. As this is a trade-off
between computational complexity and robustness of the descriptor, we
opted in favor of runtime performance and did not implement this method.

As our tests have shown, GPGPU generally only provides little advan-
tages in terms of energy efficiency for the time being. Significant power
savings can only be achieved when mobile devices feature power save
modes. To this date, this is not a common feature on current SoCs.

6 Conclusion

In this thesis we presented a GPGPU implementation of the SURF descrip-
tor specifically tailored to the limitations of mobile devices. Our main ad-
justments of the SURF descriptor extraction in respect to the original algo-
rithm were the utilization of mipmaps for scale-aware, subpixel-accurate
Haar wavelet sampling and the implementation of a fixed-point encoding
dynamically adjusting to the GPU’s floating-point precision. We exten-
sively evaluated our implementation across different hardware and soft-
ware platforms in terms of runtime behavior, matching performance, and
energy efficiency.

Our experimental results show that using GPGPU for feature descrip-
tion is a feasible way to speed up computation even on a mobile device.
Especially, with newer devices sporting more and more computational par-
allelism these methods will become an important advancement for doing
AR with ever larger image sizes achieving better performance and robust-

47

ness. We also have shown that the limitations of mobile GPUs in terms
of computational accuracy and storage precision can be alleviated in such
a way as to enable a feature matching performance comparable to that of
a CPU implementation. Additionally, we could show that GPGPU poten-
tially yields significant power savings when manufacturers and vendors
incorporate more advanced power save modes into their SoCs.

During development we experienced cross-platform GPGPU on mobile
devices as a cumbersome undertaking as we were battling bugs in prema-
ture drivers and incompatibilities between devices arising from differing
interpretations of the OpenGL ES 2.0 standard. The need for high-level
GPGPU APIs like OpenCL becomes increasingly pressing when future mo-
bile GPUs should be utilizable to their full potential and in a productive
way.

6.1 Future Work

Our prototypic implementation still leaves room for further optimization
and extension. In order to improve the efficiency of the Haar sample sum-
mation and descriptor normalization, the textures holding the unnormal-
ized descriptors could be reshaped to store each descriptor in a quadratic
texel block rather than a column. This would spatially localize texture
fetches and therefore increase texture cache utilization at the cost of more
complex index calculations.

When rendering to float textures becomes reliable (i.e. a requirement of
the extension or at least common practice between vendors) the summation
of the Haar samples could be re-implemented with the help of mipmaps.
We expect the higher storage requirement and bandwidth load of float tex-
tures as well as the cost of generating an additional mipmap to be amor-
tized by several improvements this optimization provides:

• The 4-bin descriptor of a subregion could be stored in a single texel
and only a quarter of the fragments need to be generated for the sum-
mation step.

• Mipmapping would drastically reduce the number of necessary tex-
ture fetches per fragment from 64 to 1 at optimal cache efficiency.

• As pointed out in [11], the recursive generation of mipmaps would
also increase the numerical stability of the summation.

• Our floating-point encoding would become obsolete, thus reducing
the instruction count in several shaders.

Additionally, the calculation of the descriptor lengths for normalization
could be implemented with mipmapping. However, it is not yet foresee-
able when float textures actually will be renderable on mobile devices.

48

Feature detection: When applied in a real-time context, SURF-ES requires
a faster feature detector than SURF’s Fast Hessian. As already mentioned,
we do not consider a GPGPU implementation feasible on mobile devices,
since compaction of the detector responses to a list requires multi-pass re-
duction operations on the GPU or reading back the response matrix for pro-
cessing with the CPU. Therefore, we suggest employing one of the already
existing scale-aware modifications of the very efficient FAST detector, viz.
[26], [44], or [48]. Additionally, applying a measure of detector response
strength (e.g. as in [48] or [38]) would help to meet the input limitations of
SURF-ES by eliminating weak features.

Orientation assignment: SURF-ES does not align its sampling grid to fea-
ture orientation and is therefore not rotationally invariant. Once again, we
consider the original approach to orientation estimation of SURF unfeasi-
ble on both the mobile CPU and GPU, due to its computational complexity.
Still, SURF-ES could be extended with a reproducible orientation assign-
ment in different ways. Herling et al. [17] proposed several optimizations
for SURF’s orientation estimation reducing its runtime while retaining a
comparable matching performance. In case the employed feature detector
extracts corners, the intensity centroid of the region around a corner can be
computed to determine an orientation vector [34]. Intensity centroids are
very efficient and have been successfully applied in [38].

Feature matching on mobile GPUs: To get the full advantage of GPGPU
feature description on mobile GPUs, one has to perform feature matching
on the GPU as well. Reading back a matrix of several hundred SURF-64
descriptors stalls the graphics pipeline for a disproportionately long time,
whereas the read-back of a vector containing only the match wins can be
performed much more efficiently. To this end, GPGPU matching must be
sufficiently fast of course. Thus, we briefly tested a naïve GLSL ES imple-
mentation of matrix multiplication on the Tegra 3 and Galaxy S II. The aim
was to get a general idea of how efficiently mobile GPUs can compute sim-
ilarities between two sets of features using the dot product as a similarity
measure. Multiplying two 300×64 matrices required an average runtime
of about 55 ms on both devices. In addition, each column of the resulting
similarity matrix has to be scanned for the maximum value to determine
the match win in a second render pass.

This straightforward approach to matching can be optimized by cancel-
ing the dot product calculation between two feature descriptors, in case the
dot product between their centers (holding most descriptor energy) does
not exceed a threshold [17]. Using the smaller SURF-36 descriptor addition-
ally reduces the complexity of matching. If the feature detector determines
whether a feature is light or dark (i.e. lighter or darker than the background

49

surrounding it), then the dot product between a light and a dark feature can
be skipped entirely, since they will never match.

The final pass to determine the match wins can also perform efficient
outlier removal with little additional cost. In a similar way as in [29], the
similarity ratio of the second-closest to the closest match helps distinguish-
ing between “good” and “bad” matches when the ratio exceeds a certain
threshold, i.e. the certainty of matching is not sufficient.

Overall, we think that exploiting the mobile GPU for descriptor extrac-
tion and matching can be a fruitful approach to the detection problem of
mobile AR with natural features. Although older mobile GPUs do not sat-
isfy the real-time requirement of NFT, newer products like the Adreno 225
and the PowerVR SGX543MP4 can measure up to that. This shows that
our GPGPU approach is highly scalable and even faster runtimes can be
expected on future mobile GPUs.

50

References

[1] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. CenSurE:
Center Surround Extremas for Realtime Feature Detection and Match-
ing. In David A. Forsyth, Philip H. S. Torr, and Andrew Zisserman, ed-
itors, Proceedings of the 10th European Conference on Computer Vision, vol-
ume 5305 of Lecture Notes in Computer Science, pages 102–115. Springer,
2008. 5.4

[2] Pavel Babenko and Mubarak Shah. MinGPU: A Minimum GPU Li-
brary for Computer Vision. Journal of Real-Time Image Processing,
3(4):255–268, 2008. 3.4

[3] Johannes Bauer, Niko Sünderhauf, and Peter Protzel. Comparing Sev-
eral Implementations of Two Recently Published Feature Detectors. In
Proceedings of the International Conference on Intelligent and Autonomous
Systems, 2007. 2.3

[4] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
Speeded-Up Robust Features (SURF). Computer Vision and Image Un-
derstanding, 110(3):346–359, 2008. (document), 2.1, 2.3, 3.1.1, 2, 3.1.1

[5] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D.
DeRose. Toolglass and Magic Lenses: The See-Through Interface. In
Proceedings of the 20th annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’93, pages 73–80, New York, NY, USA,
1993. ACM. 1

[6] M. Bordallo López, J. Hannuksela, O. Silvén, and M. Vehviläinen.
Graphics Hardware Accelerated Panorama Builder for Mobile Phones.
In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, volume 7256 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, pages 72560D–1–72560D–9, February 2009.
2.2.1

[7] M. Bordallo López, H. Nykänen, J. Hannuksela, O. Silvén, and M. Ve-
hviläinen. Accelerating Image Recognition on Mobile Devices Using
GPGPU. In Proceedings of SPIE. Parallel Processing for Imaging Applica-
tions, volume 7872, pages 78720R–78720R–10, 2011. 2.2.1

[8] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
BRIEF: Binary Robust Independent Elementary Features. In Pro-
ceedings of the 11th European Conference on Computer vision: Part IV,
ECCV’10, pages 778–792, Berlin, Heidelberg, 2010. Springer-Verlag.
2.1, 2.3

51

[9] Nelson L. Chang, Feng Tang, Suk Hwan Lim, and Hai Tao. A Novel
Feature Descriptor Invariant to Complex Brightness Changes. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2009),
pages 2631–2638. IEEE, June 2009. 2.3

[10] Wei-Chao Chen, Yingen Xiong, Jiang Gao, N. Gelfand, and
R. Grzeszczuk. Efficient Extraction of Robust Image Features on Mo-
bile Devices. In Proceedings of the 6th IEEE and ACM International Sym-
posium on Mixed and Augmented Reality (ISMAR 2007), pages 287–288,
November 2007. 2.3.1

[11] Nico Cornelis and Luc Van Gool. Fast Scale Invariant Feature Detec-
tion and Matching on Programmable Graphics Hardware. Computer
Vision and Pattern Recognition Workshop, pages 1–8, 2008. 2.3, 2.3, 2.3.1,
4.2, 4.3, 5.4, 6.1

[12] Nvidia Corporation. Tegra 3 Specifications, 2011. http://
www.nvidia.com/object/tegra-3-processor.html (Last ac-
cessed: June 3rd 2012). 1.2

[13] Mark Fiala. ARTag, a Fiducial Marker System Using Digital Tech-
niques. In Proceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 2 of CVPR ’05, pages
590–596, Washington, DC, USA, 2005. IEEE Computer Society. 1.1

[14] Iryna Gordon and David G. Lowe. What and Where: 3D Object
Recognition with Accurate Pose. Lecture Notes in Computer Science,
4170/2006(1):67–82, 2004. 2.1

[15] David Gossow, Peter Decker, and Dietrich Paulus. An Evaluation of
Open Source SURF Implementations. In Javier Ruiz-del Solar, Eric
Chown, and Paul G. Plöger, editors, RoboCup 2010: Robot Soccer World
Cup XIV. Papers from the 14th annual RoboCup International Symposium,
Singapore, June 25, 2010, volume 6556 of Lecture Notes in Computer Sci-
ence, pages 169–179. Springer, 2010. 2.3.1, 3.3, 5.4

[16] Mark Harris and Dominik Göddeke. GPGPU Programming, 2002.
http://gpgpu.org/developer (Last accessed: June 3rd 2012). 2.2

[17] Jan Herling and Wolfgang Broll. An Adaptive Training-Free Feature
Tracker for Mobile Phones. In Proceedings of the 17th ACM Symposium
on Virtual Reality Software and Technology, VRST ’10, pages 35–42, New
York, NY, USA, 2010. ACM. 2.1, 2.3, 2.3.1, 3.3, 6.1, 6.1

[18] S. Heymann, K. Müller, A. Smolic, B. Fröhlich, and T. Wiegand.
SIFT Implementation and Optimization for General-Purpose GPU.

52

http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://gpgpu.org/developer

In Proceedings of the International Conference in Central Europe on Com-
puter Graphics, Visualization and Computer Vision, pages 317–322, Plzen,
Czech Republic, February 2007. 2.3.1

[19] Daniel Horn. Stream Reduction Operations for GPGPU Applications.
In Matt Pharr and Randima Fernando, editors, GPU Gems 2: Program-
ming Techniques for High-Performance Graphics and General-Purpose Com-
putation. Addison-Wesley Professional, March 2005. 3.2

[20] Imagination Technologies Ltd. PowerVR Series 5 SGX Architecture
Guide for Developers, November 2011. http://www.imgtec.
com/powervr/insider/docs/PowerVR%20Series%205.SGX%
20Architecture%20Guide%20for%20Developers.1.0.13.
External.pdf (Last accessed: June 3rd 2012). 3.2

[21] Imagination Technologies Ltd. PowerVR Performance Recommendations,
February 2012. http://www.imgtec.com/powervr/insider/
docs/PowerVR.Performance%20Recommendations.1.0.28.
External.pdf (Last accessed: June 3rd 2012). 3.2

[22] Hirokazu Kato and Mark Billinghurst. Marker Tracking and HMD
Calibration for a Video-Based Augmented Reality Conferencing Sys-
tem. In Proceedings of the 2nd IEEE and ACM International Workshop
on Augmented Reality, IWAR ’99, pages 85–94, Washington, DC, USA,
1999. IEEE Computer Society. 1.1

[23] Guy-Richard Kayombya. SIFT Feature Extraction on a Smartphone
GPU Using OpenGL ES2.0. Master’s thesis, Massachusetts Institute
of Technology. Dept. of Electrical Engineering and Computer Science,
June 2010. 2.3.1

[24] The Khronos Group Inc. The OpenGL ES Shading Language, May
2009. http://www.khronos.org/registry/gles/specs/2.0/
GLSL_ES_Specification_1.0.17.pdf (Last accessed: June 3rd

2012). 4.4, 4.5, 4.5, 3

[25] Eugene Khvedchenya. Feature Descriptor Comparison Re-
port. http://computer-vision-talks.com/2011/08/
feature-descriptor-comparison-report/ (Last accessed:
June 3rd 2012), August 2011. 2.3

[26] G. Klein and D. Murray. Parallel Tracking and Mapping for Small
AR Workspaces. In Proceedings of the 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR 2007), pages 225–
234, November 2007. 1.2, 2.1, 2.3, 6.1

53

http://www.imgtec.com/powervr/insider/docs/PowerVR%20Series%205.SGX%20Architecture%20Guide%20for%20Developers.1.0.13.External.pdf
http://www.imgtec.com/powervr/insider/docs/PowerVR%20Series%205.SGX%20Architecture%20Guide%20for%20Developers.1.0.13.External.pdf
http://www.imgtec.com/powervr/insider/docs/PowerVR%20Series%205.SGX%20Architecture%20Guide%20for%20Developers.1.0.13.External.pdf
http://www.imgtec.com/powervr/insider/docs/PowerVR%20Series%205.SGX%20Architecture%20Guide%20for%20Developers.1.0.13.External.pdf
http://www.imgtec.com/powervr/insider/docs/PowerVR.Performance%20Recommendations.1.0.28.External.pdf
http://www.imgtec.com/powervr/insider/docs/PowerVR.Performance%20Recommendations.1.0.28.External.pdf
http://www.imgtec.com/powervr/insider/docs/PowerVR.Performance%20Recommendations.1.0.28.External.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://computer-vision-talks.com/2011/08/feature-descriptor-comparison-report/
http://computer-vision-talks.com/2011/08/feature-descriptor-comparison-report/

[27] G. Klein and D. Murray. Parallel Tracking and Mapping on a Camera
Phone. In Proceedings of the 8th IEEE International Symposium on Mixed
and Augmented Reality (ISMAR 2009), pages 83–86, October 2009. 2.1

[28] João P. Lima, Veronica Teichrieb, Judith Kelner, and Robert W. Lin-
deman. Standalone Edge-Based Markerless Tracking of Fully 3-
Dimensional Objects for Handheld Augmented Reality. In Proceedings
of the 16th ACM Symposium on Virtual Reality Software and Technology,
VRST ’09, pages 139–142, New York, NY, USA, 2009. ACM. 2.1, 2.3

[29] David G. Lowe. Distinctive Image Features from Scale-Invariant Key-
points. International Journal of Computer Vision, 60(2):91–110, 2004. 2.1,
2.3, 5.4, 6.1

[30] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. Van Gool. A Comparison of Affine
Region Detectors. International Journal of Computer Vision, 65(1-2):43–
72, November 2005. 5.1

[31] Krystian Mikolajczyk and Cordelia Schmid. A performance evalua-
tion of local descriptors. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 27(10):1615–1630, October 2005. 5.2

[32] Aaftab Munshi, Dan Ginsburg, and Dave Shreiner. OpenGL ES 2.0 Pro-
gramming Guide. Addison-Wesley Professional, Upper Saddle River,
NJ, 1st edition, July 2008. 3

[33] Christoph Oberhofer, Jens Grubert, and Gerhard Reitmayr. Natural
Feature Tracking in JavaScript. Virtual Reality Conference, IEEE, 0:113–
114, march 2012. 2.1

[34] Paul L. Rosin. Measuring Corner Properties. Computer Vision and Image
Understanding, 73(2):291–307, 1999. 6.1

[35] E. Rosten, R. Porter, and T. Drummond. Faster and Better: A Machine
Learning Approach to Corner Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(1):105–119, January 2010. 2.3

[36] Edward Rosten and Tom Drummond. Fusing Points and Lines for
High Performance Tracking. In IEEE International Conference on Com-
puter Vision, volume 2, pages 1508–1511, October 2005. 2.3

[37] Edward Rosten and Tom Drummond. Machine Learning for High-
Speed Corner Detection. In European Conference on Computer Vision,
volume 1, pages 430–443, May 2006. 2.3

[38] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski.
ORB: An Efficient Alternative to SIFT or SURF. In International Confer-
ence on Computer Vision, Barcelona, November 2011. 2.3, 2.3, 6.1, 6.1

54

[39] Thorsten Scheuermann and Justin Hensley. Efficient Histogram Gen-
eration Using Scattering on GPUs. In Proceedings of the 2007 Symposium
on Interactive 3D Graphics and Games, I3D ’07, pages 33–37, New York,
NY, USA, 2007. ACM. 2.3

[40] Shubhabrata Sengupta, Aaron Lefohn, and John D. Owens. A Work-
Efficient Step-Efficient Prefix-Sum Algorithm. In Proceedings of the 2006
Workshop on Edge Computing Using New Commodity Architectures, pages
26–27, May 2006. 3.2

[41] N. Singhal, In Kyu Park, and Sungdae Cho. Implementation and Op-
timization of Image Processing Algorithms on Handheld GPU. In
Proceedings of the 17th IEEE International Conference on Image Processing
(ICIP 2010), pages 4481–4484, September 2010. 2.2.1

[42] Timothy B. Terriberry, Lindley M. French, and John Helmsen. GPU
Accelerating Speeded-Up Robust Features. In Proceedings of the 4th In-
ternational Symposium on 3D Data Processing, Visualization and Transmis-
sion (3DPVT 2008), pages 355–362, Atlanta, Georgia, June 2008. 2.3.1,
1

[43] Paul Viola and Michael Jones. Rapid Object Detection using a Boosted
Cascade of Simple Features. IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 1:511, 2001. 2.3, 3.1.1

[44] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg. Real-Time Detection and Tracking for Augmented Reality on
Mobile Phones. IEEE Transactions on Visualization and Computer Graph-
ics, 16(3):355–368, May-June 2010. 1.2, 2.1, 2.3, 2.3, 2.3, 2.3.1, 6.1

[45] Daniel Wagner, Tobias Langlotz, and Dieter Schmalstieg. Robust and
Unobtrusive Marker Tracking on Mobile Phones. In Proceedings of the
7th IEEE/ACM International Symposium on Mixed and Augmented Reality,
ISMAR ’08, pages 121–124, Washington, DC, USA, 2008. IEEE Com-
puter Society. 1.1

[46] Daniel Wagner and Dieter Schmalstieg. ARToolKitPlus for Pose Track-
ing on Mobile Devices. In Proceedings of the 12th Computer Vision Winter
Workshop, CVWW ’07, pages 139–146, February 2007. 1.1

[47] Yi-Chu Wang, Sydney Pang, and Kwang-Ting Cheng. A GPU-
Accelerated Face Annotation System for Smartphones. In Proceedings
of the International Conference on Multimedia, MM ’10, pages 1667–1668,
New York, NY, USA, 2010. ACM. 2.2.1

[48] Achim Weimert, Xueting Tan, and Xubo Yang. Natural Feature De-
tection on Mobile Phones with 3D FAST. The International Journal of
Virtual Reality, 9(4):29–34, December 2010. 2.3, 2.3.1, 6.1

55

[49] H. Wuest, F. Vial, and D. Strieker. Adaptive Line Tracking with Multi-
ple Hypotheses for Augmented Reality. In Proceedings of the 4th IEEE
and ACM International Symposium on Mixed and Augmented Reality (IS-
MAR 2005), pages 62–69, October 2005. 2.3

[50] Christian Wutte and Georg Wagner. Computer Vision on Mobile
Phone GPUs, October 2009. Bachelor’s thesis, Technische Universität
Graz. 2.3.1

[51] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang,
Robert P. Dick, Zhuoqing Morley Mao, and Lei Yang. Accurate
Online Power Estimation and Automatic Battery Behavior Based
Power Model Generation for Smartphones. In Proceedings of the 8th

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis, CODES/ISSS ’10, pages 105–114, New York, NY,
USA, 2010. ACM. 5.3

[52] Gernot Ziegler, Art Tevs, Christian Theobalt, and Hans-Peter Seidel.
On-the-fly Point Clouds through Histogram Pyramids. In Proceedings
of the 11th International Fall Workshop on Vision, Modeling and Visualiza-
tion 2006 (VMV 2006), pages 137–144, Aachen, Germany, 2006. Euro-
pean Association for Computer Graphics (Eurographics), Aka. 2.3,
2.3.1, 3.2

56

	Introduction
	Problem Statement
	Motivation
	Contributions
	Methodology
	Outline of the Thesis

	Related Work
	Natural Feature Tracking on Mobile Phones
	General-Purpose Computing on GPUs
	General-Purpose Computing on Mobile GPUs

	Image Features
	Implementations of Feature Descriptors

	Design
	Background
	SURF: Speeded Up Robust Features
	GPGPU with OpenGL ES 2.0

	Performance Considerations
	Parallelizing the SURF Descriptor
	Wrapping the OpenGL ES 2.0 API for GPGPU
	Interface of SURF-ES

	Implementation
	Color to Grayscale Conversion
	Sampling of Haar Responses
	Descriptor Formation
	Descriptor Normalization
	Encoding of High-Precision Floats in Textures

	Experimental Results
	Runtime Performance
	Matching Performance
	Power Consumption
	Discussion

	Conclusion
	Future Work

