UNIVERSITAT
KOBLENZ - LANDAU

Fachbereich 4: Informatik

Developing an interactive space
simulation game featuring
procedural content generation

Bachelorarbeit

zur Erlangung des Grades eines Bachelor of Science (B.Sc.)
im Studiengang Computervisualistik

vorgelegt von

Michael Sewell
(sewell@uni-koblenz.de)

Erstgutachter: Prof. Dr.-Ing. Stefan Miiller
(Institut fir Computervisualistik, AG Computergraphik)

Zweitgutachter: Dipl.-Inform. Diana Rottger
(Institut fiir Computervisualistik, AG Computergrafik)

Koblenz, im September 2012

Erklarung

Ich versichere, dass ich die vorliegende Arbeit selbstandig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein
Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. O O

Der Veroffentlichung dieser Arbeit im Internet stimme ich zu. O O

(Ort, Datum) (Unterschrift)

Abstract

Procedural content generation, the generation of video game content
using pseudo-random algorithms, is a field of increasing business and
academic interest due to its suitability for reducing development time and
cost as well as the possibility of creating interesting, unique game spaces.
Although many contemporary games feature procedurally generated
content, the author perceived a lack of games using this approach to
create realistic outer-space game environments, and the feasibility of
employing procedural content generations in such a game was examined.
Using current scientific models, a real-time astronomical simulation was
developed in Python which generates star and planets object in a fictional
galaxy procedurally to serve as the game space of a simple 2D space
exploration game where the player has to search for intelligent life.

Zusammenfassung

Prozedurale Synthese, das Erzeugen von Computerspielinhalten durch
die Verwendung von pseudo-zufilligen Algorithmen, ist ein Themenbe-
reich mit wachsendem Interesse in wirtschaftlichen und akademischen
Kreisen, verdankt sowohl durch ihre Eignung zur Senkung von Ent-
wicklungszeit und -kosten als auch durch die Moéglichkeit, prozedurale
Synthese zur Erzeugung von interessanten und einmaligen Spielwelten
einzusetzen. Obwohl viele aktuelle Computerspiele prozedural generierte
Inhalte verwenden, gebrauchen nur wenige diese Methoden zur Erzeu-
gung realistischer Weltraum-Spielumgebungen, und die Umsetzbarkeit
der Anwendung prozeduraler Synthese zur Entwicklung eines solchen
Spiels wurde untersucht. Aktuelle Modelle aus der Forschung wurden
verwendet, um eine in Echtzeit laufende astronomische Simulation in
Python zu entwickeln, welche Stern- und Planetenobjekte in einer fik-
tiven Galaxie prozedural erzeugt, die als Spielwelt eines einfachen 2D-
Weltraumspiels dient, in welchem der Spieler nach intelligentem Leben
suchen muss.

Contents

1 Introduction 1
1.1 Motivation e 1
1.2 Priorandrelatedwork. 2
1.3 Goals and requirements 4
1.4 Approach e 5

2 Game objects 5
2.1 Starobjects. 5

211 ColorIndex 6
2.1.2 Absolute Magnitude 6
2.1.3 Luminosity 6
214 Metallicity 8
2.1.5 Temperature 0000 8
2.1.6 Coordinates 8
217 Mass . .o e e e 9
218 Radius 9
219 Name i 10
2110 RGBColor, 10
2.1.11 HabitableZone 10
2.1.12 Number ofplanets 11
2.2 Planetobjects 12
221 Mass ... e e e e 12
222 Densityo 12
223 Radius 13
2.24 Semi-major axisS 13
2.2.5 Orbitalperiod. 14
226 Massclass e 14
227 Albedo 14
2.2.8 Effective temperature 15
2.2.9 Surface temperature 15
2210 T-PHC 15
2.211 Thermalzone 16
2212 HZC e 16
2213 HZA e 17
2.2.14 Escapevelocity 17
2215 Name it e 17
2216 HZD e 17
2217 ESI e 18
2218 Image e 18
2.2.19 Habitability andlife 18
2.3 Moving at relativisticspeeds 21

3 Game concepts and interface 24
4 Results and evaluation 28
5 Conclusions 28
6 Ideas for future development 29
References 32

Appendix A Taking an ontogenetic (top-down) approach to

galactic formation and evolution 36
Appendix B Additional tables 36
Appendix C Image attributions 37
List of Figures

1 Hertzsprung-Russel diagram 7

2 Plotof Lorentzfactor. 23

3 Distance covered by an object moving at relativistic speeds 24

4 Screen captures showing the galaxy view 26

5 Screen captures showing the system view 27
List of Tables

1 Increase in academic interestin PCG 2

2 Number of exoplanets discovered by year 3

3 Distributionofplanets 11

4 Exoplanet Mass Classification (EMC) 14

5 Thermal Planetary Habitability Classification (T-PHC) . . 16

6 Habitable Zone Composition (HZC) 16

7 Planetimagematrix 19

8 Astronomical valuesused 37

9 Habitability metrics for solar system planets. 37

il

1 Introduction

1.1 Motivation

Procedural content generation (PCG), specifically procedural content
generation for games (also called PCG-G [1) is tentatively defined
as “programmatic generation of game content using a random or pseudo-
random process that results in an unpredictable range of possible game
play spaces.” []. Doull [;] gives a thorough and
seminal discussion of the problems in defining the scope of the term.
There is also a difference between the terms procedural content generation
and procedural generation: the former is used to refer to techniques that
generate elements that affect gameplay, while the latter can also be used
to refer to the generation of non-gameplay elements such as lighting,
textures and sound effects.

PCG techniques often imitate natural processes to generate plausible
game content before and notably during gameplay. They are most often
used in the areas of terrain and level generation. Compared to manually-
crafted, static content, the pseudo-random nature of PCG algorithms can
be used to increase the replay value of a game by offering the player new
and unique content every time the game is played.

For a game to be considered procedural, randomness is a necessary,
but not sufficient condition [1. Procedural content is about explor-
ing a set of rules underlying a seemingly random system. A procedural
game “presents a biased randomness where discovering the underlying
rules is a necessary part of play.” [1.

Procedural content generation remains a niche field when compared
to other game-related topics such as artificial intelligence or computer
graphics. But academic interest in procedural content generation is in-
creasing (shown in Table 1). This trend is likely driven by the increased
usage of procedurally generated content in the video game industry, espe-
cially for big-budget titles [1, as more game development studios
come to realize that game production costs can be lowered significantly if
content can be generated automatically.

Although procedural content generation is most commonly used for
outdoor and indoor (“dungeon”) maps (“levels”) or environments [1,
there are few sci-fi games set in space which feature an algorithmically
created space environment based on real astrophysics. In this thesis, the
feasibility of developing such a game is examined. A space exploration
game called Starship: Solitude was developed for this purpose, set in a
fictional universe which is generated (on the macroscopic level, i.e. only
large-scale celestial objects are simulated) every time the game is played.

Table 1: Number of Google Scholar (scholar. google. com) search results re-
turned for the term "procedural content generation" by year. Retrieved on
2012-07-03. Value for 2012 only up to August 3rd.

Year Results

2002 0
2003 1
2004 1
2005 3
2006 6
2007 7
2008 20
2009 23
2010 48
2011 93
2012* 51

1.2 Prior and related work

Accrete (1969?), Starform (1988) and StarGen (1999) are consecutive iter-
ations of scientific star system formation computer simulations based on
the astrophysical theory of mass (or core) accretion []. The original
algorithms these programs are based on were developed before the first
discovery of exoplanets (planets outside the solar system, Table 2 shows
exoplanet discovery dates). Because of this, they are based on the as-
sumption that the planets in our solar system are representative of those
in other star systems. The discovery of exoplanets very much unlike the
ones in the solar system has since made clear that this is not the case
and current scientific models no longer rely on the core accretion model
exclusively.

Gadget 1 and Gadget 2 (2001-2005, www .mpa-garching.mpg.de/gadget),
their successor Arepo (2009, www.mpa-garching.mpg.de/~volker/arepo),
Starburst (2002-2005, starburst.sourceforge.net) and Athena (2000,
trac.princeton.edu/Athena) are scientific simulations intended to run
on massive supercomputers. They are used, although not exclusively, to
simulate the formation of one or more galaxies over billions of years, with
a single simulation run possibly taking up to a few months [1.

The usage of procedurally generated universes—or parts thereof—
in sci-fi video games began with the seminal 1984 space trading game
Elite. Elite had the distribution of stars in its multiple galaxies and
the characteristics of its planets procedurally generated, although star
systems followed a very simple model: one star, one planet and one space
station per system. Its 1993 successor, Frontier: Elite II, improved on the

2

scholar.google.com
http://www.eldacur.com/~brons/NerdCorner/StarGen/StarGen.html
www.mpa-garching.mpg.de/gadget
www.mpa-garching.mpg.de/~volker/arepo
starburst.sourceforge.net
trac.princeton.edu/Athena

Table 2: Number of exoplanets discovered by year as of 2012-08-03 [,]

Year Planets

1989 1
1992 3
1994 1
1995 1
1996 6
1998 7
1999 11
2000 19
2001 13
2002 30
2003 26
2004 31
2005 33
2006 29
2007 61
2008 61
2009 80
2010 114
2011 189
2012* 59

simulation aspect by allowing for multiple planets per systems, moons
around planets, multiple-star systems, planetary day and night cycles as
well as stars of all spectral classes.

A recent example of a commercially successful game featuring a pro-
cedurally generated space environment is the MMORPG EVE Online,
first released in 2003 but still updated regularly, which features star
systems that were generated using a disc accretion model in a fractally
generated galaxy [1. Note that the world in EVE Online is static
instead of dynamic (or offline instead of online [1), meaning that
it is not generated during runtime and kept in memory, as is the case for
e.g. Elite. Instead, EVE Online’s world was generated once during the
development phase of the game and then shipped with it, resulting in a
finite game space.

Two space exploration games with procedurally generated environ-
ments currently in development are Infiniverse (infiniverse-game.com)
and Infinity: The Quest for Earth (infinity-universe.com).

Space Engine (en.spaceengine.org) is a hobbyist space simulation
software that lets the user navigate space in 3D, starting from Earth.
Real astronomical data is taken into account for the known parts of the

3

infiniverse-game.com
infinity-universe.com
en.spaceengine.org

universe, while anything beyond that is generated procedurally.

1.3 Goals and requirements

The aim of this thesis is to develop a simple space exploration game built
on top of an astronomical simulation. For both simulation and game
aspects, different goals have been defined.

For the simulation aspect, realism is important. Objects should be
generated using pseudo-random algorithms that produce results which
closely resemble those of the real-life counterparts of those objects. They
should be a good fit to current astronomical data or, in the case where
no observational data is available (e.g. for the presence of life on other
planets) be in line with current scientific consensus.

At the outset of this thesis the feasibility of algorithmically recreating
the formation and evolution of an entire universe on the macroscopic
scale, requiring simulation on a timescale of billions of years ranging from
the Big Bang to the eventual heat death of the universe, was examined.
Additionally, since a new, different universe should be created every time
a new game is started, the simulation has to run in real time.

During the early research phase, it soon became apparent that the
evolution of space is too complex for the author, who is a student of a
different field, to teleologically (“bottom-up”, Appendix A defines this
term) implement in the allotted time frame. In addition, galaxies can
contain hundreds of billions of stars. Having this many stars in the
game would likely not only cause difficulties in gameplay, but also in
data storage and processing. The decision was made to limit the scope
of generated space to a section of a single Milky Way-like galaxy that
is created using a top-down approach, with stars and planets being the
most relevant objects to the game, reducing the total number of generated
systems to a manageable number of around 500.

The game need only be simple as its purpose is to serve as a “frontend”
to the astronomical simulation running in the background by allowing a
player to explore the generated universe in an appealing fashion. This
exploration theme should be the main focus of the game, with other
gameplay considerations being secondary, in the hope that exploring
the results of the simulation should be interesting enough to provide
an incentive to play the game. The attributes that define the generated
stars and planet should be made visible to the player. In addition, there
is another concept inherent to the space exploration theme of the game
that should define gameplay: as the player character traverses the stars
he covers great distances at great speeds and should experience the
effects of relativistic time dilation. This effect should be made visible and
understandable to the player.

Although Starship: Solitude is not intended to be an educational

4

game per se, to play it efficiently, the player has to understand the relation
of a star’s properties to the likelihood of it hosting habitable planets. This
and the inclusion of time dilation, a concept of special relativity which
generally exceeds high school education, suggest the game might have
some educational value by teaching these astronomical concepts to the
player.

Gameplay should feel realistic to the player. This means objects in
the game, in particular the player’s starship, should behave as expected
if they were real. In the case where excessive realism is detrimental to
gameplay, alterations can be made to make the game more enjoyable.

1.4 Approach

As the author is not a student of astronomy, at the outset of this thesis,
intensive research was done to obtain the required knowledge about the
physical attributes of celestial objects, general relativity and current
beliefs on the possibility of life on other planets. After the necessary
research was done, the astronomical simulation was developed. It was
programmed in the Python programming language due Python’s suit-
ability for fast development, the Pygame game development package for
Python and the author’s familiarity with the language. When developing
the algorithms for star and planet generation, an effort was made to use
the most current research results where possible, as, particulary in the
relatively new field of exoplanetology, scientific theories change rapidly
and textbooks become outdated within months. The quality of these
algorithms was ensured by comparing their results to the most current
available astronomical data. Once the simulation had reached a mature
stage, the game was built around it.

2 Game objects

There are three essential types of objects in the game: stars, planets and
the player’s ship. Each has a number of attributes and methods, given
below. Unless otherwise stated, these formulas were translated verbatim
to code.

2.1 Star objects

Stars in the Starship: Solitude have the following attributes generated
and assigned during their creation at the beginning of the game.

5

2.1.1 Color Index

In astronomy, the color of a star is given by its color index. Color index of
an object is given by the observed difference in visual magnitude of an
object, using two color filters. The most common filters (and those used in
the game) are a blue filter and a visible light filter, giving the B-V color
index. An in-game star’s color index and absolute magnitude values are
“generated” by selecting a random star from the HYG database, a list
of the properties of around 120,000 real stars [1, extracting that
star’s color index and absolute magnitude (explained below) values and
altering them slightly by up to +£5% for additional variety. This way, not
only is the color-magnitude relation kept, but the used values are realistic.
This is important because the color index and absolute magnitude are
the “base” properties for a star from which all other star attributes in
Starship: Solitude are derived, either directly or indirectly. The game
resorts to picking known color index and absolute magnitude value pairs
from a list because the two are related in such a way that it cannot be
expressed as a simple function, as it is done for the other star attributes
below. This relation is best shown by the Hertzsprung-Russell diagram
(show in Figure 1), which shows that stars fall into certain bands or
regions of B-V and visual magnitude value pairs.

2.1.2 Absolute Magnitude

Absolute magnitude measures the intrinsic brightness of an object at a
specific distance (10 parsecs, or 32.6 light years, for stars). The value
is given on a logarithmic, unitless scale, with lower numbers indicating
brighter stars. The Sun has an absolute magnitude value of 4.8, for
example. Stars in the game are assigned their absolute magnitude value
from the color index—absolute magnitude value pairs taken from the HYG
database, as explained in the description for the color index above.

2.1.3 Luminosity

Luminosity is a linear measurement of brightness, defined as the total
amount of energy emitted from a star in watts W. The luminosity L
in solar luminosities L, is calculated from the star’s absolute visual
magnitude Mv, using the formula

L Mvx—-Mve
_— = -2
Lo
where Mv, = 4.83 is the sun’s absolute magnitude [1. Even though

absolute magnitude and luminosity are both measures of brightness and
one can be calculated from the other, some of the formulas below require
one or the other, so values are provided for both.

6

()
9 GO KO Mo
.g O O
g -5 Supengiants —la
= Ib
2 i O
-
©° C%r'lgh/GlargPs .II
§ © 0o o
o/ ofeefeell
0 5)
o} . o
= —083 OOG(;gnts .
Yanss (o OO IV
Qo 0 o © °
eiles)
+5 3 o OO0/ o0 °
o0 (@)
/}&/ Oo oog o
(@]
° % % (o] Ko}
o ol e
(o]
+10 . T oo\ °
. [Oé o0 o o..
o h/;. o © g}dt; °°°
o o /,@0; o © ° olo
o © S/ ol o
o o B Y
+15 (-] o f (-]
0 05 +10 +15 (B=V),
+ .
Color
Index

Figure 1: The Hertzsprung-Russell diagram plots magnitude against the color of
stars. The different stages of stellar evolution are visible in the shape of clumps
or bands of stars across the image.

2.1.4 Metallicity

Metallicity describes the elemental composition of any celestial object,
but is most commonly used for stars and written as [Fe/H]. Metal in an
astronomical context refers to all elements other than Hydrogen H or
Helium He, instead of the usual meaning implying a certain electrical
conductivity and chemical bonding. If a star has a high metal content,
it not only implies that the star is younger (since unlike Hydrogen and
Helium, the heavier elements were not produced by the Big Bang, but
later by nucleosynthesis in stars or supernovae) but there also has been
found a relation between the [Fe/H] content of a star and the number of
planets in that star system, with a higher [Fe/H] value implying more
planets in the star system. However, this correlation may not extend to
giant stars, to stars of intermediate metallicity, to M dwarfs or to the
occurrence of low-mass planets [; 1.

In the game, this relation between [Fe/H] content of the star and
number of planets in the system is implemented by first generating the
star’s planets and then deriving the star’s metallicity from the number
of planets. It is important for the player to be able to see the relation
between star metallicity and number of planets, as [Fe/H] content is
shown when selecting a star and more planets around a star indicate a
higher likelihood that some of those planets are habitable.

The in-game formula was made specifically for the game and is based
on the distribution of metallicities of stars with observed exoplanets. With
n being the number of planets, u=0.0325746201 and o = 0.2708663696
are the average and standard deviation of the star metallicities taken
from a list of known exoplanets [] and .# (u,0?) being the normal
distribution:

X ~ N (u,0%)
[Fe/H] = X —log2.6 +log(n +1)

2.1.5 Temperature

A star’s effective temperature is calculated using the formula given
in [1, where temperature is defined as a function of metallicity
and B-V color index.

log T' = {0.0049([Fe/H]) — 0.288}B — V) pyqg — 0.002([Fe/H]) + 3.941

2.1.6 Coordinates

Internally, the game uses 2D floating point coordinates to place star
and ship objects on the screen. A star’s coordinates on the 2D grid are
generated randomly on its creation, checking to make sure that stars

8

aren’t too close to each other (at least 4 light years apart). In reality,
stars don’t form randomly or in isolation. Instead, they form within giant
molecular dust and gas clouds and build so-called star clusters which
can have thousands of members [1.

2.1.7 Mass

In astronomy, there is a well-known relation between the luminosity
of a star and its mass, called the mass—luminosity relation. Originally,
an in-game star’s mass M was calculated using the mass—luminosity
relationships given by Kutner and Salaris and Cassisi [; 1,
who state that luminosity is related to power by a power of a:

L/Lo=(M/My)*

But the value of @ changes across the range of stellar masses. With M,
being the sun’s mass:

a=1.8 for M <0.3M,
a=4.0for 0.3Ms, <M <3M,
a=28for 3M, <M <20M,
a=1for M =20M,

However, this function is unsatisfactory because it is discontinuous and
gives poor results for very luminous stars as it makes them too massive.
Instead, regression was performed on a set of known mass and luminosity
values for binary stars (stars in multiple-star systems are the only stars
for which mass can be accurately measured) given in [1. The power
function obtained by regression was perceived to give very luminous stars
not enough mass, and a corrective linear function was added to give the
combined function

M/M, =0.967L%%%° + 519 x 107°L — 0.0670

2.1.8 Radius

A star’s radius R is calculated using the luminosity L and the effective
temperature 7' and equals [, page 104]:

L
R=/——
dwoT4

9

2.1.9 Name

Of the hundreds of billions of stars in the Milky Way, only those who
appear brightest to the naked eye have historical, “real” names like
Arcturus or Alpha Centauri. Most others are referred to by the star
catalogue that they appear in and the number they are assigned in
that catalogue. For example, HD 1461 is the name of star 1461 in the
Henry Draper star catalogue. Despite this convention, Elite and the
Master of Orion series of games are examples of space games that feature
randomly-generated fictional systems that assign random “real” names
to all their systems. Starship: Solitude also generates its system names
randomly, using a Markov Chain algorithm that uses 850 Basic English
(http://ogden.basic-english.org/) words as its dictionary. The game
rejects names already in use, giving each system a unique name.

2.1.10 RGB Color

A star’s visual spectrum color is given by its temperature. Each star
in Starship: Solitude is colored according to its temperature, based on
a color lookup table that provides blackbody' RGB values at different
temperatures [1. The table provides values for temperature values
in steps of 100K, and the game interpolates between those values when
assigning star color.

2.1.11 Habitable Zone

The habitable zone (HZ) of a star is defined as the range between mini-
mum and maximum distance from that star a planet could contain liquid
water. Since water is considered a prerequisite for life, it is thought that
planets without liquid water would not naturally develop life.

As the star itself evolves and grows hotter, the habitable zone moves
outwards and so there is also the concept of a continuously habitable zone,
which is the range of orbital distances over which liquid water can exist
continuously for long enough for life to evolve [, page 238]. This
view of a habitable zone does not consider the existence of alternative
biochemistry or subsurface deposits of liquid water on planets too cold to
sustain liquid surface water. Since pressure and solutes can change the
freezing and boiling points of water, life could exist outside even outside
the habitable zone. Life has been observed in liquids between —20 °C and
121°C [1.

1 A black body is a hypothetical physical body that absorbs all incoming electromagnetic
radiation and is also an ideal thermal emitter, meaning it emits energy evenly across
all frequencies based on its temperature. In astronomy, black bodies serve as close
approximations of stars.

10

http://ogden.basic-english.org/

Table 3: The number of planets around a host star in Starship: Solitude is based
on a geometric distribution. This table shows the probability that there are at
least n planets around a star. Systems with more than 15 planets are possible,
but very unlikely.

n PX>=n)
0 1

1 0.615
2 0.379
3 0.233
4 0.143
5 0.088
6 0.054
7 0.033
8 0.021
9 0.013
10 0.008
11 0.005
12 0.003
13 0.002
14 0.001
15 0.001

The HZ is calculated as a function of the luminosity L/L, and the
effective temperature of the star 7' in K [1. With r; denoting the
inner (closer to the star) boundary of the HZ and r, the outer boundary:

r;=(0.720-2.76 x 10™° (T - To) - 3.81 x 10°(T - T'v)*) VL/Lo
ro=(1.77-1.838x 107*(T - To) - 1.43 x 10 (T - To)*) VL/Lo

2.1.12 Number of planets

In Starship: Solitude, the number of planets around a star is generated
solely based on the assumption that on average, every star of the Milky
Way hosts 1.6*072 planets [1, leaving out other factors such as
spectral type and mass of the star. The algorithm in Starship: Solitude
for determining the number of planets is based on the assumption that not
all star systems have planets and that the probability of a system having
0, 1, ..., n planets follows a geometric distribution (X =n) = p(1-p)*
with p =(1+1.6)"!, which gives an average planet number of u=1.6 and
a standard deviation of o =2.04. Table 3 shows the resulting probability

that a star has a given number of planets.

11

2.2 Planet objects

Planets in Starship: Solitude have a large number of attributes gener-
ated, more than those for stars. Some of the rules for generating these
attributes have been taken straight from the academic literature, while
others were created using the values for the solar system planets as a
baseline. The values used for the attributes of our solar system planets
can be found in Table 8.

2.2.1 Mass

When the game creates a planet, first a random mass m from a list of
real exoplanet masses [lis chosen and randomly altered by +10%
for variety.

But there is a problem with this approach, namely observational bias:
large and massive exoplanets are easier to detect than smaller ones, and
so most confirmed exoplanets fall into the former category. However,
research indicates that smaller planets are likely to outnumber giant
ones [; 1. To account for this, m is modified by a quadratic
function created specifically for Starship: Solitude. The quadratic func-
tion is based on three value—value mappings:

The smallest known exoplanet mass (0.00210 My) is mapped to half the
mass of Mercury (8.70 x 107° Mj). The average exoplanet mass (2.90 M) is
mapped to the average mass of planets in the solar system (0.176 My). The
assumption here is that planets in other star systems would, on average,
have the same mass as those in the solar system (a claim which cannot
currently be proven). The largest exoplanet mass (31 My) is mapped to
1.10 times itself, assuming the most massive discovered exoplanet is near
the maximum mass a planet can have.

Taking these value pairs as x, y values of a function, we can perform
quadratic regression on them using a least squares polynomial fit. The
resulting polynomial gives the new planet mass M as

M =0.0370m2 - 0.0469m +0.000 185

Planets below 0.500 Mg are unlikely to be able to maintain a life-supp-
orting atmosphere due to their low gravity and lack of plate tectonics,
and planets above 10 Mg can attract a H-He atmosphere and become
gas giants [, page 285]. This is reflected in the habitability metrics
defined further below.

2.2.2 Density

In the solar system, the more massive planets are generally also less
dense. There is little data about the densities of exoplanets available,

12

so we assume that this relation also exists elsewhere. Modeling the
mass—density relation of the solar system planets as a power function,
we get

d =1.06 x 109 M ~0-222

which is an adequate, but not perfect fit around the data with a coef-
ficient of determination R? = 0.754. The resulting d is modified ran-
domly between +35% (the usual value of £10% would not allow for some
mass/density values of the solar system planets).

2.2.3 Radius

The equatorial radius R of a planet is calculated using the formula for
the mass of a sphere. M is the mass in kg and d is the density of the

planet.
3| 3M
R=y—
4dnd

The semi-major axis a of an ellipse is the largest radius from the center
of the ellipse to its edge. It is used in astronomy when describing the
orbit of a celestial object.

a can be derived by the mass and orbital period of an object. In our
case, only the mass is known, and the weak relation between semi-major
axis and mass is used to calculate the semi-major axis using a power
function, doing regression on the known values for exoplanet masses and
semi-major axes. The resulting power function is

2.2.4 Semi-major axis

a = 0.453M04%

which is only a loose fit to the values with the coefficient of determination
R? =0.204. However, there is an observational bias in the known semi-
major axes of exoplanets because exoplanet detection by radial velocity
is more likely to find planets orbiting close to its star. As a remedy,
the average a,,g = 0.603AU, as measured by taking the average of the
masses from the exoplanet list after running them through the function,
is brought to the level of the solar system average acqvg = 8.45AU by
multiplying each a by % =14.0184, the underlying assumption being
that the solar system is a good model for other planetary systems. Finally,
the value is randomly altered by +10% for added variety.

There are no measures in the game to make sure that the resulting
orbits are actually stable or that even if they were stable, objects wouldn’t
collide with each other.

13

Table 4: Exoplanet Mass Classification (EMC) [1

Planet Type Mass in Mg

Asteroidean 0 to 0.00001
Mercurian 0.00001 to 0.1
Subterran 0.1t00.5
Terran 0.5t02
Superterran 2 to 10
Neptunian 10 to 50
Jovian 50 to 5000

2.2.5 Orbital period

The orbital period of a planet around its star is calculated according to

Kepler’s Third Law:
3
a
=\ Gar+)

Where a is the semi-major axis, M is the mass of the planet and M, is
the mass of the star.

2.2.6 Mass class

Starship: Solitude uses various classification schemes proposed by the
Planetary Habitability Laboratory at the University of Puerto Rico at
Arecibo (PHL). One of these is the classification by mass, called the
Exoplanets Mass Classification (EMC) [1. It suggests seven labels
to use to describe exoplanets by mass. Table 4 shows these definitions.

2.2.7 Albedo

Albedo is a measure of the reflectiveness of a surface. A surface with
an albedo value of 1 is a “white” surface (a perfect reflector), while a
surface with an albedo value of 0 reflects nothing. Since there is little
data available for the albedos of exoplanets, the albedos of solar system
planets are used as a reference. Their albedo values are distributed with
an average value u=.3375 and a standard deviation ¢ =0.1696 and these
values are used as the parameters of a normal deviation when generating
the albedo of planets in the game. Albedo values A are only possible
between 0 and 1 and if the generated albedo is out of this range, it is
generated again until it fits into the range.

14

2.2.8 Effective temperature

The effective or equilibrium temperature of a planet is the temperature a
planet would have if its star were its only heat source. This means that
interior heating effects of the planet, such as heating from greenhouse
gases, is ignored [1:

1
R\l
T, = T(—*)Z (1-A)i

2a
Here, T is the stellar effective temperature, a is the planet’s semi-major
axis and A is the albedo.

2.2.9 Surface temperature

Instead of simulating a greenhouse gas effect or other forms of internal
heating, we calculate the surface temperature by scaling the effective
temperature by a factor f of the planet’s albedo. This is done because
there exists a (weak) relation between albedo and the difference in surface
and effective temperature, at least for the solar system planets. To obtain
a value for f, we first calculate

T, T,
SETAT,,

for every planet of the solar system. Then we retrieve the geometric mean
of these values to get f:

n 1l/n
]
i=1

which gives us f =0.517. Then, we can get the surface temperature in
K of a planet in the game by using its effective temperature and albedo
values:

Ts=T,+AT.f

2.2.10 T-PHC

The Thermal Planetary Habitability Classification (T-PHC) is one of the
exoplanet habitability classifications proposed by the PHL. It categorizes
potentially habitable planets into six groups based on their surface tem-
perature []. Table 5 shows which temperature ranges belong to
which group.

15

Table 5: Thermal Planetary Habitability Classification (T-PHC) []

Surface temp. Class name Short name
—100°C to —50°C hypopsychroplanet hP
-50°Cto 0°C psychroplanet P
0°Cto 50°C mesoplanet, Earth-like M
50°C to 100°C thermoplanet T
100°C to 150°C hyperthermoplanet hT

Table 6: How HZC values are resolved in Starship: Solitude. Adapted
from []

HZC value HZC class name

-1<x iron

-1<x<0 rocky-iron
0<x<1 rocky-water
l<sx<2 water-gas
2=<x gas

2.2.11 Thermal zone

In addition to the T-PHC, the PHL categorizes exoplanets into three
temperature categories which, unlike the T-PHC, can also be given for
non-habitable exoplanets. These three categories are warm for planets
in the habitable zone and Aot and cold for planets closer or farther away
from their star, respectively.

2.2.12 HZC

The Habitable Zone Composition (HZC) is one of the habitability metrics
used by the PHL. It assigns a score based on the planet’s composition by
looking at how gassy it is. The formula given in [lis:

1 M M 0.394
ri = 2,52 x 1070209+ 5 1og 55 ~0.0804 5

1 M M 0375
ro = 4.43 x 10~0-209+5 log 5 -0.0807:%;

_2R—ro (M)~ ri(M)

HZC ro(M)—r;(M)

with M and R being the mass and radius of the planet in earth units.
The values are then resolved and assigned according to Table 6.

16

2.2.13 HZA

The Habitable Zone Atmosphere (HZA) is another exoplanet habitability
metric for exoplanets proposed by the PHL. It assigns a score based on
the ability of a planet to potentially hold an atmosphere [1. The
formula is:

Ve = vV 0.02T,

0.02T,
UeN = 14
HZA = 2VM/R —UeH — UeN
UeH — UeN

where M, R and T, are the mass and radius of the planet in Earth
units and the effective temperature in K. HZA values below -1 indicate
no atmosphere, a value between -1 and 1 can sustain a CO; — Hy0 — Ny
or metal-rich atmospheres of terrestrial planets and a value above 1
indicates the H—He atmosphere of gas giants.

2.2.14 Escape velocity

The speed needed to escape from the gravitational field of a planet is

_ |2GM
Ve = —R

where M and R are the mass and radius of the planet and G is the
gravitational constant [, page 123].

2.2.15 Name

If a planet hosts intelligent life, it is assigned a random “real” name to
indicate that the natives have named their planet, generated by the same
Markov chain algorithm used for the naming of stars. Otherwise, planet
naming attempts to follow astronomical convention: Usually, the first
exoplanet discovered in a system is assigned the letter b, the second ¢ and
so on. Since all planets of a system in Starship: Solitude are “discovered”
simultaneously, the planet closest to its star is given the letter b, second
closest ¢ and so on. For example, the third planet in the Vox system would
be called Vox d.

2.2.16 HZD

The Habitable Zone Distance (HZD) is another habitability metric pro-
posed by the PHL. It assigns a score based on the exoplanet’s position

17

within its star’s habitable zone. This is done by calculating the distance
of the planet from the midpoint of the habitable zone and normalizing
this value to half the width of the habitable zone [1. The formula
is
HZD = 2a—r,—r;
ro—Tri
where a is the semi-major axis of the planet and r, and r; are the outer
and inner borders of the habitable zone, respectively. A value between -1

and 1 means the planet is within the habitable zone.

2.2.17 ESI

The Earth Similarity Index (ESI) determines how Earth-like a planet
is by comparing a planet’s radius, density, escape velocity and surface
temperature to Earth’s reference values [1. With R, d, v, being the
planet’s radius, density and escape velocity in Earth units and T being
the planet’s surface temperature in K, ESI is calculated as a weighted

geometric mean of the individual property similarities: []
R_1)\175
ESI,. =(1-
" R+1)
d — 10935
ESIy;=(1-|——
d d+1)
_1]\143
EST, = (1|2)
Vet+1
T _988[\0-179
ESIr=|1-|=2——)
T (T, +288

ESI = (ESL, x ESI, x ESI, x ESI7)"*

Torres [] gives a more thorough explanation of the ESI.

2.2.18 Image

Each planet in Starship: Solitude is represent visually by an image
assigned to it based on the planet’s attributes, as explained in Table 7.
2.2.19 Habitability and life

For a planet to allow for life as we know it? to evolve, certain conditions
must be met. Most importantly, it must allow for the presence of liquid
water.

2 In theory, life on other worlds could follow alternative biochemistries, as speculated
by both science fiction and science. However, only carbon—water-based life was considered
for this thesis.

18

Table 7: Planets in Starship: Solitude are displayed using one of these images.
Which image is used for a given planet depends on the planet’s HZC value
(pairs of rows in the table below), temperature value (columns) as well as the
planet’s atmosphere class (if the planet’s atmosphere is metals-rich, the image
is chosen from the rows with a gray background, otherwise from the rows with
a white background). The images used for the planets are merely an artist’s
representation and are unlikely to be accurate depictions of the surface of such
planets. This mapping was done by using the author’s best guess on which
image fits which attributes and aiming for an even distribution of images across
attribute categories.

Surface temperature in °C
(-00,-100) [-100,-50) [—50,0) [0,50) [50,100) [100,150) [150,00)

(—o0,-1)

HZC value

[-1,0)

[0,1)

[1,2)

[2,00)

O

19

A planet’s temperature is determined by the distance to its star, and
planets too close to their star will evaporate any water, while planets too
far away will only have water in a frozen state. How far away a planet
needs to be to support water depends on the star’s size and temperature.

The chance for a planet in Starship: Solitude to allow for life to evolve
(called chance of life or COL) is calculated by taking four habitability
metrics into account: HZD, HZC, HZA and ESI. Since for each of these
indicators, a value of 0 indicates most suitable for life?, the combined
chance of life can be calculated by taking the sum of the absolute values
of the habitability metrics. Then, a value of 0 would indicate a maximally
habitable and a value above 1 would indicate a non-habitable planet.
This simple formula was originally used for the game, but proved too
strict: very few planets would have the right attributes to score a summed
habitability value of less than 1. Since a very low rate of habitable planets
in the game would surely be frustrating to the player, simulation accuracy
was sacrificed for gameplay and instead of the sum, the average of these
values is used as the chance of life on a planet.

The result is that a lot more planets are considered habitable. To
determine if a planet actually has life (which is different from just being
able to support it), the COL, which ranges from 0 (no life possible) to
1 (definitely has life), is compared to a random value x = rand(0,1). If
x < COL, that planet has life.

If the planet is determined to have life, we have to decide what type
of life it hosts. Types of life and the probability for that type to evolve is
based on a few statements from an article on the PHL website:

We expect that extraterrestrial life in exoplanets, if any, is
most probably microbial life. [...] More complex life such as
animals and vegetation is a second possibility. Intelligent life
should be much rarer. [...] If we randomly put on stars around
us 1,000 Earth replicas but at different evolutionary stages,
we will find about 130 without life, 740 with only microbial
life, 130 with plants and animals, and only one of those with
intelligent life. []

Based on this, the game randomly determines the type of life with a 1
in 871 =130+ 740 + 130 chance of intelligent life, a 130 in 871 chance of
plant and animal life and a 740 in 871 chance of only microbial life. This
result is that planets with intelligent life are generated only very rarely.

3 Except for ESI, for which habitability peaks at 1. Since ESI values only range from 0
to 1, this is easily remedied by simply using the ESI value minus 1, which gives a peak
habitability at 0.

20

2.3 Moving at relativistic speeds

In Starship: Solitude, the time it takes for the player’s ship to travel
between stars has to be calculated relativistically, as the ship covers
great distances at great speed. It propels itself forward at a constant
acceleration equal to Earth’s gravity g. This might not seem like much,
but since the ship is accelerating continuously, after about a year it
reaches speeds of > 0.7¢, where relativistic time dilation (given by the
Lorentz factor, defined further below) becomes noticeable.

The game keeps track of the two relevant time frames: proper time, as
would be measured by a clock on the ship (and that the player character
experiences), and the time that passes from a non-accelerating observer’s
point of view. While the ship is moving, the time passed and the distance
travelled are continuously updated and shown to the player in the upper
right corner of the screen. For this to be possible, the game has to keep
track of both the distance from the point of origin (the system the ship
previously halted at) to the target system, called the total distance ds,
and the distance between the ship and its target at any point in time, the
current distance d. With these distance values, the observer time and
proper time passed, the current velocity can be calculated for any point
along the route. It is important to note that since the ship has to stop at
the target (instead of speeding past), it has to invert the direction of its
acceleration at the halfway point.

Most of the following formulas are adapted from [; 1.

The total time s of the trip to the target destination is given by

0.5ds\2 2d
tz=2\/(Z) +_Z
C a

where d; is the total distance to the target in m, ¢ is the speed of light
and a is the acceleration.

The velocity of an object moving relativistically at constant accelera-
tion a after ¢ seconds is given by

at

2
1+ (%)

v(t) =

However, the ship is supposed to stop at its destination and must start
decelerating at the halfway point, so the formula becomes

v =v(min(t,0.5¢5)) — (v(0.5¢t5) — v(min(0.5¢5,ts — t)))

The distance in m an object has moved after ¢ seconds at constant
acceleration a is given by

2 2
d(t)=c—(\/1+a—t —1)
a C

21

But for an object halting at its destination, this becomes
d =d(min(z,0.5¢5)) +d(0.5¢5) — d(min (0.5¢5,¢5 — £))

The proper time for an object moving relativistically at constant ac-
celeration a after d meters is given by

Td) = (E)cosh_1 (i—g + 1)

cosh™! is the inverse hyperbolic cosine function. Again, since the ship
will stop at its destination and must start decelerating at the halfway
point, this formula becomes

T =min(T(d),T(0.5d5x)) + T(0.5d5) — T(min (0.5ds,ds — d))

In Starship: Solitude, time only progresses when the ship is moving.
It was decided that when the ship does move, it should be the proper
time T that changes at a constant rate instead of the observer time ¢.
This means that as the ship accelerates, At between game frames should
increase, but AT stay the same. This is achieved by incrementing the
in-game time by a multiple of the current time dilation, as given by the

Lorentz factor [1:)

- ()

c

”)/:

The visual effect this creates is that the distance the ship moves between
each frame does not scale linearly with its velocity, as it would if Az were
constant. Since y only increases noticeably at near-light speeds (shown
in Figure 2), the distance the ship has moved on the screen follows the
curve shown in Figure 3.

Taking these calculations into account, the in-game function for mov-
ing the player’s ship towards its target is called every game frame while
the ship is moving and does the following:

1. Determine the current Lorentz factor y at the ship’s current veloc-
ity v.

2. Increase the ship time ¢ by 10 x 105y seconds. The factor 10 x 105
was chosen because it moves the ship sprite along the screen at a
pace that was felt by the author to be neither too fast nor too slow.

3. Because ¢t has now changed, recalculate v using ¢ and the total time
the ship will be moving.

4. From the total distance ds from the ship’s former resting point to
the target destination (passed as an argument to the movement
function) and ¢, calculate the distance d the ship has moved so far.

22

AT
At

")/:

10

%0 0.1 0.2 0.3 0.1 05 0.6 07 08 09 L0
v/c
Figure 2: Plotting the Lorentz factor shows the steep increase in time dilation at
near-light speeds.
5. Determine 7T from d and ds.

10.

Alternate between animation frames of the ship. Ship sprites have
two frames, one with thrusters on and one with thrusters off. If the
ship has reached its destination and is standing still, use the frame
with thrusters off.

Determine the heading of the ship by calculating the vector from
the ship to the destination star.

Using the ship’s heading, rotate the ship sprite towards its destina-
tion.

If the ship is past the halfway point, reverse the ship sprite to
show that the ship is now decelerating and pointing its thrusters
“pbackwards”.

Move the ship to the appropriate point on the line between the ship’s
former resting point (the origin) and the target destination, using
the fraction d/ds.

23

100

% of time passed

: : : : : : d
wl/ d
[N M N N T B T
Q0 [/ A d
T
10 d = 1,000,000 Ly |1
T =268yr
i I \ I \ \ Il Il l
00 10 20 30 40 50 60 70 80 90 100

% of distance travelled

Figure 3: This is a plot of the distance covered by an object accelerating at 1g
to proper time passed T, braking halfway to stop at the destination. The legend
shows the maximum d and T values for each line, but in the graph the values
have been normalized to show that the graph grows flatter near the halfway
point. This is because the object is spending more of its time at near-light speeds,
where the increased Lorentz factor means the object experiences a relativistic
time dilation.

3 Game concepts and interface

Starship: Solitude is written in Python, using the video game-related
functions provided by the Pygame (www.pygame.org) package. The theme
of Starship: Solitude is space exploration in a procedurally generated
galaxy. There is no combat or interaction with other characters. The
game either ends in a loss when the player runs out of time or in a victory
when the player finds intelligent life. Any decisions the player makes
during game play relate to which star system he should travel to next.

The player’s avatar is a starship, a spacecraft designed for interstellar
travel. This ship behaves like a “relativistic rocket”, capable of sustaining
a 1lg acceleration, converging towards light speed. No such spacecraft
propulsion technology is known to science and no explanation as to the
inner workings of the ship is given in the game.

The game has an upper time limit: the lifespan of the player character.

24

www.pygame.org

It is necessary to have a loss condition to make the player weigh his
decisions carefully, lest he lose the game. Even though travel in the
game is sub-luminal (slower than the speed of light) and the distance
between stars is measured in light-years, because the player’s ship moves
at speeds approaching c the player character experiences time dilation,
giving him enough time to visit more than a few star systems before
death of old age sets in.

The interface is simple and essentially consists of two different view,
or gameplay, modes: in galaxy view, the player is shown a scrollable view
of the game’s “galaxy”, the generated star objects randomly distributed
on the game grid. The player can hover over a star to see its attributes
and click on it to select it, which will draw a line from the ship to the star
and show distance and travel time to that star. If the player clicks on the
selected star, the ship begins travelling towards that star and the game
view centers on the ship. Figure 4 shows the appearance of the galaxy
view. If the player clicks on the star the player’s ship is currently at, the
game changes to system view.

As the name suggests, the system view displays the list of objects
in that star system. The star itself is shown partially in large on the
left side of the screen, whereas the planets are distributed horizontally
along the screen. The player can hover over the star or planets to see
their attributes. Additionally, a “top-down” view of the planetary orbits
is shown in the bottom left on the screen which can not be interacted
with. The rings of the orbits are colored according to the planet’s chance-
of-life value: the orbit of an uninhabitable planet is drawn in white, and
habitable planets are colored from red to yellow to green depending on
their chance-of-life value. The orbit view is simplified, as it does not take
into account orbital eccentricity or inclination as these have no effect on
gameplay. Figure 5 shows the system view. The system view was inspired
by and is similar to that used in the 1996 strategy game Star Control 3.

To win the game, the player must find intelligent life. Instead of
randomly picking a star to visit, the player should consider which star
is likely to host planets with life using the attributes of that star shown
when the star is selected in the system view. To know which combination
of star attributes are likely to lead to habitable planets in that star
system, the player has to learn these relations through experience and
repeated playing of the game. Attributes like [Fe/H] and mass of a star
are strongly tied to the habitability of its planets, but other attributes are
also minor factors. Additionally, the distance of the player’s ship to a star
is important, as having to move an increased distance means sacrificing
some of the remaining time in the game.

The game is played almost entirely with the mouse, save for some
option toggles that require the keyboard.

25

o : ~
Now - g ¥ .

Martion

Plead
3

Moth

. " Examok

« - Reheed Fhy .+~ Shipveloc

Zatem

Jump

15.34 Ly to Ualay
17.17 years
3.78 years proper

Tweret

Figure 4: The two screen captures above show the galaxy view mode of Starship:
Solitude, in which the player moves from star to star. Stars are colored according
to their temperature and each star has a unique name. In the top left, properties of
the selected star that are relevant to gameplay are shown. As the player character
does not originate from Earth, giving data in solar system units might seem odd,
but it helps gameplay by giving the player known reference values. In the top
right, the passed time since the beginning of the game and the current velocity of
the player’s ship is shown. Distance in both space and time between the player’s
ship and the selected star are shown in the center bottom. These values are
updated in real time as the ship approaches its destination.

26

ital period
107Re

g}
f life: intelligent lifef

)

Figure 5: Two screen captures showing the game’s system mode, showing the
orbital bodies of the star system the player is currently at. The star is drawn at
the left edge of the screen, while the planets are centered vertically and distributed
horizontally. The display sizes of the star and planets are scaled according to
their radii. Visible in the bottom left is a small window showing a top-down view
of the orbits in the system. Again, the size of the planets are scaled according to
their radii, while the color of the orbit is determined by the planets’ chance-of-life
attribute. A white orbit means that planet is inhabitable. Habitable planets are
colored red to yellow to green with increasing probability of life.

27

4 Results and evaluation

A simple game with a space exploration theme was developed which uses
pseudo-random procedural content algorithms to generate a new game
space each time a new game is started. Generation of 500 stars with 800
planets takes only a few seconds on the author’s computer. The result
has already been shown in Figure 4 and Figure 5. Star and planetary
attributes are clearly shown to the player, as well properties that relate
to interstellar travel, such as speed, distance and time. Although the
game was developed to serve as an accessible interface to the simulation
running behind the scenes, it was preferable for the game to also have
merit as a game, i.e. to be entertaining or educational. Although no user
testing has been performed, it is the opinion of the author that Starship:
Solitude in its current state does not offer a sustained, enjoyable experi-
ence. Where the educational aspect is concerned, there might be some
value in showing the relations between the properties of a star and the
properties of the planets that orbit it, the relation between planetary
attributes and planetary habitability, and the scarcity of intelligent life
in the universe in general. However, the total educational value is likely
negligible compared to that of other hobbyist astronomy software or a
textbook on the topic.

The properties of star and planet objects are generated by procedu-
ral algorithms that follow the relationships between these properties
observed in real celestial objects. Where possible, formulas were used
from textbooks or journal articles, otherwise they were created for the
game by e.g. performing regression on a set of observed property value
pairs. In the latter case, these formulas can be said to be as “accurate” as
their coefficient of determination of the function obtained by regression
compared to the data set the regression was performed on. In general,
while the game is able to create star systems similar to those found in
the Milky Way, not all systems generated would be possible in reality as
some important considerations are glossed over, such as the age or grav-
itational interaction of objects. Most generated star systems, however,
are plausible and the application can be considered a “real” simulation,
although vastly simplified when compared to those used in contemporary
science.

5 Conclusions
The primary goals defined at the outset of this thesis, namely the design
and implementation of procedural content generation algorithms for stars

and planets and the design and implementation of a game based around
the simulated universe, were fulfilled. A player can experience interesting

28

astronomical concepts through the game. During development however,
it became clear that a game is not simply enjoyable because it is realistic,
and it is doubtful whether a casual player would be interested in the
game for more than the few minutes it takes to learn it in its current
state.

The feasibility of generating an outer space game environment using
real-time procedural content generation was examined by creating an
example game where star and planet objects are generated through simple
pseudo-random algorithms. Although not nearly as accurate as scientific
star system formation simulations, the results are sufficiently plausible
to be used in a game that aims to have some degree of realism in its outer
space setting.

6 Ideas for future development

Any game with a futuristic space setting can select features and concepts
from a near-limitless taken from both science and science fiction. What
follows is a list of some of the ideas that were considered for Starship:
Solitude, but were not implemented in the final release, mostly due to
time constraints.

¢ Originally, the game was going to take place over a much larger
time frame of thousands or millions of years or more. The idea
behind this was that it would have been interesting to see stars,
planets and civilizations change with time. Over macroscopic time
scales, life could evolve or vanish, planets and stars could age and
new ones form. Currently, a game takes place over a few hundred
years at most, not nearly long enough for these changes to be visible.
For this feature to be in the game, a larger galaxy and the evolution
of these objects would have to be simulated.

* The current algorithm for planet generation does not check if the re-
sulting orbital system is actually possible or if planets would collide
or collapse into the sun. An algorithm that balances gravitational
interaction to create stable orbits could be created.

¢ Although the orbital eccentricity is an important factor in planetary
habitability as temperatures can vary drastically with increasing
eccentricity, it is not accounted for in the game and all planet temper-
ature values are assumed to be averages. It would be preferable if
eccentricity was also taken into account as a planetary habitability
metric.

¢ There is no observational data about extrasolar moons, of which
we can assume there to be many, and as such they are currently

29

not implemented. Even if a planet isn’t habitable, one of its moons
might be, particularly in the case of larger planets.

Binary (trinary, ...) star systems are common, with about a third
of star systems being multiple [1. It is not known if habitable
zones around binary and trinary stars are possible [, page
788]. However, there is a lack of statistical data concerning the
occurrence of planets around multiple stars and their dynamical
stability and the existing data for single star systems cannot simply
be transferred to multiple stars. So for the development of Starship:
Solitude, systems with multiple stars were left out of the game.

Currently, all objects are held in memory and the game map is lim-
ited in all directions. It is desirable to have an infinitely scrollable
map, but the way objects are handled would have to be changed
significantly to allow for this. The PCG algorithms would have to
be changed from a stochastic (random) to a deterministic (based on
a seed) generation to allow for persistent objects to be loaded in and
out of memory.

Starship: Solitude currently only has a minimal plot (“You are in a
spaceship and have to search for intelligent life”). The telling of an
interesting story would add to the enjoyment of the game.

Celestial objects other than stars and planets could be featured in
the game. Black holes, nebulas, supernovae, asteroids, asteroid
belts, etc.

A common feature in games are power-ups that enhance the player
character’s abilities. In Starship: Solitude, the player could find
advanced technologies within the ruins of an extinct civilization
that would serve as upgrades for his ship which could increase such
attributes as the ship’s acceleration or increase the remaining game
time.

When a game ends, the player’s performance could be evaluated
and put on a high score list. The score could be determined by
such factors as how soon the player found intelligent life, how many
“lesser” life forms he found on the way and other factors.

Procedurally generated textures for stars and planets would add
more variety to the game and would fit in with its general PCG
theme.

Right now, finding life in Starship: Solitude is very dependent on
luck. It is desirable to give the player some way of knowing in ad-
vance which stars and planets host life. We can look at the SETI

30

methods currently used on Earth for inspiration: the player could
look for radio, microwave or optical trans- or emissions that would
indicate advanced intelligent life. Spectroscopic analysis of planet
atmospheres could detect biosignatures such as Oy (Oxygen is very
reactive and the Earth’s supply would quickly be absorbed by its
surface if it wasn’t for plants and microbial life continuously pro-
ducing more) or Ozone (O3) [, page 288] or other habitability
indicators such as HyO.

The number and type of planets around a star are currently only
revealed once the player’s ship has arrived in the system. The
player could be able to use current astronomical methods to detect
far-away planets.

The issue of the player’s ship’s fuel supply is currently conveniently
ignored as the type of propulsion of the ship is never explained. The
game could be made more interesting by adding a resource man-
agement aspect that would have the player be concerned about his
fuel supply and would need him to restock it occasionally somehow.

31

References

[Ast12] Harvard-Smithsonian Center for Astrophysics. Recreating a
Slice of the Universe. Press release. 2012-09-15. urL: http:
//www.cfa.harvard.edu/news/2012/pr201223.html (visited
on 2012-08-23).

[Bil+06] L. Billings et al. “The Astrobiology Primer: an outline of
general knowledge—Version 1, 2006”. In: ICES Journal of
Marine Science 68.2 (2006), pp. 341-348.

[Cas+12] A. Cassan et al. “One or more bound planets per Milky Way
star from microlensing observations”. In: Nature 481.7380
(2012-01-12), pp. 167-169. 1ssn: 0028-0836. por: 10.1038/
naturel10684. (Visited on 2012-08-06).

[Cen12] ChandraX-ray Center. Young Stars and Star Clusters. Harvard-
Smithsonian Center for Astrophysics. 2012-08-10. URL: http:
//chandra.harvard.edu/xray_sources/young_stars.html

(visited on 2012-08-21).

[ChaOl1l] Mitchell Charity. Blackbody color datafile. 2001-06-22. URL:
http://www.vendian.org/mncharity/dir3/blackbody/ (vis-
ited on 2012-08-07).

[DC69] S.H. Dole and Rand Corporation. Formation of planetary sys-
tems by aggregation: A computer simulation. Rand Corpora-
tion, 1969.

[Dou08a] Andrew Doull. Minesweeper vs. Solitaire. 2008-05-19. URL:
http://roguelikedeveloper.blogspot.de/2008/05/minesw
eeper-vs-solitaire.html (visited on 2012-09-03).

[Dou08b] Andrew Doull. The Death of the Level Designer: Procedural
Content Generation in Games. 2008-01-14/2008-01-28. urL: h
ttp://roguelikedeveloper.blogspot.de/2008/01/death-o
f-level-designer-procedural.html (visited on 2012-08-06).

[Dou08c] Andrew Doull. What PCG is. Retrieved on 2012-08-03. 2008-05.
URL: http://pcg.wikidot . com/what - pcg-is (visited on
2012-08-06).

[Doul0] Andrew Doull. Proceduralism. 2010-05-31/2011-08-25. UrL:
http://roguelikedeveloper.blogspot.de/2010/05/proced
uralism-part-one-revision.html (visited on 2012-08-06).

[GKO06] Philip Gibbs and Don Koks. The Relativistic Rocket. 2006.
URL: http://math.ucr.edu/home/baez/physics/Relativity
/SR/rocket.html (visited on 2012-08-29).

32

http://www.cfa.harvard.edu/news/2012/pr201223.html
http://www.cfa.harvard.edu/news/2012/pr201223.html
http://dx.doi.org/10.1038/nature10684
http://dx.doi.org/10.1038/nature10684
http://chandra.harvard.edu/xray_sources/young_stars.html
http://chandra.harvard.edu/xray_sources/young_stars.html
http://www.vendian.org/mncharity/dir3/blackbody/
http://roguelikedeveloper.blogspot.de/2008/05/minesweeper-vs-solitaire.html
http://roguelikedeveloper.blogspot.de/2008/05/minesweeper-vs-solitaire.html
http://roguelikedeveloper.blogspot.de/2008/01/death-of-level-designer-procedural.html
http://roguelikedeveloper.blogspot.de/2008/01/death-of-level-designer-procedural.html
http://roguelikedeveloper.blogspot.de/2008/01/death-of-level-designer-procedural.html
http://pcg.wikidot.com/what-pcg-is
http://roguelikedeveloper.blogspot.de/2010/05/proceduralism-part-one-revision.html
http://roguelikedeveloper.blogspot.de/2010/05/proceduralism-part-one-revision.html
http://math.ucr.edu/home/baez/physics/Relativity/SR/rocket.html
http://math.ucr.edu/home/baez/physics/Relativity/SR/rocket.html

[Gua08] H.F. Guajéonsson. “The server technology of EVE Online: How
to cope with 300,000 players on one server”. In: Proc. Austin
GDC. 2008. urL: http://gdcvault.com/play/109/The-Serv
er-Technology-of-EVE.

[Hen+11] M. Hendrikx et al. “Procedural Content Generation for Games:
A Survey”. In: ACM Transactions on Multimedia Computing,
Communications and Applications (2011).

[Kar+07] H.Karttunen et al. Fundamental Astronomy. Springer-Verlag
Berlin Heidelberg, 2007. 1sBN: 9783540341444.

[Kut03] M.L. Kutner. Astronomy: A Physical Perspective. Cambridge
University Press, 2003. 1sBn: 9780521529273.

[Lad06] C.J. Lada. “Stellar multiplicity and the initial mass function:
most stars are single”. In: The Astrophysical Journal Letters
640 (2006), p. L63.

[LMPO09] J.I. Lunine, B. Macintosh, and S. Peale. “The detection and
characterization of exoplanets”. In: Phys. Today 62.5 (2009),
pp. 46-51.

[Mar+05] G. Marcy et al. “Observed Properties of Exoplanets: Masses,
Orbits, and Metallicities”. In: Progress of Theoretical Physics
Supplement 158 (2005), pp. 24—42. por: 10.1143/PTPS. 158.
24. eprint: arXiv:astro-ph/0505003.

[MPOO] D. Macri and K. Pallister. Procedural 3D content generation.
2000. urL: http://goo.gl/YRYdv.

[MTW73] C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation.
Physics Series pt. 1. W. H. Freeman, 1973. 1sBn: 978071670334 1.

[Nas11] David Nash. HYG Database. 2011-10. URL: http://www.astr
onexus.com/node/34 (visited on 2012-08-03).

[Pat10] Amit Patel. Teleological vs. ontogenetic map generation. 2010.
URL: http://simblob.blogspot.de/2010/06/teleological-
vs-ontogenetic-map.html (visited on 2012-08-06).

[Per11] M. Perryman. The Exoplanet Handbook. Cambridge Univer-
sity Press, 2011. 1sBN: 9780521765596.

[San93] A.Sandage. “Temperature, mass, and luminosity of RR Lyrae
stars as functions of metallicity at the blue fundamental edge.
II”. In: The Astronomical Journal 106 (1993-08), pp. 703—-718.
por: 10.1086/116676.

[SC06] M. Salaris and S. Cassisi. Evolution of Stars and Stellar Pop-
ulations. John Wiley & Sons, 2006. 1sBN: 9780470092200.

33

http://gdcvault.com/play/109/The-Server-Technology-of-EVE
http://gdcvault.com/play/109/The-Server-Technology-of-EVE
http://dx.doi.org/10.1143/PTPS.158.24
http://dx.doi.org/10.1143/PTPS.158.24
arXiv:astro-ph/0505003
http://goo.gl/YRYdv
http://www.astronexus.com/node/34
http://www.astronexus.com/node/34
http://simblob.blogspot.de/2010/06/teleological-vs-ontogenetic-map.html
http://simblob.blogspot.de/2010/06/teleological-vs-ontogenetic-map.html
http://dx.doi.org/10.1086/116676

[Sch+11] D. Schulze-Makuch et al. “A Two-Tiered Approach to Assess-
ing the Habitability of Exoplanets”. In: Astrobiology 11 (10
2011-12-20). URL: http://online.liebertpub.com/doi/abs/
10.1089/ast.2010.0592 (visited on 2012-08-11).

[Sch95] Jean Schneider. The Extrasolar Planets Encyclopaedia. 1995-02.
URL: http://exoplanet.eu/ (visited on 2012-08-03).

[TAG10] G. Torres, J. Andersen, and A. Giménez. “Accurate masses
and radii of normal stars: modern results and applications”.
In: Astronomy and Astrophysics Review 18.1 (2010), pp. 67—
126.

[Tog+10] dJ. Togelius et al. “Search-based procedural content genera-
tion”. In: Applications of Evolutionary Computation (2010),
pp. 141-150.

[Torlla] Abel Méndez Torres. A Mass Classification for both Solar
and Extrasolar Planets. 2011-08-16. UrL: http://phl . upr.
edu/library/notes/amassclassificationforbothsolarand
extrasolarplanets (visited on 2012-08-11).

[Tor1lb] Abel Méndez Torres. A Thermal Planetary Habitability Clas-
sification for Exoplanets. 2011-08-09. uRL: http://phl.upr.
edu/library/notes/athermalplanetaryhabitabilityclass
ificationforexoplanets (visited on 2012-08-11).

[Tor12a] Abel Méndez Torres. Earth Similarity Index (ESI). 2012. UrL:
http://phl.upr.edu/projects/earth-similarity-index-
esi (visited on 2012-08-11).

[Tor12b] Abel Méndez Torres. Habitable Zone Atmosphere (HZA): A
habitability metric for exoplanets. Planetary Habitability Lab-
oratory @ University of Puerto Rico at Arecibo. 2012-06-30.
URL: http://phl.upr.edu/library/notes/habitablezoneat
mospherehzaahabitabilitymetricforexoplanets (visited on
2012-08-11).

[Tor12¢] Abel Méndez Torres. Habitable Zone Composition (HZC): A
habitability metric for exoplanets. 2012-07-01. URL: http://p
hl.upr.edu/library/notes/habitablezonecompositionhzc
ahabitabilitymetricforexoplanets (visited on 2012-08-11).

[Tor12d] Abel Méndez Torres. Habitable Zone Distance (HZD): A hab-
itability metric for exoplanets. 2012-07-30. URL: http://phl.
upr.edu/library/notes/habitablezonesdistancehzdahabi
tabilitymetricforexoplanets (visited on 2012-08-11).

34

http://online.liebertpub.com/doi/abs/10.1089/ast.2010.0592
http://online.liebertpub.com/doi/abs/10.1089/ast.2010.0592
http://exoplanet.eu/
http://phl.upr.edu/library/notes/amassclassificationforbothsolarandextrasolarplanets
http://phl.upr.edu/library/notes/amassclassificationforbothsolarandextrasolarplanets
http://phl.upr.edu/library/notes/amassclassificationforbothsolarandextrasolarplanets
http://phl.upr.edu/library/notes/athermalplanetaryhabitabilityclassificationforexoplanets
http://phl.upr.edu/library/notes/athermalplanetaryhabitabilityclassificationforexoplanets
http://phl.upr.edu/library/notes/athermalplanetaryhabitabilityclassificationforexoplanets
http://phl.upr.edu/projects/earth-similarity-index-esi
http://phl.upr.edu/projects/earth-similarity-index-esi
http://phl.upr.edu/library/notes/habitablezoneatmospherehzaahabitabilitymetricforexoplanets
http://phl.upr.edu/library/notes/habitablezoneatmospherehzaahabitabilitymetricforexoplanets
http://phl.upr.edu/library/notes/habitablezonecompositionhzcahabitabilitymetricforexoplanets
http://phl.upr.edu/library/notes/habitablezonecompositionhzcahabitabilitymetricforexoplanets
http://phl.upr.edu/library/notes/habitablezonecompositionhzcahabitabilitymetricforexoplanets
http://phl.upr.edu/library/notes/habitablezonesdistancehzdahabitabilitymetricforexoplanets
http://phl.upr.edu/library/notes/habitablezonesdistancehzdahabitabilitymetricforexoplanets
http://phl.upr.edu/library/notes/habitablezonesdistancehzdahabitabilitymetricforexoplanets

[Torl2e]

[Tor12f]

[UBBO05]

[Wes07]

Abel Méndez Torres. HEC: Data of Potential Habitable Ex-
oplanets and Exomoons. 2012-08-04. urL: http://phl.upr.

edu/projects/habitable-exoplanets-catalog/data (vis-
ited on 2012-08-15).

Abel Méndez Torres. HEC: Introduction to Habitable Worlds.
Potential Habitable Worlds. 2012. urL: http://phl.upr.edu/
projects/habitable - exoplanets - catalog/introduction

(visited on 2012-08-11).

A. Unsold, B. Baschek, and W.D. Brewer. The New Cosmos:
An Introduction to Astronomy and Astrophysics. Springer,
2005. 1sBN: 9783540678779.

Mick West. Teleological vs. Ontogenetic. 2007-01. URL: http:
// cowboyprogramming . com/2007/01/02/teleological-vs-
ontogenetic/ (visited on 2012-08-06).

35

http://phl.upr.edu/projects/habitable-exoplanets-catalog/data
http://phl.upr.edu/projects/habitable-exoplanets-catalog/data
http://phl.upr.edu/projects/habitable-exoplanets-catalog/introduction
http://phl.upr.edu/projects/habitable-exoplanets-catalog/introduction
http://cowboyprogramming.com/2007/01/02/teleological-vs-ontogenetic/
http://cowboyprogramming.com/2007/01/02/teleological-vs-ontogenetic/
http://cowboyprogramming.com/2007/01/02/teleological-vs-ontogenetic/

Appendix A Taking an ontogenetic (top-down)
approach to galactic formation and
evolution

When attempting to algorithmically recreate natural processes, develop-
ers using PCG techniques have used exotic terms to describe two distinct
approaches: teleological and ontogenetic, originally terms used in meta-
physics and evolutionary biology, respectively. These terms seem to have
first been used in a PCG context in an article for Intel in 2000 [], in
which they are defined this way:

To understand the difference between the teleological and
ontogenetic approaches, imagine the modeling of clouds. The
teleological approach would model the properties of water,
its evaporation, temperature of the environment, and so on,
to try and produce the desired end result from the bottom
up. The ontogenetic approach would be to observe properties
of the end result (such as the small wispy bits change more
frequently than the larger bits, the shape changes more as
the wind picks up, low-lying cloud tends to be darker, and so
on). [TThe ontogenetic approach [...] is more suitable for most
real-time applications. [1

Not all game developers find these terms appropriate [; Jand
suggest using “bottom up” instead of teleological and “top down” instead
of ontogenetic. Terminology aside, knowing the distinction of these two
different approaches to simulating natural processes is important.

For this thesis, the accurate simulation of the formation and evolution
of the game’s galaxy—the teleological approach—was mostly omitted
for the sake of both development and processing time. Instead, most
attributes of stars and planets are generated top-down or “as-is”, without
taking into account the evolutionary processed behind them.

Appendix B Additional tables

36

Table 8: Astronomical values of the solar system planets used in some of the
calculations made for Starship: Solitude. Values taken from wolfram |alpha.

Planet m/kg rlkm d/gem™ v./ms™! a/AU Ty, K Torr(K)
Mercury 3.302x10%3 2440 5.43 4250 0.39 452 434
Venus 4869x10%* 6052 5.24 10360 0.72 733 230
Earth 5972x10%* 6368 5.515 11180 1.00 287 254
Mars 6.419x10%% 3386 3.94 5020 1.52 226 212
Jupiter 1.899x10% 69173 1.33 59540 5.20 165 124
Saturn 5.685x10%6 57316 0.7 35490 9.54 134 95
Uranus 8.663x10% 25266 1.3 21290 19.19 62 59
Neptune 1.028x10%¢ 24553 1.76 23710 30.07 64 60

Table 9: Planetary habitability metric values for the solar system planets. Taken
from the PHL website []

Planet ESI HZD HZC HZA

Mercury 0.596 -1.46 -0.52 -1.37
Venus 0.444 -0.93 -0.28 -0.70
Earth 1 -0.50 -0.31 -0.52
Mars 0.697 0.33 -0.13 -1.12
Jupiter 0292 6.12 7.13 8.12
Saturn 0.246 1295 6.43 5.14
Uranus 0.187 28.15 2.71 3.11
Neptune 0.184 4528 2.31 4.23

Appendix C Image attributions

* Figure 1: Image by Wikimedia Commons user Rursus, licensed
under the CC-BY-SA-3.0 (creativecommons.org/licenses/by-sa/
3.0) license.

¢ Table 7 and Figure 5: Planet images by Mathias Koehler, optisch-edel.
de, licensed under the CC-BY-SA 3.0 license.

* Figures 4 and 5: Original starship sprites by Carl Olsson, http:
//opengameart.org/content/shmup-ships, licensed under the CC-
BY-SA 3.0 license.

37

commons.wikimedia.org/wiki/User:Rursus
creativecommons.org/licenses/by-sa/3.0
creativecommons.org/licenses/by-sa/3.0
optisch-edel.de
optisch-edel.de
http://opengameart.org/content/shmup-ships
http://opengameart.org/content/shmup-ships

	1 Introduction
	1.1 Motivation
	1.2 Prior and related work
	1.3 Goals and requirements
	1.4 Approach

	2 Game objects
	2.1 Star objects
	2.1.1 Color Index
	2.1.2 Absolute Magnitude
	2.1.3 Luminosity
	2.1.4 Metallicity
	2.1.5 Temperature
	2.1.6 Coordinates
	2.1.7 Mass
	2.1.8 Radius
	2.1.9 Name
	2.1.10 RGB Color
	2.1.11 Habitable Zone
	2.1.12 Number of planets

	2.2 Planet objects
	2.2.1 Mass
	2.2.2 Density
	2.2.3 Radius
	2.2.4 Semi-major axis
	2.2.5 Orbital period
	2.2.6 Mass class
	2.2.7 Albedo
	2.2.8 Effective temperature
	2.2.9 Surface temperature
	2.2.10 T-PHC
	2.2.11 Thermal zone
	2.2.12 HZC
	2.2.13 HZA
	2.2.14 Escape velocity
	2.2.15 Name
	2.2.16 HZD
	2.2.17 ESI
	2.2.18 Image
	2.2.19 Habitability and life

	2.3 Moving at relativistic speeds

	3 Game concepts and interface
	4 Results and evaluation
	5 Conclusions
	6 Ideas for future development
	References
	Appendix A Taking an ontogenetic (top-down) approach to galactic formation and evolution
	Appendix B Additional tables
	Appendix C Image attributions

