
Simulating Collaborative Writing: Software Agents

Produce a Wikipedia

 Klaus G. Troitzsch

Universität Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany

kgt@uni-koblenz.de

Abstract. This paper originates from the FP6 project “Emergence in the Loop

(EMIL)” which explores the emergence of norms in artificial societies. Part of

work package 3 of this project is a simulator that allows for simulation

experiments in different scenarios, one of which is collaborative writing. The

agents in this still prototypical implementation are able to perform certain

actions, such as writing short texts, submitting them to a central collection of

texts (the “encyclopaedia”) or adding their texts to texts formerly prepared by

other agents. At the same time they are able to comment upon others' texts, for

instance checking for correct spelling, for double entries in the encyclopaedia or

for plagiarisms. Findings of this kind lead to reproaching the original authors of

blamable texts. Under certain conditions blamable activities are no longer

performed after some time.

Keywords: Agent-Based Simulation; Norm Emergence; Immergence

Introduction

This paper originates from the FP6 project “Emergence in the Loop (EMIL)” which

explores the emergence of norms in artificial societies. For this, the project defined

the architecture of a normative agent [1]. A normative agent is capable of recognising

norms, adopting norms under certain circumstances, planning actions and deciding

whether to abide by the norm or violate it and additionally to defend it against others.

The scenario currently of interest in the EMIL project is collaborative writing: Agents

are expected to contribute to a fictitious Wikipedia and participate in the usual

Wikipedia discussions. One of EMIL's deliverables is a simulator that can cope with

the needs defined by the agent architecture and allows for running simulations in

various scenarios. The current work originated from the necessity of finding out

which capabilities of the agents, their environment and the simulator will have to be

built into the latter.

Generally speaking (for more see the requirements analysis in [5]), the simulator

will host agents with different capabilities which will act in an environment that

mailto:kgt@uni-koblenz.de
KGT
Schreibmaschinentext
in: F. Squazzoni (Ed.), Fifth Conference of the European Social Simulation Association (ESSA), Brescia September 1–5, 2008. Brescia, Italy.

2 Klaus G. Troitzsch

allows them to communicate (where communication is one of the major challenges of

this project [10]) and that can be changed by the agents.

Thus the whole effort consists of three parts:

 building the simulator that can host the agents designed for different scenarios

according to [5],

 designing the general architecture of the agents according to [1, 3] (these papers

require that agents should consist of a norm recogniser, receiving and interpreting

messages in the light of its normative frame, a norm adoption engine, generating

goals from the contents of this normative frame, a decision maker, generating

intentions from goals, and a normative action planner, working out the actions

necessary for fulfilling the intentions), and

 describing the scenario in a way that a modeler can endow the agents with all the

features that they need in the respective scenario.

Requirements of a Wikipedia scenario

In this paper we concentrate on the second and third point, i.e. developing some first

ideas how scenario builders could enable agents to write articles in a Wikipedia and

comment on them.1 The Wikipedia simulation is the scenario which will be

implemented in any case; other scenarios may follow, for them, perhaps other

(additional) description features may be necessary.

We use the description of messages already discussed in [1] and [5], where we

defined messages with the help of four attributes: the sender x, the modal M, the

observer or recipient y and the contents or action transmitted.

The modals defined in [4] comprise assertions (A), behaviours (B), requests (R),

deontics (D), validations (V), and sanctions (S), i.e. messages can either convey a

simple assertion, they can be just implicit as observable behaviour, they can be

questions, they can be deontics (where they refer to generalised activities (“in a

certain situation you must perform this kind of activity”, “in a certain situation you

must not perform an activity of this kind”, “in a certain situation you are allowed to

perform an activity of this kind, but it is up to you”). Validations refer to a particular

activity and convey content such as “you should not have done this” or “this was a

good action”, whereas sanctions entail fines or punishments as well as rewards [2, p.

14]. Thus deontics are subdivided into prescriptions, proscriptions and permissions,

all of which have very different effects on the recipient of a message. The same

1 For a related approach see [9]. In this approach the focus is on the visibility of messages and

the reputation of their authors, not on the emergence of norms that dictate what messages

should look like. Instead, messages in [9] have no identifiable content, at least not in the

published version, although in section 3.6 of their paper the authors mention that “a message

can additionally be specified with attributes such as author, topic, keyword, relevance,

acceptance, rejection, and so on.” But the contents run only under “and so on”. Mutual

referencing between articles in their simulation is more or less random, according to three

distinct referencing or communication styles. Styles like these might emerge from a more

sophisticated version of our approach.

Simulating Collaborative Writing: Software Agents Produce a Wikipedia 3

applies to validations and sanctions (the latter also include incentives, thus there are

sanctions of different strength and direction ─ from a highly positive sanction, such as

a prize or reward, down to a highly negative sanction, such as a condemnation to jail).

At the beginning of a simulation agents have a repertoire of messages (or an

algorithm that enables them to formulate new messages) that they want to send to all

other agents, i.e. for inclusion in the Wikipedia (where it is copied into a member of

the class article), and all agents are allowed to do so, i.e. they will have an attribute

that informs whether an agent is an authorised author or not (thus, at the beginning all

of them will be entitled to contribute). After some time the Wikipedia, i.e. the

environment, contains a list of articles which are not yet connected. These articles

contain, of course, the name of the author or sender, have the modal A, as they are

just assertions; their recipients are all other agents, and the contents is some string of

arbitrary length, the first few elements of which have the special meaning of a

keyword.

The contents string could be of any kind, for instance a simple bit string whose first

eight bits serve as the entry title (such that exactly 256 entries would be possible). But

it might be more helpful to have something like a text separated into words by blanks

or some other punctuation. In this case, words could consist of alternating vowels and

consonants forming a very primitive language which conveys no meaning, but agents

could (perhaps more easily than in a simple bit string) mull over similarities and

differences among Wikepedia articles. To limit the number of possible tokens

(words), the character repertoire could be restricted to only three vowels and five

consonants (“aloha wiki sisal“).2 Another option could be the task of sorting letters

alphabetically and separating different fonts from each other, but this implies an

exogenous “fitness measure“ for the character strings instead of an emergent practice

of article writing and citing.

Besides writing and reading articles and comments and edits, agents will also have

to generate a list (each of them separately) of other agents whom they have identified

and evaluated for their authority (the “board of authorities” in [4]), as their norm

recogniser ─ an engine that matches new perceptions with the contents of agent’s

memory ─ does not only use the contents of a message but also its sender to evaluate

the importance and salience of an utterance (thus an utterance could be more

important when it comes from an agent with high “importance” ─ see below ─, or be

more salient when it has been received several times).

Agents scan the articles for similarities and comment on them. These commenting

actions can be of the following types:

 If agent x finds a match between a keyword of one of its own articles ax and an

article by published by someone else (y), then it includes a link to x's own article ax

in y's article by (which makes it necessary to add an instance variable keeping a

link list to the article class (an element of a link list also contains the sender and,

perhaps, a time stamp). Adding a link would qualify as modal B (behaviour).

2 As a prototype we have a small NetLogo program whose agents write articles in this

primitive language, sort them by keywords, and also sort all the occurring words both

alphabetically and according to word frequency. More about this rapid prototype in section 3.

The output can be found in the appendix.

4 Klaus G. Troitzsch

 Articles that have no similarity at all to any other article (i.e. articles with no or few

links to other articles) could be less welcome than those that contain several

keywords of other articles ─ nobody would be interested in an article in a

Napoleonic Wars wiki that does not contain any of the words Borodino, Beresina,

Waterloo, Napoleon, Blücher and Austerlitz. Thus articles with no links to other

articles could be removed and their authors publicly or secretly blamed.

 If an agent finds a similarity between two articles (which it finds only with a

certain probability while scanning the Wikipedia for articles containing words that

are similar to the keywords this agent has used in its own articles), then it sends a

message to the author of the two similar articles to make them aware that their

articles are similar. This would again be just an assertion A.

 The article published second might be a result of plagiarism3. In this case the

modal might be Vm (a moral valuation).

 The message could also contain the request to remove the plagiarism, then the

modal would additionally be a deontic D.

 If the same agent has been suspect of plagiarism several times, then the message

might also have the modal S (sanction), and the fallible agent might be removed

from the list of those who are authorised to contribute, at least for a while.

 If an agent x finds an article by that is similar but shorter than the article ax that it is

about to publish, it might merge the old article by with its planned article ax (see

section 3).

 If an agent z finds two articles ax and by belonging to the same keyword (or to

similar keywords) where the similarity between the contents of the articles is low,

it will communicate this finding to both agents (an assertion A) and ask (a deontic

D) both agents x and y to discuss whether they could merge or purge their articles

to avoid contradictory or otherwise misleading content (although in this very

artificial language it will be difficult to define what “contradictory” or

“misleading” means; see below for an idea how the concept of contradiction could

be implemented in this language).

Other types of comments are conceivable. These few examples should suffice to

discuss whether this could be a promising concept for the simulation of Wikipedia

communication and co-operation. Measures for similarity can easily be found for bit

strings (even in case they are of different length, in this case the comparison function

must return two values, the point in the longer bit string where the substring starts that

is most similar to the shorter string, and the degree of the similarity4).

3 The plagiarism idea was originally developed for the simple bit string, but in a more complex

language (such as the one presented in section 3) plagiarism could be modelled as well (note

that plagiarism in the real world does not originate from random effects). Perhaps one could

design the model in a way that writing a new article is considerably more costly than copying

from an old article.
4 The minimum Hamming distance between the shorter bit string of length l1 and all the

substrings of length l1 of the longer substring is calculated and returned as the degree of

similarity, while the number of the bit in the longer string where the best matching substring

starts is returned as the starting point.

Another mode of checking for similarity and novelty at the same time is to compress each

text separately and jointly and to compare the lengths of the compressed versions ─ if the

Simulating Collaborative Writing: Software Agents Produce a Wikipedia 5

The language described above might not be sufficient for expressing comments;

depending on how detailed the modal of a message is described in the M part of the

message, it might be sufficient to just mention the identifier of the article in the

contents part of the message, letting the recipient know that the reproach refers to

behaviour with respect to this article. Further extensions of the toy version of the

Wikipedia simulation will make clear what else is needed.

Another question is what might emerge from communication like this. Obviously,

assertions have no direct consequences for the agents' behaviour. Deontics and

validations will be processed by the norm recogniser and the norm adoption engine

and be converted into a goal which is then processed by the decision maker. It is

questionable whether the normative action planner is necessary at all in the Wikipedia

scenario, as the action to be performed will consist of just “pressing a submit button”

for the next contribution to either Wikipedia or the discussion forum. In other

scenarios, the normative action planner might be necessary.5

We are currently developing a small number of toy scenarios (among them a

simple Wikipedia simulation, see section 3, and a traffic scenario, see [8]) in order to

find out what else is needed. The Hume scenario suggested by Rainer Hegselmann [7]

and the multiple context scenario [4] is also considered for an implementation.

The Wikipedia prototype

In the NetLogo Wikipedia simulation6, agents can perform different activities (see

Figure 1):

 write an article (A1) and either submit it (A2) or add it to an existing article

referring to the same keyword (A3),

 plagiarise, i.e. copying an existing article and publishing it for a new keyword

(A4),

 search the current state of the encyclopaedia for double entries, for words that do

not obey the vowel harmony or for plagiarisms (A5), and reproach the respective

author or authors (A6),

 count articles that contain a word about which they wrote an article (A7),

 do nothing.

Which of these activities they select depends on the profits they individually

generated when performing these activities in the past (a simple form of

length is not increased in the compression result of the joint version, then nothing new is

added. This kind of algorithm is appropriate for the case of the simple language. The

prototype uses a slightly simpler version: it just counts the different words that occur in the

two texts separately and the different words that occur in the concatenated texts, and if the

sum of the two former counts equals the latter count than the two texts have no word in

common.
5 Think of a smoker–non-smoker scenario where the decision is “smoke” which can result in a

number of different action plans (leave the restaurant and smoke outside, smoke within the

restaurant with or without the consent of the other guests, etc.).
6 The NetLogo program can be downloaded from http://www.uni-koblenz.de/
~kgt/Pub/Wikipedia.nlogo.

6 Klaus G. Troitzsch

reinforcement learning). These profits can be selected with the help of NetLogo

sliders.

An article is a string consisting of the characters “aei bklsw.” (including the blank

and the full stop separating words and sentences, respectively) which is introduced by

a word, followed by a colon, as the keyword, and ending in a reference to both author

and time, enclosed in square brackets. In longer simulations, it might be necessary to

reduce the number of possible words, either by restricting the word length (increasing

the probability that the next character is a blank ─ in the current version the maximum

word length is five letters) or by forbidding certain co-occurrences of letters (for

example by vowel harmony as in Hungarian and several other languages, such that

“a” and “e” would not co-occur in a word). This, however, is currently done in an

emergent manner, where commenting authors take offence at words violating the

vowel harmony. Word length and/or vowel harmony can be conceived of as correlates

of style (which is often an object of discussion in the real-world Wikipedia [6]). Other

accidental features of the words of this language can also be interpreted for the

process of commenting simulated articles, e.g. the words “wasal” and “lawas” could

be defined as opposites to each other.

Writing an article starts with constructing a keyword out of the letters “aei bklsw”

(including blank but not the full stop) where the probability of selecting a particular

letter as the first letter in the word is equal (with the exception of the blank) whereas

the probability of selecting the next letter depends on the previous letter, according to

a stochastic matrix which is currently constant (but could as well change over time,

according to the practice developing in the community). The blank character is

selected with a certain probability, ending the construction of the word. The first word

of an article is marked by a following colon as a keyword (and for some trivial

technical reason it is preceded by the character “>”). The following words are

constructed the same, and after each word a full stop is inserted with a certain (low)

probability, such that the chain of words is separated into something like sentences.

At the end of a sentence the article ends with another (low) probability, and the author

adds its name (NetLogo’s who number) and the time when it is published (NetLogo’s

ticks). When an agent has finished a word it might decide to discard it as it violates

the vowel harmony (in the beginning this is not forbidden although other agents might

take offence at such words).

If an agent has decided to submit its article it first has to find out whether an article

referring to the same keyword already exists, if so it has to decide whether it wants to

insert its text into the existing article or whether the article is just going to be

published (in the beginning this is not forbidden although other agents might take

offence at double entries).

If an agent has decided to add to an existing article it first has to find out whether

such an article exists, and if not publishes its text as an ordinary article.

Commenting on articles is currently implemented as a scan of all articles,

searching for entries which refer to the same keyword and for entries referring to a

keyword that violates vowel harmony. The scanning agent generates a list of all those

keywords and identifies all the authors that wrote a second or third article referring to

the same keywords as blamable (a mild deontic of the proscription type) and deletes

all younger articles (a sanction in terms of [1], as the “authority” or “importance” of

an author is measured in terms of the number of entries published by this author, i.e.

Simulating Collaborative Writing: Software Agents Produce a Wikipedia 7

the number of articles published by this author is decremented ─ currently this has no

consequences in the implemented model, but it could have, e.g. in a way that a

sanction or validation coming from an important author is more severe, as explained

above). Authors having published articles referring to keywords violating vowel

harmony are also blamed, and such a keyword is replaced with a similar word

obeying the vowel harmony (by exchanging an `a' with an `e' or the other way round;

this replacement also affects the article list, as the entries referring to the two words

have to be merged).

A third activity of agents is the search for similarities between two randomly

selected articles. If an agent detects a co-occurrence of more than a certain percentage

of words between two articles, it identifies the younger of the two articles as a

potential plagiarism and blames its author who loses the profit generated before from

intentional plagiarism. If the similarity is just by chance, the same hard punishment

occurs.

More formally, perceptions, events, actions and the relations among them can be

described as in Figure 1.

Figure 1: Relations between events, perceptions, actions and the effects of actions

When an agent finds itself in a situation where it could contribute to the

encyclopaedia it consults its memory to find how profitable the different actions

available in this situation might be. The memory does not only contain information

E1 -> [A1 & (A2|A3)] | A4 | A5 | A7

E2 -> A8

E3 -> A6

Perceptions and events

• E1: an action is profitable for this

agent

• E2: this agent was blamed for an

offending action

• E3: another agent’s action was

offending

Actions

• A1: draft an article

• A2: submit it

• A3: add it to an existing article

• A4: plagiarise

• A5: search for offending articles

• A6: reproach

• A7: count citations

• A8: add norm invocation to

memory

8 Klaus G. Troitzsch

about earlier payoffs, but also information about norm invocations from the side of

other agents who might have taken offence at earlier actions of this agent (as these ─

E3A6 ─ will have resulted in a reproach which in turn was received ─ E2A8 ─

and stored in the agent’s memory as an indirect consequence of one of its earlier

actions). Beside learning from own experience about payoffs and from reproaches,

agents can in principle also learn from observing other agents’ actions and the

resulting payoffs.

Figure 2: Moving averages of issued blames for the three offences (over 25 time

steps, after approximately 70 time steps)

Figure 3: Distribution of individually received blames. Vertical bars are quartile

differences, the upper dots are maxima, the dots below are minima, and the curves in

the middle are the medians of the distribution of received blames

Figure 4: Distribution of the individual norm adoption degrees. Vertical bars, dots

and curves have the same meaning as in Figure 3

Simulating Collaborative Writing: Software Agents Produce a Wikipedia 9

Figures 2, 3 and 4 show three preliminary results of a long simulation run (70 ticks

with 50 agents), in which the agents perform their activities depending on previous

profits. The probabilities for each activity are proportional to the sum of all previously

received profits (including the negative profit for detected plagiarisms). When one

agent takes offence at the outcome of another agent it issues a blame. The individually

received blames are shown in Figure 3, where one can see that in the beginning most

blames were received for the violation of vowel harmony ─ bad style. Figure 2 shows

how many blames were issued on an average during the past 25 ticks. Here one can

see that vowel harmony violations occurred and were detected rather often in the early

phase of the simulation, but soon decreased in number, whereas double entries

occurred only after some time and plagiarisms even later; again it should be stressed

that most suspected plagiarisms were unintentional as only three actually occurred on

purpose ─ it must be mentioned that agents are initialised with a certain chance of

abstaining from plagiarism once they had decided to commit plagiarism (to be

controlled by a slider).

Figure 4 shows the process of norm emergence. The first blame an agent receives

with respect to one of the possible offences (duplicated entries, vowel harmony

violations, plagiarisms) puts it to its individual normative frame and makes it

deliberate before it gets into danger to commit the same offence again: the probability

of offending again is 90 per cent in the first deliberation, in other words: the norm

adoption degree is 10 per cent after the first reproach, and later on it increases to 1 ─

(1 ─ 0) exp(─n) where 0 is the initial norm adoption degree and is a flexibility

parameter (both are 0.1 in this simulation run) and n is the number of deliberations

performed with respect to this activity.

As soon as at least one half of all agents have received at least one blame and have

performed their first deliberations with respect to this kind of offence, the offence is

copied to the public normative board (in the current simulation, this happened at times

13, 19 and 34 for vowel harmony, double entry and plagiarism, respectively).

It may remain an open question whether this norm emerged from the individual

behaviour rules: these say that agents may blame other agents for a certain behaviour

and that agents may consider such a blame and change their behaviour. Perhaps this is

still a regularity, but the appearance of a norm on the normative board (although

initiated by NetLogo's observer, which ─ in a way ─ counts the ballots in a

referendum) could be considered as the emergence of an explicit norm. Moreover,

one could very easily add the possibility that the first agent observing that blames

became suddenly rarer could decree the norm (of course, this necessitates a

formalisation of “suddenly” and “rarer”).

Implementing a representation base and norm recogniser is not trivial in NetLogo,

but the current implementation endows every agent with a normative frame, a

directory with currently only up to three entries, each consisting of the name of the

respective rule, the number of individually received blames for violating this rule and

the number of instances when it abode by the respective rule. Thus the norm

recogniser is a simple comparison between the received message and the names of the

rules already stored in the individual “normative frame” (as it is called in [1]). Thus if

an agent receives a blame containing the hint at double entry or at vowel harmony or

at plagiarism it increases the respective number of received blames. After the first

blame it takes into account both the possibility of abiding by the pre-norm or violating

10 Klaus G. Troitzsch

it, and whenever the decision is in favour of the norm, the respective norm adoption

degree (or: the salience of the normative belief) is increased.

 Figure 5: The same simulation run as in Figures 2 through 4, but after approximately

320 simulation runs.

The implementation of this prototype clearly suggests that for every type of

message (“key”) there must be a receptor in the linguistic repertoire of the authors

(“lock”) that responds to this message; other messages cannot be understood. Thus

much of the agents' complexity lies in their linguistic repertoire. The normative frame

of the individual agents is currently capable of receiving messages of any content (as

the list of entries can easily be added to), but currently no agent is in a position to

blame other agents except for the three implemented cases, and agents cannot even

react behaviourally upon the blame for plagiarism, as they have no method for

withdrawing a blamable article; not plagiarising is just a consequence of the low

probability of executing the respective decision and the low profit generated from

plagiarising (as the profit for an undetected plagiarism has to be reimbursed after

detection).

Simulating Collaborative Writing: Software Agents Produce a Wikipedia 11

Other types of acting, commenting and discussing can be ─ and must be ! ─

implemented, too, e.g. replacing old articles with one's own which in turn can be

blamed by the author of the replaced article. These extensions can be programmed by

adding to the lists of activities and of offences and by adding procedures describing

the related behaviour of the agents. Due to the structure of NetLogo and its language,

a more extended version of the current simulation would not be easy to understand.

Conclusion

So far, this is work in progress. But thinking about the scenario discussed in this

paper leads to the following conclusions with respect to the three tasks defined in the

introduction:

 building the simulator that can host the agents designed for different scenarios

according to [5],

 designing the general architecture of the agents according to [1], and

 describing the scenario in a way that a modeler can endow the agents with all the

features that they need in the respective scenario.

The general architecture of an agent ─ as superficially described in the introduction

─ must include the following features:

The norm recogniser: This component of an agent receives messages or makes

observations of different types and can interpret them. At the start of a simulation,

or for an agent entering the simulation, these messages or observations will only be

of the type (1) “x is the case at time tx”. Even then the virgin agent will compare

incoming messages to the public norm board (if there is any) and try to find out

whether any of the existing entries in the norm board matches the message in

question. If there is such an entry it might be of the form (2) “if x is the case then y

is likely to happen soon after” or (3) “x should be avoided” or (4) “if x is the case y

should be avoided”. But perhaps at the beginning no such entries exist, but at least

entries of type (3) should pre-exist as we will see in the next paragraph.

After several messages have been stored in the fact base of the agent, it will

have to draw some conclusions from the facts, e.g. (5) “more often than expected

by pure chance, y happened soon after x” or (6) “if (y should be avoided) and (if x

is the case then y is likely to happen soon) then x should be avoided, too”. (5) is a

private version of (2) which will be stored in the private normative frame and could

be communicated to another agent (as a deontic or valuation) or directly published

as a “new normative belief” and stored in the norm board. (6) is also a new

normative belief. Publishing a new normative belief will usually be postponed until

the same normative belief has been uttered several times. In order that a normative

belief of type (6) can be generated, it is necessary that at the very beginning at least

one deontic such as (3) exists. There must be at least one goal that an agent tries to

achieve, otherwise it would never be proactive. It might be possible that different

agents have different goals, i.e. the only deontic with which they are born might be

different between agents, and it might be interesting what happens in such a world.

In a traffic scenario, for instance, some agents might have the entry (3a) “a

collision with a pedestrian should be avoided”, for others it might be (3b) “slowing

12 Klaus G. Troitzsch

down should be avoided” (the latter derived from the observation that slowing

down increases the risk that the car behind bumps into one's own, thus generating

another kind of collision), but in this scenario all agents might have fallen victim to

collision and died before any norm could emerge, but if there are enough agents (or

if agents do not die due to collisions) there might be a majority of the collision

avoiders, or the collision avoiders reach the threshold when the normative belief is

entered into the norm board earlier than the others.

In Campennì's [4] norm recogniser, only “deontic commands and evaluations”

are accessible to the norm recogniser whereas all the other messages are filtered

out. But this does not seem necessary as it might be more useful that the norm

recogniser also deals with assertions and behaviours (such as (1)) in order to be

able to generate normative beliefs such as (7) “x should be avoided as it often leads

to the unwelcome y” ─ which can easily be classified as a norm innovation.

The norm adoption engine: This component of an agent is responsible for

generating goals from the contents of the normative frame. Returning to the

example above, two normative goals might be produced, namely (8) “avoid the

collision with the pedestrian in front” and (9) “avoid the collision with the car

behind your own”.

The decision maker: This component generates the normative intention from the

goal or goals provided by the norm adoption engine. In different circumstances this

decision can produce very different intentions, and, of course, several intentions at

the same time. In the traffic example above the intention of sidestepping could be

produced (driving on with constant velocity but evading the pedestrian, avoiding

both the collision with the pedestrian and the collision from behind, but these

details will have to be worked out by the normative action planner). On the other

hand, another agent might produce the intention of warning all three other agents

(pedestrian, first car, second car) by means of a police siren in order to stop all

three agents (this would result in a norm defence action).

The normative action planner: This component has to work out the concrete actions

that have to be taken in order to fulfill the intention produced by the decision

maker (see the example in the previous paragraph).

The examples will have shown that an agent will have a rule interpreter as one

main component that enables it to perform the logical operations described in the

previous paragraphs. The prototypes, once accomplished, will list all the details of the

rule interpreter. For now it may suffice that EMIL-S will be able to host agents that

can cope with facts such as (1) and (3) and logical formulas such as (2) and (4). But

these facts and formulas still contain variables such as x and y above. And it will be

the task of scenario builders to prepare a configuration (perhaps as an XML file

formalising the contents of a graphical representation such as in Figure 1) for each

scenario that lists the range of these variables and feeds the simulator with a few

entries in the initial norm board.

Simulating Collaborative Writing: Software Agents Produce a Wikipedia 13

References

1. Giulia Andrighetto, Marco Campenni, Rosaria Conte, and Marco Paolucci. On the

immergence of norms: a normative agent architecture. In Proceedings of AAAI Sym- posium,

Social and Organizational Aspects of Intelligence, Washington DC, 2007.

2. Giulia Andrighetto, Rosaria Conte, and Paolo Turrini. Emergence in the loop: Simulating

the two way dynamics of norm innovation. In Guido Boella, Leendert van der Torre, and

Harko Verhagen, editors, Dagstuhl Seminar Proceedings 07122, Normative Multi-agent

Systems, Vol. I, 2007.

3. Giulia Andrighetto, Marco Campenni, Federico Ceccone, and Rosaria Conte. Conformity

inMultiple Contexts: Imitation vs. Norm Recognition. Paper accepted for the World

Congress of Social Simulation, Fairfax VA, July 2008,

4. Marco Campennì. The norm recogniser at work. Presentation at AAAI'2007, Washington.

5. EMIL. Emergence in the loop: simulating the two way dynamics of norm innovation,

deliverable 3.1─ requirement analysis: Requirements that EMIL-S must meet, 2007.
6. Chris Goldspink. Normative self-regulation in the emergence of global network institutions:

The Case of Wikipedia. Presentation at the Australia and New Zealand Systems Conference

2007: Systemic development: local solutions in a global environment (ANZSYS-07). 2007.

7. Rainer Hegselmann. Modelling Hume ─ a draft for HUME1:0. Draft as of February 18,

2008, 2008.

8. Ulf Lotzmann and Michael Möhring. A TRASS-based agent model for traffic simulation.

accepted for 22nd European Conference on Modelling and Simulation ECMS 2008, 2008.

9. Thomas Malsch, Christoph Schlieder, Peter Kiefer, Maren Lübcke, Rasco Perschke, Marco

Schmitt, and Klaus Stein. Communication between process and structure: Modelling and

simulating message reference networks with COM/TE. Journal of Artificial Societies and

Social Simulation, 10(1), 2007. http://jasss.soc.surrey. ac.uk/10/1/9.html.

10. Klaus G. Troitzsch. Multi-agent systems and simulation: a survey from an application

perspective. In Adelinde Uhrmacher and Danny Weyns, editors, Agents, Simulation and

Applications, pages 3.1{3.23. Taylor and Francis, London, 2008. to appear.

