OBLENS | LANDAU AGKI

artificial intelligence research koblenz
Fachbereich 4: Informatik

Distributed Natural Language
Search Using Graph-Based
Parsing

Masterarbeit

zur Erlangung des Grades
MASTER OF SCIENCE

im Studiengang Informatik

vorgelegt von

Nadine Sina Kurz

Betreuer: Dipl.-Inform. Markus Maron. Betreuer, Arbeitsgruppe
Kiinstliche Intelligenz, Institut fiir Informatik, Fachbereich Informatik,
Universitidt Koblenz-Landau

Erstgutachter: Dipl.-Inform. Markus Maron. Betreuer, Arbeitsgruppe
Kiinstliche Intelligenz, Institut fiir Informatik, Fachbereich Informatik,
Universitit Koblenz-Landau

Zweitgutachter: Prof. Dr.-Ing. Ulrich Furbach, Arbeitsgruppe Kiinstliche
Intelligenz, Institut fiir Informatik, Fachbereich Informatik, Universitét
Koblenz-Landau

Koblenz, im Mai 2013

Kurzfassung

Wir prasentieren die konzeptuellen und technologischen Grundlagen einer verteil-
ten natiirlichsprachlichen Suchmaschine, die einen graph-basierten Ansatz zum
Parsen einer Anfrage verwendet. Das Parsing-Modell, das in dieser Arbeit entwick-
elt wird, generiert eine semantische Repréasentation einer natiirlichsprachlichen An-
frage in einem 3-stufigen, iibergangsbasierten Verfahren, das auf probabilistischen
Patterns basiert. Die semantische Repréisentation einer natiirlichsprachlichen An-
frage wird in Form eines Graphen dargestellt, der Entititen als Knoten und deren
Relationen als Kanten représentiert. Die prisentierte Systemarchitektur stellt das
Konzept einer natiirlichsprachlichen Suchmaschine vor, die sowohl in Bezug auf
die einbezogenen Vokabulare, die zum Parsen der Syntax und der Semantik einer
eingegebenen Anfrage verwendet werden, als auch in Bezug auf die Wissensquellen,
die zur Gewinnung von Suchergebnissen konsultiert werden, unabhingig ist. Diese
Funktionalitat wird durch die Modularisierung der Systemkomponenten erreicht,
die externe Daten durch flexible Module anspricht, welche zur Laufzeit modi-
fiziert werden konnen. Wir evaluieren die Leistung des Systems indem wir die
Genauigkeit des syntaktischen Parsers, die Prézision der gewonnenen Suchergeb-
nisse sowie die Geschwindigkeit des Prototyps testen.

Abstract

We present the conceptual and technological foundations of a distributed natural
language interface employing a graph-based parsing approach. The parsing model
developed in this thesis generates a semantic representation of a natural language
query in a 3-staged, transition-based process using probabilistic patterns. The se-
mantic representation of a natural language query is modeled in terms of a graph,
which represents entities as nodes connected by edges representing relations be-
tween entities. The presented system architecture provides the concept of a natural
language interface that is both independent in terms of the included vocabularies
for parsing the syntax and semantics of the input query, as well as the knowl-
edge sources that are consulted for retrieving search results. This functionality
is achieved by modularizing the system’s components, addressing external data
sources by flexible modules which can be modified at runtime. We evaluate the
system’s performance by testing the accuracy of the syntactic parser, the precision
of the retrieved search results as well as the speed of the prototype.

Erklarung

Ich versichere, dass ich die vorliegende Arbeit selbsténdig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe und dass die Ar-
beit in gleicher oder dhnlicher Form noch keiner anderen Priifungsbehdrde vorgele-
gen hat und von dieser als Teil einer Priifungsleistung angenommen wurde. Alle
Ausfiihrungen, die wortlich oder sinngeméf ibernommen wurden, sind als solche
gekennzeichnet.

Die Vereinbarung der Arbeitsgruppe fiir Studien- und Abschlussarbeiten habe
ich gelesen und anerkannt, insbesondere die Regelung des Nutzungsrechts.

Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einver- ja [J nein [J
standen.

Der Veroffentlichung dieser Arbeit im Internet stimme ich zu. jalJ mnein U

Koblenz, den 31. Mai 2013

Nadine Sina Kurz

Contents

1 Introduction
1.1 Motivation
1.2 Structure

2 Related Work

2.1 Deep Parsing
2.2 Shallow Parsing
2.2.1 Part-Of-Speech Tagging
222 Chunking L
2.2.3 Named Entity Recognition
2.2.4 Semantic Role Labeling
2.3 Data Retrieval oo
2.3.1 Natural Language Interfaces to Databases
2.3.2 Natural Language Interfaces to RDF
2.3.3 Distributed Natural Language Interfaces
24 Result Processingo
3 Requirements
3.1 Functional Requirements
3.1.1 Syntactic Parsing 0oL
3.1.2 Data Retrieval o0
3.1.3 Result Processing
3.1.4 User Interfaces oL
3.2 Non-functional Requirements
3.2.1 System Design 0oL
3.2.2 Data Sources
3.2.3 Interfaces

4 The Model
4.1 Tokenization
4.1.1 Segmentationo

21
21
22

25
26
30
30
33
34
35
36
36
38
40
42

45
45
45
49
51
52
52
53
54
%)

CONTENTS

4.1.2 Token Retrieval 61
4.2 Semantic Interpretation L. 65
4.2.1 Node Generation 69
4.2.2 Relation Generation 71
4.2.3 Focus Identification 73
Architecture 79
5.1 Components 79
5.1.1 Syntactic Parser 81
5.1.2 Query Performer 0oL 83
5.1.3 Result Processor 85
5.2 Interfaces 86
5.2.1 Data Structures 86
5.2.2 Procedural Interfaces 87
Prototype 93
6.1 Vocabulary Modules, 93
6.2 Data Modules 96
6.2.1 SPARQL Endpoints 97
6.2.2 Application Programming Interfaces 101
6.3 User Interfaces e 105
6.3.1 Mobile Interface - Integration in the NAPA Pedestrian Nav-
igation System oL Lo 105
6.3.2 Web Interface 106
Evaluation 111
7.1 Goals. e 111
7.2 Methodology 112
7.2.1 Evaluation Metricso 112
7.2.2 Test Cases 114
7.3 Results. e 116
7.3.1 System Accuracyo 116
7.3.2 System Scope 118
7.3.3 Processing Time 119
7.4 DiscusSsion 122
Conclusion 125
Document Type Definitions (DTD)s of System Interfaces 127
A.1 DTD of Vocabulary Module Responses 127

A.2 DTD of Data Module Responses 127

CONTENTS

A.2.1 DTD of System Responses

B Configuration

B.1 Vocabulary Module Configuration

B.2 Data Module Configuration

C Semantic Graph Computation

128

129
129
129

131

List of Tables

2.1
2.2

5.1
5.2
2.3

6.1
6.2
6.3

7.1
7.2
7.3
7.4

Example of a set of rules comprising a simple grammar (1) 27
Lexical disambiguation by Part-of-Speech (POS) tagging (2) 31
Vocabulary Module request parameters 88
Data Module request parameters 89
System request parameters 91
Lexicon extract of entities extracted from the DBpedia corpus . . . 95
Extract from the regular expression set for date recognition 95
Excerpt of the mapping between DBpedia categories and categories

of the Eventful Application Programming Interface (API) 102
Examples of test case queries of different question types 115
Average accuracies of the parser’s components 118
Average harmonic mean of the system’s search results 119
Average share of the system’s components of the overall processing

time in percent 120

11

List of Listings

2.1
5.1
5.2
2.3
5.4
3.5
6.1
6.2
6.3
6.4
6.5
6.6
6.7
7.1
Al
A2
A3
B.1
B.2

Sample rule of a JAPE grammar (3) 39
Vocabulary Module token request 88
Vocabulary Module token response 88
Data Module search request 89
Data Module search response 90
Search response of the Natural Language Interface (NLI) 91
config.txt for the data module accessing the Eventful APT. 97
SPARQL entity search 97
SPARQL entity meta search for the query of Listing 6.2 98
SPARQL fact search 99
Location-based SPARQL entity search 100
IQR triples generated for the query "concerts in january” 101
Search request sent by the NAPA system 106
Sample SPARQL query to retrieve entities for test cases 115
Token response of a Vocabulary Module 127
Search response of a Data Module 127
Search response of the system 128
Vocabulary Module configuration file (config.tzt) 129
Data Module configuration file (config.tat) 129

13

List of Figures

2.1
2.2

4.1
4.2
4.3
4.4

4.5
4.6
4.7

5.1

5.2

3.3

5.4

6.1

6.2

6.3
6.4

6.5
6.6
6.7
6.8

Sample parse tree with the grammar presented in Table 2.1 (1) . . . 28
Sample architecture of a NLI to databases presented by (4) 37
Term Sequence Set of the input query "birds of new zealand" 61
Token Sequence Set generated from the term sequences of Figure 4.1 63
3-staged graph generation from a token sequence 67
Simple pattern indicating the generation of a graph branch from a

token L 68
Node Pattern employment on a token sequence (¢,i) 72
Relation Pattern Employment 74
Focus Pattern Employment 7
System Architecture consisting of the three main components Syn-

tactic Parser, Query Performer and Result Processor 80
Architecture of the Syntactic Parser with modularized access to

system vocabularies oo 82
Architecture of the Query Performer with modularized access to the

system’s knowledge sources Lo 83
System interfaces L 87

Architecture and data sources of the prototypical parser and vocab-

ulary modules L 94
Data modules of the prototype with remote access to SPARQL end-
pointsand APIs 96
Search response of a fact search within the Web frontend 100
Search response of a search using specified parameters within the
Web frontend 103

Search response of a location-based search within the Web frontend 104
Display of search results within the NAPA mobile application (5) . 107
Display of search result meta data in NAPA (5) 107
Search results of a general entity search displayed in the Web frontend 108

15

16

7.1
7.2
7.3
7.4

C.1

C.2
C.3

C.4

LIST OF FIGURES

Average parsing accuracies of the prototype’s query types 117
Average precision and recall of system results 119
Average processing times of different query types. 120
Average processing times of the systems components of different
qUery tyPes e 121
Query specification comprising of a text form and the vocabulary
selection as well as the tokenization of the query 131
Semantic interpretation of the query 132
Visualization of the semantic graph realized by employing the JavaScript
InfoVis Toolkit 132

Retrieval of related location-based concepts for a query’s focus type 133

List of Abbreviations

API Application Programming Interface
CFG Context-Free Grammar

DBMS Database Management System
DM Data Module

DTD Document Type Definition

FOL First-Order Logic

HMM Hidden Markov Model

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

IDF Inverse Document Frequency

IP Internet Protocol

IQR Intermediate Query Representation
JAPE Java Annotation Patterns Engine
LGD LinkedGeoData

LOD Linked Open Data

ML Maximum Likelihood

NAPA Navigationsempfianger Chipsatz fiir Personennavigation mit

Anwendungen bei erhohter Genauigkeit

NER Named Entity Recognition

17

18 LIST OF FIGURES

NL Natural Language

NLI Natural Language Interface

NP Noun Phrase

OWL Web Ontology Language

POS Part-of-Speech

PCFG Probabilistic Context-Free Grammar
QA Question Answering

RAM Random Access Memory

RDF Resource Description Framework
REST Representational State Transfer
SGML Standard Generalized Markup Language

SPARQL SPARQL Protocol And RDF Query Language

SQL Structured Query Language
SRL Semantic Role Labeling
TAG Tree-Adjoining Grammar
URI Uniform Resource Identifier
URL Uniform Resource Locator
VM Vocabulary Module

XML Extensible Markup Language

Chapter 1

Introduction

1.1 Motivation

The World Wide Web provides an enormous supply of data that allows to publish
and access documents as part of a global information space (6). The development of
Semantic Web Technologies has additionally provided a broad variety of methods
to store and query knowledge using Web standards and a common data model
(7). The availability of structured data increases the necessity for tools bridging
the gap between formalized database query languages and the informal natural
language of human users (8) (9). To retrieve information from a structured data
source, users have to acquire knowledge about the formal query language and the
internal organization of its underlying database management system.

Natural Language Interfaces (NLI)s provide a simple and intuitive way for users
to enter an informal query and to shift the task of processing the query to the server
side in an automated fashion. NLIs facilitate users the access to structured data
by taking over the task of generating a database query from a natural language
sentence, retrieving query results from the database and presenting the search
results to the user in a human-readable form.

A significant benefit of NLIs is their large spectrum of possible areas of appli-
cation, reaching from general-purpose search engines to highly specified interfaces
optimized for specific tasks. With the increasing adoption of web and mobile
services offering personalized and location-based services, the possible areas of
application for natural language systems has expanded further: NLIs could be
employed for querying personal applications such as calendars, contact lists or
location-based services. However, the access to customized applications generally
requires the employment of highly specified search functionalities, resulting in a
high number of possible interfaces. A preferable way of employing a NLI would
thus be the integration of multiple data sources in one NLI, providing a simple

21

22 CHAPTER 1. INTRODUCTION

interface to users while grounding on a large variety of knowledge. Ideally, a dis-
tributed NLI would accept any kind of question, automatically recognize what the
user is searching for and consult the relevant data source to retrieve an answer.

This thesis presents a framework for a distributed natural language search
system, comprising of a novel approach for processing natural language queries
with a graph-based parsing model as well as a modularized system architecture
that is both independent in terms of the system’s vocabularies and knowledge
sources. The presented parsing model combines methods of shallow and deep
natural language parsing, consisting of a tokenization as well as a 3-staged semantic
interpretation of a natural language query using specified patterns.

We develop a modularized system architecture which enables the system to be
based on multiple vocabularies for parsing natural language as well as multiple,
possibly heterogeneous knowledge sources for information retrieval. Our goal is
to develop a natural language interface which integrates both the employment of
multiple vocabularies to dynamically adapt the domain of possible queries the sys-
tem is able to parse, as well as the employment of multiple knowledge sources for
extending the scope of possible search results. The system prototype is able to
answer general knowledge-based questions as well as location-based questions con-
sidering user-specific meta data included in the query parameters. We demonstrate
the system’s utilization as an integrated module within the mobile application of
the pedestrian navigation system NAPA! as well as with a web-based interface.

1.2 Structure

This thesis is structured as follows: Chapter 2 provides an overview about the
related work of the presented thesis, which consists of the major approaches con-
sidering deep and shallow natural language parsing as well as NLI architectures
for query generation and possibly distributed information retrieval. We will dis-
cuss the concepts of deep parsing as well as challenges of approaches using lexi-
calized grammars and probabilistic methods. Then we will introduce the major
approaches of shallow parsing such as Part-of-Speech Tagging, Chunking, Named
Entity Recognition and Semantic Role Labeling. We will then discuss the issue
of how to generate database queries for various database management systems
from the syntactic parse as well as the issue of how to query multiple, possibly
heterogeneous databases. Finally, we will show some approaches considering how
to merge and rank search results retrieved from different data sources. In chap-
ter 3 we will define the requirements of our system. The functional requirements
address the issue of query parsing and search results retrieval as well as the issue

Thttp://projekt-napa.de

1.2. STRUCTURE 23

of user interaction. The non-functional requirements focus on the issues of system
design, deployment and system interfaces. The developed parsing model will be
introduced in chapter 4. Tt consists of the tasks of identifying semantic tokens
within the natural language query (tokenization) as well as the generation of a
graph-based logical intermediate representation by employing specified patterns
(semantic interpretation). In chapter 5 we will present the architecture for a dis-
tributed natural language search system. The system will be independent both
in terms of the underlying vocabulary for parsing natural language as well as for
the data sources consulted for finding search results. A prototype of the system
will be presented in chapter 6. We will demonstrate the implementation of the
foundations presented in chapter 4 and 5, its vocabularies and knowledge sources.
The employment of the prototype for users will be demonstrated by integrating
the system in the mobile application of the pedestrian navigation system NAPA
as well as a browser-based web interface. An evaluation of the system prototype
is presented in chapter 7, comprising of the testing of the system accuracy, the
system scope in terms of precision and recall of the system, as well as a measure-
ment of the prototype’s query processing time. We will then discuss the strengths
and weaknesses of the system’s components and give an outlook for further devel-
opment of the system. A summary of the presented approach is given in chapter
8.

Chapter 2

Related Work

This chapter provides an introduction about the theoretical and conceptual foun-
dations of the methods employed by a natural language interface. Based on the
architectural designs of a NLI presented by (10) and (4), we divide the scope of a
distributed NLI’s applied concepts into three stages: 1) The parsing of a natural
language query, 2) the knowledge retrieval of various data sources, and 3) the ag-
gregation of the distributed results to a final search response. Within this context,
the purpose of syntactic parsing is the analysis of a natural language sentence and
the generation of an intermediate representation depicting the natural language’s
semantics in a logical form able to be processed further by succeeding system com-
ponents. Though the broad variety of processing approaches, (11) divides natural
language parsing into approaches performing a detailed linguistic analyis based
on a formal grammar theory (Deep Parsing), and approaches intending to pro-
vide lighter, more flexible approaches that often focus on solving a particular task
rather than performing a full parse (Shallow Parsing). Section 2.1 will outline the
main definitions of Deep Parsing and the concepts of lexicalized and probabilistic
parsing. The concept of shallow parsing techniques as well as the main methods
Part-of-Speech Tagging, Text Chunking, Named Entity Recognition and Seman-
tic Role Labeling are introduced in Section 2.2. The second aspect considering
the concepts of a Question Answering (QA) system is the process of information
retrieval from knowledge sources in order to generate answers. We will present ap-
proaches to retrieve data from varying data formats such as relational databases
and semantic triplestores. Further we will introduce approaches considering dis-
tributed data retrieval from multiple knowledge sources. The third aspect is the
generation of a distributed system’s final result set. Section 2.4 addresses the issue
of merging and ranking results from different data sources.

25

26 CHAPTER 2. RELATED WORK

2.1 Deep Parsing

Deep natural language parsing as defined by (11) is characterized by the ambition
to apply as much linguistic knowledge as possible to analyze natural language
utterances, realizing a detailed syntactic analysis based on a linguistic grammar
theory. A distinctive feature of deep parsing methods is the declarative encoding
of linguistic knowledge in formal grammars, separating the syntax and semantics
of a language from the parsing algorithms (12). The generally rule-based systems
describe a language’s linguistics abstract from concrete words (11).

Grammars A grammar can be interpreted as a set of transformation rules for
generating a language (13), i.e. a set of rules that manipulate symbols (1). A
grammar rule consists of terminal symbols that constitute elements of the target
language, and non-terminal symbols (or variables (14)), which can be interpreted
as auxiliary symbols (1). A grammar rule is employed by substituting the left-
hand side by the right-hand side of the rule (13), the sequence of substitutions to
obtain a string is called a derivation (14). The beginning of the transformation
is denoted with a non-terminal S called the start symbol, which is substituted
by a word according to the grammar rules (13). As terminals are generally not
substituted further, the transformation finishes as soon as a word consists only
of terminal symbols (13). A special case of a formal grammar is a set of rules
containing a non-terminal symbol V' on the left-side of a substitution rule, and
an arbitrary sequence of non-terminal and terminal symbols w on the right side.
The set of substitution rules thus is of the form V' — w, referred to as a context-
free grammar (13). The definition of a grammar (13), in particular a context-free
grammar (1) (14) (12), is read as follows:

Definition 1 (Context-Free Grammar)
A context-free grammar is a four-tuple G = (V, %, P, S), where

o V is a finite set of non-terminal symbols

> is an alphabet of terminal symbols
e PCV x(VUX)" is a set of rules
e S €V is the start symbol

The language generated by a grammar can be defined as the set of all termi-
nal words that can be generated from the start symbol S by employment of the
grammar’s substitution rules (13) (14):

L(G) ={weX | S={w} (2.1)

2.1. DEEP PARSING 27

As it may be possible to apply multiple rules on a word, the generation of a
word w’ from a word w is an indetermined procedure (13). The employment of a
context-free grammar for generating each string of a language is described by (14)
as follows:

1. Write down the start variable. It is the variable on the left-hand side of the
top rule, unless specified otherwise.

2. Find a variable that is written down and a rule that starts with that variable.
Replace the written down variable with the right-hand side of that rule.

3. Repeat step 2 until no variables remain

The sequence of substitutions to obtain a string, called the derivation, is for-
mally defined by (1) as follows:

Definition 2 (Derivation)

Let G = (V, %, P,S) be a grammar. The set of forms induced by G is (V UX)*. A
form o immediately derives a form B, denoted by o = 3, if and only if there exist
Y, v € (VUX)* such that o = Ay, and B = vy, and A — 7, is a rule in P.
A s called the selected symbol.

A sample set of grammar rules is presented by (1), including a set of terminals
{the,cat,in,hat} and a set of non-terminals {D,N,P,NP,PP}:

D — the NP - DN

N — cat PP — P NP
N — hat NP — NP PP
P—in

Table 2.1: Example of a set of rules comprising a simple grammar (1)

(1) provides an intuitive description of a grammar rule interpretation: If we
interpret NP as the syntactic category noun phrase, D as determiner, and N as
noun, then what the rule NP — D N informally means is that one possible way
to construct a noun phrase is by concatening a determiner with a noun. More
generally, a rule specifies one possible way to construct a "phrase" of the category
indicated by its head: this way is by concatening phrases of the categories indicated
by the elements in the body of the rule (1). A derivation can be visualized by a
parse tree consisting of a finite set of vertices connected by a finite set of branches
(1). (13) defines the following criteria for a parse tree B = (W, E, vy) for a context-
free grammar:

e Each node v € W is denoted with a symbol from V UT U {¢}

28 CHAPTER 2. RELATED WORK

The root vy is denoted with S

Each inner node is denoted with a variable of V'

Each leaf ist denoted with a symbol of T'U {e}

If v € W is an inner node with the child nodes v, ..., v, and v is denoted
with A and v; is denoted with A;, then A — A,.. A, € R

e A leaf denoted with € has no neighboured leaves

A sample parse tree provided by (1) from the grammar shown above is depicted
in Figure 2.1.

NP

NP PP

W)
=
o
=
o

D N
the cat in the hat

Figure 2.1: Sample parse tree with the grammar presented in Table 2.1 (1)

Lexicalization A major aspect of natural language parsing using grammars is
whether a parse is based on individual words rather than on a word’s part of speech.
A lexicalized grammar realizes syntactic structures that are sensitive to terminal
symbols, also called lezical elements (12). A common solution is to incorporate
a lexical element as a so-called head in each non-terminal of the Context-Free

Grammar (CFG) (12). (15) defines a grammar formalism as lexicalized if it consists
of

e a finite set of structures to be associated with lexical items, which usually
will be heads of these structures

2.1. DEEP PARSING 29

e an operation or operations for composing the structures. The finite set of
structures define the domain of locality over which constraints are specified
and these are local with respect to their lexical heads

(12) describes a model called bilexical context-free grammars, which is a CFG
with non-terminal symbols of the form Aa|, where a is a terminal symbol and A
is a delexicalized non-terminal. Every rule in a bilexical context-free grammar has
one of the following forms (12):

Ala] — BIb] Cld]
Ala] — Bla] C|(]
Ala] — Blal
Alal = a

A general parsing strategy for Tree-Adjoining Grammar (TAG)s based on lex-
icalized grammars is presented by (15). (16) proposes a statistical parsing model
using lexicalized context-free grammars. A general parsing strategy with lecialized
grammars applied to TAGs is presented by (15). The benefits of lexicalization
have been discussed in various works. An approach of an unlexicalized parser
that shows a significantly well performance is presented by (17). (17) points out
that unlexicalized Probabilistic Context-Free Grammar (PCFG) parsers are much
simpler to build and optimize. On the other hand, (2) argues that lexicalized
parsers achieve significantly higher precision-recall accuracies up to 87-percent to
88-percent precision-recall. However, (2) also points out the sparse data problems
occuring when gathering statistics on individual words, such as the occurrence of
new words or new word combinations where no data is collected yet.

Probabilistic Parsing A common problem in natural language processing is the
syntactic ambiguity of terms, i.e. words or sentences with two or more possible
meanings. A natural language parser thus is required to be able to compute the
most adequate parse with respect to the term’s context. A possible solution to
ambiguity is the introduction of probabilistic methods in natural language parsing.
Calculating a probabilistic value for each possibility, a probabilistic parser may
choose the most likely parse on the base of a heuristic.

A simple way to add probability to a formal grammar is to associate each
grammar rule with a probability (12). A definition of a PCFG is presented by
(12):

Definition 3 (Probabilistic Context-Free Grammar)
A probabilistic context-free grammar is of the form G = (V,X, P,S,p), where

30 CHAPTER 2. RELATED WORK

(V,X, P, S) is a contezt-free grammar and p is a mapping from rules in P to be
real numbers between 0 and 1.

(12) defines a PCFG as proper if for every non-terminal A, p defines a proba-
bility distribution over the rules with left-hand side A, i.e.

d pA—a)=1 (2.2)
A—a
(18) describes the statistical parsing model as follows: The model defines a
conditional probability P(T'|S) for each candidate parse tree T for a sentence S.
The parser itself is an algorithm which searches for the tree Ty, that maximises
P(T)S). The probability of a parse is calculated as the product of the probabilities
for each of the rules used therein (2) (12). If s is the entire sentence, 7 is a particular
parse of s, ¢ ranges over the constituents of 7, and r(c) is the rule used to expand
¢, then

p(s,m) = [p(r(e)). (2.3)

Probabilistic approaches have been presented by a variety of works (19) (20).

2.2 Shallow Parsing

Other than deep parsing, shallow parsing techniques as described by (11) (21)
intend to produce a more lightweight, flexible representation of a natural language
input and often focus on performing a particular task rather than a full parse.
Shallow parsing techniques generally segment a text into logical semantic units
and retrieve their semantic roles within the sentence’s context.

This section will provide an overview of the most important techniques of
shallow natural language parsing. First we will introduce Part-of-Speech tagging,
which describes the disambiguation of words within a sentence (22). This anal-
ysis is extended by text chunking, which focuses on the identification of logical,
non-overlapping groups of words in a text (chunks) (23). A more differentiated
recognition is provided by Named Entity Recognition (NER), which recognizes
specific instances within a text. A defined role of a logical unit is identified by
semantic role labeling.

2.2.1 Part-Of-Speech Tagging

Part-of-Speech (POS) tagging describes the identification of a word’s syntactic
category within the context of its sentence such as noun, pronoun, verb, adjective
or adverb (24) (11). A POS tagger separates a natural language sentence into

2.2. SHALLOW PARSING 31

segments and enriches the corpus by the semantic roles of each word. A major
challenge of POS tagging is lexical disambiguation: (25) points out that, depending
on the context, e.g. the word "store” can be either a noun, a finite verb or an
infinitive. An example of the possible parts of speech of the words in a sentence is
presented by (2):

The can will rust

det modal-verb modal-verb noun
noun noun verb
verb verb

Table 2.2: Lexical disambiguation by POS tagging (2)

The problem of tagging has been described by (26) as follows: Consider a
sentence consisting of a set of words W = wjws...w,, and a sequence of tags
T = tils...t,, of the same length. The pair (W,T') constitutes an alignment,
where a word w; has been assigned the tag t;. Therefore, a tagging procedure is
a procedure ¢ which selects a sequence of tags (and so defines an alignment) for
each sentence.

6:W =T = ¢(W) (2.4)

POS tagging has been the field of research of various works. An introduc-
tion to POS tagging and partial parsing is given by (22). An approach to apply
transformation-based error-driven learning to POS tagging is presented by (27).
POS tagging approaches can generally be divided into rule-based and statistical
systems.

Rule-based POS tagging According to (24), rule-based POS approaches as-
sign tags to words based on a lexicon and a set of hand-crafted or learned rules.
Early approaches employing taggers with hand-constructed rules were presented
by (28) (29). To facilitate the process of acquiring rules for POS tagging, various
techniques for acquiring rules automatically have been developed. (30) presents a
procedure for automatically acquiring a set of disambiguation rules for an existing
deterministic parser on the basis of tagged text. A simple disambiguation rule
presented by (30) looks like this:

[PREP + TNS]=TNS [N + V]

indicating that a word that can be a preposition or a tense marker (i.e. the word
to) followed by a word which can be a noun or a verb is a tense marker followed
by a verb (30).

32 CHAPTER 2. RELATED WORK

(31) presents an approach which automatically acquires its rules and tags. As
advantages of rule-based over stochastic POS taggers (31) names a vast reduction
in stored information and a better portability. An approach inspired by (31) that
implements a finite-state tagger is presented by (32). On the other hand, (22)
points out the amount of effort necessary to write the disambiguation rules of
rule-based POS taggers.

Statistical POS tagging Statistical tagging approaches use a variety of prob-
abilistic techniques in order to assign POS tags to unseen text. (26) describes
a probabilistic formulation of the tagging problem as alignments generated by a
probabilistic model according to a probability distribution:

p(W,T) (2.5)

Depending on the criterion chosed for evaluation, (26) formulates the optimal
tagging procedure:

e for evaluation at sentence level: Choose the most probable sequence of tags
for the sentence (Viterbi tagging)

G(W) = argmax p(T/W) = arg max p(W.)

e for evaluation at word level: Choose the most probable tag for each word in
the sentence (Maximum Likelihood (ML) tagging)

¢(W); = argmax p(t; = t/W) = argmax » p(W,T)

T:t;=t

(2) describes a statistical model of POS tagging as follows: The most common
tag t for the ith word of a sentence wj;, is the one that maximizes the probability
p(tlw;), that is, by finding the ¢ that maximizes the probability of a tag given the
word.

arg mtaxp(t|wi) (2.6)

Extended to an entire text, (2) describes that the parser looks for the sequence
of n tags ¢, that maximizes the product of the individual word probabilities

arg I?aXHp(tAwi) (2.7)

1,n =
=1

2.2. SHALLOW PARSING 33

Although (2) points out the significant accuracy of this algorithm, it does not
consider a word’s context yet. A possible approach for context-specific probabilistic
tagging is proposed by (2) by collecting statistics on the probability of tag ¢;_;

arg max H p(tiltiz1)p(wilt;) (2.8)
In this method (2) takes into account two probabilities: 1) the probability p(;|t;—1)
of a tag t; given the previous tag t;_; as context and 2) the probability of a word’s
possible tags p(w;|t;).

Probabilistic approaches using Markov models have been presented by (26)
(33). A probabilistic POS tagging approach using decision trees is proposed by
(25). (34) introduces a memory-based approach to POS tagging, where the POS
tag of a word in a particular context is extrapolated from the most similar cases
held in memory. A statistical model using a maximum entropy model for POS
tagging is presented by (35).

An evaluation of various POS tagging approaches is performed by (36). POS

tagging provides a first classification of a sentence’s words and is thus implemented
as a preceding step of an extensive analysis by various works (37).

2.2.2 Chunking

Text chunking as defined by (23) describes the dividing of text into syntactically
related non-overlapping groups of words. (38) describes that a typical chunk con-
sists of a single content word sourrounded by a constellation of function words,
matching a fixed template. In this context, (38) defines chunks in terms of major
heads, that is, all content words except those that appear between a function word
f and the content word that f selects. As an illustrative example, (38) points
out that the sentence a man proud of his son contains proud as a major head,
while it is not a major head in the proud man. As most chunks consist of multiple
words, (38) points out that lexical ambiguity is often resolvable within chunks. In
this context, text chunking provides a wider spectrum than POS tagging. Vari-
ous works consider POS tagging as a part of chunking (39), if it is assumed each
character as a token.

An example of a non-overlapping sentence segmentation is presented by (23),
where chunks are represented as groups of words between square brackets and a
tag next to the open bracket denoting the type of the chunk:

[np He| [y p reckons| [yp the current account deficit| [y p will narrow|
[pp to] [np only £ 1.8 billion] [pp in| [vp September] .

34 CHAPTER 2. RELATED WORK

Considering the types of chunks, (40) distinguishes between noun phrases(NP),
verb phrases(VP), adverbs (ADVP) and adjectives (ADJP), prepositions (PP) and
clauses introduced by a subordinating conjunction (SBAR) as well as conjunctions
(CONJP), verb particles (PRT), interjection phrases (INTJ), list markers (LST)
and unlike coordinated phrases (UCP).

Machine learning has been applied to chunking by (41), who show that it
becomes possible to easily apply transformation-based learning by representing
text chunking as a kind of tagging problem. They employ a chunk tag set I, O, B,
where words marked I are inside some non-recursive base noun phrase, those
marked O are outside, and the B tag is used to mark the left most item of a base
noun phrase which immediately follows another baseNP.

(42) presents an approach for memory-based shallow parsing techniques to
find labeled chunks and grammatical relations in a sentence. An approach for
memory-based learning to fast Noun Phrase (NP) chunking is presented by (43).
(39) introduces a framework for chunking based on Support Vector Machines.

2.2.3 Named Entity Recognition

NER is the task of classifying nouns in a document in one of a defined set of pos-
sible categories, where (44) names persons, organizations and locations as possible
categories. Other than other shallow techniques and deep parsing techniques an-
alyzing the input sentence’s structure, NER concentrates on concrete words and
the association of nouns with specific entities. While POS tagging and chunking
are focused on identifying the syntactic role of one or multiple words, NER con-
centrates on identifying the concrete role of a noun. For example, (45) uses the
following categories: person, location, organization, date, time,percentage, mon-
etary value, and "none-of-the-above". NER is generally performed by marking a
sentence with Standard Generalized Markup Language (SGML) tags. According
to (45) (46), the sample sentence "X is an analyst who has been in Koblenz since
2010" would therefore be marked with SGML tags as follows:

<ENAMEX TYPE=’PERSON’>X</ENAMEX>

is an analyst who has been in

<ENAMEX TYPE=’LOCATION’>Koblenz</ENAMEX> since
<TIMEX TYPE=’DATE’>2010</TIMEX>.

While the intuition of POS tagging is to define the role of each word in the
input string in terms of its syntactic role within the sentence’s context, NER
identifies single instances and the categories they belo