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ABSTRACT 

 

Studies on the toxicity of chemical mixtures find that components at levels below no-observed-

effect concentrations (NOECs) may cause toxicity resulting from the combined effects of mixed 

chemicals. However, chemical risk assessment frequently focuses on individual chemical substances, 

although most living organisms are substantially exposed to chemical mixtures rather than single 

substances. The concepts of additive toxicity, concentration addition (CA), and independent action 

(IA) models are often applied to predict the mixture toxicity of similarly and dissimilarly acting 

chemicals, respectively. However, living organisms and the environment may be exposed to both 

types of chemicals at the same time and location. In addition, experimental acquisition of toxicity data 

for every conceivable mixture is unfeasible since the number of chemical combinations is extremely 

large. Therefore, an integrated model to predict mixture toxicity on the basis of single mixture 

components having various modes of toxic action (MoAs) needs to be developed. The objectives of 

the present study were to analyze the challenges in predicting mixture toxicity in the environment, and 

to develop integrated models that overcome the limitations of the existing prediction models for 

estimating the toxicity of non-interactive mixtures through computational models. For these goals, 

four sub-topics were generated in this study. Firstly, applicable domains and limitations of existing 

integrated models were analyzed and grouped into three kinds of categories in this study. There are 

current approaches used to assess mixture toxicity; however, there is a need for a new research 

concept to overcome challenges associated with such approaches, which recent studies have addressed. 

These approaches are discussed with particular emphasis on those studies involved in computational 

approaches to predict the toxicity of chemical mixtures based on the toxicological data of individual 

chemicals. Secondly, through a case study and a computational simulation, it was found that the Key 

Critical Component (KCC) and Composite Reciprocal (CR) methods (as described in the European 

Union (EU) draft technical guidance notes for calculating the Predicted No Effect Concentration 

(PNEC) and Derived No Effect Level (DNEL) of mixtures) could derive significantly different results. 
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As the third and fourth sub-topics of this study, the following two integrated addition models were 

developed and successfully applied to overcome the inherent limitations of the CA and IA models, 

which could be theoretically used for either similarly or dissimilarly acting chemicals: i) a Partial 

Least Squares-Based Integrated Addition Model (PLS-IAM), and, ii) a Quantitative Structure-Activity 

Relationship-Based Two-Stage Prediction (QSAR-TSP) model. In this study, it was shown that the 

PLS-IAM might be useful to estimate mixture toxicity when the toxicity data of similar mixtures 

having the same compositions were available. In the case of the QSAR-TSP model, it showed the 

potential to overcome the critical limitation of the conventional TSP model, which requires 

knowledge of the MoAs for all chemicals. Therefore, this study presented good potential for the 

advanced integrated models (e.g., PLS-IAM and QSAR-TSP), while considering various non-

interactive constituents that have different MoAs in order to increase the reliance of conventional 

models and simplify the procedure for risk assessment of mixtures. 
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ZUSAMMENFASSUNG 

 

In Studien zur Toxizität von Chemikaliengemischen wurde festgestellt, dass Gemische aus 

Komponenten in Konzentrationen ohne erkennbare Wirkung als Einzelstoff (NOECs) als Resultat der 

gemeinsamen Wirkung der Substanzen Toxizität verursachen können. Die Risikobewertung von 

Chemikalien konzentriert sich jedoch häufig auf einzelne chemische Substanzen, obwohl die meisten 

lebenden Organismen im Wesentlichen chemischen Gemischen anstatt einzelnen Substanzen 

ausgesetzt sind. Die Konzepte der additiven Toxizität, Konzentrationsadditivität (CA) und der 

unabhängigen Wirkung (IA), werden häufig angewendet, um die Mischungstoxizität von Gemischen 

ähnlich wirkender und unähnlich wirkender Chemikalien vorherzusagen. Allerdings können lebende 

Organismen, ebenso wie die Umwelt, beiden Chemikalienarten zur gleichen Zeit und am gleichen Ort 

ausgesetzt sein. Darüber hinaus wäre es nahezu unmöglich, auf experimentellem Wege 

Toxizitätsdaten für jede denkbare Mischung zu gewinnen, da die Anzahl der Möglichkeiten beinahe 

unendlich groß ist. Aus diesem Grund muss ein integriertes Modell zur Vorhersage der 

Mischungstoxizität, welches auf einzelnen Mischungskomponenten mit verschiedenen Arten 

toxischer Wirkung (MoAs) basiert, entwickelt werden. Die Ziele der vorliegenden Studie sind, die 

Problematik der Vorhersage der Mischungstoxizität in der Umwelt zu analysieren und integrierte 

Modelle zu entwickeln, die die Beschränkungen der vorhandenen Vorhersagemodelle zur 

Abschätzung der Toxizität nicht-interaktiver Mischungen mittels computergestützter Modelle 

überwinden. Für diese Zielsetzung wurden in dieser Studie vier Unterthemen bearbeitet. Als Erstes 

wurden Anwendungsbereiche und Beschränkungen bereits bestehender Modelle analysiert und in die 

drei Kategorien dieser Studie eingruppiert. Aktuelle Ansätze zur Einschätzung der Mischungstoxizität 

und die Notwendigkeit eines neuen Forschungskonzepts zur Überwindung bestehender 

Einschränkungen, die aus neueren Studien hervorgehen, wurden diskutiert. Insbesondere diejenigen, 

die computergestützte Ansätze einbeziehen um die Toxizität chemischer Gemische, basierend auf den 

toxikologischen Daten einzelner Chemikalien, vorherzusagen. Als Zweites wurde anhand einer 
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Fallstudie und mittels computergestützter Simulation festgestellt, dass die Key Critical Component 

(KCC) und die Composite Reciprocal (CR) methods, die im Entwurf des Technischen Leitfadens der 

Europäischen Union (EU) zu Berechnung der Predicted No Effect Concentration (PNEC) und des 

Derived No Effect Level (DNEL) von Gemischen beschrieben wurden, signifikant abweichende 

Ergebnisse hervorbringen. Als dritter und vierter Schritt dieser Studie wurden die zwei folgenden 

integrierten Nebenmodelle entwickelt und erfolgreich angewandt, um die dem CA und IA Modell 

innewohnenden Beschränkungen zu überwinden, welche theoretisch sowohl für Chemikalien mit 

ähnlichen, als auch mit abweichenden Reaktionen existieren: 1) Partial Least Squares-based 

Integrated Addition Model (PLS-IAM) und 2) Quantitative Structure-Activity Relationship-based 

Two-Stage Prediction (QSAR-TSP) Modell. In dieser Studie wurde gezeigt, dass das PLS-IAM 

angewandt werden könnte, wenn die toxikologischen Daten ähnlicher Gemische mit gleicher 

Zusammensetzung zur Verfügung stehen. Das QSAR-TSP Modell zeigt eine Möglichkeit zur 

Überwindung der kritischen Einschränkungen des herkömmlichen TSP Modells auf, bei der 

Kenntnisse der MoAs aller Chemikalien erforderlich sind. Diese Studie zeigt das hohe Potential der 

erweiterten integrierten Modelle, z.B. PLS-IAM und QSAR-TSP, die durch Berücksichtigung 

verschiedener nicht-interaktiver Komponenten mit unterschiedlichen MoA Gruppen, die 

Verlässlichkeit konventioneller Modelle erhöhen und das Verfahren der Risikobewertung von 

Gemischen aus wissenschaftlicher Sicht vereinfachen. 
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CHAPTER I 

 

General Introduction 
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GENERAL INTRODUCTION 

1. Study background 

 

Is it necessary to study the prediction of mixture toxicity? 

 

Studies on the toxicity of mixed chemicals find that components at levels below no-observed-effect 

concentrations (NOECs) may cause toxicity resulting from combined effects among substances 

(Kortenkamp and Altenburger, 1999; Rajapakse et al., 2002; Walter et al., 2002; Altenburger et al., 

2003; Vighi et al., 2003; Lydy et al., 2004; Breitholtz et al., 2008). However, there is still a lack of 

knowledge as to the underlying mechanism for such interactions (Xu and Nirmalakhandan, 1998). 

From a regulatory perspective, control levels are improving and the scope of global chemical 

regulations for protecting human health and the environment is being strengthened and extended. In 

the case of the European Union (EU), where regulations are aimed at securing human health and 

protecting the environment, legislation is broadly divided into two forms: 1) substance- and product-

based legislations such as the Registration, Evaluation, Authorization, and Restriction of Chemicals 

regulation (REACH); the Placing of Plant Protection Products regulation (PPP); the Classification, 

Labeling and Packaging regulation (CLP); and, 2) the process- and media-based legislations such as 

the Integrated Pollution and Prevention Control Directive (IPPC) and the Water Framework Directive 

(WFD). However, current risk assessments even under such strict regulations place less focus on 

chemical mixtures as compared to single substances (Altenburger et al., 2003; European Commission, 

2003; Eggen et al., 2004; Altenburger and Greco, 2008; Martin et al., 2009; Syberg et al., 2009). Two 

different methods, comprising of the Key Critical Component (KCC), and Composite Reciprocal (CR) 

are mentioned in the EU draft technical guidance notes (European Chemical Industry Council, 2005; 

European Chemical Agency, 2008a, b). The KCC method assumes that only one key component 

should be considered as equal to the whole mixture in terms of danger for developing risk 
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management measures (European Chemical Industry Council, 2005). However, combined effects 

among mixture components are ignored under such a framework. By contrast, the CR method 

considers a multi-component mixture as an individual chemical unit by calculating a composite 

Predicted No Effect Concentration (PNEC) and a Derived No Effect Level (DNEL) for the mixture 

based on the PNECs and DNELs of single substances derived from available testing results for the 

environment and human health, respectively (European Chemical Industry Council, 2005; European 

Chemical Agency, 2008a, b). The CR method, using a fractional PNEC or DNEL summation with 

these values estimated from the lowest chronic toxicity data (e.g. NOEC) of the minimal toxicity 

datasets, is strictly not the same as the conventional concentration addition model, which uses 

identical effective concentration endpoints (e.g. EC50). However, the ‘additive toxicity’ concept as 

employed in the concentration addition model, and as similarly assumed by the CR method, 

additionally assumes that the PNEC and DNEL of a mixture can be described as the sum of the 

PNECs and DNELs of components, respectively (European Chemical Industry Council, 2005). The 

two above-mentioned methods employ different concepts for estimating mixture toxicity, and basic 

assumptions of the KCC and CR methods are mutually contradictory (for detailed information, see the 

methodology in Chapter III). However, the EU draft technical guidance notes has not yet presented 

apparent criteria for the practical application of each method (i.e., which approach performs best 

according to the characteristics of a mixture) (European Chemical Industry Council, 2005; European 

Chemical Agency, 2008a, b). 

From the industrial and commercial perspective, over 100,000 chemical substances were placed on 

the market in the past few decades, and approximately 200 to 300 new chemicals have been tested in 

Europe every year (Hartung and Rovida, 2009). The number of test groups that can be created with n 

substances, at only one concentration level for each substance, is ‘2n-1’ for every possible 

combination and ‘n(n-1)/2’ for binary combinations. For example, 20 substances can create 190 

binary combinations and more than a million possible other combinations (e.g., ternary, quaternary 
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and so on) (Cassee et al., 1998; Lydy et al., 2004). Toxicological tests based on animal data for filling 

data gaps on the toxicity of every mixture may present a large economic burden to the chemical 

industry. 

Some researchers insist that toxicity tests for mixtures are indispensable in validating untested 

assumptions and simplifications (Borgert, 2004). In practice, however, conducting toxicity tests on all 

conceivable combinations of chemical substances is unfeasible due to the very large number of 

possible combinations, as well as the changeable status of chemical combinations in the environment 

at any time (Cassee et al., 1998; US ATSDR, 2004; Lydy et al., 2004). In addition, toxicological tests 

using animals are expensive, time-consuming, and raise ethnical issues. Therefore, there is an 

essential need for appropriate mixture prediction models using knowledge on chemicals in order to 

facilitate practical chemical risk assessment that satisfies the scientific, regulatory, and industrial 

perspectives.  

 

How well can we predict mixture toxicity using knowledge of mixture components? 

 

In practice, developing reliable methods for estimating mixture toxicity based on single substances 

is one of the main challenges in ecotoxicology (Faust and Scholze, 2004). Conventionally two 

predictive models, including the concentration addition (CA, also referred to as dose addition) and the 

independent action (IA, also referred to as response addition) models, have been used frequently to 

estimate the additive toxicity of chemical mixtures with dose-response data of each component (e.g., 

component-based approaches). The CA (Loewe and Muischnek, 1926) and IA (Bliss, 1939) models 

are based basically on contrary assumptions: every mixture component has either similar or dissimilar 

modes of toxic action (MoAs) (Faust et al., 2003). The CA model calculates toxicity in the mixture by 

summation of the concentrations of each mixture component after modifying the differences in 

potencies (Loewe and Muischnek, 1926; Finney, 1942; Feron and Groten, 2002). 
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The IA model predicts mixture toxicity by summation of the responses (e.g., toxicity effects) of 

each component in a mixture based on the probability theory. The IA model does not consider the 

contribution of constituents existing at no-effect concentrations into the overall mixture toxicity, in 

contrast to the CA model (Bliss, 1939; Finney, 1942; Cassee et al., 1998; Feron and Groten, 2002). 

The overall toxicity calculated by the CA model, especially for low mixture concentrations, can be 

largely different from that predicted by the IA model (Drescher and Boedeker, 1995). Cedergreen et 

al. (2008) conducted a study that tested the accuracy of the CA and IA models on binary mixtures 

with various MoAs (e.g., 158 toxicity datasets for 98 different mixtures comprised mainly of 

pesticides and pharmaceuticals tested on one or more of seven test organisms). The results showed 

that approximately 20% of the mixtures were properly predicted by the IA model and 10% were 

correctly estimated by the CA model. Both models could predict the results of another 20% of the 

testing datasets. Approximately half of the datasets could not be correctly addressed by either of the 

two models (Cedergreen et al., 2008). 

It has been argued that the CA model should be used as a default model from a regulatory point of 

view for determining aquatic toxicity of mixtures since it is usually more conservative and less data-

demanding than the IA model (Arrhenius et al., 2004; Backhaus et al., 2004; Junghans et al., 2006; 

Cedergreen et al., 2008; Syberg et al., 2009). The number of input parameters used in the calculation 

process of respective CA and IA models is same, but the type of each parameter used in these models 

is different: the effective concentration parameter (e.g., EC50) is used in the CA model, and the effect 

parameter (e.g., effect-%) is used in the IA model. The effect concentration value calculated by the 

CA model is normally used to describe mixture toxicity in risk assessment rather than the effect 

estimate of the IA model. The difference between the parameter types mostly makes the IA model 

more data-demanding. For example, under the concept of CA, the EC50 of a mixture can be simply 

calculated from the EC50 of every mixture component. By contrast, according to the number of 

mixture constituents, the IA model may require full dose-response curves explaining the accurate 
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toxicity responses elicited by the different concentrations of every individual component in order to 

estimate the EC50 of the mixture. If a mixture is based on the equitoxic concentration ratio of 10 

components, the EC6.7 of each component is needed to estimate the EC50 of the mixture of the whole. 

Nevertheless, common major drawbacks of the CA and IA models can be highlighted by the 

following background assumptions. 

Firstly, in the reality of risk assessment, living organisms and the environment may be exposed to 

both similarly and dissimilarly acting chemicals simultaneously. However, both CA and IA models do 

not consider mixed similarly and dissimilarly acting chemical groups to simplify model development 

(Loewe and Muischnek, 1926; Bliss, 1939; Plackett and Hewlett, 1952; Mwense et al., 2004). 

Secondly, the use of CA and IA models can be strictly limited unless accurate MoAs of all mixture 

constituents are readily available (Borgert et al., 2004; Lambert and Lipscomb, 2007). Knowledge of 

such MoAs remains lacking (European Commission, 2009). Lastly, both models assume that no 

interactions (e.g., synergism, antagonism, and potentiation) occur among mixture components 

(Plackett and Hewlett, 1952; Altenburger et al., 2003). Therefore, from a scientific point of view, this 

leads to a need for developing integrated addition models (IAM) and combined CA and IA concepts, 

at least for calculating additive toxicity of non-interactive mixtures regardless of whether mixture 

components produce similar, dissimilar, or both similar and dissimilar MoAs (Mwense et al., 2004). 

As an IAM, the Two-Stage Prediction (TSP) model was developed to calculate the toxicity of non-

interacting mixtures with different MoA groups (Altenburger et al., 2002; Junghans et al., 2004; 

Altenburger et al., 2004; 2005). The TSP model executes the CA and IA calculations step by step as 

follows: (1) mixture constituents are classified into groups in accordance to their MoAs in the first 

stage so that the CA model is applied to estimate the effective concentrations of each group having 

similar MoAs; (2) in the second stage, the overall toxicity effect caused from the different groups is 

predicted by the IA model. From case studies, there is better prediction accuracy with the TSP model 

for estimating toxicities of mixtures of pesticides, nitrobenzenes, industrial organic compounds, or 

Jongwoon Kim  11



wastewater treatment plant effluents as compared to the CA and IA models (Junghans et al., 2004; 

Altenburger et al., 2005; Ra et al., 2006; Wang et al., 2009). 

Qin et al. (2011) recently developed ‘an integrated concentration addition with independent action 

based on a multiple linear regression (ICIM)’ model by applying a multi-linear regression method that 

merges the CA and IA models for estimating toxicities resulting from 19 mixtures of pesticides and 

metals. An outstanding advantage of the ICIM model is that the information on MoAs of each 

component is not required to determine mixture toxicity; rather, only one set of dose-response data for 

a given mixture and its components is required. From the aspect of model performance, the ICIM may 

increase the prediction accuracy for estimating the toxicity of target mixtures by using dose-response 

data of similar mixtures. With respect to data requirement, however, it can be also highlighted that 

such dose-response data of mixtures are not required by the CA and IA models. 

The ICIM model fundamentally uses a standard multi-linear regression (MLR) method based on 

ordinary least squares (OLS) regression for determining regression coefficients. However, in the case 

of a linear relationship between any pair of predictor variables (i.e., multicollinearity problems 

causing high correlations between independent variables in multiple regression), prediction results 

through the OLS regression cannot be strictly guaranteed to work statistically well despite its ability 

to calculate good prediction values (Hastie et al., 2001; Adler, 2009). Since the results of the CA and 

IA models were used as independent variables in the ICIM model (Qin et al., 2011), a question may 

arise: what is the correlation between the CA and IA models? Related to this issue, Drescher and 

Boedeker (1995) demonstrated that such a relationship depends on the distribution functions (e.g., 

Logistic, Weibull, Probit, etc.) for describing dose-response curves, the corresponding slope 

parameters, and the mixture concentrations administered. 

Additionally, the ICIM model is restricted if dose-response curves of a target mixture and its 

components are not readily available. In the case of the conventional TSP model, its application is 
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restricted to predict mixture toxicity if there is no accurate information of the MoAs for all mixture 

constituents. These restrictions lead us to the following research question:  

How can the limitations of the existing IAM models be overcome? 

 

2. Objectives 

The objective of this study was to develop integrated computational models capable of estimating 

the toxicity of non-interactive mixtures, which overcome the limitations of existing prediction models. 

These integrated models aim at increasing the accuracy of the conventional models, as well as 

minimizing the burden of data generation required for model calculations. Therefore, in order to 

achieve this goal, the following was hypothesized and tested through this study: 

i) Hypothesis I: Current approaches, the KCC, and CR methods described in the EU draft 

technical guidance notes (European Chemical Industry Council, 2005; European Chemical 

Agency, 2008a, b), for deriving PNECs and DNELs of mixtures, can result in significantly 

different results due to their contrary concepts. If there is difference between the results of the 

two methods, these results cannot be validated without testing for a whole mixture; 

ii) Hypothesis II: Considering the applicability domain of prediction models for mixture toxicity, 

the integrated addition concept is more comprehensive than the conventional CA and IA 

models for estimating the toxicity of non-interactive mixtures consisting of different MoA 

groups. An advantage of the partial least squares (PLS, also referred to as projection to the 

latent squares) algorithm is that it offers a valid statistical model in the case of a high degree of 

multicollinearity between variables. Therefore, the PLS method for MLR can contribute to 

solving the multicollinearity problem, which can occur in the existing ICIM model when 

predicting the toxicity of mixtures using the toxicity data of similar mixtures; and, 

iii) Hypothesis III: In the absence of MoA knowledge, chemicals can be grouped by their 

structural similarity due to the relationship between structures and biological activities (i.e., 
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this derives from the Quantitative Structure-Activity Relationship (QSAR) approach that 

assumes that the function of a substance follows a structural form). Therefore, QSAR 

techniques used for clustering chemicals can play a role in surmounting the significant 

disadvantage of the conventional TSP model that strictly requires the knowledge of MoAs of 

each mixture component. 

This study is divided further into four sub-topics as follows: 

i) Topic 1: ‘Reliable predictive computational toxicology methods for mixture toxicity: Toward 

the development of innovative integrated models for environmental risk assessment’, as 

described in Chapter II, aims to critically describe and summarize recent studies on the 

prediction models of mixture toxicity in an environmental risk assessment based on the toxicity 

of single chemicals. The present paper also focuses on integrated models that can be used to 

predict the toxicity of complex mixtures containing different MoA groups. On the basis of the 

current review, future challenges and a new research concept to improve the prediction model 

of mixture toxicity are described in this study. To our knowledge, this represents the first 

documentation of state-of-the-art computational approaches applied in the development of 

integrated models using quantum QSARs and machine learning algorithm (MLA).  

ii) Topic 2: ‘A case study and a computational simulation of the European Union draft technical 

guidance documents for chemical safety assessment of mixtures: Limitations and a tentative 

alternative’, as addressed in Chapter III for ‘the hypothesis I’, evaluates existing methods, 

namely the KCC and CR methods, which are described in the EU draft technical guidance 

(European Chemical Industry Council, 2005; European Chemical Agency, 2008a, b) in order to 

determine the PNECs and DNELs of mixtures. A case study on coating products, which have 

different compounds, and a computational simulation were undertaken while considering 

influencing factors with a focus on the causes of the discrepancy in estimations between the 

two methods. In addition, this study discussed how the two methods should be considered for 
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regulatory purposes in terms of three aspects: concept, implementation, and performance. 

Furthermore, as a tentative alternative method, a tiered approach combining ‘Enhanced KCC 

(e-KCC)’ and ‘CR’ methods is proposed and discussed in this study. 

iii) Topic 3: ‘Development of a partial least squares-based integrated addition model for 

predicting mixture toxicity’, as elaborated in Chapter IV for ‘the hypothesis II’, aims at 

developing and evaluating a partial least square-based integrated addition model (PLS-IAM) 

not only to overcome the multicollinearity problem – which can occur between two 

independent variables (e.g., CA and IA variables) – but also to combine them into an integrated 

addition model by using the latent variable. According to the original best-fit approach 

(Scholze et al., 2001), different dose-response curve (DRC) functions were applied to each 

experimental data, and best-fit functions of each toxicant were employed in the PLS-IAM. The 

PLS-IAM was validated by four validation datasets. Each dataset consisted of training data for 

developing a prediction model and test data for validating the developed model. Dataset 1 was 

experimentally developed in this study for the mixture toxicity of ten pesticides (e.g., five 

herbicides, four fungicides, and one insecticide) on Vibrio fischeri. The other three datasets 

(Datasets 2, 3, and 4) were derived from previously published studies (Faust et al., 2003; 

Junghans et al., 2003; Qin et al., 2011) and were additionally used for further validation of the 

PLS-IAM. Those three datasets were then divided into three types of data: 1) Type 1, 

representing similarly acting components [Dataset 2: eight chloroacetanilide compounds on 

Scenedesmus vacuolatus (Junghans et al., 2003)]; 2) Type 2, representing dissimilarly acting 

components [Dataset 3: 16 organics on Scenedesmus vacuolatus (Faust et al., 2003)]; and, 

Type 3, representing a mixture with similarly and dissimilarly acting components [Dataset 4: 

five herbicides and four metals on Vibrio qinghaiensis (Qin et al., 2011)]. 

iv) Topic 4: ‘Development of QSAR-based two-stage prediction model for estimating mixture 

toxicity’, as illustrated in Chapter V for ‘the hypothesis III’, finally aims at developing and 
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evaluating a QSAR-Based TSP (QSAR-TSP) model as an IAM for non-interacting mixtures 

using the clustering methods that are based on the structural similarity between chemical 

substances in order to advance the conventional TSP model. In addition, the relatively 

important molecular descriptors for the chemical clustering were provided by applying the 

Random Forest (RF) analysis (Breiman, 2001; Shi and Horvath, 2006). Based on the best-fit 

approach (Scholze et al., 2001), different DRC models were used in every experimental data, 

and then best-fit functions of each toxicant were employed in the QSAR-TSP model. The 

QSAR-TSP model was validated by two validation datasets: Dataset 1 was experimentally 

developed in this study for the mixture toxicity of ten pesticides (five herbicides, four 

fungicides, and one insecticide) on Vibrio fischeri (formerly Photobacterium phosphoreum). 

The following dataset for a complex mixture with similarly and dissimilarly acting components 

was also used for validation of the QSAR-TSP model: a mixture of 23 pesticides on 

Scenedesmus vacuolatus strain 211-15 (Dataset 2) (Junghans et al., 2006). 

 

Finally, major findings in this study are synthesized in Chapter VI, and final conclusions and 

further studies needed for validating and advancing the integrated addition models developed through 

this study are presented. 
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Abstract 

Conventionally, concentration addition (CA) and independent action (IA) models based on additive toxicity 

are often used to estimate the mixture toxicity of similarly- and dissimilarly-acting chemicals, respectively. 

Two-stage prediction (TSP) model has been developed as an integrated addition model that can perform the CA 

and IA calculations stage by stage. But, the use of the conventional TSP model is limited if the modes of toxic 

action (MoAs) for every mixture component is not readily known. The objective of this study was to develop 

and evaluate a quantitative structure-activity relationship-based TSP (QSAR-TSP) model for estimating mixture 

toxicity in the absence of knowledge on the MoAs of the constituents. For this purpose, different clustering 

methods of mixture constituents using computerised analysis based on the structural similarity between 

chemicals were applied as a part of the predictions of mixture toxicity. The relative importance of molecular 

descriptors was additionally determined by Random Forest analysis. This study highlights the prediction power 

of the QSAR-TSP model and its potential to overcome the limitations of the conventional TSP model, and how 

clustering methods of mixture components that employ chemical structural information to categorize might be 

applied to predict mixture toxicity effectively. 

 

Keywords: mixture toxicity; QSAR; two-stage prediction; integrated addition model; concentration addition; 

independent action
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1. Introduction 

The concentration addition (CA) [1] and independent action (IA) [2] models are mainly used to predict the 

additive toxicity of mixture components, and were basically established on opposite assumptions: a mixture 

consists of components having either similar or dissimilar modes of toxic action (MoAs), respectively. 

Equations (1) and (2) define the model concepts of CA and IA, respectively [3]: 
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where Ci is the concentration of the ith substance in a mixture with n components (i = 1...n); Cmix is the total 

concentration of substances in the mixture; ECxi is the concentration of the ith substance that causes the effect x 

when applied individually; ECxmix is the total concentration of substances in a mixture that causes the total 

effect x; E(Ci) is the individual effect of the ith substance if present in the concentration C; E(Cmix) is the total 

effect of the mixture with the total concentration Cmix of the mixture components; x is the definite value for the 

effect E; and, pi is the relative proportion of the ith substance expressed as a fraction of the total concentration of 

substances in the mixture (pi = Ci/Cmix). 

The prediction capability of both models can be strictly limited if accurate MoAs for all constituents are not 

readily available, even if the models’ assumptions are reasonable [4,5]. To overcome this commonly 

encountered limitation of the CA and IA models, Qin et al. [6] developed ‘an integrated concentration addition 

with independent action based on a multiple linear regression (ICIM)’ model by applying a multi-linear 

regression method to combine the CA and IA models. The results of the respective CA and IA models were 

employed as independent variables in the ICIM model, which showed good prediction accuracy for estimating 

toxicities derived from 19 mixtures consisting of 5 pesticides and 4 metals [6]. An outstanding advantage of the 

ICIM model was that MoA information for each component was not required to determine mixture toxicity; 

rather, only one set of dose-response data for a given similar mixture and its components was required. 

However, the statistical robustness of prediction results obtained through the ICIM model based on ordinary 

least squares are not guaranteed in cases of high correlation between the results of the CA and IA models when 

used as independent variables (i.e., the multicollinearity problem (for detailed information of the 
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multicollinearity problem, refer to Hastie et al. [7] and Adler [8])) [9]. The Partial Least Square-Based 

Integrated Addition Model (PLS-IAM) was developed by Kim et al. [9] to maintain the advantages of the ICIM 

model while overcoming the multicollinearity problem that plagues it. The researchers showed that, compared 

with the existing CA, IA, and ICIM models, the PLS-IAM showed excellent predictive performance for 

toxicities of mixtures consisting of pesticides, organic compounds, or metals. However, it also bears mentioning 

that the application of the PLS-IAM is limited in cases where there is no dose-response data for a mixture 

having a similar composition to the target mixture. 

Avoiding this weakness, the Two-Stage Prediction (TSP) model [10-13], an integrated addition model (IAM) 

that requires no toxicity data on a similar mixture, was developed to calculate the toxicity of non-interacting 

mixtures with different MoA groups. The TSP model executes the CA and IA calculations step by step: in the 

first stage, mixture constituents are classified into groups in accordance with their MoAs so that the CA model 

can be applied to estimate the effect concentrations of each of these groups; in the second stage, the overall 

toxicity effect caused by the different groups is predicted using the IA model. Case studies on the application of 

the TSP model have demonstrated better predictive performances for estimating toxicities of mixtures of 

pesticides, nitrobenzenes, industrial organic compounds, or wastewater treatment plant effluents than were 

achieved by the CA and IA models [11,13-15]. In the case of the conventional TSP model, however, its 

application is restricted if there is no accurate information about the MoAs of all mixture constituents. 

This restriction leads to the following research question: How can the critical limitations of the IAMs (e.g., 

the PLS-IAM and TSP models) be overcome? To find a possible answer to this question, we suggest that the 

main drawback of the TSP model (i.e., that it requires MoA data for all mixture constituents) might be solved by 

clustering chemicals based on their structural similarities, instead of by MoAs, if robust relationships between 

structures and biological activities exist. In practice, quantitative structure activity relationship (QSAR) 

approaches, which are widely used in chemistry, pharmacology, toxicology, and other related fields, assume that 

the function of a substance follows its structural form: i.e., a chemical’s characteristics and biological responses 

to it are closely related to its molecular structure [16-18]. For example, QSARs for ecotoxicity describe 

mathematical relationships between molecular structure descriptors (e.g., Kow, LUMO, and HOMO) and 

ecotoxicological endpoints (e.g., EC50 and LC50) [19]. Recently, some studies on the QSAR analysis directly 

dealing with mixtures are being conducted by using mixture descriptors: e.g., descriptors based on partition 

coefficients for mixtures, integral (whole-molecule) additive descriptors (e.g., weighted sum of descriptors of 

components), integral non-additive descriptors of mixtures (e.g., components are considered in a different 
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approaches from the additive concept), and fragment non-additive descriptors (e.g., structural parts of 

components are considered in same descriptor) [20] (for detailed information of the mixture descriptor type, 

refer to Muratov et al. [20]). Based on this understanding, we hypothesised the following:  

 Considering the applicability domain of prediction models for mixture toxicity, the integrated addition 

concept is more comprehensive than conventional CA and IA models for estimating the toxicity of non-

interacting mixtures consisting of different MoA groups;  

 In the absence of knowledge regarding MoAs, chemicals can be grouped by structural similarity due to 

the robust relationship between the structures and biological activities of chemicals (i.e., through 

QSAR approaches that assume that the function of a substance follows its structural form);  

 Therefore, QSAR techniques used for clustering chemicals can play a role in surmounting the primary 

disadvantage of the conventional TSP model: its strict requirements that the MoAs of each mixture 

component must be known. 

The objectives of this study were to develop and evaluate a QSAR-based TSP (QSAR-TSP) model as an 

IAM for non-interacting mixtures using clustering methods that classify based on the structural similarity 

between chemical substances in order to improve and advance the conventional TSP model. In addition, the 

relative important molecular descriptors for the chemical clustering were provided by applying Random Forest 

(RF) Analysis [21,22]. The QSAR-TSP model was validated by two datasets: Dataset 1, which was our 

previously published study [9] for the mixture toxicity of ten pesticides (five herbicides, four fungicides, and 

one insecticide) on Vibrio fischeri (formerly Photobacterium phosphoreum); and, Dataset 2, which was 

previously published by Junghans et al. [23] for a realistic pesticide mixture consisting of 23 pesticides on 

Scenedesmus vacuolatus strain 211-15. 

  

2. Materials and Methods 

2.1 Datasets  

2.1.1 Dataset 1 

Dataset 1, our previously published study [9], includes ten pesticides (i.e., five herbicides, four fungicides, 

and one insecticide) widely used in European agricultural areas. These were selected as mixture components due 

to their different MoAs. Toxicity of the tested compounds was evaluated using the bioluminescent bacteria 

Vibrio fischeri in a short-term bioluminescence assay. However, not all MoAs in Dataset 1 originated from the 
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test organism, Vibrio fischeri (as shown in Table 1). Physical properties, MoAs, and parameters for regression 

models of dose-response curves on Vibrio fischeri for ten pesticide chemicals are listed in Table 1.  

The mixture toxicity test was conducted in a fixed ratio design. The fixed ratio design is often used to 

maximize the distribution of effect concentration range, to minimize the experiments needed to be performed, 

and to be suitable for a mixture with multiple components and multiple levels [15,24-30]. Table 1 presents the 

toxicity data on two mixtures with different mixture ratios (i.e., two equitoxic mixtures), which were examined 

based on the relative toxicity of each individual mixture component. The first equitoxic mixture (Mixture 1: 

EC50 mixture) mixed at 50% of the effective concentration (EC50) of each component, and the second equitoxic 

mixture (Mixture 2: EC10 mixture) based on the 10% effective concentrations (EC10) of components were 

employed as the model validation data. A “best-fit” approach [31] was used to select the best DRC models for 

each component and the mixtures to which they belonged. The best-fit regression models are shown in Table 1. 

 

2.1.2 Dataset 2 

Dataset 2, a 23-component mixture (Mixture 3) derived in a published study [23] reflecting a realistic 

exposure scenario in field run-off water, was also tested to provide additional validation for the proposed 

QSAR-TSP model. Table 3 shows the molecular weight, MoAs, and parameters of regression models for DRCs 

on Scenedesmus vacuolatus strain 211-15 for the realistic pesticide mixture. A total of eight MoAs, including an 

unknown MoA (on Carbofuran) found in Dataset 2, originated from the target organism, Scenedesmus 

vacuolatus. Detailed information regarding the organism and the testing conditions can be found in the original 

paper [23]. 

 

2.2 Development of the QSAR-TSP Model 

The QSAR-TSP model requires no information on the MoAs of all mixture components; however, it does 

require the components’ DRCs and chemical structures. Figure 1 shows the scheme of the QSAR-TSP model for 

estimating the toxicity of non-interacting mixtures. The QSAR-TSP modelling is basically divided into three 

sub-modules as follows: 

(1) Module 1 (DRC modelling): For mixtures containing n constituents, the DRCs of all constituents were 

derived by applying sigmoidal regression functions selected to best describe the DRCs. These 

regression functions were used in the CA and IA calculation steps involved in the QSAR-TSP model 

for estimating the mixture toxicity.  
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(2) Module 2 (descriptor-based chemical clustering): The performance of the following four descriptor-

based clustering methods were evaluated in the context of the QSAR-TSP model in this study: i) the k-

means clustering via PCA; ii) the PAM clustering via PCA; iii) the k-means clustering via RF; and, iv) 

the PAM clustering via RF. For calculating molecular structural descriptors of all components, their 

molecular structures were modelled with CS ChemBio3D Ultra Ver. 12.0 (Cambridge, UK) in this 

study. The geometrical optimization of the chemical structures was conducted on the basis of the 

Parameterized Model number 6 (PM6) algorithm [32] within the MOPAC interface [33], a semi-

empirical quantum chemistry program. The PM6 is a semi-empirical method developed from 

experimental and ab initio data (i.e., modelled data) from over 9,000 chemicals that is used to perform 

quantum calculations of molecular electronic structures [32]. The software DRAGON Ver. 6.0 (Talete 

s.r.l, Italy) was employed to calculate the molecular structural descriptors. The principal component 

analysis (PCA) method [8,34] was used to reduce the number of molecular descriptors and thus the 

classification performance. The PCA technique is a mathematical procedure that transforms a large 

number of input variables into a set of fewer uncorrelated variables called principal components 

(PCs), which explains the total data while minimizing information loss [35]. However, it is frequently 

a difficult task to interpret what the respective PCs after compression by PCA mean due to the 

transformation of the original data [34,36]. Thus, the RF clustering method [37], which uses two 

specific importance measures, mean decrease accuracy (MDA) and mean decrease Gini (MDG) index 

[38-40], was additionally applied to find relative important descriptors. The RF method is an ensemble 

classifier consisting of many decision trees [41]. The MDA and MDG index can be used as general 

indicators of variable relevance, and their scores provide a relative ranking of the variables [40,42] 

(for detailed information on the calculation methods of the two importance measures, see Breiman and 

Cutler [39]). The corresponding Euclidean distance [43,44], based on principal component scores, and 

RF distance [22], based on the ranks of all descriptors, were computed to quantify the degree of 

structural similarity between each pair of mixture components. For the RF analysis, the RF decision 

tree algorithm [22] was used (the number of forests = 50; the number of trees = 1,000). In the present 

study, the similarities characterised by the respective distance values were applied to two cluster 

analysis methods, k-means and partitioning around medoids (PAM) algorithms, which are widely used 

as clustering techniques [8]. The aim of cluster analysis was to partition the observed data into several 

groups (i.e., clusters) so that the similarities between data allocated to the same cluster tend to be 
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larger than between data across different clusters [7]. The k-mean clustering method [45] is an 

algorithm for determining clusters and cluster centres in a set of unlabeled data by optimising 

distances between objects and the centroids of clusters. The k-means procedure interactively moves 

the centroids to minimise the total cluster variance (the “k” in k-means refers to the number of cluster 

centres) [7]. The k-means algorithm calculates the means of objects in respective clusters to be the 

centroid of the clusters, whereas the PAM algorithm selects representative objects (also referred to as 

medoids), minimising a sum of dissimilarities for each cluster to create the cluster centres [46]. The 

clustering methods enabled mixture components with similar structures to be assigned to common 

clusters. 

(3) Module 3 (mixture toxicity prediction): The toxicity of a given mixture was estimated by performing 

the CA and IA calculations step by step. In the first step, the total effective concentration of a given 

mixture of components in each cluster was determined by applying the CA model shown in Equation 

(1). The mixture toxicity from different clusters was calculated using the IA model shown in Equation 

(2). This TSP can be defined in Equation (3):  








n

1i
CLimix,

n CLCL2CL1mixmix,

))E(C(1-1 

))E(C))...(1E(C))(1E(C{(11)E(C
        (3) 

 

where Cmix,CLi is the total concentration of the ith cluster (CCLi) having similar chemical structures; 

E(Cmix,CLi) is the mixture effect at Cmix,CLi; and, E(Cmix,mix) is the combined effect from different 

clusters. 

 

Data analysis, statistical calculations, and clustering procedures used in the process of developing the QSAR-

TSP model were performed with R software ver. 2.12.1 [47], a programming language and environment for 

statistical computing and graphics. 

 

2.3 Validation of the QSAR-TSP Model 

In this study, the DRCs of given complex mixtures in Datasets 1 and 2 shown in Tables 1 and 2 were used for 

the validation of the QSAR-TSP model. The prediction accuracy of the QSAR-TSP model was validated with 
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the coefficient of determination for the modelled data (R2
test) as well as the residual sum of squares (RSS). The 

R2
test can be defined in Equation (4):  

)
SST
SSE(1R2

test                                   (4) 

 

where R2
test is the coefficient of determination, SSE is the sum of squares of residuals, and SST is the total sum of 

squares. 

The silhouette validation method was used to valid the model’s determination of optimal cluster sizes for the 

four different clustering algorithms tested—namely, the k-means via PCA, PAM via PCA, k-means via RF, and 

PAM via RF [46,48]. This technique computes the average silhouette width for each cluster and the overall 

average silhouette width for a total dataset by comparing the tightness and separation of silhouettes [48]. The 

average silhouette width value is a measure of average geometric distances between elements in a given cluster 

that can help describe to what extent individual elements belong to their own clusters; it is often used for 

evaluating cluster validity and verifying the best number of clusters for datasets. 

 

2.4 Evaluation of the QSAR-TSP Model 

The Akaike’s Information Criteria (AIC) [49] are frequently used to evaluate the performance of predictive 

models [50]. The AIC explains the goodness of fit of predictive models and penalises high numbers of 

regression parameters to avoid over-fitting (for more detailed information, see Burnham and Anderson [50]). 

The AIC can be described in Equation (5): 

2K)
n

RSSln( nAIC                                (5) 

 

where n is the number of observations in the data, RSS is the residual sum of squares of the model, and K is the 

number of model parameters. 

For a comparison of the prediction capability of the CA, IA, TSP, and QSAR-TSP models, both n and K are 

kept constant for each of the four model fits. Thus, in this study, the difference in the AIC scores calculated 

from each model fit depends on the residual sum of squares only. The predictive model with the highest R2
test 

and smallest RSS was selected as the best-fitting model. 
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Through comparing the QSAR-TSP model with the other reference models, the advantages and 

disadvantages of the QSAR-TSP were debated in three aspects: model performance, data availability, and 

application coverage. First, with respect to model performance, the efficacy of estimating mixture toxicity with 

the models was assessed. Second, with respect to data availability, the type of input data needed to be employed 

in the models was considered. Finally, the aspect of application coverage was discussed in terms of what types 

of mixtures can be considered under the models theoretically. 

 

3. Results and Discussion 

3.1 Feature generation and molecular descriptor-based chemical clustering 

The software DRAGON (Ver. 6.0) computed 4,870 molecular descriptors from each compound in Datasets 1 

and 2. After excluding descriptors with all values equal (i.e., constant values) among the total descriptors, 2,920 

descriptors from Dataset 1 and 3,154 descriptors from Dataset 2 were finally selected for the PCA and RF 

analyses, respectively. The optimum number of principle components (PCs) extracted by the PCA technique 

was determined when the PCA found the smallest set of PCs maximising the variance of transformed variables 

which could account for the original datasets as much as possible. The PCA extracted 9 and 20 PCs, which 

explained 100% and 99.4% of variances of the original molecular descriptors for the substances in Datasets 1 

and 2, respectively (Tables S1 and S2). The PCs were used for quantifying the intermolecular Euclidean 

distances as the molecular distance geometry between any pair of substances in Datasets 1 and 2 (Tables S3 and 

S4). In calculating the intermolecular RF distances, all the original descriptors were used to find the relative 

important descriptors in clustering components (Tables S5 and S6). 

Table 4 shows clustered results from the k-means and PAM clustering algorithms based on the intermolecular 

Euclidean and RF distances computed by the PCA and RF methods applied to Datasets 1 and 2. As presented in 

Table 4, the average silhouette width scores were calculated to determine the optimal cluster size through the 

applications of the k-means and PAM clustering algorithms via the PCA and RF methods. For Dataset 1, all 

clustering methods produced similar results, showing the optimal number of clusters to be the two with the 

largest average silhouette width. Therefore, two clusters were determined as the optimal size for Dataset 1. By 

contrast, the PCA-based (the k-means via PCA and PAM via PCA) and RF-based (the k-means via RF and PAM 

via RF) clustering methods showed different results in the case of Dataset 2. The PCA-based methods showed 

that three clusters were the best number for Dataset 2, but the RF-based methods demonstrated that two clusters 

were the optimal size. Therefore, two and three clusters were respectively applied in the QSAR-TSP 
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calculations to predict the toxicity of Mixture 3 in Dataset 2. A comparison of the best number of clusters as 

calculated from the k-means-based (i.e., the k-means via PCA and k-means via RF) versus the PAM-based 

clustering methods arrived at no significant differences between Datasets 1 and 2. 

Figure 2(a)-(c) illustrates how mixture components in Datasets 1 and 2 were grouped into each cluster 

through the four PCA- and RF-based methods. Figure 2(a) shows the mixture components clustered into two 

clusters for Dataset 1. Figures 2(b) and 2(c) present the components clustered into two and three clusters for 

Dataset 2, respectively. In this study, among the four clustering methods, the k-means via PCA method showed 

the best discretisation performance for clustering chemicals, yielding the highest average silhouette width scores 

of 0.40 and 0.44 for Datasets 1 and 2, respectively. The average silhouette width values estimated by the k-

means- and PAM-based clustering methods were slightly different, as shown in Table 4. However, the clusters 

reached by those methods contained exactly the same chemicals, regardless of whether PCA and RF techniques 

were used.  

Therefore, it was concluded that the PCA- and RF-based methods were capable of showing different optimal 

cluster sizes for same-mixture compositions, but no differences between the clustered results from the k-means- 

and PAM-based clustering methods for the datasets used in this study were found. It is also notable that the k-

means-based clustering method was shown to elicit higher average silhouette scores, and thus it might be more 

useful than the PAM-based method for clustering chemicals in the PCA- and RF-based methods in terms of its 

discretisation performance. Nevertheless, further research is still required to find which of these constitutes the 

more useful clustering method. 

 

3.2 Finding relative importance descriptors 

Through the RF analysis, the relative importance descriptors for clustering chemicals based on the structural 

similarity calculated between mixture components in Datasets 1 and 2 were found. Figure 3 illustrates the 20 

most important descriptors for clustering chemicals in Datasets 1 and 2 with the MDA and MDG Index. On the 

basis of 2,920 molecular descriptors calculated from the chemical structures of the compounds in Dataset 1, the 

two plots of MDA and MDG [Figures 3(a) and 3(b)] had a common important descriptor in the solid line 

rectangle, ‘SpMax_Dz.e.’, a two-dimensional (2-D) matrix-based descriptor—the Barysz matrix weighted by 

Sanderson electronegativity [51,52]. 2-D matrix-based descriptors are topological indices computed by applying 

a set of algebraic operators to different graph-theoretical matrices denoting a hydrogen-depleted molecular 

graph obtained excluding all the hydrogen atoms [51,52]. Barysz matrices are symmetric weighted distance 
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matrices explaining the presence of both heteroatoms and multiple bonds in the molecule [51,52]. In addition, 

three relative importance descriptors in solid line and dashed line rectangles in Figures 3(a) and 3(b) could be 

categorised into a common block as 2-D matrix-based descriptors (Tables S7 and S8).  

In the case of Dataset 2, from 3,154 descriptors, the RF analysis on the top 20 relative importance descriptors 

found 5 common descriptors in solid line rectangles in the MDA and MDG plots [Figures 3(c) and 3(d)]: 

‘SpAbs_B(e)’, SpDiam_Dz(m)’, ‘SpMaxA_Dz(v)’, ‘VE3_Dz(p)’, and ‘Wi_Dz(v)’. Those five common 

descriptors were 2-D matrix-based descriptors with one of Barysz matrices or Burden matrices (Table S9 and 

S10). Burden matrices are augmented adjacency matrices (e.g., vertex matrices), mainly encoding information 

on the vertex (i.e. atom) connectivity and the distance matrix, obtained from a hydrogen-depleted molecular 

graph [51,52]. Furthermore, ten relative importance descriptors marked in solid line and dashed line rectangles 

in Figures 3(c) and 3(d) could be categorised into four common sub-blocks of 2-D matrix-based descriptors as 

follows: Burden matrix weighted by Sanderson electronegativity, Barysz matrix weighted by mass, Barysz 

matrix weighted by van der Waals volume, and Barysz matrix weighted by polarisability [51,52] (Tables S9 and 

S10).  

The descriptions of the top 20 descriptors found in Datasets 1 and 2 are presented in Tables S7, S8, S9, and 

S10 in the supplementary material. Details on the descriptors and sub-blocks are given in references [51,52]. 

This study showed that the common important descriptors derived from Datasets 1 and 2 were all involved in 

the 2-D matrix-based descriptor categories based on Barysz distance matrices: i.e., those descriptors highly 

contributed to discriminate among the molecular structures of mixture components. This finding also provides a 

possibility that the important descriptors based on Barysz distance matrices may be available as priority 

candidates to develop QSAR models for the datasets employed in this study. However, additional studies are 

needed to investigate if any specific relationship exists between descriptors, based on Barysz matrices, and 

toxicological responses derived from test organisms used in this study. 

 

3.3 Mixture toxicity prediction and validation 

This section presents the predictive performance and validation of the QSAR-TSP model used for estimating 

the toxicity of the three mixtures from Datasets 1 and 2. According to the clustering results for these datasets, 

Equation (3) was employed to estimate the mixture toxicity. In the case of Mixtures 1 and 2 in Dataset 1, the 

components fenamidone, cyanazine, MCPA, furalaxyl, and thiabendazole, could not dissolve into water at a 

higher concentration level to elicit an 80% or more toxicity effect (refer to Kim et al. [9]) due to their solubility 
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limits in water. Thus, the mixture toxicity estimated by the QSAR-TSP model was validated by experimentally-

observed data ranging from 5% to 75% of the effect, and these results were compared with those of reference 

models: namely, the CA, IA, and conventional TSP models. In the case of Mixture 3 in Dataset 2, the QSAR-

TSP model was validated by observed data ranging from 2% to 97% of the effect. 

Figure 4(a) shows the comparison results of the four prediction models for Mixture 1, the EC50 ratio mixture, 

which consisted of ten components (five herbicides, four fungicides, and one insecticide). The best prediction 

capability was found in the results of the QSAR-TSP model (R2
test = 0.947, RSS = 3.70E+02) for Mixture 1, 

with the CA model showing a weaker result (R2
test = 0.749, RSS = 1.76E+03). Interestingly, the conventional 

TSP model did not estimate the mixture toxicity correctly (R2
test = 0.158, RSS = 5.89E+03). This result implies 

that correct MoAs of a test organism might be unavailable for the TSP model, by corroborated the fact that none 

of the MoAs listed in Dataset 1 originated from the test organism, Vibrio fischeri. The IA model had a negative 

R2
test value (RSS = 9.58E+03), which would be equivalent to having no explained variation at all [53]. The 

QSAR-TSP and CA models overestimated the toxicity of Mixture 1 in the high effect range (> 40%), yet 

underestimated it in the low effect range (< 40%). However, in the whole effect range, the deviation between 

observed and predicted values from the QSAR-TSP model was relatively small as compared to the CA model. 

Also, the modelled values of the QSAR-TSP model were located within the standard deviation (SD) range. 

Figure 4(b) illustrates the comparison results for Mixture 2, which is the EC10 ratio mixture of the same 

components as in Mixture 1. For Mixture 2, the QSAR-TSP model had the highest prediction capability (R2
test = 

0.923, RSS = 5.39E+02), but the CA model also predicted the toxicity of Mixture 2 well (R2
test = 0.876, RSS = 

8.68E+02). The conventional TSP model, which again was based on incorrect MoAs that did not originate from 

the test organism, and the IA model did not correctly calculate the toxicity of Mixture 2. The TSP and IA 

models showed much lower R2
tests (0.337 and 0.034, respectively) and higher RSSs (4.64E+03 and 6.76E+03, 

respectively) than the QSAR-TSP and CA models. The CA model underestimated the toxicity of Mixture 2 in 

the effect range of up to 30%, but overestimated it at 30% or more. For the QSAR-TSP model, the toxicity of 

Mixture 2 was underestimated in the overall effect range. 

Figure 4(c) shows the comparison results for Mixture 3, a realistic pesticide mixture composed of 23 

chemicals with 8 different MoAs originating from the test organism, Scenedesmus vacuolatus. Since the PCA- 

and RF-based clustering methods provided different results for the best number of clusters for Mixture 3 

(Dataset 2 in Table 4), the QSAR-TSP model was applied to estimate the toxicity of Mixture 3 on the basis of 

both two and three clusters, as derived by the PCA- and RF-based methods, respectively. The best prediction 
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performance was achieved by the CA model (R2
test = 0.985, RSS = 2.42E+02). The QSAR-TSP model with two 

clusters (R2
test = 0.973, RSS = 4.46E+02), QSAR-TSP with three clusters (R2

test = 0.974, RSS = 4.32E+02), and 

conventional TSP (R2
test = 0.979, RSS = 3.45E+02) models gave excellent predictions on the toxicity of Mixture 

3 as well. All the QSAR-TSP models with two and three clusters showed very similar prediction results for 

Mixture 3. The TSP model was based on correct MoA information originating from the target organism 

(Scenedesmus vacuolatus) for Dataset 2; this was most likely responsible for the model’s much better prediction 

result than for Dataset 1. Along the lines of this result for Mixture 3, some previous studies had argued that the 

TSP model, based on reliable MoAs, might have better predictions for estimating mixtures of pesticides, 

nitrobenzenes, industrial organic compounds, or wastewater treatment plant effluents [11,14,15,54]. For Mixture 

3, the IA model achieved a good prediction for mixture toxicity (R2
test = 0.874, RSS = 2.10E+03), quite 

dissimilar to its poor performance for Mixtures 1 and 2. The IA and conventional TSP models showed a 

tendency of the deviations between the predicted and observed data on Mixture 3 increasing gradually 

concomitantly with the development of effective concentrations in the effect range of 30% or more. The 

quantitative difference between the CA and IA predictions for Mixture 3 was relatively smaller than Mixtures 1 

and 2. Junghans et al. [23] theoretically argued that the deviation of EC50 values between the CA and IA 

predictions could not exceed a factor of 2.5 in the test system based on specific scenarios concerning pesticide 

mixtures (e.g., Mixture 3) they used (for the information of the scenarios, see Junghans et al. [23]). This was due 

to the fact that the mixture ratio (i.e., the concentration ratio) could influence the deviation between the CA and 

IA calculations [23,55]. The possible deviation between the two models could be maximised in proportion to the 

number of mixture components at the specific situation in which all components were strictly dissimilarly- and 

independently-acting chemicals [23,55]. In the case of Mixture 3 used as a realistic pesticide, however, it was a 

non-equitoxic mixture, and widely composed of both similarly- and dissimilarly-acting chemicals (refer to Table 

3). Table 5 summarizes the RSSs and R2
tests from the QSAR-TSP, TSP, CA, and IA models for the three 

mixtures in the validations of Datasets 1 and 2.  

 

3.4 Evaluation of the QSAR-TSP model 

This section addresses the advantages and disadvantages of the QSAR-TSP model by comparing the PLS-

IAM with the other models used in this study from three perspectives: model performance, data availability, and 

application coverage. First, from the perspective of model performance on predicting the mixture toxicity of the 

three mixtures in this study, it was evaluated that the QSAR-TSP model, overall, showed excellent prediction 
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power for all datasets (Table 5). The CA model also presented high prediction performance for Mixtures 2 and 

3, but these mixture types, which included different MoAs, were essentially contrary to the model assumption. 

In the case of the conventional TSP model, it was shown that incorrect information on MoAs, which ideally 

should originate from reference data of the target organism for each mixture component, did not perform well 

for estimating the toxicity of the mixture in this study. When it comes to the performance of the clustering 

algorithms in the QSAR-TSP model applied in this study, the k-means-based methods showed higher average 

silhouettes than the PAM-based methods did. Among the methods, the k-means via PCA method presented not 

only the quickest computation, but also the largest overall average silhouette width, the size of which indicates 

how well the number of clusters was selected (Table 4). However, the PCA-based methods have a common 

critical disadvantage: they hardly describe which real molecular descriptors are important for clustering results 

due to the distortion of original data arising from their transformation into new features during the data 

compression process. Considering the capacity for a model’s clustering interpretability, the k-means via RF 

method could also be preferred because RF analysis, advantageous in its handling of a large number of variables 

simultaneously, provides information on the importance of descriptors [56]. However, the k-means via the RF 

method handling a large set of data has a disadvantage in that it requires much more calculation time for the 

clustering mixture components than the k-means via PCA method does. Therefore, if one only considers the 

results from the clustering methods used in this study, either the k-means via PCA or the k-means via RF 

method might be selected as the optimal technique for the QSAR-TSP model—it depends on the needs of the 

risk assessors using it. 

Second, from the perspective of data availability, the QSAR-TSP model has a notable characteristic 

advantage in that it does not require MoA information tailored to the target organism unlike the conventional 

TSP model. Borgert et al. [4] and Fent [57] highlighted that even predictions on MoAs may not be practical for 

most compounds due to uncertainties in MoA values. Our study highlights the QSAR-TSP model’s high 

potential to minimize the required information and resources for predicting the toxicity of complex mixtures 

because it only needs one set of data on DRCs of single substances on a commonly employed test organism in 

order to overcome the critical limitation of the conventional TSP model.  

 Finally, from the perspective of model application coverage, the evidence produced by this study suggests 

the QSAR-TSP model, an IAM that assumes similarly- and dissimilarly-acting chemicals are involved in a 

mixture simultaneously, can be applied to mixtures containing both types of substances. Although more 

validations of the QSAR-TSP model still need to be conducted to evaluate its practical availability in mixture 
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risk assessments, its application coverage seems more extended than those of the conventional CA and IA 

models theoretically. However, all current prediction models, including QSAR-TSP, essentially ignore 

interactions (e.g., synergism, antagonism, and potentiation) that can be caused by combined effects among two 

or more mixture components, and as such are limited to non-interacting mixtures only. 

 

4. Conclusions and Outlook 

For the three pesticide mixtures used as model validation data in this study, the QSAR-TSP model based on 

the structural information of each compound, which functioned as an IAM combining the CA and IA concepts, 

successfully estimated mixture toxicity in the absence of knowledge of the MoAs of mixture components. 

Therefore, the QSAR-TSP model’s success reflects its potential to overcome two critical limitations: the 

requirement for complete knowledge of the MoAs for all chemicals in the mixture set by the conventional TSP 

model, and the theoretical limits on either similarly- or dissimilarly-acting chemicals put in place by the CA and 

IA models. In addition, the relative important descriptors in calculations of structural information for clustering 

chemicals in the three target mixtures were found best by the RF analysis in this study. Further studies on the 

validation of the QSAR-TSP model should to be conducted with toxicity data based on different types of 

mixtures and test organisms 
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Table 1. Dataset 1: Physical properties, MoAs, and parameters for regression models of dose-response 

curves on Vibrio fischeri for ten pesticide chemicals in different MoA groups and their mixtures [9] 

Notes: 1Chemical Abstracts Services Registry Number; 2Molecular weight (g/mol); 3Regression model 

(refer to Table 2); 4Height; 5Slope; 6Centre point; 7Inhibition of very long chain fatty acid formation; 

8Inhibition of photosynthesis at photosystem II; 9Mitosis and cell division; 10Respiration; 11Nucleic acids 

synthesis; 122-methyl-4-chlorophenoxyacetic acid; 13Action-like indole acetic acid (synthetic auxins); 

14Acetylcholinesterase (AChE) inhibitors; 15The ECx ratio mixture: an equitoxic mixture-based ratio at 

x% effective concentration of each component. 

 

 CAS RN1 MW2 Use RM3 MoA Model parameters  
α4 β5 γ6 r2 

Single component          

Alachlor  15972-60-8 269.77 Herbicide  S VLCFA7 0.8694 82.6671 438.3162 0.985 

Napropamide  15299-99-7 271.35 Herbicide  L2 VLCFA 1.4374 -1.3685 379.549 0.986 
Cyanazine  21725-46-2 240.69 Herbicide  C PSII8  0.9284 0.0021 0.9084 0.977 

Isoproturon  34123-59-6 206.28 Herbicide  C PSII  1.0014 0.0022 0.5547 0.991 

Thiabendazole  148-79-8 201.25 Fungicide  L2 MCD9  1.0296 -1.622 427.0463 0.964 
Thiophanate-methyl  23564-05-8 342.39 Fungicide  C MCD 0.9377 0.0925 1.4674 0.995 

Fenamidone  161326-34-7 311.40 Fungicide  H Res10  2.11E+05 0.7027 5.89E+09 0.981 

Furalaxyl  57646-30-7 301.34 Fungicide  S NAS11  0.7639 71.5347 337.6356 0.979 
MCPA12 94-74-6 200.62 Herbicide  C AIAA13 3.4423 0.0004 1.4864 0.976 

Chlorfenvinphos  470-90-6 359.57 Insecticide  L2 AChE14 2.0744 -0.6235 188.0293 0.971 

Mixture          
EC50 ratio mixture15 - - - C - 1.0960 0.001 0.623 0.988 
EC10 ratio mixture - - - L2 - 9.56E+05 -0.8743 6.75E+09 0.976 
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Table 2. Regression models used for describing the dose-response curve for chemical substances and 

mixtures in this study 

Notes: E(c): the fractional effect elicited at concentration c; α, β, and γ: parameters of regression models 

(corresponding statistical estimates); Φ(y): the cumulative normal (Gaussian) distribution, meaning that 

the probability of a standard normal random variable is less than y. 

 

Regression model Function 

Logit (L1) 
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2
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2π
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Table 3. Dataset 2: Physical properties, MoAs, and parameters of regression models for DRCs on 

Scenedesmus vacuolatus strain 211-15 for the realistic pesticide mixture involving 23 components [23] 

Notes: 1Regression model (refer to Table 2); 22-methyl-4-chlorophenoxyacetic acid; 3Inhibition of very 

long chain fatty acid formation; 4Inhibition of the D1 protein in the photosystem II; 5Inhibition of 

acetolactate synthase. 

 

 CAS RN MW(g/mol) Use RM1 MoA Regression Coefficients 
α β γ 

Single component         
2,4-D 94-75-7 221.04 herbicide GL Narcotic -37.540 11.106 0.1392 

Aclonifen 74070-46-5 264.67 herbicide BCW Porphyrin 2.402 0.408 -0.3400 

Alachlor 15972-60-8 269.77 herbicide W VLCFA3 4.060 5.193  

Atrazin 1912-24-9 215.69 herbicide GL PSII4 6.765 17.391 0.1118 

Bromoxynil 1689-84-5 276.91 herbicide L1 PSII -19.600 9.267  

Carbofuran 1563-66-2 221.26 insecticide W Unknown -4.564 1.978  

Chloridazon 1698-60-8 221.65 herbicide W PSII -2.375 2.777  

Cycloxydim 101205-02-1 325.47 herbicide W Narcotic -5.232 1.990  

Ethofumesate 26225-79-6 286.35 herbicide W VLCFA -2.126 1.108  

Ioxynil 1689-83-4 370.92 herbicide W PSII -3.785 2.229  

Isofenphos 25311-71-1 345.39 insecticide GL Narcotic -3.373 2.186 0.4219 
Isoproturon 34123-59-6 206.39 herbicide BCW PSII 1.246 1.073 -0.0235 

Isoxaflutol 141112-29-0 359.32 herbicide W Plastoquinone -5.313 2.529  
Lenacil 2164-08-1 234.3 herbicide GL PSII 14.991 14.338 0.1845 

Linuron 330-55-2 249.1 herbicide W PSII 1.769 2.020  
MCPA2 94-74-6 200.62 herbicide P Narcotic -4.501 1.551  

Metamitron 41394-05-2 202.22 herbicide W PSII -0.995 1.912  

Metolachlor 51218-45-2 283.8 herbicide BCW VLCFA 0.239 3.156 0.4930 
Pendimethalin 40487-42-1 281.31 herbicide W Microtubule 5.752 2.957  
Terbuthylazine 5915-41-3 229.71 herbicide W PSII 4.165 3.908  

Thifensulfuron-methyl 79277-27-3 387.38 herbicide L1 ALS5 -2.093 1.837  

Triasulfuron 82097-50-5 401.82 herbicide W ALS 0.093 1.684  

Tribenuron-methyl 101200-48-0 395.39 herbicide W ALS 0.670 1.735  
Mixture         

Mixture of 23 substances - - - BCW - 1.090 1.896 0.3659 
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Table 4. Determination of optimal cluster size using average silhouette width for datasets from different 

clustering algorithms based on PCA or RF 

Notes: 1Principal component analysis; 2Partitioning around medoids; 3Random forest. 

No. of clusters 
Average Silhouette width  

k-means via PCA1 PAM2 via PCA k-means via RF3 PAM via RF 

Dataset 1     

2 0.40 0.28 0.15 0.09 

3 0.25 0.22 0.09 0.06 

4 0.22 0.16 0.09 0.04 

5 0.23 0.16 0.07 0.03 

6 0.14 0.13 0.06 0.03 

7 0.10 0.1 0.04 0.02 

8 0.11 0.06 0.03 0.02 

9 0.05 0.03 0.01 0.01 

Dataset 2     

2 0.38 0.36 0.24 0.20 

3 0.44 0.43 0.17 0.12 

4 0.28 0.28 0.14 0.09 

5 0.26 0.30 0.16 0.11 

6 0.30 0.29 0.15 0.11 

7 0.26 0.28 0.17 0.11 

8 0.25 0.26 0.15 0.12 

9 0.28 0.26 0.15 0.11 
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Table 5. Summary of the AIC and R2

test of the QSAR-TSP, TSP, CA, and IA models calculated from 

validations of Datasets 1 and 2 

Notes: 1The residual sum of squares; 2The coefficient of determination for the modelled data. 

Model Mixture components in datasets RSS1 R
2
test
2 

Dataset 1    
QSAR-TSP Mixture 1: the EC50 ratio mixture  3.70E+02 0.925 
TSP (10 pesticides in different MoA groups) 5.89E+03 0.158 
CA  1.76E+03 0.749 
IA  9.58E+03 n.v. 
    
QSAR-TSP Mixture 2: the EC10 ratio mixture 5.39E+02 0.923 
TSP (10 pesticides in different MoA groups) 4.64E+03 0.337 
CA  8.68E+02 0.876 
IA  6.76E+03 0.034 

Dataset 2    
QSAR-TSP (with 2 clusters) Mixture 3: 23 pesticides in different MoA 4.32E+02 0.973 
QSAR-TSP (with 3 clusters) groups 4.46E+02 0.974 
TSP  3.45E+02 0.979 
CA  2.42E+02 0.985 
IA  2.10E+03 0.874 

Jongwoon Kim  137



 

 

 

Figure 1. The scheme of the QSAR-TSP model. 
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Figure 2(a). Clustered results and maximum average silhouette widths of mixture components in 

Dataset 1 through the k-means and PAM clustering methods based on the PCA and RF techniques 

(i.e., the k-means via PCA, PAM via PCA, the k-means via RF, and PAM via PCA methods). 
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Figure 2(b). Clustered results and maximum average silhouette widths of mixture components in 

Dataset 2 through the k-means and PAM clustering methods based on the PCA technique (i.e., the k-

means via PCA and PAM via PCA methods) using principle components derived from the original 

molecular descriptors.  
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Figure 2(c). Clustered results and maximum average silhouette widths of mixture components in 

Dataset 2 through the k-means and PAM clustering methods based on the RF technique (i.e., the k-

means via RF and PAM via RF methods) using all the original molecular descriptors.  
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Figure 3. Molecular descriptor importance plots with top 20 descriptors for clustering chemicals in 

Dataset 1[(a) and (b)] and Dataset 2[(c) and (d)] through RF analysis with the MDA and MDG Index.  
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Figure 4(a). Comparison of the CA, IA, TSP, and QSAR-TSP predictions against observed toxicity 

for Mixture 1 (the EC50 ratio mixture), an equitoxic mixture-based ratio at 50% effective 

concentrations of each component in Dataset 1 (the data points are geometric means ± SD of 

experimentally-observed data [9].).  
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Figure 4(b). Comparison of the CA, IA, TSP, and QSAR-TSP predictions against observed toxicity 

for Mixture 2 (the EC10 ratio mixture), an equitoxic mixture-based ratio at 10% effective 

concentrations of each component in Dataset 1 (the data points are geometric means ± SD of 

experimentally-observed data [9].). 
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Figure 4(c). Comparison of the CA, IA, TSP, and QSAR-TSP predictions against observed toxicity 

for Mixture 3, a realistic pesticide mixture in Dataset 2 (the fitted regression line for observed data is 

plotted by the regression function in Table 3 [22]). 
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CHAPTER VI 

 

Synthesis and General Conclusions 

  

Jongwoon Kim  157



SYNTHESIS AND GENERAL CONCLUSIONS 

 

This chapter synthesizes the major results observed from the four sub-topics (Chapters II to V) 

conducted in this study and derives a final conclusion based on the respective results. Future outlook 

for further studies is also presented in this chapter.  

 

1. Conclusions 

The results derived in this study lead us to the following conclusions: 

i) Table 1 shows a brief summary of studies related to the major integrated models published 

from 1997 to 2010 for predicting toxicity of chemical mixtures in the environment. A 

conceptual relationship network of the integrated models is illustrated in Figure 1. The 

conceptual relationship network presents how different model concepts and algorithms are 

theoretically related to each other to develop integrated models for predicting mixture 

toxicity. Nine of seventeen integrated models surveyed in this study belonged to QSAR 

models developed for the single-compound- or mixture toxicity to ultimately estimate the 

toxicity of target mixtures, but the QSAR models had no conceptual relationships to the 

CA and IA models. For instance, Altenburger et al. (2005) applied a QSAR model 

developed for nitrobenzenes to estimate the toxicity of their mixtures, and then their 

predicted toxicity values were used to calculate their mixture toxicity by using a combined 

CA and IA model. Whereas, Zhang et al. (2007) used QSAR models developed for 

directly assessing the toxicity of polar and non-polar narcotic mixtures by using non-

empirical descriptors. The CA and IA models, however, were basically employed in the 

IAM, IAI, and MLA models. As combining the CA and IA models, the existing integrated 

models mostly presented good prediction results for estimating the toxicity of complex 

mixtures containing different MoA groups; however, they were more data-demanding (for 

dose-response curves, and MoAs) than the CA and IA models. Among those integrated  
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Figure 1. A conceptual relationship network of the existing models in Table 1 surveyed in this study. 

 

models, the IAI model was a highly data-demanding model since the IAI model 
additionally used an empirical model to determine experimental coefficients for 
describing interactions among mixture components. This fact becomes a critical barrier 
for applying such models to predict mixture toxicity in practice. Therefore, not only to 
increase the accuracy of prediction models, but also to minimize the burden of data 
generation for model calculations, the advanced models need to be developed 
continuously;  

Table 1. A brief summary on studies related to the integrated models (published from 1997 to 2010) 
for predicting toxicity of chemical mixtures in the environment (modified from Table 1 in Chapter II) 

Notes. 1) integrated addition model; 2) integrated addition and interaction model; 3) quantitative 
structure-activity relationship-based model; 4) machine learning algorithm-based model; 5) 
concentration addition; 6) independent action; and, 7) artificial neural network. 

 

Model type No of related studies Remarks 
IAM1) 3  integrated CA5) and IA6) models 

IAI2) 1 
 integrated CA and IA models using empirical constants 

determined by experimental test for toxicological 
interactions between chemicals 

QSAR3) 9 
 7 studies on empirical QSAR models using partition 

coefficients; and 2 non-empirical models using quantum 
descriptors as predictors 

MLA4) 4  3 studies uses Fuzzy theory; and 1 uses ANN7) algorithm 

Total 17 - 
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ii) The three hypotheses described in Chapter I were tested to achieve the objective of this 

study for developing integrated prediction models which overcome the limitations of 

existing integrated models for estimating the toxicity of non-interactive mixtures. The 

study described in Chapter III for ‘the hypothesis I’ was the first to investigate and yield 

supportive evidence based on a case study and a computational simulation for evaluating 

major factors influencing the KCC and CR methods used in determining the PNEC and 

DNEL of mixtures. This observation necessarily leads us to conclude that the number of 

mixture components with similarly weighted PNECs and DNELs in the same exposure 

pathway first requires checking suitability before the application of the KCC or CR 

methods. From a risk assessment point of view, we firstly suggest that the CR method 

becomes a general default method for the sake of regulatory purposes based on ‘the 

precautionary principal’ if a choice between the two methods is given. The reason for this 

belief was clearly illustrated and discussed by the results of the case study and 

computational simulation in this study. The CR method appears more conservative than 

the KCC method because the KCC method basically ignores additive toxicity, which is a 

combined effect among components. In addition to the conservatism of the CR method, 

this method may give manufacturers or formulators, who function as risk assessors, the 

possibility to conduct a preliminary assessment on what components in a mixture need to 

be screened or substituted with compounds of less (or no) concern in their development 

process in order to produce safer mixture products. As a tentative alternative to applying 

either the KCC or CR method, we also propose a tiered approach that integrates the e-

KCC and CR methods for satisfying the precautionary principle as well as maintaining the 

advantages of the original KCC and CR methods simultaneously. The case study and 

simulation showed that the e-KCC method might be used to maintain the advantage of the 

original KCC method and reduce concern about the non-additive toxicity concept of the 
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KCC method. The PNEC and DNEL values calculated by the e-KCC method were less 

than those produced from the CR method. Therefore, the CR method can be considered as 

the second tier only when the risk characterization ratio (e.g., exposure levels to DNELs 

or PNECs) derived from the e-KCC method exceeds 1. Nevertheless, the KCC and CR 

methods ultimately require updating or substitution by more scientific concepts and 

methodologies for better risk assessment of mixtures; 

iii) The PLS-IAM developed in Chapter IV for ‘the hypothesis II’ combined the CA model 

with the IA model based on the partial least squares regression technique, in order to 

overcome the critical limitation of the ICIM model, i.e., the multicollinearity problem. 

Through the four test datasets, this study showed that the PLS-IAM overall outperformed 

the other reference models, including the CA, IA, and ICIM models. Therefore, it was 

shown that the PLS-IAM might be useful when the toxicity data of similar mixtures 

having the same compositions are available. Nevertheless, further studies need to be 

conducted to determine the following: 1) how the difference in DRC shapes between 

training and test datasets influences the prediction accuracy of the PLS-IAM; and, 2) how 

reliably the PLS-IAM predicts the high effect concentrations (>50%) of non-interactive 

mixtures when the training dataset composed of substances in the very low effect 

concentration (<5%) range is used; 

iv) Through the study described in Chapter V for ‘the hypothesis III’, the QSAR-TSP model 

based on the structural information of each compound successfully developed and 

estimated mixture toxicity in the absence of knowledge on MoAs of mixture components. 

This advantage of the QSAR-TSP model reflects potential to overcome the critical 

limitation of not only the conventional TSP model, which requires knowledge on the 

MoAs of all chemicals, but also that of the CA and IA models,  which  
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Figure 2. A conceptual relationship network of models in the PLS-IAM and QSAR-TSP developed in 
this study. 

 

can be theoretically limit to either similarly or dissimilarly acting chemicals. In addition, 

the relatively important descriptors used in calculations of structural information for 

clustering chemicals in the three target mixtures were found by the RF analysis in this 

study. Further studies for the validation of the QSAR-TSP model need to be conducted 

with toxicity data based on different types of mixtures and test organisms; 

 

Consequently, when comparing with the existing models shown in Figure1 and Table 1, the PLS-

IAM and QSAR-TSP models successfully employed the MLA and QSAR techniques to integrate the 

CA and IA models as well as minimizing the burden of data generation. Figure 2 illustrates a 

conceptual relationship network of models and algorithms used in the PLS-IAM and QSAR-TSP 

models. This study presents good potential for these integrated models, which consider various non-

interactive constituents having different MoA groups, and can be used to increase the reliance of 

conventional models. Figure 3 shows these models also simplify the conventional procedure of  
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Figure 3. A concept for mixture toxicity assessment based on the integrated addition models, the PLS-
IAM and QSAR-TSP. 

 

mixture risk assessment, as described in Figure 1 in Chapter II, from the scientific perspective. For 

non-interactive mixtures, the PLS-IAM might be useful when the toxicity data of similar mixtures 

having the same compositions are available. In case of no available data on the toxicity of similar 

mixtures and MoAs of every component, the QSAR-TSP can be considered for estimating mixture 

toxicity with only DRCs of the components. 

 

2. Outlook: A blueprint for ‘Smart Assessment Tools for Mixture Toxicity: the Integrated 

Model of Synergism-Screening and Addition Toxicity’ 

Although the PLS-IAM and QSAR-TSP models developed as the IAMs showed excellent results 

for predicting the toxicity of different mixtures  used in this study, further studies with  
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Figure 4. Conceptual relationship networks of the conventional and newly developed models (‘As-Is’ 
models) in this study. A future, 'To-Be' model for the integrated addition and interaction model using 
various computational approaches is also presented. 

 

various types of mixtures and test organisms are needed to verify and validate applicability. In 

addition, the application of the PLS-IAM and QSAR-TSP models are limited to non-interactive 

mixture components. Therefore, it is necessary to conduct further studies for developing a 

comprehensive integrated model for estimating the additive toxicity as well as the synergistic effects 

that may occur among chemicals in the long term (as shown in Figure 4). 

The generation of an 'ultimate model' to predict additive toxicity and synergistic effects still seems 

to be fleeting. This is due to the fact that knowledge on the biological mechanisms of mixture toxicity 

on diverse living organisms lacks, and also the difficulty in empirically assessing and finding 

synergism among extremely large numbers of chemicals exists in practice. Since the quantitative 

prediction of synergism on the basis of toxicity among components seems to be considerably difficult 

to attain in the near future, we carefully  
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Figure 5. A blueprint for ‘Smart Assessment Tools for Mixture Toxicity: the Integrated Model of 
Synergism-Screening and Addition Toxicity (IMSAT) model’. 

 

sketched a blueprint for a ‘Smart Assessment Tool for Mixture Toxicity: the Integrated Model of 

Synergism-Screening and Addition Toxicity (IMSAT) model’ as an alternative concept that can screen 

the synergism qualitatively as shown in Figure 5. 

Figure 5 was derived from Figures 1 and 3 in Chapter II, which show a general mixture risk 

assessment concept and the concept of the IMSAT model, respectively, by applying the assessment 

concept of mixture toxicity based on the PLS-IAM and QSAR-TSP models illustrated in Figure 3 of 

this chapter. With the hypothesis that a large number of datasets detailing synergism will become 

available in the future, and that there are hidden relationships between the predictor (descriptor) and 

response (synergism), the various data-mining techniques can be considered to search for 
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relationships and patterns. These ideas may also form the basis of further studies for a synergism-

screening module of the integrated model as outlined in Figure 5. 

In order to determine how much synergism data are available at the present time, a literature 

survey of synergism was performed by collecting journal articles and reviews published from 1997 to 

2010 in the fields of toxicology, environmental science, and engineering as available on the ISI Web 

of Science database in April 2011. From a total of 304 journal articles, the synergism combination list 

for binary mixtures of pesticides could be compiled and summarized as follows:  

 The number of total synergism combinations was 185 (including 98 combinations of 

pesticide synergists); 

 The number of total non-synergism combinations was 106; and, 

 The largest number of synergism combinations across the taxonomic groups surveyed 

was 88 on Insecta. 

 

 Table 2 shows a brief summary of the synergism combination list. Unfortunately, the current 

number of synergism combinations for each taxonomic group does not seem (yet) to be enough for 

consideration of use in data-mining techniques. This is because the data-mining techniques are 

generally useful when the number of sample data is larger than that of the variables and when the 

number of positive and negative datasets is almost balanced.  

Nevertheless, it is still expected that the potential of data-mining techniques can be tested if data 

on synergism are sufficiently available for the techniques in the future, or if any algorithm can be used 

or developed to accommodate the current situation. Understanding all the mechanisms in mixture 

toxicity of environmental pollutants is virtually unfeasible, thus, new concepts should be utilized to 

develop more advanced predictive tools for mixture toxicity. 
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Table 2. Brief summary of the synergism combination list in binary mixtures of pesticides surveyed in 
this study 

Taxonomic group Combination Test organism 

Synergism combinations: 185  

Algae 11 Raphidocelis subcapitata; Dunaliella tertiolecta; 

Chlamydomonas einhardtii; Scenedesmus vacuolatus 

Amphibia 3 Xenopus laevis; Larbal amphibians(Rana pipiens; Bufo 

americanus 

Bacteria 11 Vibrio fischeri; Vibrio-qinghaiensis sp.-Q67;  

activated sludge microorganisms; Bacilus thuringiensis 

Crustacea 30 Daphnia magna Straus; Schizopera knabeni; Hyalella azteca;  

Daphnia magna; Tigriopus brevicornis; Homarus 

americanus;  Ceriodaphnia dubia 

Osteichthyes 17 Pimephales promelas; Oreochromis niloticus; Tilapia 

Nilotica fish; Oreochromis mossambicus; 

Oncorhynchus mykiss; acific Salmon; Gambusia yucatana; 

Channa punctatus; Carassius auratus 

Fungi 2 Fusarium oxysporum 

Insecta 88 Chironosmus tentans; Aedes aegypti; Culex quinquefasciatus; 

Culex pipiens pallens Coq; Plutella xylostella; Culex 

quinquefasciatus;  Oligonychus pratensis; Sesamia 

nonagrioides; Boophilus microplus; Grain weevil; Apis 

mellifera; Diglyphus begini 

Mammalia 21 Rat; Mouse; Partridge; Coturniz quail 

Mollusca 2 Crassostrea gigas; Lymnaea acuminata 

Non-synergism combinations: 106  

Algae 54 Chrorella fusca; Scenedesmus vacuolatus; 

Pseudokirchneriella subcapitata;  Pseudokirchneriella 

subcapitata;  

Monocots 17 Lemna minor 

Crustacea 5 Ceriodaphnia dubia; Daphnia magna; Neomysis mercedis; 

Oncorhynchus mykiss; Lepomis macrochirus; Fundulus 

heteroclitus 

Osteichthyes 24 Salmo clarki; Oncorhynchus mykiss; Lepomis macrochirus 

Insecta 6 Chironomus tentans 
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LIST OF ABBREVIATIONS 

 

α, β, γ, δ regression coefficients, or empirical constants 

AMH, BMH joint effects of hydrogen bond in a mixture (similar to 

Lewis acidity), which are quantified by different 

partition coefficients of a mixture in various organic 

phase/water systems 

AChE acetylcholinesterase 

Adj. R2
test adjusted coefficient of determination for modeled 

data 

AF assessment factor 

AIC Akaike’s Information Criterion 

ASW average silhouette width 

b0 constant 

b1, b2 regression coefficient 

CA  concentration addition 

Ca  modifies the effective concentration of chemical i 

CAS RN chemical abstracts service registry number 

CCLi total concentration of the ith cluster having similar 

chemical structures 

CEFIC European chemical industry council 

Ci concentration of the ith substance 

CLP classification, labeling and packaging regulation 

Cmix concentration of a mixture 

CR composite reciprocal 

 

 

CSA chemical safety assessment 

DNEL derived no-effect level 

DNELi DNEL of the ith substance 

DNELmixture DNEL of a mixture 

DPD dangerous preparation directive 

DRC dose-response curve 

E effect 

E(Ci) individual effect of the ith substance if present in the 

concentration C 

E(Cmix) total effect of the mixture with the total concentration 

E(Cmix,CLi) mixture effect at total concentration of the ith cluster 

E(Cmix,mix) combined effect from different clusters 

E(ECxmix) overall effect caused by the total effect concentration 

ECxmix, of a mixture 

EHOMO energy of the highest occupied molecular orbital 

ELUMO energy of the lowest unoccupied molecular orbital 

EC50i concentration of the ith chemical that causes 50% of 

the maximum response (effect) 

EC50M  concentration of a mixture that causes 50% of the 

maximum response (effect) 

ECx concentration that causes the effect x 

ECxi concentration of the ith substance that causes the 

effect x 
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ECxmix total concentration of substances in a mixture that 

causes the total effect x% 

ECxmix,exp experimental concentration of a mixture eliciting x% 

toxicity effect 

EMI empirical model for interactions 

ES exposure scenario 

EU European Union 

if  
weight fraction; or function used to describe the DRC 

of the ith component. 

GAPh-lM difference of EHOMO and ELUMO 

GAPVmM absolute value of the difference of a binary mixture’s 

molar volume 

GHS globally harmonized system 

HOMO highest occupied molecular orbital 

HPLC   high performance liquid chromatography 

HRAC herbicide resistance action committee 

IA independent action 

IAI integrated addition and interaction 

IAM integrated addition model 

IC50mix 50% of the inhibition concentration of the mixture 

ICIM integrated concentration addition with independent 

action based on a MLR model 

IPPC integrated pollution and prevention control directive 

ka,i a function describing the extent to which chemical a 

presents in the mixture as concentration Ca modifies 

the effective concentration of chemical i 

Kbw t-butyl ether-water partition coefficient 

Kchw chloroform-water partition coefficient 

Kcw  cyclohexane-water partition coefficient 

KMD the C18-EmporeTM disk/water partition coefficient 

for a mixture 

KMOW octanol-water partition coefficient of a mixture 

KOW octanol-water partition coefficient 

KSDi partition coefficient of the single chemical i 

Ktw carbon tetrachloride–water partition coefficient 

KCC key critical component 

lgEnrM logarithm of the nuclear repulsion energy 

LUMO  lowest occupied molecular orbital 

LUMOmix LUMO of the mixture 

μ dipole moment 

MDA mean decrease accuracy 

MDG mean decrease Gini index 

MLA machine-learning algorithm 

MLR multi-linear regression 

MoA mode of toxic action 

MW molecular weight 

n total number of single chemicals in a mixture 

NaNs not a numbers 

NOAEL no observed adverse effect level 

NOEC no observed effect concentration 
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OECD organization for economic cooperation and 

development 

OLS ordinary least squares 

p′ average power of the individual chemicals within a 

chemical group 

pi relative proportion of the ith substance expressed as a 

fraction of the total concentration of substances in the 

mixture (pi = Ci / Cmix) 

Pmix n-octanol/water partition coefficient of the mixture 

calculated by the summed partitioning of single 

substances based on the independence assumption 

PAM partitioning around medoids 

PBO P450 inhibitor piperonylbutoxide 

PEC predicted effect concentration 

PNECi PNEC of the ith substance 

PNECmixture PNEC of a mixture 

PNECW.i concentration weighted PNEC of the ith substance 

PLS partial least squares 

PLS-IAM PLS-based IAM 

PNEC predicted no-effect concentration 

PPP placing of plant protection Products regulation 

  
  largest negative atomic charge on an atom 

      
  initial amount of chemical i  

QSAR quantitative structure-activity relationship 

QSAR-TSP  QSAR-based TSP 

Rmix combined toxicity of chemical groups 

R-phrase risk-phrase 

R2
test  coefficient of determination for modeled data 

REACH regisgration, evaluation, authorisation, and restriction 

of chemical 

RET risk-based emission threshold 

RF random forest 

RMM risk management measure  

RM regression model 

RSS residual sum of squares 

SDS safety data sheet 

SIDS OECD screening information dataset 

TSP two-stage prediction 

US EPA environmental protection agency of the United States 

of America 

V volume of the hydrophobic phase 

VCI German chemical industry association 

VLCFA very-long-chain fatty acid 

W volume of the solution 

WF weight fraction 

WFD water framework directive 

x definite value (concentration) for the effect E 
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