
Campus Koblenz, Fachbereich 4: Informatik

Local Area Navigation for Multi-axle
Vehicles using Machine Learning

Algorithms

Bachelorarbeit
zur Erlangung des Grades eines

Bachelor of Science
im Studiengang Informatik

vorgelegt von

Andreas Barthen

Betreuer: Prof. Dr. Ulrich Furbach, Institut für Informatik, Universität Koblenz-Landau

Erstgutachter: Prof. Dr. Ulrich Furbach, Institut für Informatik, Universität Koblenz-Landau

Zweitgutachter: Dipl.-Inform. Christian Schwarz, Institut für Informatik, Universität
Koblenz-Landau

Koblenz, im Juli 2013





Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung dieser Arbeit in die Bibliothek
bin ich einverstanden. 4 2

Der Veröffentlichung dieser Arbeit im Internet
stimme ich zu. 4 2

Kruft, den 4 Juli, 2013 Andreas Barthen





Acknowledgements

A lot of people should be thanked for their patience with me taking my sweet time with
this thesis, foremost of all Christian Schwarz for giving me so much time in the first place
and my family for supporting me along the way. Also all the people working with me in
other projects and groups who had to live with me taking so much time off of the project
for my thesis.

i



Abstract

This thesis describes the implementation of a Path-planning algorithm for multi-axle
vehicles using machine learning algorithms. For that purpose, a general overview over
Genetic Algorithms is given and alternative machine learning algorithms are briefly ex-
plained. The software developed for this purpose is based on the EZSystem Simulation
Software developed by the AG Echtzeitysteme at the University Koblenz-Landau and
a path correction algorithm developed by Christian Schwarz, which is also detailed in
this paper. This also includes a description of the vehicle used in these simulations. Ge-
netic Algorithms as a solution for path-planning in complex scenarios are then evaluated
based on the results of the developed simulation software and compared to alternative,
non-machine learning solutions, which are also shortly presented.

ii



Zusammenfassung

Diese Arbeit beschreibt die Implementation eines Pfadplanungs-Algorithmus für Se-
riengespannfahrzeuge mithilfe von Maschinellen Lernalgorithmen. Zu diesem Zwecke
wird ein allgemeiner Überblick über genetische Algorithmen gegeben, alternative An-
sätze werden ebenfalls kurz erklärt. Die Software die zu diesem Zwecke entwickelt
wurde basiert auf der EZSystem Simulationssoftware der AG Echtzeitsysteme der Uni-
versität Koblenz-Landau, sowie auf der von Christian Schwarz entwickelten Pfadkorrek-
tursoftware, die ebenfalls hier beschrieben wird. Diese enthält auch eine Beschreibung
des, zu Simulationszwecken, verwendeten Fahrzeugs. Genetische Algorithmen als Lö-
sung von Pfadplanungsproblemen in komplexen Szenarien werden dann, basierend auf
der entwickelten Simulationssoftware, evaluiert und diese Ergebnisse werden dann mit
alternativen, nicht-maschinellen Lernalgorithmen, verglichen. Diese werden ebenfalls
kurz erläutert.
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1
Introduction

Navigation systems are a common occurrence and present in almost any vehicle and any
smartphone, that is especially true for professional vehicles like delivery trucks. How-
ever, the directions provided by a navigation system end as soon as the road does, so
when the truck enters the transit station the driver is on his own. With many trucks
in the same area, one might want to control the routes they take to make sure that ev-
ery truck gets to its position safely and quickly. In the next step one might even want
to automate the entire process by having the trucks drive autonomously within a de-
fined area, in this case the transit station. Such an autonomous system would lower
fuel consumption, safe time and extend the range of the vehicles used [35]. It would also
make operation safer, especially in dangerous environments such as mines where, in fact,
fully autonomous trucks are already being used in everyday work [36]. What is required
for such autonomy is not navigation but path-planning, which is a much more complex
problem, especially with multi-axle vehicles like trucks with one, or maybe more, trail-
ers. For a completely autonomous transit system one would also require a central system
scheduling the routes of all trucks to make sure everything arrives on time and no trucks
crash into each other. This component however will not be considered here as we want
to concentrate on the path-planning task, with a focus on trucks with several trailers and
the possibility to drive such complex vehicles backwards. Finding paths for such vehicles
is possible with common algorithms, which will also be presented in the first half of this
thesis, these are however not ideal and optimizing them can take a great amount of time.
The greater the complexity, in our case the more trailers and more freedom to move, are
added, the harder it becomes to find an optimal path using only incremental algorithms.
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1. INTRODUCTION

In order to find a more efficient solution to this problem a machine-learning based path-
planning software has been developed, which is now described in this paper. The soft-
ware is based on an existing simulation and path-correction software developed by the
AG Echtzeitsysteme at the University of Koblenz-Landau and employs a genetic algo-
rithm to generate an optimized path for general-n-trailers.
The software should be able to plan paths for a given map and a given vehicle without
its performance suffering too much from a higher trailer count, which is why we chose to
approach the problem with a genetic algorithm, a proven [9] solution to complex path-
planning tasks. We also want to be able to quickly change our map and vehicle to adjust
to new planning tasks and be able to configure parameters within the algorithm to opti-
mize our performance and make comparisons between different setups.
To this end we will first cover a lot of basics, that is, common alternative algorithms
working on the same problem, the simulation software used, as well as some facts about
the vehicle used in our simulations. The idea and development of the planning software
is then described in detail in the second half of this paper and finally the results are eval-
uated in the last chapter. For the purpose of this work we limit ourselves to only one
trailer, though the software can theoretically handle arbitrarily many, and we assume the
vehicle does not change directions, driving in forward direction only. The consequences
of lifting either of these restrictions will also be considered at the end of this work.
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2
Previous Knowledge

Before explaining the developed path planner, various given basics have to be covered.
In the following chapter genetic algorithms and their various parts will explained in-
depth, for implementations and details about which of these possible functions have been
chosen for the developed software, see 4. The second part will explain the vehicle and its
limitations assumed in the simulation as well as the representation used, which is based
on [12].

2.1 About Genetic Algorithms

A genetic algorithm (GA) is a search heuristic based on the "‘survival of the fittest"’ idea
of evolutionary theory. It was developed by Holland in the 1970s [13] and has since
then proved itself in solving complex search problems. The idea is that the best possible
solutions of an initial (usually randomly obtained) generation survive into the next gen-
eration, similar to natural selection where the strong individuals survive and get a higher
chance of passing on their genes, while weaker ones die out. This process is then repeated
until an optimal solution is obtained. Any given GA consists of almost the same steps,
however, depending on which functions are implemented for these steps, and a number
of general parameters, the results can drastically vary. This makes it easy to apply the
GA to a large number of problems, since the basic setup is always the same and it is easy
to exchange only parts of the algorithm for another one to try and get the best results. In
the following the various steps of the GA are explained and several possible algorithms
are given. Chapter 4 explains which of these were used and why they were chosen over
the other possibilities.
The genetic algorithm can be split in two parts, the first part is only executed once at the

3



2. PREVIOUS KNOWLEDGE 2.1. About Genetic Algorithms

start of the program, it initializes the first generation and evaluates it. Since no previous
generation is available at this point the initial generation has to be obtained from outside
the algorithm itself. See 2.1.1.
The next steps have to be repeated for every generation, so they should be placed within
a loop, which runs until a given termination requiremenet is met, for example until the
maximum number of generations is reached or until a specified rating is achieved by
at least one member of the current generation. The first step in the loop is the selec-
tion, where we take a certain number of members from the old generation for the new
one. Next, the generation count is raised since now we compute on the new genera-
tion instead of the old one. This new generation is then filled with new members by the
crossover function and afterwards mutation is applied. In the last step we evaluate the
current generation so that selection can be applied again in the next iteration of the loop.
Below is a pseudo code for a sample GA.

Algorithm 1: Pseudocode for a genetic algorithm

genCount← 0;
initialization(Pn);
evaluation(Pn);
while genCount != maxGenCount do

genCount← genCount+ 1;
selection(Pn−1);
crossover(Pn);
mutation(Pn);
evaluation(Pn);

end

2.1.1 Initialization

In order for the GA to do anything it first needs an initial generation which has to be
obtained elsewhere. Unlike the following generations the initial population is usually
generated randomly, but it may also be obtained from some previous computation done
by another algorithm. However, this can also lead to a situation where the GA has no
chance of finding the optimal solution and only finds a local optimum since the initial
generation was too biased and did not contain enough members of the optimmal solu-
tion.
How a random population can be obtained depends heavily on the representation of the
given problem within the GA, the genome. The choice of genome is one of the most
important when developing a GA and also one of the hardest since there are countless
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2. PREVIOUS KNOWLEDGE 2.1. About Genetic Algorithms

possible ways to encode a problem and no real way to tell how effective a representa-
tion may be without actually implementing it. In most cases a bit string representation is
chosen where every bit represents a certain possible choice within the search space, for
example whether a certain vertex is part of the solution or not. For certain tasks other
representations may be better, but in most cases binary encoding is sufficient and makes
the implementations of the other functions easier.

2.1.2 Evaluation

The second step in the algorithm is the evaluation, which, like the representation of the
genome, is a function that is not standardized and is, as such, hard to choose and a big
factor for the performance of the GA. The evaluation function assigns a fitness rating to
every genome of the given population. Every genome describes some, not necessarily
possible, solution to the given problem and the fitness rating describes how good a so-
lution that is. The rating is higher for good solutions and lower for bad ones, the exact
scaling is not standardized and has to be adjusted to the given problem. For example, in
some cases it might be best to remove impossible solutions from the population, in others
it may be better to keep them since they could still contain valuable parts for another so-
lution. The scaling also depends on whether there is a way to know an optimal solution,
in which case there would have to be a maximum fitness rating to assign to such, in other
cases no maximum may be known.
The evaluation function depends on the problem to be solved and will usually require
representations of the genome other than its binary form. Functions to obtain one repre-
sentation from the other have to be implemented and some way to describe the useful-
ness of a solution has to be found.
Once the evaluation function is done, every genome in the current population should
have a rating assigned to it, the consequences of this rating are defined by the other func-
tions, mainly the selection.

2.1.3 Selection

The selection function takes N individuals from the previous generation into the current
one according to their fitness rating. The exact process of selecting and consideration of
the rating depends on the algorithm employed. Since there are more algorithms, and
even more variants of these algorithms, than can reasonably be explained here, we will
instead concentrate on the possible functions considered or tested for our own GA. The
simplest way to select N individuals would be to take the N best ones, this is usually not
done since we want to preserve a certain randomness for two reasons. One, individuals
with a low fitness rating should still have a chance to be selected since they may still
contain parts of a good solution which could be extracted from the bad part by either
crossover or mutation. Second, we may want good solutions to be able to be selected
several times to give them a higher chance to reproduce through crossover later. The
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2. PREVIOUS KNOWLEDGE 2.1. About Genetic Algorithms

most commonly known method which fulfills both these requirements is the fitness pro-
portionate selection [14], also known as roulette-wheel selection. It simulates a biased
roulette wheel by assigning each genome a segment of the wheel, proportional in size to
the genome’s fitness rating, and then spinning the wheel N times. This algorithm takes
the fitness rating into account while still giving bad solutions a chance to be selected,
albeit a low one, and also allows for good individuals to be chosen several times. If the
scaling of the fitness function is bad however this could mean that either too many bad
solutions survive, because their chance was not small enough, or it could starve out the
algorithm because the gap between good and bad solutions is too big and the same good-
but-not-optimal solution, also known as a super-individual, is selected almost every time.
Stochastic universal sampling (SUS) is an optimized version [14] of the roulette-wheel
algorithm which aims to remove bias, offer minimum spread and have a low computa-
tional complexity. SUS works by selecting a random value r and then choosing individu-
als at evenly spaced intervals instead of generating a new random value every time. This
gives weaker members a better chance to be selected instead of being dominated by the
better solutions [15]. A different approach to selection is the tournament selection, where
several individuals are chosen at random and put in a tournament with the winner being
selected for the next generation. The tournament size, that is, the number of members
chosen each round, is not fixed and can be adjusted for different needs, more competi-
tors give weaker members a worse chance of winning, a tournament size of 1 would be
the same as random selection. A tournament can either be won by the individual with
the highest rating or one chosen at random with each member having a probability pro-
portional to their rating.

2.1.4 Crossover

The crossover function chooses two individuals from the population at random and re-
combines their elements in a certain way to produce two new individuals. One or both of
these can be kept for the new population, depending on the implementation. Crossover
is considered to be the most important search operator [14]. Its results depend on the
crossover operator chosen, whether one or both children are kept and the crossover rate,
that is, the percentage of the new population that is acquired by crossover instead of se-
lection. The original crossover operator proposed by Holland is the one-point crossover
which chooses one position in the genome at random and switches the bits to the right
of this point between the two chosen genomes. As such, one child ends up with the left
part of parent one and the right part of parent two and the other child vice versa. This
simple operator usually leads to inferior results [16–18], so multi-point crossover operators
have been introduced. These work in the same manner as the one-point crossover operator
but choose x points and switch x times between values from the first and second parent.
Depending on the implementation used, the crossover points may also be fixed instead
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2. PREVIOUS KNOWLEDGE 2.1. About Genetic Algorithms

of randomly chosen. Empirical studies have shown an eight-point crossover to be opti-
mal [17, 19, 20], however, the two-point crossover is the most common [17]. The maximum
number of crossover points is reached when the number points is equal to the number of
bits in a genome, in which case we call it a uniform crossover, which decides via fair coin
toss for each bit whether it is taken from the first or second parent. This is usually done
by generating a bit mask of the length of the genome instead of generating a new random
Boolean for each bit separately. Other operators, which are not further explained here,
include the segment crossover [17], shuffle crossover [17] and punctuated crossover [21].

2.1.5 Mutation

The mutation operator is a simple function meant to re-introduce certain possibilities into
the population that have died out and can not be gained by crossover anymore since no
member of the population has the necessary combination of bits. This is achieved by
choosing single bits of any given genome at random with a very low probability and
then inverting them, regardless of whether this individual has been attained by selection
or mutation.

2.1.6 Parameters

Once all the parts of the GA have been decided on there are only a number of param-
eters left to set. While there are some common practices around, most of these have to
be decided by trying them out and comparing results. The most important parameters
are population size, number of generations, crossover rate, mutation rate, generation gap
and scaling. Population size simply determines how many individuals there are in any
generation, too small a number will prevent the GA from covering the search space, too
large a number will slow down computation. Population size can be anything from sev-
eral hundred to several thousand and has to be tested out. Likewise, the number of gener-
ations determines how many times the algorithm runs and applies selection/crossover/-
mutation/evaluation, and has to be tried out. If an optimal solution is usually found after
40 or 50 iterations there is no need to continue further. This number is not necessarily set,
it is a common way to determine the run time of the algorithm, but alternative termi-
nation conditions can be set instead, for example for one individual to reach a certain
fitness. The crossover rate determines the percentage of the new generation acquired by
crossover instead of selection and is usually set very high. 0.6, 0.75 and 0.95 are common
values [18, 20, 22]. Similarly, the mutation rate determines the chances of any given bit
to be mutated, this rate is usually very low, 1h, 5h or 1% are common [18, 21, 22]. The
generation gap determines how many members of the generation are replaced in the next
generation, which is usually set to 1.0, meaning the entire population is replaced. Scal-
ing is applied to the fitness rating to prevent super-individuals from scewing the results
of the selection early. The exact way of scaling depends on the evaluation function and
may not be necessary at all, but a sigma-truncation, which is a truncation of a gaussian

7



2. PREVIOUS KNOWLEDGE 2.2. About the Vehicle

Figure 2.1: A vehicle in the single track model with identifiers [12]

distribution meant to control the bias towards highly fit members, is common [24].

2.2 About the Vehicle

Our simulation software uses the control method for stable driving developed by Chris-
tian Schwarz to determine the actual path from the planned one in order to evaluate its
fitness. To this end we use the same representation of the vehicle, which will be explained
in the following section, for a complete definition and prove of stability see [12]. This sec-
tion also contains a short overview of nonholonomic systems, of which our vehicle is an
example.
The dimensions and number of trailers of the vehicle can be freely defined in the simula-
tion software and since no connection to an actual model is implemented yet, no further
restrictions are given. The control method itself has been tested in simulation as well as
on a 1:16 general-2-trailer model. In order to describe the vehicle more easily and still
have enough detail to achieve a correct representation, the single track vehicle model is
used [25]. The vehicle is first split along its flexible coupling, so any axles with rigid
couplings are replaced by one virtual axis between them. The steering of the vehicle is
considered to be a flexible coupling, so the tractive unit is split into 2 elements, which is
why we call it a general-(n-1)-trailer if the model has n elements. Now that the vehicle
is a chain of rigid parts, all wheels are replaced by points, meaning they are assumed to

8



2. PREVIOUS KNOWLEDGE 2.2. About the Vehicle

touch the ground in exactly one spot, and then all pairs of wheels are replaced by a sin-
gle wheel in between them. 2.1 shows a general-n-trailer in its single-track model with
identifiers, which are used as followed:

• (xi, yi) identifies the position of a vehicle part by the center of its axis

• θi identifies the orientation of the element

• Li identifies the distance from the axis to the front of the vehicle part, the front
coupling point

• Mi identifies the distance from the axis to the back of the vehicle part, the rear
coupling point

The representation of the entire vehicle can be shortened by giving the positions and
angles of all but the first element in relative terms. According to [26] the following rules
hold:

• xi+1 = xi − Li+1cosθi+1 −Micosθi

• yi+1 = yi − Li+1sinθi+1 −Misinθi

• αL1 := θ0 − θ1 is the angle of steering lock of the vehicle

• ∆θi(i+1) := θi+1 − θi is the i-th angle of the vehicle

This leads to the complete representation of the vehicle’s configuration:

~g =



x1

y1

θ1

∆θ12
...

∆i(i+1)
...

θ(n−2)(n−1)

αL1


2.2.1 Nonholonomic systems

Nonholonomic systems are a special class of kinematic systems where the degrees of
freedom available are greater than the number of degrees the object can move in, which
means the object cannot move along all paths that would theoretically be possible. To be
more precise, this means that if a configuration space has m dimensions and the vehicle
has k constraints such that 0 < k < m, the system is nonholonomic. It can also be defined
as a system with kinematic differential constraints that are non integrable and cannot all
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2. PREVIOUS KNOWLEDGE 2.3. About the control method for stable driving

be expressed as a holonomic constraint of the form f(q, t) = 0. [27, 28]. A car is already
a nonholonomic system as it cannot move in every direction of the plane since only one
of the 2 axles are controllable and even that is limited. A general-n-trailer has even more
constraints and limitations as to how it can move in the same space and is thus also
a nonholonomic system. Path-planning for such a system is more complicated due to
these additional constraints, called the Pfaffian constraint, which have to be considered
in order to gain a proper solution.

2.3 About the control method for stable driving

The EZauto software consists of many different parts for a variety of purposes, only one
of which is implemented in our simulation software however: The control method for
stable driving [12]. This control method works similar to how humans would drive: By
aiming for a certain point on the path we want to take, drive for a short distance and then
adjust our steering and aim for a new point [29,30]. It works both for normal and reverse
driving, only the reference point θ of the vehicle has to be adjusted. It is either the center
of the rear axis of the tractive unit for normal driving or the center of the (last) trailer’s
axis for reverse.
The desired path in our case is already given by either the random function or the GA so
now we have to try to follow this path. To this end, we choose a point on the desired path
which is a "‘certain distance"’ away from our current position as our meeting point. Then
we have to determine a circle which contains both the current position and the meeting
point, this is the path we have to follow. The circle must be chosen such that the direction
at the beginning, where our current position is on the circle, is the same as the direction
of our θ, since we can’t change direction without moving.
This task now presents us with several steps: Determining the meeting point, from that
the radius of the correction circle and finally the steering angle. While this method works
regardless of driving direction, the calculation of the steering angle changes.

2.3.1 The Meeting Point

The steps necessary for determining the meeting point depend on whether our desired
path is a line or a circle, which are assumed to be the only possibilities. As shown in [12]
any other curve can be represented by a mixture of such lines and circles. 2.3 shows the
process for a linear desired path, described by the function:

g : R→ R2, λ 7→ g(λ) := ~g0 + λ · ~h

Here ~h is the direction and it is assumed that ‖~h‖ = 1, so the vector is normalized since
its length does not matter. Now we try to determine the ideal point I , which is the point
on the path our vehicle would ideally be at if there was nothing to correct. We can see I
in 2.3 and can determine it as:
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Figure 2.2: General-2-trailer identifiers [12]

~i := 〈~p− ~g0,~h〉 · ~h+ ~g0

Now we can determine the meeting point T , denoted by the vector ~t, by moving our I
along the desired path by cv > 0. The parameter cv has to be determined experimentally
since it depends on the kinematic of the vehicle, and...

~t :=~i+ cv · ~h = (〈~p− ~g0,~h〈+cv) · ~h+ ~g0

If our desired path is a circle, illustrated in 2.4, it is given as:

k : R→ R2, ϕ 7→ k(ϕ) := ~ms + rs ·

(
cosϕ

sinϕ

)
where |rs| is the radius of the circle and its sign determines the direction: a negative

sign means clockwise. Now we have to determine our ideal point I again, which in this
case is the intersection between the center of the circle Ms and our current position P , it
is denoted by~i:

~i := ~p− ~ms

‖~p− ~ms‖

Analogous to the meeting point for lines, T is now determined by moving I , this time
by rotating it around ~ms by an angle with the arc length cv, so the line between the ideal
point and the meeting point has a length of cv, just as before:
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Figure 2.3: Determining the meeting point for a linear path part [12]

~t =

(
cos cvrs −sin cvrs
sin cvrs cos cvrs

)
·(~i− ~ms) + ~ms = rs

‖~p− ~ms‖

(
cos cvrs −sin cvrs
sin cvrs cos cvrs

)
·(~p− ~ms) + ~ms

2.3.2 The Radius

We now have to determine the circle we have to drive to get from our current position P
to our desired position T determined in the last step. This circle has to be tangential to
the line denoted by our current position T and our current direction θ, since otherwise
we would be unable to follow it. Consequentially our center point lies on a line which is
orthogonally to θ and runs through P . Also, since our desired meeting point T has to be
on the same circle, the line from T to P is a chord of the circle, so our center point lies on
a perpendicular bisector of this line. See 2.5 for an illustration. The vector ~mKK denoting
this point MKK is obtained by:

m :=

(
−sinθ
cosθ

)
·

‖~p− ~t‖2

2 ·

〈(
−θ2
θ1

)
, ~p− ~t

〉+ ~p

Accordingly, the radius is:

rKK =
‖~p− ~t‖2

2 ·

〈(
−sinθ
cosθ

)
, ~p− ~t

〉

2.3.3 Calculating the steering angle

The process of determining the steering angle depends on the reference point of the ve-
hicle, which, as mentioned in 2.3.1, depends on the driving direction. In forward driving
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Figure 2.4: Determining the meeting point for a circular path part [12]

our reference point is the rear axis of the traction unit, (x1, y1) (see fig. 2.2), our radius is
r1 and our steering angle is:

αL1,target = arctan
L2

rKK

If we are driving in reverse then our reference point is the center of the axle of the
(last) trailer, our radius is r2 and our required direction θ is:

∆θ12,target = −arctan
M1

rKK

√√√√L2
2 −M2

1

r2KK
+ 1

− arctan
L2

rKK

Now we have to achieve this ∆θ12,target by adjusting our steering angle, to this end
we observe the behaviour of θ when adjusting the steering angle in forward driving and
try to obtain a conclusion about its expected behaviour in reverse driving. From [12] we
know that θ converges towards a ∆θ12,stable depending on the given steering angle. We
can now determine a steering angle αL1,stable which will lead us to our desired θ12:

αL1,stable = f(∆θ12) := −arctan
L1 · sin∆θ12

L2 +M1 · cos∆θ12
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Figure 2.5: Determining the radius of the correction circle [12]

This function f is strictly monotonic decreasing in
[
−π

2 ,
π
2

]
as long as L1, L2,M1 > 0.

This means that our steering angle is αL1,stable = f(∆θ12) as long as our vehicle is in
a stable state and if we want to adjust our angle by ε we have to set our steering to
αL1,stable = f(∆θ12 + ε)
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3
Related Work

Path planning is a fundamental problem, so it is unsurprising that there are already many
possible solutions. Several well-known algorithms have been used to tackle this prob-
lem or combined in order to achieve better results. However, it is also a very complex
problem and has been shown to be PSPACE-hard [37], with its complexity growing ex-
ponentially with the configuration space, in our case the number of trailers [1]. In the
following chapter we will take a closer look at some of the solutions proposed and also
consider their complexity and their problems with this particular task. This chapter is
split in two parts, the first one concentrating on incremental algorithms and probabilistic
metaheuristics, the second one instead focusing on other machine learning approaches.
The focus in either case is the usefulness of the algorithm as a path-planning solution for
a general-n-trailer.
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3.1 Common Path-Planning Algorithms

In order to use the algorithms presented here we have to construct a configuration space
(C-space), which is achieved by representing any possible configuration, that is direction
and position of all elements of the vehicle, as a single point in this C-space. The size of
this C-space is one of the biggest factors in the algorithms performance, it is determined
by two factors: The number of degrees of freedom our system has, in this case the number
of trailers, as well as the magnitude of our grid with which we overlay the map with in
order to allow orientation. This magnitude depends on both the size of our map as well
as the chosen resolution.

3.1.1 Rapidly-exploring Random Tree

Rapidly-exploring Random Trees (RRT) [38] are an efficient method for path-planning in
high dimensional spaces, including cases such as ours, where nonholonomic constraints
are given. [31, 32] It works by randomly choosing a configuration (or, if a collision detec-
tion is given, a free configuration) from the configuration space C and then looking for
a vertex in the tree that is close to the chosen configuration. Then it moves a distance q
in direction of that target configuration, taking movement constraints into account. The
now reached configuration q(new), which is close to the initially randomly chosen target
configuration, is then added to the RRT and the process is repeated. This algorithm can
be started simultaneously from several points of the map, for example the start and target
position, and then try to meet the other tree to gain a continuous path through the map.
While RRTs can produce paths through complex environments quickly, even while tak-
ing different constraints into account, it is not a sufficient path-planning algorithm when
used alone. The resulting paths are suboptimal and contain a large number of needles
turns and sharp corners. An optimization algorithm is required to flatten the path and
make it a more feasible solution. It is, however, a good way to quickly find a path at
all, using a different algorithm for optimization later can still result in an overall better
performance than comparable algorithms.

3.1.2 Path Transformation

Path transformation is a simple way to find a path in a grid-based environment (see
3.2.1) and combines two other transformations: distance- and obstacle transformation
[33]. Distance transformation works by assigning every cell of the grid a value which
represents the distance from this cell to the target cell, see fig. 3.1 for an example. How
this distance is computed depends on the chosen movement model, basically whether we
choose that our vehicle can move diagonally for the same cost as horizontally/vertically,
at higher cost, or not at all. The last case means moving diagonally has twice the cost of
horizontally/vertically since it is seen as a combination of two such moves. If a map has
been updated with such values a path can easily be found simply by always choosing a
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cell with a lower value as the next step. The costs of the entire path is also clear from the
beginning since it is stated in the first cell. Obstacle transformation works similarly by
assigning each cell a value stating the distance between this cell and the closest obstacle
as can be seen in fig. 3.2. Path transformation now combines both these maps under
a certain weighting which states whether the length or the safety of the path is more
important. Avoiding cells with low obstacle value is safer while avoiding cells with high
distance value is shorter, so by adjusting this weighting a balance between safety and
distance can be found.
While path transformation is a simple and often used way to find a path, it is not well
suited to high dimensional problems with nonholonomic constraints such as our case
here. Its efficiency also heavily depends on the chosen resolution of the map.

3.2 Algorithms for Graph-Based Path-Planning

In order to plan a path using incremental algorithms we first have to convert our path
planning problem into a graph searching problem. To this end we have to construct
a suitable graph from a given C-space. There are several approaches to this task, for
example the visibility graph approach [2, 3] and the retraction method [4, 5], but for the
purpose of this paper it is enough to know that such a conversion into a graph searching
problem is possible.

3.2.1 A* Algorithm

The A* algorithm is one of the most widespread solutions for graph traversal prob-
lems. [8] In order to utilize it for motion planning, the area has to be overlaid with a
configuration space and then transformed into a graph as described above. This leads
to several problems for our path planning task. The complexity of the problem depends
on the size of the graph, which in turn depends on the size of the configuration space.
A finer grid leads to a larger number of vertices in the graph and, as the computation
time of the A* algorithm grows exponentially with this number, results in slower per-
formance. However, a coarse grid would ignore possible paths since obstacles would
appear greater than they are. To a certain point this can be useful to prevent collisions,
but it also means a loss of information and consequently fewer options to choose from,
possibly missing better paths. There may also be additional constraints the path has to
satisfy, which further slow down computation. So while A*, or similar graph searching
algorithms, like Dijkstra’s graph search [6], can be used, their performance for this kind
of complex problem prevents them from being feasible.

3.2.2 Hill Climbing

Another common algorithm used to tackle graph searching problems is hill climbing. It
is popular due to it’s simplicity and ability to find a local optimum in a short amount
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of time, also it can return a result an any point, even when it is not yet finished. This
may be relevant in real-time system, where it is more important to have a solution at a
given time than to have an optimized solution later. This may also hold true for motion
planning task, when the speed of planning is more important than the quality of the
resulting path. In our given case however the quality of the path is more important
than the speed of computation. In simple cases, Hill Climbing produces paths of similar
quality when compared to simulated annealing or genetic algorithms [8], however, as
the search space grows more complex, the algorithm fails to generate good solutions.
This is due to its very local searching behaviour which becomes more of an obstacle
the larger the search space gets. Various optimization techniques try to mitigate this
problem, such as stochastic hill climbing, which does not examine all neighbours but
chooses randomly and then evaluates whether to move there or to examine another one,
or random-restart hill climbing, which tries to counter the locality issue by choosing its
start point at random and then repeat the entire search several times. Even with these
optimizations in place, hill climbing still cannot compete with other algorithms in solving
problems of the complexity we consider here. Stochastic hill climbing produces paths
similar to standard hill climbing at equal or even greater cost [8] and also fails to produce
good results once the search space becomes too large. Random-restart hill climbing could
potentially produce good results, but in a large search space this would very much rely
on luck. Since the algorithm would have to run many times to have at least some chance
of finding a globally good path the performance would suffer greatly. Also, unlike A*,
hill climbing can never guarantee that the optimal path has been found, this however is
also true for our machine learning algorithms.

3.2.3 Simulated Annealing

Simulated Annealing is a probabilistic metaheuristic which searches for an optimum so-
lution in a way similar to hill climbing, that is, by always considering the neighbours
of the current position and then using a given function to determine whether or not to
move to that neighbour. Unlike hill climbing however, simulated annealing changes its
behaviour over time, according to a global parameter T (Temperature). T can be defined
freely, but always ends with T = 0. Every state is assigned an energy e which is smaller
the better the state is. The algorithm favours moves that go towards lower energy states
the smaller T is, so it starts out by ignoring local minima and moves loosely towards
areas that contain good solutions overall. Then, with lower T , it starts preferring moves
that go "‘downhill"’, meaning towards lower energy states, more so that it starts moving
towards the local minimum in the given region once T gets close to 0. Due to this, sim-
ulated annealing circumvents the hill climbing problem of solely moving towards local
solutions while ignoring the global ones. The algorithm shows results similar to those
of a genetic algorithms, but is significantly outperformed as far as number evaluation is
concerned. [8]
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3.3 Alternative Machine Learning Algorithms for Path-Planning

As we can see from the algorithms presented in 3.2 an iterative approach causes a num-
ber of problems when it comes to complex tasks. Since we want to develop a solution
for a general-n-trailer, with theoretically infinite degrees of freedom, an algorithm that
stops producing feasible results for non-trivial problems is not an option. Of the five al-
gorithms presented, simulated annealing is the only one that produces useful results, but
also requires a very large number of computations [8] for more complex problems. In or-
der to avoid these issues, a number of machine learning algorithms have been proposed
to solve the motion planning problem. In the following section we will consider three of
these approaches, including a second implementation of the genetic algorithm (GA). This
GA is important since the comparisons to hill climbing and simulated annealing referred
to earlier have been made using that implementation and not the one developed in this
paper. [8]

3.3.1 Reinforced Learning

Reinforced Learning is one category of machine learning algorithms with different capa-
bilities depending on the method used. Before focusing further on any of these specific
algorithms, a general overview of the principles of reinforced learning will be given. The
general idea of reinforced learning is to assign a certain reward to any action. This reward
can be positive or negative (punishment) and its value depends on the action taken. The
task of the algorithm is to choose a path through this graph such that the accumulated
reward at the end is maximal. Since always choosing the greater reward at any point
obviously does not mean achieving the greatest accumulated reward, a balance between
exploration and exploitation has to be found. Exploitation means picking the best choice
available in the current state and exploration means picking sub optimal choices in the
hopes that actions further down this part of the decision tree are overall better. To this
end an ε-greedy algorithm with an ε value of 5% is usually used, where a greater ε value
means more exploration and a smaller value infers more exploitation. For path planning
tasks a Markov process is usually assumed, which means that only current inputs, in our
case the current position of the truck, are considered and past ones are ignored. This
means that old inputs do not have to be stored, so no memory is required for that, and
computation becomes much simpler since fewer variables are considered. Reinforced
learning algorithms can be split into three groups depending on their model of the en-
vironment and their bootstrapping capability. Bootstrapping means that estimates are
updated based on other estimates, which speeds up the algorithm. These three groups
are dynamic programming methods (DP), monte carlo methods (MC) and temporal dif-
ference methods (TD). MC and TD do not need an exact model of the environment, where
MC uses no bootstrapping but TD does. DP also uses bootstrapping but needs an exact
model of the environment, which makes it less feasible for motion-planning purposes.
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[9]. Specific reinforced learning implementations can be categorized according to these
three methods. Both TD and MC methods can be split further depending on whether they
are on-policy or off-policy, where on-policy uses a first-visit method, where the value of
a state-action pair is determined be the average return after the first instance of a given
state. Because there is no guarantee that all state-action pairs will be visited, on-policy is
ε-greedy so it approaches an optimal policy while still maintaining exploration. In our
case this simply means that we have an ε chance of selection a random action rather than
the best action. Off-policy separates the evaluation policy into behaviour and estimation
policy. It follows the behaviour policy while it evaluates and improves the estimation
policy. Due to this separation, ε-greedy is not needed to evaluate all state-action pairs,
however, since the learning rate for greedy and non-greedy actions are different the al-
gorithm is slower for some states. In the following we will now have a closer look at two
such algorithms.

3.3.1.1 Q-Learning

Q-Learning is an off-policy, ε-greedy TD method which learns an action-value function
independent from the given policy to make an assumption about the optimal policy.
Compared to other algorithms it is exploration heavy and will probably make more ran-
dom decisions than exploitative decisions, due to this it is also more likely to find the
optimal policy in finite of time. Q-Learning requires the actions and states to be defined.
In our case, states are sensor data, or our current position, and actions are basic move-
ment actions, here left/right in a certain angle and forward driving. Since reinforced
learning takes a large number of samples to learn from, the first step should be done in
a simulation, similar to the one developed for the evaluation of our genetic algorithm.
Simulations have the downside of being inaccurate since a model can never represent
the real world perfectly, but can in turn be used much easier and much more quickly [9].
Also data from a simulation can be stored and evaluated easily and the process can sim-
ply be automated. Once an optimal policy has been found using the simulation, it has to
be further refined using the actual vehicle. Depending on the accuracy of the simulation
this will only require a small number of episodes. This phase may still be the most time
consuming however since it cannot be sped up like the simulation. Depending on the
vehicle and space required for the task, in our case a parking space and a truck, this task
will still be the most challenging.

3.3.1.2 Extended Q-Learning

Classical Q-Learning needs to make m − 1 comparisons to maximize the Q-value in a
given state, so assuming n states, the overall time-complexity of Q-Learning is O(n(m−
1)). This can be optimized by using extended Q-Learning [11]. We introduce an addi-
tional variable, Lx, for each state. Lx is a lock bit and is 1 if the value Qx of the state
Sx is locked and won’t be updated further, or 0 otherwise. At the beginning we have
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Ln = 0 for all Sn except the goal state. There are a number of properties that can be used
to quickly set Ln throughout the algorithm’s run time:

Property 1: If Ln = 1 and dpG > dnG then Qp = γ ×Qn and set Lp = 1

Property 2: If Ln = 0 and dpG > dnG then Qp = Max(Qp, γ ×Qn)

Property 3: If Ln = 1 and dnG > dpG then Qn = γ ×Qp and set Ln = 1

Property 4: If Ln = 0 and dnG > dpG then Qn = Max(Qn, γ ×Qp)

Using these properties, both Li and Qi can be updated accordingly. Now, in order to
determine if a state is optimal, we only need to check whether or not it is locked. So for n
states we only need n comparisons, so we saveO(n(m−1)−n = nm−2n = n(m−2)) [11]
comparisons. For space complexity we previously had n × m for classical Q-Learning
whereas we only need 3 values for any state in the extended Q-Learning algorithm: Q-
Value, Lx and the best action at that state. This means a space-complexity of only 3 × n
and a saving of O(nm− 3n = n(m− 3)). [11]

3.3.2 Genetic Algorithm

In this section we will cover the genetic algorithm (GA) proposed by Andreas C. Nearchou
[8] as a comparison to the iterative algorithms covered in 3.2. For a general description
of the GA refer to 2.1 and for an in-depth implementation of the GA developed for this
paper refer to 4. The genome in this case is represented as a bit string of the length of
the path where each bit represents a vertex in the graph and marks whether or not it is
part of the solution. The first bit marks the first vertex, the N th bit the last vertex. The
initial generation is obtained by randomly choosing a path length and then flipping a fair
coin to decide whether any vertex on the graph is taken or not. This includes impossible
paths that would collide with an obstacle, these are then filtered out by the fitness func-
tion. In addition, paths get a better rating depending the total weight of their vertices
and sigma-truncation is applied 2.1.6. Binary tournament selection, uniform crossover
and bit-mutation are then applied. An inversion function is used in addition to these
usual GA functions, all of which are explained in depth in 2.1.
The GA is then applied to 13, 23, 33 and 50 vertices graphs with 4 different combinations
of minimal and maximal edge-cost and vertex-profit functions. The evaluation of the
GAs results in comparison to the other 3 algorithms, hill climbing (3.2.2), stochastic hill
climbing (3.2.2) and simulated annealing (3.2.3), are given in their respective sections.
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Figure 3.1: A map filled with distance transformation values

Figure 3.2: A map filled with obstacle transformation values
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4
Algorithm Details

Since a general overview of genetic algorithms has already been given in 2.1 this chapter
will only cover the choices made for the particular program developed for this paper and
justify these choices. Note that some alternative algorithms have been considered and
sometimes even implemented, see 6, but due to the time constraints of this thesis not all
possibilities could be covered, so in many cases there may be a better solution possible.
Some of these will also be considered, but not implemented, in 7.

The general idea is to represent our paths in such a way that they are easy to use in
bit-wise crossover and mutation operations. To this end, all paths are stiched together
from simple path-primitves: Lines and curves. Several of these, with different lengths
and angles, are then put together to create any path we require. These primitives allow
for simple generating, saving and modifying of paths, it also gives us the fixed structure
we want for our GA operations.
The initial generation to feed the GA has to be obtained randomly, our chosen path rep-
resentation is also well suited to this task since it can simply choose random path primi-
tives.
The representation of the vehicle should be as close as possible to the one described in
2.2 since the existing components of the EZSystems framework, which we need for eval-
uation purposes, are also based on this model. For efficient testing we have to be able to
modify, save and load the vehicle as well as its configuration.
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4.1 Genome Representation

For ease of use, a simple path representation with a fixed genome length has been chosen.
As detailed in 5.4, every path consists of exactly 20 parts, each subject to length and/or
angle restrictions respectively. Each part is represented by an eight bit string, so the
entire path consists of exactly 160 bits. This fixed length makes the application of further
operations like crossover and mutation easier and also allows for a simple conversion
between the path and genome representation of any given population member.
Consequentially every 160 bit genome can be split into 20 8 bit genome parts, which can
be further be assumed to consists of 4 parts: The first bit determines whether this genome
part represents a line or a curve and the next 3 bits determine the length of a given path
part. The last 4 bits are only considered in case of curves, for linear path parts they are
ignored and set to 0. The first 3 of these 4 bits contain the angle of the curve and the last
one determines whether this is a right or a left curve.
This genome format can also be thought of as a graph where, starting from left to right,
every bit represents one choice in the graph, the first being curve or line, and the next
being the length etc.

4.1.1 Genome Conversion

For every member of the population we require three pieces of information: The path
representation, needed for our evaluation, the genome representation, needed for our
genetic operations, and the fitness rating. While the assignment of the rating is done
by fitness function, see 5.6, we also need to be able to convert between the two repre-
sentations of the path. While a conversion from path to genome representation would
certainly be possible, it is not implemented since we never need it. The only part of the
algorithm where we do not already have the genome before we need the correspond-
ing path is the initial generation in which we require random paths. Since the paths are
random it does not actually matter whether we first generate a genome and then obtain
the path or generate a path and obtain the genome from there. We do, however, always
need a function that can obtain a path from a given genome since crossover/mutation
and reordering will operate on genomes and also return genomes, so since we need that
function regardless of what choice we make in the initial generation it is easier to gener-
ate the genome first and then obtain the path from there.
The conversion from genome to path part is done simply by following the conventions
of the genome, that is, creating a LinePathPart if the first bit is 0 and a CirclePathPart
otherwise. The length in either case is 0.5 + length ∗ 0.5, where length is the number
represented by the second, third and fourth bit.
In case of a CirclePathPart we also need the angle, which is 10 + angle ∗ 5, where angle is
the number represented by the fifth, sixth and seventh bit. The last bit sets the direction
to either right (0) or left (1).
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This conversion is done in blocks of 8 along all 160 bits of the given genome and returns
a full LinkedList of 20 path parts.

4.2 Selection

Three selection methods have been implemented and tested (see 6) and can be selected
from the program, however, by default it is set to use the tournament selection. The
tournament size is set to 2, so 2 members will be selected at random and tested against
each other. The selection size is 0.4 by default, so 40% of the next generation will consist
of member of the previous generation (disregarding mutation, which is applied to all
members), the remaining 60% will be obtained later using crossover between these 40%.
Of the two members chosen the one with the higher rating will win. Since members
are chosen at random without being removed from the population it is possible for the
same member to be chosen several times. This implementation is not weighted, so all
members have the same chance of being chosen, but bad members obviously have a low
chance of winning, though it is not impossible so long as they are pitted against an even
lower member. This keeps the algorithm from starving since it keeps non-ideal members
within the population. The selection process can be adjusted by changing the tournament
size, a greater number of participants per tournament lowers the chances of winning for
members with a low rating.

4.3 Crossover

As with selection, several crossover methods have been implemented and can be selected
in the program: Two-fixed-point crossover, single-bit crossover and eight-bit crossover.
The later one is chosen by default, it generates a 20 Bit long mask genome randomly and
then selects two parent genomes from the current population, also at random. Each Bit in
the mask genome represents 8 Bit in the member genome, the value of the bit determines
whether the 8 bit block for the child genome is taken from the first or second parent.
A second child is also produced in every iteration which simply always gets the other
parents block that was not selected for the first child. This eight-bit crossover produces
very diverse children, more so than a one- or two-fixed-point crossover function where
the switching between the two parents happens much less frequently, but it still preserves
the path parts by only working in blocks of eight. Compared to the single bit crossover,
which basically works the same but generates a 160 Bit mask and then selects single bits
from the parents instead of using blocks of 8, the result is much less random and also
significantly faster.
The two-fixed points crossover works similar to the eight-bit crossover, but instead of
generating a mask genome to decide whether to take from the first or second parent it
always selects the same bit range from the same parent, in our case bits 0 to 4 from parent
1, 5 to 15 from parent 2 and 16 to 19 from parent 1. These fixed points can of course be
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moved around and their number can be adjusted, however if you further increased the
number while still trying to preserve the path structure you would quickly end up with
something very similar to the eight-bit crossover.
As mentioned before, 40% of the new population are obtained by selection, which leaves
60% for crossover, so our crossover rate is set to 0.6. Only half that many operations have
to be computed however since every crossover generates two children.

4.4 Evaluation

Evaluation is applied as detailed in 5.6. It iterates over the entire current population, ob-
tains a path from every genome, obtains a simulation for every path and then assigns a
rating to the path/genome according to the fitness function.
When compared to the other genetic operations the evaluation probably holds the great-
est potential for optimization as there is no fixed number of existing algorithms to choose
from. The fitness function entirely depends on the problem to be worked on as well as
the given representations of that problem, so it has to be created from scratch for every
new task. The current implementation is rather simple and only checks how many pixels
of the path are within a wall or outside the map and how far the destination reached
is away from the target. Many additional variables to be considered or better ways of
judging the currently considered values are possible, some of these will be discussed in
7.

4.5 Mutation

Mutation is applied on the entire new population after crossover and is supposed to
keep the algorithm from starving out by possibly re-introducing bit combinations that
have been lost in previous selections. Unlike with crossover and selection there is only
one algorithms for this available so the only choice to be made here is the mutation rate,
which determines the probability with which any bit is chosen, this is set to 0.001 by
default. The mutation operator does not care about the genome’s structure, it simply
generates a random number for every bit of every genome in the entire population and
if the number is one (0.1% chance) it flips the current bit.

4.6 Reordering

Unlike the operators discussed so far, the reordering operator is optional and not usually
part of a GA. It works by randomly choosing an individual with a certain probability,
for example 0.1, and then reversing the order of bits between two points within this
genome, these points are also chosen at random. In certain cases this inversion has been
shown to significantly improve the performance of the GA by preventing what is called
deception [8]. This can happen when certain bits in a genome are important but very

26
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far apart, which is called loose linkage. In such a case the crossover operator is likely
to separate these building blocks even though they need to be together, something that
were less likely to happen if the blocks were closer together. Whether the reordering
operator is appropriate depends on the given problem and also the crossover operator
employed. [8]
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5
Implementation

The program accompanying this work is written in C# and uses the OpenTK Library for
OpenGL graphics. Several C# features, such as functional and object-oriented program-
ming, have been employed, but as this program is not meant as a framework or teaching
tool, no special importance has been placed on the usage of specific programming mod-
els.
Originally the TAO OpenGL framework was used for the Graphics implementation, but
this was later dropped due to the fact that most of TAO’s libraries are severely outdated
and produced several problems during map drawing. OpenTK has been chosen as an
alternative due its simplicity, stability and high flexibility.
Visual Studio 2010 was used for development, other than OpenTK, which has to be in-
stalled separately, only standard libraries were used.

5.1 OpenTK

OpenTK is a free OpenGL library for .Net/Mono languages and is available across all
Windows, Linux, Mac and other Unix-based Systems. It supports multi-monitor setups,
a wide range of input devices as well as most GUI options. It also comes with integrated
math toolkits for vectors, matrices etc. as well as type-safe bindings, automatic extension
loading, error checking and inline documentation. OpenTK itself is also written in C#,
but is compatible with all .Net/Mono languages [34].
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5.2 Map

The map has to be given as a simple image (.png) file in which empty areas are white
and walls are black. While a different representation of the environment may be better
suited for collision detection, this simple map format makes it easier to create new maps
for any given area. The map is assumed to be 2 dimensional, so height differences are not
considered, and only about 40x20 m in size. The default image size is 1024x512 pixels,
other sizes are possible but may lead to problems with the map overlay so any map
should be re-sized to this. On start-up, a boolean array of the same size as the map is
created and filled with values obtained from the given image, where every white pixel
is true and every black pixel is false. This array is used for collision detection while the
map itself is only used as a texture background for the GUI.

5.3 Vehicle

The vehicle is saved in a format similar to the one described in 2.2 however, all vehicle
parts are saved with absolute positions instead of using values relative to the previous
trailer. While this requires more space it makes collision detection and drawing of the
vehicle a lot easier. For every element of the vehicle the values M and L are saved, which
determine the length of the front and rear of the trailer respectively, measured from the
axle. In accordance with that representation, the tractive unit is assumed to be 2 parts
with a rigid coupling in between. A tractive unit without any trailers is generated ran-
domly every time the program is started, so one can immediately start planning a path
without having to configure a vehicle first every time. If a specific vehicle is required, ad-
justments can be made in the vehicle tab of the GUI. In this tab, M and L can be adjusted
for every part of the vehicle, more trailers can be added and vehicles can be saved for
later use. While the program can theoretically handle an infinite number of trailers it is
currently meant to be used with only one.
For a complete representation of the vehicle more information is required than just the
size of every given part, that is, the configuration of the vehicle, found in the configura-
tion tab. This configuration contains the starting point of the vehicle, as well as the angles
between all its elements. Effectively, only the angles can be adjusted, the position of the
steering vehicle is assumed to be the same as the starting position of the path, set in the
main tab, and all other vehicle parts’ positions are obtained from that starting position
and the elements’ angles. The configuration, too, can be saved and loaded.

5.4 Path Representation

To make the representation within the GA easier, certain limitations are enforced on the
paths generated by this program, however, most of these are not really constraining since
a general-n-trailer is limited in its possible configuration space to begin with. In order to
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get a fixed genome length we assume every path to be made up of exactly 20 parts. Paths
of length 0 are not possible since any given path part has a minimum length of 0.5 meters,
similarly, paths longer than 80 meters are not possible but should not be necessary either
due to the limitation of the map-size.
A path is represented as a LinkedList of path primitives, which can be either a curve or
a line. A curve, or CirclePathPart, has an angle, a start angle, an end angle, a radius, a
center and a direction, that is, whether it is a left or a right curve. A LinePathPart has
a start, end and direction, as well as a speed and a boolean value determining whether
the vehicle is driving in reverse or not, however neither of these are used in the current
implementation of the program and are simply set to default values. The values of any
given path part are either set randomly (5.5), obtained from a newly generated genome
(4) or set by the previous path part, for example, the direction of a LinePathPart can
only be the direction of the previous PathPart since no rough edges are permitted. Due
to the selected information encoded in the genome the maximum value of any of these
variables as well as the step size between these values are limited. Any given path part
can be between 0.5 and 4 meters long and, in case it is a curve, have an angle between
10◦ and 45◦ in steps of 5◦. A more detailed path can easily be achieved by extending the
length of the genome (4.1), but this would also slow down computation.

5.5 Generation 0

The initial generation, also known as generation 0, is obtained by generating random
paths and converting these into the genome format, see 4.1 for further details on the exact
representation. A function generatePath() in the PathPrimitives class is used to randomly
generate a path of a fixed length, by default 20 path parts, as well as calculating the corre-
sponding genome. This function generatePath() uses the function getRandomPathPart()
of the same class, which generates a path part within the limitations given in 5.4. After
enough paths have been obtained, all of them are evaluated.

5.6 Evaluation

The evaluation is done using a simple weighted fitness function which considers both the
distance from the end of the path to the original goal as well as the number of collisions,
leaving the map is also counted towards the collision value. The weight of these two
factors can be adjusted but is by default set to 2 to 3 for the goal distance. More factors,
like the length of the path, the number of turns or the minimal distance to obstacles could
be considered in this function as well, but are currently not implemented. It should be
noted that the path evaluated here is not the path obtained from the GA directly, but
the generated path after it has gone through the simulation class, which uses the path
optimization from AG Echtzeitysteme to transform it into a path drivable by the given
vehicle.
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5.7 Generation 1+

Further generations are evaluated in the same way as the initial one, but are obtained by
genetic crossing and not randomly. The exact process used in this implementation of the
genetic algorithm is described in 4.

5.8 GUI

The full GUI can be seen in fig. 5.1. On the left we can see a sample map which can be
replaced either in the code or by clicking the "‘Load Map"’ button on the right and pro-
viding a fitting image, see 5.2. Black areas on the map are obstacles while white areas are
available. The blue dot marks our target destination, the red one our starting point. The
lines at the red dot are our current vehicle, the tiny red dot within our vehicle is a cou-
pling, in this case a rigid one since we only have a tractive unit by default. On the right
of the map we have buttons for loading a new map, starting the path finding algorithm
(Start), starting an entire set of iterations for evaluation purposes (Evaluation), drawing
a single random path (Start Path) and obtaining a simulation for a given path (Drive).
Next to the "‘Drive"’ button is a small text box which shows the current generation the
algorithm is computing. The current path’s genome is shown in the box below those five
buttons, every line consists of 8 numbers and represents exactly one path part, as such
there are 20 lines. This box is usually read-only, but it can be modified by unchecking the
"‘Genome Read Only"’ box next to it. This way, a previously saved path’s genome can be
put in and a simulation can be obtained by pressing "‘Drive"’. The "‘Show Current End"’
button shows the configuration of the vehicle at the end of the current path, this could be
used in the fitness function but is not yet implemented. The "‘Debug Population"’ check
box causes the algorithm to stop after each generation and output all computed paths
along with their rating.
The GUI tab on the right allows us to save, load and modify our general-n-trailer. Each
vehicle part is defined by its M and L values, see 2.2.
The configuration tab allows the modification of the current vehicle’s position and steer-
ing angles. Just like the vehicle, this configuration can be saved, loaded and reset, it
should be noted that it is only possible to load a configuration when it fits the current
vehicle’s number of trailers. In the same tab, the start and end coordinates can bet set,
the colours correspond to the points on the map. By selecting "‘End Conf"’ on the right a
target configuration can be set, however, this is not needed at the moment since only the
distance to the destination is considered in the fitness function, not the entire configura-
tion.
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Figure 5.1: The full view of the GUI with a sample map on the left and the Main window
on the right
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6
Evaluation

6.1 No Trailer, Generation Count of 50

In the following chapter we will compare the results, that is the path rating, and the re-
quired computation time for several different versions of the genetic algorithm. Since
there are many values and functions within the GA that can be adjusted and influence
its performance, only a few can be considered here. The conclusion drawn in the next
chapter 7 will be based on the evaluation here.
We will go from a the simplest case (no trailer) to a more complicated case (1 trailer) and
run each scenario twice, once with 50 and once with 100 generations.

The following table shows the rating achieved (higher is better) as well as the time needed
for computation (lower is better) for several different setups of the algorithm. For each
setup, 7 runs and an average are given. Only the choice in GA functions used is changed
between different runs, the remaining settings are consistent throughout the table and
are as follows.

The population size is 1000 ,the crossover rate is 60%, a mutation rate of 0.1% and the al-
gorithm works without reordering operation throughout all our tests. It starts at 175,350
and the destination is 740,100 (both are the program’s default values). For this first test,
the vehicle has no trailer and our algorithm runs for 50 generations. The vehicles has an
M value of 24,55, an L value of 42,5, and a starting angle of 45, these values have been
randomly generated and were then kept for all test runs as well.
Computation was done on a Core2Quad 6600@2.4GHz with 4GB of System Memory.
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In these first four tests we want to compare two selection (Tournament and Roulette-
Wheel) and two crossover (EightBit and TwoPoint) strategies. Based on given knowledge
we expect the EightBit crossover to outperform the TwoPoint crossover and the Tourna-
ment selection to be work better than the RouletteWheel selection [14].

Run 8Bit, Tournament 8Bit, Roulette TwoPoint, Tour-
nament

TwoPoint,
Roulette

1 152 in 1:50 222 in 1:44 647 in 1:53 49 in 1:57

2 90 in 1:47 134 in 1:51 111 in 154 6.1 127 in 2:01 6.2

3 127 in 1:48 106 in 1:54 240 in 1:48 51 in 1:58

4 240 in :144 61 in 1:46 122 in 1:48 130 in 2:01

5 152 in 1:49 222 in 1:57 274 in 1:49 156 in 1:54

6 163 in 1:49 201 in 1:56 56 in 1:57 78 in 1:51

7 90 in 2:06 76 in 1:53 59 in 1:47 230 in 1:56

Best 240 in 1:44 222 in 1:44 647 in 1:53 156 in 1:54

Worst 90 in 2:06 61 in 1:46 56 in 1:57 49 in 1:57

Average 144 in 1:51 146 in 1:51 198 in 1:50 117 in 1:56

Table 6.1: No Trailer, Generation Count of 50

As can be seen from these results, the time is rather consistent at just below 2 min-
utes. This of course depends heavily on the hardware used, but surprisingly very little
on the operations chosen within the GA. The results are not quite as consistent and have
to be handled carefully due to the small sample size. Row 3 (TowPointCrossover, Tour-
namentSelection) seems to deliver the best results, but this is largely due to a single very
good path, which can be attributed to "‘luck"’ in the randomly generated path. If we dis-
regard this single path we get an average of 143, which is almost the same as in the first
two rows. The last row (TwoPointCrossover, RouletteWheelSelection) however produces
sub-optimal paths rather consistently. It is also noticeable that the difference between the
best and worst path is much smaller in the first row when compared to the other three,
which is why this setting has been chosen as the default one as it produces an acceptable
quality of paths consistently. These results may of course change with a (much) larger,
see 6.5.
The overall quality of the paths is rather low, which we will try to mitigate by raising the
generation count in the next test, the real cause for this however is probably our primitive
fitness function, see 7 for further discussion. Right now, the algorithm depends heavily
on its initial random paths which leads to very different and overall sub-optimal results.
Two interesting paths are given in fig. 6.1 and fig. 6.2. Here, red is the path planned by
the GA and blue is the actual, drivable, path obtained via simulation. In fig 6.1 we see an
example of a good path which avoids all obstacles and gets very close to the target posi-
tion. Whether or not it also hits the target configuration is not considered by the current
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fitness function. The path got a rating of 111, which is rather low compared to the ratings
of some of the other, objectively worse, paths, which also points to the fitness function as
the algorithms current weakness. 6.2 shows a different problem with the current evalua-
tion as it shows a path with a good rating (127) which also seems fine for the most part,
but is completely impossible in reality as it passes through a wall. The current collision
detection gives a worse rating the "‘longer"’ the path stays within the black area, which
means that crossing a thin wall like this does not lower the rating by much when com-
pared to the positive rating it receives from the distance evaluation, even though the path
is obviously still unusable. The current evaluation emphasizes distance to the target over
the collision detection in order to obtain more acceptable paths quickly, but further opti-
mization is required to make sure this does not come at the cost of accepting impossible
paths.

Figure 6.1: Example of a good result computed by the GA

Figure 6.2: A bad path with a good rating produced by the GA
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6. EVALUATION 6.2. No Trailer, Generation Count of 100

6.2 No Trailer, Generation Count of 100

The settings in the following table are the same as in the previous ones, but the generation
count has been doubled to 100 in hopes of getting better paths with more generations.
This could, however, also lead to starvation of the algorithm.
Due to time constraints, all evaluations after this points were done on an i5-M460@2,53
GHz instead of the Q6600 stated above. For comparison, the computation of the above
table took an average of around 1:25, the same as in 6.3, so about 25 seconds faster. Since,
as we will see, the addition of a trailer does not impede the speed of the algorithm, we
can simply make comparisons using 6.3.

Run 8Bit, Tournament 8Bit, Roulette TwoPoint, Tour-
nament

TwoPoint,
Roulette

1 291 in 2:44 146 in 2:33 73 in 2:38 93 in 2:37

2 138 in 2:36 143 in 2:35 175 in 2:38 56 in 2:38

3 235 in 2:35 194 in 2:41 123 in 2:37 48 in 2:39

4 109 in 2:35 65 in 2:42 105 in 2:47 78 in 2:36

5 191 in 2:39 101 in 2:38 539 in 2:36 69 in 2:41

6 259 in 2:48 148 in 2:39 211 in 2:36 180 in 2:36

7 67 in 2:43 156 in 2:35 136 in 2:37 166 in 2:38

Best 291 in 2:44 194 in 2:41 539 in 2:63 180 in 2:36

Worst 67 in 2:43 65 in 2:42 73 in 2:36 48 in 2:39

Average 184 in 2:40 136 in 2:37 194 in 2:38 98 in 1:37

Table 6.2: No Trailer, Generation Count of 100

Figure 6.3: Another bad path with a good rating produced by the GA
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Only the first row (EightBitCrossover, TournamentSelection) shows a significant im-
provement with the doubled number of generations, the other are very close to their pre-
vious values. The third row, again, takes its good average mostly from a single very good
path, if we ignore it as an anomaly we get a result of only 137, which is also comparable
to its previous average. While the overall quality of paths has not improved by a lot, it
is now more obvious than before that the setting chosen in the first row presents the best
case scenario for this algorithm. Computation time is a little less than twice that of a 50
generation computation done on the same hardware (see 6.3), this is not surprising since
computation done on each generation is the same so the time required for each iteration
can be assumed to be constant, thus doubling the generation count should also double
the computation time. The slight offset probably comes from the initial generation, which
takes longer than any other and is not affected by the increase in the generation count.

6.3 One Trailer, Generation Count of 50

The settings in the following table are the same as in the previous ones, except that the
vehicle now has one trailer and the generation count has been lowered to 50 again.

Figure 6.4: A (problem) path for a vehicle with one trailer.
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Run 8Bit, Tournament 8Bit, Roulette TwoPoint, Tour-
nament

TwoPoint,
Roulette

1 436 in 1:24 434 in 1:24 104 in 1:24 120 in 1:25

2 144 in 1:25 211 in 1:19 78 in 1:24 44 in 1:23

3 117 in 1:24 113 in 1:22 68 in 1:21 62 in 1:24

4 58 in 1:24 151 in 1:22 102 in 1:21 42 in 1:25

5 215 in 1:24 87 in 1:24 75 in 1:22 119 in 1:21

6 153 in 1:21 170 in 1:22 107 in 1:20 78 in 1:22

7 66 in 1:22 179 in 1:20 138 in 1:24 152 in 1:23

Best 436 in 1:24 434 in 1:24 138 in 1:24 152 in 1:23

Worst 58 in 1:24 87 in 1:24 68 in 1:21 42 in 1:25

Average 169 in 1:23 192 in 1:21 96 in 1:22 88 in 1:23

Table 6.3: One Trailer, Generation Count of 50

The first thing noticeable about this table is that the overall quality of paths has clearly
decreased when compared to 6.3. The addition of a trailer seems to influence the algo-
rithm more than the generation count, however, time does not seem to be significantly
affected, which is precisely what we want from a GA: The ability to compute very com-
plex (in our case this means more trailers) problems in acceptable time. Since we changed
hardware since the original 50 generation/no trailer run we cannot draw a clear conclu-
sion here, but when comparing 6.3 and 6.4 later we will be able do so. It is also notable
that the last two rows, which employ the TwoPointCrossover, are now significantly worse
than the first 2, which was not that noticeable before. Also, our second row is now better
than our first, however, this may also be due to our small sample size. We will see how
this changes for a generation count of 100 in the following section.

Figure 6.5: Another example of a good result computed by the GA
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6.4 One Trailer, Generation Count of 100

The settings in the following table are the same as in the previous ones, but the generation
count has been doubled to 100 again. The vehicle still has one trailer.

Run 8Bit, Tournament 8Bit, Roulette TwoPoint, Tour-
nament

TwoPoint,
Roulette

1 200 in 2:40 93 in 2:43 73 in 2:44 74 in 2:38

2 77 in 2:36 59 in 2:46 62 in 2:35 60 in 2:45

3 126 in 2:36 100 in 2:40 45 in 2:46 129 in 2:44

4 58 in 2:41 131 in 2:40 135 in 2:50 101 in 2:43

5 96 in 2:40 261 in 2:40 118 in 2:44 61 in 2:45

6 59 in 2:43 128 in 2:41 71 in 2:45 84 in 2:38

7 97 in 2:37 133 in 2:41 47 in 2:42 64 in 2:37

Best 240 in 1:44 222 in 1:44 647 in 1:53 156 in 1:54

Worst 90 in 2:06 61 in 1:46 56 in 1:57 49 in 1:57

Average 144 in 1:51 146 in 1:51 198 in 1:50 117 in 1:56

Table 6.4: One Trailer, Generation Count of 100

We can now clearly see that the addition of one trailer had almost no impact on our
required computation time, in row 3 the time is up by 5 seconds, in 2 and 4 it is up by
4 seconds and in row 1 it is even down by 1 second. The overall quality of paths has
further diminished, so using a generation count of 100 does not seem to be a good idea
as the algorithm starves out instead of producing better results. Row 2 still produced the
best results, but is also not very consistent, the TwoPointCrossover-based results are still
far below the EightBitCrossover ones. We will further compare row 1 and 2 with a larger
sample size in the next section.

We will conclude here that the addition of trailers has far more impact on the quality of
the path, which is bad, than on the computation time, which is good. We can also clearly
see that the EightBitCrossover operation outperforms the TwoPointCrossover, which is
what we expected. The difference between using Tournament or RouletteWheel Selec-
tion is not nearly as clear, we will need a much larger sample size to draw a conclusion
here.
There also seems to be a limit as to how much we can raise the generation count before
we lower the quality instead of raising it. We currently conclude that 50 generations are
better than 100, though whether or not there is another, better, value than that will require
further testing.
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6.5 Further Testing

The first two rows, that is EightBit Crossover and Tournament or RouletteWheelSelection
have been selected for further testing with a larger sample size. The generation count has
been set to 50 again and all other settings are the same as above, computation was done
on the same Core i5 system. Due to the large sample size (100 runs without trailer, 500
runs with 1 trailer) the tables will not be given here, but instead we will discuss the re-
sults.
Without a trailer we get an average rating of 184 for the first row (TournamentSelection)
and 161 for the second (RouletteWheelSelection), which confirms our previous assump-
tion that the tournament selection is better than the roulette wheel selection, even though
our small scale tests seemed to contradict that. We get an average time of 1:19 each
(1:19:070707 and 1:19:212121), so we can safely assume that the choice in selection func-
tion has no influence on our computation time. The best paths had a rating of 1383 and
584, the worst 39 and 56 respectively. This means an average deviance of 109 for the first
row and only 72 for the second, which, again, contradicts our small scale testing.
Our second test case, that is a vehicle with one trailer, received an even larger sample size
of 500 runs. The setup is the same as above, so the first row has results for tournament
selection, the second for roulette wheel selection. The averages are 176 and 163 respec-
tively, which means that our tournament selection got slightly worse, but not as much
as our small scale test would have us believe, while the roulette wheel selection remains
almost unaffected, but still worse overall. The average deviances are 98 and 88, so much
closer than in our previous test with no trailer, the same goes for our best and worst paths,
which are 2358, 2716 and 39, 43. The average times are 1:21 in both cases (1:21:833667 and
1:21:733466) which, again, shows that the addition of a trailer makes almost no difference
and that is even less of a difference between the two selection methods.
As we expected in the beginning, TournamentSelection seems to outperform Roulette-
Wheel Selection, albeit not by much.
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Conclusion and Future Work

We have shown the usability of machine learning algorithms, with the genetic algorithm
as an example, as a tool for finding or optimizing paths in high dimensional spaces un-
der consideration of nonholonomic constraints. We have also introduced alternative al-
gorithms and, as far as possible without actually implementing every possible algorithm
under the same circumstances, made some comparisons to our own results. As already
mentioned in 4 many more alternative implementations and further optimizations of the
genetic algorithm are possible, some of which will be summarized here.

The accuracy of the GA could be further optimized by adjusting the collision detection to
avoid getting close to obstacles, not just avoiding the obstacles themselves. The overall
quality of the path could be raised by considering more factors, such as length, number
of turns or minimum distance to any obstacle along the path.
The current implementation is tested to provide the best performance with the given op-
erators, however, since there are many different possible GA operators and many ways
to weight and combine these, there are possibly combinations that would provide bet-
ter results that have not been considered here. While there are certain operators that are
more suited to a given task than other, many of these preferences can only be determined
by extensive testing of all possibilities, which would go beyond the scope of this thesis.
The current version of the program makes two assumptions about the vehicle that may be
lifted with slight alterations and further testing: The vehicle is always driving forward,
never changing direction and the vehicle only has a maximum of one trailer. The software
is already capable of handling an infinite number of trailers, however, since this has not
been tested, it is currently not possible to define more than one trailer in the GUI. This
assumption is made mostly due to the fact that general-n-trailers with infinite trailers
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are purely theoretical. As shown in [8], GAs are not slowed down by higher complexity
as much as alternative solutions, so while the performance of our proposed algorithm
would certainly suffer from having to consider more trailers, it would not slow down as
much as iterative algorithms and would further outperform classic solutions. Our own
testing in 6 confirms this assumption.
Changing directions during the drive is partially implemented insofar that both the genome
and the path part classes contain the information necessary, in the current version these
are all set to default values however. The program has not been tested with such paths
and the current random path generator does not allow for the path to contain corners
since it always uses the direction of the end of the previous path part when generating
the next one. This limitation would have to be loosened since a change in direction would
obviously break this restriction.
The algorithm may also be optimized at its very basis, that is, the genome representation.
The current representation limits both the maximum and minimum length of the path as
well as the granularity of the choices made. By using different or simply more detailed
representations the algorithm may be able to come up with better paths, gain better per-
formance or both.

While many such optimizations are possible and are certainly already being worked
on by various research groups around the world, the purpose of this paper was not to
develop a best possible algorithm, but simply to show that such machine learning al-
gorithms for path-planning tasks exist and are actually useful. While the given algo-
rithm may be far from optimal, it is a working solution for high dimensional problem
which, depending on the chosen complexity, can outperform classic path planning algo-
rithms.
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Appendix

Table A.1: Eight Bit, No Trailer, Generation Count of 100

Run Tournament Time Roulette Time

01 62 1:18 154 1:21

02 132 1:20 133 1:20

03 83 1:20 236 1:20

04 90 1:21 138 1:20

05 91 1:18 194 1:23

06 200 1:21 138 1:18

07 86 1:24 220 1:18

08 39 1:18 159 1:19

09 122 1:20 90, 1:17

10 81 1:17 498 1:18

11 249 1:21 109 1:18

12 71 1:19 127 1:18

13 308 1:18 113 1:19

14 105 1:24 584 1:21

15 100 1:23 264 1:17

16 184 1:23 323 1:20

17 235 1:22 122 1:19

18 205 1:18 173 1:18

19 288 1:23 108 1:20
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20 328 1:20 77 1:21

21 94 1:23 80 1:20

22 96 1:20 219 1:17

23 239 1:22 85 1:17

24 129 1:16 92 1:19

25 68 1:18 172 1:20

26 163 1:19 91 1:20

27 124 1:21 218 1:18

28 113 1:19 78 1:17

29 507 1:22 84 1:21

30 175 1:18 190 1:18

31 171 1:19 91 1:17

32 63 1:18 142 1:16

33 71 1:17 82 1:21

34 115 1:23 260 1:23

35 72 1:20 89 1:19

36 1383 1:18 169 1:17

37 302 1:16 237 1:17

38 197 1:22 172 1:20

39 297 1:18 102 1:19

40 132 1:19 75 1:20

41 127 1:18 120 1:19

42 60 1:19 83 1:18

43 120 1:18 102 1:18

44 84 1:17 207 1:20

45 97 1:15 119 1:21

46 66 1:18 65 1:19

47 340 1:19 239 1:19

48 202 1:18 171 1:18

49 71 1:19 107 1:20

50 451 1:17 386 1:17

51 88 1:18 134 1:18

52 58 1:17 211 1:18

53 69 1:20 232 1:22

54 115 1:21 78 1:19

55 175 1:21 124 1:21

56 54 1:19 114 1:19

57 156 1:17 98 1:20

58 154 1:20 69 1:20
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59 175 1:20 118 1:15

60 98 1:20 101 1:19

61 350 1:18 126 1:22

62 131 1:22 257 1:18

63 757 1:18 114 1:21

64 479 1:15 102 1:17

65 111 1:21 58 1:18

66 456 1:20 94 1:18

67 331 1:19 143 1:21

68 75, 1:18 242 1:18

69 164 1:19 134 1:20

70 54 1:19 118 1:19

71 39 1:24 120 1:18

72 360 1:19 79 1:19

73 222 1:17 269 1:19

74 86 1:16 83 1:23

75 114 1:21 168 1:21

76 127 1:18 521 1:18

77 60 1:20 217 1:19

78 98 1:17 271 1:18

79 171 1:16 104 1:21

80 188 1:18 268 1:17

81 125 1:22 167 1:17

82 965 1:22 85 1:19

83 216 1:21 391 1:17

84 160 1:18 214 1:21

85 95 1:18 75 1:20

86 123 1:18 389 1:19

87 228 1:16 113 1:21

88 77 1:18 148 1:18

89 80 1:16 117 1:24

90 56 1:16 106 1:22

91 246 1:17 119 1:21

92 92 1:15 153 1:19

93 228 1:19 108 1:20

94 90 1:18 70 1:21

95 160 1:16 87 1:20

96 109 1:18 241 1:22

97 170 1:17 217 1:17
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98 208 1:20 56 1:20

99 138 1:21 75 1:18

Average 184 1:19 161 1:19

Maximum 1383 1:24 584 1:24

Minimum 39 1:15 56 1:15

Table A.2: Eight Bit, One Trailer, Generation Count of 100

Run Tournament Time Roulette Time

001 70 1:20 79 1:27

002 72 1:22 74 1:20

003 144 1:22 87 1:21

004 207 1:23 148 1:22

005 373 1:21 106 1:22

006 324 1:21 101 1:23

007 66 1:21 202 1:21

008 71 1:22 128 1:21

009 239 1:25 915 1:21

010 630 1:21 328 1:21

011 125 1:20 193 1:19

012 198 1:21 56 1:23

013 122 1:23 138 1:20

014 163 1:24 150 1:22

015 463 1:21 91 1:23

016 123 1:20 90 1:24

017 485 1:22 272 1:19

018 75 1:23 54 1:23

019 137 1:21 109 1:18

020 64 1:22 397 1:21

021 680 1:22 80 1:21

022 61 1:21 58 1:21

023 226 1:21 99 1:22

024 106 1:21 130 1:22

025 642 1:23 57 1:20

026 525 1:23 168 1:21

027 110 1:22 84 1:25

028 72 1:21 102 1:22

029 207 1:22 154 1:18
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030 141 1:21 109 1:20

031 203 1:21 93 1:20

032 106 1:21 105 1:21

033 58 1:20 328 1:22

034 223 1:19 101 1:22

035 43 1:21 157 1:20

036 161 1:20 91 1:22

037 177 1:21 340 1:24

038 63 1:21 68 1:21

039 83 1:18 171 1:22

040 287 1:25 73 1:23

041 102 1:24 132 1:23

042 177 1:21 85 1:20

043 200 1:24 564 1:21

044 231 1:24 71 1:23

045 111 1:22 77 1:20

046 77 1:24 109 1:21

047 2358 1:22 96 1:26

048 130 1:22 235 1:22

049 159 1:20 60 1:22

050 220 1:24 122 1:23

051 153 1:22 181 1:20

052 99 1:24 156 1:23

053 237 1:19 82 1:23

054 185 1:21 96 1:24

055 89 1:21 164 1:21

056 78 1:22 159 1:22

057 168 1:20 112 1:23

058 324 1:24 149 1:24

059 74 1:22 207 1:21

060 167 1:22 204 1:21

061 760 1:20 90 1:22

062 210 1:20 182 1:22

063 186 1:23 112 1:19

064 234 1:23 112 1:22

065 61 1:19 87 1:21

066 436 1:22 2716 1:23

067 582 1:19 107 1:23

068 187 1:23 65 1:20
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069 78 1:23 235 1:20

070 73 1:20 176 1:18

071 113 1:23 169 1:21

072 103 1:24 96 1:20

073 143 1:21 77 1:23

074 209 1:20 142 1:19

075 143 1:22 159 1:23

076 109 1:23 149 1:22

077 101 1:20 90 1:24

078 98 1:22 106 1:20

079 95 1:22 130 1:22

080 103 1:23 325 1:22

081 91 1:18 100 1:23

082 181 1:24 324 1:22

083 241 1:24 86 1:21

084 296 1:21 63 1:22

085 57 1:23 89 1:19

086 264 1:20 73 1:21

087 59 1:19 539 1:21

088 123 1:21 157 1:21

089 126 1:20 241 1:20

090 106 1:21 89 1:23

091 130 1:20 134 1:22

092 185 1:21 91 1:21

093 158 1:24 72 1:21

094 64 1:21 207 1:26

095 82 1:20 236 1:20

096 366 1:19 165 1:23

097 234 1:18 169 1:21

098 122 1:20 297 1:20

099 160 1:22 147 1:24

100 78 1:19 56 1:22

101 102 1:20 273 1:24

102 107 1:20 151 1:22

103 167 1:22 226 1:23

104 66 1:19 130 1:20

105 249 1:22 97 1:22

106 597 1:22 203 1:20

107 164 1:27 71 1:21
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108 83 1:24 121 1:20

109 398 1:20 135 1:19

110 111 1:24 141 1:23

111 131 1:17 69 1:19

112 107 1:20 617 1:18

113 174 1:20 79 1:21

114 115 1:21 235 1:22

115 113 1:23 59 1:23

116 90 1:20 340 1:19

117 203 1:23 165 1:22

118 144 1:22 99 1:23

119 70 1:23 139 1:20

120 75 1:20 143 1:21

121 75 1:21 103 1:23

122 217 1:20 469 1:25

123 386 1:23 358 1:22

124 80 1:25 164 1:22

125 572 1:29 48 1:22

126 96 1:21 62 1:21

127 85 1:25 79 1:25

128 91 1:20 93 1:19

129 74 1:19 303 1:21

130 523 1:22 148 1:21

131 104 1:23 124 1:24

132 140 1:21 106 1:22

133 156 1:18 132 1:22

134 82 1:21 165 1:22

135 59 1:21 175 1:20

136 153 1:20 300 1:19

137 61 1:22 87 1:19

138 110 1:24 73 1:22

139 369 1:22 160 1:24

140 111 1:19 43 1:24

141 48 1:21 123 1:19

142 146 1:22 157 1:20

143 131 1:22 82 1:20

144 62 1:20 75 1:21

145 282 1:20 289 1:25

146 155 1:23 93 1:19
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147 81 1:21 99 1:21

148 58 1:19 83 1:22

149 70 1:23 91 1:24

150 219 1:22 141 1:22

151 243 1:18 62 1:21

152 112 1:22 100 1:24

153 1058 1:21 108 1:20

154 330 1:22 67 1:23

155 101 1:25 162 1:23

156 162 1:20 114 1:20

157 98 1:21 70 1:21

158 1043 1:18 67 1:21

159 117 1:19 81 1:19

160 205 1:21 131 1:20

161 300 1:21 412 1:22

162 72 2:82 86 1:21

163 106 1:22 119 1:20

164 175 1:19 227 1:23

165 118 1:21 169 1:22

166 118 1:18 188 1:19

167 110 1:24 71 1:19

168 534 1:19 64 1:21

169 65 1:20 161 1:20

170 121 1:20 351 1:22

171 98 1:19 178 1:20

172 95 1:21 83 1:19

173 248 1:19 111 1:21

174 48 1:23 72 1:22

175 153 1:23 96 1:22

176 105 1:20 132 1:24

177 167 1:18 133 1:22

178 80 1:23 195 1:21

179 127 1:23 92 1:20

180 300 1:22 90 1:22

181 75 1:23 386 1:21

182 312 1:22 621 1:22

183 518 1:22 546 1:22

184 110 1:27 77 1:22

185 64 1:22 143 1:21
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186 110 1:22 96 1:22

187 150 1:20 202 1:21

188 169 1:22 145 1:21

189 122 1:21 73 1:18

190 336 1:21 59 1:20

191 79 1:21 45 1:22

192 306 1:21 96 1:19

193 68 1:25 135 1:22

194 87 1:22 115 1:22

195 118 1:24 58 1:22

196 722 1:20 188 1:21

197 120 1:21 134 1:20

198 146 1:25 74 1:23

199 103 1:24 75 1:20

200 58 1:20 128 1:19

201 51 1:23 97 1:23

202 82 1:23 155 1:20

203 78 1:26 108 1:21

204 281 1:21 96 1:20

205 95 1:21 121 1:21

206 263 1:20 417 1:21

207 118 1:21 250 1:23

208 80 1:20 160 1:24

209 147 1:22 87 1:22

210 57 1:20 450 1:24

211 62 1:20 282 1:22

212 97 1:22 162 1:22

213 77 1:23 124 1:22

214 926 1:21 119 1:25

215 238 1:21 163 1:19

216 157 1:25 84 1:23

217 62 1:20 106 1:22

218 502 1:22 194 1:22

219 77 1:23 90 1:22

220 62 1:25 67 1:20

221 256 1:18 202 1:20

222 121 1:20 255 1:25

223 70 1:25 139 1:22

224 124 1:25 159 1:22
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225 377 1:21 89 1:24

226 77 1:23 66 1:23

227 424 1:23 491 1:21

228 147 1:23 119 1:21

229 101 1:23 115 1:20

230 280 1:21 173 1:21

231 79 1:24 55 1:19

232 75 1:20 180 1:20

233 299 1:21 191 1:22

234 153 1:22 199 1:19

235 142 1:21 211 1:20

236 356 1:24 77 1:23

237 100 1:24 73 1:22

238 200 1:21 59 1:21

239 365 1:26 69 1:28

240 63 1:28 78 1:20

241 200 1:22 151 1:19

242 177 1:23 85 1:21

243 590 1:20 179 1:25

244 106 1:24 106 1:19

245 105 1:21 154 1:19

246 182 1:23 69 1:23

247 189 1:21 80 1:24

248 108 1:24 124 1:21

249 173 1:20 238 1:20

250 189 1:22 80 1:22

251 143 1:24 118 1:23

252 110 1:22 157 1:23

253 268 1:25 134 1:22

254 119 1:22 201 1:22

255 102 1:23 154 1:20

256 247 1:23 95 1:23

257 92 1:21 66 1:22

258 319 1:22 274 1:23

259 949 1:23 138 1:24

260 56 1:27 439 1:22

261 66 1:24 63 1:22

262 276 1:23 105 1:21

263 373 1:22 74 1:19
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264 351 1:20 71 1:22

265 104 1:23 188 1:21

266 82 1:20 132 1:20

267 226 1:21 271 1:22

268 70 1:21 73 1:20

269 56 1:19 71 1:21

270 211 1:22 106 1:24

271 509 1:24 275 1:23

272 119 1:19 141 1:19

273 407 1:23 175 1:22

274 161 1:20 667 1:26

275 181 1:19 151 1:19

276 142 1:20 69 1:22

277 164 1:21 137 1:26

278 157 1:23 70 1:22

279 108 1:26 234 1:24

280 70 1:22 211 1:23

281 435 1:23 73 1:24

282 58 1:22 74 1:22

283 105 1:24 93 1:22

284 128 1:19 56 1:20

285 161 1:21 411 1:19

286 148 1:22 143 1:20

287 87 1:26 96 1:23

288 88 1:21 153 1:22

289 94 1:24 69 1:20

290 149 1:21 44 1:21

291 80 1:24 168 1:19

292 103 1:22 81 1:20

293 216 1:21 100 1:21

294 65 1:22 73 1:20

295 60 1:24 158 1:19

296 120 1:21 215 1:23

297 118 1:26 147 1:21

298 187 1:22 91 1:21

299 174 1:21 43 1:23

300 187 1:26 86 1:17

301 123 1:24 563 1:20

302 156 1:22 100 1:22

53



A. APPENDIX

303 266 1:20 93 1:22

304 156 1:20 75 1:24

305 147 1:20 161 1:21

306 215 1:20 141 1:20

307 210 1:20 77 1:22

308 89 1:22 184 1:20

309 168 1:21 101 1:19

310 187 1:22 287 1:21

311 52 1:22 86 1:20

312 156 1:23 213 1:21

313 157 1:23 83 1:21

314 60 1:23 97 1:22

315 170 1:23 108 1:20

316 378 1:22 51 1:20

317 293 1:25 72 1:21

318 53 1:21 210 1:25

319 91 1:24 168 1:20

320 194 1:24 88 1:22

321 77 1:25 100 1:22

322 363 1:24 115 1:24

323 118 1:23 170 1:22

324 77 1:20 341 1:22

325 56 1:23 111 1:23

326 64 1:23 85 1:22

327 137 1:25 128 1:22

328 95 1:25 290 1:20

329 459 1:21 111 1:20

330 67 1:24 196 1:22

331 151 1:22 215 1:21

332 74 1:20 196 1:20

333 62 1:23 64 1:24

334 74 1:24 63 1:22

335 198 1:20 125 1:19

336 375 1:24 79 1:22

337 67 1:23 127 1:21

338 133 1:21 114 1:20

339 79 1:21 194 1:22

340 432 1:23 216 1:21

341 113 1:20 81 1:23
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342 150 1:21 88 1:22

343 65 1:20 223 1:23

344 83 1:23 100 1:20

345 88 1:26 344 1:20

346 100 1:24 112 1:22

347 93 1:26 234 1:21

348 64 1:22 99 1:21

349 199 1:22 121 1:23

350 225 1:21 94 1:21

351 503 1:22 128 1:21

352 45 1:22 146 1:22

353 81 1:23 259 1:22

354 292 1:22 185 1:24

355 382 1:20 87 1:21

356 170 1:22 108 1:22

357 408 1:20 453 1:24

358 404 1:22 93 1:20

359 139 1:21 64 1:21

360 68 1:17 112 1:22

361 85 1:23 216 1:28

362 286 1:24 54 1:24

363 94 1:24 98 1:23

364 126 1:22 74 1:20

365 56 1:20 177 1:20

366 74 1:20 71 1:20

367 153 1:24 89 1:20

368 74 1:23 440 1:24

369 308 1:24 90 1:21

370 114 1:23 106 1:22

371 132 1:21 105 1:20

372 70 1:20 146 1:21

373 219 1:24 336 1:23

374 208 1:21 93 1:23

375 85 1:22 71 1:23

376 188 1:22 120 1:21

377 73 1:22 161 1:22

378 280 1:24 179 1:24

379 491 1:20 84 1:20

380 82 1:19 72 1:22
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381 107 1:24 67 1:21

382 99 1:19 95 1:22

383 155 1:26 150 1:24

384 56 1:26 282 1:23

385 90 1:21 85 1:22

386 84 1:25 462 1:20

387 122 1:20 144 1:21

388 67 1:24 55 1:20

389 123 1:20 63 1:20

390 265 1:21 257 1:22

391 162 1:21 363 1:21

392 156 1:20 129 1:23

393 97 1:21 73 1:25

394 62 2:83 204 2:82

395 76 1:21 115 1:20

396 98 1:20 145 1:24

397 107 1:18 134 1:22

398 164 1:24 84 1:26

399 116 1:23 47 1:23

400 140 1:23 95 1:20

401 223 1:21 75 1:23

402 124 1:22 66 1:23

403 133 1:20 92 1:23

404 150 1:21 65 1:21

405 56 1:21 129 1:21

406 89 1:18 44 1:20

407 183 1:22 219 1:22

408 160 1:21 91 1:26

409 79 1:22 130 1:22

410 440 1:21 83 1:23

411 153 1:19 111 1:24

412 179 1:24 1025 1:20

413 88 1:22 92 1:21

414 97 1:21 156 1:21

415 78 1:22 472 1:22

416 142 1:23 207 1:22

417 74 1:24 482 1:21

418 167 1:19 150 1:24

419 166 1:21 77 1:22
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420 131 1:22 104 1:26

421 197 1:27 71 1:28

422 223 1:22 127 1:20

423 119 1:22 97 1:21

424 186 1:21 140 1:19

425 80 1:22 220 1:24

426 70 1:22 157 1:23

427 139 1:26 118 1:19

428 133 1:20 74 1:26

429 81 1:27 108 1:22

430 305 1:25 325 1:20

431 51 1:23 112 1:21

432 118 1:23 134 1:21

433 134 1:21 83 1:22

434 39 1:18 127 1:26

435 142 1:21 109 1:23

436 111 1:23 204 1:21

437 93 1:23 137 1:20

438 109 1:21 103 1:20

439 287 1:21 1176 1:19

440 94 1:21 104 1:27

441 96 1:26 157 1:23

442 77 1:22 99 1:20

443 45 1:21 60 1:22

444 92 1:17 193 1:25

445 74 1:21 87 1:24

446 472 1:20 136 1:21

447 122 1:20 131 1:23

448 109 1:21 1614 1:23

449 138 1:21 124 1:20

450 88 1:23 61 1:19

451 163 1:22 145 1:23

452 188 1:23 82 1:21

453 175 1:21 119 1:24

454 291 1:25 100 1:22

455 198 1:23 129 1:23

456 351 1:23 151 1:24

457 141 1:23 135 1:27

458 135 1:23 82 1:22
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459 314 1:21 119 1:21

460 164 1:22 111 1:22

461 57 1:19 71 1:20

462 101 1:21 145 1:21

463 250 1:22 192 1:23

464 107 1:23 245 1:21

465 212 1:24 846 1:25

466 133 1:23 130 1:22

467 171 1:24 471 1:23

468 81 1:22 98 1:21

469 62 1:24 185 1:25

470 108 1:22 227 1:24

471 103 1:26 138 1:21

472 73 1:20 159 1:22

473 238 1:19 183 1:22

474 148 1:21 100 1:23

475 88 1:21 86 1:21

476 124 1:18 73 1:23

477 132 1:21 103 1:22

478 107 1:20 170 1:28

479 46 1:21 114 1:23

480 121 1:20 292 1:24

481 156 1:21 136 1:22

482 121 1:18 66 1:25

483 273 1:22 140 1:21

484 229 1:21 125 1:24

485 95 1:21 123 1:21

486 237 1:22 132 1:21

487 104 1:24 68 1:24

488 315 1:22 107 1:23

489 108 1:22 101 1:21

490 54 1:24 82 1:22

491 114 1:22 98 1:22

492 202 1:23 64 1:24

493 119 1:24 432 1:20

494 121 1:23 91 1:24

495 189 1:20 90 1:24

496 193 1:20 97 1:21

497 348 1:19 299 1:26
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498 92 1:24 93 1:22

499 83 1:21 408 1:22

Average 176 1:21 163 1:21

Maximum 2358 1:29 2716 1:28

Minimum 39 1:17 43 1:17
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