
Fachbereich 4: Informatik

An Annotation-centric Approach to
Similarity Management

Masterarbeit
zur Erlangung des Grades eines Master of Science

im Studiengang Informatik

vorgelegt von

Thomas Schmorleiz

Erstgutachter: Ralf Lämmel

Institut für Informatik

Zweitgutachter: Martin Leinberger

Institut für Informatik

Koblenz, im Februar 2015

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine an-

deren als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einver-

standen.

� �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Unterschrift)

Abstract

Software systems are often developed as a set of variants to meet diverse requirements.
Two common approaches to this are ”clone-and-owning” and software product lines. Both
approaches have advantages and disadvantages. In previous work [1] we and collaborators
proposed an idea which combines both approaches to manage variants, similarities, and
cloning by using a virtual platform and cloning-related operators.
In this thesis, we present an approach for aggregating essential metadata to enable a prop-
agate operator, which implements a form of change propagation. For this we have devel-
oped a system to annotate code similarities which were extracted throughout the history
of a software repository. The annotations express similarity maintenance tasks, which can
then either be executed automatically by propagate or have to be performed manually by
the user. In this work we outline the automated metadata extraction process and the system
for annotating similarities; we explain how the implemented system can be integrated into
the workflow of an existing version control system (Git); and, finally, we present a case
study using the 101haskell corpus of variants.

Zusammenfassung

Um unterschiedliche Anforderungen zu erfüllen, werden Softwaresysteme oft in Form ei-
ner Menge von Varianten entwickelt. Zwei gebräuchliche Ansätze für eine solche Softwa-
reentwicklung sind das clone-and-owning und die Produktlinienentwicklung. Beide Ansätze
haben Vor- und Nachteile. In vorheriger Arbeit mit anderen [1] haben wir eine Idee vor-
gestellt bei der beide Ansätze verknüpft werden um Varianten, Ähnlichkeiten und Softwa-
reklone zu verwalten. Diese Idee basiert auf einer virtuellen Plattform und Operatoren für
Softwareklone.
In der vorliegenden Arbeit stellen wir einen Ansatz vor um essentielle Metadaten für die
Realisierung eines propagate-Operators zu aggregieren. Dafür haben wir ein System ent-
wickelt um Ähnlichkeiten mit Annotationen zu versehen, wobei die Ähnlichkeiten aus
der Historie eines Repositories extrahiert werden. Die Annotationen drücken aus wie ei-
ne Ähnlichkeit zukünftig gewartet werden soll. Abängig vom Annotationstyp kann diese
Wartung automatisiert ausgeführt oder sie muss vom Benutzer manuell betrieben werden.
In dieser Arbeit beschreiben wir die automatisierte Extraktion von Metadaten und das Sys-
tem zur Annotation von Ähnlichkeiten; wir erklären wie das System in den Arbeitsfluss
eines bestehenden Programms zur Versionierungverwaltung (Git) integriert werden kann;
und abschließend stellen wir eine Fallstudie vor, die das 101haskell-System benutzt.

Acknowledgement

I’d like to thank my supervisor Ralf Lämmel for his support and the great opportunities he
has given to me over the years.
The presented work continues previous joint work [1] with Michal Antkiewicz, Wenbin
Ji, Thorsten Berger, Krzysztof Czarnecki, Stefan Stanciulescu, Andrzej Wasowski, and Ina
Schaefer. The work is also inspired by Julia Rubins framework for clone management [2,
3].

I’d like to thank my mother for believing in me and supporting me throughout all my
studies.

Contents

1 Introduction 7
1.1 Context of this work . 8
1.2 Related work . 9
1.3 Research questions . 10
1.4 Roadmap . 11

2 Extracting Metadata 13
2.1 Initial extraction process . 13

2.1.1 Variants . 14
2.1.2 Fragment snapshots . 14
2.1.3 Fragments . 15
2.1.4 Similarity snapshots . 17
2.1.5 Similarity evolutions . 19

2.2 Traversing commits . 21
2.3 Updating metadata . 22

3 Annotating similarities 23
3.1 Annotation categories . 23
3.2 Structure of annotations . 24
3.3 Applicability of annotations . 24
3.4 Web application for similarity exploration and annotation 25

3.4.1 Views . 25
3.5 Annotators . 27

3.5.1 Commit-centric . 27
3.5.2 Variant-centric . 31

3.6 Automatic annotations . 34
3.6.1 Annotating equality classes . 35
3.6.2 Rule-based annotation inference 35

5

CONTENTS 6

4 Automatic change propagation 41
4.1 Executing Maintain and Restore Equality 41
4.2 Updating annotation . 43

5 Todo list 45
5.1 Tasks in the todo list . 45
5.2 Acting on tasks in the todo list . 46
5.3 Updating annotations after user actions 46
5.4 Summary of possible annotation evolutions 47

6 Integrating with Git 49
6.1 The standard Git workflow . 49
6.2 Extending git with new commands . 50
6.3 Extended Git workflow . 50

7 Case study: 101haskell 52
7.1 101haskell . 52
7.2 Metrics for the case study . 53

7.2.1 Equality classes . 53
7.2.2 Fragments . 54
7.2.3 Similarities . 54
7.2.4 Annotations . 54
7.2.5 Variants . 54

7.3 Initial status . 55
7.4 Step 1: Automatically restoring equalities 57

7.4.1 Status . 57
7.5 Step 2: Manually establishing equalities 60

7.5.1 Status . 61
7.6 Step 3: Increasing similarities . 64

7.6.1 Status . 64
7.7 Step 4: Identifying inconsistencies . 65
7.8 Summary . 68

8 Conclusion 70
8.1 Summary . 70
8.2 Threats to validity . 70

8.2.1 Variability . 71
8.2.2 Fragment extraction . 71
8.2.3 Clone and similarity detection 71
8.2.4 Annotations . 71

8.3 Future work . 72

Chapter 1

Introduction

Software systems are often developed a set of variants to fulfill potentially conflicting
requirements related to aspects like legal frameworks, use cases, or cultural specifics. To
create such a set of variants the clone-and-own approach is often utilized. That is, assets
are copied from existing variants to either start the implementation of a new variant, or to
add new features to another existing variant.
Clone-and-owning comes with some advantages [4, 5]. The approach requires no special
process, therefore has low adoption costs, and lets developers work independently. On
the other hand cloning is associated with some serious disadvantages [4, 5]. Due to the
lack of process and monitoring the shared assets are disconnected. Therefore the assets
might divergence unintentionally and then have to be synchronized manually. This will
not scale well once a large number of variants has to be maintained. These unintentionally
divergences might be the result of unpropagated bug fixes, refactoring, or performance
improvements.
Another approach to develop as set of variant is product line engineering (PLE) [6], which
is often proposed to systematically reuse asset across multiple variants. PLE is based
on a platform that collects all shared assets and that can be used to derive new variants
by selecting certain components like the implementations of features. The advantages of
PLE are given by the platform of shared assets. It reduces redundancy and allows for
propagation of changes, thereby avoiding unintentional divergence. The disadvantages are
mostly related to the migration to PLE. The migration process comes with high risks due
to the disruption of the development process [7]. Creating a software product line pro-
actively is often not possible since the set of variants, and therefore the set of shared assets
is not known at that point [8]. Even with PLE in place clones might still be present [4].
Another issue is that the platform restricts the developers’ freedom such that they can not
work fully independently.
We therefore need some middle ground that allows for independence of developers and low
adoption costs on one hand, but supports systematic clone and similarity monitoring and

7

CHAPTER 1. INTRODUCTION 8

management on the other hand. We need an approach that allows cloning while providing
means for avoiding unintentional divergence. The approach should additionally allow to
detect and remove accidental variation, that is, fragment pairs that were never equal but
should be.
In this work, we present an approach to extract information about the sharing of assets from
the history of a given repository. More specifically, we store metadata about the similari-
ties of fragments across all variants. We can detect two types of clones [9]. Type-1 clones,
where two fragments are equal modulo whitespace. And Type-3 clones, where pieces of
code are added, deleted, and modified when comparing the two fragments. We then let the
user explore the similarities in a web interface and manage the similarities via annotations
that state how each similarity should be maintained. For instance, an annotation can ex-
press that the contents two fragments diverged unintentionally and that equality should be
restored. An annotation can also express that two fragments that have been equal should
indeed be equal, because their difference is based on accidental variation. All maintenance
tasks can then either be executed automatically or have to be performed manually by the
user.

1.1 Context of this work

In collaboration with others we have proposed a general approach that aims to combine the
advantages of PLE and clone-and-owning while diminishing their disadvantages [1]. The
work relies on a virtual platform which does not store shared assets explicitly like in PLE,
but rather holds metadata about the project including metadata about the similarities and
clones across the variants of the software system. We further identified a set of cloning-
related operators that both use and modify existing metadata and produce new metadata.
Examples of such operators are:

• clone variant to start the implementation of a new variant

• clone feature from one to another existing variant

• propagate changes in one fragment to another fragment in the same or another
variant

In this context this work focuses on the aggregation of critical metadata for the propagate
operator. It implements a form of change propagation, that is, it synchronizes fragments
that should be equal but have diverged over time. The operator is enabled both by the
extracted similarities and the annotations of such similarities by the user.

CHAPTER 1. INTRODUCTION 9

1.2 Related work

Variability. This thesis implements the propagate operator in the context of our paper
with others on the notion of a virtual platform [1]. The work is also inspired by Julia
Rubin’s framework for clone management [2, 3]. The paper proposes a new strategy to
manage variability in a software system. Berger and others have conducted a survey of
variability-modeling practices used in the industry [8]. A systematic review of literature
on variability modeling using software product lines has been carried out by Chen et al.
[10]. The use of cloning in such software product lines has been addressed by Dubinsky
and others in an exploratory study [4]. Fischer et al. have proposed an approach where
basic cloning is enhanced by systematic reuse of variants [11].
In our work, cloning and similarities have to be detected and their evolutions extracted and
annotated such that they can be systematically maintained further.
Clone detection. For the detection of clones we use an approach by Cordy et al. where
fragment tokens are pretty-printed into many lines [12]. Cordy and others have also con-
ducted a survey of the general capabilities of available clone detection techniques [13].
An evaluation of modern clone detection tools was done by Svajlenko et al. [14]. Our
detection mechanism extracts fragment pairs that are not equal but just similar. A hybrid
approach to detect both type-1 and type-3 clones and a taxonomy for developers’ editing
activities has been proposed by Roy [15].
Clone evolution. Our approach also extracts the evolution of such similarities from the
history of a given repository. Evolutions of cloning groups are called cloning genealogies.
Notkin and others have presented and build a clone genealogy tool to extract information
about the evolution of code clones from a repository’s history [16]. The fault-proneness
of clone migration in clone genealogies has been studied by Xie et al. [17]. The work
by Mondal focuses on the stability of such code clones during software maintenance [18].
Saha et al. have studied the general evolution of clones in an exploratory way [19]. Schnei-
der and others proposed an approach to extract and classify cloning genealogies after track-
ing fragments through versions of a software system [20].
Reverse engineering. Our metadata extraction process can be seen as a form of reverse
engineering. We provide the user with the information extracted from the history of a given
repository. Wu et al. have examined the use of reverse engineering from version control
systems to help developers to understand, develop, and maintain software systems [21].
While we use annotations to express similarity-maintenance tasks, Brühlmann and others
use annotations in a generic approach to enrich reverse engineering with human knowl-
edge [22].
Change propagation. Hemel and others extracted the variability in a set of Linux variants
[23]. Their work discusses that changes are often not propagated from the main Linux ker-
nel to its variants. The term ”late propagation” refers to a pattern of commits where clones
first diverge but are then synchronized again and converge. Our tool discourages such late

CHAPTER 1. INTRODUCTION 10

propagation and aims to diminish unintentional divergence. Mondal and others have stud-
ied the late propagation of near-miss clones [24], while Barbour et al. have defined types
of late propagation and discuss why such propagation is indeed harmful [25]. The diffi-
culty of maintaining software in the presence of clones has been studied by Chatterji and
others [26].
Clone management. Our approach supports management of similarities and clones. A
survey by Roy et al. points out past and current achievements in clone management [27].
Their work mentions annotations as a way for the developer to indicate the intents of
cloning. While Nguyen and others utilize annotations in this way in their work on JSync [28],
in our study annotations are used to express maintenance tasks. Yamanaka et al. introduce
a system for notifying developers about the creation and change of clones [29], we notify
developers when they have to act on the fragments of an annotated similarity. The work by
Kotschke summarizes the state-of-the-art in clone management with regard to detection,
tracking, presentation, and removal [30].

1.3 Research questions

Our research questions are about how useful annotations of similarities are for managing
and monitoring sharing of assets. In the following we distinguish between unintentional
divergence as an evolution where the underlying fragments were once equal but become
unequal unintentionally, and accidental variation where the two fragments have never been
equal but should be.
In terms of management we ask about how unintentional divergence and accidental varia-
tion can be diminished respectively removed by using annotations:

• Q1: How much unintentional divergence and accidental variation can be

– annotated

– and finally eliminated guided by annotations?

To measure the elimination of unintentional divergence and accidental variation we
ask:

– Q11: By what percentage can the number of distinct fragments be reduced?

The second research question is about the added value of being able to monitor similarities
and sharing of assets:

• Q2: How much sharing and similarity can be achieved once unintentional diver-

gence and accidental variation are eliminated with the help of annotations?

We measure sharing by two orthogonal questions:

CHAPTER 1. INTRODUCTION 11

– Q21: What is the median and average number of variants each fragment is

shared in?

– Q22: What is the median and average percentage of originality, that is the

number of unshared fragments, of each variant?

To measure similarity we ask:

– Q23: What is the median and average similarity of fragments?

The last research question focuses on the insights developers gain by inspecting the final
equality classes.

• Q3: Which inconsistencies can be identified when inspecting the final equality

classes?

Regarding the emerging equality classes we ask:

– Q31: What categories of equality classes, that is, reasons for the underlying

sharing, can be identified?

– Q32: When identifying variants that do not contribute to a particular equal-

ity class by their fragments, which inconsistencies of these variants can be

identified?

1.4 Roadmap

The rest of this thesis is structured as follows.
The next chapter will explain what kind of metadata needs to be extracted to build the
virtual platform about shared assets. The final result will be a set of similarities between
fragments.
The third chapter will illustrate the process of annotating the extracted similarities. We
will explain both the semantics and the applicability of each annotation category. We will
introduce a web application (called ”Ann”) to explore the similarities in a given repository
and finally annotate them. Finally, we present some approaches to automate annotation
where possible.
The next two chapters will focus on how to act on the annotated similarities. Namely Chap-
ter 4 will describe the use of annotations for automatic change propagation; and Chapter 5
will present the emerging todo list of manual maintenance tasks for the user.
Chapter 6 will illustrate how to integrate our system into the workflow of an existing ver-
sion control system (Git). Here we will also introduce a set of new Git commands.
Next, we will presents results of a case study using the 101haskell software chrestomathy
[31,32], a corpus of variants for educational purposes and a subproject of the 101companies

project [33].

CHAPTER 1. INTRODUCTION 12

Finally, we will draw a conclusion, discuss threats to validity, and outline some future
work.

Chapter 2

Extracting Metadata

In this chapter we will outline how we extract metadata about the sharing of assets. We will
explain the initial extraction process, how we traverse the history of the repository during
the extraction, and, finally, how we update metadata when new commits are added to the
repository’s history.

2.1 Initial extraction process

Figure 2.1: Class diagram for pre-annotation metadata.

This section is dedicated to the steps in the initial metadata extraction process that have to
be performed before the user can annotate similarities. All steps extract metadata from the
given repository and thereby build the basis of a virtual platform. Figure 2.1 shows a model
of the extracted metadata. Each of the following extraction steps populates this model,
that is, each step creates instances of the classes shown, links them to other instances or
enriches existing instances of classes. First, we extract all variant names at each commit
point. Then, we will create instances of fragment snapshots, each bound to a commit point

13

CHAPTER 2. EXTRACTING METADATA 14

and contained in a variant. We then instantiate fragments as series of fragment snapshots.
Next, we extract similarity snapshots between fragment snapshots, each associated with
a specialized ”diff ratio” as a similarity value. Finally, we create instances of similarity
evolutions by listing similarity snapshots.

2.1.1 Variants

The first step extracts the names of variants that can be found throughout the history of the
repository. Variants can be organized in many ways including dedicated folders, branches
or repositories. Here we present the realization of the extraction of variant names for the
case of dedicated folders.
The variant extractor is given a list of paths ps, each pointing to a possible root folder of
variation. For each commit c and each path p in ps the extractor checks whether a folder
at p exists at c. The first hit (regarding the order given by ps) marks the root folder of
variation at c. The names of the sub-folders are then extracted as variant names at c.
This step also attempts to detect possible renaming of variants from each commit ci to next
the commit ci+1, represented by a list of pairs (s, t) where s is the source variant name at
ci and t is the target variant name at ci+1: If a folder for t did not exist at ci, but files were
moved into a new folder for t in ci+1 then we check from which source variant folder s the
majority of the files were moved from and we create a renaming (s, t). If s still exists at
ci+1 we mark the renaming as a ”split”, indicating that only parts of s were taken to create
t.

2.1.2 Fragment snapshots

Now that we have identified the variant names at each commit, we extract the fragments
for each commit and each variant. A fragment is a range of consecutive lines of source
code that correspond to a hand-selected node in the associated abstract syntax tree (AST)
of the containing source file. Each fragment is identified by a classifier and a name. Classi-
fiers correspond to the syntactic category of the hand-selected node. In the case of Haskell
examples for classifiers are ’data’, ’type’, or ’function’; and names are the names of data
types, type synonyms, or functions. To extract these classifier/name pairs and the cor-
responding line ranges we need languages-specific technologies we call ”fact extractors”
and ”fragment locators”. We have developed such technologies for a board spectrum of
software languages, including Java, Haskell, Python, HTML, and JSON. Due to the fact
that we have to extract fragments throughout the history of a repository we further refer to
fragments at specific commit points as ”fragment snapshots”.

CHAPTER 2. EXTRACTING METADATA 15

Figure 2.2: Result of extracting fragment snapshots.

Figure 2.2 illustrates the result of this step; for each commit we extract a set of fragment
snapshots. Each fragment snapshot is finally stored as a JSON document with the following
attributes:

{

"variant" : "writerMonad",

"relative_path" : "Cut.hs",

"classifier" : "function"

"name" : "cutLogCompany",

"from" : 8,

"to" : 15,

"sha" : "02b6b11...",

"language" : "Haskell"

}

2.1.3 Fragments

Fragment snapshots are bound to commits by their sha attribute. We further refer to ”frag-
ments” as series of fragment snapshots that can be found at consecutive commits. That
is, to extract a fragment we need to list its snapshots. More specifically, we need to link
snapshots from consecutive commits that we believe to represent the same fragment at the
respective commits. To link snapshots we have to be able to deal with renaming at variant,
file, and fragment level, with content changes, and with interaction of fragment renaming

CHAPTER 2. EXTRACTING METADATA 16

and other content changes. Schneider et al. have proposed a framework to extract cloning
genealogies. In their work they extract functions as fragments and are able to link frag-
ments from consecutive commits in different scenarios concerning signature, body, and
location changes of the function [20]. Our approach is the following.
Given a fragment snapshot fsci at commit ci we attempt to find a fragment snapshot at ci-1

that represents the same fragment. We first check all fragment snapshots at ci-1 that can be
found in the same variant and file (modulo variant and file renaming). We have identified
four cases:

1. No change. If we find a fragment snapshot fsci-1 at ci-1 with the exact same content
as fsci we link the two fragments.

2. Pure fragment renaming. If we find a fragment snapshot fsci-1 at ci-1 with the
exact same content except for the fragment name we link the fragments. We also
set an attribute is renamed of fsci to true.

3. Mass fragment renaming. If we find a fragment snapshot fsci-1 at ci-1 with the
exact same content except for any fragment names found in the same variation
and in either files of fsci-1 or fsci we link the fragments. We also set an attribute
is changed to true. If the fragment name of fsci has changed we additionally set
is renamed of fsci to true.

4. Pure content editing. If we find a fragment snapshot fsci-1 at ci-1 with the exact
same classifier and name as fsci we link them and set is changed to true.

If no linkable fragment snapshot was found we extend the search space from file scope to
the variant scope. If we still cannot find a linkable fragment snapshot we have to assume
that fsci marks the creation of a fragment, that is, fsci is the first snapshot of a fragment.
In this case we set an attribute is new of fsci to true. If i == 0, that is we are at the first
commit, we set is new to true for all fragment snapshots.
The order of cases listed above does in fact matter and it is being used when checking
each candidate fragment snapshot at ci-1. We illustrate the importance of the order in the
following example: Let the only fragment snapshot that can be found at ci-1 be fs1 with
the following content:

−− sum o f two numbers

sum x y = x + y

Further, let the only fragment snapshots at ci be fragment fs2 with content

−− sum o f two numbers

p l u s x y = x + y

CHAPTER 2. EXTRACTING METADATA 17

and fragment fs3 with content

−− sum o f many numbers

sum xs = f o l d r p l u s 0 xs

At ci we attempt to find a fragment snapshot from ci-1 for both fs2 and fs3 that we can
link to. fs2 can be linked to fs1 based on case 2. fs3 can be linked to fs1 based on case 4.
The order of the cases expresses that we prefer matching content (modulo the fragment’s
name) over sole name matching. We therefore link fs2 to fs1. We further extract fs3 as
the first snapshot of a new fragment by setting its is new attribute to true.
While most cases are straightforward, the third case tries to deal with the difficult situation
in which a fragment was both renamed and its content was changed. We will come back to
this issue in the section about threats to validity in the last chapter.

Figure 2.3: Result of extracting fragments.

Figure 2.3 summarizes this step: For each commit we assign each fragment snapshot to
a series of snapshots that all represent the same fragment throughout the history of the
repository. We further add attributes to each snapshot, indicating whether the snapshot at
hand is new, changed, or renamed.

2.1.4 Similarity snapshots

Similarity snapshots are relations of two fragment snapshots at a commit point, associated
with a similarity value. That is, for n fragment snapshots at a commit we have n∗n possible

CHAPTER 2. EXTRACTING METADATA 18

similarity snapshots. To reduce the amount of similarities stored and later to be processed
by the user we ask the user to provide a threshold, a value each similarity snapshot’s value
has to pass to be stored.
To compute all similarity snapshots at a commit point we simply compare all fragments
snapshots at the commit with each other. To compute the actual similarity value we use an
approach introduced by Cordy et al. [12]. The idea is to pretty-print the token sequence of
each fragment into many lines and then use sequence matching (diff ratio) as a measure.
By using this approach we ignore dissimilarities that are solely based on whitespace. The
value of this measure lies between 0 and 1, where 1 indicates a perfect match between two
fragments modulo formatting.

Figure 2.4: Result of extracting similarity snapshots.

Figure 2.4 illustrates the extracted similarities: At each commit point we have collected a
set of similarity snapshots between fragment snapshots. This metadata forms the basis of
the virtual platform of our approach as it captures the sharing of fragments at each commit
point. Each similarity is stored as a JSON document with the following attributes:

{

"fragment_snapshot_1_id" : ObjectId("d165f70d..."),

"fragment_snapshot_2_id" : ObjectId("d165f74d..."),

"sha" : "2d3dbab...",

"diff_ratio" : 0.78

CHAPTER 2. EXTRACTING METADATA 19

}

2.1.5 Similarity evolutions

We have extracted similarity snapshots, each bound to a specific commit. In order to
compute the applicability of annotations we have to extract similarity evolutions, series of
similarity snapshots from consecutive commits. That is, we extract all similarity snapshots
that occurred between two fragments throughout the history. For this we simply have to
extract all similarity snapshots between all fragment snapshots of the two fragments.

Figure 2.5: Result of extracting fragment snapshots.

Figure 2.5 illustrates the evolutions. For the similarity evolution of two fragments we list
consecutive similarity snapshots between the snapshots of the respective fragments at the
respective commits. Each similarity evolution is stored as follows:

{

"similarity_ids" : [...],

"min_similarity_id" : ObjectId("...d1694e19"),

"max_similarity_id" : ObjectId("...d16943a5"),

"last_similarity_id" : ObjectId("...d169434c"),

CHAPTER 2. EXTRACTING METADATA 20

}

The similarity evolutions are what will get annotated, that is, the user specifies how a given
evolution should be further maintained. To compute the applicability of annotations we
finally associate each similarity evolution with one of the four following categories:

Figure 2.6: Simplified illustration of evolution categories

• Always Equal holds similarity evolutions that have always been equalities, that is,
the similarity value was always 1.

• Converge to Equal holds similarity evolutions where the similarity value was once
below 1 but then increased to 1 at the HEAD of the branch.

• Diverge from Equal holds similarity evolutions where the similarity value was
once 1 but then decreased to below 1 at the HEAD of the branch.

• Always Non-equal holds similarity evolutions where the similarity value was con-
stant or changing but always below 1.

We will later use these abstraction over the concrete similarity values to define the ap-
plicability of each annotation category. To compute the category of a concrete similarity
evolution we use its minimum, maximum, and last similarity value:

• If maximum and minimum similarity value are both 1, assign category Always
Equal.

• If minimum similarity value is below 1 and last similarity value is 1, assign category
Converge to Equal.

• If maximum similarity value is 1 and last similarity value is below 1, assign category
Diverge from Equal.

CHAPTER 2. EXTRACTING METADATA 21

• If maximum and minimum similarity value are both below 1, assign category Al-
ways Non-equal.

2.2 Traversing commits

This section explains how we traverse the history of a branch in a repository during the
various extraction processes.
When reviewing the extraction steps we can see that each one falls into either of the two
following categories:

• Commit-scoped. The extraction step extracts metadata that is bound to a specific
commit. That is, for a given commit ci the step only uses information available at ci

to extract new data. The extraction steps for fragment snapshots and for similarity

snapshots fall into this category.

• Commit-linking. The extraction step uses metadata that was already extracted at
the previous commit and links the metadata to create new metadata. That is, for
a commit ci the step links metadata bound to ci to metadata bound to ci − 1. The
extraction steps for fragments and for similarity evolutions fall into this category.

For the extraction steps that are linking metadata between commits we have to traverse all
commits in an appropriate manner. Most Git APIs list all commits sorted by the commits’
timestamps. However, commits cannot not simply be traversed in this linear fashion. We
explain a correct approach using the following example.

Figure 2.7: Snippet of the history of the ’master’ branch’s commit graph of
101haskell

Figure 2.7 shows part of the commit graph of the master branch of the 101haskell project.
We can see that the graph is not just a sequence of commits, but contains local branches
of users that are eventually merged with the branch of the main repository. Suppose a
fragment f was added at the commit ci (”Added unit tests to strafunski”). The extraction
for fragment snapshots creates a new snapshot fs1 of f and the extraction for fragments
starts a new series of fragment snapshots starting with fs1.
The next commit according to timestamps is ci+1 (”Improved haskellComposition”). Ac-
cording to the commit graph it is contained in an other local branch than ci. Further suppose
that fragment f was not added in the commit ci+1.

CHAPTER 2. EXTRACTING METADATA 22

At ci+2 (”Merge branch of...”) we extract a new fragment snapshot fs2 of f . However, if
we only look at the last commit point according to the timestamps (ci+1) we would not find
a snapshot to link to. Therefore, we would start a new series of fragment snapshots at ci+2

for f . To avoid such false metadata we do not look at the last commit according to the
timestamps, but at the parent commits according to the commit graph. That is, at ci+2 we
have to look at both commits ci and ci+1 and therefore find fs1 to link to fs2.

2.3 Updating metadata

As developers add more commits to the history of the repository we have to update the
metadata. That is, for each new commit we need to:

• Extract variants

• Extract fragment snapshots

• Extend existing or create new fragments

• Extract similarity snapshots

• Extend existing or create new similarity evolutions

The updating of metadata is incremental, that is, for each commit we reuse metadata from
the last commit for files that were not touched.

Chapter 3

Annotating similarities

After the initial metadata extraction process or after updating metadata our system has
stored a set of similarity evolutions. This chapter is about the next step: annotating the
evolutions by expressing how they should be maintained further. We will first identify the
different annotation categories and define their applicability. Then, we present a web ap-
plication to explore and annotate the similarities. Finally, we will explain how to automati-
cally infer some annotations by making use of the fact that fragments and their similarities
form a graph.

3.1 Annotation categories

We identify seven categories of annotations, each stating a maintenance tasks for the un-
derlying similarity evolution:

• Maintain Equality by automatic three-way merge when one or both fragments of
the similarity evolution change and potentially by manual conflict resolution.

• Restore Equality by automatically propagating changes from one fragment to the
other if a direction of propagation is defined, otherwise by automatic three-way
merge and potentially by manual conflict resolution.

• Establish Equality by manual actions on fragments that have never been equal.

• Maintain Similarity by manual actions when the similarity changes.

• Restore Similarity by manual actions until a target similarity value is reached.

• Increase Similarity by manual actions.

• Ignore by not reporting the similarity or equality anymore to the user.

Note that here ”Similarity” always refers to non-equality similarities.

23

CHAPTER 3. ANNOTATING SIMILARITIES 24

3.2 Structure of annotations

Each annotation has four attributes:

• category: This is the name of the category of the annotation.

• intent: This is a comment the user can make when creating or updating the anno-
tation. Examples of what this comment can be about include

– why the annotation category was chosen,

– which manual actions on fragment-content level are required to perform a
manual task (e.g., with line numbers for Increase Similarity), or

– who a manual task is assigned to.

• propagate to: This attribute can only be used for annotations of the category Re-
store Equality. It expresses in which direction changes should be propagated in.
Possible values are Left and Right. For a similarity evolution Ef1,f2 of fragments
f1 and f2 the value Left indicates that changes should be propagated from f2 to
f1. Right has an analogous meaning.

• similarity evolution id: This is the reference to the similarity evolution that is
annotated.

3.3 Applicability of annotations

An annotation expresses a maintenance task for the underlying similarity evolution. There-
fore, each annotation category is only applicable to a certain subset of the similarity-
evolution categories. The following matrix defines the applicabilities:

M
ai

nt
ai

n
E

qu
al

ity

R
es

to
re

E
qu

al
ity

E
st

ab
lis

h
E

qu
al

ity

M
ai

nt
ai

n
S

im
ila

rit
y

R
es

to
re

S
im

ila
rit

y

In
cr

ea
se

S
im

ila
rit

y

Ig
no

re

Always Equal auto no no no no no auto

Converge to Equal auto no no no no no auto

Diverge from Equal no auto no manual manual manual auto

Always Non-equal no no manual manual manual manual auto

The matrix also shows for each annotation category and each evolution category whether
the expressed maintenance tasks is automatically executable by default or has to be per-
formed by the user. With this is mind we say that an annotation may be ”executable”.
The applicability for Maintain Equality is only given in the presence of an equality at
head. Restore Equality is tailored for the case where a similarity diverged from equality,
but should be increased back to equality by using change propagation. Establish Equality

CHAPTER 3. ANNOTATING SIMILARITIES 25

is tailored similarly. All other annotations that are only applicable to evolutions where the
current similarity value is not an equality have to be performed manually by the user. Ig-
nore requires no special actions, only instructs the system to no longer report the evolution,
and is therefore automatically executable. We will later explain in detail how annotations
are executed.

3.4 Web application for similarity exploration and anno-
tation

We have created a web application called ”Ann” for the user to explore and annotate sim-
ilarities in a systematic manner. We followed some principles regarding user experience
(UX) design:

1. Give the user feedback; here about the progress of annotating similarities

2. Present processable amounts of information; here by not giving the user a flat list
of similarities, but by letting the user explore similarities in a hierarchy of variants,
folder and files and by thereby providing context

3. Avoid repetition of tasks; here by inferring annotations where possible

This section is about the annotation application following these principles. We will first
discuss a set of views that inform the user about the state of the repository. Next, we will
present two annotators, one commit-centric, one variant-centric, that allow for systematic
similarity annotation (principles 1 & 2). In the next section we present two approaches to
infer annotations by rules and by utilizing equality classes (principle 3).

3.4.1 Views

When annotating the similarities the user should make informed decisions. Ann therefore
provides the user with information about the state of the repository. We have developed two
”views” to enable an overview over both the variants and actions throughout the history of
the repository.

CHAPTER 3. ANNOTATING SIMILARITIES 26

Variants

Figure 3.1: Variants throughout the history of the 101haskell repository.

The first view shows variants over time. On the horizontal axis we show all commits
at which at least one variant was created, renamed, or deleted. On the vertical axis we
show the variants, sorted by creation time. If a variant was touched at a given commit
point we create a color-coded circle where green, gray and red indicate variation creation,
renaming and respectively deletion. As discussed in the Chapter 2, we can also detect the
splitting of variants. The view indicates such splits by lines connecting different variants.
Hovering over a circle additionally reveals details about the underlying commit including
its identifier (sha) and message.

CHAPTER 3. ANNOTATING SIMILARITIES 27

Edit operations

Figure 3.2: Actions throughout the history of the 101haskell repository.

The second view focuses on the editing actions and Git operations performed throughout
the repository’s history. The goal is for the user to understand which subsequences of the
history are of interest and should be focused on later. At each commit point we show the
number of file creations, renaming, edits, and deletions.

3.5 Annotators

Once the user is informed about the state of a repository, he or she can annotate the ex-
tracted similarities. We are providing two annotators which will be discussed in the fol-
lowing.

3.5.1 Commit-centric

This annotator is suited for an annotation process where the user wants to systematically
explore the history of the repository.

CHAPTER 3. ANNOTATING SIMILARITIES 28

Initial state

Figure 3.3: The commit-centric annotator in its initial state.

Figure 3.3 show the commit-centric annotator it its initial state. On the left we present the
variants like we do in the variant view described above. On the right we list all commits at
which at least one similarity evolution starts. That is, we list commits at which a similarity
between two fragments emerged for the first time by passing the user-defined threshold
regarding similarity values. At each commit we show the number of similarity evolutions
that started at this commit point.

Selecting a variant

Figure 3.4: Commit-centric annotator with an expanded commit.

The user can then select a commit he or she wants to explore in terms of similarities. This
expands the commit by showing a list variants with their current names at the commit
point. Ann only shows variants for which a similarity emerged, again with the number of
similarities shown on the right.

CHAPTER 3. ANNOTATING SIMILARITIES 29

Selecting a file

Figure 3.5: Commit-centric annotator with an expanded variant.

After selecting a variant Ann shows all the variant’s files that contain fragments for which
we have extracted a similarity that first emerged at the selected commit point.

Selecting a fragment

Figure 3.6: Commit-centric annotator with an expanded file.

Finally, the user can select a fragment in the file. All fragments are presented as pairs
of fragment name and classifier. This and the previous steps provide a systematic way to
explore the similarities at a given commit point. In the example above we have navigated
to a fragment ”pattern/rankingOkTest” in the file ”src/Main.hs” in a variant ”monoidal” at
a commit that is identified by the shortened sha ”de18ac9”.

CHAPTER 3. ANNOTATING SIMILARITIES 30

Selecting a fragment similarity

Figure 3.7: Commit-centric annotator with similarities for a selected fragment.

After selecting a fragment in the explorer Ann shows all other fragments that first became
similar at the selected commit point. For each fragment pair it shows the content of both
fragments with their locations (variant and file). The user is also presented with two simi-
larity values in the similarity evolution. The first value is the value at the selected commit
point while the second value is the similarity at the HEAD of the repository. If the values
differ we show the contents of the fragments both at the current commit point and at the
HEAD. Figure 3.7 shows that ”pattern/rankingOkTest” is for example similar to a frag-
ment also called ”pattern/rankingOkTest”, but located in another variant. The fragments
are equal both at the selected commit point and at the HEAD.

Annotating a similarity

Figure 3.8: Commit-centric annotator with annotation controls for a selected simi-
larity.

After selecting one of the similarities the user can decide how to annotate it by picking the
annotation category in a select list where only applicable categories are enabled. The user

CHAPTER 3. ANNOTATING SIMILARITIES 31

can also enter some intent, and, if Restore Equality is selected, the direction in which
changes to be propagated in, that is, which fragment’s changes should be overwritten by
the changes of the other fragment. Ann stores the annotation and additionally keeps track
of the current similarity value at HEAD. This value will later be used when Ann updates
annotations based on user actions. Updating of annotations will be discussed in chapter 5.

3.5.2 Variant-centric

The variant-centric annotator is suitable when the user wants to systematically explore the
variants as they can be found at the HEAD of the repository’s branch. This annotator is
tailored for the use case where the history is less relevant to the user, but he or she rather
wants to focus on the current set of variants.

Selecting a variant

Figure 3.9: Graph of variants with edges weighted and color-coded by the similar-
ities.

Initially, the user is presented with a graph of all variants that can be found at the HEAD
of the given repository and branch. Ann uses the similarities at fragment level to compute
a similarity at variant level. The presentation uses a force-driven layout such that variants
that are more similar to each other are closer to each other than variants that are less similar
to each other. By using this layout the user can easily identify ”clusters” of highly-similar
variants. Eventually, the user selects a variant in the graph.

CHAPTER 3. ANNOTATING SIMILARITIES 32

Exploring a variant

Figure 3.10: A variant in the variant-centric annotator.

Once the user has selected a variant we provide a tree-like view to explore the folders,
files and fragments of the variant. In figure 3.10 the user is at the variant level. On the
right-hand side we then show all similar variants sorted by the variant-similarity value that
is computed using the basic fragment similarities. Next to the name of the selected variant
Ann shows the progress of annotating by the ratio of annotated similarity evolutions.

Figure 3.11: A folder in the variant-centric annotator.

CHAPTER 3. ANNOTATING SIMILARITIES 33

Figure 3.12: A file in the variant-centric annotator.

Next the user can expand folders and files in the variant. At each level Ann shows similar
folders or files, all with their location regarding containing folders and variants.

Figure 3.13: A fragment in the variant-centric annotator.

Finally, the user can navigate down to the fragment level and is presented with all similar
fragments on the right-hand side.

CHAPTER 3. ANNOTATING SIMILARITIES 34

Figure 3.14: A fragment similarity in the variant-centric annotator.

After selecting a fragment on the right-hand side we present the similarity of the fragment
pair much like we do in the commit-centric annotator.

Figure 3.15: Variant-centric annotator with annotation controls.

Finally, the user annotates the similarity. In the example above the user would probably an-
notate the similarity with Maintain Similarity since the two Haskell functions test different
functionalities, should therefore not become equal, but keep their current similarity.

3.6 Automatic annotations

Earlier we have discussed the importance of only providing the user with processable
amounts of information. The annotators achieve this by letting the user first explore com-
mits, variants, folders, files, and fragments and by only then showing fragment similarities
at the bottom level of exploration. However, the total number of similarities to annotate
might still be high. We will later present the case study on the 101haskell project. In this
case the total number of similarities was close to two thousand. In the following we will
present two approaches that will reduce the number of actual similarities the user has to
annotate.
Both approaches make use of the fact that fragments and similarities can be seen as nodes
and edges in a graph. The first approach makes use of specific complete subgraphs; the
second approach uses a set of rules to complete missing annotations in triangles in the

CHAPTER 3. ANNOTATING SIMILARITIES 35

graph.

3.6.1 Annotating equality classes

In the literature about cloning the terms ”cloning class” or ”equality classes” refer to a set
of artifacts that are all pairwise clones by some defined criteria [34]. This criteria might for
instance be text-based equality or equality modulo identifier names (called ”parameterized
clones”). In our case, we use the criteria of text-based equality modulo whitespace.
If we view fragments and their similarities as a graph, we can extract equality classes by
using standard graph algorithms: An equality class in this graph is a complete subgraph
where all similarities are equalities. For an equality class with n fragments all fragments
are pairwise connected, therefore the equality class has

∑n−1
i=1 i similarity edges. This

is also the number of annotations the user has to create to annotate all similarities in the
equality class. However, instead of forcing the user to do that, we can rather provide an
option in the annotators to annotate all similarities of an equality class with one UI action.

Figure 3.16: Annotating an equality-class.

Figure 3.16 shows this scenario in the variant-centric annotator. The user has selected a
fragment ”pattern/main” in the selected variant. On the right-hand side the user then picked
one of the similar fragments. In the annotation controls Ann tells the user that the selected
similarity is an edge in an equality class that contains a certain number of fragments (in
this example, 13). The user can also see the variant names of fragments of the equality
class. Instead of annotating all similarities separately the user can annotate all edges with
Maintain Equality by using a dedicated button. That is, for this example, one UI action
instead of

∑12
i=1 i = 78 manual annotations.

3.6.2 Rule-based annotation inference

We can make further use of the properties of the similarity graph when we look at triangles
of pairwise similar fragments.

CHAPTER 3. ANNOTATING SIMILARITIES 36

Figure 3.17: Triangle of pairwise similar fragments.

In figure 3.17 each node represents a fragment in some variant. All three fragments are
pairwise connected because they are all pairwise similar. An edge between two fragments
is labeled with the category of the similarity evolution and, potentially, with the category of
the similarity’s annotation. In this case, two edges were annotated with Maintain Equality
respectively Restore Equality while the third annotation is missing. However, maintain-
ing the equality between f 1 and f 2 and restoring an equality between f 1 and f 3 implies
that an equality between f 2 and f 3 will be restored, too. We can therefore infer the third
annotation automatically and thereby reduce the number of similarities the user has to an-
notate.

Rule notation and semantics

We can generally describe such inference rules by using the following notation:

A(ECsf1,f2 , AC f1,f2 , ADf1,f2), A(ECsf1,f3 , AC f1,f3 , ADf1,f3)→ A(ECsf2,f3 , AC f2,f3 , ADf2,f3)

All EC are sets of evolution categories, all AC are annotation categories, and all AD

are propagation directions with the possible values Left, Right, and None. Here Left

means that for an evolution Ef1,f2 changes are pushed to f 1, Right is defined analogously,

CHAPTER 3. ANNOTATING SIMILARITIES 37

and None does not define a direction.
The informal semantics of such a rule are the following. Given a triangle of three fragments
f1, f2, and f3 where

• Ef1,f2 is the similarity evolution of f1 and f2,

• Ef1,f3 is the similarity evolution of f1 and f3, and

• Ef2,f3 is the similarity evolution of f2 and f3

and a rule r of the notation above. If

• Ef1,f2 of fragments f 1 and f 2 is in ECsf1,f2 , AC f1,f2 and ADf1,f2 are the category and
the direction of the annotation of Ef1,f2 ,

• Ef1,f3 of fragments f 1 and f 3 is in ECsf1,f3 , AC f1,f3 and ADf1,f3 are the category and
the direction of the annotation of Ef1,f3 ,

then annotate Ef2,f3 of fragments f 2 and f 3 with an annotation of category AC f2,f3 and with
direction ADf2,f3 .

Inference rules

We have identified a set of rules for automatic annotation inference:

A({AlwaysEqual, ConvergeToEqual},MaintainEquality,None),

A({AlwaysEqual, ConvergeToEqual},MaintainEquality,None)→
A({AlwaysEqual, ConvergeToEqual},MaintainEquality,None)

(R1)

R1 is the rule for closing equality triangles. Though the same result can also be achieved
by annotating equality classes, the user may still benefit from this rule when not making
use of such equality-class-based annotations.

A({AlwaysEqual, ConvergeToEqual},MaintainEquality,None),

A({DivergeFromEqual}, RestoreEquality, Left)→
A({DivergeFromEqual}, RestoreEquality,Right)

(R2)

That is, we ”mirror” Restore Equality such that changes are pushed in the same direction.

CHAPTER 3. ANNOTATING SIMILARITIES 38

Figure 3.18: Triangle of pairwise similar fragments after applying R2.

Figure 3.18 shows the result of applying R2 to the triangle f1, f2, and f3 from figure 3.17.
Note that the order of the fragments matters when trying to apply the rule. We have to
check six possible orders, though this is optimized in the actual implementation.
Analogously we have the following rule:

A({AlwaysEqual, ConvergeToEqual},MaintainEquality,None),

A({DivergeFromEqual}, RestoreEquality,Right)→
A({DivergeFromEqual}, RestoreEquality, Left)

(R3)

We have such ”mirroring” rules for all other annotations except Ignore:

A({DivergeFromEqual, AlwaysNonEqual}, IncreaseSimilarity,None),

A({AlwaysEqual, ConvergeToEqual},MaintainEquality,None)→
A({DivergeFromEqual}, IncreaseSimilarity,None)

(R4)

Similar rules are analogously defined for Establish Equality, Increase Similarity, and
Restore Similarity.

CHAPTER 3. ANNOTATING SIMILARITIES 39

Cascading rule application

The application of annotation-inference rules can cascade due to the fact that triangles
can be connected by having edges in common. The following scenario illustrates such
cascading.

Figure 3.19: Cascading inference-rules applications, step 1

Initially we can apply rule R1 to the triangle of f1, f2, and f3, and rule R3 to close the
triangle f4, f5, and f3. The result is the following:

Figure 3.20: Cascading inference-rules applications, step 2

CHAPTER 3. ANNOTATING SIMILARITIES 40

Now, using rule 2, we can close the triangle of f2, f3, and f4, resulting in the following
graph:

Figure 3.21: Cascading inference-rules applications, step 3

In general such rule application can cascade in many steps. When a user annotates a simi-
larity we first try to apply each rule to all triangles the annotated similarity is involved in,
and then recursively try to apply all rules to all triangles any automatically annotated edge
is involved in. Finally, we update the progress information in the annotator by showing
how many similarities have been annotated.

Chapter 4

Automatic change propagation

Annotating similarities results in a set of similarity-maintenance tasks. Therefore, we say
that an annotation should be ”executed” because the task stated by the annotation should
be executed. For annotations of the categories Maintain Equality or Restore Equality we
can try automatic execution based on 3-way-merge. That is, we try to propagate changes
to one or both fragments to either maintain or restore an equality.
We earlier discussed the notion of a virtual platform, which consists of metadata and
cloning-related operators. The extracted similarities and the annotations are the metadata
while the component which executes annotations is an implementation of the propagate
operator.
In this chapter we will discuss how we automatically execute Maintain Equality and Re-
store Equality annotations, how the user may have to interact, and how these annotations
may evolve based on execution.

4.1 Executing Maintain and Restore Equality

We have to act on a similarity evolution SEf1,f2 that is annotated with Maintain Equality if
the fragments f 1 and f 2 diverge with regard to their content. For annotations of category
Restore Equality the fragments have already diverged when the annotation was set. In
both cases our system performs the following algorithm execute(aSEf1,f2

) for an annotation
aSEf1,f2

of a similarity evolution SEf1,f2 :

1: fc1,HEAD ← content of f 1 at HEAD.
2: fc2,HEAD ← content of f 2 at HEAD.
3: if tokenlines(fc1,HEAD) == tokenlines(fc2,HEAD) then
4: updateSuccess(aSEf1 ,f2

)

5: else
6: if aSEf1,f2

has a direction then

41

CHAPTER 4. AUTOMATIC CHANGE PROPAGATION 42

7: if aSEf1,f2
has direction Left then

8: Overwrite content of f 1 with fc2,HEAD

9: else if aSEf1,f2
has direction Right then

10: Overwrite content of f 2 with fc1,HEAD

11: end if
12: updateSuccess(aSEf1,f2

)
13: return true
14: else
15: SSf1,f2 ← last similarity snapshot in SEf1,f2 where f 1 and f 2 were equal.
16: C ← commit point of SSf1,f2 .
17: fc1,C ← content of f 1 at C.
18: fcmerge ← three-way-merge(fc1,HEAD, fc2,HEAD, fc1,C)

19: if fcmerge has conflicts then
20: updateFail(aSEf1 ,f2

)

21: return false
22: else
23: if tokenlines(fc1,HEAD) == tokenlines(fc1,C) then
24: Overwrite content of f 2 with fcmerge

25: updateSuccess(aSEf1,f2
)

26: return true
27: else if tokenlines(fc2,HEAD) == tokenlines(fc1,C) then
28: Overwrite content of f 1 with fcmerge

29: updateSuccess(aSEf1,f2
)

30: return true
31: else
32: if askUserMergeOK() then
33: Overwrite content of f 1 with fcmerge

34: Overwrite content of f 2 with fcmerge

35: updateSuccess(aSEf1,f2
)

36: return true
37: else
38: updateFail(aSEf1 ,f2

)

39: return false
40: end if
41: end if
42: end if
43: end if
44: end if

CHAPTER 4. AUTOMATIC CHANGE PROPAGATION 43

That is, the algorithm first checks whether the fragments of the similarity evolution have
actually diverged. If so, two cases have to be considered starting in line 6. If the annotation
has a direction (only possible for annotations of category Restore Equality) the algorithm
just overwrites changes of the fragment the direction is pointing to by the content of the
other fragment. If there is no direction, the algorithm looks up the last commit point where
the fragments were equal. The algorithm then gets the content of one fragment at that
commit point and uses this ”parent content” for a 3-way-merge in line 18. If there are no
merge conflicts, the algorithm checks in line 23 and 27 if only one of the fragments has
changes since they were equal. If so, the algorithm just adjusts the content of the other
fragment. If both fragments changed the algorithm actually asks the user whether both
fragments should be adjusted in line 32. If the user accepts this, both fragments’ contents
are overwritten by the merge.
The algorithm uses some helper methods. First, we assume that an implementation of
3-way-merge is given by means of some library. We have also used tokenlines which im-
plements pretty-printing tokens into many lines to disregard dissimilarities that are solely
based on whitespace. We have implemented such a method for various software languages,
including Haskell, Java, and Python. We will define updateSuccess() and updateFail()

in the next section.
The algorithm returns whether the execution of the annotation has changed the content of
any fragment. This information is used when executing all annotations of a repo r:

1: done = false
2: while not done do
3: done = true
4: for annotation aSEf1,f2

in annotations(r) do
5: done = done and execute(aSEf1,f2

)

6: end for
7: end while

Since executing annotation may propagate changes over many similarity edges, we have
to re-execute all annotations until no change was made. This is simplified here and done
more efficiently in the implementation.

4.2 Updating annotation

The methods updateSuccess(aSEf1 ,f2
) and updateFail(aSEf1 ,f2

) update an annotation aSEf1 ,f2

when its execution succeeded respectively failed.
updateSuccess(aSEf1,f2

) does the following:

1: if aSEf1,f2
has category Restore Equality then

CHAPTER 4. AUTOMATIC CHANGE PROPAGATION 44

2: set category of aSEf1,f2
to Maintain Equality

3: remove direction from aSEf1,f2

4: remove manual flag from aSEf1,f2

5: end if

That is, only annotations of category Restore Equality have to be updated to category
Maintain Equality. updateFail(aSEf1 ,f2

) does the following:

1: if aSEf1,f2
has category Maintain Equality then

2: set category of aSEf1,f2
to Restore Equality

3: end if
4: set manual flag of aSEf1,f2

That is, Maintain Equality and Restore Equality can evolve into each other based on
successful or failed executions.
We will use the manual flag when computing a todo list of manual tasks for the user.

Chapter 5

Todo list

In the previous chapter we discussed how our system attempts to execute annotations of
certain categories automatically. In contrast to that, tasks expressed by annotations of other
categories may have to be performed manually. To give the user an overview of what has
to be done the Ann web application collects these maintenance tasks in a todo list.
In this chapter we will discuss the reasons why an annotation appears in the todo list, how
the user acts on such annotations, and finally how these annotations evolve based on user
actions.

5.1 Tasks in the todo list

We can identify two reasons why an annotation a appears in the todo list.

1. Based on the category of a it can be executed automatically by default (see applica-
bility matrix in Chapter 2). However, automatic execution has failed for a, therefore
Ann has set a manual flag of a. Because of this annotations of category Restore
Equality can appear in the todo list after automatic execution has failed.

2. Based on the category of a it has to be performed manually by default. Additionally
the expressed maintenance task calls for user action. Because of this annotations of
categories Establish Equality, Increase Similarity and Restore Similarity appear
in the todo list. Annotations of category Maintain Similarity are to be performed
manually by default, however, they do not require any user action until they evolve
to another category like Restore Similarity.

Whenever the user requests the todo list Ann selects annotations based on these two crite-
ria.

45

CHAPTER 5. TODO LIST 46

5.2 Acting on tasks in the todo list

Ann has a page which shows the todo list for a repository.

Figure 5.1: Items in the todo list for the user.

Each item in the list shows an annotation with the category, the indent, the two similar
fragments, and a summary of the underlying similarity evolution. To allow the user to un-
derstand why a particular annotation appears, Ann shows whether the task expressed by the
annotation is manual by default, or appears because automatic execution has failed. Addi-
tionally, Ann indicates whether the annotation was created based on applying annotation-
inference rules or an equality-class annotation.
After selecting an item to act on, the user has two options. Firstly, to perform a chosen
task by editing the involved fragments. Secondly, to modify the annotation itself. For
instance, the user might realize that an annotation of category Increase Similarity is no
longer needed, and that instead the current similarity value is satisfactory. The user can
then change the category to Maintain Similarity and the annotation will disappear from
the todo list.

5.3 Updating annotations after user actions

After the user has performed a manual maintenance task he or she can execute a specific git
command to update the annotations the user has acted on. We will discuss all Ann-specific
git commands in the next chapter. An annotation aSEf1,f2

of a similarity evolution SEf1,f2 is
updated according to the following rules:

1. • If aSEf1,f2
is of category Restore Equality, Establish Equality or Increase Sim-

ilarity and

• the user has made f1 and f2 equal,

→ update the category of aSEf1,f2
to Maintain Equality.

2. • If aSEf1,f2
is of category Maintain Similarity and

CHAPTER 5. TODO LIST 47

• the user has made edits to f1 and/or f2 such that their current similarity value at
HEAD is not equal to the similarity value at HEAD when the annotation was
created or updated,

→ update the category of aSEf1,f2
to Restore Similarity

3. • If aSEf1,f2
is of category Restore Similarity and

• the user has made edits to f1 and/or f2 such that the current similarity value at
HEAD is equal to the similarity value at HEAD when the annotation was
created or updated,

→ update the category of aSEf1,f2
to Maintain Similarity

5.4 Summary of possible annotation evolutions

The following figure summarizes all possible annotation updates performed by Ann.

Figure 5.2: Possible evolutions of annotations’ categories.

Green backgrounds indicate automatically executable annotations, blue backgrounds high-
light manual tasks. We have discussed the evolution between Maintain Equality and au-
tomatic Restore Equality in the last chapter.
When the system sets the manual flag for a Restore Equality annotation it becomes a
tasks for the user. The annotation can then evolve to Maintain Equality based on rule 1
above. This rule also covers the evolutions of Increase Similarity and Establish Equality

CHAPTER 5. TODO LIST 48

to Maintain Equality. Finally, Maintain Similarity and Restore Similarity can evolve
into each based rules 2 and 3.

Chapter 6

Integrating with Git

We make use of a Git API for the implementation of the metadata-extraction process we
have discussed in Chapter 2. We also extend Git by a set of new commands that all trigger
certain Ann functionality for a given repository.
In this chapter we will discuss a simplified model of the standard Git workflow. We then
present a set of new Ann-specific Git commands and how we integrate these into the stan-
dard workflow.

6.1 The standard Git workflow

Figure 6.1: Model of a standard Git workflow.

Figure 6.1 shows a standard Git workflow. Note that this model does not include the use
of branches since we do not consider branches for representing variants at this point. The

49

CHAPTER 6. INTEGRATING WITH GIT 50

simplified model uses the following states:

• clean: The workspace is clean and all commits are pushed to the remote repository.

• dirty: The workspace contains uncommitted changes.

• ahead: The local repository has unpushed commits.

• conflict: The workspace contains merge conflicts.

After cloning the repository and workspace are clean. Once a user edits, creates, moves,
or removes files the workspace gets into a dirty state with uncommitted changes. After
the user commits these changes the local repository’s history is ahead of the history of
the remote repository. Before pushing these new commits the user should pull commits,
possibly resulting in merge conflicts.

6.2 Extending git with new commands

To integrate our system with Git we extend the default set of Git commands by three Ann-
specific commands:

• git ann init: This registers the repository with our system and triggers the initial
metadata-extraction process discussed in Chapter 2. After this the user can annotate
the extracted similarities as illustrated in Chapter 3.

• git ann update: This triggers the extraction of metadata from new commits as
discussed in the last section of Chapter 2. Also, this updates all annotations that the
user has acted on based on the todo list discussed in Chapter 5.

• git ann propagate: This triggers the execution of automatically-executable anno-
tations. That is, the change propagation discussed in Chapter 4 is executed. This
command also updates the metadata if new commits were added to the repository
since the last metadata extraction.

6.3 Extended Git workflow

With the set of new Git commands in place, we can extend the standard Git workflow to
model Ann-specific states and state transitions.
With regard to the state of the metadata we identify two states:

• synchronized: The metadata is synchronized with the commits in the history.

• unsynchronized: The metadata is out-of-date because of new commits for which the
metadata was not extracted yet.

CHAPTER 6. INTEGRATING WITH GIT 51

With regard to whether changes have been propagated via automatic annotation execution
we identify the following states:

• propagated: All changes have been propagated via automatically executing annota-
tions.

• unpropagated: Due to file edits or new commits changes may have to be propagated.

Figure 6.2: Model of the Ann-specific Git workflow.

Figure 6.2 shows a model of the extended Git workflow. After cloning the repository it is
not registered with our system and is therefore in states unpropagated and unsynchronized.
The user can then either start editing and will bring the workspace into a dirty state, or he or
she can execute git ann init to extract all metadata and thereby make it synchronized with
the history of the repository. Once the user plans to commit changes he or she first calls git
ann propagate to trigger automatic annotation execution. This will bring the repository
into states propagated and synchronized. The user can then commit the changes. This
action results in a state that is still propagated but unsynchronized since the new commit
was not inspected for new metadata yet. As in the standard Git workflow the user then first
pulls before pushing commits. Because pulling may result in file changes the repository
might get into an unpropagated state. Finally, the user pushes the new commits.
We have not included the annotation process into this workflow since it is independent and
can be performed at any time after the initial metadata extraction.

Chapter 7

Case study: 101haskell

This chapter is dedicated to a case study on the 101haskell corpus of variants [32].
First, we will introduce the project itself. Next, we will discuss the metrics we use to
measure the added value of using our approach to manage clones and similarities. After
that, we will present a stepwise scenario of using our system for 101haskell. For every step
we outline what was done and we present new measurements based on our set of metrics.
Finally, we will summarize the case study and use the final metrics results to answer our
initial research questions.

7.1 101haskell

The 101companies project [33] aggregates knowledge about software languages, technolo-
gies, and concepts in a wiki system1. It aims to be a useful resource for teaching and learn-
ing in these areas. 101companies is also a software chrestomathy [31], that is, a collec-
tion of small software systems useful for teaching programming and software engineering
in general. Each software system, called a ”contribution”, implements parts of a com-
mon feature model to demonstrate specific languages, technologies, and concepts. That
is, 101companies is a collection of variants where variance between two variants v1 and
v2 can be achieved (a) by implementing different features and (b) by implementing shared
features in different ways. All variants are documented as pages in the 101companies wiki
system.
A specific subset of the variants in the 101companies project is 101haskell [32]. While
101companies covers many software languages in the aggregated variants, 101haskell fo-
cuses on contributions that demonstrate functional programming concepts in and technolo-
gies for the Haskell language. The project is hosted as a repository on Github2 and variants

1http://101companies.org/wiki
2http://github.com/101companies/101haskell

52

http://101companies.org/wiki
http://github.com/101companies/101haskell

CHAPTER 7. CASE STUDY: 101HASKELL 53

are organized by means of folders. The 101haskell projects hosts 36 variants including the
following.

• haskellStarter. Contribution with small language footprint.

• haskellComposition. Use of recursive data types.

• haskellVariation. Use of multiple constructors per type.

• haskellFlat. A Haskell-based data model illustrative for data parallelism.

• wxHaskell. GUI programming in Haskell with wxHaskell.

• hxtPickler. XML data binding for Haskell with HXT’s XML pickler.

To start the implementation of a new variant, it is common practice to copy and paste
components from existing variants. For instance, a new variant v might illustrate a pro-
gramming concept by implementing a feature f in a way that the implementation utilizes
this concept. Implementations of other features that are unrelated to that concept are then
cloned from existing variants and variance in v is achieved by the implementation of f .
In the case study we use three tactics to improve the quality of the project.

1. Restore equalities. We use automatic change propagation to make fragments equal
again that diverged unintentionally.

2. Establish equalities. We perform manual editing actions to make fragments equal
that were never equal but should be.

3. Identify inconsistencies. We inspect equality classes and identify variants not con-
tributing to an equality class due to inconsistencies.

7.2 Metrics for the case study

The next sections will describe a case study on 101haskell. After each step we will measure
the state of the project regarding the following metrics.

7.2.1 Equality classes

We measure

• The total number of equality classes.

• The total number of non-trivial equality classes, that is, equality classes with more
than one fragment.

• The maximum, median, and average size of non-trivial equality classes.

CHAPTER 7. CASE STUDY: 101HASKELL 54

7.2.2 Fragments

We measure

• The total number of fragments.

• The number of unique fragments. That is, we do not count members of a set frag-
ments separately if all members belong to the same equality class.

• The number of shared fragments. That is, the number of fragments that are mem-
bers of some non-trivial equality class.

• The number of unshared fragments. That is, the number of fragments that are
members of no non-trivial equality class.

• The median and average number of variants a fragment is shared in.

7.2.3 Similarities

We measure

• The median and average similarity of fragments at HEAD where the similarity
value passes the user-provided threshold.

7.2.4 Annotations

We measure

• The total number of annotations per annotation category.

• The total number of automatic annotations per annotation category created based
on inferring rules or equality classes.

7.2.5 Variants

We measure

• The uniqueness of each variant. That is, the ratio of unshared fragments per variant.

• The median and average uniqueness of all variants.

For some metrics results we show the difference ∆i-j, i between the results of a previous
step i− j and the current step i.

CHAPTER 7. CASE STUDY: 101HASKELL 55

7.3 Initial status

Equality classes

total 632

total (non-trivial) 95

max size (non-trivial) 13

median size (non-trivial) 3

average size (non-trivial) 4.08

Table 7.1: Equality classes in the initial state.

Fragments

total 925

unique 632

shared 388

unshared 537

variants sharing (median) 1

variants sharing (average) 1.46

Table 7.2: Fragments in the initial state.

Similarities

median 0.98850

average 0.94186

Table 7.3: Similarities in the initial state.

Annotations

No annotations were made at this point.

Variants

variant #f #uf u
hdbc 3 3 100.00%

CHAPTER 7. CASE STUDY: 101HASKELL 56

haskellHxt 4 4 100.00%

haskellDB 7 7 100.00%

strafunski 158 150 94.94%

haskellSpec 29 26 89.66%

haskellFlattened 28 25 89.29%

haskellAcceptor 14 12 85.71%

haskellStarter 14 10 71.43%

mvar 16 11 68.75%

haskellLens 14 9 64.29%

haskellProfessional 41 26 63.41%

happstack 73 44 60.27%

dph 20 12 60.00%

hxtPickler 26 15 57.69%

haskellData 14 8 57.14%

haskellSyb 21 12 57.14%

haskellRecord 14 8 57.14%

haskellTermRep 17 9 52.94%

tabaluga 25 13 52.00%

haskellBarchart 18 9 50.00%

haskellParsec 21 10 47.62%

haskellApplicative 21 10 47.62%

haskellTree 22 10 45.45%

haskellCGI 60 27 45.00%

tmvar 43 19 44.19%

haskellScott 8 3 37.50%

haskellMonoid 22 8 36.36%

hughesPJ 12 4 33.33%

haskellVariation 16 5 31.25%

wxHaskell 47 14 29.79%

haskellList 13 3 23.08%

haskellLambda 13 2 15.38%

haskellEngineer 13 2 15.38%

haskellWriter 22 3 13.64%

haskellComposition 15 2 13.33%

haskellLogging 21 2 9.52%

median uniqueness 52.47%

average uniqueness 53.34%

CHAPTER 7. CASE STUDY: 101HASKELL 57

Table 7.5: Variant uniquenesses in the initial state (f = fragments, uf = unique
fragments, u = uniqueness).

7.4 Step 1: Automatically restoring equalities

As recommended by the tool, equalities were annotated first. This advice is given because
of the importance of Maintain Equality in the annotation-inference rules for mirroring
annotations. To annotate the equalities we systematically navigated variants, looked for
non-annotated similarity evolutions leading to an equality, and used the ”annotate equality
class” button to maximize the number of automatic annotations.
Next, we used tactic 1. First, we annotated all Diverge from Equality similarity evolu-
tions. After that, git ann propagate was executed to start automatic change propagation.
In fact, all annotations of category Restore Equality were given a direction and could suc-
cessfully be executed automatically. The following metrics show the state of the repository
after change propagation, except for the annotations where we show the metrics results for
both before and after annotation execution.

7.4.1 Status

Equality classes

∆0, 1after

total 617 −15

total (non-trivial) 93 −2

max size (non-trivial) 20 +7

median size (non-trivial) 4 +1

average size (non-trivial) 5.02 +0.94

Table 7.6: Equality classes after executing change propagation.

CHAPTER 7. CASE STUDY: 101HASKELL 58

Fragments

∆0, 1after

total 925 ±0

unique 617 −15

shared 401 +13

unshared 524 −13

variants sharing (median) 1 ±0

variants sharing (average) 1.51 +0.05

Table 7.7: Fragments after executing change propagation.

Similarities

∆0, 1after

median 1.0 +0.01163%

average 0.96495 +0.02452%

Table 7.8: Similarities after executing change propagation.

Annotations

total auto ∆0, 1before

Maintain Equality 953 858 +953

Restore Equality 324 212 +324

Establish Equality 0 0 ±0

Increase Similarity 3 0 +3

Maintain Similarity 44 20 +44

Table 7.9: Annotations before executing change propagation.

CHAPTER 7. CASE STUDY: 101HASKELL 59

total auto ∆1before, 1after

Maintain Equality 1359 1264 +406

Restore Equality 0 0 −324

Establish Equality 0 0 ±0

Increase Similarity 3 0 ±0

Maintain Similarity 44 20 ±0

Table 7.10: Annotations after executing change propagation.

The metrics reveal the evolution of Restore Equality to Maintain Equality as the result
successful change propagation. More specifically, all 324 Restore Equality annotations
evolved to Maintain Equality annotations. Note that 82 additional Maintain Equality
annotations were created afterwards. These were automatically added based on annotation-
inference rule R1, because some fragment that have never been equal before became equal
after executing annotations of other fragment pairs. For instance, there were fragments f1
and f2 and their equality should be restored. If another fragment f3 is equal to f2 but has
never been equal to f1 then after restoring the equality between f1 and f2 an additional
equality between f1 and f3 emerges and should be maintained.

Variants

variant #f #uf u ∆u0, 1after

hdbc 3 3 100.00% ±0%

haskellHxt 4 4 100.00% ±0%

haskellDB 7 7 100.00% ±0%

strafunski 158 150 94.94% ±0%

haskellSpec 29 26 89.66% ±0%

haskellFlattened 28 25 89.29% ±0%

haskellAcceptor 14 12 85.71% ±0%

mvar 16 11 68.75% ±0%

haskellLens 14 9 64.29% ±0%

haskellProfessional 41 26 63.41% ±0%

happstack 73 44 60.27% ±0%

dph 20 12 60.00% ±0%

haskellData 14 8 57.14% ±0%

haskellRecord 14 8 57.14% ±0%

hxtPickler 26 14 53.85% −3.30%

haskellTermRep 17 9 52.94% ±0%

CHAPTER 7. CASE STUDY: 101HASKELL 60

haskellBarchart 18 9 50.00% ±0%

haskellStarter 14 7 50.00% −21.43%

tabaluga 25 12 48.00% −4.00%

haskellParsec 21 10 47.62% ±0%

haskellApplicative 21 10 47.62% ±0%

haskellTree 22 10 45.45% ±0%

haskellCGI 60 27 45.00% ±0%

tmvar 43 19 44.19% ±0%

haskellScott 8 3 37.50% ±0%

hughesPJ 12 4 33.33% ±0%

haskellMonoid 22 7 31.82% −4.54%

haskellVariation 16 5 31.25% ±0%

wxHaskell 47 14 29.79% ±0%

haskellSyb 21 6 28.57% −28.67%

haskellLambda 13 2 15.38% ±0%

haskellList 13 2 15.38% −7.70%

haskellEngineer 13 2 15.38% ±0%

haskellWriter 22 3 13.64% ±0%

haskellComposition 15 2 13.33% ±0%

haskellLogging 21 2 9.52% ±0%

∆0, 1after

median uniqueness 49.00% −3.47%

average uniqueness 51.39% −1.95%

Table 7.12: Variant uniquenesses after executing change propagation (f = frag-
ments, uf = unique fragments, u = uniqueness).

7.5 Step 2: Manually establishing equalities

At this point all evolutions leading to an equality had been annotated. After automatic
change propagation was used to diminish unintentional divergence, we focused on acci-
dental variation. That is, we used tactic 2 by annotating similarity evolutions that have
never been equalities, but where the underlying fragments should be equal nevertheless.
To accomplish this, the variants were navigated in the annotator and annotations of cate-
gory Establish Equality were created. After that, we used the todo list to systematically
work on such annotations. For this, we

• first picked a set of fragments that should all become equal,

CHAPTER 7. CASE STUDY: 101HASKELL 61

• then worked on all tasks related to these fragments,

• then committed all changes,

• and, finally, executed git ann update to update annotations.

These steps were repeated until no Establish Equality was left in the todo list and thus all
equalities were established.
The following metrics show the state of the repository after manually establishing equali-
ties, except for the annotations where we show the metrics results for both before and after
these manual actions.

7.5.1 Status

Equality classes

∆1after, 2after ∆0, 2after

total 595 −22 −37

total (non-trivial) 85 −8 −10

max size (non-trivial) 20 ±0 +7

median size (non-trivial) 4 ±0 +1

average size (non-trivial) 4.89 −0.13 +0.84

Table 7.13: Equality after manually establishing equalities.

Fragments

∆1after, 2after ∆0, 2after

total 925 ±0 ±0

unique 595 −22 −37

shared 415 +14 +27

unshared 510 −14 −27

variants sharing (median) 1 ±0 ±0

variants sharing (average) 1.55 +0.04 +0.09

Table 7.14: Fragments after manually establishing equalities.

CHAPTER 7. CASE STUDY: 101HASKELL 62

Similarities

∆1after, 2after ∆0, 2after

median 1.0 ±0 +0.01163%

average 0.96795 +0.00310 +0.02770%

Table 7.15: Similarities after manually establishing equalities.

Annotations

total auto ∆1after, 2before

Maintain Equality 1359 1264 ±0

Restore Equality 0 ±0 ±0

Establish Equality 120 67 +120

Increase Similarity 4 0 +1

Maintain Similarity 206 123 +162

Table 7.16: Annotations before manually establishing equalities.

total auto ∆2before, 2after

Maintain Equality 1482 1387 +123

Restore Equality 0 0 ±0

Establish Equality 0 0 −120

Increase Similarity 4 0 ±0

Maintain Similarity 272 145 +66

Table 7.17: Annotations after manually establishing equalities.

The metrics show the evolution of Establish Equality to Maintain Equality as the result
manual user actions. More specifically, all 120 Establish Equality annotations evolved
to Maintain Equality annotations. 3 additional Maintain Equality annotations were cre-
ated, because fragment pairs that were not associated with a similarity evolution before
(due to not passing the similarity threshold) became equal. We can also see that 66 ad-
ditional Maintain Similarity annotation were created after establishing equalities. These
were added because new similarity evolutions emerged due to the user actions.

CHAPTER 7. CASE STUDY: 101HASKELL 63

Variants

variant #f #uf u ∆u1after, 2after ∆u0, 2after

hdbc 3 3 100.00% ±0% ±0%

haskellHxt 4 4 100.00% ±0% ±0%

haskellDB 7 7 100.00% ±0% ±0%

strafunski 158 149 94.30% −0.64% −0.64%

haskellFlattened 28 25 89.29% ±0% ±0%

haskellAcceptor 14 12 85.71% ±0% ±0%

haskellSpec 29 24 82.76% −6.90% −6.90%

haskellLens 14 9 64.29% ±0% ±0%

haskellProfessional 41 26 63.41% ±0% ±0%

haskellBarchart 18 11 61.11% −11.11% −11.11%

haskellRecord 14 8 57.14% ±0% ±0%

mvar 16 9 56.25% −12.50% −12.50%

happstack 73 41 56.16% −4.10% −4.10%

dph 20 11 55.00% −5.00% −5.00%

haskellStarter 14 7 50.00% ±0% −21.43%

tabaluga 25 12 48.00% ±0% −4.00%

haskellParsec 21 10 47.62% ±0% ±0%

haskellApplicative 21 10 47.62% ±0% ±0%

haskellTermRep 17 8 47.06% −5.88% −5.88%

hxtPickler 26 12 46.15% −7.70% −10.00%

haskellTree 22 10 45.45% ±0% ±0%

haskellCGI 60 26 43.33% −1.67% −1.67%

haskellData 14 6 42.86% −14.28% −14.28%

tmvar 43 18 41.86% −2.33% −2.33%

haskellScott 8 3 37.50% ±0% ±0%

hughesPJ 12 4 33.33% ±0% ±0%

haskellMonoid 22 7 31.82% ±0% ±0%

haskellVariation 16 5 31.25% ±0% ±0%

wxHaskell 47 14 29.79% ±0% ±0%

haskellSyb 21 6 28.57% ±0% −28.67%

haskellLambda 13 2 15.38% ±0% ±0%

haskellList 13 2 15.38% ±0% ±0%

haskellEngineer 13 2 15.38% ±0% ±0%

haskellWriter 22 3 13.64% ±0% ±0%

haskellComposition 15 2 13.33% ±0% ±0%

CHAPTER 7. CASE STUDY: 101HASKELL 64

haskellLogging 21 2 9.52% ±0% ±0%

∆1after, 2after ∆0, 2after

median uniqueness 47.34% −1.66 −5.13

average uniqueness 50.00% −1.39 −3.34

Table 7.19: Variant uniquenesses after manually establishing equalities.

7.6 Step 3: Increasing similarities

Next, we worked on the remaining 4 annotations of category Increasing Similarity. This
step did not change any metrics results compared to the last step except for the metrics
about annotations and similarities.

7.6.1 Status

Annotations

total auto ∆2after, 3after

Maintain Equality 1482 1387 ±0

Restore Equality 0 0 ±0

Establish Equality 0 0 ±0

Increase Similarity 0 0 −4

Maintain Similarity 276 145 +4

Table 7.20: Annotations after manually increasing similarities.

Similarities

∆2after, 3after ∆0, 3after

median 1.0 ±0 +0.01163%

average 0.96802 +0.00007 +0.02777

Table 7.21: Similarities after manually increasing similarities.

CHAPTER 7. CASE STUDY: 101HASKELL 65

7.7 Step 4: Identifying inconsistencies

The last step was concerned about identifying inconsistencies by using the final equality
classes. First, all equality classes were inspected and each one was assigned a category,
that is, a reason for the underlying sharing. The following table shows the categories with
the number of associated equality classes, total number of fragments, and the number of
variants contributing fragments.

Category #EC #f #v
Feature Company (manager) 2 21 21

Feature Company (name) 3 28 28

Feature Company (address) 2 28 28

Feature Company (department) 6 18 18

Feature Company (subunit) 2 4 4

Feature Company (company) 7 25 25

Feature Company (employee) 5 27 27

Feature Company (salary) 2 28 28

Feature Total 4 16 9

Feature Cut 5 15 5

Feature Logging 5 12 2

Feature Median 1 2 2

Feature Browsing 1 2 2

Testing Serialization 2 15 15

Testing Cut 2 13 13

Testing Total 2 15 15

Testing Ranking 2 6 3

Testing Logging 2 4 2

Testing Median 1 2 2

Testing Depth 1 3 3

Testing (test list) 3 15 15

Main 2 23 23

Sample Company 5 24 22

Sample Log 1 2 2

Concept Zipper 17 68 4

Table 7.22: Categories of reasons for sharing with the associated equality classes
(EC = equality classes, f = fragments, v = variants).

After identifying these categories of reasons for sharing, we inspected each category to
detect inconsistencies. Three kinds of inconsistencies were distinguished:

CHAPTER 7. CASE STUDY: 101HASKELL 66

1. Missing implementation. A variant is missing the implementation of a feature,
test, concept, etc.

2. Unnormalized implementation. A variant implements a feature, test, concept, etc.
in an unnormalized way. After normalizating all such implementations, they would
add to existing or create new equality classes.

3. Mergable equality classes. Two or more equality classes of a category should be
merged. That is, their individual existence is not based on intended variance, but
rather missing normalization and inconsistency.

The following table summarizes the findings. For each category it shows numbers of in-
consistencies per kind. For kind 1 it shows the number of variants affected. For kind 2 it
shows the numbers of variants that should join an existing equality class respectively form
a new one. For kind 3 it shows the number equality classes that should merge.

Category #k 1 #k 2 #k 3 total
Feature Company (manager) 0 0 2 2

Feature Company (name) 0 1 3 4

Feature Company (address) 0 1 2 3

Feature Company (department) 0 0 2 2

Feature Company (subunit) 0 0 0 0

Feature Company (company) 0 1 2 3

Feature Company (employee) 0 1 2 3

Feature Company (salary) 0 0 2 2

Feature Total 0 1 0 1

Feature Cut 0 0 0 0

Feature Logging 0 0 0 0

Feature Median 0 0 0 0

Feature Browsing 0 0 0 0

Testing Serialization 3 0 2 5

Testing Cut 8 0 2 10

Testing Total 9 0 2 11

Testing Ranking 0 0 0 0

Testing Logging 0 0 0 0

Testing Median 0 0 0 0

Testing Depth 0 1 0 1

Testing (test list) 9 0 0 9

Main 9 0 0 9

Sample Company 0 0 0 0

Sample Log 0 0 0 0

CHAPTER 7. CASE STUDY: 101HASKELL 67

Concept Zipper 0 0 0 0

Table 7.23: Categories of reasons for sharing with found inconsistencies (k = kind).

The next table shows the lists of issues for all affected variants.

Variant Issues

dph

Kind 1: missing implementation of Testing Cut

Kind 1: missing implementation of Testing Total

Kind 1: missing implementation of Testing (test list)
Kind 2: join EC of haskellData for main

happstack

Kind 1: missing implementation of Testing Cut

Kind 1: missing implementation of Testing Total

Kind 1: missing implementation of Testing (test list)
Kind 1: missing implementation of main

haskellBarchart
Kind 2: join EC of haskellData for Feature Total

Kind 1: missing implementation of Testing Total

haskellCGI
Kind 1: missing implementation of Testing Cut

Kind 1: missing implementation of Testing Total

Kind 2: join EC of haskellData for Testing (test list)

haskellDB

Kind 1: missing implementation of Testing Cut

Kind 1: missing implementation of Testing Total

Kind 1: missing implementation of Testing (test list)
Kind 1: missing implementation of main

haskellFlattened Kind 2: join EC of haskellData for main

haskellHxt

Kind 2: join EC of haskellData for Testing Cut

Kind 2: join EC of haskellData for Testing Total

Kind 2: join EC of haskellData for Testing (test list)
Kind 1: missing implementation of main

haskellLens
Kind 2: create EC with haskellRecord for Feature Company (name)

Kind 2: create EC with haskellRecord for Feature Company (address)

haskellLogging Kind 2: join EC of haskellData for Testing Serialization

haskellProfessional Kind 1: missing implementation of Testing Median

haskellRecord
Kind 2: create EC with haskellLens of Feature Company (name)

Kind 2: create EC with haskellLens of Feature Company (address)

haskellTermRep Kind 1: missing implementation of Testing Serialization

CHAPTER 7. CASE STUDY: 101HASKELL 68

hdbc

Kind 1: missing implementation of Testing Cut

Kind 1: missing implementation of Testing Total

Kind 1: missing implementation of Testing (test list)
Kind 1: missing implementation of main

hughesPJ Kind 1: missing implementation of Testing Serialization

mvar

Kind 1: missing implementation of Testing Cut

Kind 1: missing implementation of Testing Total

Kind 1: missing implementation of Testing (test list)
Kind 1: missing implementation of main

strafunski Kind 2: join EC of tabaluga for Testing Depth

tmvar

Kind 1: missing implementation of Testing Cut

Kind 1: missing implementation of Testing Total

Kind 1: missing implementation of Testing (test list)
Kind 1: missing implementation of main

wxHaskell

Kind 1: missing implementation of Testing Cut

Kind 1: missing implementation of Testing Total

Kind 1: missing implementation of Testing (test list)
Kind 1: missing implementation of main

Table 7.24: Issues found across variants (EC = equality class).

7.8 Summary

Using the final metrics results of our case study we can answer our initial research ques-
tions.
Q1. Overall, 324 similarity evolutions were annotated with Restore Equality. That is,
the we identified 324 divergences as unintentional. The annotations could all be executed
automatically using change propagation. As a result the number of unique fragments was
reduced by 2.37%. After that we established equalities manually and the overall number
of unique fragments was finally reduced by 5.85%.
Q2. With regards to fragment sharing the following results could be achieved. The me-
dian number of variants a fragment is shared was initially 1 and was not changed, the
average number could be increased from 1.46 to 1.51 with automatic change propagation
(+3.31%), and further to 1.55 by manually establishing equalities (+5.80% in total). The
median uniqueness of variants could be decreased from 52.47% to 49.00% using change
propagation (-6.61%) and further down to 47.37% after establishing equalities (-9.72% in
total). The average uniqueness of variants could be decreased from 53.34% to 51.39% us-
ing change propagation (-3.66%) and further down to 50.00% after establishing equalities

CHAPTER 7. CASE STUDY: 101HASKELL 69

(-6.26% in total). The median similarity passing the user-provided threshold of 0.80 could
be increased from 0.9885 to 1 (+1.163%) by automatically restoring equalities. The aver-
age similarity was increased from 0.94186 to 0.96495 (+2.452%) by using change prop-
agation, further to 0.96795 (+0.310%) by manually establishing equalities, and finally, to
0.96802 (+2.777% in total) by manually increasing similarities.
Q3. We could identify 25 categories of equality classes where each category is a reason
for the underlying cloning of fragments. The categories enabled we to identify 47 incon-
sistencies across 19 variants.

Chapter 8

Conclusion

In this last chapter we will first summarize our work. Then, we identify both internal and
external threats to validity. Finally, we outline some directions for future work.

8.1 Summary

Cloning is one approach to develop a software system as a set of variants. One mayor dis-
advantage of cloning is that the cloned fragments are disconnected. Therefore, whenever
one fragment is changed all clones of that fragment have to be synchronized manually.
This manual synchronization of fragments is usually unmanaged and therefore error-prone
and can lead to unintentional divergence. It also does not scale well when a high number
of variants has to be maintained. To manage and monitor such cloning and similarities we
have presented a system for extracting similarities from a given repository and for annotat-
ing the similarities by expressing how they should be maintained further. We discussed how
some categories of annotations can be ”executed” automatically by propagating changes
between fragments. We also explained how other annotation categories call for manual
actions by the user. We have presented a case study on the 101haskell corpus of variants
where our approach was used to automatically restore and manually establish equalities.
A direct result of diminishing unintentional divergence and accidental variation was an in-
crease of sharing of fragments between variants and fragment similarities and a decrease
of the uniqueness of variants. By then manually inspecting emerging equality classes we
could identify inconsistencies across variants.

8.2 Threats to validity

We identify threats to validity regarding the following four aspects.

70

CHAPTER 8. CONCLUSION 71

8.2.1 Variability

External Validity. We only realized extraction for variant names where variation is orga-
nized by means of dedicated folders. Generally other means, such as dedicated branches
or repositories, can be used.

8.2.2 Fragment extraction

Internal Validity. In our work fragments are consecutive lines of code that correspond to
a hand-selected node in the abstract syntax tree of the given source file. Our work does
not provide guidance with regard to the question on which syntactic levels such fragments
should be extracted. For instance, for the Haskell case, we currently extract complete top-
level functions, but not locally defined functions in where clauses. Selecting another set of
syntactic categories for extraction could have resulted in different results in our case study.
External Validity. Another threat is concerned with the extraction of fragments by linking
fragment snapshots. When a fragment is both renamed and its content was changed we
can currently only detect the case where the name was changed, but all other changes are
solely related to renaming of other fragments. In the context of our case study we manually
inspected all cases in which a fragment could no longer be tracked and did not find any
false negatives. Nevertheless, other approaches [20, 35] need to be studied, compared and
potentially utilized.

8.2.3 Clone and similarity detection

Internal Validity. The implemented clone and similarity detection is text-based after
pretty-printing tokens into many lines to disregard dissimilarities solely based on whites-
pace. This approach is only language-specific in that it requires a language-specific pretty-
printer. However, the accuracy and completeness of clone detection could potentially be
improved by using more language-specific techniques.
External Validity. Our system asks the user to provide a threshold for the similarity value.
In our case study only one software language, Haskell, was considered when annotating
similarities. Though our approach does support multiple languages, the similarity thresh-
old might have to be different for different languages.

8.2.4 Annotations

External Validity. When extracting fragments we use language-specific technology that
returns name/classifier pairs and line ranges for each fragment. For the case study on
101haskell we have used technology that only returns non-nested fragments. However
fragments can generally be nested, which can lead conflicts when annotating similarities.
For instance, when we consider the Java classes c1 with subclass c1s and c2 with subclass

CHAPTER 8. CONCLUSION 72

c2s. If a similarity between c1s and c2s is annotated with Increase Similarity, but a sim-
ilarity between c1 and c2 is annotated with Maintain Similarity the annotations conflict
each other. We could solve this by not allowing the extraction of such nested fragments or,
preferably, by detecting annotation conflicts.
External Validity. All variants of the 101haskell project were developed by four people.
Only two of those were involved in the annotation process as part of our case study. In
general many stakeholders might have to be consulted such as testers, architects and devel-
opers. Therefore, the annotation step might be disruptive and time-consuming. Due to the
number of people contributing to 101haskell we could not take this concern into account
during our case study.

8.3 Future work

We can identify four possible directions of future work:
Operators. Our work implements the propagate operator in the context of a virtual plat-
form of metadata and operators. Our approach could be extended and generalized to sup-
port the implementation of other operators like clone variant or clone feature. Depending
on the operator this might require the extraction of additional metadata such as features.
Because such operators could also create new metadata and annotations, they could have
the benefit that less metadata has be extracted reactively and less annotations have be cre-
ated manually.
Variability. Our work only supports folders as a way of organizing variants. Other ap-
proaches could be supported.
Information in annotations. Currently annotations only consists of the category, a com-
ment by the user, and, potentially a direction changes should be propagated in. However,
annotations could hold additional data like an assignment to a specific developer for man-
ual actions required by the annotation. This assignment could then be used to organize
collaboration.
Guided annotation process. We have defined a set of rules to automatically infer some
annotations based on previous annotations. We could guide the user with regard to which
similarities to annotate next, such that the number of inferred annotations can be maxi-
mized and thus the number of manual annotations can be minimized.

Bibliography

[1] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lämmel, S. Stan-
ciulescu, A. Wasowski, and I. Schaefer, “Flexible product line engineering with a
virtual platform,” in Proc. of ICSE 2014, pp. 532–535, ACM.

[2] J. Rubin and M. Chechik, “A framework for managing cloned product variants,” in
Proc. of ICSE 2013, pp. 1233–1236, IEEE.

[3] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants: A framework
and experience,” in Proc. of SPLC 2013, pp. 101–110, ACM.

[4] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czarnecki, “An
exploratory study of cloning in industrial software product lines,” in Proc. of CSMR

2013, pp. 25–34, IEEE.

[5] C. Kapser and M. W. Godfrey, “”cloning considered harmful” considered harmful,”
in Proc. of WCRE 2006, pp. 19–28, IEEE.

[6] P. Clements and L. Northrop, Software product lines: practices and patterns, vol. 59.
Addison-Wesley Reading, 2002.

[7] W. A. Hetrick, C. W. Krueger, and J. G. Moore, “Incremental return on incremen-
tal investment: Engenio’s transition to software product line practice,” in Proc. of

OOPSLA 2006, pp. 798–804, ACM.

[8] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and A. Wa-
sowski, “A survey of variability modeling in industrial practice,” in Proc. of VaMoS

2013, p. 7, ACM.

[9] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic framework for
evaluating code clone detection tools,” in Proc. of ICSTW 2009, pp. 157–166, IEEE.

[10] L. Chen, M. Ali Babar, and N. Ali, “Variability management in software product
lines: a systematic review,” in Proc. of SPLC 2009, pp. 81–90, Carnegie Mellon
University.

73

BIBLIOGRAPHY 74

[11] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Enhancing clone-
and-own with systematic reuse for developing software variants,” in Proc. of ICSME

2014, pp. 391–400, IEEE.

[12] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss intentional
clones using flexible pretty-printing and code normalization,” in Proc. of ICPC 2008,
pp. 172–181, IEEE.

[13] C. K. Roy and J. R. Cordy, “Scenario-based comparison of clone detection tech-
niques,” in Proc. of ICPC 2008, pp. 153–162, IEEE.

[14] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,” in Proc. of

ICSME 2014, pp. 321–330, IEEE.

[15] C. K. Roy, “Detection and analysis of near-miss software clones,” in Proc. of ICSM

2009, pp. 447–450, IEEE.

[16] M. Kim and D. Notkin, “Using a clone genealogy extractor for understanding and
supporting evolution of code clones,” in ACM SIGSOFT Software Engineering Notes,
vol. 30, pp. 1–5, ACM, 2005.

[17] S. Xie, F. Khomh, Y. Zou, and I. Keivanloo, “An empirical study on the fault-
proneness of clone migration in clone genealogies,” in Proc. of CSMR-WCRE 2014,
pp. 94–103, IEEE.

[18] M. Mondal, On the Stability of Software Clones: A Genealogy-Based Empirical

Study. PhD thesis, University of Saskatchewan, 2013.

[19] R. K. Saha, C. K. Roy, K. A. Schneider, and D. E. Perry, “Understanding the evolution
of type-3 clones: an exploratory study,” in Proc. of MSR 2013, pp. 139–148, IEEE.

[20] R. K. Saha, C. K. Roy, and K. A. Schneider, “An automatic framework for extracting
and classifying near-miss clone genealogies,” in Proc. of ICSM 2011, pp. 293–302,
IEEE.

[21] X. Wu, A. Murray, M.-A. Storey, and R. Lintern, “A reverse engineering approach
to support software maintenance: Version control knowledge extraction,” in Proc. of

WCRE 2004, pp. 90–99, IEEE.

[22] A. Brühlmann, T. Gı̂rba, O. Greevy, and O. Nierstrasz, “Enriching reverse engi-
neering with annotations,” in Model Driven Engineering Languages and Systems,
pp. 660–674, Springer, 2008.

[23] A. Hemel and R. Koschke, “Reverse engineering variability in source code using
clone detection: A case study for linux variants of consumer electronic devices,” in
Proc. of WCRE 2012, pp. 357–366, IEEE.

BIBLIOGRAPHY 75

[24] M. Mondal, C. K. Roy, and K. A. Schneider, “Late propagation in near-miss clones:
An empirical study,” Electronic Communications of the EASST, vol. 63, 2014.

[25] L. Barbour, F. Khomh, and Y. Zou, “Late propagation in software clones,” in Proc. of

ICSM 2011, pp. 273–282, IEEE.

[26] D. Chatterji, J. C. Carver, N. A. Kraft, and J. Harder, “Effects of cloned code on
software maintainability: A replicated developer study,” in Proc. of WCRE 2013,
pp. 112–121, IEEE.

[27] C. K. Roy, M. F. Zibran, and R. Koschke, “The vision of software clone management:
Past, present, and future (keynote paper),” in Proc. of CSMR-WCRE 2014, pp. 18–33,
IEEE.

[28] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen, “Clone
management for evolving software,” Software Engineering, IEEE Transactions on,
vol. 38, no. 5, pp. 1008–1026, 2012.

[29] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano, “Applying clone change
notification system into an industrial development process,” in Proc. of ICPC 2013,
pp. 199–206, IEEE.

[30] R. Koschke, “Frontiers of software clone management,” Frontiers of Software Main-

tenance, vol. 2008, pp. 119–128, 2008.

[31] R. Lämmel, “Software chrestomathies,” Science of Computer Programming, 2013.

[32] R. Lämmel, T. Schmorleiz, and A. Varanovich, “The 101haskell chrestomathy: A
whole bunch of learnable lambdas,” in Proc. of IFL 2013, pp. 25:25–25:36, ACM.

[33] J.-M. Favre, R. Lämmel, T. Schmorleiz, and A. Varanovich, “101companies: A
Community Project on Software Technologies and Software Languages,” in Proc.

of TOOLS 2012, pp. 58–74, Springer.

[34] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic token-based
code clone detection system for large scale source code,” Software Engineering, IEEE

Transactions on, vol. 28, no. 7, pp. 654–670, 2002.

[35] S. Kim, K. Pan, and E. J. Whitehead, Jr., “When functions change their names: Auto-
matic detection of origin relationships,” in Proc. of WCRE 2005, pp. 143–152, IEEE.

[36] J. Rubin and M. Chechik, “A framework for managing cloned product variants,” in
Proc. ICSE 2013, pp. 1233–1236, IEEE / ACM.

[37] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line Engineering: Foun-

dations, Principles and Techniques. Springer, 2005.

BIBLIOGRAPHY 76

[38] J.-M. Favre, R. Lammel, M. Leinberger, T. Schmorleiz, and A. Varanovich, “Linking
documentation and source code in a software chrestomathy,” in Proc. of WCRE 2012,
pp. 335–344, IEEE.

	Introduction
	Context of this work
	Related work
	Research questions
	Roadmap

	Extracting Metadata
	Initial extraction process
	Variants
	Fragment snapshots
	Fragments
	Similarity snapshots
	Similarity evolutions

	Traversing commits
	Updating metadata

	Annotating similarities
	Annotation categories
	Structure of annotations
	Applicability of annotations
	Web application for similarity exploration and annotation
	Views

	Annotators
	Commit-centric
	Variant-centric

	Automatic annotations
	Annotating equality classes
	Rule-based annotation inference

	Automatic change propagation
	Executing Maintain and Restore Equality
	Updating annotation

	Todo list
	Tasks in the todo list
	Acting on tasks in the todo list
	Updating annotations after user actions
	Summary of possible annotation evolutions

	Integrating with Git
	The standard Git workflow
	Extending git with new commands
	Extended Git workflow

	Case study: 101haskell
	101haskell
	Metrics for the case study
	Equality classes
	Fragments
	Similarities
	Annotations
	Variants

	Initial status
	Step 1: Automatically restoring equalities
	Status

	Step 2: Manually establishing equalities
	Status

	Step 3: Increasing similarities
	Status

	Step 4: Identifying inconsistencies
	Summary

	Conclusion
	Summary
	Threats to validity
	Variability
	Fragment extraction
	Clone and similarity detection
	Annotations

	Future work

