
Universität Koblenz-Landau

Master Thesis

A feature model for web testing tools

Author:

Jan Stefan Rüther

Supervisor:

Prof. Dr. Ralf Lämmel

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

in the

Arbeitsgruppe Softwaresprachen

Institut für Softwaretechnik

May 2015

http://www.uni-koblenz-landau.de/koblenz
http://softlang.wikidot.com/rlaemmel:home
http://softlang.wikidot.com/
http://www.uni-koblenz-landau.de/koblenz/fb4/ist

Erklärung

Hiermit bestätige ich, dass die vorliegende Arbeit von mir selbständig verfasst wurde

und ich keine anderen als die angegebenen Hilfsmittel – insbesondere keine im Quellen-

verzeichnis nicht benannten Internet–Quellen – benutzt habe und die Arbeit von mir

vorher nicht in einem anderen Prüfungsverfahren eingereicht wurde. Die eingereichte

schriftliche Fassung entspricht der auf dem elektronischen Speichermedium (CD-Rom).

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einverstanden. � �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

(Ort, Datum) (Unterschrift)

i

“This is what I love, and can’t stop loving. . . ”

Showtek - FTS

UNIVERSITÄT KOBLENZ-LANDAU

Abstract

Fachbereich 4: Informatik

Institut für Softwaretechnik

Master of Science

A feature model for web testing tools

by Jan Stefan Rüther

Web application testing is an active research area. Garousi et al. did a systematic map-

ping study and classified 79 papers published between 2000-2011 [1]. However, there

seems to be a lack of information exchange between the scientific community and tool

developers. This thesis systematically analyzes the field of functional, system level web

application testing tools. 194 candidate tools were collected in the tool search and

screened, with 23 tools being selected as foundation of this thesis. These 23 tools were

systematically used to generate a feature model of the domain. The methodology to

support this is an additional contribution of this thesis. It processes end user docu-

mentation of tools belonging to an examined domain and creates a feature model. The

feature model gives an overview over the existing features, their alternatives and their

distribution. It can be used to identify trends and problems, extraordinary features,

help decision making of tool purchase or guide scientists how to focus research.

In dieser Arbeit wurde erstmalig das Gebiet der funktionalen, system-level Web Testing

Tools analysiert. Aus 194 Toolkandidaten wurden 23 Tools zur Analyse ausgewählt.

Die entwickelte Methodik verwendet die Benutzerhandbücher der Tools, um ein Fea-

turemodel zu erzeugen, dass die Features aller Tools abbildet. Insgesamt wurden 313

Features identifiziert, klassifiziert und beschrieben. Die Features wurden in 10 Kate-

gorien unterteilt und werden mit 16 Featurediagrammen dargestellt.

Die Ergebnisse können technologische Entscheidungsprozesse unterstützen, indem ein

Überblick einerseits über die Tools auf dem Markt und andererseits über die neusten En-

twicklungen im Bereich des funktionalen, system-level Web Testing bereitgestellt wird.

http://www.uni-koblenz-landau.de/koblenz
http://www.uni-koblenz-landau.de/koblenz/fb4/
http://www.uni-koblenz-landau.de/koblenz/fb4/ist

Acknowledgements

Ich danke Prof. Ralf Lämmel für die ausführliche und engagierte Unterstützung dieser

Arbeit. Weiterhin danke ich Martin Leinberger, meinem Zweitprüfer.

Ich danke meinen Korrektoren Christian und Britta, für ihre konstruktiven und hilfre-

ichen Kommentare.

Ich danke meiner Freundin Lena für ihre moralische Unterstützung.

Ich danke meinen Eltern. Ohne ihre durchgängige, finanzielle Unterstützung wäre es mir

nicht möglich gewesen ein Studium in oder teils unter Regelstudienzeit abzuschließen.

Außerdem danke ich ihnen für ihr Vertrauen und ihren Rat.

Ich danke den Erfindern und Songschreibern der elektronischen Musik sowie den DJs

von Technobase.fm und Hardbase.fm für ihren meist ehrenamtlichen Einsatz. Durch

diese aufputschende und aber im Gegenzug durch ihre Gleichmäßigkeit nicht ablenkende

Musik habe ich einige lange Tage und Nächte überstanden.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 Research context . 2

1.2 Research question . 5

1.3 Contributions . 6

1.4 Structure of the thesis . 6

2 Related Work 8

2.1 Tool comparison approaches . 8

2.2 The CaVE information retrieval model . 9

2.2.1 Extraction Patterns . 10

2.2.2 Extraction Process . 11

3 Methodology 13

3.1 Tool Search and Screening . 13

3.1.1 Tool Search . 13

3.1.2 Screening rules . 14

3.2 Feature Extraction . 16

4 Study Execution 18

4.1 Tool Search and Screening . 18

4.2 Feature Model Generation . 19

4.2.1 Feature Extraction . 19

4.2.2 Combination Step . 21

v

Contents vi

5 Result 24

5.1 Abstraction Supporting Features . 25

5.1.1 Webpage Element Indirection . 27

5.1.1.1 Mapping Table . 27

5.1.1.2 Updating Components . 28

5.1.1.3 Element Explorer . 28

5.1.1.4 Element Recognition . 30

5.1.2 Component Model . 30

5.1.2.1 Avatar System . 31

5.1.3 Interproject Relationship . 31

5.1.3.1 Test Suite Linking . 31

5.1.3.2 User Library . 32

5.1.3.3 Name Collision Handling 32

5.1.4 Code Indirection . 32

5.1.4.1 Setup / Tear down . 32

5.1.4.2 Dependencies . 33

5.1.5 API specific . 34

5.1.5.1 Page Object . 34

5.1.5.2 Step Object . 36

5.1.5.3 Webelement pattern . 36

5.2 Capture . 37

5.2.1 Image Recognition . 39

5.2.2 Recording . 39

5.2.3 Change User Agent . 41

5.2.4 Screenshot . 41

5.3 Editor Features . 41

5.3.1 Code View . 43

5.3.1.1 Text View . 43

5.3.1.2 Keyword/Tabular View 43

5.3.1.3 Tree View . 44

5.3.1.4 Storyboard View . 45

5.3.1.5 Flow Chart View . 45

5.3.2 Miscellaneous . 45

5.4 Element Identification . 47

5.4.1 Information . 50

5.4.1.1 Attribute . 50

5.4.1.2 Position / Size . 50

5.4.2 Method . 51

5.5 Execution . 53

5.5.1 Test Report . 56

5.5.2 External Execution . 56

5.5.3 Miscellaneous . 57

5.5.3.1 Scheduler . 57

5.5.3.2 Multi User Testing . 57

5.5.3.3 Execution Speedup . 58

5.5.3.4 Testing Framework . 59

5.6 Extra Tools . 59

Contents vii

5.6.1 Test Creation Helper . 61

5.6.2 Miscellaneous . 62

5.6.2.1 Documentation Tool . 62

5.6.2.2 IDE Integration . 62

5.7 Language . 62

5.7.1 Self-made . 66

5.7.1.1 Language Style . 66

5.7.1.2 Language Power . 67

5.7.2 Coding Styles . 68

5.7.3 API / GPL . 69

5.7.3.1 Host . 69

5.7.3.2 Command . 69

5.7.3.3 Assertion . 70

5.8 Methodology . 70

5.8.1 Data-driven Testing . 72

5.8.2 Manual Testing . 72

5.8.3 Exploratory Testing . 73

5.8.4 Multi-lingual Testing . 74

5.8.5 Test-first Programming . 74

5.9 Problem Analysis . 74

5.9.1 Run Log . 77

5.9.2 Debugger . 77

5.10 Technology . 78

5.10.1 HTML . 82

5.10.2 Tool Connection . 82

5.10.3 Miscellaneous . 82

5.10.3.1 Browser . 83

5.10.3.2 Widget Toolkit . 84

5.10.3.3 Headless Driver . 84

5.10.3.4 Ajax . 84

6 Conclusion 85

6.1 Trends, Problems and Differences between ITEs and APIs 85

6.2 Equality of Tools . 89

7 Summary 93

7.1 Outlook . 93

7.2 Threads to Validity . 93

A Tool - Feature List 95

Bibliography 119

List of Figures

2.1 Example pattern . 10

3.1 Extraction patterns . 16

3.2 Combination phase algorithm . 17

4.1 Marked pdf example . 20

4.2 Log file example . 22

5.1 Feature diagram - Key . 24

5.2 Distribution of the frequencies of the ITE features. 25

5.3 Feature model : Abstraction - ITE . 26

5.4 Feature model : Abstraction - API . 27

5.5 Feature - Guided Identifier Update - locate element 28

5.6 Feature - Guided Identifier Update - element found 29

5.7 Feature - Elements Explorer . 29

5.8 Feature - Lifecycle Hook . 34

5.9 Feature - Template Option . 35

5.10 Feature - Step Object . 36

5.11 Feature - Webelement Pattern . 37

5.12 Feature model : Capture . 38

5.13 Feature - Recording . 40

5.14 Feature model : Editor . 42

5.15 Feature - Text View . 43

5.16 Feature - Keyword/Tabular View . 44

5.17 Feature - Tree View . 44

5.18 Feature - Storyboard View . 45

5.19 Feature - Flow Chart View . 46

5.20 Feature model : Element Identification - ITE 48

5.21 Featuremodel : Element Identification - API 49

5.22 Different element identifiers . 51

5.23 Feature - Host-language procedure . 52

5.24 Feature - CSS Selector . 53

5.25 Feature - JQuery . 53

5.26 Feature model : Execution - ITE . 54

5.27 Feature model : Execution - API . 55

5.28 Feature - Multi User Testing . 58

5.29 Feature model : Extra Tools . 60

5.30 Feature - 3D Viewer . 61

viii

List of Figures ix

5.31 Feature - Documentation Tool . 63

5.32 Feature model: Language - ITE . 64

5.33 Feature model: Language - API . 65

5.34 Feature - Tree-style . 67

5.35 Feature - Self-documenting . 67

5.36 Feature - Complex Interaction . 70

5.37 Feature - Conditional Assertion . 70

5.38 Feature model : Methodology . 71

5.39 Feature - Manual Testing . 73

5.40 Feature model : Problem Analysis . 76

5.41 Feature model: Technology - ITE . 79

5.42 Feature model: Technology - ITE - HTML 80

5.43 Feature model: Technology - API . 81

6.1 Distribution of equalities between the ITE tools. 92

List of Tables

1.1 Web testing terminology . 4

1.2 Categories for functional web testing tools. 5

4.1 Count of candidates that have been eliminated sorted by reason. 19

4.2 Screening source recall . 19

4.3 Tools in this study. 20

4.4 Notation of the log files used to document the combination step. 21

4.5 Statistics of the combination step. 23

6.1 Feature equality matrix . 91

A.1 QF-Test: Feature list . 96

A.2 QA Wizard Pro: Feature list . 97

A.3 AppPerfect Web Test: Feature list . 98

A.4 iMacros: Feature list . 99

A.5 Sahi Pro: Feature list . 100

A.6 Robot Framework: Feature list . 101

A.7 Application Testing Suite: Feature list . 102

A.8 WinTask: Feature list . 103

A.9 TestingWhiz: Feature list . 104

A.10 CodedUI: Feature list . 105

A.11 Rapise: Feature list . 106

A.12 Testing Anywhere: Feature list . 107

A.13 Ranorex Test Automation: Feature list 108

A.14 Silk Test: Feature list . 109

A.15 Test Studio: Feature list . 110

A.16 RIATest: Feature list . 111

A.17 Jubula: Feature list . 112

A.18 Selenium: Feature list . 113

A.19 FuncUnit: Feature list . 114

A.20 Codeception: Feature list . 115

A.21 GEB: Feature list . 116

A.22 FluentLenium: Feature list . 117

A.23 Arquillian Graphene: Feature list . 118

x

Abbreviations

ALM Application Lifecycle Management

API Application Programming Interface

CSS Cascading Style Sheets

DOM Document Object Model

DSL Domain Specific Language

GPL General Purpose Language

GUI Graphical User Interface

IDE Integrated Develpment Environment

ITE Integrated Testing Environment

OCR Optical Character Recognition

SUT System Under Test

TM Test Management

URL Uniform Resource Locator

xi

Chapter 1

Introduction

The web is an ubiquitous part of our society. Up to the present day the importance

of the web is growing. Web applications are becoming more complex and increasingly

replace the traditional desktop applications [1, 2].

The origins of web application complexity are multifaceted [3, 4]. It often causes the

applications to be error-prone and testing to be difficult. Another problem is that

traditionally web testing is often done manually [1], which is becoming similarly more

complex until the point of impracticality [2].

Web application testing is an active research area. Garousi et al. did a systematic

mapping study and classified 79 papers published between 2000-2011 [1]. Among other

things, they documented the increasing popularity of web application testing by sorting

the publications per year.

Garousi et al. discovered that half of the papers mention an accompanying tool imple-

mentation [1]. But only 6 of the 79 papers provide a downloadable tool. Garousi et

al. alerted the scientific community to take tool implementations more seriously if they

intend to have an impact in industry.

Besides Dobolyi et al. introduced a semantics-based automated oracle comparator for

the regression testing of web-based applications [5]. They stated that their approach

is 2.5 to 50 times as accurate as current industrial practice. They define what they

assume is industrial practice or the state of the art, however they do not substantiate

their statement by citation.

1

Chapter 1. Introduction 2

Motivation

These examples suggest that there is a need for a comprehensive analysis of state of the

art in the area of web application testing tools. There seems to be an information gap

between the scientific community and tool developers. Of course there are joint research

projects, but these normally include just one software company and one university which

cooperate for a limited period of time and there are far too many tools in this domain

to get a realistic overview by doing a research project1.

To the best of my knowledge, until now there has not been an attempt to systematically

analyze the web testing tools on the market. This thesis investigates what features the

functional web application testing tools on the market exhibit and how these features

can be categorized.

Research beneficiaries

The result of this thesis helps researchers to obtain an overview of the capabilities,

that the state of the art tools possess. Web testers benefit from this thesis as it gives

an overview of the tools on the market as well as the existing features. The provided

presentation of features guides the tool selection process as it can disclose the testers’

requirements in the tool. Tool developers profit by the thesis’ result as they gain an

overview of their competitors. Perchance this helps to focus their efforts on the features

that distinguish their tools.

1.1 Research context

This section describe the domain of web application testing tools. The focus is set on

the terminology of the domain.

The field of web application testing has much interference with the field of web applica-

tion automation. Also adjoining is of course GUI testing as well as mobile testing and

web service testing2.

1This thesis identified 95 actively developed tools in the domain of functional web application testing.
2Often known as SOA (Service-oriented architecture) testing [6].

Chapter 1. Introduction 3

Table 1.1 explains the terminology of web application testing tools. Regression testing

is a functional testing approach. In this domain both are often used synonymously.

All listed terms are often encountered when reading about web testing tools, with the

exception of usability testing.

Functional testing can be categorized according to the granularity of the test. As defined

in the literature [14] there are three testing levels: unit, integration and system testing.

Tests can cover a module in isolation (unit testing), a few modules and their integration

(integration testing) or the whole system (system testing).

Garousi et al. define a modules as a single source-code file or function [1]. Thus an

HTML validator is an unit testing approach. An example for integration testing is

the communication of client-side JavaScript with server-side JSP or PHP. Testing the

application through its GUI is system testing. In contrast to other literature defining

testing of a single page through the GUI as unit testing and furthermore testing of

multiple pages as integration testing respectively [12], this thesis applies the former

definition by Garousi et al.

System-level testing requires testing the application through the GUI. In the case of

web applications the GUI is provided by the browser. Thus, system-level testing tools

hook into the browser and indirectly control the web application by firing mouse and

keyboard events and reading the displayed data.

Another approach is to develop a special browser for the purpose of testing. These

browsers do not visualize the page and are called headless browsers. They enable much

faster testing without the overhead of real browsers. However even the most advanced

do not support all features the real browsers do.

A third approach operates the browser by remote control using image recognition. This

approach is not web specific as the tools do not emulate or hook into the browser but

emulate the mouse and “the users eyes”. On the GUI side, the tools do no differentiate

between the components of the browser, the web application under test or the operation

system GUI elements.

Functional system-level web application testing tools can be categorized in three over-

lapping categories (Table 1.2).

Chapter 1. Introduction 4

Term Description

functional testing approaches

Regression testing Regression testing is the process of retesting an appli-
cation after changes have been made. The test should
ensure that no bugs have been introduced, more pre-
cisely that the behavior of the application has not un-
expectedly changed [7]. Maŕın et al. observe that Re-
gression testing needs coverage analysis methods that
identify the smallest test suite needed to ensure the
tests cover the code [8].

Cloud testing Cloud testing is the combination of web testing and
cloud computing. Thus its a business model and not
a web testing approach. Cloud testing can provide all
functional or non-functional testing approaches [9, 10].
The keyword TaaS (Testing as a service) should be
mentioned in that context [11].

non-functional testing approaches [12]

Performance testing Performance testing ensures that the systems perfor-
mances (e.g., response time, service availability) fulfill
the specifications. Thousands of simultaneous users
that access the page are emulated.

Load testing Load testing is a specialization of performance testing.
The performance is measured with a predefined load
level. In this case the time to perform a special task
or function is measured. Many of users are simulated
and the test fails if the task is not performed within
the defined time frame.

Stress testing Stress testing is a specialization of performance test-
ing, where the system is tested at the limits or beyond
the specified requirements. For instance the system
should recover after a collapse in a defined time frame.

Security testing Security testing is the process of securing the system
and its data against improper usage and additionally
to ensure that regular users have access to its func-
tionality.

Compatibility testing The role of compatibility testing is to detect failures
due to the employment of different platforms, browsers
(cross browser testing) or screen resolutions.

Usability testing Usability testing helps to achieve that the system is
easy and intuitive to use. Accessibility testing is a spe-
cialization that ensures that the system is accessible
with reduced hardware or software on the client-side.
In most cases the goal is to verify that handicapped
people have access to the application. There are ac-
cepted guidelines that define how accessibility can be
verified, like the Web Content Accessibility Guidelines
[13]

Table 1.1: Web testing terminology

Chapter 1. Introduction 5

Category Description

Framework/Library Frameworks and libraries are used to provide testing of
web applications via general-purpose languages. They
often benefit from the host language’s features that
improve the readability and reusability of the testing
code.

Integrated testing environment In a way similar to the popular IDEs like Eclipse or
NetBeans, integrated testing environments (ITE) are
extensive tool suites that provide an integrated envi-
ronment for developing tests. They provide different
views on the application under test and test debugging
support for instance.

Browser driver Browser drivers are the applications that actually
drive or emulate the browser. Every tool of the for-
mer two categories either develops its own driver or
more likely uses an open source driver. There are two
types of browser drivers. First the headless browsers
that emulate the behavior of a web browser. And sec-
ond the browser controllers that hook into an existing
browser and take over control.

Table 1.2: Categories for functional web testing tools.

1.2 Research question

This thesis systematically reviews the variety and capabilities of the functional web ap-

plication testings tools currently on the market. The leading question can be put like

that.

• Which features can be identified in the field of functional, system-level, web appli-

cation testing tools?

The previous section pictured the domain of web application testing. This thesis con-

centrates on functional testing tools. It concentrates on system-level testing excluding

unit-level testing tools that validate source code files of the various languages that are

used to build web applications. Also excluded are integration-level testing tools, which

for instance are used to debug AJAX scripts. The thesis handles web application test-

ing, or more precisely web-specific application testing. Thus tools that primarily work

with image recognition are excluded. Table 1.2 introduces categories for the tools of

Chapter 1. Introduction 6

this thesis. Not included in this thesis is the analysis of browser drivers. Most of them

cannot be used independently or only provide minimalistic features. Doing web testing

should be preferred with the tools that build on top of them.

The identified features are put into the context of a feature model. As the model

is organized hierarchically, the features are to be categorized. This is a necessity for

beneficiaries to gain an overview and to compare features.

1.3 Contributions

This thesis has two contributions. A methodology for feature model generation with the

aim to picture the overall state of the art within a domain of tools. And the exemplary

execution of this methodology in the field of functional web application testing.

The developed methodology has the aim to provide an overview over a domain of tools.

The tools have to provide an end user manual to be includable. In the first place pre-

liminarily feature models are constructed for every tool. Afterwards these preliminarily

feature models are combined to one feature model. The process in detail is presented in

chapter 3.

In this thesis the domain of functional, system-level web application testing tools is

analyzed. 23 tools are analyzed and the result is a feature model including 313 features.

They are used to discuss for example trends and problems, the distribution of features

or the similarity of tool tuples by considering the set of common features in comparison

to the all features.

1.4 Structure of the thesis

The thesis is structured as follows: Chapter 2 presents similar approaches and intro-

duces the CaVE information retrieval model that is the foundation of the developed

methodology, which is introduced in chapter 3. Chapter 4 describes the application of

the methodology. Chapter 5 builds the main part of the thesis. It pictures and explains

the feature model and its features. Chapter 6 presents an interpretation of the results

and chapter 7 summarizes the thesis and discusses threads to its validity.

Chapter 1. Introduction 7

Appendix A contains the specific data of all features belonging to each tool.

Chapter 2

Related Work

In this chapter the methodology of this thesis is compared to other approaches in the

literature. Additionally the CaVE information retrieval model is introduced.

2.1 Tool comparison approaches

There are different approaches to compare testing tools. The traditional approach is

the qualitative analysis. This methodology includes defining criteria first and then later

describing and rating the tools with the criteria in mind. It often involves testing the

tools manually. Some approaches based on this generel idea are [15], [16] and [17].

Another common approach is to design sample tasks and measure the time needed with

the different tools (e.g., [18, 19]). To gain generalizable results that way, it is necessary to

conduct an empirical experiment (e.g., [20]). An exceptional testing tool comparison is

the approach of Srivastava and Ray [21]. They used and introduced the Fuzzy Analytical

Hierarchy Process (FAHP) to compare six system-level GUI automation tools. Their

approach relies on experts from CMM1 level 5 organizations that provide fuzzy numbers

in different categories.

All these approaches have a restriction on the number of tools that can be analyzed.

Investigation indicates that the limit is about 10 tools. For example Martins et al.

analyze 9 tools [16]. The introduced methodology is not restricted to such a limit.

Compared to the other approaches this is because it is not primarily to compare tools,

1Capability Maturity Model

8

Chapter 2. Related Work 9

but to identify the features that are interesting to compare tools. Transmuting the

results of this thesis to a complete tool comparison would involve the investigation of all

tools for all detected features.

2.2 The CaVE information retrieval model

The CaVE approach (Commonality and Variability Extraction) is a methodology used

in the transition process of software product lines. The approach uses the available end

user documentations to generate requirement artifacts like features, domains, use cases,

requirements and their relations. CaVE was developed by Isabel John at the Fraunhofer

IESE2 in the context of software product lines [22].

The SEI3 defines software product lines as a set of software systems that share a com-

mon, managed set of features and are developed from a set of core assets [23]. The idea

of software product lines is software reuse and thus the reduction of costs and time to

market as well as the improvement of quality of newly designed products.

The development process is separated into two tasks, the domain engineering and the

application engineering. The goal of domain engineering is to develop core assets. Ap-

plication engineering uses and tweaks these core assets to build specific applications,

adding application-specific assets.

Software product lines are in almost every scenario not designed from scratch but intro-

duced from an existing set of software systems. This transition process is supported by

the CaVE approach.

In most cases the transition process involves reverseengineering the software require-

ments, because they are not properly documented or have not been updated to con-

form to the changes made by maintenance and evolution. Traditionally reengineering

involves intensive interviews with domain experts. Isabel John describes that these do-

main experts are often very busy, thus the goal of CaVE was to lower their workload by

extracting artifacts from end user documentation, which is in most cases existing and

up-to-date.

2Fraunhofer institute for experimental software engineering
3http://www.sei.cmu.edu/productlines/

Chapter 2. Related Work 10

The software product lines requirements are extracted from several software systems.

The transition process requires raising the commonality and variability these artifacts

have. The CaVE approach handles the extraction of these dependencies for all extracted

artifacts.

John defines extraction patterns (2.2.1) and the extraction process belonging to it

(2.2.2)).

2.2.1 Extraction Patterns

A key concept of the CaVE approach is to define 38 patterns that formalize the extrac-

tion process. Figure 2.1 displays an example pattern. Every pattern is described by a

name, a short and a long description, the part of the end user documentation that is

processed (input), the type of information that is generated (output), an example and

a mathematical definition (query). Furthermore there are estimates for precision and

recall for some patterns, that were generated by validating the approach in case studies

with three real world product lines of software development companies.

Figure 2.1: Sample pattern “Heading ->Feature” [22]

Chapter 2. Related Work 11

2.2.2 Extraction Process

The CaVE process has two actors. A product line engineer that does not need knowl-

edge of the domain and a domain expert. The CaVE process consists of the three phases

preparation, analysis and validation. The first two phases are done by the product line

engineer self-reliant. The third phase is done by the product line engineer in cooperation

with the domain expert.

In the preparation phase the user documentation is prepared and the appropriate pat-

terns are selected. This involves:

1. The documentation of all systems related to the product line is collected.

2. The documentation of two or three tools is selected to be analyzed in parallel. The

selected tools should be most diverging to cover the variability of the system.

3. If possible, the documentations are split into manageable parts ranging from 3 to

10 pages. The splitting is done with the additional goal that each part should

have a corresponding part in each of the other documentations that handles equal

topic. Thus the commonality and variability can be analyzed for each tuple.

4. For each tuple of parts, the product line engineer browses through the text to

estimate the variability. If the parts differ in more than one third, the parts are

compared sequentially otherwise the comparison is done in parallel. Sequential

and parallel comparison is described below.

5. From the patterns that output the desired information type, the product line

engineer select the patterns that match the text of the current combination of

parts.

In the analysis phase the documentation is analyzed with the selected pattern. In detail

the product line engineer browses through the text, identifies artifacts as described in

the pattern and marks them. In the preparation phase the documentations have been

split into tuples of documentation parts. Each tuple is analyzed and the artifacts of

different parts that share commonality or variability are identified and marked.

In the preparation phase, for each tuple is has been determined, whether the analysis of

commonality or variability is to be done in parallel or sequentially.

Chapter 2. Related Work 12

With parallel comparison all parts of the tuple are compared in parallel. The parts’

artifacts that fit the selected patterns are marked. Elements with commonality or vari-

ability are marked and connected.

The sequential analysis strategy instructs to mark all parts on their own. The analysis

of commonalities and variabilities is done afterwards.

John advises not to apply all patterns in one step, but to do multiple cycles, e.g., starting

with all patterns outputting features.

The next step is to extract the marked elements for the creation of product line artifacts.

The third phase is the validation phase. The domain expert and the product line engineer

walk through the extracted artifacts, change them, add and delete elements. John states

that missing elements could result from upcoming products or software internal features.

Both cannot be found in the documentation.

Chapter 3

Methodology

This chapter defines the methodology used in this thesis. Section 3.1 explains the search

for functional web testing tools and the screening process that led to the chosen tools.

The algorithm to develop the feature model for the chosen tools is presented in Section

3.2.

The methodology can be applied to other tool domains, with only little adaption to the

following search process needed.

3.1 Tool Search and Screening

The selection of tools to be analyzed is done in a similar way as done in systematic

mapping studies [24]. The scope of the study is derived from the research question as

discussed in section 1.2. All available promising sources are considered leading to a long

list of candidate tools. These tools are filtered in the screening step to reduce them to

the relevant ones. The filter rules grant that the tools fit the research scope, are actively

developed and are in a data format processable by the used methodology.

3.1.1 Tool Search

The initial search aims to find all available tools in the area of functional web testing.

The search keywords are web, test OR testing, functional OR regression and tool OR

API OR library OR framework. The search keywords functional OR regression can be

13

Chapter 3. Methodology 14

omitted if the information source does not provide these keywords. Some webpages do

not sort the tools with these keywords, for example. The tool search uses the following

sources:

• Wikipedia page: List of web testing tools1

• Website: qatestingtools.com2

• Website: softwareqatest.com3

• Google (first 100 results)

The page softwareqatest.com was used by Di Lucca el al. [12] and Arora et. al. [3].

The sources provide links to web pages. These web pages are investigated for candidates.

Retrieved candidates consist of a name and the tools URL and if existing the URL of

the end user documentation. The documentation is searched on the page of the tool.

If this search is not successful a google query is used consisting of the name of the tool

and the keywords documentation OR manual. The first ten results are investigated.

3.1.2 Screening rules

This section introduces the screening rules a candidate tool has to comply with to be

evaluated in this thesis. The rules guarantee that the tools fulfill the precondition of

the fact extraction process, receive approval of the community by being maintained or

enhanced, and match the thesis’ scope.

• end user documentation provided : The tool provides end user documentation in

pdf or html format. In case of html, the manual should be readable chronologically.

A quick start guide or tutorial is not sufficient.

• actively developed : The tool is actively developed. At least one of these sources

should have been updated in 2013 or 2014: blog post, news, tool version update,

github commit, copyright.

1http://en.wikipedia.org/wiki/List of web testing tools
2http://www.qatestingtools.com/taxonomy/term/59/table
3http://www.softwareqatest.com/qatweb1.html#FUNC

Chapter 3. Methodology 15

• matching the scope: The tool should support functional, system-level web appli-

cation testing. The scope is defined in section 1.2.

Chapter 3. Methodology 16

1. Headings of sections or subsections typically contain features

2. Headings of sections typically are subdomains of the application domain. The
subheadings can then be the features for the domain

3. Words or Phrases that are repeated in different parts of the documentation can be
domains or subdomains

4. Features can be found in highlighted phrases (bold or italic font) or in extra para-
graphs

5. Technical descriptions or short descriptions of a system often contain lists of fea-
tures

6. Subdomains/Concepts that are found in a function/feature give a hint for classi-
fication of this feature into this Subdomain

7. Domain descriptions can be found in overview sections

8. Domain descriptions can be found in the beginning or in the first subsection of
chapters describing a certain domain or features in the domain

Figure 3.1: These CaVE patterns [22] are used in this thesis as extraction patterns.

All tools matching the criteria above are relevant tools. Their documentation is down-

loaded and documentation in html-format is converted to pdf-format.

3.2 Feature Extraction

The feature extraction process uses a selection of patterns from the CaVE approach

(section 2.2.1). All patterns that extract features and domains are used. The domains

are used to classify the features into categories. Figure 3.1 lists the patterns.

The extraction process has two phases: The extraction phase and the combination phase.

During the extraction phase each documentation is processed from top to bottom. Ac-

cording to the patterns (Figure 3.1) elements in the documentation are marked. Af-

terwards a feature model is generated, for each tool, from the marked documentation.

Additionally for each feature the domains are listed.

In the combination phase all feature models are combined to one complete feature model.

The creation of the combined feature model is started with the biggest feature model.

Afterwards the other feature models are added incrementally. Figure 3.2 displays the

algorithm in pseudocode.

Chapter 3. Methodology 17

1 e x t r a c t i o n P r o c e s s (l i s t <f e a t u r e model> f eatureMode l s)
2 combinedFeatureModel = max(featureMode l s)
3 f o r each (featureModel in featureMode l s) // exc lud ing max(featureMode l s)
4 combinedFeatureModel . combineWith (featureModel)

Figure 3.2: Combination phase algorithm

Combining two feature models (A and B) involves analyzing commonality and variability.

For each feature FB from model B there are three possibilities:

1. Model A contains a feature FA that is similar:

If the two features have a different name, perhaps feature FA should be renamed

so as to better fit the name of feature FB.

2. Model A contains a feature FA that is an alternative for feature FB:

Add feature FB to model A as an alternative of feature FA. Doing so the features

can be abstracted by feature groups. The naming and the appearance of the

feature groups is guided by the classifications.

3. Neither 1. nor 2. is true:

Add feature FB to model A.

Chapter 4

Study Execution

4.1 Tool Search and Screening

The tool search resulted in a pool of 212 candidate tools. 18 candidates were identified

as duplications of other candidates. Thus the remaining list contains 194 candidates. At

first the candidates were checked whether they provide end user documentation and are

actively developed. In a second step the candidates were tested upon matching the scope.

At the end the documentation was downloaded to prepare the remaining candidates for

analysis. If there was no pdf version of the documentation, the documentation was

downloaded via the “Print - In File - PDF-Format” command of Mozilla Firefox. The

pdf parts were concatenated using a command line tool. A few tools had to be excluded

because they could not be downloaded, others because their documentation turned out

to be to technical. Table 4.1 presents the excluded candidates in numbers ordered by

the applied rule1.

Table 4.2 measures the quality of sources used for screening by means of the remaining

and analyzed tools. Each source except wikipedia contributed tools that no other source

contained and that are included in the analyzed tools.

23 tools remained and were analyzed (Table 4.3). 17 can be further classified as Inte-

grated testing environments (ITE) and 6 as Framework/Library (See section 1.2). The

analyzed tools from the category “Framework/Library” will be further called APIs for

1Keeping in mind that often multiple rules apply but only the first one is imposed

18

Chapter 4. Study Execution 19

Exclusion Rule Quantity

duplication 18
not actively developed 47
no or wiki-based documentation 61
not matching the scope 52
only technical documentation 8
download not possible 3

Table 4.1: Count of candidates that have been eliminated sorted by reason.

Source Tools Recall

Wikipedia page: List of web testing tools2 7 30%
Website: qatestingtools.com3 17 74%
Website: softwareqatest.com4 17 74%
Google (first 100 results) 17 74%

Table 4.2: The screening sources and the number of tools they provided. Duplications
are included.

abbreviation. The ITE tools’ documentation were downloaded between the 12th and

the 14th of November and the API tools on the 6th of December, both in 2014.

4.2 Feature Model Generation

The process of feature extraction was done separately for the ITEs and the APIs.

4.2.1 Feature Extraction

Each documentation was scanned through two times. At the first time promising key-

words and explaining text passages were marked as seen in Figure 4.1 using the extraction

patterns. The tool used was Foxit Reader 65.

After each marking cycle the documentation was read again and the features were ex-

tracted. Thus a feature model instance for each documentation was created. The fea-

tures were ordered hierarchically and accompanied by explaining text passages and page

numbers for easy lookup. Preliminary categories were formed while integrating feature

after feature into the existing feature model instances.

5http://www.foxitsoftware.com/Secure PDF Reader/index.php

Chapter 4. Study Execution 20

Integrated testing environment documentation format

QF-Test[25] pdf [26]
QA Wizard Pro[27] pdf [28]
AppPerfect Web Test[29] html [30]
iMacros[31] html [32]
Sahi Pro[33] html [34]
Robot Framework[35] html [36]
Application Testing Suite[37] pdf [38]
WinTask[39] pdf [40]
TestingWhiz[41] pdf [42]
CodedUI[43] html [44]
Rapise[45] pdf [46]
Testing Anywhere[47] pdf [48]
Ranorex Test Automation[49] pdf [50]
Silk Test[51] pdf [52, 53]
Test Studio[54] html [55]
RIATest[56] html [57]
Jubula[58] pdf [59]

Framework/Library

Selenium[60] html [61]
FuncUnit[62] html [63]
Codeception[64] html [65]
GEB[66] html [67]
FluentLenium[68] html [68]
Arquillian Graphene[69] html [70]

Table 4.3: Tools in this study.

Figure 4.1: Example for the marking of features and explaining text passages.

Chapter 4. Study Execution 21

4.2.2 Combination Step

In the combination step the feature model instances with their features ordered by cate-

gories were taken and combined to a joint feature model. On the one hand the categories

were needed to ensure the feature model is comprehensible and clearly arranged. On the

other hand the categories are necessary to ensure the feature model fits on the pages of

this thesis.

There had been seven preliminary categories and at the end of the combination step

there were ten6. As described in the methodology section (3.2) the combination step

involves looking at each feature from the currently added feature model instance to

identify, if it has been introduced to the feature model yet. And in case it has been

introduced, if the names are the same or not. This ‘looking at each feature’ has been

documented to log files for each category. Just as well as the feature model instance

files, these files have been designed to be machine processable. Table 4.4 displays the

log file notation and table 4.5 lists the statistics of the combination step for the tools of

the ITE category.

Keyword Explanation

m: feature is missing in the main model and is added; parent
p: (if not specified, the root node is the parent)

e: feature is existing in the main model

mo: feature is moved to another category; moved to:
add: add new feature, discovered during clarifying investigation

ar: added feature renamed optional to:
mr: main feature renamed optional to: , old:

ab: added abstraction feature parent p:
mh: moved in hierarchy new parent p:
rref: Renaming because of refactoring to:
xor: These features exclude each other(XOR group) {element,

elements}

rerr: renaming to correct error to:
d: Deleted
in: Added through induction

Table 4.4: Notation of the log files used to document the combination step.

6The category “Technology” is printed as two diagrams. The “Technology” diagram with the
“HTML” feature collapsed and the sub-diagram “HTML” alone.

Chapter 4. Study Execution 22

Figure 4.2 shows an five lines long excerpt of a log file. The first line adds an abstract

feature (ab:), the second adds a feature that is not yet in the feature model (m:). It

is renamed (ar:) to Cookie and added in the hierarchy as child of the feature Cleanup

between Tests (p:). Line 3 contains a comment (indicated with >>) to explain the

feature in line 2. Line 4 moves the feature Reset Database to the abstract feature (mh:)

and line 5 renames the feature (rref:).

Figure 4.2: Excerpt of a log file belonging to the combination step.

While the activities of the combination step were documented in log files, the feature

models7 were drawn using the Eclipse Modeling Framework8 which is an eclipse plug-in.

The feature models were printed to better spot errors and duplicated features.

Next to each feature the tools which possessed that feature were listed9. This was done

for two reasons. The first reason is that this was needed to generate the diagrams listed

in the next section. The second reason is to enable a technique called “feature induction”

in this thesis. Feature induction is used to remove inhomogeneity. The idea is that, if a

tool has feature A and feature B is the parent feature of feature A, then the tool must

have feature B too. This is a fundamental property of feature models. For example the

parent of the feature Image Click is the feature Image Recognition. A few tools had

first feature and the parent feature has been added by induction. Feature induction has

also been logged (See table 4.4). When it seemed that more tools should have a specific

feature10 the documentation was investigated again to add the missing feature.

Among the features are abstract features that are only needed to support the hierarchy

and to build categories. Abstract features have no impact on the possible variants of a

feature model [71]. In this thesis abstract features are excluded from feature induction

and statistics.

7Its one big feature model, however the feature model is split into categories, which will hence be
called the “feature models”.

8https://projects.eclipse.org/projects/modeling.emft.featuremodel
9The tools were referenced by numbers.

10E.g., there is a mandatory XOR feature and a tool does not have any of them.

Chapter 4. Study Execution 23

T
o
ol

F
ea

tu
re

s
U

n
iq

u
e

C
om

m
on

M
is

si
n

g
E

x
is

ti
n

g
R

ef
ac

to
ri

n
g

R
en

a
m

in
g

In
d

u
ct

io
n

Q
F

-T
es

t
64

28
36

63
1

4
2
6

0
Q

A
W

iz
ar

d
P

ro
45

9
36

30
15

5
2
1

0
A

p
p

P
er

fe
ct

W
eb

T
es

t
30

13
17

19
11

0
8

2
iM

ac
ro

s
36

20
16

25
11

11
2
2

1
S

ah
i

P
ro

31
10

21
13

18
0

1
0

0
R

ob
ot

F
ra

m
ew

or
k

31
11

20
14

17
8

1
9

0
A

p
p

li
ca

ti
on

T
es

ti
n

g
S

u
it

e
28

5
1

5
1

2
9

0
W

in
T

as
k

13
0

13
1

12
0

9
0

T
es

ti
n

gW
h

iz
20

3
17

5
15

1
1
3

0
C

o
d

ed
U

I
14

4
10

7
7

1
4

0
R

ap
is

e
21

2
19

3
18

0
1
3

2
T

es
ti

n
g

A
n
y
w

h
er

e
33

9
24

13
20

6
1
7

1
R

an
or

ex
T

es
t

A
u

to
m

at
io

n
30

6
24

8
22

3
1
0

1
S

il
k

T
es

t
17

2
15

2
15

7
8

1
T

es
t

S
tu

d
io

43
16

27
18

25
2

2
3

0
R

IA
T

es
t

27
4

23
4

23
6

6
1

J
u

b
u

la
28

9
19

9
19

9
1
7

0

T
a
b
l
e
4
.5
:

S
ta

ti
st

ic
s

o
f

th
e

co
m

b
in

a
ti

o
n

st
ep

(I
T

E
s)

.
D

er
iv

ed
fr

o
m

th
e

lo
g

fi
le

s.

Chapter 5

Result

This chapter presents the results of this thesis, a long list of features in their context

of the feature model. The feature model of the ITEs is sub-divided into ten categories,

which form the sections of this chapter. The features are again ordered by abstract or

high-level features. The feature model of the APIs is integrated into the structure.

Figure 5.1: Featurediagram - Key

The key to the feature models in this chap-

ter is pictured in Figure 5.1. The notation

is changed compared to the traditional

feature models in so far that the symbols

traditionally representing mandatory and

optional features are changed. Figure 5.2

displays how many features occur n times.

There are 143 unique features, 32 features

that occur in two tools, 15 features that occur in 3 tools and so forth. The features that

are supported by seven or more tools are marked in the feature models with the filled

circle. The feature descriptions also distinguish the features by means of the number of

tools that support them. There is a three level scale, consisting of unique (1), several

times (2-6) and frequent (7 or more times).

24

Chapter 5. Result - Abstraction Supporting Features 25

Figure 5.2: Distribution of the frequencies of the ITE features.

5.1 Abstraction Supporting Features

The category Abstraction Supporting Features contains features that are needed to pre-

vent code duplication following the principle “Don’t repeat yourself” [72]. The features

Component Model and Page Object additionally cause abstraction by encapsulating the

elements of web pages or parts of web pages.

Chapter 5. Result - Abstraction Supporting Features 26

F
ig
u
r
e
5
.3
:

F
ea

tu
re

m
o
d

el
(I

T
E

):
A

b
st

ra
ct

io
n

S
u

p
p

o
rt

in
g

F
ea

tu
re

s

Chapter 5. Result - Abstraction Supporting Features 27

Figure 5.4: Feature model (API): Abstraction Supporting Features

5.1.1 Webpage Element Indirection

The general idea is to decouple the HTML structure of the SUT from the test. This can

be done by using a Mapping Table or a Component Model. In the APIs the patterns

Page Object and Step Object are used for this purpose.

5.1.1.1 Mapping Table

ITE specific

Map: key - element identifier

frequency several times

also known as application repository, element repository, object map

specialization Global Table

Encapsulates element identifiers in a map and addresses them in the test via key. Most

tools fill the Mapping Table automatically when recording tests. Otherwise the user has

to fill the table manually before recording. If the Mapping Table supports this, it is

recommended to nest the identifiers to reduce maintenance even more.

A special version is the Global Table feature that ensures that the Mapping Table can

be shared between multiple users or projects.

Chapter 5. Result - Abstraction Supporting Features 28

5.1.1.2 Updating Components

ITE specific

Semi-automatic element identifier and internal data update to conform alteration

frequency several times

specialization Guided Identifier Update

Figure 5.5: Guided Identifier Update - locate
element [55]

The Updating Components feature is used

to help with maintenance and error fix-

ing. The changes to the GUI-elements

made through development, evolution and

maintenance can be adopted to prevent or

repair broken identifiers.

The following work flow is used: At first

the tool tries to identify the changed el-

ement using the recorded attributes. If

that is not possible the user gets involved.

Either the user has to adapt the identifiers

manually or if the tool supports Guided Identifier Update the user identifies the element

by clicking on it in the SUT and the ITE changes the identifier (Figure 5.5).

At the end the tool updates the internal representation (attributes) of the element

(Figure 5.6). Problems arise if the elements get misidentified, thus its recommended to

backup before updating multiple components.

5.1.1.3 Element Explorer

ITE specific

DOM Explorer like overview of the used elements

frequency several times

When using a lot of elements via Mapping Table or Component Model it is easy to lose

the overview. The feature Elements Explorer gives an overview over all used elements

in their context of the DOM by building a sub-tree with the used elements (Figure 5.7).

Chapter 5. Result - Abstraction Supporting Features 29

Figure 5.6: Guided Identifier Update - element found [55]

Figure 5.7: Elements Explorer [55]

Chapter 5. Result - Abstraction Supporting Features 30

Often the Elements Explorer is well integrated into the editor and thus navigation from

test to Elements Explorer and vice versa is possible.

5.1.1.4 Element Recognition

ITE specific

Recognize elements after application change

frequency several times

specialization Max matching attributes, Probabilistic

In the ideal case elements are identified by id attribute. If that is not possible, several

tools generate custom identifiers using Attribute, DOM Hierarchy or Index (see Section

5.4). In order to do that they use element recognition algorithms that even enable to

recognize elements after changing parts of the identifying information.

The Max matching attributes approach uses all available attribute values and selects

the elements with the maximum number of elements that have not changed. Similar is

the Probabilistic approach which is able to include information like the DOM Hierarchy

or the attributes of the adjacent elements. Each information that has not changed is

additionally weighted. In the end the element that has the highest probabilistic value is

selected in case it is higher than the applied threshold.

5.1.2 Component Model

ITE specific

Element identifiers grouped by web pages

frequency several times

similar to Page Object

specialization Avatar System

The Component Model is the extended version of the Mapping Table. In addition to

the indirection of element identifiers the Component Model encapsulates the identifiers

using the web page1 they belong. Often additional information is saved to support for

instance Element Recognition.

1Identified by the URL.

Chapter 5. Result - Abstraction Supporting Features 31

• Generic Components: Make use of variables to reuse components over different

pages. (Similar to Step Object)

• Items: Index the sub-items of tables, lists and trees by identifying the root only.

• Simulated Object : Identify an element by position or image and use it as a virtual

component.

5.1.2.1 Avatar System

ITE specific

Offline testing and test creation.

frequency once

The Avatar system is a special Component Model that saves all component properties on

disk. In addition to the indirection of element identification the Avatar system enables

to execute tests against the saved values of the application. Similarly new tests can be

created by recording against the avatar using a running SUT.

5.1.3 Interproject Relationship

When testing huge projects and different testers are involved it is necessary to separate

the tests over multiple projects and to provide one project that contains all element

identifiers that the other projects need. Another way to archive code reuse between

projects is to develop custom libraries.

These features are only relevant to Self-made languages as general purpose languages

(GPL) support them out of the box (See section 5.7).

5.1.3.1 Test Suite Linking

ITE specific

Using functionality from another project.

frequency several times

specialization Referencing, Importing / Merging

Chapter 5. Result - Abstraction Supporting Features 32

Test Suite Linking enables to using scripts or components across project boundaries.

Referencing lets the user call scripts. Whereas Importing / Merging imports the script

into the environment of the project and thus enables to merging component model for

instance.

5.1.3.2 User Library

ITE specific

Custom libraries for procedures and variables.

frequency once

also known as Resource file

User Libraries enable to encapsulate procedures, depending on the language style also

known as user keywords, to be shared between projects via libraries.

5.1.3.3 Name Collision Handling

Solve problems with identical procedure names.

frequency once

In case two keywords or procedures have the same name, Name Collision Handling

determines which version has the highest priority e.g., based on its scope and uses it.

5.1.4 Code Indirection

5.1.4.1 Setup / Tear down

ITE specific

Encapsulates the steps that prepare the SUT for a test case.

frequency several times

specialization Multilevel

Chapter 5. Result - Abstraction Supporting Features 33

A test setup is the code that is executed before a test case, and the test tear down is

executed after a test case. If the setup fails the tear down is executed and execution

continues with the next test case.

Multilevel setup and tear down clusters the test cases and their setup and tear down

procedures in hierarchies. To execute a test case, all setups beginning from the bottom

are executed, then the test case, and afterwards all tear downs in the reversed order. If

test cases are side effect free, it is also possible to execute all adjacent test cases with

equal setup without executing tear down and setup in between.

Setup / Tear down is a common testing paradigm and thus often seen when testing with

GPLs.

5.1.4.2 Dependencies

ITE specific

Specify dependencies to generate execution order including setup and tear down.

frequency once

specialization Error escalation

Each test is annotated with other tests and setup, tear down scripts it depends on. The

tool generates an execution order using this information. Additionally the tool handles

unexpected behavior, e.g., closing an error dialog, which pops up and blocks your test.

Also, Error escalation between dependent tests is supported. If, for example, a setup

scripts fails, all dependent tests are skipped.

Chapter 5. Result - Abstraction Supporting Features 34

5.1.5 API specific

5.1.5.1 Page Object

API specific

Grouping of element identifiers and commands belonging to a page

frequency several times

similar to Component Model

specialization Template Option

Figure 5.8: Lifecycle Hook [67]

The page object pattern was originally

introduced by Selenium [73]. It recom-

mends to group element identifiers and

the procedures working with them by the

pages they work on. Using Objects the

identifiers become properties and the pro-

cedures methods respectively. Since the

pattern is API independent, the feature Page Object describes additional support of the

pattern with the use of a DSL for instance.

• Unexpected Pages: A page object for pages like the 404 error page.

• Inheritance: Pages may inherit properties and methods.

• Lifecycle Hook : Transfer data between the current and the next page object (Fig-

ure 5.8).

Template Option

API specific

Template properties with special semantics

frequency several times

The Template Option feature enriches the Page Object and its properties with extra

semantics (Figure 5.9). Some attributes are:

Chapter 5. Result - Abstraction Supporting Features 35

• at: A way to check whether the underlying browser is at the expected page.

• required: The required option controls whether or not the content returned by the

definition has to exist or not. When required is set to true, the page is entered

and the element does not exist, the application is terminated with an error.

• cache: The cache option controls whether or not the definition is evaluated each

time the content is requested.

• to: The to option allows the definition of the page the browser will be sent to if

the content is clicked.

• wait: If wait is set to true and an element does not exist but is needed by the

application, the program waits for the element to appear.

Figure 5.9: Template Option - example using the options url, at, to and wait [67].

Chapter 5. Result - Abstraction Supporting Features 36

5.1.5.2 Step Object

API specific

Reusing identifiers and commands over multiple pages

frequency several times

also known as Page Fragment

Figure 5.10: Step Object - example [70].

Step Objects are used for modeling GUI components that are used across multiple pages.

To reuse them they are combined with Page Objects. A Page Object can integrate

multiple Step Objects and that way integrate their properties and methods.

5.1.5.3 Webelement pattern

API specific

Extend existing webelements

frequency once

Chapter 5. Result - Capture 37

An API that supports the feature Webelement pattern enables to integrate the web

element classes into the object hierarchy. This makes it possible to add functionality

directly to the existing elements (Figure 5.11).

Figure 5.11: Webelement Pattern - add custom method [70].

5.2 Capture

The section capture includes features that support the creation of new test cases. Most

important is the Recording feature, but a few other features used while creating tests

are included too.

Chapter 5. Result - Capture 38

F
ig
u
r
e
5
.1
2
:

F
ea

tu
re

m
o
d

el
:

C
a
p

tu
re

Chapter 5. Result - Capture 39

5.2.1 Image Recognition

ITE specific

Automation and validation of pictures

frequency frequent

Image Recognition is the technique of automating web pages by analyzing pictures.

There are tools, out of this thesis’ scope, that work entirely with Image Recognition (cf.

Section 1.1). The analyzed tools use Image Recognition to verify, that the page layout

is correct (Image Validation). The complete web page is converted into an image and

compared at pixel level.

Another scope of application is the automation of Widget Toolkits that are not supported

by hook-up. Image Recognition is able to automate almost everything. However it

is prone to change in the GUI, because the GUI is the only information source for

identification. The features needed are Image Click, which searches and clicks an image.

The alternative is to use Retrieve Position. If the tool supports recording of Image

Clicks it tries to identify the area of the GUI element below the mouse and highlights

it.

OCR2 enables to capture text embedded in an image. This is useful if GUI elements use

images with text. If in addition the SUT is internationalized, a test using Image Clicks

would have to be recorded again for every language. Using OCR is an alternative.

5.2.2 Recording

ITE specific

Record the tester using the web page

also known as Capture & Replay

frequency frequent

Recording, also known as Capture and Replay, is the fundamental feature of ITEs (Figure

5.13). It advertises with the dream that test cases do not have to be written by hand,

2Optical character recognition

Chapter 5. Result - Capture 40

but are automatically generated by recording the tester using the SUT. This technique

has different problems, which the advocates of API-based testing mention.

Without any abstraction supporting features (cf. Section 5.1) recorded test cases suffer

from a lot of code duplication. Element identifiers, setup, tear down and common

functionalities are recorded again for every test case and thus the maintenance effort

is very high. The feature Record procedure lets the user combine the encapsulation of

common functionalities and the time saving of Recording.

Figure 5.13: Recording - toolbar [28].

Almost all tools support Recording, but there are a lot differences in the details. One

differentiating factor is whether all recorded test cases can be replayed without user

adaption. Possible problems are recorded noise (e.g., mouse movement), insufficient

waiting for elements to appear or a bad Identifier Creation Strategy. Two strategies

have been observed, Best fitting single Attribute and User Selection. The latter is semi-

automatic. It captures all attribute values and instructs the test developer to create

an identifier. There are more advanced identifier creation strategies (some described in

5.4).

• Record Time needed : Embed wait statements so that the replay needs the same

time as the recording.

• Element context menu: Often the Recording feature is accompanied by a context

menu opened typically by right clicking. By this means verifications are attached

while recording, elements are added to the Mapping Table or Component Model

and elements are located in the DOM.

• Freeze Mode: Freeze the GUI of the SUT to stop animations and visual effects

that tend to alter their behavior on mouse hover.

• Low-level Action: Special recording mode to record “onmouseover” events for ex-

ample.

Chapter 5. Result - Editor Features 41

5.2.3 Change User Agent

Fake information about used operation system and browser

frequency once

When opening a page the web browser sends information about the operation system,

the browser and the version it uses. These information are needed because code running

on Google Chrome often does not run on the Microsoft Internet Explorer and vice versa.

Change User Agent enables to fake these information.

5.2.4 Screenshot

Take a screenshot of the SUT while testing.

frequency several times

specialization Full Screenshot

Taking a Screenshot is a feature provided in automation, but also automatically when

an error occurs. Some APIs even support it in the debugger. Some tools are able to take

a Full Screenshot, which means the whole page including the parts that are not visible

on the screen.

5.3 Editor Features

The majority of ITE tools provides their own test editor. The APIs often profit from

the powerful IDEs their host languages use. This section analyzes, which features the

editors of the ITEs possess.

Chapter 5. Result - Editor Features 42

F
ig
u
r
e
5
.1
4
:

F
ea

tu
re

m
o
d

el
:

E
d

it
o
r

F
ea

tu
re

s

Chapter 5. Result - Editor Features 43

5.3.1 Code View

The abstract feature Code View summarizes the different styles of visualizing the testing

code to the tester.

Figure 5.15: Text View [28]

5.3.1.1 Text View

ITE specific

Tests as textual code

frequency several times

also known as Code View

The Text View is the most ordinary code view. The code is presented with a text editor.

Figure 5.15 gives an example. Figure 5.16 presents the same code in Keyword / Tabular

View.

5.3.1.2 Keyword/Tabular View

ITE specific

Code in a table.

frequency several times

also known as Table View

The Keyword / Tabular View is a visualization style, that puts the code in a table

(Figure 5.16). In the vertical dimension are code steps. The horizontal dimension

is usually starting with the keyword of the code step, following with the remaining

properties.

Chapter 5. Result - Editor Features 44

Figure 5.16: Keyword/Tabular View [28]

5.3.1.3 Tree View

ITE specific

Hierarchical code view

frequency several times

The Tree View is presenting the test code in a hierarchical style (Figure 5.17).

Figure 5.17: Tree View [38]

Chapter 5. Result - Editor Features 45

5.3.1.4 Storyboard View

ITE specific

Screenshots accompanying to the test steps

frequency once

The Storyboard View is a screenshot documentation of the SUT that is created auto-

matically during recording.

Figure 5.18: Storyboard View [55]

5.3.1.5 Flow Chart View

ITE specific

Code steps as a flow chart

frequency once

The Flow Chart View visualizes the code as a flow chart.

5.3.2 Miscellaneous

Several other features have been observed. All of them appeared unique.

Chapter 5. Result - Editor Features 46

Figure 5.19: Flow Chart View [42]

• Learning by doing tutorial : An advanced version of the tutorial, that is integrated

into the editor and monitors and guides the progress the user does in the tutorial.

• Refactoring : Refactoring support is one of the key features that makes IDEs like

Eclipse profitable. In the ITEs it is only supported in one tool with the patterns

Rename and Move.

• Text Encryption: Prevents sensible information, like passwords, on the screen by

masking them.

• Bulk Edit : Edit multiple positions in code at one.

• Teststyle Guidelines: Performs static analysis of the test cases to check whether

they conform to conventions and best practices.

Chapter 5. Result - Element Identification 47

• Metrics: Collect information about the test cases by computing metrics.

• Focus-View Filter : Include or exclude commands types from the view (e.g. check-

points, keystrokes, mouseclicks, delays)

5.4 Element Identification

Element identification is the process of describing how to access web elements on the

page through testing code. Its comparable to describing a tourist how to reach the town

center. The description can be a Path, like left, two times straight ahead and then left.

It can also be task oriented (“If you spot the church. Go in the direction of the church.”).

This section is divided into two parts. The Information part contains all sources of

information that can be used to develop identifiers. The second part (Method) collects

techniques for using the information to develop or generate an identifier.

This section combines the features of ITEs and APIs and mentions to which domain the

examined feature belongs.

Chapter 5. Result - Element Identification 48

F
ig
u
r
e
5
.2
0
:

F
ea

tu
re

m
o
d

el
(I

T
E

):
E

le
m

en
t

Id
en

ti
fi

ca
ti

o
n

Chapter 5. Result - Element Identification 49

F
ig
u
r
e
5
.2
1
:

F
ea

tu
re

m
o
d

el
(A

P
I)

:
E

le
m

en
t

Id
en

ti
fi

ca
ti

o
n

Chapter 5. Result - Element Identification 50

5.4.1 Information

The traditional information sources originate from the hook-up of the testing tools into

the DOM of the browser. Additional information is gained by Image Recognition (Sec-

tion 5.2.1).

• Image (ITE): Position of an Image

• Index (ITE, API): The path of objects from the DOM root to the element.

• DOM Hierarchy (ITE): The position of the element in the DOM in relation to the

surrounding elements.

• CSS (API): The CSS properties.

5.4.1.1 Attribute

Properties of web elements like id, name and value

frequency several times

Attributes are the most used information sources for identifiers. Using the “id” or

another attribute to create unique identifiers is best practice. However this is often

impossible, if the tester has no connection to the developer.

The feature NameResolver can be used to change or remove attribute values virtually in

the test that create problems when writing element identifiers. It is a procedure applied

to every attribute.

Another problem with “id” identifiers is that many framework and widget toolkits add

random numbers to the ids. Adding Wildcards enables to solve this problem.

5.4.1.2 Position / Size

x,y, width and height

frequency several times

specialization Relative to Element, Relative to Image

Chapter 5. Result - Element Identification 51

The information about Position / Size are technically Attributes. Since they are often

used as replacement for access to the DOM, they are listed separately. Automating the

SUT only with the information of the position3 is very error prone, as resizing of the

browser or moving an element breaks the test case.

Specializations of this feature are relative positions: Relative to Element and Relative

to Image

5.4.2 Method

There are different methods to combine the available information to an element identifier.

The ITEs commonly use XPath or Regular Expressions. The APIs use additionally

JQuery and CSS Locators and sometimes combine techniques like a JQuery identifier

that works on the results of a CSS Locator. Figure 5.22 shows an example with different

identifier methods.

Figure 5.22: Different element identifiers [65]

• XPath (ITE, API): often used method that employs Attribute, Index and partial

DOM Hierarchy to describe a path to the element. The specialization Weighted

XPath extends the concept with weight rules.

3Click at x=300, y=250

Chapter 5. Result - Element Identification 52

• Regular Expressions (ITE, API): ITEs often introduce regular expressions to make

the usage of Attributes more flexible. On the API side they are provided by the

host language.

• Host-language procedure (ITE, API): A procedure in the used language, self-made

or GPL, that for example gets the DOM-tree and selects an element. Used by

ITEs and APIs (Figure 5.23).

Figure 5.23: Host-language procedure [28]

• Relational (ITE): This strategy uses relational path descriptors like “ in”, “ near”,

“ under”, “ leftOf” to identify elements.

• Mixed Strategy (ITE): The ITEs employ several mixed strategies to automati-

cally generate identifiers during recording. An identifier could for instance take

attributes of the element and its encapsulating elements.

• CSS Selector (API): Expressive technology that uses Attribute, Index and DOM

Hierarchy information and is often used in APIs (Figure 5.24). The extension

Filter Method introduces filters like “containsWord”, “notEndsWith”, . . .

• JavaScript Function (API): A procedure similar to Host-language procedure. The

difference is that this function is executed in the browser and uses the browsers

JavaScript.

Chapter 5. Result - Execution 53

Figure 5.24: CSS Selector [68]

Figure 5.25: JQuery like locator - selects all div elements that have an input element
as descendant that have the value text in the property type [67]

• JQuery (API): Expressive competitor of XPath and CSS Selector (Figure 5.25).

Embeds Regular Expressions, Find / Filter predicates, Traversing support like

“previous()”, “prevAll()”, “nextAll()”, “parentsUntil()” and Parameters. Benefits

from the integration into Groovy with language constructs like “range” and the

“*-operator”, that executes a function on all elements of a collection structure.

5.5 Execution

This section handles all features that affect the execution of test cases, including the

monitoring of running tests.

Chapter 5. Result - Execution 54

F
ig
u
r
e
5
.2
6
:

F
ea

tu
re

m
o
d

el
(I

T
E

):
E

x
ec

u
ti

o
n

Chapter 5. Result - Execution 55

F
ig
u
r
e
5
.2
7
:

F
ea

tu
re

m
o
d

el
(A

P
I)

:
E

x
ec

u
ti

o
n

a
n

d
P

ro
b

le
m

A
n

a
ly

si
s

Chapter 5. Result - Execution 56

5.5.1 Test Report

ITE specific

Present the results of the test execution.

frequency frequent

A Test Report represents the results of one or more test-runs.

• Email (ITE): Receive reports or reports with errors per mail.

• XSL-Transformation (ITE): Changing the report format and content using XSL-

Transformation

• Partly re-execution (ITE): Fix a bug in the application or the test and partly

re-execute the test and merge the results.

• Result Timeline (ITE): Sort passed and failed tests by date.

• State Snapshot (API): Add a snapshot of the state of the browser to the report.

• Screenshot (API): Add a screenshot to the report.

• Listener (API): Register a listener that processes reports.

• Level specific Views: Filter the result view to project, machine, iteration, browser,

. . .

Additionally the software project BIRT can be used to create long-term reports (Section

5.10.2).

5.5.2 External Execution

When creating or debugging tests they are executed from the ITE. In operational state

indeed the test has to be executed externally. Most common is the execution via Com-

mand line. Some tools support Batch file, Ant or Exe file. But there are other options

supported individually by one ITE.

• API : API support for integration into GPL. Java and Python are supported.

Chapter 5. Result - Execution 57

• Daemon: Run as background process.

• Java: Provided Java class that starts execution.

• URL Calls: Remote execution.

5.5.3 Miscellaneous

• Proxy Server : Indirect connections.

• Shuffle: Random test execution order.

• Execute Excel : Write scripts in Excel.

• Visual Execution Feedback : Get visual feedback during script replay that indicates,

at which step the test execution is currently. Get feedback via Status line / Console

or Position in Code

• Cleanup between Tests: Reset the Database or delete Cookies between tests.

5.5.3.1 Scheduler

ITE specific

Scheduled execution

frequency several times

Scheduling is the process of planning execution for the future, e.g. every Saturday

night. There are special schedulers that support execution of tests on locked computers.

Autologin executes the test and prevents the computer from unauthorized use. Mouse,

keyboard and screen are disabled.

5.5.3.2 Multi User Testing

Test the interaction between multiple clients

frequency once

Multi User Testing is used to simulate multiple users working with the SUT. Testing real-

time messaging between users on site for example. Some APIs offer Coding structures

to describe multiple actors in one code file (Figure 5.28).

Chapter 5. Result - Execution 58

Figure 5.28: Multi User Testing - two actors in one file [65]

5.5.3.3 Execution Speedup

Controlling a full web browser is slow compared to e.g. unit testing, thus there are lot

features that try to speedup test execution.

ITEs use Reusable Sessions and Depends Annotations. The latter links test cases. When

a test case fails, all tests that depend on this test case are excluded from execution.

Another chance is to execute tests on other machines (Distributed Playback). The climax

is the Testing Grid, often supported on ITEs and APIs, that runs tests in parallel

on different remote machines, potentially on different operation systems and different

browsers.

Chapter 5. Result - Extra Tools 59

5.5.3.4 Testing Framework

API specific

Testing in GPLs is done using a testing framework.

frequency frequent

Testing in GPLs is done via testing frameworks. Traditionally used for unit testing,

some APIs’ support of testing frameworks blur the difference.

Most tools support JUnit and TestNG. Additional frameworks are Spock and Cucum-

ber. These testing frameworks often comprise features like multithreading, Depends

Annotation or Data-driven Testing to name only a few.

5.6 Extra Tools

The category extra tools subsumes components of the ITE that add circumscribable

functionality with tool-like character.

Chapter 5. Result - Extra Tools 60

F
ig
u
r
e
5
.2
9
:

F
ea

tu
re

m
o
d

el
:

E
x
tr

a
T

o
o
ls

Chapter 5. Result - Extra Tools 61

5.6.1 Test Creation Helper

ITE specific

Helps recording in the browser

frequency frequent

also known as Recording Toolbar

specialization Interactive Console, DOM Explorer, Object Spy

The Test Creation Helper helps with the recording and debugging of tests.

An Interactive Console is a live testing tool for test steps supported by one ITE and

one API. Testing assertions or executing single test steps is possible.

An integrated DOM Explorer enables to view the properties of the elements under test.

A special 3-dimensional version (3D viewer) is pictured in figure 5.30.

Almost every tool provides an Object Spy, a tool that shows the properties of the web

page element being currently below the mouse.

Figure 5.30: DOM Explorer - 3D viewer [55]

Chapter 5. Result - Language 62

5.6.2 Miscellaneous

• Website Monitoring : Verify that the web page is online.

• Web-based Test Monitor : Monitor test execution via browser.

• Test Manager : One tool provides a substantial test manager including require-

ments management, test planning, defect tracking and reporting.

5.6.2.1 Documentation Tool

ITE specific

Create documentation of the test cases or the SUT

frequency several times

Writing documentation is often disregarded. So much the better is support for generation

of documentation. Several tools added support for the documentation of tests.

One tool provides a guided generation of documentation for the SUT. With an approach

similar to recording, the user traverses through the application and takes screenshots.

Afterwards he adds text to the documentation template (Figure 5.31).

5.6.2.2 IDE Integration

IDE Integration is supported by one ITE. It runs with Eclipse, NetBeans, IntelliJ,

JBuilder and JDeveloper. On the API side one tool supports IntelliJ and another

Eclipse.

5.7 Language

Chapter 5. Result - Language 63

Figure 5.31: Documentation Tool - create SUT documentation [34]

Chapter 5. Result - Language 64

F
ig
u
r
e
5
.3
2
:

F
ea

tu
re

m
o
d

el
(I

T
E

):
L

a
n

g
u

a
g
e

Chapter 5. Result - Language 65

F
ig
u
r
e
5
.3
3
:

F
ea

tu
re

m
o
d

el
(A

P
I)

:
L

a
n

g
u

a
g
e

Chapter 5. Result - Language 66

5.7.1 Self-made

Thirteen of the seventeen analyzed ITEs use a custom made language. These languages

are analyzed in this section.

Several tools state that their tests are Version Controllable. There are certainly more

tools having this feature than identified. On the other side it must be assumed that

there are tools that do not or not properly support version control.

GPL-Integration is used in several tools to overcome the restrictions that the Self-made

languages create. The following languages are integrated.

• Jython

• Groovy

• Java

• JavaScript

• via COM Objects: Languages that support Microsofts COM (Component Object

Model) Objects, e.g. C++

5.7.1.1 Language Style

The Self-made languages are designed with different language styles, which describe

noticeable characteristics in the syntax. The basic style is Scripting Language, which is

the standard case.

The Keyword/Tabular style is identifiable by the fixed number of parameters per com-

mand. The commands are called keywords. When using a keyword it is followed by the

parameters.

Tree-style languages present the code in a hierarchy similar to the file explorers provided

by operation systems (Figure 5.34). Each command is displayed with a short description.

Each command has a properties page to change it.

The Self-documenting style is featured by one API. The syntax of the commands enables

to read them as if they were test documentation (Figure 5.35).

Chapter 5. Result - Language 67

Figure 5.34: Example of a tree-style language [30]

Figure 5.35: Example of a self-documenting language [65]

5.7.1.2 Language Power

This section describes the distribution of language features. All these language features

are common in GPLs and if missing in Self-made languages they lead to problems in

test design.

Frequent features:

• Variable

• Procedure

Chapter 5. Result - Language 68

• Control Flow : (abstract feature)

• Condition: If statement

More than once occurring features:

• Array

• Return Value: Procedure with return value.

• Loop: While, for or loop

• Break / Continue: Exit points for loop statements.

• Error Handling

• Parallelism

Unique features:

• Expression: Use expressions to define the value of a variable.

• Lazy Binding : Variable value is read at the last time as possible.

5.7.2 Coding Styles

Coding Styles are about different ways to write test cases. Test cases written with

different Coding Styles can describe the same test case, but from different perspectives

(e.g. workflow or behavior perspective).

• Keyword-driven: Workflow oriented. Take the SUT into the initial state, do some-

thing in the SUT and finally verify that the system behaved as expected.

• Behavior-driven: Stakeholder oriented. Test cases are written as requirements

that also non-technical stakeholders must understand. That can be done using

the popular Given-When-Then style known from “Behavior Driven Development”

(BDD). Other keywords from this area are “Acceptance Test Driven Development”

(ATDD) and “Specification by Example”.

Chapter 5. Result - Language 69

5.7.3 API / GPL

5.7.3.1 Host

On the ITE side five tools use a GPL. Two each support Java, JavaScript and .NET,

including Visual Basic and C#.

Following languages are supported on the API side:

• Java

• C#

• Python

• Ruby

• PHP

• Perl

• JavaScript

• Groovy

5.7.3.2 Command

• Screenshot : see section 5.2.4

• Push Non-Character : Support keydown events of non-characters like the delete

key.

• Complex Interaction: E.g.: Hold the shift key and double click (Figure 5.36).

• Direct Download : Download resources

• execute JavaScript : Execute JavaScript code in the browser.

Chapter 5. Result - Methodology 70

Figure 5.36: Feature - Complex Interaction [67]

5.7.3.3 Assertion

• Conditional Assertion: Assertions that only log failure instead of terminating the

execution (Figure 5.37).

• Framework : Supported frameworks are JUnit Assertions, Hamcrest and Fest-

assert.

• Implicit Assertion: Switch expressions automatically into assertions, if needed.

Figure 5.37: Feature - Conditional Assertion [65]

5.8 Methodology

Features that support a methodological testing principle are described in this category.

Chapter 5. Result - Methodology 71

F
ig
u
r
e
5
.3
8
:

F
ea

tu
re

m
o
d

el
:

M
et

h
o
d

o
lo

g
y

Chapter 5. Result - Methodology 72

5.8.1 Data-driven Testing

ITE specific

Execute one test with different sets of test data

frequency frequent

The goal of Data-driven Testing is to run a given test multiple times with different sets

of input data and expected results. This is done by separating the test code from the

test data. Each set of test data consists of a set of input values and a set of result

values. The test code is executed with the input values and checks if the result equals

the specified result values.

The tools differ in the formats of test data they support. Most tools support CSV -files

(Comma separated values) or Databases. Also prominent is to manage the test data

in the ITE (In-Editor Table) or as Excel spreadsheet. Other unique occurring formats

are Microsofts Access, text files that use Fixed-width to separate values, Key / Value

structured text files and XML files.

5.8.2 Manual Testing

ITE specific

Add manual besides automated test cases

frequency several times

In general manual testing is the process of testing without test automation. Thus test

automation is the opposite of manual testing. The reason why ITEs support manual

testing is, that in general not every test case can be or should be automated. There are

always tests where the effort of automation is to high compared to the effort of manual

testing.

Several ITEs integrate Manual Testing into the testing process. Tracking the results

of manual tests from within enables to combine the results of automated and manual

testing. Manual tests are created as test cases. On test execution the tester has to

inform the ITE on the success or failure of manual test cases and possibly provide error

descriptions (Figure 5.39).

Chapter 5. Result - Methodology 73

Figure 5.39: Manual Testing - Feedback of manual test execution [26]

A special case is Semi-automatic Testing, which supports test cases with both automated

and manual test steps. This can be a test, which automatically starts the application

and navigates it to the point where the tester checks the test condition. It can also be

a test where automated and manual tests are mixed freely and the tester actually has

to provide data that is needed as variable for subsequent automated steps.

Supporting Semi-automatic Testing is additionally important as it is the transition pro-

cess from manual testing to automated testing. Automating more test steps over time

finally leads to a fully automated test case.

5.8.3 Exploratory Testing

ITE specific

Unstructured testing to find errors per chance

frequency once

Exploratory Testing is called the process of unstructured testing of the application to

observe errors by chance. An ITE is able to support this with screenshot capturing, bug

tool connection and documentation of the steps that produced the error.

Chapter 5. Result - Problem Analysis 74

5.8.4 Multi-lingual Testing

ITE specific

Execute the same tests for a SUT in different languages

frequency once

similar to Data-driven Testing

Multi-lingual Testing helps testing of the application in multiple languages. Essentially

this is done by executing all test cases, that are concerned with language specific content

(like buttons, messages), once for each language. Similar to Data-driven Testing the

varying text is substituted for variables and for each variable the values in the different

languages are defined. The test is executed each time with a different set of variables.

5.8.5 Test-first Programming

ITE specific

First write high level test and bind them later to the GUI

frequency once

Test-first Programming is the philosophy that demands to start development with writ-

ing test cases. Afterwards the application is developed until it passes the tests. Test-first

Programming has origin in unit testing.

With Recording however Test-first Programming is problematic, as recording test cases

requires the GUI. There is one tool not supporting Recording but supporting Test-

first Programming. The test cases are defined on a high level. When the GUI of the

application is far enough developed to be tested, the high level statements are detailed

and finally connected with element identifiers.

5.9 Problem Analysis

Problem Analysis is about the features that are needed if an error occurs. Errors occur

either because the SUT has a bug that needs to be fixed or because a test case needs to

be fixed e.g. be adapted to evolution change in the SUT.

Chapter 5. Result - Problem Analysis 75

If the SUT is extended it occurs that as yet unique element identifiers break. Smart

Matching is a technique that tries to keep the identifier unique.

On the API side it is common to use Browser Extensions to for example view the DOM.

APIs support this by adding the desired Browser Extensions to the browser that executes

the test case4.

4In general the test browsers are reset every startup and contain no browser extensions.

Chapter 5. Result - Problem Analysis 76

F
ig
u
r
e
5
.4
0
:

F
ea

tu
re

m
o
d

el
:

P
ro

b
le

m
A

n
a
ly

si
s

Chapter 5. Result - Problem Analysis 77

Accepting failed checks

ITE specific

Design by current state

frequency once

If an assertion fails, but the tester is certain that the SUT is right and the test case is

wrong, Accepting failed checks updates the tests assertion with the data from the SUT.

This is helpful to adapt change from the evolution of the SUT or if the tester is simply

to lazy to write assertions on his own.

5.9.1 Run Log

ITE specific

Test results, warnings, errors and more

frequency frequent

During execution the tests log their progress, warnings and exceptions into one or mul-

tiple log files. This Run Log is a basic features that can be extended to be more useful.

• Screenshot on Error : Identify false negatives or understand right negatives by

screenshot.

• State Snapshot on Error : Capture the DOM for analysis.

• Email Notification: Get notified immediately.

• Log Explorer : Integrate the log into the ITE. Link errors to the test step that

generated it.

• Screen Video: Completely retrace test execution.

5.9.2 Debugger

Step by step error diagnostics

frequency frequent

Chapter 5. Result - Technology 78

The Debugger is used to debug a test case step by step. It is a frequent feature, but the

different Debuggers differ in the extensional features they provide.

To have to full overview over the executing test a Variable Watch Table is necessary. At

least two tools support it. In addition to the state of the variables, the state of the DOM

is just as important. There are tools that enable a State Snapshot or a Screenshot.

Edit and Continue allows to change the test case during debugging and to try the made

change immediately. E.g. a failed assertion stops the debugger, the tester changes the

assertion and checks if it is valid now.

5.10 Technology

The technology section describes the support of external technologies into the ITEs and

APIs.

Two ITEs include Password Encryption to protect passwords used in testing. Another

tool enables with Keystroke Encryption a similar protection. Two tools enable to create

test cases using Authentication protocols like HTTPS.

Chapter 5. Result - Technology 79

F
ig
u
r
e
5
.4
1
:

F
ea

tu
re

m
o
d

el
(I

T
E

):
T

ec
h

n
o
lo

g
y

Chapter 5. Result - Technology 80

F
ig
u
r
e
5
.4
2
:

F
ea

tu
re

m
o
d

el
(I

T
E

):
T

ec
h

n
o
lo

g
y

-
H

T
M

L

Chapter 5. Result - Technology 81

F
ig
u
r
e
5
.4
3
:

F
ea

tu
re

m
o
d

el
(A

P
I)

:
T

ec
h

n
o
lo

g
y

Chapter 5. Result - Technology 82

5.10.1 HTML

Since HTML is the essential language for web applications. All ITEs and APIs support

HTML. However there are differences e.g. how far new technologies like HTML5 are

supported. XHTML is only supported by one tool, since it represents a dead end in the

development of HTML [74].

The support of Dialogs is also diverging. Since the dialogs differ between browsers, they

can be a problem when testing on multiple browsers. One API introduces an approach

that transforms dialogs into HTML pages.

5.10.2 Tool Connection

• Source Control : Also known as Revision control or version control systems.

• Java Library : JaCoCo is a code coverage library. Chronon records the execution of

Java programs and can be used to do post mortem debugging. BIRT is a software

project used to create data visualizations and reports. It is used to generate long-

term reports.

• TM / ALM : Test Management and Application Lifecycle Management tools.

• Continuous Integration: Several tools support Jenkins and Hudson.

• Build System (API): Also known as build automation tools.

5.10.3 Miscellaneous

Translator

ITE specific

Integrate widget toolkit

frequency once

If a specific Widget Toolkit is not supported, the tester may develop a Translator to

integrate it into the ITE. In detail each element type needs a Translator to be automat-

able.

Chapter 5. Result - Technology 83

Code Coverage

API specific

Which code is covered by test cases?

frequency once

similar to JaCoCo

Code Coverage enables to check which code is and which code is not executed, when the

tests are executed.

Cloud Browser Testing

API specific

External execution by a cloud computing provider

frequency once

similar to Testing Grid

As described in the research context 1.2, Cloud testing is the combination of web testing

and cloud computing. APIs with the feature Cloud Browser Testing support external

test execution by a cloud computing provider.

To give an example a Gradle plug-in is provided which simplifies declaring the account

and the browsers to be tested, as well as configuring a tunnel to allow the cloud provider

to access local applications.

5.10.3.1 Browser

Instead of automating the application that is running in the browser, in can be necessary

to automate the browser.

• Tabbing (ITE, API): Changing the active or creating a new tab or window.

• Toolbar (ITE): Activating toolbar elements.

Chapter 5. Result - Technology 84

• Open / Close (ITE, API): In general the opening and closing of the browser is

automatic. However it may be needed to do it manually for example to test code

executed when closing or opening the browser.

• History (API): Navigate forward and backwards in the browser history.

• Cookies (API): Create, read or delete cookies.

• Maximize (API): Set the browser to maximum size.

5.10.3.2 Widget Toolkit

Thirteen ITEs support widget toolkits that transcend the fundamental HTML. Fre-

quently supported are Flash/Flex and Silverlight. Two tools each support Java applet,

ActiveX and JavaFX. One tool is supporting several Oracle widget toolkits like EBS,

Siebel, JD Edwards and Fusion/ADF.

5.10.3.3 Headless Driver

The concept of headless browsers has been introduced in section 1.1. APIs support

Headless Drivers to provide an remarkably faster alternative to browser drivers.

5.10.3.4 Ajax

Testing Ajax applications is difficult because of the asynchronous behavior. Several

APIs feature special support for Ajax. Waiting for the results of an Ajax-request to be

received enables the feature Wait on Procedure. Request Guards are used to verify that

an Ajax or HTML request is send or that no request is send. The feature Staleness

Aware Page Abstractions makes sure that observed stale elements are re-initialized.

Chapter 6

Conclusion

This chapter gives an interpretation of the results presented in the last chapter. Section

6.1 presents a qualitative analysis of the trends, problems and differences between ITEs

and APIs that have been observed. Section 6.2 presents a quantitative analysis approach.

6.1 Trends, Problems and Differences between ITEs and

APIs

Abstraction Supporting Feature

The features in the category Abstraction Supporting Feature provide different advan-

tages. Dependencies, Generic Components, Interproject Relationship help to prevent

code duplication. The Avatar System feature can save time when creating tests. Main-

tenance cost reduction is achieved by using Mapping Table or the more advanced Com-

ponent Model. The changes need to be done manually, but at least at only one position.

Furthermore these changes can be automated using Updating Components. The Element

Recognition allows to use the tests without adaption as long as the elements can still

be identified. To improve the overview, Elements Explorer and Setup / Tear down are

useful.

The overall idea of abstraction in web page automation is to use object orientation to map

the structure of web pages. This leads to a better overview and simplifies maintenance.

In addition it completely separates the test case from the element identification. Page

85

Chapter 6. Conclusion 86

Objects benefit from the potentials of object orientation like Inheritance. One trend

is to standardize the internal structure of page objects. Template Options increase the

understandability and uniformity of page objects. The “wait” and “required” statements

reduce coding afford of commonly used patterns. The statements “to” and “at” simplify

the transition between page objects.

The most simple version of a Step object is a procedure that enables the reuse of the

commands or identifiers it encapsulates. The trend is to integrate Step Objects into Page

Objects. Page objects may include step objects for example to specify properties.

Summing up, ITEs and APIs have different approaches and thus different features. ITEs

feature preferably automatic test creation and maintenance, whereas the API approach

is to achieve maximum abstraction and overview.

Problematic is that Webpage element indirection is not featured by all ITEs. Half the

tools do neither support Mapping Table nor Component Model, whereas on the API side

every GPL enables to encapsulate element identifiers using objects. Most tools may

enable encapsulating identifiers using Procedures, but doing so it is not possible to use

any recorded test case without adapting it.

Capture

The Capture category is dominated by the Recording feature, that all except one ITE

support. The Freeze Mode is an excitement feature whereas Record Procedure is a

performance feature that should be supported by more than one tool. This analysis

reveals two Identifier Creation Strategies, but there are by all means more strategies

that need another methodology to be identified.

Image Recognition is multifarious. It is used for text in picture format, to validate the

layout and for element identification using Image Click or Retrieve Position. Image

Recognition separates the ITEs from the APIs that, at least in this sample, do not

support it.

Chapter 6. Conclusion 87

Editor Features

Providing different Code Views is an interesting concept. Code View is the original

view that for example all IDEs on the market use. The Keyword / Tabular View is

an option for users that are not familiar with programming languages. The Tree View

illustrates the execution order and increases the overview, but otherwise conceals details

behind property windows. The Flow Chart View and especially the Storyboard View

should be emphasized. The latter helps rereading and understanding test cases, because

it provides the connection between each test command and the GUI of the SUT in that

moment.

Learning by doing tutorial and Refactoring are excitement features, but Refactoring is

only supported by one tool and should be featured more.

Element Identification

In comparison to the APIs the IDEs utilize more information sources, because this is

useful for automatic identifier creation (e.g. Mixed Strategy). DOM Hierarchy is an ITE

specific feature used in Element Recognition. A typical ITE problem is the handling of

random “ids”, that is counteracted with Wildcards and Regular Expressions.

APIs utilize less information sources, but provide advanced identifier methods. Three

powerful methods have been observed. In addition to XPath, the API also feature CSS

Selectors, JQuery and above all, these methods are combined.

Execution

The category of execution oriented features is dominated by a lot of external execution

options. Features that should be highlighted are the Partly re-execution of test reports,

the Shuffle mode and the Autologin feature of the scheduler that is needed if there is

no separated testing server and the test cases should be executed on the machine of the

tester.

On the API side a lot of features are oriented on execution speedup: Depends Annotation,

Reusable Session, Test Distribution and in the broader sense Cleanup between Tests.

Testing Frameworks also provide such features.

Chapter 6. Conclusion 88

An excitement feature is Multi User Testing from one code fragment (Coding). The tra-

ditional way involves starting two testing processes that interact asynchronous. Writing

the test as one code fragment enables writing it, as if it were synchronous. Thus Coding

leads to complexity reduction.

Extra Tools

A prominent companion of ITEs is the Test Creation Helper including an Object Spy.

These features exists as conventional browser plug-ins that also feature the DOM Ex-

plorer. Another feature that should be emphasized is the Interactive Console that per-

mits significant test creation and debugging speedup. One ITE and API provide it.

As an alternative to providing a feature rich editor one ITE facilitates IDE Integration.

Another interesting feature is the Documentation Tool. Especially the version that

enables generating end user documentation is a promising idea that reuses the recording

functionality.

Language

The majority of ITEs use a self-made language, but it should be noticed that because of

lacking Language Power features, they often tend to be inexpressive. For compensation

they use GPL-Integration

An excitement feature is the Self-documenting language style, that enables even non

technical stakeholders to read test cases. A development focus is on Assertions. Condi-

tional Assertions and Implicit Assertions do both pursue the goal to help in debugging

and deliver “Fail-Fast” if needed, but are flexible to ignore errors if not.

Methodology

The wide propagation of Data-driven Testing including the modification Multi-lingual

testing should be emphasized. Noticeable is that, at least in the occurring setting,

Recording and Test-first Programming are contradictory features.

Chapter 6. Conclusion 89

Full test automation is not always desirable. There are situations where test automation

is not possible or the effort of test creation and maintenance is higher than the benefit.

Therefore, Manual Testing and Semi-automatic testing should be emphasized as they

integrate and speedup manual testing.

Problem Analysis

To identify the reason for a program error, all available information is acceptable. Both

ITEs and APIs use screenshots and state snapshots. Most advanced is the Screen Video

that enables post mortem analysis.

The Smart Matching approach that ensures during recording that identifiers stay unique

is a feature that only makes sense in the context of automatic identifier creation.

On the API side the feature Edit and Continue should be emphasized. Another excite-

ment feature is Accepting failed checks.

Technology

A unique selling point for ITEs is the support of Widget Toolkits, that none of the

analyzed APIs support. Additionally the ITEs support a wide range of TM / ALM and

Continuous Integration tools.

The APIs on the contrary seem to provide advanced features for Ajax testing.

6.2 Equality of Tools

This section provides statistics that illustrate how equal the feature sets of the ITE tools

are. The API tools have not been analyzed with this approach1. Table 6.1 presents a

pairwise comparison of the features. The amount of common features is divided by the

higher total number of features. Remarkably are three tool pairs with high percentage

of common features. Rapise and Application Testing Suite with 58%, TestingWhiz and

1The analysis is inappropriate in that context because the tools are interlaced. In fact all five build on
top of Selenium and therefore have a common set of features. However some list the features inherited
by Selenium in the documentation and some do not. Hence the results of the equality calculations would
be distorted.

Chapter 6. Conclusion 90

WinTask with 48%, and Rapise and Silk Test with 46%. An explanation is that these

tools primarily consist of basic features with no or few unique features.

Figure 6.1 presents the distribution of the result of the feature equality matrix (Table

6.1). The climax is in the range between 20% to 24%. This indicates that there are a

common sets of basic features. Additionally there are a lot tools on the one side that

are equal between 10% and 19% or on the other side between 25% and 34%. That may

indicate that there are other feature sets that several tools possess or several other do

not.

Chapter 6. Conclusion 91

QF-Test

QA Wizard Pro

AppPerfect Web Test

iMacros

Sahi Pro

Robot Framework

Application Testing Suite

WinTask

TestingWhiz

CodedUI

Rapise

Testing Anywhere

Ranorex Test Automation

Silk Test

Test Studio

RIATest

Q
A

W
iz

ar
d

P
ro

30
%

A
p

p
P

er
fe

ct
W

eb
T

es
t

23
%

28
%

iM
ac

ro
s

20
%

20
%

26
%

S
ah

i
P

ro
19

%
26

%
37

%
21

%
R

ob
ot

F
ra

m
ew

or
k

17
%

26
%

16
%

17
%

24
%

A
p

p
li

ca
ti

on
T

es
ti

n
g

S
u

it
e

19
%

30
%

32
%

19
%

24
%

22
%

W
in

T
as

k
9%

22
%

11
%

10
%

22
%

28
%

13
%

T
es

ti
n

gW
h

iz
16

%
24

%
16

%
21

%
19

%
38

%
25

%
48

%
C

o
d

ed
U

I
7%

8%
8%

10
%

5%
9%

17
%

12
%

13
%

R
ap

is
e

19
%

26
%

34
%

19
%

27
%

19
%

58
%

13
%

21
%

17
%

T
es

ti
n

g
A

n
y
w

h
er

e
17

%
36

%
21

%
24

%
22

%
29

%
21

%
26

%
32

%
6%

24
%

R
an

or
ex

T
es

t
A

u
to

m
at

io
n

25
%

32
%

32
%

26
%

30
%

23
%

37
%

17
%

29
%

9%
31

%
3
1
%

S
il

k
T

es
t

10
%

18
%

21
%

12
%

24
%

13
%

42
%

22
%

22
%

26
%

46
%

2
6
%

3
4
%

T
es

t
S

tu
d

io
25

%
36

%
22

%
26

%
24

%
15

%
22

%
17

%
22

%
11

%
22

%
2
2
%

3
5
%

1
7
%

R
IA

T
es

t
23

%
30

%
29

%
21

%
41

%
28

%
29

%
19

%
23

%
13

%
29

%
3
8
%

4
0
%

3
5
%

3
5
%

J
u

b
u

la
20

%
22

%
18

%
12

%
14

%
19

%
18

%
11

%
18

%
4%

18
%

2
1
%

2
3
%

1
4
%

9
%

1
6
%

T
a
b
l
e
6
.1
:

F
ea

tu
re

eq
u

al
it

y
m

a
tr

ix
:

P
a
ir

w
is

e
p

er
ce

n
ta

g
e

o
f

fe
a
tu

re
s

th
a
t

h
av

e
tw

o
to

ol
s

in
co

m
m

o
n

.

Chapter 6. Conclusion 92

Figure 6.1: Distribution of equalities between the ITE tools.

Chapter 7

Summary

7.1 Outlook

This thesis contributed a methodology that enables to analyze a field of tools in order

to discover the overall status and trends by using feature modeling.

This thesis delimited the domain of functional, system level web application testing and

analyzed it using the methodology. From an initial pool of 212 candidates 23 tools passed

the requirements of the methodology and were analyzed. The results are 313 identified

features that have been classified into 10 categories, illustrated using 16 feature diagrams

and described in detail.

7.2 Threads to Validity

The analysis is done by one researcher. Features can be missed, for example when mark-

ing the documentations. Another problem could be variegating granularity in feature

identification. A review by another researcher could reduce both issues.

The methodology depends on high quality end user documentation. A problem would

be if too many tools are excluded from the analysis because of this restriction. However,

tools that do not have a proper documentation are possibly less feature rich and are

anyway are rarely used in industry.

93

Chapter 7. Summary 94

The developed methodology is based on the CaVE methodology. CaVE is used in the

area of reverseengineering and software product lines whereas our methodology is applied

to market segment analysis. Additionally CaVE had to be adapted to be able to fulfill

our use-case. These reasons could be a thread to validity.

Variegating quality of the documentation between the different tools is not a thread,

because the methodology does not primarily aim to compare tools.

The methodology misses all features that are not described in the documentation. There

are probably features that can be identified via other information sources or by testing

the application.

Appendix A

Tool - Feature List

This Appendix presents the data of observed features for each tool. Each tools features

are ordered by category. The features are additionally sorted alphabetically. Since the

naming of the features is influenced by their position in the feature models’ hierarchy,

the feature lists should be used having the feature models at hand.

95

Appendix A. Tool - Feature List 96

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

C
om

p
on

en
t

M
o
d

el
,
D

ep
en

d
en

ci
es

,
E

le
m

en
t

R
ec

og
n

it
io

n
,
E

le
m

en
ts

E
x
p

lo
re

r,
E

rr
o
r

E
sc

a
la

ti
o
n

,
G

en
er

ic
C

om
p

on
en

ts
,

Im
p

or
ti

n
g

/
M

er
gi

n
g,

It
em

s,
P

ro
b

ab
il

is
ti

c,
R

ef
er

en
ci

n
g
,

T
es

t
S

u
it

e
L

in
k
in

g
,

U
p

d
a
ti

n
g

C
om

p
on

en
ts

C
ap

tu
re

Im
ag

e
R

ec
og

n
it

io
n

,
Im

ag
e

V
al

id
at

io
n

,
R

ec
or

d
P

ro
ce

d
u

re
,

R
ec

or
d

in
g

E
d

it
or

F
ea

tu
re

s
L

ea
rn

in
g

b
y

d
oi

n
g

tu
to

ri
al

,
M

ov
e,

R
ef

ac
to

ri
n

g,
R

en
am

e,
T

re
e

V
ie

w

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
D

O
M

H
ie

ra
rc

h
y,

N
am

e
R

es
ol

v
er

,
P

os
it

io
n

/
S

iz
e,

R
eg

u
la

r
E

x
p

re
ss

io
n

E
x
ec

u
ti

on
B

at
ch

fi
le

,
C

om
m

an
d

li
n

e,
D

ae
m

on
,

E
x
te

rn
al

E
x
ec

u
ti

on
,

P
os

it
io

n
in

C
o
d

e,
S

ta
tu

s
li

n
e

/
C

o
n

so
le

,
T

es
t

R
ep

or
t,

V
is

u
al

E
x
ec

u
ti

on
F

ee
d

b
ac

k

E
x
tr

a
T

o
ol

s
D

o
cu

m
en

ta
ti

on
T

o
ol

,
T

es
t

L
an

gu
ag

e
E

x
p

re
ss

io
n

,
G

P
L

-I
n
te

gr
at

io
n

,
G

P
L

-I
n
te

gr
at

io
n

G
ro

ov
y,

G
P

L
-I

n
te

gr
at

io
n

J
y
th

o
n

,
L

a
zy

B
in

d
in

g
,

P
ro

-
ce

d
u

re
,

S
el

f-
m

ad
e,

T
re

e-
st

y
le

,
V

ar
ia

b
le

M
et

h
o
d

ol
og

y
C

S
V

,
D

at
a-

d
ri

ve
n

T
es

ti
n

g,
D

at
ab

as
e,

E
x
ce

l,
In

-E
d

it
or

T
ab

le
,

M
an

u
a
l

T
es

ti
n
g

P
ro

b
le

m
A

n
al

y
si

s
A

cc
ep

ti
n

g
fa

il
ed

ch
ec

k
s,

D
eb

u
gg

er
,

R
u

n
L

og
,

S
cr

ee
n

sh
ot

on
E

rr
or

,
S

ta
te

S
n

a
p

sh
o
t

o
n

E
rr

o
r

T
ec

h
n

ol
og

y
C

on
ti

n
u

ou
s

In
te

gr
at

io
n

,
H

P
Q

u
al

it
y

C
en

te
r,

H
id

d
en

F
ie

ld
,

H
u

d
so

n
,

Im
b

u
s

T
es

tB
en

ch
,

J
av

a
F

X
,

J
en

k
-

in
s,

K
la

ro
s,

Q
M

et
ry

,
S

Q
S

-T
E

S
T

/P
ro

fe
ss

io
n

al
,

T
M

/
A

L
M

,
T

es
tL

in
k
,

W
id

g
et

T
o
o
lk

it

T
a
b
l
e
A
.1
:

Q
F

-T
es

t:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 97

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

G
lo

b
al

T
ab

le
,

M
ap

p
in

g
T

ab
le

,
R

ef
er

en
ci

n
g,

T
es

t
S

u
it

e
L

in
k
in

g

C
ap

tu
re

Im
ag

e
R

ec
og

n
it

io
n

,
Im

ag
e

V
al

id
at

io
n

,
L

ow
-l

ev
el

A
ct

io
n

,
O

C
R

,
R

ec
or

d
in

g

E
d

it
or

F
ea

tu
re

s
K

ey
w

or
d

/T
ab

u
la

r
V

ie
w

,
T

ex
t

E
n

cr
y
p

ti
on

,
T

ex
t

V
ie

w

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
H

os
t-

la
n

gu
ag

e
P

ro
ce

d
u

re
,

R
eg

u
la

r
E

x
p

re
ss

io
n

,
X

P
at

h

E
x
ec

u
ti

on
B

at
ch

fi
le

,
C

om
m

an
d

li
n

e,
D

is
tr

ib
u

te
d

P
la

y
b

ac
k
,

E
m

ai
l,

E
x
te

rn
al

E
x
ec

u
ti

o
n

,
M

u
lt

i
U

se
r

T
es

ti
n

g
,

T
es

t
R

ep
or

t

E
x
tr

a
T

o
ol

s
W

eb
-b

as
ed

T
es

t
M

on
it

or

L
an

gu
ag

e
A

rr
ay

,
C

on
d

it
io

n
,

E
rr

or
H

an
d

li
n
g,

L
o
op

,
P

ro
ce

d
u

re
,

R
et

u
rn

V
al

u
e,

S
cr

ip
ti

n
g

L
a
n

g
u

a
g
e,

S
el

f-
m

a
d

e,
V

ar
ia

b
le

M
et

h
o
d

ol
og

y
A

cc
es

s,
C

S
V

,
D

at
a-

d
ri

ve
n

T
es

ti
n

g,
D

at
ab

as
e,

E
x
ce

l,
F

ix
ed

-w
id

th
,

M
ic

ro
so

ft
S

Q
L

S
er

ve
r,

O
ra

cl
e

D
at

ab
as

e

P
ro

b
le

m
A

n
al

y
si

s
D

eb
u

gg
er

,
S

m
ar

t
M

at
ch

in
g,

V
ar

ia
b

le
W

at
ch

T
ab

le

T
ec

h
n

ol
og

y
F

la
sh

/F
le

x
,

S
il

ve
rl

ig
h
t,

T
M

/
A

L
M

,
T

es
tT

ra
ck

,
T

o
ol

b
ar

,
W

id
ge

t
T

o
ol

k
it

T
a
b
l
e
A
.2
:

Q
A

W
iz

a
rd

P
ro

:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 98

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

C
om

p
on

en
t

M
o
d

el
,

E
le

m
en

t
R

ec
og

n
it

io
n

,
M

ax
m

at
ch

in
g

at
tr

ib
u
te

s,
R

ef
er

en
ci

n
g
,

T
es

t
S

u
it

e
L

in
k
in

g

C
ap

tu
re

R
ec

or
d

T
im

e
n

ee
d

ed
,

R
ec

or
d

in
g

E
d

it
or

F
ea

tu
re

s

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
In

d
ex

E
x
ec

u
ti

on
A

n
t,

C
om

m
an

d
li

n
e,

D
is

tr
ib

u
te

d
P

la
y
b

ac
k
,

E
x
te

rn
al

E
x
ec

u
ti

on
,

L
ev

el
sp

ec
ifi

c
V

ie
w

s,
T

es
t

R
ep

o
rt

E
x
tr

a
T

o
ol

s
E

cl
ip

se
,

ID
E

In
te

gr
at

io
n

,
In

te
ll

iJ
,

J
B

u
il

d
er

,
J
D

ev
el

op
er

,
N

et
B

ea
n

s,
O

b
je

ct
S

p
y,

T
es

t
C

re
a
ti

o
n

H
el

p
er

L
an

gu
ag

e
G

P
L

-I
n
te

gr
at

io
n

,
G

P
L

-I
n
te

gr
at

io
n

J
av

aS
cr

ip
t,

S
el

f-
m

ad
e,

T
re

e-
st

y
le

M
et

h
o
d

ol
og

y
C

S
V

,
D

at
a-

d
ri

ve
n

T
es

ti
n

g,
D

at
ab

as
e

P
ro

b
le

m
A

n
al

y
si

s

T
ec

h
n

ol
og

y
A

u
th

en
ti

ca
ti

on
,

B
as

e
64

,
D

ig
es

t
(M

D
5

h
as

h
),

F
la

sh
/F

le
x
,

H
T

T
P

S
,

N
T

L
M

(M
ir

co
so

ft
),

P
a
ss

w
o
rd

E
n

cr
y
p

ti
on

,
W

id
ge

t
T

o
ol

k
it

T
a
b
l
e
A
.3
:

A
p

p
P

er
fe

ct
W

eb
T

es
t:

F
ea

tu
re

li
st

Appendix A. Tool - Feature List 99

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

C
ap

tu
re

B
es

t
fi

tt
in

g
si

n
gl

e
A

tt
ri

b
u

te
,
C

h
an

ge
U

se
r

A
ge

n
t,

F
u

ll
S

cr
ee

n
sh

ot
,
Id

en
ti

fi
er

C
re

a
ti

o
n

S
tr

a
te

g
y,

R
ec

o
rd

-
in

g,
S

cr
ee

n
sh

ot
,

U
se

r
S

el
ec

ti
on

s

E
d

it
or

F
ea

tu
re

s

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
P

os
it

io
n

/
S

iz
e,

R
el

at
iv

e
to

E
le

m
en

t,
R

el
at

iv
e

to
Im

ag
e,

W
il

d
ca

rd

E
x
ec

u
ti

on
P

ro
x
y

S
er

ve
r,

T
es

t
R

ep
or

t

E
x
tr

a
T

o
ol

s
W

eb
si

te
M

on
it

or
in

g

L
an

gu
ag

e
G

P
L

-I
n
te

gr
at

io
n

,
K

ey
w

or
d

/
T

ab
u

la
r,

S
el

f-
m

ad
e,

V
ar

ia
b

le
,

v
ia

C
om

O
b

je
ct

s

M
et

h
o
d

ol
og

y
C

S
V

,
D

at
a-

d
ri

ve
n

T
es

ti
n

g,
D

at
ab

as
e,

In
-E

d
it

or
T

ab
le

,
K

ey
/

V
al

u
e

P
ro

b
le

m
A

n
al

y
si

s
R

u
n

L
og

,
S

cr
ee

n
sh

ot
on

E
rr

or

T
ec

h
n

ol
og

y
25

6-
b

it
A

E
S

,
C

er
ti

fi
ca

te
,

D
ia

lo
g,

F
la

sh
/F

le
x
,

J
av

a
ap

p
le

t,
J
av

aS
cr

ip
t,

L
o
g
in

,
P

a
g
e

E
rr

o
r,

P
a
ss

w
o
rd

E
n

cr
y
p

ti
on

,
P

ri
n
t,

S
ec

u
ri

ty
,

T
ab

b
in

g,
W

eb
P

ag
e

D
ia

lo
g,

W
id

ge
t

T
o
ol

k
it

,
X

H
T

M
L

T
a
b
l
e
A
.4
:

iM
a
cr

o
s:

F
ea

tu
re

li
st

Appendix A. Tool - Feature List 100

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

C
ap

tu
re

R
ec

or
d

in
g

E
d

it
or

F
ea

tu
re

s

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

R
el

at
io

n
al

E
x
ec

u
ti

on
A

n
t,

B
at

ch
fi

le
,

C
om

m
an

d
li
n

e,
D

is
tr

ib
u

te
d

P
la

y
b

ac
k
,

E
m

ai
l,

E
x
ec

u
te

E
x
ce

l,
E

x
te

rn
a
l

E
x
ec

u
ti

o
n

,
J
av

a,
T

es
t

R
ep

or
t,

U
R

L
C

al
ls

,
X

S
L

T
ra

n
sf

or
m

at
io

n

E
x
tr

a
T

o
ol

s
A

p
p

li
ca

ti
on

,
D

o
cu

m
en

ta
ti

on
T

o
ol

,
In

te
ra

ct
iv

e
C

on
so

le
,

O
b

je
ct

S
p
y,

T
es

t
C

re
a
ti

o
n

H
el

p
er

L
an

gu
ag

e
E

rr
or

H
an

d
li

n
g,

G
P

L
-I

n
te

gr
at

io
n

,
G

P
L

-I
n
te

gr
at

io
n

J
av

a,
S

cr
ip

ti
n

g
L

a
n

g
u

a
g
e,

S
el

f-
m

a
d

e,
V

er
si

o
n

C
o
n

-
tr

ol
la

b
le

M
et

h
o
d

ol
og

y

P
ro

b
le

m
A

n
al

y
si

s
D

eb
u

gg
er

,
R

u
n

L
og

T
ec

h
n

ol
og

y
40

1,
A

u
th

en
ti

ca
ti

on
,

C
on

ti
n
u

ou
s

In
te

gr
at

io
n

,
D

ia
lo

g,
F

la
sh

/F
le

x
,

H
T

T
P

S
,

J
av

a
a
p

p
le

t,
J
en

k
in

s,
N

T
L

M
,

P
D

F
fi
le

s,
W

id
ge

t
T

o
ol

k
it

T
a
b
l
e
A
.5
:

S
a
h

i
P

ro
:

F
ea

tu
re

li
st

Appendix A. Tool - Feature List 101

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

M
u

lt
il

ev
el

,
N

am
e

C
ol

li
si

on
H

an
d

li
n

g,
S

et
u

p
/

T
ea

r
d

ow
n

,
U

se
r

L
ib

ra
ry

C
ap

tu
re

R
ec

or
d

in
g

E
d

it
or

F
ea

tu
re

s
K

ey
w

or
d

/T
ab

u
la

r
V

ie
w

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

E
x
ec

u
ti

on
A

P
I,

C
om

m
an

d
li
n

e,
E

x
te

rn
al

E
x
ec

u
ti

on
,

J
av

a
A

P
I,

P
ar

tl
y

re
-e

x
ec

u
ti

o
n

,
P

y
th

o
n

A
P

I,
S

h
u

ffl
e,

T
es

t
R

ep
or

t

E
x
tr

a
T

o
ol

s
D

o
cu

m
en

ta
ti

on
T

o
ol

,
T

es
t

L
an

gu
ag

e
B

eh
av

io
r-

d
ri

ve
n

,
B

re
ak

/
C

on
ti

n
u

e,
C

o
d

in
g

S
ty

le
s,

C
on

d
it

io
n

,
K

ey
w

o
rd

/
T

a
b

u
la

r,
K

ey
w

o
rd

-d
ri

v
en

,
L

o
op

,
P

ar
al

le
li

sm
,

P
ro

ce
d

u
re

,
R

et
u

rn
V

al
u

e,
S

el
f-

m
ad

e,
V

ar
ia

b
le

,
V

er
si

o
n

C
o
n
tr

o
ll

a
b

le

M
et

h
o
d

ol
og

y
D

at
a-

d
ri

ve
n

T
es

ti
n

g

P
ro

b
le

m
A

n
al

y
si

s
D

eb
u

gg
er

,
R

u
n

L
og

T
ec

h
n

ol
og

y

T
a
b
l
e
A
.6
:

R
o
b

o
t

F
ra

m
ew

o
rk

:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 102

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

S
et

u
p

/
T

ea
r

d
ow

n

C
ap

tu
re

R
ec

or
d

in
g

E
d

it
or

F
ea

tu
re

s
T

ex
t

V
ie

w
,

T
re

e
V

ie
w

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
X

P
at

h

E
x
ec

u
ti

on
C

om
m

an
d

li
n

e,
E

x
te

rn
al

E
x
ec

u
ti

on
,

T
es

t
R

ep
or

t

E
x
tr

a
T

o
ol

s
O

b
je

ct
S

p
y,

T
es

t
C

re
at

io
n

H
el

p
er

,
T

es
t

M
an

ag
er

L
an

gu
ag

e
G

P
L

,
J
av

a

M
et

h
o
d

ol
og

y
C

S
V

,
D

at
a-

d
ri

ve
n

T
es

ti
n

g,
D

at
ab

as
e,

E
x
ce

l

P
ro

b
le

m
A

n
al

y
si

s
D

eb
u

gg
er

T
ec

h
n

ol
og

y
F

la
sh

/F
le

x
,

O
ra

cl
e,

O
ra

cl
e

T
es

t
M

an
ag

er
,

T
M

/
A

L
M

,
W

id
ge

t
T

o
ol

k
it

T
a
b
l
e
A
.7
:

A
p

p
li

ca
ti

o
n

T
es

ti
n

g
S

u
it

e:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 103

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

C
ap

tu
re

Im
ag

e
R

ec
og

n
it

io
n

,
O

C
R

,
R

ec
or

d
in

g

E
d

it
or

F
ea

tu
re

s

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

E
x
ec

u
ti

on
S

ch
ed

u
le

r

E
x
tr

a
T

o
ol

s
O

b
je

ct
S

p
y,

T
es

t
C

re
at

io
n

H
el

p
er

L
an

gu
ag

e
A

rr
ay

,
C

on
d

it
io

n
,

L
o
op

,
P

ro
ce

d
u

re
,

R
et

u
rn

V
al

u
e,

S
cr

ip
ti

n
g

L
an

gu
a
g
e,

S
el

f-
m

a
d

e,
V

a
ri

a
b

le
,

V
er

si
o
n

C
on

tr
ol

la
b

le

M
et

h
o
d

ol
og

y

P
ro

b
le

m
A

n
al

y
si

s
R

u
n

L
og

T
ec

h
n

ol
og

y
P

D
F

fi
le

s

T
a
b
l
e
A
.8
:

W
in

T
a
sk

:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 104

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

C
ap

tu
re

Im
ag

e
R

ec
og

n
it

io
n

,
Im

ag
e

V
al

id
at

io
n

,
R

ec
or

d
in

g,
S

cr
ee

n
sh

ot

E
d

it
or

F
ea

tu
re

s
F

lo
w

C
h

ar
t

V
ie

w

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

E
x
ec

u
ti

on
E

m
ai

l,
S

ch
ed

u
le

r,
T

es
t

R
ep

or
t,

T
es

ti
n

g
G

ri
d

E
x
tr

a
T

o
ol

s
O

b
je

ct
S

p
y,

T
es

t
C

re
at

io
n

H
el

p
er

L
an

gu
ag

e
B

re
ak

/
C

on
ti

n
u

e,
C

on
d

it
io

n
,

K
ey

w
or

d
/

T
ab

u
la

r,
L

o
op

,
P

ar
al

le
li

sm
,

P
ro

ce
d
u

re
,

S
el

f-
m

a
d

e,
V

a
ri

a
b

le

M
et

h
o
d

ol
og

y
D

at
a-

d
ri

ve
n

T
es

ti
n

g

P
ro

b
le

m
A

n
al

y
si

s
R

u
n

L
og

,
S

cr
ee

n
sh

ot
on

E
rr

or

T
ec

h
n

ol
og

y
T

M
/

A
L

M

T
a
b
l
e
A
.9
:

T
es

ti
n

g
W

h
iz

:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 105

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

C
ap

tu
re

L
ow

-l
ev

el
A

ct
io

n
,

R
ec

or
d

in
g

E
d

it
or

F
ea

tu
re

s

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

E
x
ec

u
ti

on

E
x
tr

a
T

o
ol

s

L
an

gu
ag

e
.N

E
T

,
C

#
,

G
P

L
,

V
is

u
al

B
as

ic

M
et

h
o
d

ol
og

y
C

S
V

,
D

at
a-

d
ri

ve
n

T
es

ti
n

g,
M

an
u

al
T

es
ti

n
g

P
ro

b
le

m
A

n
al

y
si

s
R

u
n

L
og

T
ec

h
n

ol
og

y
A

u
d

io
C

on
tr

ol
,

H
T

M
L

5,
P

ro
gr

es
s

B
ar

,
S

li
d

er
C

on
tr

ol
,

V
id

eo
C

on
tr

ol

T
a
b
l
e
A
.1
0
:

C
o
d

ed
U

I:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 106

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

C
om

p
on

en
t

M
o
d

el
,

S
im

u
la

te
d

O
b

je
ct

C
ap

tu
re

R
ec

or
d

in
g

E
d

it
or

F
ea

tu
re

s

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
D

O
M

H
ie

ra
rc

h
y,

M
ix

ed
S

tr
at

eg
y,

P
os

it
io

n
/

S
iz

e

E
x
ec

u
ti

on
C

om
m

an
d

li
n

e,
D

is
tr

ib
u

te
d

P
la

y
b

ac
k
,

E
x
te

rn
al

E
x
ec

u
ti

on
,

T
es

t
R

ep
o
rt

E
x
tr

a
T

o
ol

s
O

b
je

ct
S

p
y,

T
es

t
C

re
at

io
n

H
el

p
er

L
an

gu
ag

e
G

P
L

,
J
av

aS
cr

ip
t

M
et

h
o
d

ol
og

y
D

at
a-

d
ri

ve
n

T
es

ti
n

g,
D

at
ab

as
e,

E
x
ce

l

P
ro

b
le

m
A

n
al

y
si

s
D

eb
u

gg
er

T
ec

h
n

ol
og

y
A

ct
iv

eX
,

F
la

sh
/F

le
x
,

H
T

M
L

5,
S

il
ve

rl
ig

h
t,

W
id

ge
t

T
o
ol

k
it

T
a
b
l
e
A
.1
1
:

R
a
p

is
e:

F
ea

tu
re

li
st

Appendix A. Tool - Feature List 107

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

A
va

ta
r

S
y
st

em
,

C
om

p
on

en
t

M
o
d

el

C
ap

tu
re

F
u

ll
S

cr
ee

n
sh

ot
,

Im
ag

e
C

li
ck

,
Im

ag
e

R
ec

og
n

it
io

n
,

Im
ag

e
V

al
id

at
io

n
,

O
C

R
,

R
ec

o
rd

in
g
,

S
cr

ee
n

sh
o
t

E
d

it
or

F
ea

tu
re

s
B

u
lk

E
d

it
,

F
o
cu

s-
V

ie
w

F
il

te
r,

K
ey

w
or

d
/T

ab
u

la
r

V
ie

w
,

T
ex

t
V

ie
w

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
Im

ag
e,

In
d

ex

E
x
ec

u
ti

on
A

u
to

lo
gi

n
,

B
at

ch
fi

le
,

E
x
e-

fi
le

,
E

x
te

rn
al

E
x
ec

u
ti

on
,

S
ch

ed
u

le
r

E
x
tr

a
T

o
ol

s

L
an

gu
ag

e
C

on
d

it
io

n
,

K
ey

w
or

d
/

T
ab

u
la

r,
L

o
op

,
S

el
f-

m
ad

e,
V

ar
ia

b
le

M
et

h
o
d

ol
og

y

P
ro

b
le

m
A

n
al

y
si

s
D

eb
u

gg
er

,
E

m
ai

l
N

ot
ifi

ca
ti

on
,

R
u

n
L

og
,

V
ar

ia
b

le
W

at
ch

T
ab

le

T
ec

h
n

ol
og

y
F

la
sh

/F
le

x
,

K
ey

st
ro

ke
E

n
cr

y
p
ti

on
,

S
il

ve
rl

ig
h
t,

W
id

ge
t

T
o
ol

k
it

T
a
b
l
e
A
.1
2
:

T
es

ti
n

g
A

n
y
w

h
er

e:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 108

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

M
ap

p
in

g
T

ab
le

C
ap

tu
re

Im
ag

e
C

li
ck

,
Im

ag
e

R
ec

og
n

it
io

n
,

R
ec

or
d

in
g

E
d

it
or

F
ea

tu
re

s

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

Im
ag

e,
W

ei
gh

te
d

X
P

at
h

,
X

P
at

h

E
x
ec

u
ti

on
C

om
m

an
d

li
n

e,
E

x
e-

fi
le

,
E

x
te

rn
al

E
x
ec

u
ti

on
,

T
es

t
R

ep
or

t

E
x
tr

a
T

o
ol

s
O

b
je

ct
S

p
y,

T
es

t
C

re
at

io
n

H
el

p
er

L
an

gu
ag

e
G

P
L

-I
n
te

gr
at

io
n

,
K

ey
w

or
d

/
T

ab
u

la
r,

S
el

f-
m

ad
e,

V
ar

ia
b

le

M
et

h
o
d

ol
og

y
C

S
V

,
C

ro
ss

-B
ro

w
se

r
T

es
ti

n
g,

D
at

a-
d

ri
ve

n
T

es
ti

n
g,

D
at

ab
as

e,
E

x
ce

l,
In

-E
d

it
o
r

T
a
b

le

P
ro

b
le

m
A

n
al

y
si

s

T
ec

h
n

ol
og

y
B

am
b

o
o,

C
on

ti
n
u

ou
s

In
te

gr
at

io
n

,
F

la
sh

/F
le

x
,

H
P

Q
u

al
it

y
C

en
te

r,
J
en

k
in

s,
M

ic
ro

so
ft

T
es

t
M

a
n

a
g
er

,
S

il
ve

rl
ig

h
t,

S
ou

rc
e

C
on

tr
ol

,
S

u
b
v
er

si
on

,
T

M
/

A
L

M
,

T
ea

m
F

ou
n
d

at
io

n
S

er
ve

r,
T

ea
m

C
it

y

T
a
b
l
e
A
.1
3
:

R
a
n

o
re

x
T

es
t

A
u

to
m

a
ti

o
n

:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 109

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

M
ap

p
in

g
T

ab
le

C
ap

tu
re

Im
ag

e
C

li
ck

,
Im

ag
e

R
ec

og
n

it
io

n
,

R
ec

or
d

in
g

E
d

it
or

F
ea

tu
re

s

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

Im
ag

e,
P

os
it

io
n

/
S

iz
e,

X
P

at
h

E
x
ec

u
ti

on
A

n
t,

C
om

m
an

d
li

n
e,

E
x
te

rn
al

E
x
ec

u
ti

on

E
x
tr

a
T

o
ol

s
O

b
je

ct
S

p
y,

T
es

t
C

re
at

io
n

H
el

p
er

L
an

gu
ag

e
.N

E
T

,
C

#
,

G
P

L
,

J
av

a,
V

is
u

al
B

as
ic

M
et

h
o
d

ol
og

y

P
ro

b
le

m
A

n
al

y
si

s
L

og
E

x
p

lo
re

r,
R

u
n

L
og

T
ec

h
n

ol
og

y
A

ct
iv

eX
,

F
la

sh
/F

le
x
,

S
il

ve
rl

ig
h
t,

W
id

ge
t

T
o
ol

k
it

T
a
b
l
e
A
.1
4
:

S
il

k
T

es
t:

F
ea

tu
re

li
st

Appendix A. Tool - Feature List 110

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

G
u

id
ed

Id
en

ti
fi

er
U

p
d

at
e,

M
ap

p
in

g
T

ab
le

,
U

p
d

at
in

g
C

om
p

on
en

ts

C
ap

tu
re

E
le

m
en

t
co

n
te

x
t

m
en

u
,

F
re

ez
e

M
o
d

e,
Im

ag
e

R
ec

og
n
it

io
n

,
Im

ag
e

V
al

id
a
ti

o
n

,
R

ec
o
rd

in
g

E
d

it
or

F
ea

tu
re

s
S

to
ry

b
oa

rd
V

ie
w

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

R
eg

u
la

r
E

x
p

re
ss

io
n

,
X

P
at

h

E
x
ec

u
ti

on
D

is
tr

ib
u

te
d

P
la

y
b

ac
k
,

R
es

u
lt

T
im

el
in

e,
S

ch
ed

u
le

r,
T

es
t

R
ep

or
t

E
x
tr

a
T

o
ol

s
3D

V
ie

w
er

,
D

O
M

E
x
p

lo
re

r,
T

es
t

C
re

at
io

n
H

el
p

er

L
an

gu
ag

e
C

on
d

it
io

n
,

G
P

L
-I

n
te

gr
at

io
n

,
S

cr
ip

ti
n

g
L

an
gu

ag
e,

S
el

f-
m

ad
e

M
et

h
o
d

ol
og

y
C

S
V

,
D

at
a-

d
ri

ve
n

T
es

ti
n

g,
D

at
ab

as
e,

E
x
ce

l,
E

x
p

lo
ra

to
ry

T
es

ti
n

g,
In

-E
d

it
o
r

T
a
b

le
,

M
a
n
u

a
l

T
es

ti
n

g
,

S
em

i-
au

to
m

at
ic

te
st

in
g,

X
M

L

P
ro

b
le

m
A

n
al

y
si

s
D

eb
u

gg
er

,
R

u
n

L
og

,
S

av
e

S
ta

te
S

n
ap

sh
ot

T
ec

h
n

ol
og

y
A

le
rt

,
C

on
fi

rm
,

D
ia

lo
g,

D
ow

n
lo

ad
,

L
ea

ve
P

ag
e,

L
og

in
,

S
il

v
er

li
gh

t,
S

o
u

rc
e

C
o
n
tr

o
l,

T
ea

m
F

o
u

n
d

a
ti

o
n

S
er

ve
r,

T
ra

n
sl

at
or

,
U

p
lo

ad
,

W
id

ge
t

T
o
ol

k
it

T
a
b
l
e
A
.1
5
:

T
es

t
S

tu
d

io
:

F
ea

tu
re

li
st

Appendix A. Tool - Feature List 111

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

C
ap

tu
re

Im
ag

e
C

li
ck

,
Im

ag
e

R
ec

og
n

it
io

n
,

Im
ag

e
V

al
id

at
io

n
,

R
ec

or
d

in
g,

R
et

ri
ev

e
P

o
si

ti
o
n

E
d

it
or

F
ea

tu
re

s

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

Im
ag

e,
In

d
ex

,
R

eg
u

la
r

E
x
p

re
ss

io
n

E
x
ec

u
ti

on
A

n
t,

C
om

m
an

d
li

n
e,

E
x
te

rn
al

E
x
ec

u
ti

on
,

T
es

t
R

ep
or

t

E
x
tr

a
T

o
ol

s

L
an

gu
ag

e
S

cr
ip

ti
n

g
L

an
gu

ag
e,

S
el

f-
m

ad
e,

V
er

si
on

C
on

tr
ol

la
b

le

M
et

h
o
d

ol
og

y
C

S
V

,
D

at
a-

d
ri

ve
n

T
es

ti
n

g

P
ro

b
le

m
A

n
al

y
si

s
D

eb
u

gg
er

,
E

d
it

an
d

C
on

ti
n
u

e,
R

u
n

L
og

,
S

cr
ee

n
V

id
eo

T
ec

h
n

ol
og

y
C

on
ti

n
u

ou
s

In
te

gr
at

io
n

,
D

ia
lo

g,
D

ow
n

lo
ad

,
F

la
sh

/F
le

x
,

H
u

d
so

n
,

J
en

k
in

s,
O

p
en

/
C

lo
se

,
S

il
ve

rl
ig

h
t,

U
p

lo
ad

,
W

id
ge

t
T

o
ol

k
it

T
a
b
l
e
A
.1
6
:

R
IA

T
es

t:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 112

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

E
le

m
en

t
R

ec
og

n
it

io
n

,
M

ap
p

in
g

T
ab

le
,

P
ro

b
ab

il
is

ti
c

C
ap

tu
re

E
d

it
or

F
ea

tu
re

s
M

et
ri

cs
,

T
es

ts
ty

le
G

u
id

el
in

es

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
D

O
M

H
ie

ra
rc

h
y,

In
d

ex

E
x
ec

u
ti

on
C

om
m

an
d

li
n

e,
E

x
te

rn
al

E
x
ec

u
ti

on

E
x
tr

a
T

o
ol

s
W

eb
-b

as
ed

T
es

t
M

on
it

or

L
an

gu
ag

e
E

rr
or

H
an

d
li

n
g,

K
ey

w
or

d
/

T
ab

u
la

r,
P

ro
ce

d
u

re
,

S
el

f-
m

ad
e,

V
ar

ia
b

le

M
et

h
o
d

ol
og

y
M

an
u

al
T

es
ti

n
g,

M
u

lt
i-

li
n

gu
al

te
st

in
g,

T
es

t-
fi

rs
t

P
ro

gr
am

m
in

g

P
ro

b
le

m
A

n
al

y
si

s

T
ec

h
n

ol
og

y
B

IR
T

,
B

u
gz

il
la

,
C

h
ro

n
on

,
H

P
Q

u
al

it
y

C
en

te
r,

J
aC

oC
o,

J
av

aF
X

,
J
ir

a
,

T
M

/
A

L
M

,
W

id
g
et

T
o
o
lk

it

T
a
b
l
e
A
.1
7
:

J
u

b
u

la
:

F
ea

tu
re

li
st

Appendix A. Tool - Feature List 113

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

E
x
ec

u
ti

on
an

d
P

ro
b

le
m

A
n

al
y
si

s
P

ro
x
y

S
er

v
er

,
T

es
ti

n
g

G
ri

d

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
C

S
S

,
C

S
S

S
el

ec
to

r,
J
av

aS
cr

ip
t

F
u

n
ct

io
n

,
X

P
at

h

L
an

gu
ag

e
C

#
,

J
av

a,
J
av

aS
cr

ip
t,

P
H

P
,

P
er

l,
P

y
th

on
,

R
u

b
y,

S
cr

ee
n

sh
ot

T
ec

h
n

ol
og

y
A

le
rt

,
C

h
an

ge
U

se
r

A
ge

n
t,

C
on

fi
rm

,
C

o
ok

ie
s,

D
ia

lo
g,

D
ra

g
A

n
d

D
ro

p
,

F
ra

m
es

,
H

ea
d

le
ss

D
ri

ve
r,

H
is

to
ry

,
H

tm
lU

n
it

,
P

h
an

to
m

js
,

P
ro

m
p
t,

T
ab

b
in

g

T
a
b
l
e
A
.1
8
:

S
el

en
iu

m
:

F
ea

tu
re

li
st

Appendix A. Tool - Feature List 114

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

E
x
ec

u
ti

on
an

d
P

ro
b

le
m

A
n

al
y
si

s

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

H
os

t-
la

n
gu

ag
e

P
ro

ce
d

u
re

,
In

d
ex

,
J
Q

u
er

y

L
an

gu
ag

e
J
av

a,
J
av

aS
cr

ip
t

T
ec

h
n

ol
og

y
A

ja
x
,

W
ai

t
on

P
ro

ce
d

u
re

T
a
b
l
e
A
.1
9
:

F
u

n
cU

n
it

:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 115

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

N
am

in
g

C
ol

li
si

on
H

an
d

li
n

g,
P

ag
e

O
b

je
ct

,
S

te
p

O
b

je
ct

E
x
ec

u
ti

on
an

d
P

ro
b

le
m

A
n

al
y
si

s
C

le
an

u
p

b
et

w
ee

n
T

es
ts

,
C

o
d

in
g,

D
at

ab
as

e,
D

eb
u

gg
er

,
D

ep
en

d
s

A
n

n
ot

a
ti

o
n

,
In

te
ra

ct
iv

e
C

o
n

so
le

,
M

u
lt

i
U

se
r

T
es

ti
n

g,
M

u
lt

i-
B

ro
w

se
r

te
st

in
g,

S
cr

ee
n

sh
ot

,
S

ta
te

S
h

ap
sh

ot
,

T
es

t
R

ep
o
rt

,
T

es
ti

n
g

G
ri

d

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
C

S
S

,
C

S
S

S
el

ec
to

r,
X

P
at

h

L
an

gu
ag

e
C

on
d

it
io

n
al

A
ss

er
ti

on
,

P
H

P
,

S
el

f-
d

o
cu

m
en

ti
n

g

T
ec

h
n

ol
og

y
C

o
d

e
C

ov
er

ag
e,

C
o
ok

ie
s,

G
u

zz
le

,
H

ea
d

le
ss

D
ri

ve
r,

S
y
m

fo
n
y

B
ro

w
se

rK
it

T
a
b
l
e
A
.2
0
:

C
o
d

ec
ep

ti
o
n

:
F

ea
tu

re
li

st

Appendix A. Tool - Feature List 116

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

In
h

er
it

an
ce

,
L

if
ec

y
cl

e
H

o
ok

,
P

ag
e

O
b

je
ct

,
S

te
p

O
b

je
ct

,
T

em
p

la
te

O
p

ti
o
n

,
U

n
ex

p
ec

te
d

P
a
g
es

E
x
ec

u
ti

on
an

d
P

ro
b

le
m

A
n

al
y
si

s
C

le
an

u
p

b
et

w
ee

n
T

es
ts

,
C

o
ok

ie
,

C
u

cu
m

b
er

,
J
U

n
it

,
L

is
te

n
er

,
S

cr
ee

n
sh

o
t,

S
p

o
ck

,
S

ta
te

S
n

a
p

sh
o
t,

T
es

t
R

ep
or

t,
T

es
tN

G
,

T
es

ti
n

g
F

ra
m

ew
or

k

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
C

S
S

,
C

S
S

S
el

ec
to

r,
F

in
d

/
F

il
te

r,
J
Q

u
er

y,
P

ar
am

et
er

,
R

eg
u

la
r

E
x
p

re
ss

io
n

,
T

ra
ve

rs
in

g

L
an

gu
ag

e
C

om
p

le
x

In
te

ra
ct

io
n

,
D

ir
ec

t
D

ow
n

lo
ad

,
G

ro
ov

y,
Im

p
li

ci
t

A
ss

er
ti

on
,

P
u

sh
N

o
n

-C
h

a
ra

ct
er

,
ex

ec
u

te
J
av

aS
cr

ip
t

T
ec

h
n

ol
og

y
B

ro
w

se
rS

ta
ck

,
B

u
il

d
S

y
st

em
,

C
lo

u
d

B
ro

w
se

r
T

es
ti

n
g,

F
ra

m
es

,
G

ra
d

le
,

G
ra

il
s,

H
ea

d
le

ss
D

ri
ve

r,
H

tm
-

lU
n

it
,

ID
E

In
te

gr
at

io
n

,
In

te
ll

iJ
,

M
av

en
,

O
p

en
/

C
lo

se
,

S
au

ce
L

ab
s,

T
a
b

b
in

g

T
a
b
l
e
A
.2
1
:

G
E

B
:

F
ea

tu
re

li
st

Appendix A. Tool - Feature List 117

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

P
ag

e
O

b
je

ct
,

T
em

p
la

te
O

p
ti

on

E
x
ec

u
ti

on
an

d
P

ro
b

le
m

A
n

al
y
si

s
J
U

n
it

,
T

es
tN

G
,

T
es

ti
n

g
F

ra
m

ew
or

k

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

C
S

S
,

C
S

S
S

el
ec

to
r,

F
il

te
r

M
et

h
o
d

L
an

gu
ag

e
F

es
t-

as
se

rt
,

F
ra

m
ew

or
k
,

H
am

cr
es

t,
J
U

n
it

A
ss

er
ti

on
s,

S
cr

ee
n

sh
ot

,
ex

ec
u

te
J
av

a
S

cr
ip

t

T
ec

h
n

ol
og

y
A

ja
x
,

A
le

rt
,

B
u

il
d

S
y
st

em
,

C
on

fi
rm

,
D

ia
lo

g,
M

av
en

,
M

ax
im

iz
e,

P
ro

m
p

t

T
a
b
l
e
A
.2
2
:

F
lu

en
tL

en
iu

m
:

F
ea

tu
re

li
st

Appendix A. Tool - Feature List 118

T
er

m
D

es
cr

ip
ti

on

A
b

st
ra

ct
io

n
S

u
p

p
or

ti
n

g
F

ea
tu

re
s

P
ag

e
O

b
je

ct
,

S
te

p
O

b
je

ct
,

W
eb

el
em

en
t

p
at

te
rn

E
x
ec

u
ti

on
an

d
P

ro
b

le
m

A
n

al
y
si

s
B

ro
w

se
r

E
x
te

n
si

on
s,

J
U

n
it

,
M

u
lt

i
U

se
r

T
es

ti
n

g,
R

eu
sa

b
le

S
es

si
on

,
T

es
tN

G
,

T
es

ti
n

g
F

ra
m

ew
o
rk

E
le

m
en

t
Id

en
ti

fi
ca

ti
on

A
tt

ri
b

u
te

,
C

S
S

,
C

S
S

S
el

ec
to

r,
J
Q

u
er

y

L
an

gu
ag

e
J
av

a,
ex

ec
u

te
J
av

aS
cr

ip
t

T
ec

h
n

ol
og

y
A

ja
x
,

B
u

il
d

S
y
st

em
,

E
cl

ip
se

,
ID

E
In

te
gr

at
io

n
,

M
av

en
,

R
eq

u
es

t
G

u
ar

d
,

S
ta

le
n

es
s

A
w

a
re

P
a
g
e

A
b

st
ra

c-
ti

on
s,

W
ai

t
on

P
ro

ce
d

u
re

T
a
b
l
e
A
.2
3
:

A
rq

u
il

li
a
n

G
ra

p
h

en
e:

F
ea

tu
re

li
st

Bibliography

[1] Vahid Garousi, Ali Mesbah, Aysu Betin-Can, and Shabnam Mirshokraie. A system-

atic mapping study of web application testing. Information and Software Technol-

ogy, 55(8):1374 – 1396, 2013. ISSN 0950-5849. doi: http://dx.doi.org/10.1016/

j.infsof.2013.02.006. URL http://www.sciencedirect.com/science/article/

pii/S0950584913000396.

[2] Anna Rita Fasolino, Domenico Amalfitano, and Porfirio Tramontana. Web appli-

cation testing in fifteen years of WSE. In 15th IEEE International Symposium on

Web Systems Evolution, WSE 2013, Eindhoven, The Netherlands, September 27,

2013, pages 35–38. IEEE, 2013. ISBN 978-1-4799-1608-5. doi: 10.1109/WSE.2013.

6642414. URL http://dx.doi.org/10.1109/WSE.2013.6642414.

[3] Arora A. and Sinha M. Web application testing: A review on techniques, tools and

state of art, 2012.

[4] Arie van Deursen and Ali Mesbah. Research issues in the automated testing of

ajax applications. In Jan van Leeuwen, Anca Muscholl, David Peleg, Jaroslav

Pokorný, and Bernhard Rumpe, editors, SOFSEM 2010: Theory and Practice

of Computer Science, 36th Conference on Current Trends in Theory and Prac-

tice of Computer Science, Spindleruv Mlýn, Czech Republic, January 23-29, 2010.

Proceedings, volume 5901 of Lecture Notes in Computer Science, pages 16–28.

Springer, 2010. ISBN 978-3-642-11265-2. doi: 10.1007/978-3-642-11266-9 2. URL

http://dx.doi.org/10.1007/978-3-642-11266-9_2.

[5] Kinga Dobolyi and Westley Weimer. Harnessing web-based application similari-

ties to aid in regression testing. In ISSRE 2009, 20th International Symposium

on Software Reliability Engineering, Mysuru, Karnataka, India, 16-19 November

2009, pages 71–80. IEEE Computer Society, 2009. ISBN 978-0-7695-3878-5. doi:

119

http://www.sciencedirect.com/science/article/pii/S0950584913000396
http://www.sciencedirect.com/science/article/pii/S0950584913000396
http://dx.doi.org/10.1109/WSE.2013.6642414
http://dx.doi.org/10.1007/978-3-642-11266-9_2

Bibliography 120

10.1109/ISSRE.2009.18. URL http://doi.ieeecomputersociety.org/10.1109/

ISSRE.2009.18.

[6] Abbie Barbir, Chris Hobbs, Elisa Bertino, Frederick Hirsch, and Lorenzo Martino.

Challenges of testing web services and security in SOA implementations. In Luciano

Baresi and Elisabetta Di Nitto, editors, Test and Analysis of Web Services, pages

395–440. Springer, 2007. ISBN 978-3-540-72912-9. doi: 10.1007/978-3-540-72912-9

14. URL http://dx.doi.org/10.1007/978-3-540-72912-9_14.

[7] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection tech-

niques. IEEE Trans. Softw. Eng., 22(8):529–551, August 1996. ISSN 0098-5589.

doi: 10.1109/32.536955. URL http://dx.doi.org/10.1109/32.536955.

[8] Beatriz Maŕın, Tanja E. J. Vos, Giovanni Giachetti, Arthur I. Baars, and Paolo

Tonella. Towards testing future web applications. In Proceedings of the Fifth IEEE

International Conference on Research Challenges in Information Science, RCIS

2011, Gosier, Guadeloupe, France, 19-21 May, 2011, pages 1–12. IEEE, 2011. ISBN

978-1-4244-8670-0. doi: 10.1109/RCIS.2011.6006859. URL http://dx.doi.org/

10.1109/RCIS.2011.6006859.

[9] Koray Incki, Ismail Ari, and Hasan Sozer. A survey of software testing in the

cloud. In Proceedings of the 2012 IEEE Sixth International Conference on Soft-

ware Security and Reliability Companion, SERE-C ’12, pages 18–23, Washing-

ton, DC, USA, 2012. IEEE Computer Society. ISBN 978-0-7695-4743-5. doi:

10.1109/SERE-C.2012.32. URL http://dx.doi.org/10.1109/SERE-C.2012.32.

[10] V. Priyadharshini and A. Malathi. Survey on software testing techniques in cloud

computing. CoRR, abs/1402.1925, 2014. URL http://arxiv.org/abs/1402.1925.

[11] Jerry Gao, Xiaoying Bai, Wei-Tek Tsai, and Tadahiro Uehara. Testing as a ser-

vice (taas) on clouds. In Seventh IEEE International Symposium on Service-

Oriented System Engineering, SOSE 2013, San Francisco, CA, USA, March 25-

28, 2013, pages 212–223, 2013. doi: 10.1109/SOSE.2013.66. URL http://doi.

ieeecomputersociety.org/10.1109/SOSE.2013.66.

[12] Giuseppe A. Di Lucca and Anna Rita Fasolino. Testing web-based applications:

The state of the art and future trends. Inf. Softw. Technol., 48(12):1172–1186,

http://doi.ieeecomputersociety.org/10.1109/ISSRE.2009.18
http://doi.ieeecomputersociety.org/10.1109/ISSRE.2009.18
http://dx.doi.org/10.1007/978-3-540-72912-9_14
http://dx.doi.org/10.1109/32.536955
http://dx.doi.org/10.1109/RCIS.2011.6006859
http://dx.doi.org/10.1109/RCIS.2011.6006859
http://dx.doi.org/10.1109/SERE-C.2012.32
http://arxiv.org/abs/1402.1925
http://doi.ieeecomputersociety.org/10.1109/SOSE.2013.66
http://doi.ieeecomputersociety.org/10.1109/SOSE.2013.66

Bibliography 121

December 2006. ISSN 0950-5849. doi: 10.1016/j.infsof.2006.06.006. URL http:

//dx.doi.org/10.1016/j.infsof.2006.06.006.

[13] Web Content Accessibility Guidelines 2.0. http://www.w3.org/TR/WCAG20/,

2008. [accessed October 5, 2014].

[14] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge Univer-

sity Press, New York, NY, USA, 1 edition, 2008. ISBN 0521880386, 9780521880381.

[15] Matjaz Pancur, Mojca Ciglaric, Matej Trampus, and Tone Vidmar. Comparison

of frameworks and tools for test-driven development. In M. H. Hamza, editor, The

21st IASTED International Multi-Conference on Applied Informatics (AI 2003),

February 10-13, 2003, Innsbruck, Austria, pages 980–985. IASTED/ACTA Press,

2003. ISBN 0-88986-345-8.

[16] Vı́tor T. Martins, Daniela Fonte, Pedro Rangel Henriques, and Daniela da Cruz.

Plagiarism Detection: A Tool Survey and Comparison. In Maria João Varanda

Pereira, José Paulo Leal, and Alberto Simões, editors, 3rd Symposium on Lan-

guages, Applications and Technologies, volume 38 of OpenAccess Series in Infor-

matics (OASIcs), pages 143–158, Dagstuhl, Germany, 2014. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-68-2. doi: http://dx.doi.

org/10.4230/OASIcs.SLATE.2014.143. URL http://drops.dagstuhl.de/opus/

volltexte/2014/4566.

[17] Shuang Wang and Jeff Offutt. Comparison of unit-level automated test generation

tools. In Second International Conference on Software Testing Verification and Val-

idation, ICST 2009, Denver, Colorado, USA, April 1-4, 2009, Workshops Proceed-

ings, pages 210–219. IEEE Computer Society, 2009. ISBN 978-0-7695-3671-2. doi:

10.1109/ICSTW.2009.36. URL http://dx.doi.org/10.1109/ICSTW.2009.36.

[18] Elder Macedo Rodrigues, Rodrigo S. Saad, Flávio M. de Oliveira, Leandro T. Costa,

Maicon Bernardino, and Avelino F. Zorzo. Evaluating capture and replay and

model-based performance testing tools: an empirical comparison. In Maurizio Mori-

sio, Tore Dyb̊a, and Marco Torchiano, editors, 2014 ACM-IEEE International Sym-

posium on Empirical Software Engineering and Measurement, ESEM ’14, Torino,

Italy, September 18-19, 2014, page 9. ACM, 2014. ISBN 978-1-4503-2774-9. doi: 10.

1145/2652524.2652587. URL http://doi.acm.org/10.1145/2652524.2652587.

http://dx.doi.org/10.1016/j.infsof.2006.06.006
http://dx.doi.org/10.1016/j.infsof.2006.06.006
http://drops.dagstuhl.de/opus/volltexte/2014/4566
http://drops.dagstuhl.de/opus/volltexte/2014/4566
http://dx.doi.org/10.1109/ICSTW.2009.36
http://doi.acm.org/10.1145/2652524.2652587

Bibliography 122

[19] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. Capture-replay

vs. programmable web testing: An empirical assessment during test case evolu-

tion. In Ralf Lämmel, Rocco Oliveto, and Romain Robbes, editors, 20th Working

Conference on Reverse Engineering, WCRE 2013, Koblenz, Germany, October 14-

17, 2013, pages 272–281. IEEE, 2013. doi: 10.1109/WCRE.2013.6671302. URL

http://doi.ieeecomputersociety.org/10.1109/WCRE.2013.6671302.

[20] Mark Grechanik, Qing Xie, and Chen Fu. Experimental assessment of manual

versus tool-based maintenance of gui-directed test scripts. In 25th IEEE Interna-

tional Conference on Software Maintenance (ICSM 2009), September 20-26, 2009,

Edmonton, Alberta, Canada, pages 9–18. IEEE, 2009. doi: 10.1109/ICSM.2009.

5306345. URL http://dx.doi.org/10.1109/ICSM.2009.5306345.

[21] Praveen Ranjan Srivastava and Mahesh Prasad Ray. Multi-attribute comparison

of automated functional and regression testing tools using fuzzy AHP. In Bhanu

Prasad, Pawan Lingras, and Ashwin Ram, editors, Proceedings of the 4th Indian In-

ternational Conference on Artificial Intelligence, IICAI 2009, Tumkur, Karnataka,

India, December 16-18, 2009, pages 1030–1043. IICAI, 2009. ISBN 978-0-9727412-

7-9.

[22] Isabel John. Pattern-based documentation analysis for software product lines. PhD

thesis, 2010.

[23] Software Product Lines — Overview. https://www.sei.cmu.edu/productlines/,

2014. [accessed January 31, 2015].

[24] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. System-

atic mapping studies in software engineering. In Proceedings of the 12th In-

ternational Conference on Evaluation and Assessment in Software Engineering,

EASE’08, pages 68–77, Swinton, UK, UK, 2008. British Computer Society. URL

http://dl.acm.org/citation.cfm?id=2227115.2227123.

[25] GUI Test Automation for Java and Web with QF-Test. http://www.qfs.de/en/,

2014. [accessed November 12, 2014].

[26] QF-Test - The Manual. http://www.qfs.de/en/qftest/manual.html, 2014. [accessed

November 12, 2014].

http://doi.ieeecomputersociety.org/10.1109/WCRE.2013.6671302
http://dx.doi.org/10.1109/ICSM.2009.5306345
http://dl.acm.org/citation.cfm?id=2227115.2227123

Bibliography 123

[27] Seapine Software - QA Wizard Pro - Features and Benefits.

http://www.seapine.com/qawizard.html, 2014. [accessed November 12, 2014].

[28] QA Wizard Pro UserGuide Version2014.1. http://downloads.seapine.com/pub/docs/qawpuserguide2014 1.pdf,

2014. [accessed November 12, 2014].

[29] Web Testing, Load Testing, Java Testing, Server Monitoring.

http://www.appperfect.com/, 2014. [accessed November 12, 2014].

[30] AppPerfectTM Web Test v 13.0.0 User Guide.

http://www.appperfect.com/support/docs/web-test/index.html, 2014. [accessed

November 12, 2014].

[31] Browser Automation, Data Extraction and Web Testing — iMacros Software.

http://imacros.net/, 2014. [accessed November 12, 2014].

[32] iMacros. http://wiki.imacros.net/Main Page, 2014. [accessed November 12, 2014].

[33] Sahi - Web & Browser Automation Testing Tool . http://sahipro.com/, 2014. [ac-

cessed November 12, 2014].

[34] Sahi Pro - Introduction. http://sahipro.com/docs/introduction/index.html, 2014.

[accessed November 12, 2014].

[35] Robot Framework. http://robotframework.org/, 2014. [accessed November 14,

2014].

[36] Robot Framework User Guide Version 2.8.5. http://robotframework.org/robotframework/#user-

guide, 2014. [accessed November 14, 2014].

[37] Application Testing Suite. http://www.oracle.com/technetwork/oem/app-

test/etest-101273.html, 2014. [accessed November 14, 2014].

[38] Oracle R© Application Testing Suite Getting Started Guide Release 12.4.0.2 E15487-

13 July 2014 . http://www.oracle.com/technetwork/oem/downloads/index-

084446.html, 2014. [accessed November 14, 2014].

[39] Macro and Data Extraction with WinTask - the automation software for Windows

and internet. http://www.wintask.com/index.php, 2014. [accessed November 14,

2014].

Bibliography 124

[40] WINTASK Develop efficient and reliable Web automation scripts Version 5.1.

http://www.wintask.com/wintaskwebbook.pdf, 2014. [accessed November 14,

2014].

[41] Test Automation Tool for Regression, Cross browser and Database.

http://www.testing-whiz.com/, 2014. [accessed November 14, 2014].

[42] TestingWhiz User Manual. http://www.testing-whiz.com/documentation, 2014.

[accessed November 14, 2014].

[43] Improving Quality with Visual Studio Diagnostic Tools.

http://msdn.microsoft.com/en-us/library/dd264943.aspx, 2014. [accessed Novem-

ber 14, 2014].

[44] Verifying Code by Using UI Automation. http://msdn.microsoft.com/en-

us/library/dd286726, 2014. [accessed November 14, 2014].

[45] Buy Automated Testing Tools for API & GUI Testing — Inflectra.

http://www.inflectra.com/Rapise/, 2014. [accessed November 14, 2014].

[46] Rapise — Online Help Viewer. http://www.inflectra.com/Rapise/HelpViewer.aspx?filename=Rapise2.0.0.chm,

2014. [accessed November 14, 2014].

[47] Automation Testing Tools & Software — Testing Anywhere.

https://www.automationanywhere.com/testing/, 2014. [accessed November

14, 2014].

[48] Testing Anywhere Client. https://www.automationanywhere.com/testing/images/manuals/testing-

anywhere-usermanual.zip, 2014. [accessed November 14, 2014].

[49] Automated Testing Software — Ranorex - Test Automation.

http://www.ranorex.com/, 2014. [accessed November 14, 2014].

[50] Ranorex Test Automation Guide. http://www.ranorex.com/Documentation/Ranorex-

Tutorial.pdf, 2014. [accessed November 14, 2014].

[51] Borland Silk Test. http://www.borland.com/Products/Software-

Testing/Automated-Testing/Silk-Test, 2014. [accessed November 14, 2014].

[52] Silk Test 15.5 Silk4J User Guide. http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/155/en/silk4j-

155-help-en.pdf, 2014. [accessed November 14, 2014].

Bibliography 125

[53] Silk Test 15.5 Silk4NET User Guide. http://supportline.microfocus.com/Documentation/books/ASQ/SilkTest/155/en/silk4net-

155-help-en.pdf, 2014. [accessed November 14, 2014].

[54] Software Testing Tools, Automated Testing Software — Telerik.

http://www.telerik.com/teststudio, 2014. [accessed November 14, 2014].

[55] Test Studio Overview. http://docs.telerik.com/teststudio/, 2014. [accessed Novem-

ber 14, 2014].

[56] RIATest - Web application automation tool. http://www.cogitek.com/riatest/,

2014. [accessed November 14, 2014].

[57] RIATest User Guide - Cogitek RIATest 6 Documentation.

http://www.cogitek.com/riatest/documentation/online.html?v6/RIATest/RIATest.html,

2014. [accessed November 14, 2014].

[58] Welcome to the BREDEX testing resources portal. http://testing.bredex.de/, 2014.

[accessed November 14, 2014].

[59] Software and documentation downloads - Home. http://testing.bredex.de/sw-doku-

downloads.html, 2014. [accessed November 14, 2014].

[60] Selenium - Web Browser Automation. http://www.seleniumhq.org/, 2014. [accessed

December 6, 2014].

[61] Selenium Documentation. http://docs.seleniumhq.org/docs/, 2014. [accessed De-

cember 6, 2014].

[62] FuncUnit. http://funcunit.com/, 2014. [accessed December 6, 2014].

[63] Getting Started - FuncUnit Guides. http://funcunit.com/guides/started.html,

2014. [accessed December 6, 2014].

[64] Codeception - BDD-style PHP testing. http://codeception.com/, 2014. [accessed

December 6, 2014].

[65] Introduction - Codeception - Documentation. http://codeception.com/docs/01-

Introduction, 2014. [accessed December 6, 2014].

[66] Geb - Very Groovy Browser Automation. http://www.gebish.org/, 2014. [accessed

December 6, 2014].

Bibliography 126

[67] The Book Of Geb - Table of Contents - 0.10.0.

http://www.gebish.org/manual/current/, 2014. [accessed December 6, 2014].

[68] FluentLenium/FluentLenium ·GitHub. https://github.com/FluentLenium/FluentLenium,

2014. [accessed December 6, 2014].

[69] Graphene · Arquillian. http://arquillian.org/modules/graphene-extension/, 2014.

[accessed December 6, 2014].

[70] Home - Graphene 2 - Project Documentation Editor.

https://docs.jboss.org/author/display/ARQGRA2/Home? sscc=t, 2014. [ac-

cessed December 6, 2014].

[71] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Siegmund. Ab-

stract features in feature modeling. In Proceedings of the 15th International Software

Product Line Conference (SPLC), pages 191–200, Los Alamitos, CA, 8 2011. IEEE

Computer Society.

[72] Dont Repeat Yourself. http://c2.com/cgi/wiki?DontRepeatYourself, 2014. [ac-

cessed January 31, 2015].

[73] PageObjects - selenium - The Page Object pattern represents the screens of your

web app as a series of objects - Browser automation framework - Google Project

Hosting. https://code.google.com/p/selenium/wiki/PageObjects, 2014. [accessed

January 31, 2015].

[74] XHTML 2 Working Group Expected to Stop Work End of 2009, W3C to Increase

Resources on HTML 5. http://www.w3.org/News/2009#entry-6601, 2009. [ac-

cessed December 29, 2014].

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Research context
	1.2 Research question
	1.3 Contributions
	1.4 Structure of the thesis

	2 Related Work
	2.1 Tool comparison approaches
	2.2 The CaVE information retrieval model
	2.2.1 Extraction Patterns
	2.2.2 Extraction Process

	3 Methodology
	3.1 Tool Search and Screening
	3.1.1 Tool Search
	3.1.2 Screening rules

	3.2 Feature Extraction

	4 Study Execution
	4.1 Tool Search and Screening
	4.2 Feature Model Generation
	4.2.1 Feature Extraction
	4.2.2 Combination Step

	5 Result
	5.1 Abstraction Supporting Features
	5.1.1 Webpage Element Indirection
	5.1.1.1 Mapping Table
	5.1.1.2 Updating Components
	5.1.1.3 Element Explorer
	5.1.1.4 Element Recognition

	5.1.2 Component Model
	5.1.2.1 Avatar System

	5.1.3 Interproject Relationship
	5.1.3.1 Test Suite Linking
	5.1.3.2 User Library
	5.1.3.3 Name Collision Handling

	5.1.4 Code Indirection
	5.1.4.1 Setup / Tear down
	5.1.4.2 Dependencies

	5.1.5 API specific
	5.1.5.1 Page Object
	5.1.5.2 Step Object
	5.1.5.3 Webelement pattern

	5.2 Capture
	5.2.1 Image Recognition
	5.2.2 Recording
	5.2.3 Change User Agent
	5.2.4 Screenshot

	5.3 Editor Features
	5.3.1 Code View
	5.3.1.1 Text View
	5.3.1.2 Keyword/Tabular View
	5.3.1.3 Tree View
	5.3.1.4 Storyboard View
	5.3.1.5 Flow Chart View

	5.3.2 Miscellaneous

	5.4 Element Identification
	5.4.1 Information
	5.4.1.1 Attribute
	5.4.1.2 Position / Size

	5.4.2 Method

	5.5 Execution
	5.5.1 Test Report
	5.5.2 External Execution
	5.5.3 Miscellaneous
	5.5.3.1 Scheduler
	5.5.3.2 Multi User Testing
	5.5.3.3 Execution Speedup
	5.5.3.4 Testing Framework

	5.6 Extra Tools
	5.6.1 Test Creation Helper
	5.6.2 Miscellaneous
	5.6.2.1 Documentation Tool
	5.6.2.2 IDE Integration

	5.7 Language
	5.7.1 Self-made
	5.7.1.1 Language Style
	5.7.1.2 Language Power

	5.7.2 Coding Styles
	5.7.3 API / GPL
	5.7.3.1 Host
	5.7.3.2 Command
	5.7.3.3 Assertion

	5.8 Methodology
	5.8.1 Data-driven Testing
	5.8.2 Manual Testing
	5.8.3 Exploratory Testing
	5.8.4 Multi-lingual Testing
	5.8.5 Test-first Programming

	5.9 Problem Analysis
	5.9.1 Run Log
	5.9.2 Debugger

	5.10 Technology
	5.10.1 HTML
	5.10.2 Tool Connection
	5.10.3 Miscellaneous
	5.10.3.1 Browser
	5.10.3.2 Widget Toolkit
	5.10.3.3 Headless Driver
	5.10.3.4 Ajax

	6 Conclusion
	6.1 Trends, Problems and Differences between ITEs and APIs
	6.2 Equality of Tools

	7 Summary
	7.1 Outlook
	7.2 Threads to Validity

	A Tool - Feature List
	Bibliography

