
Fachbereich 4: Informatik

Refactoring of a Stovepipe System
Structuring 101worker

Bachelorarbeit
zur Erlangung des Grades eines Bachelor of Science

im Studiengang Informatik

vorgelegt von

Carsten Hartenfels

Erstgutachter: Prof. Dr. Ralf Lämmel
Institut für Softwaretechnik

Zweitgutachter: Dr. Martin Leinberger
Institut für Softwaretechnik

Koblenz, im Juni 2015

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich ein-
verstanden.

� �

Der Veröffentlichung dieser Arbeit im Internet stimme ich
zu.

� �

. .
(Ort, Datum) (Unterschrift)

Zusammenfassung

101worker ist die modulare Wissensverarbeitungskomponente des 101companies-

Projektes. Durch organisches Wachstum des Systems, statt Beachtung von bewährten

Software-Design-Prinzipien, haben sich Wartungs- und Leistungsprobleme en-

twickelt. Diese Arbeit beschreibt diese Probleme, entwirft Anforderungen für

das Refactoring des Systems und beschreibt und analysiert schließlich die re-

sultierende Implementierung. Die Lösung involviert die Zusammenfassung von

verstreuten und redundanten Informationen, aufsetzen von Unit- und funktionalen

Test-Suiten und Inkrementalisierung der Busarchitektur von 101worker.

2

Abstract

101worker is the modular knowledge engineering component of the 101compa-

nies project. It has developed maintainability and performance problems due to

growing organically, rather than following best software design practices. This

thesis lays out these problems, drafts a set of requirements for refactoring the

system and then describes and analyzes the resulting implementation. The solu-

tion involves collation of scattered and redundant information, setup of unit and

functional test suites and incrementalization of the bus architecture of 101worker.

3

Contents

1 Introduction 1
1.1 Thesis Structure . 2

2 Background 3
2.1 101companies . 3

2.1.1 101repo . 3

2.1.2 101worker . 4

2.2 Problems . 5

2.2.1 Brittleness . 5

2.2.2 Rigidness . 6

2.2.3 Performance Issues . 6

2.2.4 Garbage Accumulation . 6

2.2.5 Imperviousness . 7

3 Requirements 8
3.1 Documentation . 8

3.2 Deployment . 9

3.3 Unit Tests . 10

3.4 Functional Tests . 10

3.5 Incrementality . 11

3.5.1 Laziness . 11

3.5.2 Communication . 12

3.5.3 Bookkeeping . 13

3.5.4 Recovery . 13

3.5.5 Escape Hatch . 14

i

CONTENTS ii

4 Solution 15
4.1 Restructuring . 15

4.1.1 Environment . 15

4.1.2 Modules . 16

4.2 Functional Test Architecture . 17

4.2.1 Branches . 17

4.2.2 Test Definitions . 17

4.2.3 Execution . 18

4.3 Incrementality . 19

4.3.1 Workflow . 20

4.3.2 Grammar . 21

4.3.3 Inter-Process Communication 22

4.3.4 Error Recovery . 22

4.3.5 Library Support . 23

4.3.6 Performance Analysis . 25

5 Related Work 26

6 Concluding Remarks 27
6.1 Summary . 27

6.2 Limitations . 27

6.3 Future Work . 28

List of Figures

4.1 101test workflow . 19

4.2 module execution workflow . 20

4.3 layers of abstraction . 24

List of Listings

4.1 environment definition, compiled excerpt 15

4.2 test definition excerpt . 18

4.3 diff generated by git diff --name-status in 101repo 19

4.4 101diff grammar . 21

List of Tables

4.1 rules for merging diffs . 23

4.2 performance of 101worker (approximate) 25

iii

Chapter 1

Introduction

101companies1 is a computer science community project, providing an open

knowledge resource about software languages, technologies and related con-

cepts [FLSV12]. Artifacts over which information is gathered is stored in a virtual

sofware repository called 101repo [FLL+].

Its computational component and focus of this thesis is 101worker, a modular

bus system. Each of its modules focuses on a different task of knowledge engi-

neering over the 101companies repository, such as extraction of structured infor-

mation, computation of metrics or validation tasks [FLL+]. Its bus architecture

allows modules to utilize results of modules executed previously in the chain,

through which data is derived and accumulated.

However, 101worker’s responsibilities have grown over time, and due to a

lack of a common interface, its modules have developed redundancies and in-

consistencies with each other, making it difficult to understand and extend the

system. Due to the continuous growth of 101repo, it has also developed perfor-

mance problems. These issues are characteristic for a stovepipe or legacy sys-

tem [BMIM98, p. 159].

To solve these issues, 101worker must undergo refactoring: redundancies

should be removed by congregating common information and inconsistencies

need to be resolved by providing a common interface. It is also necessary to

increase performance and scalability, so that further growth of the project is not

impeded.

1http://101companies.org/

1

http://101companies.org/

1.1. THESIS STRUCTURE 2

1.1 Thesis Structure

Chapter 2 elaborates on the necessary background knowledge of the 101compa-

nies project and will detail the issues that 101worker faced before its refactoring.

The requirements to solve those problems are iterated in Chapter 3. Chal-

lenges expected to be faced during implementation are discussed as well.

How these challenges were overcome is detailed in Chapter 4, which illus-

trates the solution design and execution.

Chapter 5 will relate 101worker to similar bus systems, for which the solutions

developed in this thesis may be applicable as well.

Finally, Chapter 6 concludes with a summary of the results, their limitations

and which future work may build upon them.

Chapter 2

Background

2.1 101companies

The 101companies wiki describes the project as follows:

“The 101companies Project (or ‘101project’ or even just ‘101’ for short) is an

open knowledge resource covering software technologies, technological spaces,

software languages, and software concepts. [...] Contributions are maintained

in the 101repo and documented on the 101wiki and organized in themes. All

available knowledge is processed by the 101worker; derived resources are made

available as 101data; all relevant resources are made available as Linked Data

explorable through 101explorer.” [10114a]

This thesis concerns itself with the 101repo and 101worker parts of the 101com-

panies project. The necessary background will be laid out in the coming Sections.

2.1.1 101repo

101repo is a confederated virtual software repository [10114b], made up of several

physical Git repositories [LM12] hosted on GitHub1.

At the core, there is a root repository of the same name2, which contains the

structure and internal data, such as information about languages, technologies

and a few contributions. The external repositories hold only contributions. On a

local machine, they are connected to the base repository using symbolic links.

1https://github.com/
2https://github.com/101companies/101repo

3

https://github.com/
https://github.com/101companies/101repo

2.1. 101COMPANIES 4

All files in 101repo are called primary resources, from which all information is

ultimately derived from (see Section 2.1.2).

2.1.2 101worker

The 101worker3 is the focus of this thesis. This is a server-side application that

performs knowledge engineering tasks for the 101companies project.

Its job is to gather structured information4 from all the heterogeneous con-

tents of 101repo. This metadata is used in linked data experiments involving

101companies [LLSV14] [Lei13] [KLL+13], such as the 101explorer5.

The important parts of 101worker will be summarized as follows.

Derivation

The process of generating metadata from resources is known as deriving. As of

the time of writing, all derived information is represented as files in the JSON

format [jso13].

In the simplest case, resources are derived directly from the primary resources

in 101repo, such as lines of code metrics [LLSV14]. However, these already de-

rived resources may then be used to derive further resources, possibly even in

conjunction with the primary resource or other derived resources. This allows

the system to iteratively collect more and more detailed information, or summa-

rize several derived resources over folders or contributions.

The resources created this way are called derived resources. Derived resources

that only require the primary resources for their derivation are also known as

secondary resources.

101meta, a library that is part of 101worker, provides an application program-

ming interface for derivation of resources6.

3https://github.com/101companies/101worker
4See http://worker.101companies.org/ for the raw metadata.
5http://101companies.org/resources?format=html
6https://github.com/101companies/101worker/tree/master/

libraries/101meta

https://github.com/101companies/101worker
http://worker.101companies.org/
http://101companies.org/resources?format=html
https://github.com/101companies/101worker/tree/master/libraries/101meta
https://github.com/101companies/101worker/tree/master/libraries/101meta

2.2. PROBLEMS 5

Modules

Modules are largely independent pieces of software, each of them representing a

certain task to be performed by 101worker. For example, the pull101repo mod-

ule7 is responsible for retrieving 101repo from various places on Github and the

matches101meta module8 derives basic metadata about files, such as the language

they are written in or which known technologies they use.

Runner

Since modules are independent programs, they need to be executed in the correct

order to properly perform their work. This task is accomplished by the runner,

which receives a list of modules as its input and runs them in the given order. It

also handles logging-related tasks, such as the elapsed time or the exit code from

each module run.

A list of modules is called a configuration. Running all modules from a config-

uration is called a cycle of 101worker.

2.2 Problems

101worker is suffering from the symptoms of a stovepipe system [BMIM98, p.

159]: it has grown organically to fit certain needs, with only a very loose architec-

tural design. As such, it has developed several problems common to these kinds

of systems, which will be discussed in the following.

2.2.1 Brittleness

Aside from two test configurations for the runner, the entirety of 101worker –

be it modules, tools or libraries – lacks any kind of tests. This leads to uncer-

tainty [Bec00, p. 46] over correctness and functionality.

The consequences are visible in production: about one quarter of modules fail

outright, several others produce an empty or otherwise incorrect output.

7https://github.com/101companies/101worker/tree/master/
modules/pull101repo

8https://github.com/101companies/101worker/tree/master/
modules/matches101meta

https://github.com/101companies/101worker/tree/master/modules/pull101repo
https://github.com/101companies/101worker/tree/master/modules/pull101repo
https://github.com/101companies/101worker/tree/master/modules/matches101meta
https://github.com/101companies/101worker/tree/master/modules/matches101meta

2.2. PROBLEMS 6

2.2.2 Rigidness

Paths, URLs and other configuration data is scattered across 101worker. Some of

them are stored in libraries, others are in Makefiles [SMS06] and yet others are

simply static strings inside modules themselves.

Not only is this inconsistent and violates the principle of the single point of

truth [Ray03, ch. 4], but the hard-coded nature of these values makes it impossible

to set up alternative environments for testing.

2.2.3 Performance Issues

Modules in 101worker walk the 101repo directory tree on each run, reading every

file and deriving new resources when applicable. This indiscriminate approach

coupled with the growth of 101repo9 has lead to massive performance problems.

Even when there were no changes whatsoever since the last cycle, and therefore

nothing to be done, executing the production configuration takes approximately

30 minutes.

Combined with the lack of unit tests or a small-scale test environment, de-

velopment becomes a chore. Even minor changes mean waiting for an entire

production cycle to complete.

There have been attempts to mitigate this by using parallel processing and

file-modification-time-based approaches, but they have proved ineffectual due to

the sheer amount of files being accessed.

2.2.4 Garbage Accumulation

Due to the simplistic module behavior of walking the file system described above,

primary resources deleted from a repository will not be detected. Instead of

the derived resources being deleted too, they will be left dangling. This data

is garbage, as it does not represent any actual information over 101repo.

Currently, the only way to guarantee that no superfluous resources are left

over is to completely delete all derived files and rebuild all metadata. However,

due to uncertainty about modules still working as expected (see Section 2.2.1),

9101repo contained 50 contributions in April 2011 and grew to 226 contributions, 53
concepts, 3 features, 42 languages and 98 technologies in April 2015.

2.2. PROBLEMS 7

this is not done as to not lose any resources that cannot be restored due to broken

modules.

2.2.5 Imperviousness

It is very difficult and time-consuming to set up 101worker on a new machine.

This causes a large entry barrier, especially for developers new to the project.

On the one hand, this is an issue of comprehension. Module documentation

is scarce and scattered, while interface documentation is completely absent, even

in libraries. Much of the knowledge about what a module or library does is only

in the head of the original developers, if at all. On top of that, many developers

do not actively work in the 101companies project anymore and may not be easily

reachable for questions.

On the other hand, this is about deployment. There is no clear way to set

up a functioning version of 101worker on a developer’s system. The way it is

currently handled is via trial and error, installing missing dependencies as they

appear from module failures. Compounded with the speed issues described in

Section 2.2.3, this leads to developers having to sink several hours into even a

basic setup.

Chapter 3

Requirements

Each requirement in this chapter is structured by a short block summarizing the

requirement, followed by a detailed description and a discussion of challenges

involved. The summary block itself is structured as follows:

Requirement: A name for the requirement, used to refer to it later.

Addresses: Problems from Section 2.2, which the requirement aims
to solve.

Summary: A short description of what is to be done to fulfill the
requirement.

3.1 Documentation

Requirement: Documentation

Addresses: Imperviousness

Summary: Engineer a structure for documents and add missing
documentation.

To improve comprehension of the system (Section 2.2.5), a standardized way to

document elements of 101worker is needed.

8

3.2. DEPLOYMENT 9

This includes in-code technical documentation, usage information

(READMEs) and high-level documentation. For modules, there is already a

structured description format in use [Lei13, p. 24-25], which may be expanded

upon.

It will be a challenge to document existing modules, as in many cases the

knowledge of their inner workings only exists in the minds of their authors. How-

ever, once a documentation standard is in place, a plan to build comprehensive

documentation can be worked out.

3.2 Deployment

Requirement: Deployment

Addresses: Imperviousness

Summary: Enable developers to set up a local 101worker, in-
stalling all its dependencies.

To allow developers easier access to a local system and enable easier setup of a

new instance of 101worker (Section 2.2.5), there needs to be a way to automati-

cally install all dependencies necessary for a production run.

To achieve this, there must be a way to let programs in 101worker declare

their dependencies on external programs and libraries. Every program relevant

to production should include these dependency requirements.

Package management is inconsistent across various platforms and technolo-

gies [Wik15] [MBDC+06]. Which of these must be supported needs to be explored

so that a focused solution can be developed.

3.3. UNIT TESTS 10

3.3 Unit Tests

Requirement: Unit Tests

Addresses: Brittleness, Performance Issues, Imperviousness

Summary: Add unit tests to elements of 101worker and find a way
to run them all automatically.

Modules, tools and libraries should have unit tests that verify that they work as

specified [Bec00, p. 45]. When changes are made, these tests will help identify

breakage without having to run 101worker at all (Sections 2.2.1 and 2.2.3).

There should also be a standardized way of running these tests, to which all

programs must conform. This should also enable running all tests in the entire

system automatically, aiding developers in validating a new or modified instal-

lation (Section 2.2.5) and enabling them to easily be run frequently, even during

development work [Bec00, p. 116].

Without any unit tests in the existing system, the only challenge here is to

actually write them and standardize a way to execute them.

3.4 Functional Tests

Requirement: Functional Tests

Addresses: Brittleness, Performance Issues, Rigidness

Summary: Engineer a system to run pre-configured runs of
101worker as functional tests.

There should be a way to test the 101worker system as a whole, without having

to make a full production run or rely on potentially changing data in 101repo

(Section 2.2.3). To realize this, a functional test [Bec00, p. 178] system needs to be

implemented.

3.5. INCREMENTALITY 11

However, currently all modules in 101worker output their data into a fixed

location relative to the 101worker directory1. Test output should not always go

into the same location, as it would overwrite production data and data from other

tests. Some way of redirecting module output on demand must be engineered

instead (Section 2.2.2).

3.5 Incrementality

Requirement: Incrementality

Addresses: Performance Issues, Garbage Accumulation

Summary: Refactor 101worker to operate incrementally on the set
of changes since its last run, rather than iterating over
the entire repository on every run.

The problems of performance (Section 2.2.3) and accumulation of garbage data

(Section 2.2.4) are rooted in the system’s behavior of simply iterating the directory

tree on each cycle. The solution to this is for 101worker to behave incrementally
instead.

This requirement is made up of several aspects, which will each be described

in the following subsections.

3.5.1 Laziness

Requirement: Incrementality – Laziness

Addresses: Performance Issues

Summary: Only work on resources that changed since the last run.

1https://github.com/101companies/101worker/blob/3c7db0/
README.md#module-contracts

https://github.com/101companies/101worker/blob/3c7db0/README.md#module-contracts
https://github.com/101companies/101worker/blob/3c7db0/README.md#module-contracts

3.5. INCREMENTALITY 12

Modules should only ever do as much work as necessary. That is, they should

only ever derive resources that have been added or modified, and not bother

with the ones that have stayed the same (Section 2.2.3).

Ideally, this should not require modules to check every file on the disk, as this

may cause scalability issues if 101repo further grows in size. Instead, the changes

should be available directly, so that only relevant files are accessed in the first

place.

3.5.2 Communication

Requirement: Incrementality – Communication

Addresses: Garbage Accumulation

Summary: Find a way to communicate changes occurring in each
module to the following modules.

Modules should not only consume which changes occurred, they must also com-

municate which changes they themselves have caused for modules following af-

ter them, which may derive resources from other already derived resources.

A protocol for handling this communication must be defined and there should

be a library for modules to programmatically deal with this protocol.

A problem that needs to be solved is what kind of inter-process communica-

tion should be used to realize this protocol. There are a wide-array of options

available in Unix-like systems [Ste99], from which the ideal one must be chosen.

The simplest solution would be to use pipes [Ste99, p. 44] [Ray03, ch. 7], sim-

ply sending the changes to a module’s standard input and reading the changes

it produces from its standard output. However, modules already use their stan-

dard output for logging information2, which makes implementing a protocol on

top of it problematic. These bidirectional pipes are also prone to causing dead-

lock [Ste99, p. 56], which would have to be worked around.

Other solutions to inter-process communication include temporary files, sock-

ets, shared memory or message queues [Ray03, ch. 7]. However, none of them are

2https://github.com/101companies/101worker/blob/15cc6dd/
modules/predicates101meta/program.py#L11-L12 for example

https://github.com/101companies/101worker/blob/15cc6dd/modules/predicates101meta/program.py#L11-L12
https://github.com/101companies/101worker/blob/15cc6dd/modules/predicates101meta/program.py#L11-L12

3.5. INCREMENTALITY 13

as common and simple as pipes, nor do they model the type of communication

quite as well.

3.5.3 Bookkeeping

Requirement: Incrementality – Bookkeeping

Addresses: Garbage Accumulation

Summary: Handle deleted resources by also deleting or updating
resources derived from them.

When resources are deleted, resources that are derived from them must be up-

dated correctly (Section 2.2.4). Specifically:

• If all resources that a derived resource depends on have been deleted, the

derived resource must be deleted too.

• Otherwise, if the resource only depends partially on the deleted one, it must

be updated instead.

3.5.4 Recovery

Requirement: Incrementality – Recovery

Addresses: Garbage Accumulation

Summary: On module failure, keep list of changes and recover
them on its next run.

If a module fails to run, the changes it was supposed to handle must not be lost

(Section 2.2.4). Instead, the same list of changes should be stored and recovered

on the next 101worker run.

Additionally, the recovered changes must sensibly be merged with the

changes the module is supposed to handle in the subsequent worker run.

3.5. INCREMENTALITY 14

3.5.5 Escape Hatch

Requirement: Incrementality – Escape Hatch

Addresses: Garbage Accumulation

Summary: Disable incrementality features if 101worker codebase
changes, so that modified modules can re-derive their
data.

To keep derived data up to date in the face of changes (Section 2.2.4), it is in

some cases necessary to forego incrementality in favor of re-deriving all files. For

example, when a module’s codebase is modified to output its data differently,

all data the module previously derived needs to be updated to the new format.

Modules should trigger this escape behavior automatically when they detect such

a breaking change.

However, this must not conflict with the Bookkeeping requirement (Section

3.5.3) – deletions must be handled in all cases to prevent collection of resources

derived from a source that does not exist anymore.

Chapter 4

Solution

4.1 Restructuring

As a prerequisite to several requirements, parts of 101worker have been restruc-

tured. An overview of the important changes will be given in the following.

4.1.1 Environment

1 # Directories
2 web101dir : $output101dir/101web/
3 dumps101dir : $web101dir/data/dumps/
4

5 # Files
6 config101 : $worker101dir/configs/production.json
7 rules101dump : $dumps101dir/rules.json
8

9 # URLs
10 repo101url : https://github.com/101companies/101repo
11 wiki101url : http://101companies.org/wiki/

Listing 4.1: environment definition, compiled excerpt

To mitigate the issue of repeated and hard-coded information (see Section

2.2.2), path and URL data has been made available as configuration files. All

15

4.1. RESTRUCTURING 16

existing data scattered over 101worker has been consolidated into a single con-

figuration file used in production, see listing 4.1 for an example. Additional con-

figuration files are used for tests, and may also be used for other alternate envi-

ronments (see Section 4.2).

To make the configuration information available to programs, environment

variables are used. The runner loads these variables at startup and all modules,

which are child processes of the runner, receive access to them [Ray03, ch. 10].

Hard-coded paths in libraries and modules have been replaced with refer-

ences to these environment variables. Existing configuration systems specific to

Python1 and Make2 have been deprecated and modified to dispatch to the cur-

rent environment configuration. Once all modules have been refactored to use

the environment directly, these redundant systems can be removed.

4.1.2 Modules

Modules have received restructuring and refactoring in several different aspects.

Module contracts for developers have been updated as well3.

Descriptions

Module descriptions [Lei13, p. 24-25] have been extended and made mandatory.

They now not only detail which resources a module outputs through derivation,

but are also used to declare dependencies on other modules and environment

variables (see Section 4.1.1).

These declarations are also validated by the runner, allowing discovery of

missing dependencies before a cycle is started.

Documentation

Technical, usage and high-level documentation of modules has been standard-

ized in the aforementioned module contracts. Samples and templates have been

1https://github.com/101companies/101worker/blob/master/
libraries/101meta/const101.py

2https://github.com/101companies/101worker/blob/master/
modules/Makefile.vars

3https://github.com/101companies/101worker#
module-contracts

https://github.com/101companies/101worker/blob/master/libraries/101meta/const101.py
https://github.com/101companies/101worker/blob/master/libraries/101meta/const101.py
https://github.com/101companies/101worker/blob/master/modules/Makefile.vars
https://github.com/101companies/101worker/blob/master/modules/Makefile.vars
https://github.com/101companies/101worker#module-contracts
https://github.com/101companies/101worker#module-contracts

4.2. FUNCTIONAL TEST ARCHITECTURE 17

provided. This fulfills Requirement 3.1

At the time of writing, original developers of modules are being mobilized to

document their modules appropriately.

Incrementalization

Modules that were suffering from accumulating garbage (Section 2.2.4) or per-

formance issues (Section 2.2.3) have been refactored to be incremental, which

addresses Requirement 3.5. See Section 4.3 for the details of the incrementality

system and Section 4.3.6 for the results regarding performance.

4.2 Functional Test Architecture

The functional test architecture developed for 101worker has been named

101test4, which fulfills Requirement 3.4. These functional tests test are meant to

ensure that the system is functioning as a whole and produces the correct output,

rather than verifying correctness of small code fragments as unit tests do [Bec00,

p. 118].

4.2.1 Branches

It is necessary to simulate changes in 101repo so that new incrementality data can

be generated. However, it would be very impractical to actually modify a Git

repository for every test case. Additionally, there would need to be some way to

define the changes in the repository so that they could be replicated when a test

is run.

So instead, Git branches [LM12, ch. 7] are used. Testers create branches that

represents revisions of 101repo and instead of just pulling the repository on every

101worker run, the branch specific to the test case is checked out instead.

4.2.2 Test Definitions

Tests are defined in a declarative manner in the YAML format [yam11] (see

listing 4.2 for an excerpt). Each test is broken up into one or more test cases,

4https://github.com/101companies/101test

https://github.com/101companies/101test

4.2. FUNCTIONAL TEST ARCHITECTURE 18

1 name : test
2 tests : 3
3 command : make -s test-test.debug
4

5 1 :
6 diff :
7 101repo/test : A
8 files :
9 101repo/test :

10 exists : 1
11 content : "This is a test file.\n"
12 101repo/test2 :
13 exists : 0
14

15 # more test cases follow

Listing 4.2: test definition excerpt

which in turn contains information about which branch is to be pulled, which

command is to be run and what constraints are to be checked afterwards.

These constraints include validating the final diff’s contents (see Section 4.3),

ensuring a file is present or absent and comparing a file’s content with an ex-

pected result. Since virtually all of 101worker’s derived resources are in JSON

format, validating JSON output is supported too.

4.2.3 Execution

When a test is run, it iterates over the test cases defined for it. For each test case,

a specified branch of the 101test repository is checked out to simulate pulling a

new version of 101repo.

Subsequently a 101worker cycle is initiated using a subset of modules defined

the test case. The output from this cycle is redirected into a directory specific for

the test, so that production and other test data is not affected (see Section 4.1.1).

Once the cycle completes, the output is checked for validity, using the test’s

definition as described in Section 4.2.2. Following that, a new test cycle begins.

See also figure 4.1 for a visual representation of this workflow.

4.3. INCREMENTALITY 19

Figure 4.1: 101test workflow

4.3 Incrementality

1 D concepts/Record_type/Point.hs
2 M contributions/hibernate/scripts/CreateTables.sql
3 M languages/Java/HelloWorld.java
4 D languages/Java/sample/helloWorld.java
5 A technologies/CSharpFragmentLocator/Company.cs
6 A technologies/CSharpFragmentLocator/Makefile

Listing 4.3: diff generated by git diff --name-status in 101repo

To handle communication of changes for the requirement of incrementality

(Section 3.5), a protocol named 101diff has been developed. It is based on Git’s

name-status diff format (see listing 4.3). A list of changed files associated with the

change operation (added, modified, deleted) will be called diff.
The different aspects of the incrementality solution will be discussed in the

subsequent Sections, ending with an analysis of the resulting performance gains.

4.3. INCREMENTALITY 20

Figure 4.2: module execution workflow

4.3.1 Workflow

Whenever a 101worker cycle begins, the runner will start out with an empty diff.

Each module receives the current (or recovered, see Section 4.3.4) diff as an input

and, as they create, modify and delete files, produce their own diff output, which

in turn becomes part of the current diff.

In practice, the pull101repo module5, which uses Git to retrieve 101repo, gen-

erates the initial diff of primary resources simply from what Git provides it. Fol-

lowing modules discover changes via this diff input, derive secondary resources

and in turn communicate a diff for each of them. Further following modules dis-

cover the change in the secondary resources, which prompts them to derive ter-

tiary resources from them and again communicate the resulting diff. The process

5https://github.com/101companies/101worker/tree/master/
modules/pull101repo

https://github.com/101companies/101worker/tree/master/modules/pull101repo
https://github.com/101companies/101worker/tree/master/modules/pull101repo

4.3. INCREMENTALITY 21

continues for resources of higher order.

See figure 4.2 and the following Sections for a detailed look at the 101diff

protocol.

4.3.2 Grammar

1 input = { inputline, newline};
2 output = {outputline, newline};
3

4 inputline = op, filename;
5 outputline = linesread, op, filename
6 | linesread, "-", "-"
7 | garbage;
8

9 linesread = digit, {digit};
10 op = "A" | "M" | "D";
11 filename = any;
12 garbage = any;
13

14 any = ?.+?; (* for the sake of clarity, *)
15 digit = ?\d?; (* regular expressions are *)
16 newline = ?\n?; (* used in this section *)

Listing 4.4: 101diff grammar

Modules receive input in the form of a diff operation (A for added, M for

modified and D for deleted) and an absolute file path, separated by whitespace,

line-by-line.

Output being produced by modules contains an additional number at the be-

ginning, also separated by whitespace, that represents the lines read from its in-

put so far. A module may also just communicate how many lines of input it has

read by using two hyphens in place of the diff operation and file path. This fea-

ture may be used for recovery purposes in the future (see Section 6.2).

Any output that cannot be parsed is simply treated as garbage and ignored –

see the next Section 4.3.3 for details.

See listing 4.4 for an EBNF [ebn96] description of the protocol’s grammar.

4.3. INCREMENTALITY 22

4.3.3 Inter-Process Communication

Communication between modules and the runner is handled via pipes: modules

receive the change information via standard input and deliver their results via

standard output. The concerns with this solution raised in Section 3.5.2 have

been alleviated.

The issue with modules writing noisy logging information to their standard

output has been solved by simply ignoring lines that cannot be parsed. This

behavior has been inspired by how the Test Anything Protocol solves the same

problem [SL06]. While there is a theoretical risk of module logs clashing with the

101diff grammar, none of the module logs in the past have shown such behavior,

ruling out the issue occurring in production.

The deadlock problem has been solved by calculating all input data in ad-

vance and collecting all output data in a buffer before processing it. While this

requires additional memory to store the data, it allows use of existing technology6

to securely communicate all data without waiting for certain output.

As a last resort measure against modules locking up for any reason, a timeout

has been implemented. If the execution time of any single module exceeds one

hour, its process is terminated by force. As of the time of writing however, there

has been no instance of such behavior outside of test cases.

4.3.4 Error Recovery

If a module exits unsuccessfully, the current diff is stored on disk by the runner.

Whenever the runner finishes its run, it will also store the resulting diff on disk.

On the next run, the stored diff will be discovered by the runner. The recov-

ery process involves merging the stored diff, the last result diff and the current

diff together, so that the module input accurately reflects the actual changes that

happened since it last ran successfully (see table 4.1).

If the module fails again, the merged diff is stored once more, overwriting the

previously stored one, and the cycle begins anew. If the module succeeds, the

stored diff is deleted and the runner will not attempt to recover anything on the

next run.

See also the storing and recovering actions in figure 4.2.

6https://metacpan.org/pod/IPC::Run

https://metacpan.org/pod/IPC::Run

4.3. INCREMENTALITY 23

older diff newer diff merge result

added modified added

added deleted no entry

modified modified modified

modified deleted deleted

deleted added modified

added added added

modified added modified

deleted modified modified

deleted deleted deleted

Table 4.1: rules for merging diffs

4.3.5 Library Support

Usage of incrementality features has been separated into a collection of libraries

(see figure 4.3) [BMIM98, p. 162]. Modules use these libraries to operate only on

the abstract concept of resources and are agnostic to the details of 101diff or the

file system. Instead, they only focus on declaring and deriving resources.

incremental101

The incremental101 library presents a low-level access to the 101diff protocol. At

its core, it handles parsing input, writing output and keeping track of the number

of input lines read. The interface of the library provides functionality for iterating

over the input, as well as writing and deleting resources.

Issues, such as creating the necessary folders and ensuring that files being

deleted actually exist, are abstracted away for the user.

Additionally, if a file to be written already exists, it is only modified if the

data to be written is actually different to the existing data on disk. This prevents

creation of superfluous diff output, which prevents unnecessary work from fol-

lowing modules that derive from the created resource.

4.3. INCREMENTALITY 24

Figure 4.3: layers of abstraction

meta101

This represents a re-write of the original 101meta library built on the incremen-

tal101 library (see figure 4.3). It provides a high-level interface for modules to ac-

cess derivation of resources: modules declare which resources they derive from,

which resources they produce and provide callback functions that perform the

actual derivation. The library automatically handles input and output from this

data, as well as resolving changes in all the required resources to a single call into

the module.

As per the escape requirement described in Section 3.5.5, meta101 can forego

incrementality in favor of just walking the entire 101repo and re-matching or re-

deriving all files. This is necessary if changes in module internals or 101meta rules

invalidate the already derived resources. In line with the same requirements,

deletions in the 101diff input are always processed, to properly remove resources

that were derived from now nonexistent sources.

The escape is either triggered by the library itself, when it detects a 101meta

rules change, or explicitly by modules. For example, the predicates101meta7 will

re-match the entire repository if it detects that its own executable or any predicate

executable has been modified since the last run of 101worker.

This behavior is probably overly cautious, as even minute changes like chang-

ing the formatting of the source code will trigger the walk over the entire reposi-

7https://github.com/101companies/101worker/tree/master/
modules/predicates101meta

https://github.com/101companies/101worker/tree/master/modules/predicates101meta
https://github.com/101companies/101worker/tree/master/modules/predicates101meta

4.3. INCREMENTALITY 25

initial run subsequent run

no incrementality 30 minutes 30 minutes

with incrementality 30 minutes 1 minute

Table 4.2: performance of 101worker (approximate)

tory. However, this is mitigated through incremental101, which does not re-write

identical resources, as described in Section 4.3.5. This prevents a ripple-effect

of all following modules re-handling unchanged resources and the unnecessary

work is limited to the single, changed module.

4.3.6 Performance Analysis

An initial production run of 101worker after being deployed, without any

already-derived data being present on the system, takes approximately 30 min-

utes. This time has, as expected, not improved through the changes described

above.

However, any subsequent runs are able to make use of the data derived in the

previous runs. While before, runs in which no changes occurred took the same

time as the initial runs, with the newly implemented incrementality features they

only take approximately one minute.

These thirty-fold performance improvements scale with the amount of

changes since the last run, rather than with the size of 101repo. They also en-

able faster testing of module changes in production and quicker analysis of newly

added contributions.

Chapter 5

Related Work

The bus system of 101worker is similar to classical build systems of compiled

languages. For example, for building a program written in the C language, a

compiler derives object files from source code, from which in turn a linker derives

executables or library files [SMS06].

As such, similar issues regarding performance (see Section 2.2.3) and accumu-

lation of garbage (see Section 2.2.4) apply: the compiler should only re-compile

code that has changed since the last run, and object files derived from source files

that have been removed should be removed as well.

While build systems such as Make [SMS06] or CMake [MH10] are able to de-

tect necessary re-compilation, they require an explicit “clean” step to remove the

derived files. Omitting this step can lead to strange errors caused by those left-

over, garbage object files. The incrementality features of the refactored 101worker

(see Section 4.3) would be applicable to handle automatic cleaning of these kinds

of files.

26

Chapter 6

Concluding Remarks

6.1 Summary

In the process of this thesis, 101worker was successfully refactored into a more

scalable and maintainable system. It has also become more cohesive and com-

prehensive, aiding future developers in gaining an understanding of the system

more easily.

Issues with performance and old data accumulating has been solved by mak-

ing the worker aware of changes and act on them incrementally. Documentation,

installation and testing guidelines have been established, duplication of informa-

tion has been removed in favor of centralized environment variables and the most

important modules have been reworked to make use of the new incrementality

features and libraries.

Libraries and modules that do not yet conform to the worker’s incremental

behavior have been removed, deprecated or are set to be refactored in the near

future.

6.2 Limitations

Recovery on module failure is relatively limited due to modules having to main-

tain data dumps [Lei13, p. 24]. These dumps contain a summary of the module’s

results and need to be kept synchronized as files are added, modified and deleted.

The dump files are only written when a module finishes its run.

27

6.3. FUTURE WORK 28

If a module fails somewhere during its run, the dump is not written. When

recovering from failure on the next run, the module will have to re-derive files

that it already successfully derived in the last, failed run so that information from

those files is not missing from the dump. If this were not the case, the module

could re-start from the file it could not process instead.

To solve this, the dump could be written after each line has been processed.

However, this would create a disproportionately large overhead from encoding

and writing a large JSON file1 every single time a resource is touched.

Alternatively, the dumps could be gathered from separate files after a module

has finished its run, although it is questionable if this would actually result in a

notable performance gain.

At the time of writing, however, no modules have exhibited spurious failure

after processing a part of their input. Due to this lack of practical relevance, the

solution has been put off until the issue actually manifests itself.

6.3 Future Work

Much of the refactoring done in this thesis paves the way for further improve-

ment of 101worker. While the modules that were deemed most important to the

knowledge engineering task of the system or had the largest performance impact

have been reworked to act incrementally, some others could still benefit from such

a refactoring2.

Most modules also still lack comprehensive documentation, installation re-

quirements, unit tests and functional tests. If possible, the original authors will

be contacted and asked to provide at least parts of these.

1up to 1.5 Megabytes for a single dump at the time of writing
2Status of modules: https://github.com/101companies/101docs/

blob/master/worker/TODO.md#refactor-modules

https://github.com/101companies/101docs/blob/master/worker/TODO.md#refactor-modules
https://github.com/101companies/101docs/blob/master/worker/TODO.md#refactor-modules

Bibliography

[10114a] 101companies project description. http://101companies.org/

wiki/@project, 2014. Accessed on 2015-04-19.

[10114b] 101repo description. http://101companies.org/wiki/

@repo, 2014. Accessed on 2015-04-19.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2000.

[BMIM98] William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and

Thomas J. Mowbray. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. Wiley Computer Publishing, 1998.

[ebn96] ISO/IEC 14977:1996 Extended BNF. International Organization for

Standardization, 1996.

[FLL+] Jean-Marie Favre, Ralf Lämmel, Martin Leinberger, Thomas

Schmorleiz, and Andrei Varanovich. Linking Documentation and

Source Code in a Software Chrestomathy. In Proceedings of WCRE
2012. IEEE. 10 pages.

[FLSV12] Jean-Marie Favre, Ralf Lämmel, Thomas Schmorleiz, and Andrei

Varanovich. 101companies: a community project on software tech-

nologies and software languages. In Proceedings of TOOLS 2012,

LNCS. Springer, 2012. 16 pages. To appear.

[jso13] ECMA 404: The JSON Data Interchange Format. ECMA International,

2013.

29

http://101companies.org/wiki/@project
http://101companies.org/wiki/@project
http://101companies.org/wiki/@repo
http://101companies.org/wiki/@repo

BIBLIOGRAPHY 30

[KLL+13] Kevin Klein, Ralf Lämmel, Martin Leinberger, Thomas Schmorleiz,

and Andrei Varanovich. A Linked Data approach to surfacing a soft-

ware chrestomathy. 20 pages. Submitted for publication. Available

online since 21 June 2013., 2013.

[Lei13] Martin Leinberger. Enhancement of a software chrestomathy for

open linked data. Master’s thesis, July 2013.

[LLSV14] Ralf Lämmel, Martin Leinberger, Thomas Schmorleiz, and Andrei

Varanovich. Comparison of Feature Implementations across Lan-

guages, Technologies, and Styles. In Proc. of IEEE CSMR-WCRE
2014. IEEE, 2014. 5 pages.

[LM12] Jon Loeliger and Matthew McCullough. Version Control with Git:
Powerful Tools and Techniques for Collaborative Software Development,
2nd Edition. O’Reilly Media, Inc., 2012.

[MBDC+06] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouil-

lon, Berke Durak, Xavier Leroy, and Ralf Treinen. Managing the

complexity of large free and open source package-based software

distributions. In Automated Software Engineering, 2006. ASE’06. 21st
IEEE/ACM International Conference on, pages 199–208. IEEE, 2006.

[MH10] Ken Martin and Bill Hoffman. Mastering CMake. Kitware, 2010.

[Ray03] Eric S. Raymond. The Art of UNIX Programming. Pearson Education,

2003.

[SL06] Michael G. Schwern and Andy Lester. Test Anything Protocol Speci-

fication. https://testanything.org/tap-specification.

html, 2006. Accessed on 2015-04-21.

[SMS06] Richard M Stallman, Roland McGrath, and Paul D Smith. Gnu make

manual. Free Software Foundation, 3, 2006.

[Ste99] W. Richard Stevens. UNIX Network Programming Volume 2 Second
Edition: Interprocess Communications. Prentice Hall, Upper Saddle

River, NJ, USA, 1999.

https://testanything.org/tap-specification.html
https://testanything.org/tap-specification.html

BIBLIOGRAPHY 31

[Wik15] Wikipedia, the free encyclopedia. List of software package manage-

ment systems. http://en.wikipedia.org/wiki/List_of_

software_package_management_systems, 2015. Accessed on

2015-04-21.

[yam11] YAML: YAML ain’t markup language. http://yaml.org/, 2011.

Accessed on 2015-04-19.

http://en.wikipedia.org/wiki/List_of_software_package_management_systems
http://en.wikipedia.org/wiki/List_of_software_package_management_systems
http://yaml.org/

	Introduction
	Thesis Structure

	Background
	101companies
	101repo
	101worker

	Problems
	Brittleness
	Rigidness
	Performance Issues
	Garbage Accumulation
	Imperviousness

	Requirements
	Documentation
	Deployment
	Unit Tests
	Functional Tests
	Incrementality
	Laziness
	Communication
	Bookkeeping
	Recovery
	Escape Hatch

	Solution
	Restructuring
	Environment
	Modules

	Functional Test Architecture
	Branches
	Test Definitions
	Execution

	Incrementality
	Workflow
	Grammar
	Inter-Process Communication
	Error Recovery
	Library Support
	Performance Analysis

	Related Work
	Concluding Remarks
	Summary
	Limitations
	Future Work

