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Abstract

Efficient Cochlear Implant (CI) surgery requires prior knowledge of the cochlea’s
size and its characteristics. This information helps to select suitable implants for
different patients. Registered and fused images helps doctors by providing more
informative image that takes advantages of different modalities. The cochlea’s
small size and complex structure, in addition to the different resolutions and head
positions during imaging, reveals a big challenge for the automated registration
of the different image modalities. To obtain an automatic measurement of the
cochlea length and the volume size, a segmentation method of cochlea medical
images is needed.

The goal of this dissertation is to introduce new practical and automatic algo-
rithms for the human cochlea multi-modal 3D image registration, fusion, segmen-
tation and analysis. Two novel methods for automatic cochlea image registration
(ACIR) and automatic cochlea analysis (ACA) are introduced. The proposed
methods crop the input images to the cochlea part and then align the cropped im-
ages to obtain the optimal transformation. After that, this transformation is used
to align the original images. ACIR and ACA use Mattes mutual information as
similarity metric, the adaptive stochastic gradient descent (ASGD) or the stochas-
tic limited memory Broyden–Fletcher–Goldfarb–Shanno (s-LBFGS) optimizer to
estimate the parameters of 3D rigid transform. The second stage of non-rigid
registration estimates B-spline coefficients that are used in an atlas-model-based
segmentation to extract cochlea scalae and the relative measurements of the in-
put image. The image which has segmentation is aligned to the input image to
obtain the non-rigid transformation. After that the segmentation of the first im-
age, in addition to point-models are transformed to the input image. The detailed
transformed segmentation provides the scala volume size. Using the transformed
point-models, the A-value, the central scala lengths, the lateral and the organ of
corti scala tympani lengths are computed.

The methods have been tested using clinical 3D images of total 67 patients:
from Germany (41 patients) and Egypt (26 patients). The patients are of different
ages and gender. The number of images used in the experiments is 217, which are
multi-modal 3D clinical images from CT, CBCT, and MRI scanners.

The proposed methods are compared to the state of the arts optimizers related
medical image registration methods e.g. fast adaptive stochastic gradient descent
(FASGD) and efficient preconditioned stochastic gradient descent (EPSGD). The
comparison used the root mean squared distance (RMSE) between the ground
truth landmarks and the resulted landmarks. The landmarks are located manually
by two experts to represent the round window and the top of the cochlea. After
obtaining the transformation using ACIR, the landmarks of the moving image
are transformed using the resulted transformation and RMSE of the transformed



landmarks, and at the same time the fixed image landmarks are computed. I
also used the active length of the cochlea implant electrodes to compute the error
aroused by the image artifact, and I found out an error ranged from 0.5 mm to
1.12 mm.

ACIR method’s RMSE average was 0.36 mm with a standard deviation (SD)
of 0.17 mm. The total time average required for registration of an image pair using
ACIR was 4.62 seconds with SD of 1.19 seconds. All experiments are repeated 3
times for justifications. Comparing the RMSE of ACIR2017 and ACIR2020 using
paired T-test shows no significant difference (p-value = 0.17).

The total RMSE average of ACA method was 0.61 mm with a SD of 0.22 mm.
The total time average required for analysing an image was 5.21 seconds with SD
of 0.93 seconds.

The statistical tests show that there is no difference between the results from
automatic A-value method and the manual A-value method (p-value = 0.42).
There is no difference also between length’s measurements of the left and the right
ear sides (p-value > 0.16).

Comparing the results from German and Egypt dataset shows there is no differ-
ence when using manual or automatic A-value methods (p-value > 0.20). However,
there is a significant difference when using ACA2000 method between the German
and the Egyptian results (p-value < 0.001).

The average time to obtain the segmentation and all measurements was 5.21
second per image. The cochlea scala tympani volume size ranged from 38.98 mm3

to 57.67 mm3. The combined scala media and scala vestibuli volume size ranged
from 34.98 mm3 to 49.3 mm3. The overall volume size of the cochlea should range
from 73.96 mm3 to 106.97 mm3. The lateral wall length of scala tympani ranged
from 42.93 mm to 47.19 mm. The organ-of-Corti length of scala tympani ranged
from 31.11 mm to 34.08 mm. Using the A-value method, the lateral length of scala
tympani ranged from 36.69 mm to 45.91 mm. The organ-of-Corti length of scala
tympani ranged from 29.12 mm to 39.05 mm.

The length from ACA2020 method can be visualised and has a well-defined
endpoints. The ACA2020 method works on different modalities and different im-
ages despite the noise level or the resolution. In the other hand, the A-value
method works neither on MRI nor noisy images. Hence, ACA2020 method may
provide more reliable and accurate measurement than the A-value method.

The source-code and the datasets are made publicly available to help repro-
duction and validation of my result.
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Zusammenfassung

Für eine effiziente Cochlea-Implantation wird Wissen über die Cochlea-Größe und
Charakteristik vorausgesetzt. Dadurch können zum Patienten passende Implan-
tate gefunden werden. Erfasste und zusammengeführte Bilder unterstützen Ärzte,
durch informativere Bilder, die einen Vorteil aus verschiedenen Eigenschaften ziehen.
Die kleine Größe und komplexe Struktur der Cochlea, ebenso wie die verschiede-
nen Auflösungen und Kopfpositionen während der Bildaufnahme, stellen eine große
Herausforderung für die automatische Bilderfassung der verschiedenen Bildeigen-
schaften dar. Um eine automatische Ausmessung der Länge und des Volumens
der Cochlea zu erhalten, wird eine Methode zur Segmentierung von medizinischen
Cochlea-Bildern benötigt.

Das Ziel dieser Dissertation ist die Einführung eines neu anwendbaren und au-
tomatischen Algorithmus zur multimodalen 3D Bilderfassung, Zusammenführung,
Segmentierung und Analyse der menschlichen Cochlea. Zwei neue Methoden zur
automatischen Bilderfassung (ACIR) und Cochlea Analyse (ACA) werden einge-
führt. Die vorgeschlagenen Methoden reduzieren das Eingangsbild auf die Cochlea
und richten den Bildausschnitt aus, um eine optimale Transformation zu erhalten.
Danach wird die Transformation genutzt, um die originalen Bilder auszurichten.
ACIR und ACA nutzen Mattes Mutual Information als Ähnlichkeitsmetrik, den
adaptiven stochastischen Gradientenabstieg (ASGD) oder den stochastisch spe-
icherbegrenzenden Broyden-Flecher-Goldfarb-Shanno (s-LBFGS) Optimierer, um
die Parameter der 3D starren Transformation abzuschätzen. Die zweite Phase
der nicht-starren Bilderkennung schätzt den B-Spline Koeffizienten, der in einer
Atlas-modellbasierten Segmentierung genutzt wird, um die Cochlea Größe und die
relativen Werte des Eingangsbildes zu extrahieren. Das Bild mit Segmentierung
wird nach dem Eingangsbild ausgerichtet, um die nicht-starre Transformation zu
erhalten. Danach werden die Segmentierung des ersten Bildes und das Punkt-
model in das Eingangsbild zurück transformiert. Die detailliertere Segmentierung
stellt die Scala Volume Größe zur Verfügung. Mithilfe des transformierten Punkt-
modells, des A-Wertes und der mittigen Scala Länge, werden das Lateral und die
Länge des Corti-Organs Scala-tympani berechnet.

Die Methode wurde mit klinischen 3D Bilder von insgesamt 67 Patienten aus
Deutschland (41 Patienten) und Ägypten (26 Patienten) getestet. Die Patienten
sind unterschiedlich alt und haben verschiedene Gender. In dem Versuch wurden
217 Bilder genutzt- dies sind multimodale klinische 3D Bilder aufgenommen von
CT, CBCT und MRI Scannern.

Die vorgeschlagenen Methoden werden mit aktuellen Optimierern bezüglich
medizinischer Bilderfassungsmethoden z.B. dem schnelle adaptive stochastische
Gradientenabstieg (FASGD) und dem effizient bedingte stochastische Gradienten-
abstieg (EPSGD), verglichen. Der Vergleich nutzt die mittlere quadratische Abwe-
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ichung der Wurzel des Abstands (RMSE) zwischen den tatsächlichen Merkmalen
und den resultierenden Merkmalen. Die tatsächlichen Merkmale wurden manuell
durch zwei Experten lokalisiert, um das runde Fenster und die Spitze der Cochlea
zu erfassen. Nachdem die Transformation durch ACIR bestimmt wurde, werden
die Merkmale des bewegten Bildes transformiert, indem resultierende Transforma-
tion und RMSE der transformierten Merkmale genutzt werden und gleichzeitig die
fixen Bildmerkmale berechnet werden. Ebenso wird die aktive Länge der Cochlea
Implantats Elektroden berechnet, um den Fehler, der durch Bildartifakte entsteht,
zu berücksichtigen. Der Fehler beträgt zwischen 0.5 mm bis 1.12 mm.

Der RMSE-Mittelwert der ACIR Methode war 0.36 mm mit einer Standartab-
weichung (SD) von 0.17 mm. Die durchschnittliche Gesamtzeit, die für die Er-
fassung eines Bildpaare unter Verwendung von ACIR benötigt wird, beträgt 4.62
Sekunden mit einer SD von 1.19 Sekunden. Alle Versuche wurden dreimal wieder-
holt. Der Vergleich des RMSE von ACIR2017 und ACIR2020 unter Verwendung
des gepaarten T-Tests zeigt keinen signifikanten Unterschied (p-Wert = 0.17).

Der Durschnitt des gesamten RMSE der ACA Methode betrug 0.61 mm mit
einer SD von 0.22 mm. Die durchschnittliche Gesamtzeit für die Analyse eins
Bildes war 5.21 Sekunden mit einer SD von 0.93 Sekunden.

Die statistischen Tests zeigen, dass es keinen Unterschied zwischen den Ergeb-
nissen der automatischen A-Wert-Methode und der manuellen A-Wert-Methode
gibt (p-Wert = 0.42). Es gibt auch keinen Unterschied zwischen den Längen-
messungen der linken und der rechten Ohrseite (p- Wert > 0.16). Der Vergleich
der Ergebnisse aus deutschen und ägyptischen Datensätzen zeigt, dass es keinen
Unterschied bei der Verwendung manueller oder automatischer A-Wert-Methoden
gibt (p-Wert > 0.20). Es gibt jedoch einen signifikanten Unterschied bei der Ver-
wendung der ACA2000-Methode zwischen den deutschen und den ägyptischen
Ergebnissen (p-Wert < 0.001)

Die durchschnittliche Zeit zur Segmentierung und dem Berechnen aller Werte
betrug 5.21 Sekunden pro Bild Die Cochlea Scala tympani Größe variiert zwischen
38.98 mm3 und 57.67 mm3. Das kombinierte Scala media und Scala vestibuli
Volumen variiert zwischen 34.98 mm3 und 49.3 mm3. Die Laterallänge der Scala
tympani ändert sich zwischen 42.93 mm und 47.19 mm. Die Länge des Gehörgangs
der Scala tympani wechselt zwischen 31.11 mm und 34.08 mm. Mit der A-Wert
Methode variieren die Lateralwerte der Scala tympani zwischen textbf36.69 mm
und 45.91 mm. Die Länge des Corti Organs der Scala tympani variiert zwischen
29.12 mm und 39.05 mm.

Die Länge der ACA2020 Methode kann visualisiert werden und hat wohl-
definierte Endpunkte. Die ACA2020 Methode arbeitet mit verschiedenen Eigen-
schaften und Bildtyen trotz Rauschen und unabhängig von der Auflösung. Hinge-
gen arbeitet die A-Wert Methode weder mit MRI Bildern noch mit verrauschten
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Bildern. Dadurch ergibt sich, dass die ACA2020 Methode möglicherweise zuver-
lässiger arbeitet und genauere Werte liefert als die A-Wert Methode.

Der Quellcode und das Datenset sind öffentlich zugänglich, um eine Nachbil-
dung zu ermöglichen und die Arbeit zu bewerten.
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Prefcase
Improving the quality of life, reducing pain in the world, and saving life are im-
portant goals of medicine. As a computer science student who is looking to utilise
his knowledge in a noble goal, helping doctors to provide better service is the best
way to do it. That is why I decided to work on this field in my master thesis and
PhD dissertation. By performing my PhD research in the medical imaging field, I
hope someday my work can contribute positively to someone’s life.

Another motivation point is that I already worked in this field before during
my master study. Doing more research in medical image analysis field helps me to
explore it deeply and learn more various problems and their solutions.

This work can be also used in commercial medical systems. As we all know,
health is one of the top priorities of human being. One pays a lot to get high-quality
health service for himself or the ones he cares. Nowadays, people around the world
suffer from cochlear damage which affects their hearing ability. In many cases, a
Cochlear Implant (CI) is commonly used as a solution which allows patients to
communicate with other people and to enjoy a normal life. Providing an efficient
way for cochlea registration and segmentation can be integrated in the current
commercial medical imaging software.

Another motivation is the high level of challenging of images registration and
segmentation problems. Image registration and segmentation are dominant prob-
lems that have many sufficient applications not just in medicine but also in other
important fields, e.g. military, Geographical Information Systems (GISs), movie
production and video games. Various subject-related papers are published ev-
ery year which indicate the importance of these problems. Although there are
already a great number of publications related to cochlea image registration, seg-
mentation and analysis, no practical methods have been developed yet to solve
these problems, so they remain open and active for researchers today. Solving
these problems should automate the process of cochlea medical image analysis
and provide surgeons and doctors with the needed information for successful deci-
sion making. Working in such topic satisfies my scientific curiosity and my interest
for challenges.

Finally, obtaining a PhD degree is a big step to my life’s dream of being a
successful academic professor. There is a shortage in the number of experts in
medical imaging academic field in the world, particularly in the Arabic countries.
Due to this issue, I would like to spend my lifetime being busy with researches and
teaching in many generations. I believe, I can provide the local and international
society with well-educated and experienced experts in this field. This goal can be
achieved if I succeed in getting a PhD degree under the supervision of an excellent
professor in a well-established research environment such as Germany.
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Chapter 1

Introduction

1.1 Human Cochlea

Taste, sight, touch, smell, and hearing are the traditional five methods of per-
ception. They allow us to communicate with the world around us. The human
hearing allows us to communicate, express our feelings, learn, teach and enjoy life,
e.g. listening to music.

It is a complicated process that has many steps, see figure 1.1. The sound waves,
wave combinations of compression and rarefaction and movements are collected by
the ear pinna and directed into the ear auditory canal. A vibration in the eardrum
is created by these waves, then it is transmitted into the middle ear ossicles (small
hearing bones). These ossicles are connected with the oval window which is a
smaller membrane covers one end of the cochlea. After that the vibration causes
the fluid inside the cochlea to make specific movements, which activate specific
hair cells based on the vibration frequencies. These movements are converted into
signals transmitted to the brain through the cochlear nerve (the hearing nerve) to
be interpreted later as a sound. High frequencies activate hair cells at the base of
the cochlea while low frequencies activate hair-cells at the top of the cochlea (apex
or helicotrema), see figure 1.2, and figure 1.3.

An ear has three main parts: the outer ear, the middle ear and the inner
ear. The inner ear is formed of interconnected bony chambers filled with fluid.
It is responsible for hearing and balance. It consists of the cochlea, vestibule and
semicircular canal, see figure 1.2. The cochlea has a crucial role in hearing. It
filters and transfers the auditory signals, then sends them to the brain via the
cochlear nerve, see figure 1.2. It has a spiral shape and it is divided into three
champers called scalae, see figure 1.3. Scala tympani ends with a round window,
scala vestibuli ends with an oval window and the scala media, which lies in between
the other two scalae, contains the hair cells. The cochlea can be recognized easily
because of its spiral shape, see figure 1.2, figure 1.3 and figure 1.4, but the cochlear
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Figure 1.1: Hearing process. Image source is [2].

scalae and its detailed structure are not visible in clinical images, see figure 1.11.
Cochlea Implant (CI) is a relatively new method to restore hearing for patients

with severe to profound hearing loss [VV14]. It differs from conventional hearing
aids in that it stimulates the cochlear nerve directly from within the inner ear. It
is formed of external and internal part, see figure 1.3. The external part consti-
tutes a magnet, a microphone, a processor, and a transmitter, while the internal
part constitutes a transducer, a receiver, cables and an array of several electrode
contacts. The last one is situated on a silicone carrier implanted inside the scala
tympani of the cochlea itself, such that the contacts are located in proximity to
sensory nerve cells. With the help of this positioning, the electric signals can di-
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Figure 1.2: Ear anatomy. Image source is [2].

rectly stimulate the cochlear nerve and the neural signals can be transmitted to
the brain and interpreted as a sound

These implants result in significant improvement in post-operative speech recog-
nition. This is mostly underpinned by the adequate match between CI electrode
frequency bands and their exact location inside the cochlea, as each audible fre-
quency has a specific position inside the cochlea [MJ16] as shown in figure 1.2.

Cochlear Duct Length (CDL) can also have a significant impact on the pro-
cess of pre-operative electrode selection. If the electrode has a length that is not
appropriate to the cochlear length, this will be possible to result in incomplete
insertion, cochlear trauma or poor cochlear coverage with poor matching between
the electrodes and the cochlea [IELA18]. The surgeon has only one chance to in-
sert CI inside the cochlea which makes the selection of the correct implant critical
in successful CI surgery.

Micropump implant [FZA+19] is a promising solution that is more effective
than oral drug delivery to treat patients with sensorineural hearing loss and to
protect hearing against ototoxic insult, e.g. due to noise exposure or cancer treat-
ments. Designing micropumps to deliver appropriate concentrations of drugs to
the necessary cochlear compartments is of paramount importance. However, mea-
suring local drug concentrations over time throughout the cochlea directly is not
possible. In recent approaches, quantifying local drug concentrations indirectly
using animal models capture a series of magnetic resonance (MR) or µCT images
before and after infusion of a contrast agent into the cochlea.
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Figure 1.3: Detailed view of the cochlea. Image source is [2].

Figure 1.4: Left:Cochlea implant main components. Right: three-dimensional (3D)
model of the cochlea generated from a Micro Computed Tomography (µCT) image.
Scala tympani (green), scala media (blue and scala vestibuli (red)). Left image source is
[14].

Surgical robots are gaining more and more popularity, primarily driven by
improvements in nanotechnology and artificial intelligence. These robots need
reliable real-time computer vision algorithms in order to detect and analyse the
target organ. For instance, during a robotic cochlear surgery [WGW+17], a reliable
real-time estimation of the length and the size of the cochlea is needed, e.g. to
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decide a suitable CI for a specific patient.

1.2 Medical Imaging

Medical imaging is a field of science that study methods for creating visual repre-
sentations of the interior body. This includes the physics and the engineering of
the medical scanners such as Computed Tomography (CT) [Web88], Cone-beam
Computed Tomography (CBCT) [Sha14] or Magnetic Resonance Imaging (MRI)
[Web88]. It also includes the software development and the algorithms for pro-
cessing and visualising these data.

It has many important applications in real life as the medical images are one of
the most important tools for diagnostics. Medical images are also used for teaching
as they provide clear visualisation of the interior anatomy of the human body.

Medical image data are available from different technologies and scanners. If
the images are of the same type, we call them mono-modal e.g. CT and CT. If
they are different, we call them multi-modal e.g. CT and MRI or MRI T1 and
MRI T2 (more about them later). Each type of medical data has advantages
and disadvantages over the other types. For this reason, there is a need for these
different modalities. In CT one can view the bones but can not view soft tissue.
In the other hand MRI shows the soft tissue, e.g. the brain, but can not show
bones. CT is fast but dangerous while MRI is slow but more safe.

Medical image data could be two-dimensional (2D) as in X-ray, 3D as in MRI,
or four-dimensional (4D) as in functional MRI (fMRI) [Bux02] [DAD10] or T2-
mapping [WPRC+04]. Each medical 3D image is a collection of a number of 2D
images (called slices). Each 2D image represents a thin slice of a scanned body. The
image pixels1 are arranged on a two-dimensional grid with a known spacing, origin
and orientation, see figure 1.5. This allows the calculation of the actual position of
any voxel multiplying the respective spacing value with the respective voxel index
i and adding the origin. The origin and the orientation define the location of the
patient inside the scanner. The spacing defines the resolution of the image data,
the smaller value of the spacing, the high resolution of the image [PB07]. It is very
important to process the medical image carefully and wisely otherwise one could
end up with an output image that does not represent the correspondence patient
and misguide the treatment. For example, using the wrong orientation may cause
a robot to cut the left leg instead of the right one.

Medical image data are usually stored using Digital Imaging and Communica-
tions in Medicine (DICOM) standard which is an international standard related

1Pixel: or a picture element, is a function of a point location in the image that returns the
color or the intensity value at that location, e.g. v = f(x, y). Voxel: is a pixel in a 3D image e.g.
v = f(x, y, z).
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Figure 1.5: 2D pixel spacing and origin example. Image is inspired from [13].

to exchange, storage and communication of digital medical images and other re-
lated digital data. The standard covers both the formats and the protocols to be
adopted for implementing several communication services. It allows compatibility
support for exchanging information among different devices and medical informa-
tion systems. Today, the vast majority of digital medical imaging systems of all
major vendors support and comply with portions of the DICOM standard [PB07].

DICOM stores not just the image information but also all related information
to the image, e.g. a scanner, a patient, a doctor and hospital information. DICOM
stores this information using DICOM Tags.

Each tag row has three parts: a tag, a description and a value. The tag is
hexadecimal numbers in the format (XXXX,XXXX) which may be divided further
into DICOM Group Number and DICOM Element Number. The description,
Value Representation (VR), describes the data type and the format of the attribute
value. For example, the directions’ matrix which stores the object orientation can
be found at tag (0020,0037) and it may look like 0.977443, 0.017308, -0.210490,
0.017307, 0.986721, 0.161501.

It is very important to use an anonymous processed copy of the DICOM in
research to avoid conflicts related to patient’s privacy. Since the DICOM may
have many irrelevant images as well, a preprocessing step is sometimes necessary.

To process or to view medical image data, one need a specialised medical image
tool. These tools are based on cpp but now there are available wrappers to support
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other popular programming languages such as Python and Java 2.
The Visualization Toolkit (VTK) [30] is a tool for visualising medical images or

computer graphics objects. It is a free open-source Object-Oriented Programming
(OOP) tool based on openGL [24]. Most of the computer graphics and rendering
algorithms are implemented in a simple way. It is considered now one of the
standard tools for medical image visualisation and used in popular software such
as 3D Slicer, Medical Image Interaction Toolkit (MITK) [21], and itkSnap [26].

The Insight Toolkit (ITK) [17] is an image processing tool for medical image
processing and analysis. It is something similar to openCV, but it adds the support
of handling medical images in addition to "normal" images. ITK does not visualise
the images that is why to view the images one needs a tool such as VTK. ITK has
many images processing, image registration, and image segmentation algorithms
that satisfy different needs and solve many problems.

The medical image registration tool Elastix [12] is a special tool for medical
image registration based on ITK. It simplifies the use of ITK so one can select the
registration method and all parameters by modifying a simple text file instead of
writing and compiling the code. The tool has two main executable files, Elastix
for image registration, and Transformix for image transformation. Unfortunately,
the generated transform is not compatible with ITK and has a different format.
Luckily, the deformation field can be used as a transform in 3D Slicer. The de-
velopers are active and they have implemented new optimisation3 algorithms, but
they are only available in Elastix4. The tool has some problems related to point
transformation, and it seems the support for Python version is stopped. Similar
to ITK, one needs an external tool, e.g. VTK, to view the transformed images.

3D Slicer [25] is a user-friendly, open-source, free application for medical image
processing, visualisation, and analysis. It is based on ITK and VTK. One can
extend it easily using simple a Python script. It has many ready-to-use modules
for medical image processing, registration and segmentation. Moreover, many
developers around the world contribute new extensions and tools regularly for
solving different medical imaging field related problems. The application is easy
to download and build in a few minutes. One can learn how to use it and extend it
in a week. The community is very active and helpful. Questions are answered in a
short time with enough details mostly by academic Professors with high expertise.
There are many other freeware and commercial tools for medical images today but
since I started using 3D Slicer, it is now my favourite tool. Other students who

2Some tools they have even simpler version in addition to the Python version, e.g. SimpleITK
and SimpleElastix.

3Note: UK English is used in this dissertation.
4It seems, the developers want to be independent of ITK which I think is a bad idea, it would

be nice if they implemented new components in ITK then imported it the same way they did
with other ITK components. This would make it easier for maintenance and update.
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Figure 1.6: World, anatomical, and IJK coordinate systems. The letters in the middle
figures are: P: posterior A: anterior, S: superior, I: inferior, L: left, R: right. Image source
is [27].

Figure 1.7: Coordinate systems in 2D. Left: RS coordinate system, the origin is at the
point (250,300), right LS coordinate systems, the origin is at the point (50,300).

worked with me find it also easy to learn, they could start development in a few
days.

Different medical applications use different coordinate systems. World, anatom-
ical and image systems are the most common coordinate systems. The world co-
ordinate system is the one found in the scanner, e.g. x, y, and z in the range of
the scanner. The anatomical coordinate system is the one related to the patient,
e.g. Right Anterior Superior (RAS). The image coordinate system (IJK) is the
one found in the image space, an integer index describes the location of the pixels,
see figure 1.5 [13], and figure 1.6 [27].

Sometimes, it is required to convert coordinate systems, e.g. RAS from or to
IJK. This conversion uses a 3D affine transformation which includes a shear, a
reflection, a rotation, a scaling and a translation. Using homogeneous coordinates,
an affine transformation is written with a single matrix.

There are a high number of medical images technologies. I will brief here some
of them which are used in this study. One should refer to the more technical book
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Figure 1.8: X-ray, top: wave length ranges, bottom: body characteristics.

for extra information such as [Web88].

X-ray is a penetrating form of high-energy electromagnetic radiation with a
wavelength ranging from 10 picometers to 10 nano-meters figure 1.8 [10]. The
German scientist Wilhelm Röntgen discovered X-rays in 1895 by accident while
experimenting with electrical gas-filled tubes [32]. He named it X-radiation as it
was an unknown type of rays. The photograph of Röntgen wife’s hand was the
first picture of a human body part using X-rays. When X-ray goes through a body,
different types of tissues absorb it differently. X-ray photons have high energy that
large calcium atoms are absorbed and result in an image of the bones on a plate of
sensors sensitive to x-ray which is used behind the patient. Using contrast media
(a liquid that absorbs X-ray photons),the x-ray produces images of soft tissues as
well. An X-ray is a form of ionizing radiation that should not be used frequently.
When X-ray hits an electron inside the body, it may form an ion. Collection of
ions may result in a natural chemical reaction within the body that creates a DNA
mutation. This mutation could form cancer or other extreme health issues.

Computed Tomography (CT) [Web88] (also formerly known as computed axial
tomography or CAT) is a medical imaging technology that uses combinations of
multiple X-ray measurements taken from different angles to produce a 3D image
from (cross-sectional) slices of a body. This allows visualisation of the bony struc-
tures inside the body. The inventors of this technology, Cormack and Hounsfield,
were awarded the 1979 Nobel Prize. An example of a CT scanner is shown in
figure 1.9 left [8].

Cone-beam Computed Tomography (CBCT) is a variation of traditional CT
systems [Sha14]. The CBCT system rotates around the patient, capturing data
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Figure 1.9: Examples of CT, CBCT, and MRI scanners. Image sources are [8], [4], and
[22].

using a cone-shaped X-ray beam. Using these data, a 3D image of specific patient’s
anatomy is reconstructed, e.g. dental (teeth); oral and maxillofacial region (mouth,
jaw, and neck); and ears, nose and throat (ENT).

CBCT scanners produce 3D images, which are more informative than 2D im-
ages produced by the conventional X-ray technology, see figure 1.9 middle [4] .
This may help for better diagnosis, treatment planning and evaluation. The radi-
ation doses from CBCT devices are usually lower than from the other CT devices,
but at the same time, they deliver more radiation than conventional dental X-ray
devices.

Younger patients are more sensitive to radiation and more vulnerable to radia-
tion exposure. The estimates of lifetime risk for cancer incidence and mortality per
unit dose of ionizing radiation are high and the more they live the more probability
for ill-effects to develop.

Micro Computed Tomography (µCT) [GZR+16] is a 3D imaging technique,
which creates 3D images slice by slice by utilizing X-rays. It is similar to CT but
on a small scale with very high resolution. It is usually used for small objects,
e.g. under 25 cm. Since the scanner is too close to the object, this provides
high-resolution images.

"In vivo"(a Latin word for "within life") means the scanning of live specimens,
while "ex vivo" (a Latin for "out of living") refers to the things used to be alive
or to samples excised from alive things. Ex vivo µCT instruments allow for higher
spatial resolution, longer scan times, better signal-to-noise ratios, and therefore
better images.

Most of the cochlea structure can be visualised using µCT with high resolution,
e.g. 0.0004 mm. Hence, many studies uses ex-vivo cochlea µCT images.

Magnetic Resonance Imaging (MRI) [Web88] is a medical imaging technique
that uses strong magnetic fields, e.g. 1.5 or 3.0 tesla, magnetic field gradients and
radio waves to generate 3D images of the soft tissue inside the body, e.g. brian, and
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heart. It was originally called nuclear magnetic resonance imaging. The scientists
behind MRI, Mansfield and Lauterbur, were awarded the Nobel Prize in 2003. An
example of MRI scanner is shown in figure 1.9 left.

MRI does not use X-rays or ionizing radiation, which makes it safer than CT
and CBCT. MRI scanner is slower than CT scanner and louder. Because of the
MRI nature, a patient with medical implants or other non-removable metal inside
the body may be not allowed inside the MRI scanner.

The concept of MRI is described in figure 1.10. It is based on the fact that the
human body consists of 60% water. A water molecule has two hydrogen atoms
and an oxygen atom. These molecules are moving randomly. When they are
affected by the magnetic field generated by the MRI scanner, the Hydrogen atoms
response and rotate along. A few of these hydrogen atoms have low energy, so
they are slow to gain or release the energy for the rotation.The MRI scanner uses
the energy released from these atoms to generate the 3D image. T1 and T2 are
two important types of images generated by MRI scanners. T1 image is generated
during the T1-relaxation (spin-lattice) time, the duration of time required for
molecules to align with the magnetic field. a T2 image is generated during the
T2-relaxation (spin-spin) time, the time required for the molecule to restore their
original status. Different tissues have different T1- and T2- relaxation times. In T1
images, the blood and the fat are bright, while in T2, they are less bright. Contrast
agents, e.g. gadolinium, are used also to get more customised or enhanced MRI
images.

There is a lot of physics and mathematics behind the medical imaging devices,
one can learn more from more related technical books, e.g. "The Physics of Medical
Imaging" by Webb [Web88].

1.3 Problem Definition

The dissertation problem is to find an automatic method for getting more accurate
measurements of the human cochlea scalae lengths and sizes, i.e scala vestibuli,
scala media and scala tympani, from standard cochlea clinical medical images. To
achieve this, cochlea image registration and segmentation is needed.

Image registration and segmentation results are dependent on the image con-
tent. There is no general method that solves these problems for all type of images.

The current methods fail to produce satisfying results for the cochlea clinical
images because there are lots of challenges. These scalae are not visible in such
images, see figure 1.11.

This is due to the nature of the cochlea small size. A radiologist cannot obtain
better quality cochlea images due to safety consideration of using CT scanners.
Moreover, these clinical images have low resolution, different modalities and high
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Figure 1.10: How MRI works. Up to 60% of Human body is water which contains of
Hydrogen H and Oxygen O atoms. MRI targets water molecule with low energy. In the
initial state before applying magnetic field, all H atoms rotate randomly. When applying
the magnetic field, all atoms align with the field, some of them gain energy slowly. When
the magnetic field stops, all atoms go to the initial state, some of them lose energy slowly.
By applying a radio frequency during the gaining and losing energy periods, MRI images
with different characteristics are generated. Image is inspired from [11].

noise level. All these challenges must be considered to solve the dissertation prob-
lem.

Clinicians and radiologists use cochlea medical images as an important tool
that helps them to decide different factors about the cochlear implant surgery.
The small size of the cochlea and the complicated bony structure make it difficult
to be visualised in clinical images generated by today’s technology, see figure 1.11.

Different image modalities provide different information, e.g. CT [Sue09] and
CBCT [SFS06, Sha14] visualize the bony structures while MRI visualizes the soft
tissues. Combining images from different modalities using image fusion techniques
may provide a more informative image to help clinicians in getting more accurate
and detailed information about the patient’s condition.

The figure 1.12 shows two 3D clinical images from CT and MRI modalities.
It shows one slice from each of three views axial, sagittal and coronal of the left
side cochlea (the side is based on the direction of the patient’s head, e.g. a top-to-
bottom or bottom-to-top approach). The image voxel spacing sizes are 0.4 mm ×
0.4 mm × 1.0 mm for CT and 0.4 mm × 0.4 mm × 0.7 mm for MR. With such a
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Figure 1.11: Cochlea clinical images. Top CBCT, middle: CT, and bottom: MRI. The
red circles mark the cochlea area. Each image show the three 3D standard views i.e.
axial(left), sagittal(middle) and coronal (right).

low resolution, one can not see the cochlea structure. Moreover, automatic analysis
methods do not produce good results when they are used on such low-resolution
images.

For an efficient fusion, images must be aligned correctly to the same physi-
cal space using image registration. Radiologists usually use a manual procedure
that takes a long time and many efforts to align a pair of images. Automat-
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Figure 1.12: Image registration. Top to bottom: two input 3D cochlea images of the
same patient, CT as a fixed image and MRI as a moving one. In the registered and fused
3D image, magenta colour represents the CT part and green colour represents the MR
part. Each 3D image has 3 views, from left to right: axial, sagittal and coronal. The
crossed lines represent the location of the left side cochlea.

ing this process using an image registration method saves both time and efforts.
Another application for this automation is surgical robotics. Surgical robots are
gaining popularity, primarily driven by current improvements in nanotechnology
and artificial intelligence. These robots need reliable real-time computer-vision
algorithms in order to detect and analyze the target organ. For instance, during a
robotic cochlear surgery [WGW+17], a reliable real-time cochlea image registration
is needed, e.g. to be used in cochlea image analysis.
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1.4 Dissertation Hypotheses

The dissertation problem can be solved using image registration and segmentation
techniques.

1. The cochlea multi-modal image registration problem can be solved using
the Adaptive Stochastic Gradient Descent (ASGD) [KPSV09] optimizer to
find parameters of 3D rigid transform that minimizes the negative value of
Mattes’s Mutual Information (MMI) metric [MHV+01]. The reasons for se-
lecting these methods are, at first: they are state of the art that are published
in the top scientific journals, and second: they successfully handled similar
problems for large objects, e.g. brain, prostate and lunge scan.

The novel contributed idea is to work on a small area in the clinical image
that has less noise and clear shapes, then apply the transform on the original
image. This solves the problem and required less computation time.

2. The cochlea multi-modal image segmentation problem can be solved using a
combination of model-based and atlas-based segmentation approaches. Us-
ing a high-quality µCT cochlea image as a model helps to identify different
scalae that are not visible in the clinical images. Using this model in an
atlas-based segmentation approach [RBM+05] solves the segmentation prob-
lem practically, i.e. with more accuracy and less computation time. The
novel contributed idea is to register a clinical image that serves as a model
to the input image instead of registering the segmentation directly to the
input image as in the classical atlas-segmentation. The multi-stages regis-
tration uses the rigid transform in the first stage and the B-spline transform
in the second stage. The B-spline transform handles the different deforma-
tions between different patients.

Own contribution:
The following list shows my own contribution:

• Human Cochlea Dataset (HCD), a new public and standard cochlea dataset
with landmarks for evaluation, see section 5.1. The dataset contains images
of 66 patients, 41 from a German hospital and 25 from an Egyptian hospital.
The patients are of different gender and age. The total number of images is
150 clinical images from three modalities 87 CBCT, 40 MR, and 23 CT.

• ACIR2016, ACIR2017 and ACIR2020 novel and practical methods for auto-
matic multi-modal cochlea 3D image registration and fusion, see section 5.2.
The main idea was cropping the image to a small clear part, e.g. the cochlea
part. This idea was not used before in the literature. This removes extra
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noise and make the registration problem simpler. Similar ideas exist but
are not the same, e.g. masking or using Region Of Interest (ROI). My idea
is different from masking as masking still using the full size image and the
unmasked area could contribute to the similarity metric negatively. My idea
is also different from ROI as it can be applied to any clear part of the image
not just ROI. This works because the cochlea image registration problem in
my case is a rigid registration problem so the same transformation can be
applied on any part of the image.

• ACA2018, and ACA2020 novel and practical methods for automatic multi-
modal cochlea 3D image segmentation and analysis using atlas-model-based,
see section 5.3. The main idea is to register a pre-defined image to an in-
put image then use the transformation to transform a segmentation or a
points-model. This is not found in the literature, the atlas-based segmenta-
tion registers a segmentation directly to the input image. While the atlas-
segmentation is faster, some times it just does not work. Registering images
makes the problem is simpler and in my case, it works all the time. It also
works for other cases and could solve many challenging problems e.g. feature
or points detection, detailed multi-class segmentation, and getting different
measurements from the image.

• Using ACA2018,ACA2020 for solving spine segmentation problem, see sec-
tion 7.1. An example of using the atlas-model-based method above method
to solve the spine segmentation.

• Using ACA2018,ACA2020 for solving spine points detection problem, sec-
tion 7.2. An example of using the atlas-model-based method to solve points
detection.

• Open-source user-friendly tools for cochlea and spine image registration, fu-
sion, segmentation, and analysis.
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1.5 Dissertation structure

The following list explains the dissertation structure:

• Chapter 1: Introduction. Problem definition and dissertation hypothesis.

• Chapter 2: Medical image registration and fusion. This covers the image
registration theory, important components and terminologies.

• Chapter 3: Medical image segmentation and analysis. This covers image
segmentation theory and atlas-based segmentation.

• Chapter 4: Related work. This covers recent publications that try to solve
the dissertation problems and discussion on their results.

• Chapter 5: Materials and methods. The proposed methods and the imple-
mentation in addition to the dataset and the hardware.

• Chapter 6: The experimental design, results and discussion. This chapter
describes the experimental design and the results.

• Chapter 7: Generalisation. This chapter shows that my proposed method
can solve other related problems as well, e.g. spine segmentation, finding
origin and insertion of ligament points.

• Chapter 8: Conclusion and future work. The dissertation conclusion and
ideas for future work.
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Chapter 2

Medical Image Fusion and
Registration

Image Fusion is the process of combining two or more images into one image.
It is used in medical field usually to combine images from different modalities,
e.g. CT and MRI. The CT images shows bone structure while MRI image shows
soft tissue. Combining them shows both bony structure and soft tissue at the
same time. Cochlea fused images from different modalities can be obtained using
image registration and fusion techniques. The fused cochlea image may provide
a more informative image that helps surgeons making decisions about CI surgery.
This process required the input images to be aligned, hence, solving the image
registration problem is necessary.

The image registration problem [HH01, Yoo12, Gos04] is the problem of finding
a transformation T (P, µ) that aligns one or more images, called the moving image
IM(P ), to a reference image, called the fixed image IF (P ). Here P is the vector of
all points coordinates belonged to the image and µ is a vector which contains the
transformation’s parameters.

This transformation transforms the points of an image to the same location of
the points in the reference image. In medical image registration, the intra-subject
medical image registration aligns images of the same patient. In the other hand,
the inter-subject registration aligns images of different patients. The inter-subject
registration is more challenging as different patients may differ in size and shape
which requires finding parameters of an expensive non-rigid transformation, e.g.
B-spline.

Mathematically, an image is a function of points where the output is the in-
tensity (or colour) values of the point location. The transform is a multivariable
function of two inputs The first input is the vector points P of the image. The
second input is the vector µ which contains the transformation parameters. T
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takes an image point (or a vector of points)1 and outputs the image transformed
point (or a vector of transformed points). We can write this transform as T (P, µ)
where P is the image coordinates vector.

An example for a such vector is a vector of all points of a 2D image:

P = [(x0, y0), (x1, y1), ..., (xn−1, yn−1)],

where n is the number of pixels in the image. An example is a vector of 2D
translation transform parameters where µ includes a shift in x coordinate and a
shift in y coordinate.

The 2D translation transform is a simple example of a transformation where
µ = [tx, ty] is the vector contains the shifts in x and y coordinates. This transform
is defined as:

T (p, µ) = T ((x, y), (tx, ty)) = (x+ tx, y + ty),

Finding a transform parameter is a challenging task especially for complicated
transforms with many parameters. The methods, which work for some images,
may not work on a different set of images. Hence, the general registration problem
is still unsolved and many papers are published every year trying to solve different
specific image registration problems.

Optimisation techniques [NW06] are usually used to find these parameters. An
optimiser, such as the Gradient Descent (GD)[Sny05], tries to find these parameters
by minimising a similarity metric cost function of the input images.

Popular image registration cost functions use similarity metrics such as Mean
Squared Error SMSE(IF , IM) [DCRB19] or Mutual Information SMI(IF , IM) [VW97].
The goal is to increase the similarity between the transformed moving image and
the fixed image by minimising the similarity metric function. For some similarity
metrics we may minimise the negative value of the similarity metric to maximise
the similarity between the images, e.g. as in the case of the mutual information
metric SMI . figure 2.1 shows a diagram of the main components of the image
registration pipeline.

The image registration optimisation problem is stated as follows:

µ̃ = argmin
µ

, S(IF (P ), IM(T (P, µ))) , (2.1)

where µ̃ is the optimal transform parameters, µ is the transformation param-
eters’ vector, IF and IM are the fixed and the moving images, P is the points

1Note: I am using vector to describe a list of elements as this is more related to implementation
e.g. vector in c++, not a vector as a mathematical content.
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coordinate vector, S is the similarity metric function, and T (P, µ) is the transfor-
mation function2.

In the GD optimiser, the new parameters are updated using the derivative of
the cost function with respect to the transformation parameters, e.g.:

µk+1 = µk − λ
∂S(IF (P ), IM(T (P, µk)))

∂µ
, (2.2)

where k is the optimisation iteration, λ represents the step-size of the GD.3 The
derivative of the similarity metric with respect to the transformation parameters is
required for the equation (2.2). Using the chain rule, this derivative can be divided
into two main parts:

∂S

∂µ
=

n−1�

j=0

�
∂S(IF (pj), IM(T (pj, µk)))

∂T (pj)

∂T (pj, µk)

∂µ

�
, (2.3)

where ∂S
∂µ

is the first order derivative of the similarity metric S with respect to
the transformation parameters µ at k optimisation iteration, pj is an image pixel
coordinate, and n is the total number of the image pixels. The first part of the
right-hand side in the equation (2.3) requires the derivative of the similarity metric
and the transformed moving image. The second part ∂T (pj ,µk)

∂µ
is called Jµ and it is

similar to the Jacobian matrix of the transformation as it represents the transfor-
mation partial derivatives at each image point with respect to the transformation
parameters. The term Jµ is computed at each optimisation iteration. For a large
image size and complex transformation, the computation requires a lot of time to
complete.

2.1 Interpolation

In general, an image registration pipeline should have an interpolator. Almost
every geometric transformation requires interpolation. The quality of the interpo-
lation has a large influence on the result of the registration.

The interpolator is a method that predicts a function value f(x) at a specific
input value x. This prediction uses the known function values to predict the
unknown function value. Since the transformation may map a point to an area
outside the image space, interpolation is used to predict the intensity value of the
transformed point when it is outside the image space based on the image values.

2IM (T (P, µ)) can be read as the transformed moving image, in some references it is written
as Tµ(IM ).

3It is also called the learning rate in some references e.g. as in elastix and tensor flow opti-
misers, see https://elastix.lumc.nl/doxygen/classitk_1_1GradientDescentOptimizer2.
html and https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD
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Figure 2.1: Main image registration components.

Figure 2.2: Comparison of some popular interpolation methods in 1D (top) and 2D
(bottom). Image source is [20].

In this dissertation, some common interpolation methods used in my research
will be covered briefly, e.g. K-Nearest Neighbour, Linear, Polynomial and B-splines
interpolators.

The general interpolation form is f(x) =
�

k∈Zq ck.φ(x − k) , where x is the
point that we need to interpolate, Z is the set of integer numbers, q is the dimen-
sion, e.g. for 2D q=2, ck is a coefficient, e.g. some function of the sample value.
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For implementation purposes we use this similar equation:

f(x) =
�

i∈|k|
ci.φ(x− ki), (2.4)

where k is a set of integer values from the domain of x and |k| is the length
of this set. The function φ(x) defines the interpolator as we will see in the next
paragraphs.

K-Nearest Neighbour (KNN) interpolation is probably the simplest interpolator
that selects a value from neighbour values. This gives no need to introduce new
values. The function φ(x) in equation (2.4) is defined as follows:

φ(x) =





0, x < −1
2

1, −1
2

≤ x < 1
2

0, 1
2
≤ x

(2.5)

This interpolator is important in case of segmentation or binary images to
avoid introducing new intensity values. Note that the above definition is a sim-
plified version of the original method. The original method involves sorting the
distances from each point to all other points then select the k-nearest values to
the point to be interpolated.

Linear interpolation is one of the simplest interpolators. The predicted value
is a point in a line between the values of the function before and after the point
to be interpolated. The φ(x) for linear interpolation in equation (2.4):

φ(x) =

�
1− |x|, |x| < 1

0, 1 ≤ |x| (2.6)

where |x| is the absolute value of x.

Polynomial interpolation tries to fit a polynomial function of degree n to the
points. Usually cubic polynomial function is used, i.e. n = 3, see figure 2.2 and
section 2.2 .

f(xi) =

j=n�

j=0

ajx
j
i = a0 + a1xi + a2x

2
i + ...+ anx

n
i . (2.7)

Finding the values of aj that satisfies f(xi) = yi requires solving a linear equa-
tions system of the form Xa = Y , e.g. by using Gaussian elimination method.
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Figure 2.3: Comparison between polynomial and splines interpolation of a function
f(x) = 1/(1 + 25x2).

B-splines interpolation tries to find a function that represents the point using
the concept of the basis function. The word spline means a long, thin and flexible
strip of wood or metal. It was used in the old days to draw smooth curves passing
through fixed points. The points were marked with heavy nails and the spline was
made to go around each one of them.

Splines describe a smooth curve that passed through all points. The Romanian-
American mathematician I. J. Schoenberg used this idea to generate smooth func-
tions passing through given points and decided to call them spline functions [SS73].
Splines are polynomials between two consecutive ’nails’ but the polynomial be-
tween two consecutive nails is different from the one between the prior and the
succeeding nails. That is why splines are said to be piece-wise polynomial.

In figure 2.3, the outcome of trying to fit polynomials of varying orders com-
pared with spline interpolation is shown. I tried fitting polynomials of degrees 3,
5, and 7 to the points marked as red dots. The higher order polynomials fit the
points better, but they also oscillate in a way the original function does not. This
behaviour is called Runge’s phenomenon, in honour of the German mathematician
Carl David Tolmé Runge who first reported it [Run01].

B-spline can be used as a transformation, hence more about the B-spline theory
will be explained in the next section.

2.2 Transformation

In image registration, the transformation is a spatial transform type not an in-
tensity transform. This means we are not changing the pixel values rather we are
moving them around. In the medical images processing field, one must be care-
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ful using these transformations as it could easily generate misleading transformed
images.

A transformation is a multi-variable function that takes one point p (or number
of points P ) and parameters µ as an input, and outputs a transformed point p̃ (or
transformed points P̃ ):

T (P, µ) = P̃ . (2.8)

The derivative of the transformation with respect to its parameters is used in
the image registration so it is important to compute this derivative.

Jµ =
∂T (P, µ)

∂µ
. (2.9)

I will provide some simple examples of common transformations and their
derivatives later. For now, some important terms related to transformation will be
explained. The Identity transform is the transformation that does not change the
input. It is sometimes used to simplify matrix operations. The rigid transform
does not change the shape of the input object, e.g. identity transform, translation
transform and Euler transform. These transforms may shift or rotate the object
without applying scaling or deformation. On the other hand, the non-rigid trans-
form includes rigid transform parameters and add more deformation parameters,
e.g. scaling or shearing, see table 2.1 for some common transformations.

Table 2.1: Common transformations and their properties.

Transform Type Number of parameters properties
2D 3D

Identity rigid 0 0 output point =input point
Translation rigid 2 3 shifting

Mirror rigid 2 3 flipping
Euler rigid 3 6 shifting, flipping, and rotation

Similarity non-rigid 5 9 shifting, flipping,rotation, and scaling
Affine non-rigid 7 12 shifting, flipping,rotation, scaling, and shear

B-splines non-rigid (H x W) grid (H x W x D) grid deformation of specific parts of the image

The letters H, W and D represent respectively the height, width and depth
of the image. Note that the number of B-splines transform is variable. These
parameters are the B-spline control points (also called B-spline coefficients) and
usually they are represented as a 2D or 3D grid. This allows to transform one part
or multiple parts of the image without affecting other parts by modifying only
specific control-points in the grid. The size of the control-points grid is usually
based on the images size so the number of parameters could reach thousands for
some 3D medical images. This transform is also very useful to filter an image or
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compute the image gradient in a more efficient way. More information about this
transform with some simple examples will be added later.

In this chapter, I will explain only some basic transformations.

Translation transform shifts a point from one location to the other new location.

T (p, µ) = T (x, tx) = x+ tx , (2.10)

where p is one point belonging to the image. For n dimension:

T (p, µ) = T ((x0, .., xn−1), (tx0 , .., txn−1)) = (x0 + tx0 , ..., xn−1 + txn−1) , (2.11)

where p is a multi-dimension one point belonging to the image. An example
for a 2D point translation transform and its derivative is the following:

T (p, µ) = T ((x, y), (tx, ty)) = (x+ tx, y + ty) . (2.12)

∂T (p, µ)

∂µ
=

(x+ tx, y + ty)

∂(tx, ty)
=

�
(x+ tx, y + ty)

∂(tx)
,
(x+ tx, y + ty)

∂(ty)

�
= ((1, 0), (0, 1)) .

(2.13)
Notice that the derivative is the square identity matrix of length 2 (the point

dimension). In general, for the 2D translation transform we have:

Jµ =
∂T (p, µ)

∂µ
=

��
∂T (µ0, x)

∂µ0

,
∂T (µ0, y)

∂µ0

�
,

�
∂T (µ1, x)

∂µ1

,
∂T (µ1, y)

∂µ1

��
,

(2.14)
Mirror transform requires only the flipping axis. Hence, it needs only 2 pa-

rameters in case of a 2D image and 3 for a 3D image. It is a special case of
the rotation transform where the angle of the rotation is known (180 degrees)
and we only need to know if the direction is affected or not. Note that we can
also use one parameter, e.g. integer value that has a meaning as follows: 0 for a
flip around x direction, 1 for a flip around y direction, 2 for a flip around both x
and y directions, etc. After that, we define this mapping in the transform function.

Euler transform is a rigid transform that combines translation and rotation
together. This composite transformation, or sequence of transformations, follows
the matrix multiplication order. The order of the transformation is important, e.g.
rotation followed by translation is not the same as translation followed by rotation.
For 2D images, the transformation needs 3 parameters: the transformation angle θ
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in degrees, the shift in x-coordinate and the shift in y-coordinate, e.g. µ = θ, tx, ty.
The rotation is counterclockwise about the origin with respect to the x-axis. To
rotate a point P around a specific point Pc = (xc, yc), one first translates to -Pc

then rotates then translates back to Pc.
The transformation matrix for 2D Euler transform:

T (p, µ) = T ((x, y), (θ, tx, ty)) = (2.15)


1 0 tx
0 1 ty
0 0 1





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1





x
y
1


 =



cos(θ) − sin(θ) tx
sin(θ) cos(θ) ty
0 0 1





x
y
1




From the above equation, the transformed values x̃ and ỹ can be computed using:

x̃ = x cos(θ)− y sin(θ) + tx,

ỹ = x sin(θ) + y cos(θ) + ty .

The above matrix applies a rotation followed by translation. For a translation
followed by rotation we can write:

T (p, µ) = T ((x, y), (θ, tx, ty)) = (2.16)


cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1





1 0 tx
0 1 ty
0 0 1





x
y
1


 =



cos(θ) − sin(θ) (txcos(θ)− tysin(θ))
sin(θ) cos(θ) (txsin(θ) + tycos(θ))
0 0 1





x
y
1




Here is an example: assuming a 2D point p = (x, y) = (2, 3) and a 2D Eu-
ler transformation parameters µ = (θ, tx, ty) = (30, 10, 20). Rotation followed
by translation produces the output point p̃ = (10.232, 23.60) while translation fol-
lowed by rotation produces the output point p̃ = (−1.11, 25.9). To get a translation
followed by rotation:

x̃ = (x+ tx) cos(θ)− (y + ty) sin(θ),

ỹ = (x+ tx) sin(θ) + (y + ty) cos(θ),

The derivative of the 2D Euler transform with respect to it parameters Jµ is:

∂T (P, µ)

∂µ
=

∂T ((x, y), (θ, tx, ty))

∂θ
,
∂T ((x, y), (θ, tx, ty))

∂tx
,
∂T ((x, y), (θ, tx, ty))

∂ty

=

��
−x sin(θ)− y cos(θ)
x cos(θ)− y sin(θ)

�
,

�
1
0

�
,

�
0
1

��

(2.17)
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Note that for 3D rotation we have 3 rotations matrices Rx, Ry, and RZ with
three angles α, β, and γ. These three matrices are combined based on the order of
the rotations.

Rx(α) =



1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)


 (2.18)

Ry(β) =




cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)


 (2.19)

,

Rz(γ) =



cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


 (2.20)

B-spline transform4 can be considered as a generalisation of the Bézier curves.
The B-spline is a curve constructed from a number of smoothly connected Bézier
curves. A Bézier curve [23] is a curve represented by a function which allows
computing any curve point in the infinite real domain.

The Bézier curve is generated using something similar to the linear interpola-
tion as shown in section 2.2. The figure shows a quadratic Bézier curve with 3
control points. To draw the curve points, first lines between the control points are
generated, then a ratio point t is moved from 0.0 to 1.0 on both lines. The lines
connecting these t points are generated. The curve points are now the t points on
the generated lines.

The n degree Bézier curve is defined as:

C(t) =
n�

i=0

Bi,n(t)pi t ∈ [0, 1], (2.21)

where B is a Bernstein polynomial [Ber12] of degree n and defined as:

Bi,n(t) =

�
n

i

�
(1− t)n−i ti 0 ≤ i ≤ n, (2.22)

and
�
n
i

�
is a binomial coefficient which is defined as:

�
n

k

�
=

n!

k!(n− k)!
. (2.23)

4Interactive online demo can be found at http://jsxgraph.uni-bayreuth.de/wiki/index
.php/B-splines
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Figure 2.4: An example of a quadratic Bézier curve with 3 control points. Note: Image
is generated using www.ibiblio.org/e-notes then modified in our lab.

Remember that as higher degree of a polynomial, as there more changes in the
direction. Bernstein polynomial can be defined recursively , e.g.:

Bi,n(t) = (1− t)Bi,n−1(t) + tBi−1,n−1(t), n > 0

B0,0(t) = 1,

Bi,n−1(t) = 0, i = n,

Bi−1,n−1(t) = 0, i = 0.

(2.24)

The number of the Bernstein polynomials for a curve of degree n is n+1 , e.g.
for n = 1 there are two polynomials. Here are some examples:

• Linear, degree n = 1:

B0,1(t) = (1− t)

B1,1(t) = t
(2.25)

• Cubic, degree n = 3

B0,2(t) = (1− t)3,

B1,2(t) = 3(1− t)2t,

B2,2(t) = 3(1− t)t2,

B3,2(t) = t3

(2.26)

The Bernstein polynomials can be written as a matrix. This makes the im-
plementation simpler. The cubic Bézier curve equation can be written using the
equation above as:
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C(t) = (−t3 +3t2 − 3t+1)p0 + (3t3 − 6t2 +3t)p1 + (−3t3 +3t2)p2 + (t3)p3 (2.27)

The matrix form:

C(t) = [p0, p1, p2, p3]




−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0







t3

t2

t
1


 (2.28)

The general form:
C = P · B · T (2.29)

where C is the Bézier curve points vector, C is the control points vector, B is
the Bernstein matrix, T is the vector containing t values, i.e. [tn, tn−1, ...., t, 1].

The derivative of the Bernstein polynomial is defined recursively using equa-
tion (2.22):

∂Bi,n(t)

∂t
= nBi−1,n−1(t)− Bi,n−1(t). (2.30)

The convolution of the Bernstein functions of degree n produces a smooth
curve, see figure 2.5.

The result of two functions convolution f and g is a modified version of one of
the original functions. The convolution is defined as:

(f ∗ g)(t) �
� ∞

−∞
f(τ)g(t− τ)dτ (2.31)

the symbol means "equal by definition", ∗ is the convolution operator. For
implementation, the discrete form is required:

(f ∗ g)[t] =
m�

τ=t

f [τ ].g[t− τ ] (2.32)

where m is the range in which two signals are available at the same time5. The
length of f signal is usually smaller than the g signal length. The Greek letter τ is
an index for the location at f . Usually f is a large signal or an image while g as a
small signal or a filter. When g is an even function , e.g. g(t) = g(−t) convolution
is equivalent to correlation.

5Note: [t] is a signal symbol
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Figure 2.5: Bernstein functions of different degrees and their convolutions.

Here is an example: assuming f = [1, 4, 2, 5], g = [3, 4, 1], the result of con-
volution c = f ∗ g = [3, 16, 23, 27, 22, 5]. Note that the relationship between the
lengths i.e. |c| = |f |+ |g|− 1.

The Bézier curve can be constructed using de Casteljau’s algorithm6 [FH00]
based on the fact that the control point pi,j depends on pi,j−1 and pi+1,j−1 as shown
in figure 2.6 [9].

In a Bézier curve, if one of the control points is changed, the whole curve
changes. There is no local control. Another issue in the Bézier curve is that
more control points are needed to represent complicated curves what means higher
degree polynomials and more computation. The B-spline curve solves the two
above issues and a better alternative for Bézier curves.

The B-spline curve is represented by m−n Bézier segments, where n is the curve
6Note: Casteljau is the one who invented Bézier curves. Bézier is the one who made them

popular.
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Figure 2.6: Cubic Bézier curve with 4 control points p0,0, p1,0, p2,0, p3,0 connected by
the red line. Note: Image is generated using www.ibiblio.org/e-notes then modified
in our lab.

degree and m is the total number of control points. Each segment is represented
by a Bézier curve of degree n and n + 1 control points, see figure 2.7 top. The
B-spline has k = m − n + 1 knots, where the first knot point is the first point in
the curve t0 = C0 and the last knot point is the end point of the curve tk = C|C|−1.
The knots are in a non-decreasing sequence. To make the end control-points are
the curve-end points, more knots are added. We get that by making the first
knots and the end knots are n + 1. This means the total number of knots is now
k = m− n+ 1 + 2n = m+ n+ 1 as shown in figure 2.7[31][31] bottom.

B-spline transform represents an image using its control-points. The dimension
of the control-points grid is the same as the input image’s dimension, e.g. if the
input image is 3D, the grid is also 3D. The grid size is a variable, but it must
satisfy that the number of control-points per each dimension to be larger than the
B-spline degree. In this example, for a cubic B-spline it must be larger than 3.

By changing these control-point locations, one gets different transformed ver-
sions of the input image. One can also transform a specific part or parts of the
image by changing only specific control-point locations.

The transformed images in figure 2.8 are generated by using random values
for the 2D cubic B-spline transform control-points. The size of the control-points
are varied from 16 to 100. The red arrows show the random displacement field.
Notice that the smaller number of control-points means the less deformation of the
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Figure 2.7: Cubic B-spline curve. Left: 6 control points and 4 knots, basis functions are
shown as well. Each segment is controlled by 4 control points. Right: 9 control-points and
13 knots, the first and the end knot-points are n+1 knots each, this way the end points of
the curves are control points. Note: Image is generated using www.ibiblio.org/e-notes
then modified in our lab.

transformed image. The B-spline representation of the image has other desirable
features like fast image filtering or derivative computation [Uns99].

The B-spline of degree n can be constructed using a generalisation of de Castel-
jau called Cox-de Boor recursion. To compute the B-spline curve points over an
interval X = x0, x1, ... we use:

C =
�

xj∈X

m−1�

i=0

βn
i (xj, K)Pi (2.33)

where Pi is a control-point, m is the number of control points, K is the knots
vector of length k and βn

i is the B-spline basis function of degree n defined as:

βn
0 (x,K) =

�
1 if ti ≤ x < ti+1, ti, ti+1 ∈ K

0 otherwise

βn
i (x,K) = C1 + C2

C1 =

�
0 if ti+n − ti = 0
x−ti

ti+n−ti
βn−1
i (x,K) otherwise ,

C2 =

�
0 if ti+n+1 − ti+1 = 0
ti+n+1−x

ti+n+1−ti+1
βn−1
i+1 (x,K) otherwise

.

(2.34)

The B-spline equation is modified to represent how actually it is implemented
as the original equations found in the literature create confusion sometimes. The
confusion comes from ignoring the division by zero and the knot point is used as the
curve point while it is actually a point in the curve that connects two sub-curves.
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Figure 2.8: 2D B-spline transform of a 2D cochlea coronal view. When the number of
control-points is small there is no deformation. More control-points may produce more
deformation.

In image registration, we first compute the control-points of the input image
and consider them as initial values of the B-spline transform parameters. During
the optimisation process we keep changing them until the cost function is min-
imised.

As described by Unser et al. [UAE91], a different implementation can be
achieved using the signal theory and the Z-transform. It is the implementation
found in ITK package as it simplifies computing the derivative, mutual information,
interpolation and filtering of medical images.

The B-spline basis function can be defined by self-convolution n+1 times with
β0(x) which is a centered rectangle around origin7.

βn
+(x) = β0

+(x) ∗ β0
+(x) ∗ ... ∗ β0

+(x)� �� �
convolution n+1 times

,

β0
+(x) =

�
1, x ∈ [0, 1)

0, otherwise.

(2.35)

The digital filter takes an input of a signal f [k] and output of a signal c[k]
that is a convolution of an interpolation signal hint and the input signal f , i.e.
c[k] = (hint ∗ f)[k].

Hint(z) =
1

B(z)
=

1�
k∈Zq φ(k)z−k

(2.36)

An example of the cubic B-spline basis function is:

7Note that the number n in βn does not mean "to the power n", it is just a convenient way
to describe the degree of the B-spline basis function because of the use of recursion.
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β3(x) =





2
3
− |x|2 + 1

2
|x|3, 0 ≤ |x| < 1

1
6
(2− |x|)3, 1 ≤ |x| < 2

0, otherwise.

(2.37)

For β3(x), the discrete B-spline kernel is B(z) = z+4+z−1

6
and the interpolation

filter is

6

z + 4 + z−1
=

(1− α)2

(1− αz)(1− αz−1)

z←→ hint[k] =

�
1− α

1 + α

�
α|k| ,

where α is the pole value and α = −2 +
√
3 = −0.171573. The process has a

cascade of first order recursive filters that contains a casual filter 1
1−αz−1 and an

anti-casual filter 1
1−αz

.
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2.3 Cost function

The optimisation cost function of the image registration is a similarity metric func-
tion that minimizes the similarity error between the input images. It is important
to have the similarity metric and its derivative with respect to the transformation
parameters in order to update the transformation parameters.

Mean Square Error (MSE) metric is useful in the case of mono-modal image
registration, i.e. input images come from the same imaging modality, the image
intensity at corresponding points between the two images should be similar. MSE
is one of the simplest measures of the similarity. It is defined as:

SMSE(IF (P ), IM(T (P, µ)) =
1

n

n−1�

i=0

(IF (pi)− IM(T (pi, µ)))
2, (2.38)

where:

• IF (P ), IM(P ): the fixed and the moving images. P is the point coordinates
of each pixel.

• T (P, µ): a transformation with µ parameters. It inputs a point (or points)
and outputs a transformed point (or transformed points). For simplicity, I
will use the 2D translation transform which is defined in equation (2.12) as
an example.

• P is the image coordinates vector. An example for such vector is the vector
of all points of a 2D image P = [(x0, y0), (x1, y1), ..., (xn−1, yn−1)], where n is
the number of pixels in the image.

• µ is the vector of the transformation parameters. For example, the parame-
ters of the 2D translation transform, where µ includes only two parameters
- a shift in x coordinate and a shift in y coordinate.

• n is the number of pixels in the image.
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The derivative of this metric is:

∂SMSE

∂µ
=

2

n

n−1�

i=0

�
(IF (pi)− IM(T (pi, µ)))

�−∂IM(T (p, µ))

∂µ

��
(2.39)

Using chain rule, we get:

∂SMSE

∂µ
=

2

n

n−1�

i=0

�
c1 c2

∂(T (pi, µ))

∂µ

�
, (2.40)

where:

• c1 = (IM(T (pi, µ)− IF (pi))) is constant during the optimisation.

• c2 = ∂IM (T (p,µ))
∂T (p,µ)

is also constant during the optimisation. We compute the
gradient of the moving image ∇IM = ∂IM (P )

∂P
(one time operation before

the optimisation). During the optimisation we get a transform point p̃i =
T (pi, µ), then we get the intensity value from the moving image gradient at
a transformed point’s location v = ∂IM (p̃)

∂p̃
.

• ∂(T (pi,µ))
∂µ

is a row from Jµ (see equation (2.41)) that represents the ith trans-
formed point derivative with respect to each transformation parameter µj ∈
µ. Jµ is the Jacobian of the transformation with respect to its parameters
as shown in equation (2.41). Jµ is computed during each iteration of the
optimisation. Note that Jµ = ∂T (P,µ)

∂µ
is different from the Jacobian of the

transformation J = ∂T (P,µ)
∂P

Jµ =
∂T (P, µ)

∂µ
=




∂T (p1,µ1)
∂µ1

∂T (p1,µ2)
∂µ2

∂T (p1,µ3)
∂µ3

. . ∂T (p1,µm)
∂µm

∂T (p2,µ1)
∂µ1

∂T (p2,µ2)
∂µ2

∂T (p2,µ3)
∂µ3

. . ∂T (p2,µm)
∂µm

∂T (p3,µ1)
∂µ1

∂T (p3,µ2)
∂µ2

∂T (p3,µ3)
∂µ3

. . ∂T (p3,µm)
∂µm

.

.

.
∂T (pn,µ1)

∂µ1

∂T (pn,µ2)
∂µ2

∂T (pn,µ3)
∂µ3

. . ∂T (pn,µm)
∂µm




, (2.41)

where P is the image points coordinates vector, p1 is a point belonging to this
vector, T is the transformation, µ is the vector of the transformation’s parameters,
µm is a parameter element belonging to this vector, n is the number of points in
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the image, m is the number of the parameters of the transform.

Since I could not find any example in the literature, I provide one here, let us
assume:

• a 2D point p = (x, y) = (2, 3).

• a 2D translation transform:

T (p, µ) = T ((x, y), (µ0, µ1)) = (x+ µ0, y + µ1).

We have :

∂T (p, µ)

∂µ
=

∂T ((x, y), (µ0, µ1))

∂(µ0, µ1)
=

�
∂(x+µ0,y+µ1)

∂µ0
∂(x+µ0,y+µ1)

∂µ1

�
=

�
∂(x+µ0)

∂µ0

∂(y+µ1)
∂µ0

∂(x+µ0)
∂µ1

∂(y+µ1)
∂µ1

�
=

�
1 0
0 1

�

(2.42)
For our point we have:

∂T ((2, 3), µ0)

∂µ0

= (1, 0),
∂T ((2, 3), µ1)

∂µ1

= (0, 1) (2.43)

The final result should have a vector with the size of the point dimension. It
seems that for updating the transformation parameters we just multiply the gra-
dient of the transformed point with twice the error value,and then we divide it by
the number of pixels.

Mutual Information (MI) metric has become standard for multi-modality prob-
lems. This technique does not require information about the surface properties of
the object, besides its shape. It is robust with respect to variations of illumination
in addition to the fact that it is quite general, i.e. it is foreseeable to be used in
a wide variety of imaging situations. The idea is to use the mutual information
between the object and the image, that is why it can be considered intensity ap-
proach rather than feature approach. As key-point detection and features are not
easy to match between CBCT, CT and MRI images. This metric is defined using
the entropy of the images:

SMI(IF , IM(T (P, µ))) = h(IF ) + h(IM(T (P, µ)))− h(IF , IM(T (P, µ))), (2.44)

where h(IF ), h(IM(T (P, µ))), h(IF , IM(T (P, µ))) are the estimations of the
fixed image entropy, transformed moving image entropy and the joint entropy of
both fixed and moving images.

h(X) =

�
xi∈X(p(xi).log2(p(xi))), p(xi)0

0, p(xi) ≤ 0
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h(X, Y ) =
−�xi∈X

�
yj∈Y (p(xi, yj).log2(p(xi, yj))), p(xi, yj)0

0, p(xi, yj) ≤ 0

The cost function can be rewritten as:

SMI(IF , IM(T (P, µ))) =
�

x∈IF

�

y∈IM (T (P,µ))

�
p(x, y)log2

�
p(x, y)

p(x), p(y)

��
(2.45)

This requires the estimation of Probability Density Functions (PDF) from the
input images. This PDF estimation uses Parzen windows [Par62]. Viola and
Wells [VW97] explains the approach in details. I give here a brief explanation for
an implementation purposes.

Two groups A and B of random samples of lengths NA and NB are created.
The samples contain intensity values taken randomly from the fixed and the trans-
formed moving images as follows:

• Group A contains samples with NA values from the fixed image AF (Pr1)
and samples from the transformed moving image AM(T (Pr1)) at Pr1 random
locations.

• Group B contains samples with NB values from the fixed image AF (Pr2)
and samples from the transformed moving image AM(T (Pr2)) at Pr2 random
locations.

Note that for each sample set we get the same locations from the fixed and
the moving images, e.g. AFi

, and AMi
are from the same location i, AFi

from
the fixed image and AMi

from the moving image. We will use these samples to
estimate the entropy of the fixed and the moving images. The estimated entropy
can be defined as:

h(X) ≈ EX(−log2(p(X))) =
−�xi∈BX

(log2(p(xi)))

NB

, (2.46)

where X is an input image, EX is the estimated expected value of the image (the
image mean), BX is a sample set from the image X, p(X) is the estimated image
probability density function which can be computed using the Parzen window with
the Gaussian kernel:

p(X) ≈ 1

NA

�

xj∈AX

G(x− xj,ψ), (2.47)
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where X is an input image, AX is a sample set from image X with length
NA. G is the Gaussian function centered at x with a standard deviation ψ that
represents the kernel bandwidth. The Gaussian G function is defined as:

G(x− x̃,ψ) =
1

ψ
�
(2π)

e−
1
2
(x−x̃

ψ
)2 , (2.48)

where x is an intensity value from the sample set, x is the mean value of the
image, ψ is the Gaussian kernel width.

By plugging the equation (2.47) in the equation (2.46) we get the estimation
of the entropy of an image X.

h(X) ≈
−�xi∈B(log2(

�
xj∈A G(xi − xj,ψ))− log2(NA))

NB

. (2.49)

From (2.44), the derivative of the mutual information metric is:

∂SMI(Y,X(T (P, µ)))

∂µ
≈ ∂h(X(T (P, µ))))

∂µ
− ∂h(X(T (P, µ))), Y )

∂µ
, (2.50)

where X is the fixed image IF and X is the moving image IM . By plugging
(2.49) in (2.50) we get:

∂SMI

∂µ
≈
�

yi,xi∈B
�

yj ,xj∈A

�
(xi−xj)

ψx
(Wx −Wyx)

∂X(T (xi−xj ,µ))

∂x

∂T (xi−xj ,µ)

∂µ

�

NB

,

(2.51)
where

Wx =
G(xi − xj,ψx)�

xk∈A G(xi − xk,ψx)
,

and

Wyx =
G((yi − yj, xi − xj),ψy,x)�

yk,xk∈A G((yi − yk, xi − xk),ψy,x)
.

The term ∂X(T (xi−xj ,µ))

∂x
is the gradient of the transformed moving image sam-

ples. The term ∂T (xi−xj ,µ)

∂µ
is the Jµ of the moving image samples which is similar

to equation (2.41).
Finally, I should note that there is a typo in the original mutual information

paper [VW97]. In equation 17, the weight function Wuv(wi, wj)ψ
−1
vv should be ac-

tually Wuv(wi, wj)ψ
−1
v .
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Figure 2.9: Cost functions comparison MSE vs MI. The brain image is taken from 3D
Slicer sample dataset.

Mattes’s Mutual Information (MMI) [MHV+01] is an enhancement of Viola
and Well’s Mutual Information. It is considered as the state of art that has been
shown to be suitable for multi-modal and mono-modal medical image registration
[KPSV09].

SMMI(IF (P ), IM(T (P, µ))) = −
�

lHF

�

lHM

p(lHF
, lHM

|µ)log
�

p(lHF
, lHM

|µ)
pm(lHF

|µ)pf(lHM
))

�

(2.52)
where lHF

and lHM
are the lengths of the histogram bins of the fixed image

IF (P ) and the transformed moving image IM(T (P, µ)). p, pMand pF are the joint
marginal probability distributions of the fixed and the transformed moving images.
These probabilities are estimated from B-spline representation of the images.

The figure 2.9 shows a comparison between the two popular cost functions MSE
and MI. Notice that for a similar image with different colors, MI is more accurate.

2.4 Optimisers

The optimisation problem is stated in equation (2.1), gradient descent optimiser
is already mentioned earlier in this chapter.

Stochastic Gradient Descent (SGD) approach [RM51, KSP07] uses samples
instead of the whole images. Sometimes these samples are taken randomly. The
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stochastic approach allows fewer computations and provides practical results in
practice. The parameters updating rule of SGD is:

µk+1 = µk − λ
∂S(ÎF (P ), ÎM(T (P, µk)))

∂µ
, (2.53)

where ÎF and ÎM represent samples from the input images IF and IM .

The step-size λ in the gradient descent methods, e.g. in equations (2.2) and
(2.53), is an important optimisation factor that has to be set manually. It has a
large influence on the gradient descent-based optimisation methods. This factor is
data-dependent, so finding a suitable value for different problems is challenging.

Adaptive Stochastic Gradient Descent (ASGD) [KPSV09] is an optimiser that
adapts the step-size factor λ automatically using an image-driven mechanism to
predict its value. It replaces λ with a parameter δ that defines the maximum
incremental displacement allowed between the optimisation’s iterations8. The δ
parameter is computed using the voxel9 size of the input image. The mean voxel
spacing (in mm) seems to be a good value as larger values lead to more aggressive
optimisation [KPSV09]. This optimiser will be explained in more details in a later
chapter.

Fast Adaptive Stochastic Gradient Descent (FASGD) [QvLS16] is another adap-
tive stochastic optimiser that estimates the step size automatically using the ob-
served voxel displacement. A free parameter δ defines the maximum incremental
displacement allowed between iterations. The δ parameter is computed using the
voxel size (mm). During the computation of the step size, two parameters, i.e w
and fmin, are fixed in FASGD. This is faster but less adaptive than ASGD.

Newton methods use an approximation of the function to find a function ex-
tremum. A function has its extremum when its derivative10 is zero. Finding an
extremum is thus equivalent to finding the root of the derivative (or gradient)
function. That is the reason many root finding algorithms find their use in opti-
mization algorithms. Perhaps the oldest algorithm to find roots it the Newton’s
method. If f is a function of x then to find an extremum of f we must find an x0

such that f �(x0) = 0. Thus, the problem of finding an extremum of f is identical
to finding the root of its derivative. Taylor series [3] approximate a function as:

8In elastix, δ is the maximum step length parameter.
9The term pixel is short for picture element. Voxel is a pixel in a 3D image.

10gradient if it is a multi-variable function
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f(x) ≈
∞�

n=0

(
f (n)(x0)

n!
)(x−x0)

n = f(x0)+f �(x0)(x−x0)+
f ��(x0)

2
(x−x0)

2+... (2.54)

Now by replacing x0 by x, and x by x+ h:

f(x+h) ≈ f(x)+ f �(x)(x+h−x)+
f ��(x)

2
(x+h−x)2 ≈ f(x)+h f �(x)+

h2

2
f ��(x)

(2.55)
The Taylor expansion of f up to the quadratic terms is:

f(xk + h) ≈ f(xk) + h f �(xk) +
h2

2
f ��(xk). (2.56)

The approximate form will have a minimum at:

h =
−f �(xk)

f ��(xk)
. (2.57)

Therefore, we can update our root to:

xk+1 = xk + h = xk −
f �(xk)

f ��(xk)
. (2.58)

Then we reach the extremum, xk+1 = xk. This idea is generalized to the case
when f is a function of more than one variable by replacing f �(xk) with the gradient
∇f(xk) and the reciprocal of the second derivative by the inverse of the Hessian
matrix Hk. Thus, equation (2.58) becomes:

xk+1 = xk −
f �(xk)

f ��(xk)
. (2.59)

By putting f �(xk) = ∇f(xk) and 1
f ��(xk)

= H−1
k , the update rule for Newton

optimiser is:

xk+1 = xk −H−1
k ∇f(xk). (2.60)

Stochastic Quasi-Newton (S-LBFGS) [BHNS16] is the Newton optimiser method
where the second-order derivative of the cost function is considered. GD assumes
that the second-order derivative (Hessian) is the identity matrix I. In some cases
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where the Hessian matrix is ill-conditioned, using GD produces inefficient optimi-
sation result. The Newton approach is computationally very expensive as com-
putation of the Hessian requires a lot of time. Stochastic quasi-Newton Methods
[BHNS16] use an approximation of the Hessian of the cost function which reduces
the computation time. The update function in quasi-Newton optimiser is:

µk+1 = µk − λ.H−1∂S(IF (P ), IM(T (P, µ)))

∂µ
(2.61)

where k is the optimisation iteration, λ is the step size and H is an approxima-
tion of the second-order derivatives (Hessian matrix H). Hence,

H � H =
∂2S(IF (P ), IM(T (P, µ))

∂µ2
.

A popular quasi-Newton update rule is Broyden-Fletcher-Goldfarb-Shanno (BFGS)
[NW06] which uses the first-order derivatives to update the inverse Hessian directly,
see equation (2.60). This produces linear rate convergence.

Hk+1 = V T
k .Hk.Vk + ρk.sk.s

T
k (2.62)

where:
sk = µk+1 − µk, yk = gk+1 − gk, g = ∂S(IF (P ),IM (T (P,µ)))

∂µ
, ρk = 1

yTk .sk
, and

Vk = I − ρk.yk.s
T
k

However, this still requires a long computation time and a large memory. The
memory issue is solved by the Limited memory BFGS (LBFGS) [SW17] method. It
reduces the required memory by saving only the last Hessian approximations. The
computation time issue can be solved by using a stochastic approach [QSLS15]. A
stochastic approach uses only small parts of the data taken randomly at each op-
timisation iteration instead of all the data. However, it introduces a large amount
of noise as well [QSLS15].

Fast Preconditioned Stochastic Gradient Descent (FPSGD) is an enhancement
of [KSAP11] which was proposed to improve the rate of convergence of GD meth-
ods by adding a preconditioning strategy to Robbins-Monro Stochastic Gradient
Descent (SGDRM) [RM51] and ASGD methods. The updating rule of PSGD is:

µk+1 = µk − λM
∂Sk(ÎF (P ), ÎM(T (P, µk)))

∂µ
. (2.63)

The equation is similar to the equation (2.53). The only difference is adding the
preconditioned matrix M which is a symmetric positive definite matrix with the
size of number of the transformation parameters, i.e. |µ|. When M is the identity
matrix, we get the standard SGD method as in the equation (2.53). When M
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is the inverse of the Hessian of the similarity metric, we get a Stochastic quasi-
Newton method, see equation (2.61). In [KSAP11] the step-size is defined to be a
non-increasing and non-zero sequence to guarantee convergence:

λk =





1 if k = 0

η
((tk+1)/A)+1

if k > 0
(2.64)

, where
t0 = t1 = 0,
tk = max(0, tk−1 + sigmoid(g̃k−1Mg̃k−2)
g̃ is an approximation of ∂Sk

∂µ
,

M is the preconditioner matrix,
A = 20 is a decay speed factor,
η is a noise factor and can be defined as:

η =
E||gTMg||
E||g̃TMg̃|| =

E||gTMg||
E||gTMg||+ E||�TM�|| , (2.65)

where g is the exact gradient and � is a random noise added to the exact
gradient.

One can think of M as a scaling factor for g̃. It is large when g̃ is smooth
and small when g̃ has a curvature. PSGD in [KSAP11] was proposed to solve
mono-modal image registration. This means the fixed and the moving images are
the same type, e.g. CT. However, it is practically desirable for a medical image
registration method to handle the problems both mono-modal and multi-modal at
the same time.

FPSGD [QLS19] method proposed to solve both mono-modal and multi-modal
image registration. It estimates the diagonal entries of a preconditioning matrix
M on the distribution of voxel displacements. This rescales the registration simi-
larity metric and produces more efficient optimisation. The authors mention that
FPSGD is between 2 to 5 times faster than SGD methods while retaining the same
accuracy.

Let M be a preconditioned matrix with the same length of the parameter vector
µ, then MI is an element in the diagonal of M that can be computed using:

mi =
δ

E(||Jµi
||.||g̃i||) + 2

�
V ar(||Jµi

)||.||g̃i||) + �
, (2.66)

where δ is a pre-defined value represents the maximum voxel displacement,
E||X|| is the expectation of the l2 norm, V ar||X|| is the variance of the l2 norm,
Jµi

is the ith column in the Jacobian matrix Jµ = ∂T (P,µ)
∂µ

which is mentioned earlier
in equation (2.41), � is a small number to avoid dividing by zero.
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2.5 Extra Image Registration Components

There are other important concepts I am covering in this section as they are used
in this study.

Multi-registration approach is used when the image registration problem can
not be solved by the one-stage optimisation. In this approach, the resulting output
registered image is input to another stage optimisation process where one or more
components of the optimisation may be changed. Usually, a rigid transformation
is used in the first stage and non-rigid transformation is used in the second stage.

Multi-resolution approach is also helpful to be used. It is a hierarchical ap-
proach that solves some difficult image registration problems. There are two ap-
proaches of hierarchical image registration11, the first approach is down-sampling
and the second one is smoothing.

Down-sampling solves the registration problem at different levels. Suppose we
have four levels of multi-resolutions, for a fixed image IF and a moving image IM
of size 512x512, the first level has IF1 and IM1 of size 64x64, the second level has
IF2 and IM2 of size 128x128, the third level has IF3 and IM3 of size 256x256 and
the final level has the sizes of the original images, i.e. 512x512, see figure 2.10 top.
Each level produces transform parameters that can be used as initial parameters
for the next level.

In smoothing multi-resolution, the size does not change, only the details change,
e.g. more smoothing at each level, see figure 2.10 bottom. Each approach has
advantages and disadvantages and it is good to experiment with both to see which
one fits the registration problem better.

11In Elastix RecursiveImagePyramid control the multi-resolution type.
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Figure 2.10: Coronal slices show a cochlea image pyramid with 3 multi-resolutions. Top:
Spatial multi-resolution, bottom: smoothing multi-resolution with Gaussian smoothing
with two different Sigma values 4.0 and 8.0.
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Chapter 3

Medical Image Segmentation

Image segmentation is a process of extracting a desired object (or objects) from an
input image. It has many real-world applications in different fields. In medicine,
image segmentation can be used to extract a specific organ and measure its size,
or retrieve other information from the segmentation result. Efficient automatic
segmentation algorithms may help automating the cochlear image analysis. The
segmentation is similar to the data classification problem where the pixels of the
images are classified into different classes, see figure 3.1.

Figure 3.1: Cochlea Segmentation from µCT image in three 3D views: axial, sagittal
and coronal. Green: scala tympani, red: scala vestibuli and scala media.

There are many different methods for image segmentation, e.g. edge-based,
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region-based and atlas-based.
Threshold image segmentation is probably the simplest image segmentation

method. It separates the background from the foreground based on a threshold
value, see figure 3.2 right.

3.1 Edge-based image segmentation

Edge-based image segmentation is a result of convolution of an input image with
an edge detector, e.g. Sobel, Prewitt, Canny or Lablacian of Gaussian (LoG)
[GW06], see figure 3.2 middle. The Sobel edge detector kernels are defined as:

Sx =



−1 0 1
−2 0 2
−1 0 1


 , Sy =



−1 −2 −1
0 0 0
1 2 1


 (3.1)

Figure 3.2: Left: input image. Middle: result of Sobel filter. Right: result of threshold
segmentation.

3.2 Region-based segmentation

Region-based segmentation tries to classify the pixels based on the region they
belongs to, e.g. region-grown[GW06], active contours (snakes)[KWT98] or graph-
cuts [BJ01].

In region-grown class, an initialisation is one or multiple seeds. The seed check
all of its neighbour pixels and decides if one or more of them belong to the seg-
mentation or not, see figure 3.3.
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Figure 3.3: .
Region growing segmentation. Left: one seed, right: multiple seed. The green
arrow show the input image (left of the arrow) and the output image (right of

the arrow).

Graph-cuts uses method from graph theory to partition the image into segmen-
tations. It construct a graph with edges and vertices. Each edge has a probability
that decides if the edges belong to the same segmentation.

Figure 3.4: Graph cut segmentation concept. The right part represent the part from
the image represented by the red line (the red line is not part of the image). The thickness
in the arrow represent the probability.

Some image segmentation problems can be solved by using optimization e.g.
minimizing a functional energy. An example of such energy is the snake energy.

Active Contours (Snake) method [KWT98], (in 3D, it is called Deformable
Surfaces), is an edge based segmentation algorithm. The user provides an initial
contour (snake) inside or outside the ROI. Then the algorithm moves the contour
toward the boundaries of the object.
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Figure 3.5: Active contour (snake) represented by a yellow line with green points. Left:
initial position. Right: the contour moves to the edge and stopped. Image source is [7].

ESnake = αEinternal + βEexternal , (3.2)

where the external energy is related to the input image and the internal energy
related to the contour curve (the snake). The weights parameters α and β control
how much each energy contributes to the total energy ESnake. This energy can be
minimized using optimization methods such as Gradient Descent [Sny05].

The update rule of the active contour:

Snakei+1 = Snakei − λ∇ESnakei , (3.3)

where i is the iteration number and ∇ is the energy derivative. The step size λ
controls how fast the control points move. Small λ produces slow movement, and
a large λ produces fast movement but may produce a less accurate result.

Using Gradient Vector Flow (GVF) [XP97], an enhancement of the snake al-
gorithm, the contour can evolve to reach a non-convex boundary e.g. such as the
spiral shape of cochlea. The snake equation is changed by replacing the external
energy with GVF energy EGV F .

ESnakeGV F
= αEinternal + βEGV F . (3.4)
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Figure 3.6: Convergence comparison: Snake (left) vs Snake with GVF. The red color
shows the final segmentation.

Level-set image segmentation [Set99] represents the object as a zero level-set
of a higher dimensional function Φ. In level-set we started usually with a Signed
Distance Function (SDF) e.g. the signed distance transform of a random contour
in the image. Then this function continues to change at each iteration until it
reaches the boundary of the object, see figure 3.5.

This changing is based on an optimization process that computes the energy
from the areas of the neighboring levels, then moves the function level either up
or down. One important advantage of level-set method over the active contour
method is segmenting separated objects.

Figure 3.7: Level Set explanation1. Image source is [18].

There are many variations of Level Set methods e.g. Chan-Vese [CV01],
Geodesic Active Contours (GAC) [CKS97] and GAC With Shapes [LGF00].

Chan-Vese method uses Mumford-Shah [MS89] method in a Level Set approach.
The Mumford-Shah segmentation method segments the image by trying to achieve
a balance between piece-wise smoothing and preserving the edges. It is one of the
most popular region based segmentation algorithms. GAC uses active contours
(snakes) in a Level Set approach. GAC with shapes uses a prior knowledge about
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the shapes to get more accurate segmentation. In GAC with shape prior method,
instead of providing a contour as input, the user provides number of shapes as a
training input. The algorithm computes the Principal Component Analysis (PCA)
and the mean shape of these training images. It uses the mean shape as an initial
contour and as additional term in the optimization process.

3.3 Atlas-based Image Segmentation

Atlas-based segmentation [RBM+05] uses image registration concept to align an
atlas or a pre-defined segmentation to an input image. The atlas usually is a well-
defined histological image or a high resolution µCT image, as in see figure 3.1.

This method is very useful when a ground truth is missing, details of the
segmentation is not visible, or when the segmentation boundaries are not clear.

This method reduces the segmentation problem to image registration problem
and it work only if a registration method that produces the correct transformation
is is available.

3.4 Model-based segmentation

Model-based segmentation e.g. Active Shapes Models (ASM) e.g. [CTCG95,
ETC98], also called Smart Snake, is a very popular model based on a statisti-
cal knowledge about the object to be segmented. ASM tries to solve the problem
of finding an alignment between a shape and an object by looking for strong edges
or computing a distance e.g. Mahalanobis distance Mahalanobis. This method
tries to fit a statistical shape model to the input image. The model is usually
generated using many segmentation images. Figure 3.8 shows an example of a
cochlea spiral shape.

Figure 3.8: Example of a cochlea spiral shape. The cochlea scalae are not visible in
this shape.
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3.5 Deep learning

Medical image segmentation using deep learning, e.g. U-Net [RFB15], is currently
considered the state of the arts in medical image semantic segmentation, see fig-
ure 3.9. In deep learning, semantic segmentation is a binary segmentation problem
e.g. only two classes foreground and background. The multi-class segmentation is
called instant segmentation.

U-Net uses convolution with different filters to learn different level of the image
features through its layers starting from low to high. After that, it tries classifying
the image pixels into background and foreground based on a provided example
using a loss function that measure the error between the network outputs and the
provided example.

This provides high accurate segmentation in a few seconds. However, deep
learning based methods require many images to be segmented manually by experts
which are not available all the time. They also require a special hardware, e.g.
GPU with large memory, to perform fast.

Figure 3.9: U-net structure, a deep learning method for image segmentation. Image is
generalised version from the original structure in the U-Net paper.
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Chapter 4

Literature and Related Work

There are a few scientific papers related to cochlea medical image processing. All
cochlea related publications have neither a source-code nor dataset available what
makes it very difficult to validate or reproduce their results.

I will describe here what I concluded from the papers I have read. In my
conclusion, there are a few important points to be considered: the accuracy of
the results,the time required for the processing, the type of the input images, e.g.
mono-modal or multi-modal, and the reliability of the method.

A practical method must have high accuracy, required a few seconds to com-
plete. It should work on different types of images, including on all input images,
and it should not require special hardware.

For the scientific research sake, methods should be available freely, as an open-
source with a sample dataset, e.g. one or two images. This helps other researchers
to reproduce, validate and compare results of different methods.

4.1 Cochlea Image Registration

Manual image registration and fusion are usually done by doctors which requires
much effort and time as in [BPR+05]. The manual procedure for image registration
and fusion of CT and MR of the temporal bone is proposed using bony surgical
landmarks. This procedure needs about 13 minutes per scan.

As described by Reda et al. [RNLD12], an automatic cochlea image registra-
tion for CT is proposed for Percutaneous Cochlear Implantation (PCI) surgery.
They mentioned that a maximum of 0.19 mm error is achieved. The method
is complicated as it involves using segmentation and two-stage registration. The
computation time required to complete the registration is around 21 minutes which
is larger than the time required for manual registration (about 10 minutes based
on our experts). The authors investigated only complete head CT scans, so it is
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not clear how the method works with multi-modal images or small images focused
on the cochlea part.

In another research, high-resolution µCT data is used by Kjer et al. [KVF+15,
KFV+16] where two methods were proposed for the cochlea image registration.
The first method is based on the heat distribution similarity in a cubic B-splines
registration model. The second method is based on skeleton similarity as an
anatomical prior. Their methods require both cropped and segmented images,
and it takes about 48 minutes per scan.

Finally, a proposed cochlea registration method by Dees et al. [DH16] where
the fusion of sequential CBCT is compared to the gold standard fiducial in order
to analyze clinical CI migration. BRAINSFit tool in 3D Slicer is used which
makes the process require less than 2 minutes. Mean error of 0.16 mm is reported.
However, this method does not support multi-modal as well and the images used
had no implants. This makes the registration problem less challenging.

4.2 Cochlea Image Segmentation and Analysis

The goal of cochlea image segmentation is to extract the cochlea structure and
measure its length and volume. This may help physicians to plan better the
cochlea implant surgery and to select a suitable cochlea implant for each patient
which will ideally provide better quality of hearing.

Many classical segmentation methods are already implemented in a well-known
medical image software such as MITK [21] , 3D Slicer [25], ITK-Snap [26] and
Matlab [19].

Since there is no general segmentation algorithm available, usually manual or
semi-automatic segmentation is performed most of the time. It is not a surprise
that this software fail to solve the cochlea segmentation problem even after trying
many different parameters.

The segmentation results were either empty images, e.g. a black image or
something different from the cochlea shape. Unfortunately, some important seg-
mentation algorithms are not implemented in these tools, e.g. Chan-Vese [CV01]
and ASM [CTCG95].

MITK provides a module for interactive 2D and 3D segmentation that sup-
ports Region Growing [Phi94] and Fast Marching [Set99] algorithms. Slicer3D
has a module for interactive 2D and 3D segmentation that supports GrowCut
[VK05], Watershed [BL79] and Fast Marching algorithms. ITK-Snap is a spe-
cialized segmentation tool based on ITK [17] and VTK [30], it supports Level
Set[OS88, Set99] and Region Competition Snakes[ZLY96]. Matlab supports many
segmentation algorithms such as Watershed, Texture Segmentation [MBLS01] and
K-Means Clustering [HW79, Ste57].
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I tested three algorithms provided in these tools on the cochlea datasets. The
algorithms tested were Chan-Vese, GAC and ASM, see the previous chapter.

I re-grouped the images based on their modalities, i.e. CBCT, CT and MRI,
and the cochlea side, i.e. left and right. After that, I applied some classical
algorithms with different parameters. The result for each group is recorded using
standard evaluation methods, e.g. Dice coefficient and Hausdorff distance standard
segmentation metrics [Sø48, Dic45, Fel14].

Tables 1,2, and 3 show the selected parameters for each method. These param-
eters are selected based on many experiments and they should provide the best
segmentation results to our cochlea images in terms of segmentation quality and
speed.

Table 1: Chan-Vese Segmentation Method

Parameter Value Comment
Maximum number of iterations 100
Step-size 1.0
Stopping threshold 0.00001
Internal energy weight 1.0
External energy weight 1.0

Table 2: Geodesic Active Contours (GAC)

Parameter Value Comment
Maximum number of iterations 500
Step-size 1.0
Stopping threshold 0.00001
Internal energy weight 1.0
External energy weight 1.0

Table 3: Active Shapes Models (ASM)

Parameter Value Comment
Maximum number of iterations 40
Step-size 1.0
Number of resolutions 4
Number of points 2 Number of interpolated contour points.
IP length 6 Length of landmark intensity profile
Search length 3 in pixels
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In ASM, I only trained the model using CBCT shapes as it has higher resolu-
tion than the others. The ASM uses a multi-resolution approach which applies the
same algorithm on different scales of the original image size defined by the number
of resolutions parameter value. The result of each resolution is used in the next
resolution as an initial location for the shape.

The charts in figure 4.1, figure 4.2 and figure 4.3 compare the results of the average
Dice metric, Hausdorff distance and the speed of applying the previous algorithms
on each modality, i.e. CBCT, CT and MRI. In the Dice metric, the higher the
value, the better the result, whereas the smaller the value in Hausdorff distance
and time, the better the result.

In CBCT group, the average Dice of Chan-Vese method was much higher 0.88
than GAC and ASM methods, 0.77 and 0.79 respectively. However, the Hausdorff
of GAC was slightly lower than Chan-Vese. GAC required about double the time,
8.3 seconds, required by the other methods.

In CT group, the average Dice of the GAC method was higher, 0.92, than Chan-
Vese and ASM methods, 0.84 and 0.78,. Hausdorff was also much lower, 2.53, than
Chan-Vese and ASM, 4.42 and 4.14. GAC also required about double the time,
8.3 seconds, required by the other methods.

In MRI group, the average Dice of the Chan-Vese and GAC methods were much
higher, 0.92 and 0.86, than ASM method, 0.21. It is clear that ASM produced bad
results for the MRI images. This happens probably because ASM was trained only
for CBCT images in this experiments which are similar to CT but not to MRI. In
Hausdorff metric, Chan-Vese scored the best, 3.06, comparing to GAC and ASM,
4.41 and 5.42. ASM required more time, 5.4 seconds, than Chan-Vese and GAC,
3.1 and 4.4 seconds.
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Figure 4.1: CBCT results, from top to bottom: Dice, Hausdorff and time.
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Figure 4.2: CT results, from top to bottom: Dice, Hausdorff and time.
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Figure 4.3: MRI results, from top to bottom: Dice, Hausdorff and time.

Visual samples of the coronal view from my experiment results are shown in
figure 4.4, figure 4.5, and figure 4.6. They also show how the contours evolve
during the time from the initial state until the boundary of the cochlea is found
or the algorithm is failed.

Similarly, figure 4.7 shows visual samples of the coronal slice from the CT
group. In the CBCT Images the results were better. The segmented cochlea by
ASM provided false results even if the shape looks good. Figure 4.8 shows visual
samples of the coronal slice from MRI group. In the CBCT and CT images, the
results were better. Chan-Vese method provided much better segmentation while
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the ASM produced a very bad segmentation.

Figure 4.4: Chan-Vese method results, from left to right: initial contour, after 20
iterations, after 50 iterations, and the final result after 100 iterations.

Figure 4.5: GAC method results, from left to right: initial contour, after 20 iterations,
after 100 iterations and the final result after 300 iterations.

Figure 4.6: ASM method results, from left to right: initial shape, after 20 iterations in
the fourth resolution, after 20 iterations in the first resolution and the final result after
40 iterations in the first resolution.

Figure 4.7: Sample of the results of the CT images, from left to right: Chan-Vese, GAC
and ASM.
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Figure 4.8: Sample of the results of the MRI images, from left to right: Chan-Vese,
GAC and ASM.

As explained by Poznyakovskiy et al. [PZK+11], a multipart, model-based
segmentation algorithm for the facial nerve and chorda tympani is proposed. Seg-
mentation results are presented for ten test ears and compared to manually seg-
mented surfaces. The results showed that the maximum error in the structure wall
localization is 2 voxels for the facial nerve and the chorda. It is tested on only
small and mono-modal dataset of 12 CT volumes. Moreover, the time reported
the image segmenting was large, i.e. 5 minutes.

Noble et al [NLMD11] proposed using an active shape method where a shape
model is created from µCT scans of ex vivo cochlea. The created model is used
to segment conventional CT scans by fitting the model to clinical cochlea images.
This helps to estimate the position of invisible cochlea structures in these images.
Quantitative evaluation using Dice is used based on a set of µCTs. The results in
Dice were 0.7 in average which is bad. Moreover, the time is not reported and the
model is constructed from a small dataset of only 6 µCTs and tested on 5 of them.

A method for automatic segmentation of intra-cochlear anatomy in post im-
plantation CT of unilateral recipients is proposed by Reda et al. [RML+14]. The
method uses information extracted from the normal contralateral ear and exploits
the intra-subject symmetry in the cochlear anatomy across the ears. It is validated
on 30 ears for which both pre- and post-implantation CT images are available. The
mean and the maximum segmentation errors were 0.224 and 0.734 mm, respec-
tively. The method was not tested on other cochlea modalities and no time was
reported.

A new framework for segmentation of µCT cochlear images is proposed by Pu-
jadas et al. [PKV+16]. It uses a random walks algorithm where a region term is
combined with a distance shape prior weighted by a confidence map. The map
adjusts the influence of the distance shape prior according to the strength of the
image contour. The region term takes advantage of the high contrast while the
distance prior guides the segmentation to the exterior of the cochlea. A refine-
ment is performed using a topological method and an error control map to prevent
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leakage outside the boundary. The proposed framework is tested on only 10 µCT
datasets. Moreover, it does not segment the cochlea structures, e.g. the scalae.
The average Dice score was 0.94 with a standard deviation of 0.0082. No time is
reported.

The literature shows major variations in the the measurements of human CDL.
The main used methods were image processing and spiral coefficient equations.

As proposed by Escude et al. [EJD+06], an equation of a spiral coefficient is
introduced which requires only one measurement called A-value. It is defined as
a largest distance from the round window to the opposite cochlear lateral wall,i.e.
the length of the line connects point x to point y in figure 4.9. This equation was
improved by Alexiades et al. [ADJ15] and Koch et al. [KEZ+17] where a linear
equation is used. The main disadvantage of the A-value based methods is that
it needs a very clear image. It does not work in the case of the MRI images or
the images affected by noise. It is also a manual procedure that requires time and
effort of an expert.

Figure 4.9: Cochlea A-value method. A-value is the distance between point x and y as
it appears in CBCT data.

Iyaniwura et al. [IELA18] suggested a method to measure A-value automat-
ically. It is tested using CT and µCT images of cadaveric cochlear specimens.
They used the registration method provided in 3D Slicer software. An atlas with
A-values is used as a moving image. They used 4 landmarks: cochlear apex,
modiolus, round window and oval window. Then landmark registration was used
as initialisation. Finally, they used cropping and two stages registration to align
the atlas to the input image. An Affine image registration followed by B-spline.
The Normalized Cross Correlation (NCC) was used as an image similarity metric.
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They claimed, this method produces results similar to the manual method. No
time is reported and the method is not tested against other image types, e.g. MRI.

As proposed by Weurfel et al. [WLLM14], a 3D reconstructions of the cross-
sectional imaging is used to measure the cochlear length of temporal bones in the
CBCT images. The cochlear length is measured from the distal bony rim of the
round window until the helicotrema using a 3D curve set up from the outer edge
of the bony cochlea.

Koch et al. [KEZ+17] computed the CDL and the relation between the basal
turn lengths and CDL using the 3D multi-planar reconstructed CT images. They
use 10 cadaveric temporal bones scanned by synchrotron radiation phase-contrast
imaging. Points represent the organ of Corti, lateral wall and electrode location
on the synchrotron radiation phase-contrast imaging slices along the length of the
cochlea are calculated. Then the CDL is estimated from the points.

A comparison is made by Rivas et al. [RCH+17] between CDL computed from
automatic A-value and 3D reconstruction to CDL from manual A-value and CDL.
They mentioned that the automatic method result is reproducible and less time-
consuming. The claimed that manual measurement of CDL by experts has high
inter-observer variability, with mean absolute differences 1.15 mm. The range of
CDL was from 29.54 mm to 37.66 mm.

Koch et al [KLEA17] reviewed the literature related to the CDL measurement.
Part of this review can be found in table 4.4 and table 4.5. They analyzed results
from different methods, e.g. direct measurement CDL from histology, reconstruct-
ing the shape of the cochlea, and determining CDL based on spiral coefficients.
They concluded that the 3D reconstruction method is the most reliable method
to measure CDL because it provides excellent visualization of the cochlea.

A deep learning was proposed by Moudgalya et al. [MCB20] for automatic
segmentation to segment cochlear compartments from mice µCT volumes. They
used a modified V-Net structure which is a convolutional neural network (CNN)
architecture for 3D segmentation. They decreased the numbers of encoder and de-
coder blocks, and used dilated convolutions that enable extracting local estimates
of drug concentration that are comparable to those extracted using atlas-based
segmentation (3.37%, 4.81% and 19.65% average relative error in scala tympani,
scala media and scala vestibuli), but much faster. They also tested the feasibil-
ity of training their network on a larger MRI dataset, and then by using transfer
learning to perform segmentation on a smaller number of µCT volumes. This
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Table 4.4: Survey of cochlea’s length (in mm) literature.

idx Ref Modality NumberOfImages MinimumLength MaximumLength AverageLength

1 [Ret84] Histology 5 32 34 33.5
2 [Har38] Histology 68 25.6 35.46 31.6
3 [AP.85] Histology 20 30.1 36.4 32.6
4 [PFS87] Histology 9 24 33.5 28.4
5 [UVJ87] Histology 50 28 40.1 34.2
6 [TS89] Histology 1 NA NA 36.4
7 [SST91] Histology 18 32.7 43.2 38.6
8 [KSC96] Histology 8 37.9 43.8 40.8
9 [KSC96] Histology 8 34.15 37.9 35.6
10 [KSW+98] Spiral CT 20 29.5 37.5 33.01
11 [EJD+06] CT 42 30.8 37.4 34.4
12 [SSBL07] Histology 9 30.5 36.87 33.11
13 [SLY+09] MR 6 17 26.5 NA
14 [CBOFO09] CT MR 19 8.3 10.4 9.36
15 [ELRA11] Plastic molds 325 38.6 45.6 42
16 [RALE+12] Plastic molds 51 37.6 44.9 41.2
17 [WLLM14] CBCT 218 30.8 43.2 37.9
18 [JKB+17] CT 242 30.3 41.5 35.1
19 [RCH+17] CT 275 32.7 34.1 NA

Table 4.5: Survey of cochlea’s size (in mm3) literature.

idx Ref. Modality NumberOfImages Minimum Size Maximum Size Average Size

1 [Gal54] NA 3 NA NA 98.1
2 [Mag66] Histology NA NA NA 82
3 [IOI86] MR 4 78.2 86.6 83.6
4 [HVW+15] MR 11 55 81 68

would enable the previous technique to be used in the future to characterize drug
delivery in the cochlea of larger mammals. They didn’t apply their method on the
human clinical dataset as µCT segmentation is less challenging. They also didn’t
compare their method with the state of arts related methods, e.g. U-Net.

A quick survey from 23 papers within 233 years from 1884 to 2017 shows there
is no agreement on the ranges of the size and the length of the cochlea in the
literature, see table 4.4, and table 4.5.

Most of the previous researches measured the cochlea manually. Few re-
searchers measured the cochlea automatically using proposed mathematical equa-
tions or 3D reconstruction.

In the previous studies, there are different modalities and a different number
of patients. Some of them used high-quality histological images while others used
CT, MRI or CBCT. There is no accurate information of the measurement start or
end points. The ranges of the cochlea’s length are from 8.3 mm to 45.6 mm and
the cochlea’s size range is from 55 mm3 to 98.1 mm3.

The histology image is a very high-resolution images generated from a micro-
scope, and usually they are used as an atlas. The plastic mold means injecting
the cochlea with a liquid or pliable material using a rigid frame called a mold or
matrix. This allows the polymer to take the cochlea shape.
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From the literature above, the development of a practical and fast method for
multi-modal cochlea image registration, segmentation is needed. The method must
be more consistent, and the results must be reproducible. In the next chapter, I
will describe my proposed method that satisfies the above criteria.
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Chapter 5

Materials and Methods

In the previous chapters, a brief introduction is given about the registration compo-
nent used in this study. In this chapter, I will introduce my new proposed ideas for
efficient automatic cochlea multi-modal image registration, fusion, segmentation,
and analysis. I will also introduce a new public standard multi-modal 3D human
cochlea images dataset that can be used for reproduction of my experiments and
results or in future research.

5.1 Human Cochlea Datasets (HCD)

Different cochlea-related scientific research requires a standard public dataset. Un-
fortunately, such dataset does not exist. Most of the cochlea researchers used a
private dataset which makes it difficult to reproduce and validate their results. A
standard dataset HCD is proposed and described in [ADBP+17]. HCD contains
3D human cochlea images from three different modalities, i.e. MR, CT and CBCT
of different patients.

About 150 anonymous datasets are collected from our partner hospitals in
Germany and Egypt. The collected DICOM datasets are processed manually as
follows:

• Assigning an ID to each DICOM dataset to be used as a reference. This
allows getting more information in the future that are not available in the
DICOM metadata, e.g. the type of the cochlea implant. Only the radiologist
who provides the dataset can access the original patient information.

• Extracting 3D images with a high resolution by visualising all the images in
the DICOM datasets, images with very low resolution are ignored.
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• Converting DICOM format to a single compressed NRRD file format. This
removes extra patient information if found1.

• Renaming the NRRD files to represent the content of the image. This allows
easy filtering and automating the process of these images during the experi-
ments. The file name has the following format:

P<Patient ID>_<Modality>_<Side>_<Implant>,

where Patient ID is 6 digit integer number. Modality is two letters repre-
sent the image type, e.g. DV for CBCT, MR for MRI, and CT. The side
identification is an optional one-letter "L" for left or "R" for right, and no
letter means both ear sides are available in the image. One-letter "a" means
after surgery and implant is in the image, and "b" means before the surgery
and the image does not show an implant. If two or more files have the same
patient ID, it means all images in these files belong to the same patient. Here
are some naming examples:

– P100003_DV_R_b: right side cochlea CBCT image before the implant
surgery of patient 100003.

– P100007_CT: both sides cochlea CT image before the implant surgery
of patient 100007.

– P100015_MR: both sides cochlea MRI image before the implant surgery
of patient 100015.

• Locating two points landmarks per cochlea for all images. These points are
located by experts at the round window and the cochlea apex. Each image
file has a landmark file saved in 3D Slicer RAS orientation and .fcsv format.

The dataset includes 150 human cochlea 3D volumes of 67 patients of different
gender and age. All images come from two hospitals of two different geographi-
cal locations, i.e. Germany (41 patients) and Egypt (26 patients). The dataset
currently contains 87 CBCT, 38 MR and 22 CT cochlea images2

All the MRI images in HCD are T2 images that represent the patient status
before CI surgery. Each image has a size of 384 voxels × 512 voxels × 64 voxels
with 0.39 mm × 0.39 mm × 0.7 mm spacing. All belong to the German datasets
group and obtained using "Siemens Skyra 3 Tesla" and "Siemens Avanto 1.5 Tesla"
scanners.

1There were some cases that radiologist forgot to remove the patient’s private data.
2Recall that some images have two ears while others not.
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CBCT images from German datasets are obtained using "Morita 3D Accuitomo
170" scanner. These images represent one side only, either left ear or right ear.
CBCT images are taken after CI surgery and they have a size of 485 voxels × 485
voxels × 121 voxels with 0.12 mm × 0.12 mm × 0.5 mm spacing. CBCT images
are taken before CI surgery and they have a size of 483 voxels × 483 voxels ×
161 voxels with 0.12 mm × 0.12 mm × 0.3 mm spacing. These CBCT images
probably are cropped by the radiologist before handing them to me as they don’t
have isotropic spacing.

CT images from German datasets are obtained using "Siemens Sensation Car-
diac 64" scanner. All CT images are taken before CI surgery, like MR, due to the
high risk of doing this procedure after CI surgery. Each CT image has a size of
512 voxels × 512 voxels × 58 voxels with 0.12 mm × 0.12 mm × 1.0 mm spacing.

The CBCT images from Egyptian datasets were obtained using "i-CAT Next
Generation" scanner with the following protocol 120 kvp, 5 mAs, voxel 0.2, matrix=
0.2.2.2 mm. FOV 2.5 cm, with 7 seconds exposure time and 14.7 seconds scanning
time.

The CT images from Egyptian dataset are obtained using "Siemens Somatom
Definition flash SD dual source 64 row" scanner with the following parameters KV,
100-140 mA 100-800, with pitch factor 0.55-1.5, ratio using one X-ray source and
a single collimation width of 0.6 mm.

HCD is a proposed standard dataset for multi-modal 3D cochlea images. Many
researchers in the field of CI can contribute to it and benefit from it. Hopefully,
in the future, this dataset can be used in research and advanced deep learning
techniques to analyse the cochlea images.

All patients’ information is removed to protect their privacy. All images have
two 3D landmark points, one for the round window and one for the cochlea apex
(helicotrema), see figure 5.1. These landmarks are located by two experts and can
be used for the results validation.

Samples from the dataset are already shown in figure 1.11 and figure 1.12. In
the next chapter, I will show many samples from the dataset and their registration
and segmentation results.

5.2 ACIR: Automatic Cochlea Image Registration

The objective of this study is to propose and to evaluate new, relatively easy and
fast methodologies utilizing simple computer hardware and software to align and
fuse cochlea images from different modalities.

In [ADBP+16]3, I proposed the multi-registration Automatic Cochlea Image

3Only poster is available.
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Figure 5.1: Cochlea landmarks in brown color and A-value endpoints in yellow color.

Registration (ACIR2016) which is a novel method that provides practical cochlea
image registration. It combines different standard techniques and tunes param-
eters in a customized way that works for cochlea images. It combines different
registration elements in a hierarchical approach of two stages: a rigid image regis-
tration followed by a non-rigid B-spline image registration. Moreover, the metric
is based on the images types: SMSE for mono-modal images (CBCT, CBCT) and
SMMI for multi-modal images,e.g. (CT, MR) or (CT, CBCT). Even though CBCT
and CT are very similar, in practice, (CBCT-CT) image registration has better
results when SMMI is used. The method steps are listed in algorithm 1.

More details about important components of ACIR2016, e.g. SMMI and ASGD,
is explained in the next paragraphs.

Mattes’ Mutual Information (SMMI) [MHV+01] is a similarity metric used
in ACIR2016. It is an improved mutual information metric that uses B-spline
representation of the images. The image deformations is modelled using cubic
B-splines. This make it possible to benefit from their computational efficiency,
smoothness and local control[Uns99].

Using a sparse regular grid of control points over the volume, one can define
a variable deformation by moving the control points. Cubic splines distribute
this coarse grid over the entire image. Using B-spline to interpolate the deforma-
tion values between the control points produces a local and smooth deformation.
It allows the simple derivative computation of both the image and the metric.
The author’s of [MHV+01] suggested the number of deformation coefficients to be
around 100-1000 control-points.

The spacing of the grid defines the resolution of the deformation, e.g. for 3D
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Algorithm 1: ACIR2016
1 Input: two cochlea images IF (P ), and IM(P ) ;
2 Output: a registered and fused image Iresult(P );
3 Set number of multi-resolution levels = 4;
4 Set optimiser = ASGD;
5 Set transform T = 3D rigid transform;
6 Set similarity metric = SMI ;
7 if same modality then
8 Set similarity metric = SMSE;
9 µ = register(IF , IM) ;

10 Set transform T = B-spline transform;
11 µ = register(IF (P ), (IM(T (P, µ)));

12 else
13 ĨF , ĨM = Crop(IF ,IM);
14 µ = register(ĨF , ĨM) ;
15 Set transform T = B-spline transform;
16 µ = register(ĨF (P ),ĨM(T (P, µ))) ;

17 Transform the moving image Iresult(P ) = IM(T (P, µ)) ;
18 Fuse the result Iresult = Iresult + IF

we have the vector nD = [nx, ny, nz]
T that contains tuples of x,y and z coordinates

of the control points.
In order to use SMMI in the image registration minimization problem, one must

compute the negative value of the metric and use its derivative with respect to the
transformation parameters µ.

SMMI(IF (P ), IM(T (P, µ))) = −
�

x∈IF (P )

�

y∈IM (T (P,µ))

�
Pr(x, y)log2

�
Pr(x, y)

Pr(x)Pr(y)

��

(5.1)
where x and y are discrete sets of intensities associated to the fixed and trans-

formed moving images, Pr(x, y) is the joint probability, Pr(x) and Pr(y) are the
marginal probabilities. The probability distributions in equation (5.1) are based
on marginal and joint histograms of the two input images.

In order to form continuous estimates of image histograms, the Parzen win-
dowing is used. This is useful also for reducing the effects of quantization and to
make the joint distribution an explicitly differentiable function.
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The Parzen window estimates a probability Pr(x) of a sample x using N sam-
ples from the random variable X as follows:

P̃ rN(x) =
1

hN

N�

i=1

w

�
x− xi

h

�
, (5.2)

where:

• w(x−xi

h
), a Parzen window of width h, is a function with a unit integral e.g.�∞

−∞ w(x)dx = 1,

• xi is a set of N pixel values samples from a random variable X with proba-
bility Pr(x),

• h = �N is the Parzen window width, � is a positive scaling factor that controls
the width of the Parzen window w. When there are many samples available
e.g. N is large, � is small, and w(x−xi

h
) is a Dirac-like function. When N is

small, � is increased which increases the width of the Parzen window.

Note that P̃ r(x) is large when the samples xi are closed to x. When these
samples are not dense around x, a few Parzen windows overlap and P̃ r(x) is small.

The 2D joint discrete Parzen histogram is defined as:

hj =
�

m∈LM ,f∈LF

1

�m�f

�

xi∈IF
w

�
m

�M
− IM(T (xi, µ))

�m

�
.w

�
f

�f
− IF (xi)

�f

�
, (5.3)

where

• hj is the 2D joint histogram of all color pairs m, f .

• IM(x) is a moving image, IF is a fixed image, xi is a pixel location ∈ IF ,

• T (xi, µ) is a transform with parameters µ, it outputs a new pixel location
x̃i.

• LM , and LF are pixel values samples from IM and IF , w is a Parzen window,

• m is a pixel value from LM , and f is a pixel value from LF ,

• �m is related to card(LM), �f is related to card(LF ).
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Notice that
�

hj = card(V ) is the number of pixels in one of the input samples.
The contribution to the joint histogram of a single pair of pixels IM(xi), IF (xi) is
distributed over several discrete bins f and m by the window function w.

The joint histogram is proportional to the Parzen probability Pr:

Pr(f,m, µ) = α(µ)h(f,m) (5.4)

where α is a normalisation factor to avoid having
�

w �= 1

α(µ) =
1�

m∈LM

�
f∈LF

h(m, f, µ)
. (5.5)

The joint histogram value means how many times the pixel value (or the colour)
were found at the same locations, e.g. h(m, f) = 22 means when scanning image
M and image F the pixel values m, and the pixel value f are found at the same
locations 22 times.

In figure 5.2, an example from [TU00] is shown using only two colours m0 and
m1 for image M , and two colors f0 and f1 for image F . Both images have size
of 6 = 36 pixels, so card(V ) = 36 for this example. Image M is shifted by 1
pixel at each direction, so our transform T is a 2D translation transform with
parameters µ = [1, 1]. For simplicity, the Parzen window as a centered square
pulse w(m, f) = 1 for |m|, |f | < 1

2
and zero else where. By using �M = �F = 1, the

histogram function is similar to the traditional one.
From figure 5.2, we have Pr(m0, f0) =

5
36

, Pr(m0, f1) =
4
36

, Pr(m1, f0) =
22
36

,
Pr(m1, f1) =

5
36

, Pr(m0) =
9
36

, Pr(m1) =
27
36

, Pr(f0) =
27
36

, and Pr(f1) =
9
36

.
Using equation (5.1) and equation (5.4):

SMMI(M,F ) = −
�

m∈M

�

f∈F

�
Pr(m, f)log2

�
Pr(m, f)

Pr(m)Pr(f)

��
(5.6)

= − 5

36
log2

�
(5)(36)

(9)(27)

�
− 4

36
log2

�
(4)(36)

(9)(9)

�
−22

36
log2

�
(22)(36)

(27)(27)

�
− 5

36
log2

�
(5)(36)

(27)(9)

�

which is equal -0.045. When the images are aligned correctly the negative mu-
tual information will be at minimum, e.g. SMMI = −0.865 for the above example.

The derivative of the Mutual Information defined in equation (5.1) is:

∂SMMI(IM(T (P, µ)), IF (P ))

∂µ
= −

�

m∈LM

�

f∈LF

(m, f)

∂µ
log2

�
Pr(m, f)

Pr(m)Pr(f)

�
,

(5.7)

77



Figure 5.2: Example of joint histogram of two images from different color distributions.

where LM , and LF are pixel values samples from the fixed image and the
transformed moving image at the same locations. This equation requires solving
the derivative ∂Pr(m,f)

∂µ
. This can be done using n degree B-spline, e.g. βn(x) 4

[TU00].

∂Pr(m, f)

∂µ
=

1

c(V )

�

xi∈V
βn

�
f

�F
− IF (xi)

�F

�
∂βn(ζ)

∂ζ

1

�M

�−∂IM(T (xi, µ))

∂x

�
∂T (xi, µ)

∂µ
,

(5.8)
where c(V ) is the size of the sample V , ζ = m

�M
− IM (T (xi,µ))

�M
. There are two

more derivatives yet to be solved, the B-spline function ∂βn(ζ)
∂ζ

and the transformed
moving image ∂IM (T (xi,µ)

∂x
:

∂βn(ζ)

∂ζ
= βn−1(ζ +

1

2
)− βn−1(ζ − 1

2
) . (5.9)

∂IM(T (xi, µ)

∂x
=
�

xi∈V
c(xi)

∂βn(T (xi,mu)− xi)

∂x
. (5.10)

The marginal joint density derivative is:
4Remember that n in βn does not mean "to the power n", it means the degree of the B-spline

basis function.
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∂Pr(m)

∂µ
=
�

f∈LF

∂Pr(m, f)

∂µ
=

1

card(V )

�

xi∈V

∂βn(ζ)

∂ζ

1

�M

−∂IM(T (xi, µ))

∂x

∂T (xi, µ)

∂µ
.

(5.11)

ACIR2016 uses ASGD optimiser which is based on Stochastic Gradient Method,
RM-SGD, proposed in [RM51] and the adaptive step-size proposed in [PC04]. The
update rule for RM-SGD is defined in equation (5.12).

µk+1 = µk − λk
∂S(ĨF (P ), ĨM(T (P, µ)))

∂µ
, (5.12)

where the approximation of the cost function derivative is used and λk is defined
as:

λk =
a

(k + A)α
, (5.13)

where k is the current optimisation iteration, a > 0, A ≥ 1 and 0 < α ≤ 1. For
large k, α = 1 is a good choice. Setting α < 1 causes the step-size to decay slower.
The factor a has no unit, and depends on the cost function. If a is set too small,
the optimisation is slow. However, when a is set too large, the optimisation may
become unstable.

ASGD [KPSV09] adapt the step-size λk based on the inner product of the
current approximation of the cost function derivative ∂Sk

∂µk
and the previous one

∂Sk−1

∂µk−1
. A larger steps can be taken if the approximated derivatives in two consec-

utive iterations point in (almost) the same direction and the step size is reduced
otherwise.

In ASGD, λk is defined as a function of tk:

λk = λ(tk) =
a

tk + A
, (5.14)

where

tk+1 = max(0, [tk + f(−g̃Tk g̃k−1)]) , (5.15)

where g̃k = ∂S(ĨF (P ),ĨM (T (P,µk)))
∂µ

, and f is a sigmoid function defined in equa-
tion (5.16). The initial values of µ0, t0, and t1 are defined by the user before the
optimisation. The computation starts from t2 as we need two cost function deriva-
tives, i.e. g̃0, and g̃1. When the inner product of g̃k−1 and g̃k are positive, the
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time t is reduced and we get a large step-size λ. When f = 1 we get the original
RM-SGD method.

f(x) = fMIN +
fMAX − fMIN

1− fMAX

fMIN
e−x/ω

, (5.16)

where fMAX > 0, fMIN < 0 and ω > 0. When ω approaches zero, f approaches
a step function.

ASGD Algorithm steps:

1. Set the required user-defined variables:

• Set the number of iterations K, e.g. k = 300 .

• Set the initial conditions t0, t1, e.g. t < tK.

• Set 0 < η ≤ 1 .

• set δ = voxel size in mm, e.g. 1.0 mm, N = 10, A = 20, ζ = 0.1 .

2. Compute S using:

S =
1

|P |
�

pi∈P
JT
µ Jµ , (5.17)

where P is the points samples from the image, Jµi
is the Jacobian Jµ =

∂T (p,µ)
∂µ

, the transformation derivative with respect to the transformation pa-
rameters which is defined in equation (2.41).

3. Compute σ4 using:

σ2
4 = minpj∈P

δ2

||Jµj
||2F + 2

√
2||Jµj

JT
µj
||F

, (5.18)

where ||J ||F =
��

x∈J |x|2 is the Frobenius norm [GV13] of the Jacobian.

4. Generate N=10 random instances of µ using:

µ ∼ N (µ0, σ
2
4I) , (5.19)

µ =
1�

(2π)|Σ|
e

−1
2
(x−µ0)T

1
Σ
(x−µ0) , (5.20)

where x is sequence of values in the parameters’ domain, Σ is the covariance
matrix of σ2

4I, and |Σ| is the determinant of Σ.
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5. Compute σ1, σ2 and σ3 using:

σ2 =
1
N

�N
n=1 ||g||2
tr(S)

, (5.21)

where tr(S) is the trace of the matrix [GV13] which is defined as the sum of
the main diagonal elements of the square matrix, and g is the exact metric
derivative.

6. Compute the exact gradient using:

gi =
∂S(IF (P ), IM(T (P, µi)))

∂µi

, i ∈ 1, 2, .., N.

gk ∼ N (0, σ2
1S) .

(5.22)

7. Compute the approximated gradient using:

g̃i =
∂S(ĨF (Pi), ĨM(T (Pi, µi)))

∂µi

, i ∈ 1, 2, .., N.

g̃k ∼ N (0, σ2
2S) .

(5.23)

Note that a new voxel set Pi is selected each time.

8. Compute the difference between the approximated gradient and the exact
gradient using:

�i = gi − g̃i, i ∈ 1, 2, .., N.

� ∼ N (0, σ2
3S) .

(5.24)

9. Compute aMAX using:

aMAX ≈ 2A

λ
=

Aδ

σ1

minpj∈IF (P̃ )

1�
tr(JjSJT

j ) + 2
√
2||JjSJT

j ||F
. (5.25)

10. Compute η and a using:

a = aMAX =
E||g||2

E||g||2 + E||�k||2
≡ (aMAX)(η) , (5.26)

where 0 < η ≤ 1. For E||g||2 and E||�||2 their empirical estimates can be
used directly. The original parameter a is replaced by a new user-defined
parameter, δ that has a unit (mm) and an intuitive meaning.
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11. Compute fMIN , using:

fMIN = η − fMAX = η − 1 , (5.27)

where 0 < η ≤ 1 and fMAX = 1.

12. Compute ω using:

ω = ζ
�
V ar(�Tk �k−1) , (5.28)

where ζ = 0.1. V ar(�Tk �k−1) = σ4
3||S||2F .

13. Start optimisation and stop after k iterations. Note that the steps 1-12 are
all done before the optimisation one time only.

ASGD method requires the computation of stochastic approximations of the
cost function derivatives at each iteration. It takes into consideration the free
choice of the similarity measure, the transformation model, and the image content.
I used ASGD in my registration methods as it was already shown it works with
other medical images problems successfully. It is also already implemented in
Elastix tool as open-source.

The goal is to register all three modalities, i.e CT, MR and CBCT, to the same
physical space. For having this done, at first CBCT to CT are aligned, then MR to
CT are aligned. All three modalities can be fused to one image that represents in-
formation from CT,CBCT and MRI. Registering from image modality to another
sometimes works only in one direction, e.g. registering CT to MR does not work
but MR to CT works. To solve this issue, the inverse transform of the working
registration situation is used in some cases. ACIR2016 has problems with some
cochlea images, a major issue is the registration of (CBCT-MR) when a patient
has no CT image. Moreover, it fails to provide accurate registration in some cases.
Finally, it takes a longer time than other methods to complete the registration of
two mono-modal images, e.g. (CBCT-CBCT). This happens due to the expensive
multi-registration and B-spline transformation approach. However, this time is
still much better than the time in the other existing methods at that time.

The cochlea image registration problem in our case is intra-subject image reg-
istration. Hence, it belongs to rigid image registration problems. For such images,
all pixels in the image is affected by the transform. Finding the correct transform
for any part of the moving image may solve the problem for other parts in the
image.

However, the image registration result is highly dependent on image contents so
finding a method that works on cochlea images is a challenging task. Some areas in
these images have clear structures and less noise. Cropping the original images to
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one of these small areas and registering them is a faster and better way to produce
a transform that registers the original images. Benefiting from prior knowledge
of the images’ characteristics, I proposed an improved Automatic Cochlea Image
Registration method, ACIR2017 [ADBP+17]. This method uses ASGD optimiser
to minimise negative SMMI similarity metric of a cropped version of the two input
images by modifying 3D rigid transformation parameters, see algorithm 2.

Algorithm 2: ACIR2017
1 Input: two cochlea images IF (P ), and IM(P ) ;
2 Output: a registered and fused image Iresult(P ) ;
3 Locate the cochlea locations in input images;
4 ĨF , ĨM = Crop(IF ,IM);
5 Set transform T = 3D rigid transform;
6 Set k = 0.;
7 While -SMMI(ĨF (P ), ĨM(T (P, µ)) is large and k < 100 do;
8 µ = update the old µ using ASGD ;
9 Set k = k + 1 ;

10 Transform the moving image, Iresult(P ) = IM(T (P, µ)) ;
11 Fuse the result, Iresult = Iresult + IF

ACIR2017 is less complicated than ACIR2016. Neither multi-resolution nor
B-spline transformation is involved. The cropping part allows the optimisation
process to complete faster as it involves small size images. The localization in step
3 is the only manual step in this method, the registration process is fully automated
as the localization step is used only for cropping in step 4. Optimisation finds the
6 parameters of the 3D rigid transform, i.e. the Euler angle of rotation for each
axis rx, ry, rz, in addition to translations in each dimension tx, ty and tz in a few
seconds.

ACIR2017 is more flexible than the ROI methods because it takes any clear
part of the input images, not just the cochlea part ROIs. It has the advantage in
comparison to the masking techniques because it does not consider the non-mask
pixels in the original images during the optimisation.

The cost function is computed based on the cropped cochlea areas only, which
makes it faster and more stable as there is always a voxel mapping available during
the optimisation.

ACIR2016 and ACIR2017 are gradient descent methods. As mentioned in
the previous chapters, GD methods do not perform well when the Hessian is ill-
conditioned. Based on the Stochastic Quasi-Newton with Limited memory Broy-
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den Fletcher Goldfarb Shanno (S-LBFGS) [SW17] updating rule, I proposed an-
other Automatic Cochlea Image Registration (ACIR2020) method.

The proposed method is inspired by ACIR2017 and S-LBFGS [QSLS15]. I
proposed replacing the ASGD optimiser in ACIR2017 by the S-LBFGS optimiser.
This way, I took advantages of both the ACIR2017 and S-LBFGS methods. This
may allow faster convergence and more robust results.

Strict implementation of Newton’s method involves finding the inverse of the
Hessian matrix at every iteration. If the number of variables on which f depends
on is large then this is prohibitively expensive. In the case of the cost function of
a 512× 512 image, the number of variables will be n = 218.

This is where the quasi-Newton methods come into picture. In these methods,
an approximation of the actual Hessian matrix is used. There is a large number of
choices of the approximation form of the Hessian matrix, each one gives a rise to
a variant of quasi-Newton method. One of the most popular variations is (BFGS)
[NW06]. If Hk = H−1

k then the BFGS approximation is defined as:

Hk+1 = (I − ((yTk dµ)
−1)ykdµ

T )T .Hk.(I − ((yTk dµ)
−1)ykdµ

T ) + ((yTk dµ)
−1)dµdµT

(5.29)
where dµ = µk+1 − µk.

Hk+1 = V T
k HkVk + ρksks

T
k , (5.30)

where ρk = (yTk sk)
−1, Vk = I − ρkyks

T
k , sk = µk+1 − µk, yk = gk+1 − gk and gk

being the same as ∇f(xk).
If f is a function of n variables then the Hessian matrix and its approximation

have size n× n.
For a large n storing the Hessian itself will take up a lot of memory. The

LBFGS [SW17] algorithm approximates the Hessian further by storing only a few
vectors that can reconstruct the Hessian. Thus, the storage demand drops from
O(n2) to O(n).

If gk = ∇f(xk) and Hk = H−1
k , then one can write:

xk+1 = xk − λHkgk, (5.31)

It is observed that storing a n× n matrix Hk is not needed if there is a way to
estimate the n-vector Hkgk. One way to estimate the product Hkgk is the two-step
recursion explained in LBFGS.

The previous equations suggest that all the quantities can be readily computed
from the curvature points {sk, yk}. Computing these at each iteration involves all
points of the image. One way to reduce this effort is to work with only a subset
of these. This is similar to how the stochastic gradient descent algorithm works.
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However, the stochastic gradient descent algorithm is inherently noisy and the
problem is exacerbated in the case of the medical images by the fact that each
computation of a stochastic gradient potential involves a different set of voxels.

To solve this issue one can de-noise the optimization parameters µ by averaging
them after every L iterations and use a small random subset S1 in each of these
iterations. After that, the average is used to compute the full Hessian using a
random subset S2 of the image.

This can be adapted to medical images by using more samples in the L itera-
tions used for updating {sk, yk} and computing the difference in gradients instead
of the Hessian. Thus,

yk = g(µ̄I ;S2)− g(µ̄J ;S2) (5.32)

Note that the same random subset S2 of the image is used for the computation
of both gradients.

The opitmiser S-LBFGS uses an adaptive step-size estimation based on the
image information. It uses the idea proposed by [BHNS16] where the authors
suggest eliminating the stochastic gradient noise by averaging the optimisation
parameters each L iteration and calculating H on a random subset of the data.
This allows for a much more efficient way of obtaining the approximation of H
and stochastic gradients.

The authors of [QSLS15] also used a restarting mechanism to recompute the
step-size for every L iteration and used the gradient difference to estimate H. Us-
ing S-LBFGS optimiser in ACA2020 solves the noise problem as the original image
is cropped and most of the noise should be removed. My proposed method steps
are listed in algorithm 3.

Algorithm 3: ACIR2020
1 Input: two cochlea images IF (P ), and IM(P ) ;
2 Output: a registered and fused image Iresult(P ) Locate the cochlea

locations in input images;
3 ĨF , ĨM = Crop(IF ,IM);
4 Set transform T = 3D rigid transform;
5 Set k = 0.;
6 While -SMMI(ĨF (P ), ĨM(T (P, µ)) is large and k < 100 do;
7 µ = update the old µ using S-LBFGS ;
8 Set k = k + 1 ;
9 Transform the moving image, Iresult(P ) = IM(T (P, µ)) ;

10 Fuse the result, Iresult = Iresult + IF
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The only difference between ACIR2017 and ACIR2020 is the optimisation
method. ACIR2020 uses S-LBFGS which is a Stochastic quasi-Newton method
based on LBFGS. It uses the adaptive step-size estimation based on the image
information. The S-LBFGS uses the idea proposed by Byrd et al [BHNS16] where
the authors suggested eliminating the stochastic gradient noise by averaging the
optimisation parameters for each L iteration and calculating H on a random subset
of the data.

This allows for a much more efficient way of obtaining an approximation of
H and stochastic gradients. Using the S-LBFGS optimiser should provide more
enhancement in terms of time and accuracy.

5.3 ACA: Automatic Cochlea Analysis

I proposed a novel method, ACA2018 [ADBP+18b], for the automatic cochlea
image segmentation and analysis. It uses an atlas-model-based segmentation to
align a predefined segmentation and point models to an input image, see figure 5.3.
The predefined segmentation serves as an atlas. The atlas was manually segmented
using a high resolution µCT image obtained from a public and standard µCT
cochlear dataset [GRB+17].

The original µCT was too large to be processed in a standard computer so it is
resampled from 0.008 mm× 0.008 mm× 0.008 mm spacing to 0.032 mm× 0.032
mm× 0.008 mm spacing. This reduced the image size from 13.4 GB to 806 MB.
ITK and 3D Slicer software was used for this resampling. Next, the image was
cropped to the cochlear part only. This allows for a smaller image size of 103.2 MB
with 243 voxels × 202 voxels × 1191 voxels5 instead of 437 voxels times 412 voxels
times 2349 voxels. After that, the two main cochlear scalae, i.e. scala tympani and
a combination of both scala media and scala vestibuli were segmented manually6,
see figure 5.4 left.

The model and its segmentation were cloned and transformed manually to
represent left and right cochlear sides. The transformed models were automatically
aligned to one of the clinical CBCT images using ACIR2017 [ADBP+17]. The
atlases were aligned the same way. A user-friendly interface for the atlas-based
segmentation method was developed as a Slicer plug-in [6, 28].

Getting the size of the cochlea scala automatically from the segmentation7

is done by counting the number of voxels belonging to this segment area then
multiplying the resulted number by the voxel size in mm3:

5Voxel: a volume element
6Even with this high-resolution image it was difficult to see the separation between scala

media and scala vestibule.
7Tip: in 3D Slicer, the "Segment Statistics" module can be used for this purpose.
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Figure 5.3: Left: atlas-model-based concept. Right: cochlea analysis pipeline

V =
�

i∈d
Si , (5.33)

where V is the volume size in mmd, S is the spacing in mm, d is the image
dimensions, e.g. 3 for 3D.

To get the length of a cochlea scala, usually, the Skeletonization method is
needed [GW06]. The skeleton is an image processing thinning process that pro-
duces a line or curve from an object. This makes it easy to measure the length of
a curve by measuring the distance of each two consecutive points. Unfortunately,
this arises a new challenge as the standard skeleton methods did not work due to
the non-standard shape of the scalae.

Even for a simpler problem i.e. getting the length of the cochlea implant,
skeleton does not work because sometimes there is a gap between the segments or
there is a large noise, see figure 5.4 left and figure 5.5. Notice, in figure 5.4 that
the first electrode location is more deeper inside the scala tympani than it should
be, this shows how these images are misleading sometimes.

In figure 6.5, the first image in the right side was segmented using a threshold
of [2173-32446], notice that there is a small jab in the electrodes curve. The middle
image was segmented using a threshold of [1800-32446], notice how the jab is closed
but the curve still has irregular shape. If the threshold range is larger, more noise
is introduced in the image as in the image in the right where the threshold was
[1500-32446].

To solve this issue, I proposed using a points-set mode. It contains 55 points
representing the center of the scala tympani, see figure 5.6. Using the transformed
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Figure 5.4: Left: Cochlea atlas is generated from high resolution µCT image, scala
tympani is in green color and scala media and scala vestibule are combined in red color.
Right: CBCT CI visualization example, scala tympani (green), scala vestibuli (red) and
CI (yellow).

Figure 5.5: Segmentation of CI with different thresholds, large threshold range produces
more noise.

points-set, the length of the scala tympani can be calculated by computing the
distance between each two consecutive points by equation (5.34).

LST =
n−1�

i=1

�
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (5.34)

where LST is the length of the scala tympani in mm, n is the number of the
points, x, y and z are the 3D point coordinates. Using this approach has two ben-
efits, first, it is faster than the skeleton as it includes only a matrix multiplication.
Second, the points can be corrected or modified later using a friendly user-interface
I developed as a plug-in for 3D Slicer tool [6, 28], e.g. to produce different useful
measurements like measuring the inner length or the outer length of a scala, see
figure 5.7.

A user friendly interface is developed as a 3D Slicer plugin for the cochlea
analysis8, see figure 5.7. The user only inputs the cochlea location point. After
that, everything is done automatically.

The algorithm finds the segmentation, generates a 3D cochlea detailed model
then computes the size and the length of the scala tympani. Since the plugin is
based on 3D Slicer, it runs in different operating systems and devices.

8https://github.com/MedicalImageAnalysisTutorials/SlicerCochlea
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Figure 5.6: Different visualizations of the scala tympani points sets.

Figure 5.7: My 3D slicer cochlea plugin’s user friendly interface.

ACA2018 aligns an image with a pre-defined detailed segmentation and a pre-
defined points model to the input image. After that, it uses the resulted trans-
formation to transform the pre-defined segmentation and the points model to the
input image, see figure 5.3. In this method, there was only one points-model for
estimating the length of the scala tympani which is of more interesting due to its
rule in CI surgery. The method uses Elastix tool which has a problem with points
transformation. To solve this issue, the point-model is transformed to the image.
Then the transformation found by ACIR2017 is applied to the points-image, and
finally the points are extracted from the transformed points-image. Due to this
transformation, some points are missing after the transformation. These missing
points resulted from the interpolator used with Elastix tool. One may try using
Nearest Neighbour (NN) interpolator but I found out that while using 3D Slicer,
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Algorithm 4: ACA2018
1 Input: cochlea image I(P) ;
2 Output: cochlea segmentation and different measurements ;
3 Locate the cochlea locations in input images;
4 Ĩ(P )= Crop(I(P ));
5 Apply ACIR2017 on the cropped input image and the predefined image ;
6 Ires, T = (Ĩ(P ), IM(P ));
7 Transform segmentation and points-models using T and its parameters µ;
8 Iseg(P ) = IMseg(T (P ), µ);
9 Ipoints(P ) = IMpoints

(T (P ), µ);
10 Output the segmentation, Iseg(P ), the segmentation sizes, and length of

points model Ipoints(P )

I can apply the transform directly to the points.
The image registration part of ACA2018 is based on ACIR2017 which pro-

duces a rigid transformation. This rigid transformation does not handle the differ-
ence in shape and size among different patients. I proposed an improved method,
ACA2020, by adding a second stage non-rigid registration that uses B-spline trans-
formation. This addresses the difference between the input images of different
patients and the model. Using the non-rigid registration gives more accurate de-
formation and more realistic measurements. The steps of the method are listed in
algorithm 5.

Furthermore, ACA2020 uses the stochastic quasi-Newton optimiser proposed
by Qiao et al. [QSLS15] instead of ASGD. This handles the situation when a
Hessian matrix is ill-conditioned as the Newton optimiser method takes in con-
sideration the second-order partial derivatives of the cost function. Moreover, a
higher-resolution cochlea atlas is used which produces more accurate results. The
figure 5.8 shows how the proposed method result looks like comparing to ACA2018
[ADBP+18b].

Finally, the previous points-model is enhanced to have 75 instead of 55 points
and I added three more points-models to automate the process of measuring dif-
ferent lengths. Currently, ACA2020 includes these point models:, and figure 5.3:

• Scala vestibuli points model (SvPt): a set of 74 points that passes through
the center of the scala vestibule, see figure 5.9, points are in magenta color.

• Scala tympani points model (StPt): a set of 75 points that passes through
the center of the scala tympani, see figure 5.9, points are in yellow color.

• Scala tympani lateral points model (StLt): a set of 118 points that passes
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Figure 5.8: Cochlea Atlas-Model comparison. ACA2018 has low resolution comparing
to ACA2020.

through the outer wall of the scala tympani, see figure 5.10, points are in
green color.

• Scala tympani organ of Corti points model (StOC): a set of 100 points that
passes through the inner wall of the scala tympani (the organ of Corti), see
figure 5.10, points are in red color.

• A-value endpoints model: the end points of the A-value method. This helps
to automate the process of measuring A-value and get the scala tympani
lateral and organ of Corti lengths using the A-value method automatically,
see figure 5.1.

Using these point models one can get all standard measurements from different
methods, e.g. A-value which helps doctors deciding the best implant type for
a specific patient. ACA2020 has the advantage because it works on any type
of images, even when high noise is present. Moreover, the points-to-image and
image-to-points conversion processes in ACA2018 are removed in ACA2020. The
transformation found by ACIR2020 is applied directly to the points using 3D
Slicer9. This solves the issue with missing points in ACA2018.

9Tip: use Elastix to generate the transformation file, after that use Transformix to generate
a deformation field image, e.g. in ".nrrd" format. This deformation-field image can be loaded
to 3D Slicer as a transform. In 3D Slicer, transform can be applied on any node, e.g. points,
segmentation, ...etc.

91



Figure 5.9: The point-models of scala tympani (yellow color) and scala vestibuli (blue
color). Each points-model measures a length of a curve passes by the center of the scala.

Figure 5.10: The point-models of scala tympani. The outer points-model is for mea-
suring the lateral length (dark green color). The inner points-model is for measuring the
organ of Corti length (dark red color).
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Algorithm 5: ACA2020
1 Input: cochlea image I(P) ;
2 Output: cochlea segmentation and different measurements ;
3 Locate the cochlea locations in input images;
4 Ĩ(P )= Crop(I(P ));
5 Apply ACIR2020 on the cropped input image and the predefined image ;
6 Ires,T = (Ĩ(P ), IM(P )) ;
7 Register the resulted image with the model image using B-spline

transform ;
8 T = register (Ĩres0, IM(P ));
9 Transform the segmentation and the point models using Tfinal and its

parameters µ;
10 Iseg(P ) = IMseg(T (P ), µ);
11 Ipoints(P ) = IMpoints

(T (P ), µ);
12 Output the segmentation, Iseg(P ), the segmentation sizes, and length of

points model Ipoints(P )
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Chapter 6

Results and Discussion

The results of my experiments are divided into two parts: image registration re-
sults, and image segmentation and analysis results. The following sections describe
the design of the experiments in details and list samples from the results. The com-
plete results of statistical files with all related scripts will be attached to the digital
version of this dissertation.

6.1 Cochlea Image Registration Results

The goal is to compare the accuracy and the time required by the methods I pro-
posed: ACIR2016, ACIR2017 and ACIR2020, against the related state of the arts
optimisers, i.e. ASGD, FASGD and FPSGD, using the same metric, transforma-
tion and other parameters.

I created four types of experiments based on image modalities. This gives the
detailed results and describes the behaviour of different image registration methods
on different types of images. The groups are:

1. CBCT to CBCT.

2. CBCT to CT.

3. CBCT to MR.

4. CT to MR.

I wrote a python script that runs an image registration of patient images, the
procedure is repeated 3 times for justification purposes. The average Root Mean
Squared Error (RMSE) [DCRB19] of the fixed image landmarks and the trans-
formed moving image landmarks is computed from the 3 versions of the results.
Similarly, the average required time to register a pair of images is computed. After

95



that, the total RMSE and time from all results are computed along with the Stan-
dard Deviation (STD). This should give a good estimation of the accuracy and the
required time of each method. The total number of the image registration experi-
ments were 744 experiments represented 214 images of 41 patients from Germany
datasets1, as Egypt datasets have only one image per patient. The section 6.1
shows sample of the result’s table.

The time recorded is the total time which includes reading the input images,
writing the output results and the preprocessing steps, e.g. the cropping.

The robustness of the method is computed based on the availability of valid
output. The Invalid output may happen if the optimisation process stopped for
some reason without producing an output transform, in this case, the result is
missing.

r = 100(
v

v + i
) , (6.1)

where r is the robustness percentage, v is a number of valid results, and i is
the number of invalid results. If the method works successfully on all the tested
images and produces valid results all the time, the method robustness is 100%
despite if the accuracy is bad.

Designing the experiments this way gives local view of each image registration
method with-in different cochlea image types in addition to a global view of the
performance of these methods on all images.

Using ASGD2009 without the cropping, the total RMSE median2 was 17.55 mm
with a range of [0.29-36.86] mm. The total time average required for registration
of an image pair using this method was 6.44 seconds with STD of 0.82 seconds.
The method without modification produced large error in some cases, hence it is
not recommended to be used. The improved method FASGD2015 total3 RMSE
median was 0.53 mm with range of [0.08-102.35] mm. The total time average
required for registration of an image pair using this method was 4.80 seconds with
STD of 1.27 seconds. One can see from the large error in some cases that the
method is not recommended as well. The recently published method FPSGD2019
total RMSE median was 0.44 mm with a range of [0.08-88.74] mm. The total
time average required for registration of an image pair using this method was 5.02
seconds with STD of 1.47 seconds. This method also has a large error in some
images.

1In more details: 124 images, 75 CBCT, 9 CT, 40 MR, 77 left, 88 right, 81 before surgery,
and 43 after surgery.

2The median and the range are used instead of the mean and the standard deviation when
the data is not normally distributed.

3Note: The missing values are replaced by the maximum error to penalized the method and
produces fair comparison with the other methods.
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Figure 6.1: A sample from a result table that shows all experiments of two patients.

Total RMSE median of ACIR2016 was 9.52 mm with a range of [0.21-49.78]
mm. The total time average required for registration of an image pair using this
method was 15.96 seconds with STD of 3.37 seconds. Comparing to ASGD,
ACIR2016 may produce better results but it still required larger time and the
accuracy is not good enough in practice. The total RMSE average of ACIR2017
was 0.36 mm with a STD of 0.17 mm. The total time average required for reg-
istration of an image pair using this method was 4.64 seconds with STD of 1.19
seconds. Total RMSE median of ACIR2020 was 0.34 mm with a range of [0.07-
2.12] mm. The total time average required for registration of an image pair using
this method was 4.62 seconds with STD of 1.19 seconds. Both ACIR2017 and
ACIR2020 results have high accuracy and required a few seconds to complete a
registration of a pair of images.

To confirm the results, I compared ACIR2020 to the other methods using
statistical tests4 with 1000 boot-strapping, I found out that the resulted means
were significant (p-value < 0.001 for RMSE and p-value <0.003 for time) except
for ACIR2017 (p-value = 0.168 for RMSE and p-value 0.277 for time). This means

4RMSE: Wilcoxon test. Time: Two-samples paired t-test.

97



Figure 6.2: Sample results of registration CBCT to CBCT (coronal views) and CBCT
to CT (axial views). The figure shows image types, methods and RMSE information.

that there is no difference between ACIR2017 and ACIR2020.

In figure 6.2, the visual samples of CBCT to CBCT and CBCT to CT image
results of all 6 methods are shown. The fixed image in magenta colour and the
moving image in green color. The RMSE error between the ground truth and the
registered ground truth landmarks is also shown. Similarly, figure 6.3 shows visual
samples of CBCT to MR and MR to CT image registration and fusion results. The
three charts in figure 6.4 show the comparison of the 6 methods in more details
terms of accuracy, time and robustness. They show the result for each modality
group in addition to the total result from all images. ASGD, ACIR2017, and
ACIR2020 methods were 100% robust.
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Figure 6.3: Sample results of registration CBCT to MR and MR to CT. The figure
shows the axial views with image types, methods and RMSE information.

6.2 Cochlea Image Segmentation and Analysis Results

The results in this sub-section are divided into two parts. The first part is the
result of the ACA2018 method [ADBP+18b]. The second part is the result of the
improved ACA2020 method which is more accurate and provides more information.
ACA2018 is not used anymore and replaced by ACA2020 in the update Slicer
plug-in. I mention ACA2018 results here to show the historical development of
the method and why it is necessary to have a better method, e.g. ACA2020.

In ACA2018 [ADBP+18b], information of implants is collected from the images
of 21 patients of different age and gender5. All patients haves a CI in one or both
ears. The length of CI in these images is used as a ground truth. This pre-

5In more details: 71 images, 39 CBCT, 25 CT, 7 MR, 32 left, 39 right, 47 before surgery, 24
after surgery.
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Figure 6.4: Results chart, the mean RMSE, time and robustness of each tested method
grouped based on image-modalities. The most right group is all the images from all
modalities. The robustness is computed based on equation (6.1). More details are pro-
vided in the text. Note that missing values are not computed in the mean RMSE and
time computation.

knowledge of these CI types gives us more understanding about the artefact error,
see figure 6.5[16], and table table 6.1.

The main challenging in this study is that the ground truth is not available due
to the low resolution of the clinical images. Using information about the active
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Table 6.1: Sample of CI types

Idx CI electrodes ActiveLength Notes

1 Cochlear Nucleus CI24RE Contour Advance 22 15
2 Cochlear Nucleus CI512 22 15
3 Cochlea CI422 22 20
4 Cochlea Nucleus CI532 22 14

Figure 6.5: Different types of cochlea implants with different lengths from different
companies [15].

length of CI may give an estimation of the error. The active length of the CI is
measured from the images and compared to the actual length, see figure 6.5. This
gives us information about how much the image artefact can be misleading.

To get a more accurate measurement, there are two challenges. The first, a
public and well-described cochlea dataset from different modalities and regions is
needed. The second challenge is related to the manual segmentation of a clinical
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cochlea’s image which is not accurate. For a specific image, the expert can not
provide the same segmentation if he segments the image multiple time. An average
manual segmentation should be computed from a number of manually segmented
images of a specific image from the same person. This needs more resources i.e
cochlea’s experts, time and effort.

The cochlea locations are estimated 10 times manually by 3 different students6.
The images are segmented automatically using ACA2018, then the size and the
length of the scala tympani are extracted. Finally, the average and the standard
deviation of the results from the ten estimated locations are recorded.

There is a number of factors that may affect the accuracy of the results. I stud-
ied a few important factors in my experiments and how they affect the measure-
ment’s accuracy. These factors are the cochlea localisation step and the artefact
generated by the image scanners.

The only manual step in my method is locating the cochlea in which the user
provides a point inside the cochlea region. This point is used in the proposed
method for the cropping phase where the region around the cochlea is cropped
and used in the third step in figure 5.3 i.e. registration phase. The point can be
anywhere inside the cochlea so the accuracy here should not be a problem. Since
this step is used only for cropping, the image registration process and the followed
atlas transformations are fully automated.

The selected point is considered as a center of the cropping cube of 10 mm
length. This generates a 3D cropped image of 80× 80× 80 voxels with 0.125 mm
spacing. I selected this length based on many experiments as I found that the
main cochlea shape is completely located inside this cropped size in all the tested
images in HCD dataset.

Since the selection of this cropping point can be different e.g. from user to
another or if the same person does the locating multiple time, the result may
change slightly. For justification, three students located the cochlea points 10 times
for each input image and the average and the standard deviation are recorded.

In figure 6.6, and table 6.2, sample results from three cochlea different location
points of the same image with their quantitative and visual results are shown. The
points set detection is related to the number of the points that transformed to the
new input image7. Notice that how the quantitative results slightly differ while
visually they look almost the same.

To find out the error resulted from the artefact in the image, I used prior
knowledge about the images in HCD dataset. I used the actual active length of

6It is easy to recognise the location of the cochlea by non-expert in the coronal view because
of the cochlea’s spiral shape

7Recall that ACA2018 transforms the points-model to an image, transforms the resulted
image and extracts the points back which results some missing points due to the interpolation.
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Table 6.2: Sample Of cochlea location and related results of a Patient.

Cochlea Location PointSet Detection Scala Tympani Length Scala Tympani Size Scala Vestibuli Size

216 247 78 0.91 28.4032 41.1152 34.8085
218 250 77 0.96 29.4105 41.3886 35.3632
223 254 77 0.98 30.4227 41.7539 36.8027

Figure 6.6: ACIR’s Cochlea Location Change Effect

the electrode as a ground truth. In Tables 6.3 and Table 6.4, the estimated and the
actual active length of the electrode are listed in mm from two different cochlea
implant providers, i.e. Cochlear8 and MedEL9.

There is usually a small human error that comes from the image artefact, the
human eye can not detect the end-points of CI correctly. One needs more data
with variable electrode array length to make a better judgment of the estimated
error.

From the two tables above, one can conclude that there will be a small human
error ranges from 0.5 mm to 1.12 mm. However, more data and experiments should
be done to make a solid statement.

8www.cochlear.com
9www.medel.com

Table 6.3: Cochlea implant measurement in mm (Cochlear company products).

Idx Image CI CI Actual Length CI Estimated Length Error

1 P100001DVLa CI24RE 15.00 14.50 0.50
2 P100002DVRa CI24RE 15.00 14.35 0.65
3 P100003DVRa CI24RE 15.00 14.27 0.73
4 P100004DVLa CI24RE 15.00 14.28 0.72
5 P100005DVLa CI24RE 15.00 14.49 0.51
6 P100005DVRa CI24RE 15.00 14.16 0.84
7 P100006DVRa CI24RE 15.00 14.39 0.61
8 P100007DVRa CI24RE 15.00 14.81 0.19
9 P100008DVLa CI24RE 15.00 14.82 0.18
10 P100009DVa CI24RE 15.00 14.00 1.00
11 P100009DVRa CI24RE 15.00 14.68 0.32
12 P100011DVRa CI512 15.00 14.30 0.70
13 P100012DVLa CI512 15.00 14.40 0.60
14 P100014DVLa CI512 15.00 13.88 1.12
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Table 6.4: Cochlea implant measurement in mm (MedEL company products).

Idx Image CI CI Actual Length CI Estimated Length Error

1 P100013DVLa MedEl Synchrony Medium 20.90 20.73 0.17
2 P100013DVRa MedEl Synchrony Medium 20.90 20.95 -0.05
3 P100015DVLa MedEl Synchrony Medium 20.90 20.96 -0.06
4 P100016DVLa MedEl Synchrony Medium 20.90 20.44 0.46
5 P100017DVRa MedEl Synchrony Medium 20.90 20.24 0.66
6 P100018DVRa MedEl Synchrony Medium 20.90 20.98 -0.08
7 P100019DVRa MedEl Synchrony Medium 20.90 21.15 -0.25
8 P100030DVLa MedEl Synchony Flex28 23.10 23.17 -0.07
9 P100031DVRa MedEl Synchony Flex28 23.10 23.46 -0.36
10 P100010DVLa MedEl Synchrony PIN Medium 20.90 20.76 0.14

In Table 6.5, each row represents a patient, DVa is the CBCT image after the
surgery, DVb is the CBCT image before the surgery and MRCT is the CT or MR
image before the surgery10.

The columns 3-5 represent the automatically computed length of the scala tym-
pani. The columns 6-8 represent the difference length between each two different
image types. Column 9 computes the average of scala tympani length from all
patient’s images.

From the table, notice that there is a small error when computing the length
from image to another. This error is around 1.0 mm. Taking the average scala
tympani’s length of different images gives us a better estimation of the length. In
the images I experimented with, the scala tympani length ranges from 28.79 mm
to 30.04 mm. Since this method uses rigid transformation11, it seems the average
length does not represent the patient correctly and the experts must modify the
end-points of the model-points manually to get an accurate length.

Similar to table 6.5, table 6.6 shows that there is a small error while computing
the volume size of scala tympani from image to another. However, this error should
not exceed 1.5 mm3. Similarly, Table 6.7 shows a maximum error of 2.0 mm3 while
computing the volume size of scala vestibuli from image to another. Taking the
average volume size of different images gives us a better estimation of the volume
size. Based on the result tables, the scala tympani volume size ranges from 41.05
mm3 to 41.77 mm3 and the scala vestibule and scala media combined volume size
ranges from 34.90 mm3 to 36.66 mm3. However, due to the rigid transformation
used, the result are not accurate and one should use a non-rigid transformation to
get more accurate results.

From the results above, it seems that the length of scala tympani is enough
to have a longer cochlear implant than the ones available on the market today.

10This is based on the availability of the dataset, e.g. some patients have images with two
ears, while others have images of one ear only. Also, some patients have CBCT and MRI, others
have CBCT and CT.

11Recall that rigid transformation does not have scaling as explained in chapter 2
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Table 6.5: Cochlea scala tympani estimated length.

Idx Image DVa DVb MRCT DVa-DVb DVa-MRCT DVb-MRCT AVG

1 P100001STL 29.23 29.86 29.98 0.63 0.75 0.12 29.69
2 P100002STL 29.59 29.76 29.76 0.17 0.18 0.00 29.70
3 P100003STL 29.52 29.44 29.42 0.08 0.09 0.02 29.46
4 P100004STL 29.23 29.10 29.70 0.13 0.47 0.60 29.34
5 P100005STL 29.58 28.94 29.28 0.64 0.30 0.34 29.27
6 P100005STL 29.77 30.71 29.64 0.95 0.13 1.08 30.04
7 P100006STL 29.83 29.93 29.68 0.10 0.15 0.25 29.82
8 P100007STL 29.66 29.38 29.36 0.28 0.30 0.02 29.46
9 P100008STL 29.47 0.00 29.45 0.00 0.03 0.00 29.46
10 P100009STL 29.97 29.95 29.44 0.02 0.52 0.51 29.79
11 P100009STL 29.86 29.86 29.58 0.00 0.27 0.28 29.76
12 P100010STL 29.64 29.66 29.72 0.02 0.08 0.06 29.68
13 P100011STL 29.84 29.58 29.77 0.26 0.07 0.19 29.73
14 P100012STL 29.78 29.45 29.31 0.32 0.47 0.15 29.51
15 P100013STL 29.42 29.17 29.71 0.24 0.29 0.54 29.43
16 P100013STL 29.21 29.51 29.51 0.30 0.30 0.00 29.41
17 P100014STL 29.57 29.88 29.78 0.31 0.21 0.10 29.74
18 P100015STL 28.61 29.36 28.39 0.75 0.23 0.97 28.79
19 P100016STL 29.25 28.74 29.62 0.51 0.37 0.88 29.20
20 P100017STL 29.44 29.49 29.66 0.05 0.22 0.18 29.53
21 P100018STL 30.11 29.61 29.89 0.50 0.23 0.28 29.87
22 P100019STL 28.85 29.27 29.69 0.42 0.84 0.42 29.27
23 P100030STL 28.96 29.27 29.69 0.31 0.73 0.42 29.31
24 P100031STL 29.58 29.96 29.56 0.38 0.01 0.39 29.70

Table 6.6: Cochlea scala tympani estimated volume size.

Idx Image DVa DVb MRCT DVa-DVb DVa-MRCT DVb-MRCT AVG

1 P100001STS 41.00 41.59 41.25 0.60 0.26 0.34 41.28
2 P100002STS 41.75 41.77 41.78 0.01 0.03 0.01 41.77
3 P100003STS 41.77 41.78 41.73 0.01 0.04 0.05 41.76
4 P100004STS 41.24 41.56 41.76 0.32 0.52 0.20 41.52
5 P100005STS 41.33 40.52 41.37 0.81 0.04 0.85 41.07
6 P100005STS 41.62 41.73 41.69 0.11 0.07 0.04 41.68
7 P100006STS 41.75 40.64 41.74 1.10 0.00 1.10 41.38
8 P100007STS 41.75 41.79 41.40 0.04 0.35 0.39 41.65
9 P100008STS 41.54 NA 41.68 NA 0.13 NA 41.61
10 P100009STS 41.74 41.31 41.74 0.43 0.01 0.43 41.60
11 P100009STS 41.51 41.75 41.65 0.24 0.14 0.11 41.64
12 P100010STS 41.77 41.76 41.73 0.01 0.04 0.04 41.75
13 P100011STS 41.63 41.75 41.52 0.12 0.11 0.23 41.64
14 P100012STS 41.61 41.46 41.67 0.14 0.07 0.21 41.58
15 P100013STS 41.59 41.76 41.76 0.18 0.17 0.01 41.70
16 P100013STS 41.47 41.78 41.75 0.31 0.28 0.03 41.67
17 P100014STS 41.75 41.79 41.58 0.04 0.17 0.21 41.70
18 P100015STS 41.05 41.52 40.57 0.48 0.47 0.95 41.05
19 P100016STS 41.44 40.99 41.52 0.45 0.08 0.53 41.32
20 P100017STS 41.76 41.71 41.65 0.06 0.12 0.06 41.71
21 P100018STS 41.75 41.68 41.72 0.07 0.02 0.05 41.72
22 P100019STS 41.38 41.61 41.70 0.23 0.32 0.09 41.57
23 P100030STS 41.38 41.49 41.72 0.11 0.34 0.23 41.53
24 P100031STS 41.76 41.56 41.64 0.20 0.12 0.08 41.65

Assuming an error of 1.0 mm and a range of 28.79 mm to 30.04 mm, the results
suggest a CI active length range from 27.0 mm to 29.0 mm. However, to verify
these measurements, one needs to experiment with more datasets from different
locations.

The hardware used was a notebook Asus ROG G751 equipped an Intel i7
CPU,a 32 GB memory card and a Nvidia GTX 970m graphics card. The im-
plementation provided as an open-source in 3D Slicer 4.8 software [KPV14] and
Elastix 4.8 toolbox [KSM+10].
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Table 6.7: Cochlea scala vestibule estimated volume size.

Idx Image DVa DVb MRCT DVa-DVb DVa-MRCT DVb-MRCT AVG

1 P100001SVS 34.8 35.94 35.86 1.14 1.06 0.08 35.53
2 P100002SVS 36.61 36.8 36.58 0.19 0.03 0.22 36.66
3 P100003SVS 36.74 36.75 36.36 0.01 0.38 0.4 36.62
4 P100004SVS 34.97 35.71 36.75 0.74 1.77 1.03 35.81
5 P100005SVS 35.57 34.39 35.31 1.18 0.26 0.92 35.09
6 P100005SVS 35.99 36.39 36.2 0.4 0.21 0.19 36.2
7 P100006SVS 36.68 35.88 36.37 0.8 0.31 0.49 36.31
8 P100007SVS 36.42 36.45 35.75 0.03 0.67 0.7 36.21
9 P100008SVS 36.3 NA 36.14 NA 0.16 NA 36.22
10 P100009SVS 36.42 35.52 36.69 0.9 0.27 1.17 36.21
11 P100009SVS 36.05 36.44 36.3 0.39 0.25 0.15 36.27
12 P100010SVS 36.4 36.41 36.45 0.01 0.05 0.04 36.42
13 P100011SVS 36.13 36.35 36.08 0.21 0.06 0.27 36.19
14 P100012SVS 35.89 35.48 36.1 0.42 0.2 0.62 35.82
15 P100013SVS 36.31 36.6 36.73 0.3 0.42 0.13 36.55
16 P100013SVS 35.83 36.68 36.62 0.85 0.79 0.05 36.38
17 P100014SVS 36.17 36.69 36.48 0.52 0.32 0.21 36.45
18 P100015SVS 34.53 35.66 34.51 1.13 0.03 1.15 34.9
19 P100016SVS 35.87 35.01 36.7 0.87 0.83 1.7 35.86
20 P100017SVS 36.47 36.14 36.06 0.32 0.41 0.08 36.22
21 P100018SVS 36.41 36.26 36.3 0.16 0.11 0.04 36.32
22 P100019SVS 35.47 35.91 36.27 0.44 0.8 0.36 35.88
23 P100030SVS 35.43 35.82 36.46 0.39 1.02 0.64 35.91
24 P100031SVS 36.5 36.43 35.9 0.07 0.61 0.53 36.28

Figure 6.7: ACA2020 dataset details. Left: Automatic experiments. Right: Manual
experiments. G column represents dataset from Germany while E column represents
dataset from Egypt.

In ACA2020, more datasets are used from different geographical locations. The
total number of images used in this study was 171 multi-modal 3D images of 67
patients of mixed gender and age from Germany (41 patients) and Egypt (26
patients), see figure 6.7 for details. The total number of experiments was 217 for
ACA2020 and 149 for the manual measurement using A-value method12.

12Note that some images have two ear sides.

106



The challenging part of clinical cochlea images is that there is no ground truth,
as the cochlea structure, i.e. cochlea scalae, is invisible. Since the round window
and the top of the cochlea can be "somehow" seen in these images, locating land-
marks can be a useful tool for validation and error estimation. Reliable landmarks
should be done by many experts multiple times for each image then the average
should be used. This may reduce a human error related to locating these land-
marks manually. Unfortunately, I was able to obtain landmarks that are done by
two experts only. However, this may provide a quantitative error estimation that
helps to judge the results.

The method results accuracy has been evaluated using RMSE of two 3D point
landmarks located by two experts. The landmarks represent the cochlea round
window and the cochlea apex (helicotrema), see figure 5.1. The total number of
landmarks used was 434 landmarks13. After aligning the model to the input image,
the landmarks of the model are transformed by the same resulted transformation to
the input image. Thereafter, RMSE in mm is measured between these transformed
landmarks and the related input image landmarks. This gives a good quantitative
error estimation and produces a good evaluation of the proposed method.

The time required to obtain the segmentation and all measurements have been
recorded including the cropping process. Since the result time recorded might
differ according to the hardware used, all the experiments of ACA2020 were done
using the same hardware. The hardware used was a computer equipped an AMD
Ryzen 3900 CPU, a 32 GB memory card and a Nvidia RTX2080Ti graphics card.

I used the same parameters and the original implementations of ASGD and
S-LBFGS by their authors, which are provided in Elastix 5.0.0 toolbox [KSM+10].

For justification, the results are repeated 3 times and the average values are
used. To get detailed information, the images are divided into different groups
based on their types CBCT, MR, CT and images with cochlea implant CI. This
helps to get more details on how ACA2020 performs on a specific modality. In
addition to these group results, the total results are presented to give a global
evaluation as well.

Total RMSE average was 0.61 mm with a STD of 0.22 mm. For CBCT with
implant group, the average RMSE was 0.54 mm with STD of 0.17 mm. The CBCT
without implant group had the average RMSE of 0.60 mm with STD of 0.18 mm,
while the CT showed the average RMSE of 0.64 mm with STD of 0.17 mm. As
for MR group, the average RMSE was 0.60 mm with STD of 0.25 mm.

The total time average required for analysing an image was 5.21 seconds with
STD of 0.93 seconds. The CBCT with an implant group resulted in the average
time of 5.18 seconds with STD of 0.27 seconds. CBCT without an implant group
had the average time of 5.32 seconds with STD of 0.3 seconds. The CT group

13Some images were too noisy to the point expert can not locate the landmark points.
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Figure 6.8: Sample from the results from different image types with RMSE values, for
each group the one in the left has the lowest RMSE and the one in the right has the
highest RMSE. Each result has the 3D model on top and axial, sagittal and coronal views
in bottom.

presented the average time of 5.18 seconds with STD of 0.67 seconds, and for the
MR group,it was 4.52 seconds with STD of 0.21 seconds.

Figure 6.8 shows visual samples from my experiment results while figure 6.9
shows charts of the RMSE error and the time required for different groups of
images.

Since images of the same patient should report the same measurements, e.g.
the cochlea length from MR image and CT image of the same patient. I define
the difference as In-Patient-Error (IPE). This is an error produced by different
scanners. IPE is computed for all measurements of three methods: ACA2020,
automatic and manual A-value. In figure 6.10, a comparison of IPE between the
manual and the automatic A-value methods is shown.

The measurement results include the average of the estimated scala vestibuli14
length and the volume size, the average of the estimated scala tympani volume
size and different lengths, and the A-value. The length measurements include a
length that passes by the center of the scala (central length). Additional lengths
are recorded for the scala tympani as it is more of the interest due to the fact that
the cochlea implant is implanted in this part. These lengths passes by the scala

14Scala vestibule is actually the combined scala media and scala vestibule.
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Figure 6.9: Top: average RMSE values of the registration for different groups. Bottom:
average time required to perform the analysis per image for each group.

lateral wall and by the organ of Corti, see figure 1.3, figure 5.9 and figure 5.10.
They are computed using three methods. These methods are my two proposed
ACA2020 and automatic A-value methods and the manual A-value method done
by the experts.

In table 6.8, and table 6.11, the cochlea’s related measurements and their IPE
values are listed from all the images. In table 6.9, table 6.10, table 6.12, and
table 6.13 more details are provided for each dataset separately. Finally, in ta-
ble 6.14, a comparison between the three methods is shown using only images
available in both manual and automatic experiments from all datasets.
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Figure 6.10: A-value method: Automatic vs Manual. In-patient error in mm. Lt and
Oc are short for lateral wall and organ of Corti. MRI images are not included in the
manual experiments.

Table 6.8: ACA2020 measurements with related errors (all datasets).

Scala vestibuli volume size
(mm3)

Scala tympani volume size
(mm3)

Scala vestibuli center
length (mm)

Scala tympani center
length (mm)

Mean 41.69 48.57 35.95 30.06
STD 2.0 2.24 0.53 0.45
Min 34.98 38.98 35.21 29.53
Max 49.3 57.67 38.79 32.21
¯IPE 1.79 1.91 0.61 0.52

σIPE 1.26 1.3 0.47 0.4

The work of Iyaniwura et al. [IELA18] uses the same idea of cropping and
points-model as I proposed in [ADBP+18b] using a points-model of the A-value
end-points. However, my work is tested against realistic clinical images while
their work was tested on only high resolution µCT images. Moreover, they didn’t
report how much time it takes to obtain the measurement. Since they are using a
complicated 3-stage image registration pipeline, I think their method takes longer
comparing to the methods I proposed. Finally, I showed how my method performs
on different datasets and all the details are provided in the public source-code.

The number of reported experiments are different between the manual method
and the automatic method as these two experiments are done independently. Some

Table 6.9: ACA2020 measurements (Germany dataset).

Scala vestibuli volume size
(mm3)

Scala tympani volume size
(mm3)

Scala vestibuli center
length (mm)

Scala tympani center
length (mm)

Mean 41.97 49.03 36.01 30.12
STD 2.06 2.01 0.58 0.49
Min 34.98 43.05 35.21 29.53
Max 49.3 57.67 38.79 32.21
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Table 6.10: ACA2020 measurements (Egypt dataset).

Scala vestibuli volume size
(mm3)

Scala tympani volume size
(mm3)

Scala vestibuli center
length (mm)

Scala tympani center
length (mm)

Mean 40.72 46.97 35.72 29.85
STD 1.4 2.27 0.11 0.13
Min 36.02 38.71 35.6 29.69
Max 43.0 48.94 36.17 30.3

Table 6.11: Scala tympani length related measurements with their IPE using all and
complete datasets.

Length (mm) A-value Scala tympani lateral wall Scala tympani organ-of-corti
Method ACA2020 Manual ACA2020 A-value auto. A-value manual ACA2020 A-value auto. A-value manual
Mean 8.91 9.02 43.74 39.38 39.82 31.67 32.01 32.49
STD 0.16 0.44 0.65 0.61 1.69 0.47 0.66 1.82
Min 8.71 8.21 42.93 38.6 36.69 31.11 31.17 29.12
Max 9.57 10.06 47.19 42.92 45.91 34.08 34.75 39.05

IPE mean 0.17 0.14 0.73 0.67 0.54 0.53 0.72 0.58
IPE STD 0.13 0.11 0.57 0.48 0.42 0.41 0.52 0.45

images are found on the manual experiments but not in the automatic experiments
and vice versa. The manual experiments use 149 images15 while the number of
automatic experiments was 217 16. The table 6.8 uses the complete reported
experiments of each method while table 6.14 uses only the results of the same
images found on both reported experiments (108 experiments).

The results show that automatic A-value method produces results similar to
the ones produced by the A-value manual method. The IPE difference between
them is less than 0.01 mm. All average lengths were also close to each other, but
it has been noticed that the standard deviation was a little larger in the case of
the manual experiments. Since these manual experiments are done only by two
experts, the results are may be affected by some human error during locating the
A-value points.

There was no large difference between measurement results of the datasets
from Germany or Egypt. The averages from the automatic and manual method
experiments were close in both datasets. This probably results from the small
number of patients.

15Only 115 images are reported. 34 images are removed as they are too noisy to find the
landmark locations.

16Recall that some images have two cochleae.

Table 6.12: Scala tympani length related measurements (Germany dataset).

Length (mm) A-value Scala tympani lateral wall Scala tympani organ-of-corti
Method ACA2020 Manual ACA2020 A-value auto. A-value manual ACA2020 A-value auto. A-value manual
Mean 8.91 8.97 43.84 39.4 39.63 31.75 32.03 32.28
STD 0.15 0.39 0.7 0.6 1.49 0.51 0.64 1.6
Min 8.71 8.21 42.93 38.6 36.69 31.11 31.17 29.12
Max 9.38 9.8 47.19 41.19 42.81 34.08 33.97 35.7
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Table 6.13: Scala tympani length related measurements (Egypt dataset).

Length (mm) A-value Scala tympani lateral wall Scala tympani organ-of-corti
Method ACA2020 Manual ACA2020 A-value auto. A-value manual ACA2020 A-value auto. A-value manual
Mean 8.89 9.09 43.4 39.32 40.06 31.42 31.95 32.75
STD 0.17 0.51 0.13 0.65 1.95 0.12 0.7 2.1
Min 8.81 8.25 43.11 38.99 36.85 31.18 31.59 29.28
Max 9.57 10.6 43.97 41.92 45.91 31.82 34.75 39.05

Table 6.14: Scala tympani related lengths using the same images from both datasets
(108 images).

Length (mm) A-value Scala tympani lateral wall Scala tympani organ-of-corti
Method ACA2020 Manual ACA2020 A-value auto. A-value manual ACA2020 A-value auto. A-value manual
Mean 8.96 9.02 43.88 39.58 39.82 31.77 32.23 32.49
STD 0.17 0.45 0.74 0.67 1.72 0.54 0.72 1.86
Min 8.75 8.21 42.93 38.75 36.69 31.11 31.34 29.12
Max 9.57 10.6 47.19 41.92 45.91 34.08 34.75 39.05

However, there was a large difference in the tympani lateral wall length from
ACA2020 comparing to the A-value (about 4 mm). I think the lateral wall length
from A-value does not cover the complete scala tympani as the ACA2020 length
provides a way to visualise the length and show the curve end-points.

The cochlea scala tympani volume size ranged from 38.98 mm3 to 57.67 mm3.
The combined scala media and scala vestibuli volume size ranged from 34.98 mm3

to 49.3 mm3. The overall volume size of the cochlea should range from 73.96 mm3

to 106.97 mm3.
The lateral wall length of scala tympani ranged from 42.93 mm to 47.19 mm.

The organ-of-Corti length of scala tympani ranged from 31.11 mm to 34.08 mm.
Using the A-value method, the lateral wall length of scala tympani ranged from
36.69 mm to 45.91 mm. The organ-of-Corti length of scala tympani ranged from
29.12 mm to 39.05 mm.

The results are validated using standard statistical bootstrapping and tests
[DCRB19]. The figure 6.11 shows the validated results of different measurements
using 1000 bootstrapping. This ensures that the result means are good estimates
of the population means.

The statistical tests17 show that there is no difference between the results from
automatic A-value method and the manual A-value method (p-value = 0.42).
There is no difference also between length’s measurements of the left and the right
ear sides (p-value > 0.16).

Comparing the results from German and Egypt dataset shows there is no differ-
ence when using manual or automatic A-value methods (p-value > 0.20). However,
there is a significant difference when using ACA2000 method between the German
and the Egyptian results (p-value < 0.001). It seems ACA2020 provides more
accurate measurements that capture small differences between different persons.

17In this case, paired t-test and independent t-test.
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Figure 6.11: Cochlea’s measurements using 1000 bootstrapping.

The length from ACA2020 method can be visualised and has a well-defined
end-points. The ACA2020 method works on different modalities and different
images despite the noise level or the resolution. In the other hand, the A-value
method works neither on MRI18 nor on noisy images. Hence, ACA2020 method
may provide more reliable and accurate measurement than the A-value method.

18A-value method is usually not used with MRI images as it has accuracy issues.
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Chapter 7

Generalisation: Spine Image
Segmentation and Analysis

Using ACIR2017, I was able to solve spine segmentation, spine ligaments insertion
and origin points detection [ADBP18a, ADBKP19] problems. These problems are
challenging and they have many applications, e.g. in bio-mechanical simulation.

7.1 Spine Segmentation

Multi-modal Spine Segmentation can be solved using my proposed method ACIR2017
[ADBP18a]. I used clinical CT and MRI images of 12 different patients. These
images are anonymised to protect patients’ privacy. All the images have the same
height and width, i.e. 512×512 pixels with varied depths and resolutions. The
depth ranges from 53 to 1050 slices and the resolution ranges from 0.7 × 0.7 ×
1.0 mm to 0.9× 0.9 × 2.0 mm. A sample of these images are shown in figure 7.2,
figure 7.3, and figure 7.4.

These images are part of our proposed public cervical spine dataset (CSD) 1.
The number of images is small, but it keeps increasing.

Similar to ACA2018 and ACA2020, the spine segmentation problem can be
solved using an atlas-model-based approach if an efficient image registration method
is found for these images. I proposed an atlas-based segmentation method using
ACIR2017 [ADBP18a] for solving the cervical spine segmentation problem. To
prepare the atlas model, a CT image is selected from our dataset and cropped to
the cervical spine area. The cervical spine is manually segmented with different
colors as in figure 7.1.

After that, each vertebra of the cervical spine is located manually then cropped
and saved separately, i.e. C1 to C7 in different files with their segmentation’s.

1Images can be obtained via an email request to bauer@uni-koblenz.de
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Figure 7.1: Cervical spine atlas model. The colored vertebrae are C1 to C7 (from top
to bottom)

These saved images will be used in the next stage as an atlas model.

To segment a new image, C2 vertebra is located. Then the approximated
locations of other vertebrae are predicted automatically. This prediction is based
on a vertical distance of 15 mm between each vertebra in the sagittal view. These
location points are used for cropping each vertebra with a cube of size 90 × 80
× 60 mm. The accuracy of the predicted points is not important if a vertebra
still included in the cropping cube. The previous measurements are based on my
experiments and they are sufficient for this purpose. Sometimes a small manual
correction is needed to correct these locations which are still offered by the 3D
Slicer plugin’s [5, 29] friendly user interface I developed.

All cervical spine vertebrae are extracted by the cropping process above and
registered using ACIR2017 to the related atlas model automatically. The result of
the registrations is 3D rigid transforms’ parameters. These transforms are used to
transform the segmentation of the atlas model to the input image.

For all the tested images, the proposed method produced a visually satisfying
segmentation in a few seconds, see figure 7.2 and figure 7.3 for result samples.

The results still suffer from a bad dice measurement and can not compete to
the state of the art method such as deep learning. However, if good non-rigid
transformation parameters are found and used as a second stage registration, this
method may provide more accurate results and faster performance than other
methods.
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Figure 7.2: Sample results: axial, sagittal and coronal slices are shown of two CT scans
of two different patients. Different vertebrae are segmented and represented in different
colors.

Figure 7.3: Sample results: axial, sagittal and coronal slices are shown. Left: CT
image, right: MRI image. Different vertebrae are segmented and represented in different
colors.

7.2 Spine Points Detection

Based on the above work [ADBP18a], I proposed a fast method to detect all
Cervical Spine Origin and Insertion Points (CSOIP) automatically using the spine
atlas-based segmentation [ADBKP19]. The method transforms a ligament points-
model to a binary image, then this image is transformed using the transformation
found by ACIR2017. Finally, the points are extracted from the transformed image.
The detection rate was based on a number of points detected as there were missing
points after the registration. The missing points were found due to the conversion
process between the images and the points as a built-in linear interpolation was
used2.

The method above is improved by a second stage non-rigid registration using B-
spline to cover the shape variance between different patients, similar to ACA2020.
Seven iterations for the second stage registration are used to ensure a realistic

2It seems there is a bug or error when using Elastix with these points.
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Figure 7.4: 3D cervical spine datasets’ samples. Left to right: CT and MRI from CSD,
CT from Verse.

deformation. The points-image conversion is removed so the transformation is
applied directly to the points-model which produces no missing points. Finally,
an additional points-model is added, i.e the muscle-points. This makes it possible
to detect both ligament and muscle points automatically at the same time.

The method is tested against two multi-modal public and standard datasets.
The first dataset is CSD which is the same as the dataset used in [ADBP18a].
It contains 8 CT and 13 MRI 3D cervical spine images of 21 patients. All MRI
images have a larger size than CT images which affect the time required for the
image registration process. The second dataset is part of the Large Scale Vertebrae
Segmentation Challenge (Verse19) [SRK+18] [1]. It contains 12 3D CT images of
12 patients.

The total number of 3D cervical spine multi-modal images from both datasets
is 33. These images represent 33 patients. All patient information is already
removed to protect their privacy. Three samples are shown in figure 7.4.

The following are the steps of the proposed method:

1. Localisation: the user locates a vertebra center approximately by clicking on
any point around the vertebra’s centre in an input image. This location is
used only for cropping, explained in the next step.

2. Cropping: the point from the localisation is used as the center of a cropping
box with dimensions (80, 80, 50)mm which includes the vertebra part. This
vertebra is saved in a new smaller image which allows faster computation
and more accurate results.

3. Registration (rigid): the cropped image is used as a fixed image in ACIR.
The moving image is a pre-defined image that has segmentation and points-
models. ACIR finds the rigid transformation parameters that align the
moving image to the fixed image. The transformation is applied on the
cropped moving image to produce the cropped registered image.
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Figure 7.5: Sample of landmarks used for validation, the figure shows C5 five landmarks.
Red: original landmarks. Yellow: a sample result.

4. Registration (non-rigid): the cropped registered image is used as a moving
image in the second stage registration. The proposed method finds the non-
rigid transformation parameters that align the cropped registered image to
the fixed image. The rigid and non-rigid transformations are composed to
produce the final transformation.

5. Transformation: the two points-models, i.e. ligament-points and muscle-
points, are transformed using the final transformation to the input image.

The main tools used for implementation are the standard open-source 3D Slicer
which is a standard medical image analysis and visualization tool and Elastix
which is a popular standard medical image registration tool. The method and the
datasets are available for a free download from a public server.

Using the transformation directly to transform the points instead of transform-
ing points-image allows preserving of these points with their correct labels after
the transformation. Hence, there are no missing points when using the improved
method. Another advantage of this method is detecting the muscle-points in ad-
dition to the ligament-points. It also addresses the difference in size and shape
by using the non-rigid B-spline transform. To the best of my knowledge, there is
no method available to detect CSOIP automatically. This area of research is very
nascent with no published research by experts.

Due to the lack of ground truth from experts, five 3D points landmarks that
cover the vertebra shape are located in all the tested images, see figure 7.5. The
RMSE of these landmarks has been measured after applying the same transforma-
tion.

The average RMSE was 2.058 mm with 0.786 mm standard deviation. Com-
pared to a vertebra size this error is small, hence these points can be used in
different simulation applications to produce approximated results. For more ac-
curacy, users can manually correct the points’ location in a few seconds using the
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Figure 7.6: C5 vertebra. MSE results in mm vs visual results. Left: CT from CSD
dataset. Right: CT from Verse dataset.

Table 7.1: Spine points detection RMSE mean and standard deviation of each group
of images.

RMSE result (mm) Time results (seconds)
Mean STD Mean STD

CSD CT 2.052 1.236 8.162 2.043
Verse CT 2.227 0.628 8.904 2.203
CSD MR 1.907 0.584 25.636 1.686

Total 2.058 0.786 15.316 8.667

friendly Slicer user-interface. The average time to detect CSOIP for a vertebra
was 15.3 seconds with 8.667 seconds standard deviation.

The quality of the results is also affected by the localisation step. Experimen-
tation with different locations often yields the desired results. In table 7.1, the
average and the standard deviation of the landmarks RMSE and the time required
to detect CSOIP of a vertebra are reported for the three groups of images.

In figure 7.6, the ground truth segmentation and the detected points are shown.
The left side shows the results of a CT image from the CSD dataset. Even though
the RMSE is 0.82 mm, all the points are detected correctly. The right side shows
a high error of 3.8 mm but most of the points are detected correctly except a few
ones need correction. This correction can be done manually in 3D Slicer within a
few seconds.

The results can be improved if the problem is reduced to find these points using
segmentation or a mesh instead of medical image. In this case, the similarity metric
mutual information SMMI is replaced by the mean squared error metric SMSE, and
the KNN interpolator is used to avoid introducing new colour values. I achieved3

an average dice for of 92% for all the spine vertebrae. In figure 7.7 sample results

3This is part of a master thesis of Li Ying Yin Simon which I co-supervised. The related
paper is submitted.
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Figure 7.7: 3D vertebra alignment and ligament points detection of different vertebrae
C7, T10, and L4. Red colour is the atlas, green colour shows the input vertebra, the blue
colour represents the ligament insertion, origin points and their labels.

of three different vertebrae C7, T10, and L4 are shown from different angles.
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Chapter 8

Conclusion and Future Works

In this study, I provided a practical solution for solving clinical multi-modal 3D
cochlea image registration, fusion, segmentation and analysis problems.

These problems have important applications related to cochlea implant surgery
and cochlea research. The study was part of a funded project COMBS1 under grant
number 5141056. The methods were tested and worked successfully on CBCT, CT,
and MRI. The methods have been validated using two datasets from Germany and
Egypt.

Since this a dissertation of the medical image analysis field, I concentrated on
providing a practical solution rather than improving the current algorithms. Image
registration and segmentation are challenging problems and usually one could work
on a branch of one of them in PhD research.

Moreover, working with very popular and busy doctors has some disadvantages
as the process of getting knowledge or some ground-truth was very slow and work
has to be repeated many times. In addition to that, there was no standard dataset
available, so I have to prepare one from scratch. I could not find any public code or
dataset related to the cochlea literature, so I could not validate the other methods
or benefit from their results. It seems this field is dominated by cochlea implant’s
producers, hence, neither their code nor datasets are publicly available. This study
provides a free public dataset and an open-source code which may help the future
of cochlea’s research field.

The anatomy of the ear and the cochlea was introduced. The problem defini-
tion and the dissertation hypothesis were explained. General information about
medical images and the concept of different technologies were introduced in some
details. The mathematical concepts of image registration and its components such
as mutual information similarity metric, adaptive stochastic gradient descent, and
B-spline transformation were introduced.

1The project period was from 15.4.2015-31.7.2017 by Cochlear linited, Germany.
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I could not find any detailed example in the literature about image registration,
so I implemented one from all the basic components where I described all the
related mathematics and how to implement it, e.g. the derivative of the similarity
metric with respect to the transformation parameters. This may help newcomers
to image registration field as the available implementation e.g. in ITK is too
complicated to trace due to the concentrate on performance rather than code-
readability.

Different image segmentation algorithms were explained such as threshold, edge
detection, region growing, and level-sets. The result of applying these classical
methods on cochlea images was shown as well. I mentioned all important related
work to the cochlea problems, i.e. cochlea image registration, cochlea image seg-
mentation, and cochlea image analysis. I described what they did, what they
missed and what should be done.

My proposed methods for cochlea image registration, fusion, segmentation and
analysis were explained in details with their historical development e.g. ACIR2016,
ACIR2017, ACA2018, ACIR2020, and ACIR2020. Their results were discussed in
details, sample figures, charts, and tables were shown. The results were compared
to the state of the arts optimisers for medical image registration e.g. fast adaptive
stochastic gradient descent [QvLS16] and efficient preconditioned for stochastic
gradient descent [QLS19].

ACIR2016 was my first attempt to automate cochlea image registration. The
total RMSE median of ACIR2016 was 9.52 mm with range [0.22-49.78] mm. The
total time average required for registration of an image pair using this method
was 16.78 seconds. This method was fully automated and work directly on the
input images without pre-processing e.g. cropping. However, the method was
complicated, needs about large time to register a pair of images and the accuracy
was not great at around 11 mm RMSE.

To address the above issues, ACIR2017 and ACIR2020 were proposed. They are
less complicated as the multi-registration and multi-resolution parts were removed
but a manual step of locating the cochlea and a pre-processing step i.e. cropping
were added. However, the results were more accurate and the required times was
much less. Total RMSE average of ACIR2017 was 0.36 mm. The total time average
required for registration of an image pair using this method was 4.65 seconds. The
total RMSE median of ACIR2020 was 0.35 mm with range [0.07-2.13] mm. Using
ACIR2020, the results were almost the same i.e. the total time average required for
registration of an image pair was 4.62 seconds. These two methods are equivalent
one of them can be used to get practical results at least for the tested images, see
figure 8.1 and figure 8.2.

Using ACIR2017, and ACIR2020, real-time automatic methods for clinical
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multi-modal 3D cochlear image segmentation and analysis is proposed. The pro-
posed methods can be integrated into a surgical cochlear robot due to high accu-
racy and fast performance. Due to the absence of public ground truth, the error is
estimated using the active length of the cochlear implant electrodes in the images
in addition to landmarks located by experts. These landmarks represent the round
window and the cochlea apex which usually they can be seen in the clinical cochlea
images.

To the best of my knowledge, this is the first method that uses such error
estimation in cochlea research. The experiments showed a small error in the length
estimation. This error ranged from 0.15 mm to 1.1 mm using ACA2018.

Iyaniwura et al. [IELA18] used my ideas, e.g. cropping and points-model, from
[ADBP+18b] but unfortunately no citation is given 2. They replaced the points-
model of scala tympani by points-model of the A-value end-points. However, their
work was tested on only high resolution µCT images. They didn’t report the time
which I think it is slower than my method due to the complicated 3 stages image
registration pipeline they used.

I defined IPE which is the difference between patient measurements from dif-
ferent images e.g. the difference in length of scala vestibuli from MRI image and
from CBCT image. The results show that automatic A-value, which is a part of
ACA2020 I proposed, produces results similar to the one produced manually by
the experts. IPE difference between them is 0.03 mm. All average lengths were
also close to each other, but it has been noticed that the standard deviation was a
little larger in the case of the manual results. Since these manual experiments are
done only by two experts, the results are may be affected by some human error
during locating the A-value points.

There was no large difference between the measurement results of the datasets
from Germany or Egypt. The averages from the automatic and manual method
experiments were close in both datasets. This probably results from the small
number of patients (67 patients in total, 41 from German dataset and 26 from
Egyptian dataset). One may argue that there is no large difference between the
volume size and the length of different patients’ cochlea. However, this needs
strong proof from the ground truth e.g. using large dataset of µCT.

However, there was a large difference in the tympani lateral wall length from
ACA2020 comparing to the A-value (about 4 mm). I think the lateral wall length
from A-value does not cover the complete scala tympani as the ACA2020 length
provides a way to visualise the length and show the curve end-points.

From all 217 images of 67 patients, the cochlea scala tympani volume size
ranged from 38.98 mm3 to 57.67 mm3. The combined scala media and scala

2Moreover, despite the source-code is publicly available, many recent papers didn’t compare
their results to mine which shows how competitive the research in this field.
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vestibuli volume size ranged from 34.98 mm3 to 49.3 mm3. The overall volume
size of the cochlea should range from 73.96 mm3 to 106.97 mm3.

The lateral wall length of scala tympani ranged from 42.93 mm to 47.19 mm.
The organ-of-Corti length of scala tympani ranged from 31.11 mm to 34.08 mm.
Using the A-value method, the lateral wall length of scala tympani ranged from
36.69 mm to 45.91 mm. The organ-of-Corti length of scala tympani ranged from
29.12 mm to 39.05 mm.

The length from ACA2020 method can be visualised and has a well defined end
points. The ACA2020 method works on different modalities and different images
despite the noise level or the resolution. In the other hand, the A-value method
does not work on MRI nor noisy images. Hence, ACA2020 method may provide a
more reliable and accurate measurement than the A-value method.

The experiments are repeated 3 times for justification. I validated the results
using bootstrapping and standard statistical tests. The proposed method is imple-
mented as a public open-source plug-in for 3D Slicer software so other researchers
can reproduce my results.

Future works include more enhancement in terms of speed and accuracy.
Using a better histological model to get a segmentation of the 3 cochlear scalae
also should be considered in future research.

It is also interesting to explore what deep learning and statistical shape models
offer. To improve the ground truth, more experts should be involved to provide
more landmarks and manual segmentation for evaluation.

Another idea is to test these methods using ground truth from higher resolution
e.g. µCT. The idea is to have the same cochlea scanned by µCT, CT, CBCT, and
MRI. If we have a number of cochlea, we can use the µCT for validation as we can
get more accurate measurements. Moreover, we can train a deep learning network
to convert from low-resolution e.g. MRI, and CBCT to the higher one i.e. µCT
which gives the doctors better visualisation of different part of the cochlea. It would
be interesting also to add more datasets from different geographical locations.
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Figure 8.1: Slicer cochlea registration and fusion interface. A CBCT image with cochlea
implant is registered to a MRI image of the same patient in 3.4 seconds. One can see
the cochlea implant and details from both images in different colours (green for CBCT
and magenta for MRI).
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Figure 8.2: Slicer cochlea segmentation and analysis interface. The figure shows a
CBCT image with a cochlea implant. One can see the implant inside the scala tympani
which is represented by green colour. All related measurements are presented in addition
to the 3D mesh representation. The bottom figure shows a visualisation of different
points-model. Slicer provides a flexible way to visualize different parts of the image.
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