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KurzfassungDie Koloskopie ist der Goldstandard zur Aufspürung von gefährli
hen Darmpo-lypen, die si
h zu Krebs entwi
keln können. In einer sol
hen Untersu
hung su
htder Arzt in den vom Endoskop gelieferten Bildern na
h Polypen und kann diesegegebenenfalls entfernen. Um den Arzt bei der Su
he zu unterstützen, erfors
htdie Universität Koblenz-Landau zur Zeit an Methoden, die zur automatis
hen De-tektion von Polypen auf endoskopis
hen Bildern verwendet werden können. Wieau
h bei anderen Systemen zur Mustererkennung werden hierzu zunä
hst Merk-male aus den Bildern extrahiert und mit diesen ein Klassi�kator trainiert. DieserKlassi�kator kann dann für die Klassi�kation von ihm unbekannten Bildern ein-gesetzt werden. In dieser Ba
helorarbeit wurde das vorhandene System zur Poly-pendetektion um Merkmalsdetektoren erweitert und mit den bereits vorhandenenvergli
hen. Implementiert wurden Merkmale basierend auf der Diskreten WaveletTransformation, auf Grauwertübergangsmatrizen und auf Lo
al Binary Patterns.Vers
hiedene Modi�kationen dieser Merkmale wurden getestet und evaluiert.Abstra
tColonos
opy is the gold standard for dete
tion of 
olore
tal polyps that 
an progressto 
an
er. In su
h an examination physi
ians sear
h for polyps in endos
opi
images. Thereby polyps 
an be removed. To support experts with a 
omputer-aided diagnosis system, the University of Koblenz-Landau 
urrently makes somee�orts in resear
h di�erent methods for automati
 dete
tion. Comparable to tradi-tional pattern re
ognition systems, features are initially extra
ted and a 
lassi�eris trained on su
h data. Afterwards, unknown endos
opi
 images 
an be 
lassi�edwith the previously trained 
lassi�er. This ba
helor thesis 
on
entrates on theextension of the feature extra
tion module in the existing system. New dete
tionmethods are 
ompared to existing te
hniques. Several features are implemented,in
orporating Graylevel Co-o

urren
e Matri
es, Lo
al Binary Patterns and Dis-
rete Wavelet Transform. Di�erent modi�
ations on those features are applied andevaluated.
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Chapter 1Introdu
tion
1.1 Medi
al Ba
kgroundCan
er is a leading 
ause of death worldwide. It des
ribes the transformation froma normal 
ell into a tumor; a progression from a pre-
an
erous lesion to malignanttumours. A

ording to the World Health Organisation (WHO) 655,000 people diefrom 
olon 
an
er per year [WHO06℄. One third of the 
an
er burden 
ould be
ured if dete
ted early and treated adequately. In Germany, the number of in
i-den
es mounts to 70,000 per year with approximately 30,000 fatalities [SPRS+08℄.Colore
tal or intestinal polyps are the most frequently o

urring pre-
ursor of
olon 
an
er. Polyps 
an be broadly 
lassi�ed as neoplasti
 and nonneoplasti
polyps. Among neoplasti
 polyps one di�erentiates between adenomatous andmalignant. Approximately 95% of all 
olore
tal 
ar
inomas arise from adenomas,a fa
t that underlines the importan
e of treatment of 
olore
tal polyps [TA07℄.The abnormality of polyps is mainly dete
ted when the surfa
e of the lipomais eroded or irregular in 
ontrast to a smooth surfa
e. The o

urring forms 
anbe 
lassi�ed in tubular, tubulovillous, or villous, primarily based on the overallper
entage of villous 
omponent. The risk of progression to 
an
er of adenomas isrelated to their ma
ros
opi
 appearan
e (size, villous 
omponents) as well as theirmi
ros
opi
 ar
hite
ture and degree of dysplasia. Considering the size, smalleradenomas (< 1 
m) have a lower risk of malignant potential [TA07℄.Colonos
opy is the a

epted gold standard for s
reening 
olon 
an
er or 
ol-ore
tal polyps. It allows diagnosis, therapy as well as biopsy. In most 
ases, thepolyps are removed dire
tly when dete
ted. Nevertheless, there is a 6-12% missrate for adenomas that are 1
m or larger; the miss rate for smaller adenomas isup to 25% [TA07℄. This is due to the fa
t that the polyp 
an show up on thes
reen but is not identi�ed by the physi
ian be
ause of non-attention or subje
tive9



10 CHAPTER 1. INTRODUCTIONdiagnosis. Furthermore, endos
opi
 analysis does not 
over all parts of the 
olon.As a 
onsequen
e, parts remain unseen by the 
amera.It is re
ommended to have 
ontinuing surveillan
e of patients with previouslyremoved adenomas. The interval between 
olonos
opies depends on the size, num-ber, and histologi
al type of polyp, as well as the patient's family history. Polypre
urren
e rates are 20% at 5 years and 50% at 15 years [TA07℄.A 
olonography is a visual re
ording of the 
olon obtained using 
omputedtomography (CT) te
hnology. This is a new proposed te
hnique for dete
tion ofadenomas. Although this method produ
es a virtual representation of the 
olonwhi
h 
an speed up the visual analysis by the physi
ian, it also holds some disad-vantages: the extensive amount of radiologist working time during CT s
anning,the 
osts of su
h an exam and of 
ourse the radiation that the patient is subje
tedto [ACN07℄. When polyps are dete
ted and must be removed, the patient under-goes 
olonos
opy analysis on
e more, whi
h �nally leads to a double intervention.Moreover, virtual 
olonos
opy has lower sensitivity than opti
al 
olonos
opy forsmall (<1 
m) adenomas [TA07℄. Thus the potential to miss small polyps is higher.The visual analysis of the endos
opi
 images has some drawba
ks su
h as in-terpretational variation and non-suitability for 
omparative evaluation. Hen
e a
omputer-aided system for dete
tion will help 
onsiderably in the quantitative 
har-a
terization of abnormalities, thereby improving patient's 
are. It is desirable todevelop a system that marks polyps reliably during the s
reening pro
ess leadingto a signi�
antly de
reased miss-rate.1.2 Pattern Re
ognition S
hemesComputer-aided systems for dete
tion often in
orporate the appli
ation of patternre
ognition and 
lassi�
ation. Traditionally, they 
onsists of several moduli takingover spe
i�
 tasks explained in the following.In a �rst step sensor data is sampled and quantized, for example a video frame.Then a prepro
essing might be applied to the image in order to improve the resultsof subsequent steps of pro
essing. This either results in redu
tion of 
omplexity orimprovement of performan
e, or both. Additionally, features are extra
ted fromthe image leading to a noti
eable redu
tion of representational spa
e. They are nowrepresented by ve
tors holding numeri
 or nominal values. After this, two disjun
tsets of feature ve
tors have to be 
hosen, namely a training set for learning of the
lassi�er and a test set for evaluation of the 
omplete system.Basi
ally, one di�erentiates between supervised and unsupervised learning. Su-pervised learning deals with 
lasses that are known before the training is applied.Features are extra
ted and mapped to these prede�ned 
lasses. Otherwise, duringthe training phase disjun
t 
lasses have to be 
reated, whi
h involves 
lustering the



1.3. CONTENT OF THIS WORK 11PSfrag repla
ements
patternprepro
essing feature extra
tion 
lassi�
ationtrainingsamplesdes
riptorimage a
quisition 
lass

Figure 1.1: Traditional s
heme for 
lassi�
ation of patterns.features in feature spa
e. The trained 
lassi�er 
an then be used for 
lassi�
ationof unknown patterns in the so 
alled testing phase [Nie07℄.100 per
ent of 
orre
t 
lassi�ed patterns is desirable but often hard to realize,depending on the 
omplexity of the patterns. On this note, an analysis of theresults is ne
essary to evaluate the performan
e and 
orre
tness of the system.Computer-aided diagnosis 
on
erning medi
al themes requires image a
quisi-tion, image pro
essing, feature extra
tion and 
lassi�
ation as depi
ted in thepipeline above (�gure 1.1). Ameling [AWP+09℄ proposed a polyp dete
tion sys-tem 
onsisting of the above mentioned steps. Several feature extra
tion methodshave been already implemented. Nevertheless, there is a potential to in
rease theperforman
e of the system by examining the single modules.1.3 Content of this WorkThe approa
h of this work is to in
rease the quality of feature extra
tion on endo-s
opi
 images in the system of [AWP+09℄. In �gure 1.1 this module is depi
ted bythe third step in the pipeline, whi
h 
omputes des
riptors su
h as feature ve
torsfrom the images. The existing extra
tion methods will be 
ustomized to the taskof polyp dete
tion by testing di�erent adjustments and versions of the features.Sin
e there is a high dependen
y between feature extra
tion and 
lassi�
ation
on
erning the performan
e of the whole system, 
lassi�
ation will be examinedadditionally.To start with, a number of existing s
hemes for the dete
tion of abnormalitiesin the 
olon are presented in the following 
hapter. In 
hapter 3, texture featuremethods are introdu
ed su
h as Graylevel Co-o

uren
e Matri
es, Lo
al BinaryPatterns and the Wavelet Transform. Chapter 4 gives an overview about di�erent



12 CHAPTER 1. INTRODUCTION
lassi�ers and the methods of evaluation. Subsequently, the system as well as theexperimental �ow is des
ribed in 
hapter 5. Chapter 6 explains the features thatare implemented in this work and shows the results of the applied tests. Finally,
hapter 7 gives a summary about this work and and lists some aspe
ts aboutpossible further work.



Chapter 2Related WorkThis 
hapter gives an overview about the state of the art of 
omputer aided de-te
tion systems in endos
opi
 images. It is espe
ially fo
ussed on the dete
tion of
olon 
an
er as well as intestinal polyps.2.1 Form-based Dete
tionAs des
ribed in 1.1, polyps 
an have tubular, tubulovillous or villous form. Thefollowing approa
hes take advantage of this, trying to �nd 
ontours or segmentson endos
opi
 images.Krishnan et al. [KYC+98℄ desribe a form-based approa
h for dete
tion of ab-nonormalities in the 
olon. First the image 
ontours are extra
ted using the CannyEdge Dete
tor, and the 
urvature of ea
h 
ontour is 
omputed. Zero-
rossings of
urvature along the 
ontour are dete
ted then. Afterwards 
ontour segments are�ltered whi
h are positioned between two zero-
rossings. If this 
ontour segmenthas the opposite 
urvature signs to those of its two neighboring 
ontour segments,the presen
e of polyps or tumors will be rated as high.The method of Hwang et al. [HOT+07℄ relies on the ellipti
al shape of 
olonpolyps. In a �rst step a watershed-based image segmentation is applied to a frame.Then a binary edge map is 
onstru
ted for ea
h segmented region using a parti
ularthreshold. The map is used as input for an ellipse �tting algorithm. Ellipses aredes
ribed as se
ond order polynomials. They are mapped to the 
omputed edgemap using a least square �tting method. Among dete
ted ellipses, those are �lteredwhi
h do not represent a
tual polyps. The strength of the edge and the intensityvalue inside the ellipse serves as 
riteria for �ltering.Dhandra et al. [DHHM06℄ do not 
onsider the edges like the methods men-tioned previously. Their approa
h 
onverts the endos
opi
 
olor image into HSI
olor spa
e and then a watershed segmentation te
hnique is applied. The 
lassi-13



14 CHAPTER 2. RELATED WORK�
ation of the image as abnormal is simply based on the number of watershedregions present in the image, 
ompared to a 
ertain threshold.Another te
hnique for dete
ting polyps was introdu
ed by Kang et al. [KD03℄.The endos
opi
 images obtain a 
ontrast enhan
ement whi
h is a

omplished byperforming a histogram stret
hing operation in RGB 
olor spa
e. In a next step,the Canny Edge Dete
tion Algorithm is applied to ea
h RGB 
olor 
hannel sepa-rately. The dete
ted edges are 
ombined afterwards to one result. Morphologi
aloperations su
h as dilation for edge thi
kening and 
onne
ting of disjoint edges are�nally used. The resulting image segments are analyzed and �ltered 
onsideringarea, 
olor and ellipti
al shape of the segment.2.2 Texture-based Dete
tionTexture analysis is frequently used in image pro
essing and pattern re
ognition for
hara
terization of regions from digital images. Texture 
arries information aboutthe mi
ro-stru
ture of the image regions and the o

urring distribution of graylevels [Nie07℄.Wang et al. [WKKT01℄ propose a feature extra
tion method 
alled Lo
al Bi-nary Pattern (LBP) whi
h is a lo
al texture des
riptor. The LBP 
an be 
ombinedwith the image intensities to LBP/I. This LBP/I distribution is represented in adis
rete two dimensional histogram. A log-likelihood-ratio 
alled the G-statisti
,whi
h is a modi�
ation from Kullba
k's 
riterion, is used as a pseudometri
 for
omparing LBP/I distributions. A Neural Network formed by Self-OrganizingMaps (SOM) provides means for 
lassi�
ation.The 
on
ept of Li et al. [LCK05℄ is to transform the RGB endos
opi
 imagesinto CIELab 
olor spa
e to analyze 
olor and luminan
e separately. Pat
hes of�xed size are used, whi
h overlap 50% to ea
h other. A two level Dis
rete WaveletTransform de
omposition is applied to ea
h pat
h and CIELab 
hannel separately.Afterwards, mean as well as standard deviations are 
al
ulated from the absolutevalues of approximation and detail 
oe�
ients of the se
ond level of Wavelet de-
omposition. Another feature in
ludes 1-dimensional histograms of the luminan
e
hannel L (with 16 bins) and 2-dimensional histograms of the a and b 
omponentsin CIELab spa
e (with 64 bins). Support Ve
tor Ma
hines serve as 
lassi�
ations
heme.Tjoa et al. [TK03℄ determine a so 
alled texture spe
tra in the 
hromati
and a
hromati
 domains in the 
olonos
opi
 image (HSI and RGB 
omponents).Therefore texture units and texture unit numbers are 
al
ulated, whi
h are usedto form a histogram. Six statisti
al measures are extra
ted from ea
h texture spe
-trum: Energy, Mean, Standard Deviation, Skew, Kurtosis and Entropy. Prin
ipalComponent Analysis (PCA) redu
e the size of the features, whi
h are afterwards



2.2. TEXTURE-BASED DETECTION 15evaluated by a Ba
kpropagation Neural Network (BPNN). They found that usingtexture and 
olor features improves 
lassi�
ation results when 
ompared to usingonly one type of information.The method of Alexandre et al. [ACN07℄ takes the 
olor of a pixel (RGB 
om-ponents) and its position as feature ve
tor dimensions. This implies a requirementof a high dimensional input spa
e for SVM. In a prepro
essing step they divide theoriginal image into subimages of 40 × 40 pixels and 
lassify ea
h pat
h separately.Karkanis et al. [KMGS99℄ propose a s
heme whi
h uses textural des
riptorsbased on se
ond order gray level statisti
s 
alled Graylevel Co-o

uren
e Matri
es(GLCM), intitially proposed by Harali
k [HDS73℄. This method evaluates a seriesof matri
es that des
ribe the spatial variation of gray level values within a lo
alarea. In this approa
h four GLCM have been 
omputed and four statisti
al featureswere determined: Angular Se
ond Moment (Energy), Correlation, Inverse Di�er-en
e Moment and Entropy. This forms a 16-dimensional feature ve
tor, whi
h isused as input for 
lassi�
ation with Neural Networks.In [KIM+00℄ a one dimensional Dis
rete Wavelet Transform (DWT) de
ompo-sition is performed on raster s
anned images, resulting in four wavelet subimagesfor ea
h pat
h. Then GLCMs are 
al
ulated on the wavelet domain and four sta-tisti
al measurements are estimated. A Multilayer Feedforward Neural Network(MFNN) is employed for 
lassi�
ation of the 16-dimensional feature ve
tor. As ex-periments with both proposed methods indi
ate, the Wavelet Transform performsbetter than the simple GLCM method.A one dimensional Dis
rete Wavelet Transform is performed by Karkanis etal.[KIKM01℄, resulting in approximation and detail 
omponents. The Daube
hieswavelet basis is utilized due to their orthogonal property. Subsequently, GLCMsare extra
ted from the detail 
oe�
ients (without the lowpass-�ltered 
hannel) andfour statisti
al measurements 
alled Angular Se
ond Moment, Correlation, InverseDi�eren
e Moment and Entropy are 
al
ulated. 48-
omponent feature ve
torsform the input to the Multilayer Feedforward Neural Network ar
hite
ture. Thisproposal was implemented in CoLD (Colore
tal Lesion Dete
tor) [MIKK03℄ within
orporation of another 
lassi�er 
alled Multilayer Per
eptron Neural Networks(MLP).Karkanis et al. [KIM+03℄ propose a new 
olor feature extra
tion s
heme namedColor Wavelet Covarian
e (CWC) based on a �xed size sliding window. A three-level DWT de
omposition is performed and GLCMs are extra
ted from the se
ondwavelet level on ea
h 
olor 
hannel separately. Afterwards, the aforementionedstatisti
al measurements are 
omputed. Covarian
e values of pairs of the estimatedfeatures 
onstitute the 72-dimensional CWC feature ve
tor. Linear Dis
riminantAnalysis is used for 
lassi�
ation of the features.



16 CHAPTER 2. RELATED WORKIn [IMK06℄ di�erent prepro
essing methods and various feature extra
tion te
h-niques are 
ompared to ea
h other. Color spa
e transformations (e.g. RGB, K-L,CIE-Lab, HSV) are tested and in
orporated with ea
h extra
ted feature for in-stan
e Lo
al Binary Patterns (LBP), Opponent-Color LBP (OC-LBP), Wavelet-Energy and CWC. Linear and non-linear 
lassi�
ation modules are investigated.Ameling et al. [AWP+09℄ 
ompares existing feature extra
tion methods su
has GLCM and LBP, exploiting the pat
h approa
h. Four di�erent polyp s
enes are
hosen for testing. The GLCM6 feature as well as the GLCM16 feature 
omputesfour matri
es on gray level pat
hes. For GLCM6, six statisti
al measurements
alled Energy, Entropy, Inverse Di�eren
e Moment, Inertia, Cluster Shade, ClusterProminen
e are extra
ted and the mean is 
omputed from the extra
ted values.GLCM16 utilizes only four statisti
al measures, the same measures like [KMGS99℄use in their appli
ation without averaging. LBP and OC-LBP features are alsoinvestigated. OC-LBP performed best on the presele
ted four s
enes, 
ombiningtexture and 
olor information.2.3 Combined MethodsAs shown in the previous se
tions, there are many approa
hes for dete
tion oflesions. However, there is not a single method to dete
t all kinds of lesions. Con-sidering this fa
t, Zheng et al. [ZK01℄ 
ombines multiple te
hniques. A multisensordata fusion te
hnique based on Bayesian Inferen
e is applied. This approa
h wasfurther improved to an intelligent fusion-based 
lini
al de
ision support in [ZKT05℄.Subde
isions are estimated based on asso
iated 
omponent feature sets ([TKK+01℄[KWL+00℄ [WKHS02℄) derived from the endos
opi
 images. Bayesian probability
omputations are employed to evalutate the a

ura
ies of subde
isions and areutilized in estimating the probability of the fused des
ision.2.4 Dis
ussionThe results of the resear
h groups are di�
ult to 
ompare be
ause of the usageof di�erent data bases, whi
h are beside this often too small to make reliablepredi
tions. Additionally, the systems are not trained for all types of polyps.Another aspe
t to 
onsider is the resolution of the endos
opi
 images, whi
h donot 
omply with te
hni
al progress. It is possible today to use full-high de�nitionresolution instead of images of size 320 × 240 like in [IMK06, LCK05, KIM+03℄.High resolution endos
opi
 images have the advantage to provide more 
on
iseinformation about the mi
rostru
tures of the intestinal wall.



2.4. DISCUSSION 17The mi
ro-stru
ture of the intestinal wall is de�ned by vas
ulature and mu
osa,while the appearan
e of polyps is determined by the degree of dysplasia. Onthis note, texture features 
an be a dis
riminating aspe
t in dete
ting polyps.Graylevel Co-o

uren
e Matri
es and Lo
al Binary Patterns are popular methodsas des
ribed in se
tion 2.2. They estimate stru
tural relationships between pixelswhi
h are ne
essary to provide adequat texture modelling.The analysis of the form of polyps is often realized by �nding edges or throughregion segmentation. It is di�
ult to predi
t whether this approa
h will lead toa reliable dete
tion of polyps, be
ause many similar shaped stru
tures are foundin the 
olon, for instan
e intussus
eptions. Furthermore, there are di�erent typesand sizes of polyps having varying forms. These aspe
ts results in a very 
omplexsegmentation task.Other approa
hes are 
on
erned with transform methods su
h as the WaveletTransform, whi
h has an advantageous e�e
t on the representation and modellingof texture [CR95℄. It is possible to perform multiresolutional analysis, whi
h 
ouldhave an enormous potential in examing endos
opi
 images. Due to the fa
t thatthe endos
ope most likely has di�erent distan
es to the intestinal wall duringendos
opy s
ale variant features are 
omputed when no adequate pro
essing isapplied. In this way the Wavelet Transform might be an appropriate mean.Considering the 
lassi�
ation te
hniques, two methods are frequently used inthe presented 
omputer-aided dete
tion systems, namely SVMs and Neural Net-works. A Support Ve
tor Ma
hine found also appli
ation in [AWP+09℄.All in all the here dis
ussed and positive evaluated approa
hes have a potentialin dete
ting polyps reliable. The overall aim is to in
lude 
olor in the featureextra
tion te
hniques from [AWP+09℄, whi
h seems to be one of the most promisinginformation base for polyp dete
tion. A subset of the introdu
ed texture methodssu
h as Wavelet Transform, Graylevel Co-o

urren
e Matri
es and Lo
al BinaryPatterns 
an be 
ombined in di�erent ways. Some of the 
ombinations already havereferen
e in literature, while other are never tested so far on endos
opi
 images.





Chapter 3Texture FeaturesTexture 
an be seen as a ri
h sour
e of visual information that is easily per
eivedby humans. Nevertheless, there is no stri
t de�nition of image texture. Generallyspeaking, textures are 
omplex visual patterns 
omposed of entities, or subpatternsthat have spe
ial 
hara
teristi
s. Hen
e, texture 
an be regarded as a similaritygrouping of su
h entitites in an image [RK82℄.3.1 Transform methodsTransform methods of texture analysis represent an image in a spa
e whose 
oor-dinate system has an interpretation that is 
losely related to the 
hara
teristi
sof texture. Methods based on Fourier Transform perform poorly in pra
ti
e, dueto its la
k of spatial lo
ation, while the Wavelet Transform method posseses a
apability of time (spa
e) lo
ation of signal spe
tral features [Mal89℄.Several psy
ho-visual studies [RL93℄[Jul86℄ demonstrate that the human visualsystem pro
esses images in a multi-s
ale manner. This knowledge motivates theuse of multi-s
ale or multi-resolution approa
hes for texture analysis. Therefore,the s
ale is the most important parameter, whi
h is determined by the size of thetextural element or the 
onsidered neighborhood. The Wavelet Transform providesa formal te
hnique for su
h an approa
h [CR95℄.Wavelet TransformThere are two advantages to mention 
onsidering Wavelet Transform. It has beendemonstrated that Dis
rete Wavelet Transform 
an lead to better texture modeling[Mey93℄. Varying spatial resolution allows it to represent textures at the mostsuitable s
ale. Additionally, the wide range of 
hoi
es for the wavelet basis fun
tionmakes it easily adjustable. 19



20 CHAPTER 3. TEXTURE FEATURESThe disadvantage of Wavelet Transform is that it is not translation-invariant[LCC97℄ and thus results in di�erent 
oe�
ients as soon as the sour
e signal isshifted.The Wavelet Transform utilizes a basi
 fun
tion ψ(t), the so-
alled `motherwavelet', whi
h is s
aled with a fa
tor α and shifted to the position τ of the timeaxis. The following integral des
ribes the Wavelet Transform (WT) of a signal f
WT (τ, α) =

∫ ∞

−∞

f(t)
1

√

|α|
ψ

(

t− τ

α

)

dt =

∫ ∞

−∞

f(t)ψα,τ (t)dt. (3.1)Limiting the range of α and τ to the following dis
rete values,
α = 2−µ , τ = kα , µ, k = ..., 0,±1,±2, ... (3.2)generates a family of Wavelets ψµ,k(t) from one basis fun
tion ψ by

ψµ,k(t) =
1

√

|α|
ψ

(

t− τ

α

)

=
√

2µψ(2µt− k), ψ0,0(t) = ψ(t). (3.3)The orthogonal property of a wavelet family is of importan
e, sin
e it maintainsthe textural stru
ture along the di�erent s
ales of the transform.Two fun
tions mutually orthonormal are initially adopted: the s
aling fun
tion
φ, whi
h in
reasingly redu
es the resolution of the fun
tion f and the motherwavelet fun
tion ψ . S
aling fun
tion and wavelet fun
tions take over the generaltask of low- and highpass �ltering. Other wavelets are then produ
ed by translationof the s
aling fun
tion φ and dilations of the mother wavelet ψ, a

ording to theequations:

φµ,k(t) =
√

2µφ(2µt− k) (3.4)
ψµ,k(t) =

√
2µψ(2µt− k). (3.5)

µ, k ∈ ZZ are the s
ale and translation indi
es, respe
tively; the fa
tor √2µ isan inner produ
t normalization.The Wavelet Transform 
an easily be extended to multiple dimensions, be
auseone 
an utilize a separable des
ription. In the 
ase of a two-dimensional image
f = [fj,k], the wavelet de
omposition is obtained by separable �ltering along therows and 
olumns of an image. The use of a pyramid-stru
turedWavelet Transformfor texture analysis was �rst suggested in the pioneering work of Mallat [Mal89℄.Pairs of wavelet �lters in
luding a lowpass �lter g (s
aling fun
tion) and a highpass�lter h (wavelet fun
tion) are utilised to 
al
ulate the wavelet 
oe�
ients. Inpra
ti
e, the transform is 
omputed by applying a separable �lter bank to theimage:
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Figure 3.1: Twodimensional Wavelet Transform. fµ is subsequently subdivided.
fµ =

[

gx ∗
[

gy ∗ fµ−1

]

↓2,1

]

↓1,2
(3.6)

d0,µ =
[

hx ∗
[

gy ∗ fµ−1

]

↓2,1

]

↓1,2
(3.7)

d1,µ =
[

hx ∗
[

hy ∗ fµ−1

]

↓2,1

]

↓1,2
(3.8)

d2,µ =
[

gx ∗
[

hy ∗ fµ−1

]

↓2,1

]

↓1,2
(3.9)where ∗ denotes the 
onvolution operator, ↓ 2, 1(↓ 1, 2) denotes the downsam-pling along the rows (
olumns) and f is the original image.Every subimage 
ontains information of a spe
i�
 s
ale and orientation of the
oe�
ients. Spatial information is retained within the subimage. The original im-age f is thus represented by a set of subimages at several s
ales at level µ. Subim-age fµ is obtained by lowpass �ltering and is referred to as the low resolutionimage. Its 
oe�
ients representing the approximation image, while the subbandslabeled d0,µ,d1,µ,d2,µ represent the detail images at s
ale µ. The latter are obtainedby bandpass �ltering in a spe
i�
 dire
tion and thus 
ontain dire
tional informa-tion. Subimage d1,µ represents diagonal details while d2,µ gives horizontal highfrequen
ies (verti
al edges) and d0,µ 
ontains verti
al high frequen
ies (horizontaledges).At the subsequent s
ale of analysis, the image fµ undergoes the de
ompositionusing the same g and h �lters, having always the lowest frequen
y 
omponentlo
ated in the upper left 
orner of the image as illustrated in �gure 3.2. Ea
hstage of the analysis produ
es four subimages whose size is redu
ed to the half
ompared to the previous s
ale.A simple example for a s
aling fun
tion as well as a wavelet basis fun
tion isthe Haar fun
tion, de�ned as
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Figure 3.2: Example of a three level Wavelet de
omposition of an image with Haarbasis [Nie07℄
φ(t) =

{

1, 0 ≤ t < 1

0, otherwise
ψ(t) =











1, 0 ≤ t < 1

2

−1, 1

2
≤ t < 1

0, otherwise

(3.10)and applied in �gure 3.2. The Haar s
aling fun
tion and wavelet fun
tion isillustrated in �gure 3.3.PSfrag repla
ements φ ψ

111 1 tt -1Figure 3.3: Haar fun
tions φ(t) (s
aling fun
tion) and ψ(t) (wavelet fun
tion).Other examples for wavelets are the Daube
hies family [Dau92℄, a spe
ial formthat was invented by Ingrid Daube
hies or the Odegard wavelet [OB96℄.



3.2. STATISTICAL METHODS 233.2 Statisti
al methodsStatisti
al methods deal with observed 
ombinations and relationships between thegray levels at spe
i�ed positions. Statisti
s are 
lassi�ed into �rst-order, se
ond-order and higher-order a

ording to the level of pixel 
ombination. The mostpopular se
ond-order statisti
al features for texture analysis are derived from theso-
alled Co-o

urren
e Matrix [HDS73℄. They are known to have a potential for ef-fe
tive texture dis
rimination in biomedi
al images [LSS+93℄. Beside this, texturefeatures provide measures of properties su
h as 
ontrast, smoothness, 
oarseness,randomness, regularity, linearity, dire
tionality, periodi
ity, and stru
tural 
om-plexity. Lo
al Binary Patterns (LBP) are another promising method for texturedes
ription.3.2.1 Co-o

urren
e Matrix (GLCM)A Graylevel Co-o

urren
e Matrix P 
an be regarded as a se
ond-order histogramof dimensions equal to the number of intensity levels, G, in the image. The matrixelement P∆x,∆y(i, j) represents the absolute frequen
y with whi
h two pixels withintensity i and j o

ur within a given neighborhood separated by a pixel distan
e
∆x and ∆y . Given a M × N image size of an input image I 
ontaining G graylevels, let I(m,n) be the intensity at image row m and 
olumn n.

P∆x,∆y(i, j) =

N−∆y
∑

n=1

M−∆x
∑

m=1

{

1, if I(m,n) = i ∧ I(m+ ∆x, n + ∆y) = j

0, otherwise (3.11)To 
ompute the relative frequen
ies of ea
h GLCM value, one must normalizethe absolute values of P∆x,∆y(i, j) by using the following fa
tor α
α =

1

(M − ∆x)(N − ∆y)
. (3.12)A small 5 × 5 subimage with 4 gray levels and its 
orresponding GLCM P 1,0is illustrated in �gure 3.4.Another 
ommon notation of the GLCM is the usage of a distan
e-angle rep-resentation P a,θ as depi
ted in �gure 3.5, where in most 
ases the 
omputation islimited to the angles θ = 0◦, 45◦, 90◦, 135◦, sin
e the knowledge of P a,180, P a,225,

P a,270, P a,315 adds nothing to the spe
i�
ation of the texture. For instan
e P a,180
an be regarded as the transpose of the matrix P a,0. Additionally, one 
an 
onsiderto 
ompute a symmetri
 Co-o

urren
e Matrix out of this dependen
y.If a rotation-invariant version of the GLCM wants to be a
hieved, one 
an
al
ulate an average matrix out of the four matri
es θ = 0◦, 45◦, 90◦, 135◦.
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Figure 3.4: Example image and its Graylevel Co-o
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uren
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Figure 3.5: Geometry for angle representation for four distan
es a and four angles θIt is obvious that 
oarser textures require larger values of the distan
e a, whileit is re
ommanded to 
hoose a = 1 for �ner resolutions to represent mi
rostru
turesin the image.A number of GLCM-based statisti
al features m 
an be 
al
ulated using theCo-o

uren
e Matrix for the purpose of texture des
rimination; 14 of them wereinitially proposed by Harali
k [HDS73℄. The denotation of those measurementsrequire the introdu
tion of the following variables. The row and the 
olumn sums ofthe GLCM are des
ribed by Px and Py. Mean and standard deviation of those sumsare denoted by µx, µy, σx, σy. Px(i) is the ith entry in the marginal-probabilitymatrix obtained by summing the rows of P (i, j).
Px(i) =

G−1
∑

j=0

P (i, j) (3.13)
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µx =

G−1
∑

j=0

i

G−1
∑

j=0

P (i, j) =

G−1
∑

j=0

iPx(i) (3.14)
σ2

x =

G−1
∑

j=0

(i− µx)
2

G−1
∑

j=0

P (i, j) =

G−1
∑

j=0

(Px(i) − µx(i))
2 (3.15)This is equally de�ned for µy, σy. The following list 
ontains the statisti
almeasurements whi
h 
an be extra
ted from the Co-o

uren
e Matrix.

• Angular Se
ond Moment (ASM):
s0 =

G−1
∑

i=0

G−1
∑

j=0

P (i, j)2 (3.16)Angular Se
ond Moment 
an be regarded as a measure of homogeneity of animage. A homogeneous s
ene will 
ontain only a few gray levels, resulting ina GLCM with only a few but high values of P(i,j). Thus, the sum of squaresof those values will be high.
• Correlation:

s1 =

G−1
∑

i=0

G−1
∑

j=0

ijP (i, j) − µxµy

σxσy

(3.17)Correlation is a statisti
al te
hnique that shows whether and how stronglypairs of gray levels are related.
• Inverse Di�eren
e Moment (IDM):

s2 =
G−1
∑

i=0

G−1
∑

j=0

P (i, j)

1 + (i− j)2
(3.18)IDM is in�ue
end by the homogeneity of the image, for example IDM willget small 
ontributions from inhomogeneous areas. The result is a low IDMvalue for inhomogenous images and a high value for homogeneous images.

• Entropy:
s3 = −

G−1
∑

i=0

G−1
∑

j=0

P (i, j)log2P (i, j) (3.19)Entropy des
ribes the average information 
ontent and is a statisti
al mea-sure of randomness.
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• Cluster Shade:

s4 =
G−1
∑

i=0

G−1
∑

j=0

(i+ j − µx − µy)
3P (i, j) (3.20)

• Cluster Prominen
e:
s5 =

G−1
∑

i=0

G−1
∑

j=0

(i+ j − µx − µy)
4P (i, j) (3.21)Cluster Shade and Cluster Prominen
e are measures of the skewness of thematrix, whi
h 
an be seen as a la
k of symmetry. When Cluster Shade andCluster Prominen
e are high, the 
ontent of the image is not symmetri
.

• Inertia (Contrast):
s6 =

G−1
∑

i=0

G−1
∑

j=0

(i− j)2P (i, j) (3.22)Inertia is a measure of lo
al intensity variation that favours 
ontributionsaway from the diagonal of the GLCM.3.2.2 Lo
al Binary Pattern (LBP)
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g6 g7 g8Figure 3.6: Cal
ulation of the L8
ode from an example neighborhoodThe Lo
al Binary Pattern is de�ned as a grays
ale invariant texture measure,derived from a general de�nition of texture in a lo
al neighborhood. It was �rst in-trodu
ed as a 
omplementary measure for lo
al image 
ontrast in [OPH96℄ and hadalready found appli
ation in several polyp dete
tion systems [KWL+00, WKKT01℄.Several versions of this operator have been developed [POX00, OPM00, MOPS00℄and will be shown here.



3.2. STATISTICAL METHODS 27The original LBP method 
an be des
ribed as follows. Traditionally, the LBPworks on a 3 × 3 neighborhood, therefore a subs
ript 8 for the eight neighbors isused in the following. The value of the 
enter pixel g0 is used as threshold for ea
hof its eight neighbors as depi
ted in �gure 3.6. If the value of the neighborhoodpixel gi, i = 1, 2, ...8 is higher than the 
enter pixel, 1 will be inserted at the
orresponding position in the LBP, 0 otherwise. The LBP 
ode for a neighborhoodis then produ
ed by multiplying the thresholded values with binomial weights givento the 
orresponding pixels, and summing up the result. The weights 
onsist ofpower of two values. The following equation shows the 
omputation of the LBP
ode L8.
L8(g0) =

8
∑

i=1

s(gi − g0)2
i−1 s(x) =

{

1, if x ≥ 0

0, otherwise
(3.23)A histogram 
an then be 
omputed over the frequen
ies of the L8 
odes whi
ho

ur in an image. The LBP is by de�nition invariant against any monotoni
transformation of the gray s
ale. This means that only the 
ontrast between theneighborhood and the 
enter pixel is of importan
e instead of the gray value itself.Opponent-Color LBPAn opponent-
olor version of the LBP was introdu
ed [Mä03℄ and found appli
a-tion in [AWP+09℄. The signi�
ant di�eren
e to the original LBP is the usage ofsingle 
olor 
hannels of the RGB 
olor spa
e instead of the grays
ale range. Further-more, the feature 
onsists of inter 
hannel information, be
ause the neighborhoodis derived from a di�erent 
olor 
hannel than the 
enter pixel. All 
ombinationsof 
olor 
hannels result in six histograms. Additionally, three LBP-histograms are
omputed from ea
h 
olor 
hannel separately. At the end, the frequen
ies held innine histograms make up a feature ve
tor.Rotation-Invariant-LBP8The original LBP 
ode is not rotation invariant. It produ
es 256 di�erent outputvalues, 
orresponding to the 28 = 256 di�erent binary patterns that 
an be formedby the 3 × 3 neighborhood. Thus, rotating a parti
ular binary pattern results ina di�erent LBP 
ode. From a lo
al binary pattern, a 8-bit 
ode 
an be 
lo
kwisegenerated as illustrated in 3.7 [POX00℄. For the rotation invariant approa
h it isadvisable to index the neighbor set in a way that they form a 
ir
ular 
hain andinterpolate the diagonal pixels as illustrated in �gure 3.8.
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00110111rotation-invariant bit
ode:Figure 3.7: Rotating the LBP i-times 
lo
kwise. i = 0 is depi
ted in �gure 3.6. Therotation-invariant bit
ode for this pattern is obtained after three rotations (i = 3) with001101111.
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Figure 3.8: Interpolation of 3 × 3 neighborhood (left) and 5 × 5 neighborhood (right).Gray 
ir
les notate non-interpolated pixel, white 
ir
les are interpolated.To remove the e�e
t of rotation, an unique identi�er is assigned to a pattern,that rotated has always the same bitsequen
e [OPM00℄.
Lri

8 (g0) = min {ROR(L8(g0), i)| i = 0, 1, ...7} (3.24)Equation 3.24 de�nes a 
ir
ular bit-wise right shift ROR on the 8-bit lj itimes. The supers
ript ri stands for rotation invarian
e. This 
orresponds torotating the neighborhood 
lo
k-wise as many times as the maximal number ofmost signi�
ant bits is 0. Figure 3.9 shows the 36 possibilities for rotation invariantlo
al binary patterns. Their frequen
ies are 
ounted over the image and insertedinto a histogram. It is super�uous to multiply the binomial weights with theLBP to 
ompute the LBP 
ode. Instead, the 8-bit pattern 
onverted to a de
imalnumber 
an be used as label.
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Figure 3.9: 36 unique rotation invariant LBP 
odes. Gray squares notate number 1,white squares 0.Certain des
riptions of mi
rostru
tures 
an be expressed in L8
ri 
onsidering the�rst row of �gure 3.9. For example, pattern a) dete
ts bright spots, pattern i) darkspots, while pattern 
)-e) serves as edge des
ription.Subset-LBP8Another LBP approa
h is to use subsets of the proposed s
hemes. Using all of the36 patterns in �gure 3.9 lead to a suboptimal result a

ording to [MOPS00℄. Theystate that some patterns sustain rotation better than other; the latter only 
onfusethe analysis. They are more likely to be similar to a di�erent stru
ture uponrotation. To over
ome this, only patterns are 
hosen for individual representation,that have a spatial transition (bitwise 0/1 
hanges) of at most two. For example,pattern 00000000 and 11111111 have 0 transitions, while the other seven patternsin the �rst row of �gure 3.9 have two 0/1 transistions. Let U be a fun
tion that
ounts the 0/1 transitions in ea
h pattern then the SubsetLBP8 is de�ned by thefollowing equation:

Lsubset
8 =

{

L8(g0) , if L8(g0) ∈ S

59 , otherwise
(3.25)

S = { x | 0 ≤ x ≤ 255 ∧ U(x) ≤ 2} (3.26)Equation 3.25 assigns an unique label to the nine uniform patterns and their ro-tated versions, as illustrated in 3.9 a)-i) (11111111, 01111111, 00111111, 00011111,00001111, 00000111, 00000011, 00000001, 00000000). This ends up in 58 frequen
y



30 CHAPTER 3. TEXTURE FEATURESbins. The 27 other rotation invariant patterns in �gure 3.9 are being grouped un-der the mis
ellaneous label (59). Supers
ript set 
orresponds in this 
ase to theuse of rotation invariant uniform patterns as well as a subset of rotation variantpattern.Rotation-Invariant-Subset-LBP16A last LBP approa
h whi
h is examined in this work is to use a bigger neighborhoodthan the L8 operator does. The 
oarse 45◦ quantization level of the angularspa
e through the 8 pixel neighborhood leads to a non-optimal representation[OPM00℄. To address this, �gure 3.8 shows a modi�
ation, where a 
lo
kwisede�ned neighborhood 
onsisting of 16 pixel is presented. In this way, a �nerresolution of 22.5◦ 
an be obtained. The gray values of neighbors whi
h do notfall exa
tly in the 
enter of pixels are 
omputed by interpolation. The di�erentspatial resolution 
an also be seen as advantegous when performing multiresolutionanalysis.
L16(g0) =

16
∑

i=1

s(gi − g0)2
i−1 (3.27)The L16 operator de�ned in equation 3.27 has 216 = 65536 output values and 243rotation invariant patterns.

Lsubset,ri
16 =

{

∑16

i=1
s(gi − g0) , if U(L16) ≤ 2

17 , otherwise
(3.28)The �rst 
ase shows that again only 17 patterns are used for individual label-ing that have at most two 0/1 transitions. These 
orrespond to the number ofones o

uring in the bit
ode, for example from 0 (pattern 0000000000000000) to16 (pattern 11111111111111111). Label 17 groupes the frequen
ies of all otherpatterns.



Chapter 4Classi�
ation and EvaluationAfter applying feature extra
tion methods on the image, learning a 
lassi�er isthe subsequent step in a traditional pattern re
ognition system. A 
lassi�
ationtask usually involves training and testing data whi
h 
onsists of data samples. Thedisjun
t separation into training and test sets 
an be done by 
rossvalidation. Ea
hsample in the training set has one target value ωi from a prede�ned set of 
lasslabels Ω = {ω1, ω2, ..., ωk} and values of the feature ve
tor.4.1 CrossvalidationCrossvalidation is a 
ommonly used te
hnique to partition sample sets into 
om-plementary subsets. For instan
e, the k-fold 
rossvalidation separates the originalsample into k subsets. k − 1 subsets are then used for training of the 
lassi�er,while the remaining data set serves as validation. This pro
edure is repeated ktimes, with ea
h of the subsamples used on
e as testing data. The k results arethen averaged over the folds. A strati�ed k-fold 
rossvalidation implies that the
lass distribution is retained in ea
h subset.4.2 Support Ve
tor Ma
hinesThe Support Ve
tor Ma
hine (SVM) is a 
lassi�er that is already used in severalapproa
hes for the dete
tion of polyps [IMK06℄ [LCK05℄ [KIM+03℄ [ACN07℄.The goal of SVM is to produ
e a model whi
h predi
ts 
lasses of samples inthe testing set, where only the features are given [CV95℄. It 
an be seen as anextension of linear 
lassi�ers, where a linear de
ision fun
tion f : IRn −→ IRmaps ea
h feature to a positive or negative 
lass. Linear 
lassi�ers are limited to
ertain appli
ations, be
ause not every problem is linearly separable as depi
ted in�gure 4.1. To solve non-linear problems, a kernel fun
tion is utilized to proje
t the31



32 CHAPTER 4. CLASSIFICATION AND EVALUATIONfeatures into higher dimensional spa
e. The approa
h for linear separable problems
an be then applied in higher dimensions.One representative kernel fun
tion is the radial basis fun
tion (RBF) that will
ommonly be used if the number of training obje
ts is higher than the number ofdimensions of the feature ve
tors [HCL08℄.A hyperplane is used to separate the feature spa
e in a way that featuresbelonging to the same 
lass are lo
ated on one side of a hyperplane. The mostimportant property 
on
erning hyperplanes is the distan
e between the featureand the hyperplane. The goal is to �nd the largest possible distan
e between thehyperplane and the features in the set.

Figure 4.1: Example for linear separable feature spa
e (left) and non-linear separablefeature spa
e (right).4.3 k-Nearest Neighbor Classi�erThe k -NN algorithm is a very simple approa
h for 
lassi�
ation. It is a type ofinstan
e-based learning, or lazy learning, where all 
omputation is deferred until
lassi�
ation. No expli
it training step is required, be
ause it 
onsists only ofstoring the feature ve
tors and 
lass labels of the training samples.The multidimensional feature spa
e is ideally partitioned into regions by lo
a-tions and labels of the training samples. The obje
ts, represented as ve
tors, are
lassi�ed based on the 
losest training examples in the feature spa
e. They areassigned to the 
lass most 
ommon amongst its k nearest neighbors, based on amajority vote (�gure 4.2).On the one hand, large values of k redu
e the e�e
t of noise on the 
lassi�
ation,on the other hand larg values of k make boundaries between 
lasses less distin
t.It is re
ommended to 
hoose k to be an odd number in two 
lass 
lassi�
ationproblems to avoid ambiguous situations. Commonly, one uses Eu
lidean distan
eto determine the nearest neighbors, but in general any distan
e fun
tion 
ould beapplied [AKA91℄.
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Figure 4.2: Example for k-Nearest Neighbor 
lassi�er.si
k person healthy personpositive test true positive (tp) false positive (fp)negative test false negative (fn) true negative (tn)Table 4.1: Medi
al 
onfusion matrix for a two 
lass 
lassi�er4.4 Evaluation of ResultsThe results of the 
lassi�
ation have to be evaluated. The motivation is to use astandard for evaluation su
h as a 
onfusion matrix. Table 4.1 shows the 
onfusionmatrix for a two 
lass 
lassi�er 
on
erning medi
al issues.The performan
e of a system is 
ommonly evaluated using the data in thematrix for 
omputing two statisti
al measures: spe
i�
ity and sensitivity.The spe
i�
ity s measures the relation between determined healthy tissue andthe real o

urren
e of healthy tissue. Hen
e it indi
ates the proportion of negativeswhi
h are 
orre
tly identi�ed.
s = P ( negative test| healthy person) =

tn

tn + fp
(4.1)The sensitivity t measures the proportion of a
tual positives whi
h are 
orre
tlyidenti�ed as su
h and is de�ned by the following 
onditional probability

t = P (positive test| sick person) =
tp

tp + fn
. (4.2)Considering 
lassi�
ation of polyps, sensitivity des
ribes the relation betweena
tually dete
ted polyps to the real number of polyps.



34 CHAPTER 4. CLASSIFICATION AND EVALUATIONAn optimal predi
tion 
an a
hieve 100% sensitivity (i.e. predi
t all people fromthe healthy group as healthy) and 100% spe
i�
ity (i.e. predi
t all people fromthe si
k group as si
k).sensitivity and spe
i�
ity are 
losely related to the 
on
epts of type I (α) andtype II (β) errors. For example a false-positive result (healthy people wronglyidenti�ed as si
k) is a type I error, while false-negative result (si
k people wronglyidenti�ed as healthy) is a type II error.Besides this, the re
eiver operating 
hara
teristi
 (ROC)-graph [GJ66℄ providesa further method for evalution of 
lassi�ers. While sensitivity and spe
i�
ity onlyrely on either positive or negative 
ases, the ROC-graph 
ombines both. A thresh-old des
ribing whi
h obje
t is assigned to ea
h 
lass 
an be varied by grouping pairs
(s, t) of sensitivity and spe
i�
ity together. Those pairs �nally form the ROC-
urveas illustrated in �gure 4.3. The higher the true positive rate and smaller the falsenegative rate, the better is the predi
tion a

ura
y and the 
lassi�er.The area under the ROC 
urve (AUC) 
an be 
omputed from the ROC-graphas indi
ation for the performan
e of the 
lassi�
ation in one value. Considering
(si, ti), i = 1, 2..n with s0 = 0, t0 = 0, sn = 1 and tn = 1 as the points of theROC-graph. The AUC a 
an be 
omputed by the following equation

a =

n
∑

i=1

1

2
(ti + ti−1) (si − si−1) (4.3)
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Chapter 5System Des
riptionThis 
hapter introdu
es the single 
omponents of the system and gives an exa
tdes
ription of the 
lassi�
ation s
heme. Espe
ially it is fo
ussed on the 
hangeswith regard to the system of [AWP+09℄. The software was programmed in C++.The following libraries are utilized:
• ITK - Segmentation and Registration Toolkit [ISNC05℄
• QT - A 
ross-platform appli
ation and UI framework [QT℄
• QWT - Qt Widgets [QWT℄
• Wavelet - a Class Library for Wavelet Transforms on Images [Wav℄.5.1 DataThe data base 
onsists of four hours of video data from di�erent 
olonos
opiesinitially used in [AWP+09℄. The data has been evaluated by medi
al spe
ialistsfrom the Beaumon Hospital Dublin. The obtained ground-truth data was usedto extra
t four s
enes with polyps under varying illumination, view angle anddistan
e. Ea
h of the four s
enes 
onsists of approximately 400 single frames witha resolution of 800 × 800 pixel.From the four s
enes a heterogenous set of 130 frames is randomly 
hosen whi
his an important fa
t. In 
ontrast to the test and training sets in the work fromAmeling [AWP+09℄, this data set 
an be seen as quite heterogenous. [AWP+09℄
hose subsequent frames from the videos whi
h are very similar leading to a dupli-
ation of nearly the same data in test and training set despite the use of 
rossvali-dation.To represent ground-truth data image masks are 
reated as depi
ted in �gure5.1. The white region in the referen
e images des
ribes the exa
t lo
ation, sizeand shape of a polyp. 35
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Figure 5.1: Endos
opi
 image and its referen
e mask5.2 Pat
hesA pat
h approa
h is sele
ted in the pro
essing of ea
h image. An image is subdivedinto several square subimages, the so-
alled pat
hes. Their size and degree ofoverlapping 
an be de�ned.For ea
h pat
h, a feature ve
tor is 
omputed and 
lassi�ed as polyp or non-polyp.This is a 
ommon te
hnique in appli
ations examing texture be
ause texture fea-tures 
an be estimated on ea
h of those subimages resulting in a lo
al 
lassi�
ation.The whole image was utilized for 
omputation of texture features but the exa
tposition of the polyp, if dete
ted, would remain unknown.Another te
hnique is to apply region segmentation on endos
opi
 images su
h asWatershed Transform [VS91, DHHM06℄ or Region Growing [SC80℄. Features 
anbe 
omputed separately from the dete
ted regions instead of estimating them frompat
hes. This method hardly depends on the performan
e of region segmentationand thus has not been 
onsidered here.In [AWP+09℄ pat
hes will be assigned to a 
lass if the pat
h is 
ompletely �lledwith bla
k or white pixels. Thereby the so 
alled mask image serves as referen
e for
lass labeling, see �gure 5.2. Two general remarks 
an be made on this approa
h.Pat
hes whi
h 
ontain polyp and non-polyp information at the same time are not
onsidered in the system. Thus, the border of a polyp remains 
ompletely unseen,although it may also 
ontain important information for feature distin
tion and
lassi�
ation. Another aspe
t is that small polyps will not be dete
ted, if the
hosen pat
h size is bigger than the polyp. Consequently, the 
omputed false-negative rate does not 
orrespond to the real false-negative rate.The approa
h in this work is to 
onsider all pat
hes. Pat
hes that 
ontainpolyp as well as non-polyp information are 
lassi�ed 
orresponding to the following
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Figure 5.2: up left: endos
opi
 image divided in pat
hes; up right: 
orrespond-ing mask image down left: mask image - red 
olored pat
hes are not 
onsidered in[AWP+09℄; down right: mask image - the pat
hes must 
ontain over 625 of white pixelsto be assigned to the polyp 
lass
s
heme: All intensity values in the mask image are 
ounted. If the sum is equal orhigher than value 625, the pat
h will be mapped to the polyp domain, otherwiseit is a non-polyp pat
h.Another aspe
t of the pat
h approa
h to 
onsider is that some images are notfully subdivided depending on the endos
opi
 image size (800 × 800 pixel in this
ase) and the spe
i�ed pat
h size as illustrated in �gure 5.3 (left). Consequentely,parts of the right and lower border remain unseen on ea
h image due to the rasters
an algorithm. To 
ountera
t this situation, a pat
h overlapping 
an be utilized,whi
h is depi
ted in �gure 5.3 (right). Neighboring pat
hes overlap ea
h other andall parts of the image are 
onsidered.
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Figure 5.3: left: situation where the image size is not divisible without remainder bythe pat
h size; right: applied pat
h overlapping5.3 Experimental FlowThe extra
ted features must be 
lassi�ed and evaluated for instan
e through anAUC value. Therefore, a data mining software 
alled WEKA [WEK℄, developedat the University of Waikato in New Zealand, provides adequate means. Thesoftware is written in Java and 
olle
ts several ma
hine learning algorithms. Taskssu
h as data pre-pro
essing, 
lassi�
ation, regression, 
lustering and visualizationare manageable.[AWP+09℄ utilizes in his work a library for Support Ve
tor Ma
hines 
alledLibSVM [CL01℄. The SVM is also available in WEKA whi
h 
ontains a wrapper
lass for LibSVM.WEKA uses the attribute-relation �le format (ARFF) as input. Su
h �leshave two distin
t se
tions as shown in �gure 5.4. The �rst se
tion is the headerinformation (1) whi
h is followed by the data information (2). The header 
ontainsthe name of the relation, e.g. the name of the feature and a list of the attributeswhi
h are the dimensions of the feature ve
tor and their types. One attributedimension is used as 
lass assigner. In this 
ase, the non-numeri
 
lasses polypand nonpolyp serve as 
lass labels. The se
ond part 
onsists of all data samplesdenoted by �data. Their attributes must 
orrespond to the types de�ned in theheader se
tion. In �gure 5.4 �ve data examples are given.WEKA provides a knowledge �ow interfa
e for planning experiments with sev-eral 
lassi�ers at a time. In �gure 5.5 the experimental �ow of the tests andexperiments presented in this work (
hapter 6) is depi
ted. In (1) an ARFF-�leis loaded, whi
h is the output of the feature extra
tion module written in C++.



5.3. EXPERIMENTAL FLOW 39The ClassAssigner in (2) tells WEKA, whi
h of the attributes des
ribes the 
lass.The ClassValuePi
ker (3) allows to 
hoose the 
lass label to be evaluated in theROC. Step (4) produ
es a random subsample of the dataset and ensuring a spe
ialdistribution spread of the 
lasses. Di�erent adjustments are possible in SpreadSub-sample for instan
e a 1:1 or 1:2 
lass distribution of polyp samples to non-polypsamples 
an be 
hosen. [WP01℄ shows that a balan
ed training set produ
es betterresults. Thus, the 
lass distribution in a training set 
an have a signi�
ant e�e
t onthe 
lassi�
ation. Nevertheless, it is hard to predi
t whi
h distribution is the bestfor a given problem. In the performed experiments, a �xed value of 1:1 has been
hosen to over
ome the problem that non-polyp pat
hes o

ur more frequentlythan polyp pat
hes. In step (5) all attributes are standardized to have zero meanand unit varian
e. Another prepro
essing step was tested at this 
on�gurationstep, 
alled normalization. The Standardization resulted in a better performan
eand hen
e was integrated in the experimental �ow.A CrossValidation (6) is applied afterwards, whi
h produ
es separated trainingand test sets for ea
h of the n folds with n = 4. Subsequently, two di�erent
lassi�ers are trained on the generated set and both are validated on the test sets,
alled SVM (7a) and k-NN 
lassi�er (7b). For (7a) the same kernel type as in[AWP+09℄ is 
hosen whi
h is a radial basis fun
tion (RBF). The RBF-kernel isuseful for 
lassi�
ation problems, where the number of training samples is mu
hhigher than the number of dimensions of the feature ve
tor [HCL08℄. (7b) is a k-nearest neighbor 
lassi�er with k = 11. The Performan
eEvaluator (8) evaluatesthe results of ea
h 
lassi�er, given its results to a visualization tool (9a) as wellas to a TextViewer (9b). In 5.6 an example output �le illustrates the resultsof the 
lassi�
ation with SVM. Di�erent statisti
s 
an be analyzed, su
h as truepositive rate, false positive rate, 
onfusion matrix, ROC Area as well as 
orre
tlyand in
orre
tly 
lassi�ed instan
es.
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Figure 5.4: Example ARFF-File of the GLCM6-feature from [AWP+09℄.

Figure 5.5: Experimental �ow of the following tests with steps from (1)-(9a,9b)

Figure 5.6: Example output WEKA text�le of step (9b).



Chapter 6Feature Des
riptions andExperimentsThis 
hapter gives an overview over the implemented features, starting with thefeatures from [AWP+09℄ in se
tion 6.1. They are tested on the new image set.Subsequently, new texture features are illustrated and evaluated. All of the appliedmethods su
h as Wavelet Transform, Graylevel Co-o

urren
e Matrix and Lo
alBinary Patterns are already des
ribed in 
hapter 3, whi
h provids the theoreti
alba
kground. At the end of this 
hapter, a dis
ussion about the performan
e of thefeatures is atta
hed.In the following experiments these general aspe
ts are examined 
onsideringthe task of polyp dete
tion:
• the performan
e of the 
lassi�ers
• the impa
t of 
olor, 
olor spa
e and 
olor 
hannel
• the performan
e of texture features su
h as GLCM and LBP
• the impa
t of Wavelet Transform
• the impa
t of 
omputing varian
es and 
ovarian
es from the statisti
al mea-surements
• the pat
h size6.1 Existing featuresThe polyp dete
tion system of [AWP+09℄ implementes four features, namely GLCM6,GLCM16, LBP and OC-LBP. For the purpose of a better 
omparison to the fea-tures implemented in this work, they are evaluated again by the new experimental�ow des
ribed in se
tion 5.3. The heterogeneous set of 130 endos
opi
 images isused as data base for feature extra
tion.41



42 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTS6.1.1 GLCM6, GLCM16, LBP, OC-LBPThe following table 6.1 shows the 
lassi�
ation results for a pat
h size of 64 × 64.They are spe
i�ed by the area under the ROC 
urve (AUC) values of a k-Nearest-Neighbor 
lassi�er (k-NN) and a Support Ve
tor Ma
hine (SVM).RGB-Channel AUCFeature R G B Pat
h Size k-NN LibSVMGLCM6 grays
ale 64 × 64 0.72 0.74GLCM16 grays
ale 64 × 64 0.735 0.735LBP grays
ale 64 × 64 0.75 0.76OC-LBP × × × 64 × 64 0.80 0.818Table 6.1: Classi�
ation AUC values of the features implemented in [AWP+09℄6.1.2 Dis
ussionThe AUC results from the tests applied in [AWP+09℄ are 
onsiderably higher thanthose depi
ted in table 6.1. The four homogeneous training and test sets used in[AWP+09℄ provide an easier way to 
lassify polyp and nonpolyp pat
hes. Someimages hardly di�er from ea
h other, be
ause su

essive frames are 
hosen and�nally resulting in a loss of disjun
tion between training and test set.Nevertheless, the overall essen
e of the tests from [AWP+09℄ 
orresponds tothese results. The OC-LBP feature performs best by reason of using the RGB
olor spa
e instead of grays
ale images, sin
e 
olor has obviously a positive e�e
ton 
lassi�
ation of tissue images.6.2 Wavelet FeaturesThe Wavelet features introdu
ed in the se
tions below are implemented due to thefa
t, that Wavelet Transform 
ontributes to a better texture modelling [Mey93℄.Varying spatial resolution allows it to represent textures at the most suitable s
ale.It is examined, whether the Dis
rete Wavelet Transform has a positive e�e
ton the 
lassi�
ation of polyps. Therefore, di�erent adjustements are tested su
has de
omposition level and basis fun
tion. This 
annot be seen separately fromthe pat
h size, whi
h determines the sizes of the subimages in subsequent levels ofde
omposition.Additionally, the 
olor approa
h has been further examined by testing di�erent
olor spa
es and 
olor 
hannels.



6.2. WAVELET FEATURES 436.2.1 Color Wavelet and Color Wavelet Covarian
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Figure 6.1: Wavelet detail 
omponents di
l,µ with de
omposition level µ and waveletband l on 
olor 
hannel i and approximation 
omponent fµ.The Color Wavelet Covarian
e (CWC) feature, initially proposed by Karkaniset al. [KIM+03℄ was implemented and tested with di�erent parameter adjustments.This method 
onsiders texture and 
olor as information for des
riminating polypsfrom normal tissue. In the following, several adjustments are des
ribed.Considering the original image I, one 
an obtain its 
olor transformation fromRGB in HSV, K-L, Cie-Lab spa
e. Ea
h of them results in three de
omposed 
olor
hannels Ii, i = 0, 1, 2. Then a two level Dis
rete Wavelet Transform is appliedon ea
h 
olor 
hannel (I i) separately. The resulting nine subimages of the detail
omponents di

l,µ, l = 0, 1, 2, from the se
ond de
omposition µ = 2 are used forfurther pro
essing (�gure 3.1). Four GLCMs P a,θ, with a = 1, θ = 0◦, 45◦, 90◦, 135◦are 
omputed on ea
h of the nine subimages, resulting in 36 matri
es.
P a,θ(d

i
l,2) i = 0, 1, 2, l = 0, 1, 2, a = 1, θ = 0◦, 45◦, 90◦, 135◦ (6.1)The number of intensities to 
ompute GLCMs is redu
ed to 64 without anyharmful impli
ation in the resulted overall sensitivity, speeding up 
omputationwith only a minor loss of textural information. Four statisti
al measures sm, 
alledEnergy (m = 0), Correlation (m = 1), Inverse Di�eren
e Moment (m = 2) andEntropy (m = 3) are extra
ted from these GLCMs, resulting in 144 texture val-ues. They were initially proposed by Harali
k [HDS73℄ from a set of 14 measures,de�ned in subse
tion 3.2.

sm(P a,θ(d
i
l,2)) m = 0, 1, 2, 3 (6.2)



44 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTSIn the proposed s
heme, the CWCl
m(i, j) textural measure is �nally estimatedfrom 
ovarian
es of the same statisti
al measure between 
olor 
hannels i, j atsubimage dl,2.

cov[sm(P a,θ(d
i
l,2)), sm(P a,θ(d

j
l,2))]

=
∑

θ

[sm(P a,θ(d
i
l,2)) − E(sm(P a,θ(d

i
l,2)))] × [sm(P a,θ(d

j
l,2)) − E(sm(P a,θ(d

j
l,2)))](6.3)This results in a 72 dimensional feature ve
tor, 
onsisting of 36 varian
es, as theyrelate features from the same 
olor 
hannel and 36 
ovarian
es from di�erent 
han-nels.

CWCl
m(i, j) =

{

cov[sm(P a,θ(d
i
l,2)), sm(P a,θ(d

j
l,2))], if i < j

var[sm(P a,θ(d
i
l,2))], if i = j

(6.4)For instan
e, detail 
omponent d0
0,2 of the se
ond de
omposition from the red
hannel is used to 
ompute the GLCMs P 1,0 P 1,45, P 1,90 and P 1,135, where themeasure Energy (s0) is estimated. Those four measurements are used to 
omputerelations between them (the varian
e). AUCFeature Basis Pat
h Size k-NN LibSVMColor Wavelet Covarian
e Haar 64 × 64 0.681 0.741Haar 128 × 128 0.748 0.773Haar 256 × 256 0.679 0.719Daub8 128 × 128 0.724 0.77Table 6.2: Color Wavelet Covarian
e Feature, test: pat
h size and basis fun
tion (Haar,Daube
hies8) for se
ond level of de
omposition and RGB 
olor spa
eDi�erent modi�
ations are performed on this feature, ea
h time 
hanging onlyone parameter. The �rst experiment reveals whi
h basis and whi
h pat
h size per-forms best. Only pat
h sizes of power of two are sele
ted, as the author of [Wav℄re
ommend, otherwise the Wavelet Transform su�ers from a loss of pre
ision. Ta-ble 6.2 shows the results. It turns out that the Haar basis, introdu
ed in se
tion3.1, performs best with pat
h size 128 × 128 in 
ontrast to the Daube
hies-family(Daub8) and smaller or bigger pat
h sizes. Choosing subimages from the se
ondde
omposition level in the CWC features indi
ates, that it is probably not advis-able to take a smaller pat
h size than 128× 128. This pat
h size leads to a size of
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32 × 32 of the nine resulting subimages due to the wavelet de
omposition, whi
hmight be a su�
ient number of pixels to 
ompute signi�
ant GLCMs.A new feature 
alled Color Wavelet was tested afterwards. This feature issimilar to the Color Wavelet Covarian
e feature, but omitting to 
ompute varian
esand 
ovarian
es of the di�erent 
olor 
hannels. The 144 statisti
al measures de�nedin equation 6.2 serve as input for the feature ve
tor.It turnes out that this variant performs signi�
antly better than the 
ompleteCWC feature. The results are depi
ted in table 6.3. AUCFeature Basis Pat
h Size k-NN LibSVMColor Wavelet Covarian
e Haar 128 × 128 0.748 0.773Color Wavelet Haar 128 × 128 0.793 0.82Table 6.3: Color Wavelet Feature vs. Color Wavelet Covarian
e Feature for RGB 
olorspa
e AUCFeature De
omp Pat
h Size k-NN LibSVMColor Wavelet 1 128 × 128 0.764 0.7692 128 × 128 0.793 0.82Table 6.4: Color Wavelet Feature, test: de
omposition for Haar basis and RGB 
olorspa
eConsidering the de
omposition of the transform that is in
orporated in theColor Wavelet feature, it is also possible to extra
t the features from the �rst levelof de
omposition. Table 6.4 holds the results and indi
ates that the se
ond level isstill a better 
hoi
e for 128 × 128 pixel of pat
h size. Thus, the spatial resolutionof the se
ond s
ale level holds superior information for polyp dete
tion.Di�erent basis fun
tions are tested again for the Color Wavelet feature (table6.5). The Haar basis performs best in 
omparison to the Daube
hies-family (Daub4and Daub8) and to a basis fun
tion 
alled Odegard [OB96℄.In a next step it is examined whether a 
ertain 
olor spa
e is adequate for thisfeature. As proposed in [KIM+03℄ ea
h pat
h is transformed from RGB in eitherHSV, K-L or CieLab 
olor spa
e before applying the Dis
rete Wavelet Transformon ea
h 
hannel. Table 6.6 shows that RGB 
olor spa
e is still the best 
hoi
e forthe Color Wavelet feature.Afterwards it is evaluated whether a 
ertain 
olor 
hannel or 
olor 
hannel
ombination of the RGB spa
e is superior in dete
ting polyps. Table 6.7 showsthat the best appli
ation for the Color Wavelet feature is to use all 
hannels.



46 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTSAUCFeature Basis Pat
h Size k-NN LibSVMColor Wavelet Haar 128 × 128 0.793 0.82Daub4 128 × 128 0.749 0.801Daub8 128 × 128 0.759 0.798Odegard 128 × 128 0.678 0.727Table 6.5: Color Wavelet Feature, test: basis fun
tion for RGB-
olorspa
eAUCFeature Color Spa
e Pat
h Size k-NN LibSVMColor Wavelet RGB 128 × 128 0.793 0.82K-L 128 × 128 0.773 0.791HSV 128 × 128 0.759 0.781CieLab 128 × 128 0.791 0.801Table 6.6: Color Wavelet Feature, test: 
olor spa
es for Haar-basis fun
tionNevertheless, the 
ombination of red and blue 
hannel performs slightly betterthan AUC values from other 
hannels.RGB-Channel AUCFeature R G B k-NN LibSVMColor Wavelet × 0.767 0.776
× 0.728 0.758

× 0.713 0.743
× × 0.776 0.803

× × 0.752 0.78
× × 0.796 0.812
× × × 0.793 0.82Table 6.7: Color Wavelet Feature, test: 
ombination of 
olor 
hannel for 128 × 128pat
h size and Haar-basisTo outline the most essential results, the following box shows the best adjust-ments for the Color Wavelet feature, resulting from the applied tests.
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h size: 128 × 128Dis
rete Wavelet Transform: Haar-basis, 2nd level of de
ompositionColor Spa
e: RGB, all 
olor 
hannelsMeasurements: Energy, Correlation, IDM, EntropyBest AUC: 0.82
6.2.2 Wavelet-De
omposition
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Figure 6.2: Example 
omputation of sl,µ,i
m for l = 2, µ = 1 (step 1) and sl,i

m for l = 0(step 2) of the Wavelet-De
omposition feature, regarding the statisti
al measurementsEnergy (m = 0), Correlation (m = 1), Inverse Di�eren
e Moment (m = 2), and Entropy(m = 3) on 
olor 
hannel i.The Wavelet-De
omposition feature is an approa
h for multiresolutional anal-ysis. Subsequent s
ales of the Wavelet Transform are used to 
ompute the feature.A three level DWT is applied to ea
h 
olor 
hannel i = 0, 1, 2 of the RGB 
olorimage. The detail 
omponents di
l,µ, µ = 1, 2, 3 of ea
h subband l = 0, 1, 2
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essing. Four GLCMs are 
omputed on ea
h of the 27subimages resulting in 27 · 4 = 108 GLCMs.
P a,θ(d

i
l,µ) i = 0, 1, 2, l = 0, 1, 2, µ = 1, 2, 3, a = 1, θ = 0◦, 45◦, 90◦, 135◦(6.5)For ea
h GLCM four statisti
al measures sm are extra
ted, namely Energy,Correlation, IDM and Entropy resulting in 432 measurements.

sm(P a,θ(d
i
l,µ)) m = 0, 1, 2, 3 (6.6)Then for ea
h subband, the measures of the four GLCMs are averaged over theangle value as shown exemplarily in �gure 6.2.2, step 1. For instan
e, there isonly one Energy measure per subimage left after averaging the Energy of GLCM

0◦ , 45◦, 90◦, and 135◦.
sl,µ,i

m = meanθ[sm(P a,θ(d
i
l,µ))] =

1

4

∑

θ

sm(P a,θ(d
i
l,µ)). (6.7)Subsequently, the mean is 
omputed over the measurements from di�erentde
omposition levels, whi
h is depi
ted in �gure 6.2.2, step 2. For example 
on-sidering 
olor 
hannel red, all Energy values from detail images d0,1, d0,2, d0,3 areaveraged.

sl,i
m = meanµ[sl,µ,i

m ] =
1

3

∑

µ

sl,µ,i
m . (6.8)All in all the feature ve
tor has 36 dimensions 
omposed of 12 measures per
olor 
hannel. AUCFeature Pat
h Size Basis k-NN LibSVMWaveletDe
omposition 64 × 64 Haar 0.772 0.791128 × 128 Haar 0.796 0.795256 × 256 Haar 0.75 0.776Table 6.8: Wavelet-De
omposition feature, test: pat
h size for RGB 
olor spa
eIn table 6.8 tests for the best pat
h size are shown. Only power of two valuesare applied. Pat
h size 128 × 128 performing best for this feature. A three levelDWT implies, that the subimages on the third level have only a dimension of

16 × 16 using 128 × 128 pat
h size, and only 8 × 8 pixel using pat
h size 64 × 64.In a subsequent step GLCMs are 
omputed. Thus it would not make sense tode
rease the pat
h size for this feature.



6.3. GLCM FEATURES 49Subsequently it was tested whether one basis fun
tion is superior to the other
hoosing a pat
h size of 128 × 128 pixel. Table 6.9 implies that the Daube
hies8basis fun
tion works marginal better than the Haar basis fun
tion and its relativeDaube
hies4, 
onsidering the LibSVM results. For the k-NN 
lassi�er, the Haarbasis is still the best 
hoi
e. AUCFeature Pat
h Size Basis k-NN LibSVMWaveletDe
omposition 128 × 128 Haar 0.796 0.795
128 × 128 Daub4 0.756 0.789
128 × 128 Daub8 0.773 0.799Table 6.9: Wavelet-De
omposition feature, test: basis fun
tion for RGB 
olor spa
eTo summarize the results the following box shows the best adjustments for theColor De
omposition feature, resulting from the applied tests.Pat
h size: 128 × 128Dis
rete Wavelet Transform: D8-basis, 3 level of de
ompositionColor Spa
e: RGBMeasurements: Energy, Correlation, IDM, EntropyBest AUC: 0.7996.3 GLCM featuresThe Graylevel Co-o

urren
e Matrix features are implemented in order to 
omparethem with the Wavelet features whi
h also in
orporate the 
omputation of GLCMs.The purpose is to identify whether there is a bene�t from the applied numeri
transform.Another aspe
t 
onsidered here is the impa
t of 
olor. Referen
e values alreadyexist in the grays
ale features GLCM6 and GLCM16. Di�erent 
olor 
hannels and
olor 
hannel 
ombinations are examined.In GLCM6 and GLCM16 di�erent numbers of statisti
al features are estimatedfrom the Co-o

uren
e Matri
es. These adjustements are also tested in the follow-ing.Various pat
h sizes found appli
ation in the experiments. It is possible to
hoose mu
h smaller sizes than in the Wavelet features be
ause no de
ompositionis applied. Additionally, it is examined whether the pat
h overlapping has positivee�e
ts on the 
lassi�
ation of polyps.



50 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTS6.3.1 ColorGLCMThe ColorGLCM-feature is very similar to the Color Wavelet-feature, only omit-ting Dis
rete Wavelet Transformation. It utilizes di�erent 
olor 
hannels of theRGB 
olor spa
e for the extra
tion of four GLCMs. The number of intensities to
ompute GLCMs is redu
ed to 64, whi
h also holds true for all other features thatin
orporates GLCM 
omputation.
P a,θ(I

i) i = 0, 1, 2, a = 1, θ = 0◦, 45◦, 90◦, 135◦ (6.9)Then for ea
h of the twelve GLCMs four statisti
al measures sm are extra
ted,namely Energy, Correlation, IDM, Entropy and additionally two values in a se
ondtest, namely Cluster Shade and Cluster Prominen
e are 
omputed.
sm(P a,θ(I

i)) m = 0, 1, 2, 3, 4, 5 (6.10)AUCFeature number of m Pat
h Size k-NN LibSVMColorGLCM 4 64 × 64 0.823 0.836 64 × 64 0.828 0.838Table 6.10: ColorGLCM Feature, test: number of statisti
al measurementsTable 6.10 shows the marginal positive e�e
t of using additionally ClusterShade and Cluster Prominen
e as statisti
al measurements for GLCM des
rip-tion. The more measurements are extra
ted from GLCMs, the more dimensionsthe feature ve
tor has. For m = 0, 1, 2, 3, the feature ve
tor holds 48 values whilefor m = 0, 1, 2, 3, 4, 5 it is 72 dimensional. Both are a

eptable values with regardto 
omputational 
omplexity. Harali
k initially proposed 14 features in [HDS73℄,but it is not advisable to use all measurements. Some of them 
orrelate to ea
hother. In this 
ase, Conners et al. [CTH84℄ propose using a set of the six featuresapplied here.In another test, it was examined whether it is advisable to use small pat
h sizes(table 6.11). A pat
h size of 32×32 pixel works very well for this feature, indi
atingthat a maximum number of 399 pixel non-polyp information (≈ 40%) is on a polyppat
h. Remember that a minimum number of 625 pixel, whi
h 
orrespond to
25 × 25 pixel must belong to 
lass polyp to 
lassify the pat
h as polyp.The best results for the ColorGLCM feature are shown below.



6.3. GLCM FEATURES 51AUCFeature number of m Pat
h Size k-NN LibSVMColorGLCM 6 32 × 32 0.843 0.8356 64 × 64 0.828 0.838Table 6.11: ColorGLCM Feature, test: pat
h sizePat
h size: 32 × 32Color Spa
e: RGBMeasurements: Energy, Correlation, IDM, Entropy, ClusterShade, Clus-terProminen
eBest AUC: 0.8436.3.2 OC-GLCMThe Opponent-Color GLCM feature relates pairs of 
olor 
hannels by 
al
ulatingGLCMs from the pixels of di�erent 
olor 
hannels. Thus, it 
an be denoted asan inter-
hannel feature 
onsidering texture as well as 
olor. Nine GLCMs areextra
ted from ea
h 
ombination of 
hannels: red-green, red-blue and green-blue(without 
onsidering permutations). A total of 27 GLCMs are 
omputed expressedby the following equation
P ∆x,∆y(I

i,j) i, j = 0, 1, 2, i 6= j, ∆x,∆y = −1, 0, 1. (6.11)
∆x and ∆y denote the distan
e to the 
enter pixel from another 
olor 
hannelin x and y-dire
tion as depi
ted in �gure 6.3. Four statisti
al measures sm, 
alledEnergy, Correlation, IDM and Entropy are estimated from this set of OC-GLCMsforming a feature ve
tor of 9 · 3 · 4 = 108 dimensions.

sm(P ∆x,∆y(I
i,j)) m = 0, 1, 2, 3 (6.12)Several experiments are performed on this feature. Table 6.12 shows the resultsof running the OC-GLCM feature on di�erent pat
h sizes. The feature works bestwith a pat
h size of 64 × 64.Considering the sizes of the endos
opi
 images (800 × 800) and the appliedpat
h size, it is noti
eable that the images are not fully subdivided. Parts of theright and lower border remain unseen on ea
h image as �gure 5.3 shows, whi
his undesirable and a loss of information as well. To solve this problem, pat
hoverlapping 
an be applied. A pat
h size of 64 × 64 with 3 overlapping pixels �ts
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Figure 6.3: OC-GLCM feature: depi
tion of pixel relation from 
olor 
hannel i (white)and j (gray), where i 6= j. The white pixel represents the 
enter pixel.AUCFeature Pat
h Size Overlap k-NN LibSVMOC-GLCM 32 × 32 0 0.827 0.81064 × 64 0 0.831 0.832128 × 128 0 0.799 0.81264 × 64 3 0.832 0.84864 × 64 32 0.871 0.856128 × 128 16 0.801 0.795Table 6.12: OC-GLCM Feature, test: pat
h size and overlappingbetter in the given image size and leads to a higher AUC. Another interestingattempt is to use a pat
h size of 64× 64 with 32 overlapping pixels, whi
h 
an beseen as s
anning the image in two di�erent raster, performs best at all. This isalso superior to applying a smaller pat
h size to the image.It is possible that those very positive results 
onstitute from the fa
t that
ertain information o

urs twi
e or more in the training and test set, leading to aloss of disjun
tion. An indi
ation for this is the superior performan
e of the k-NN
lassi�er, whi
h takes the most similar feature ve
tors as a basis for 
lassi�
ation.A proposal is to stri
tly separate the endos
opi
 images that are used for trainingand testing. At the 
urrent stage, features are extra
ted �rst from the pat
hes ofall images and then the separation in training and test set is done.A se
ond test series evaluated whether a 
ertain 
ombination of 
olor 
hannelsis more dis
riminating in feature spa
e than other ones. A �xed pat
h size (64 ×
64 pixel) and no overlapping is used for the experiments, shown in table 6.13.Involving all 
olor 
hannel 
ombinations lead to a higher AUC (0.832 for LibSVM)than using only one 
hannel 
ombination or two 
ombinations.The most promising adjustments are illustrated in the following box.



6.4. LBP FEATURES 53RGB-Channel AUCFeature RG GB RB k-NN LibSVMOC-GLCM × 0.728 0.682
× 0.775 0.783

× 0.759 0.767
× × 0.816 0.816

× × 0.808 0.803
× × 0.786 0.790Table 6.13: OC-GLCM Feature, test: 
ombination of 
olor 
hannelPat
h size: 64 × 64Color Spa
e: RGB, all 
olor 
hannelsMeasurements: Energy, Correlation, IDM, EntropyBest AUC: 0.8326.4 LBP featuresIn the following, several variants of the Lo
al Binary Patterns are tested. Theaim is to 
ompare the existing approa
hes OC-LBP and LBP with the new imple-mented features, evaluating the impa
t of 
olor, inter- and intra-
hannel 
ombina-tions. Also the di�erent feature ve
tor dimensions are examined. Due to the fast
omputation speed of LBP, it is not required to attempt a redu
tion of number of
olor 
hannels.It is fo
ussed primarily on the various LBP approa
hes. They di�er in the sizeof the neighborhood, in 
ir
ular and non-
ir
ular representation (interpolation)and in the 
onsidered patterns. It should be evaluated whi
h variant performsbest.6.4.1 ColorLBPThe ColorLBP feature is the appli
ation of the LBP-feature on the 
olor 
hannels ofthe RGB 
olor spa
e, whi
h is de�ned in se
tion 3.2.2. This feature 
an be seen asa subset of the OC-LBP-feature from [AWP+09℄, where the 
enter pixel g0 as wellas the neighborhood gi, i = 1, 2, ...8 derive from the same 
hannel. The numberof bins in the LBP histogram is redu
ed to 64 due to 
omputational e�
ien
y,resulting in a feature ve
tor of 3 · 64 = 192 dimensions.



54 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTSTable 6.14 shows the results of the tests, 
omparing simple LBP-feature, OC-LBP-feature from [AWP+09℄ and ColorLBP-feature as well as di�erent 
olor 
han-nels to ea
h other.RGB-Channel AUCFeature R G B Bins Dimensions k-NN LibSVMLBP grays
ale 64 64 0.75 0.76grays
ale 256 256 0.697 0.72OC-LBP × × × 64 576 0.880 0.818ColorLBP × × × 64 192 0.814 0.834
× 64 64 0.785 0.756

× 64 64 0.758 0.781
× 64 64 0.739 0.764Table 6.14: LBP vs. OC-LBP vs. ColorLBP Feature, test: 
olor 
hannel and histogrambinsThe �rst two rows show that a redu
ed number of bins in the LBP histogram hasoverall advantageous e�e
ts on the 
lassi�
ation. Considering the whole table 6.14,it 
an be observed that the ColorLBP-feature and the OC-LBP feature performsigni�
antly better than the simple grays
ale LBP feature. This indi
ates againthat 
olor plays an important role in 
lassi�
ation of tissue.Analyzing the area under the ROC 
urves of OC-LBP and its subset ColorLBPleads to the assumption that the feature ve
tor of OC-LBP has too many dimen-sions in feature spa
e, leading to a more 
omplex 
lassi�
ation task.The last three rows of table 6.14 indi
ate that if one 
ombines the histogramsof all 
olor 
hannels will perform superior in 
omparison to the usage of only onesingle 
olor 
hannel. Ea
h of them has nearly the same AUC rate as the grays
aleLBP.A summarization of the feature is given in the following.Pat
h size: 64 × 64LBP-Histogram bins: 64Color Spa
e: RGB, all 
olor 
hannelsBest AUC: 0.834



6.4. LBP FEATURES 556.4.2 Rotation-Invariant-LBP8Introdu
ed in 3.2.2, the rotation invariant Lri
8 is implemented on a 3× 3 neighbor-hood.In a �rst experiment, the Lri

8 is tested on the single 
olor 
hannels of the RGB
olor spa
e with pat
h size of 64 × 64 pixel. On ea
h 
hannel, the frequen
ies of36 LBP-invariant patterns are 
ounted, resulting from the shifted 8-bit 
odes asillustrated in �gure 3.7 and �gure 3.9. All in all a feature ve
tor of 3 · 36 = 108dimensions is obtained.Additionally, it was tested whether an interpolation of the diagonal pixels
(g1, g3, g5, g7) (�gure 3.8, left) lead to a better 
ir
ular representation, parti
ularywith regard to rotational invarian
e.RGB-Channel AUCFeature R G B Interpolation k-NN LibSVM
Lri

8 × × × 0.78 0.79
× × × × 0.783 0.792Table 6.15: Rotation-Invariant-LBP8-Feature, test: L8

ri neighborhood diagonal inter-polated vs. non-interpolatedTable 6.15 indi
ates that the interpolation of the diagonal pixels from the 3×3neighborhood has slightly advantageous e�e
ts on the 
lassi�
ation.The most important fa
ts of the feature are listed in the following.Pat
h size: 64 × 64Neighborhood: 3 × 3, interpolatedLBP-Histogram bins: 36 per 
hannelColor Spa
e: RGB, all 
olor 
hannelsBest AUC: 0.7926.4.3 Rotation-Invariant-Subset-LBP16Equation 3.28 de�nes a rotation invariant version of the LBP operator with aneighborhood 
onsisting of 16 pixel. Only a subset of 17 patterns of the 243 rota-tion invariant patterns are used for assigning their frequen
ies to single bins. Allother patterns are 
lassi�ed to a mis
ellaneous label. Hen
e, the feature ve
tor
onsists of 18 · 3 = 54 dimensions, due to the fa
t that the feature is appliedon ea
h RGB 
olor 
hannel. A pat
hsize of 64 × 64 pixel is applied. The pixels
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g1, g2, g3, g5, g6, g7, g9, g10, g11, g13, g14, g15 (�gure 3.8, right) are estimated by inter-polation 
on
erning 
ir
ular representation.RGB-Channel AUCFeature R G B Interpolation k-NN LibSVM
Lsubset,ri

16 × × × × 0.78 0.799Table 6.16: Rotation-Invariant-Subset-LBP16-featureComparing the L8
ri with the L16

ri feature leads to the 
on
lusion that bothfeatures perform nearly the same. Thus, using a bigger neighborhood and a lessnumber of rotational invariant patterns of the LBP does not have an impa
t onthe 
lassi�
ation of polyp images.Signi�
ant properties of the feature are listed below.Pat
h size: 64 × 64Neighborhood: 16 pixel, interpolatedLBP-Histogram bins: 18 per 
hannelColor Spa
e: RGB, all 
olor 
hannelsBest AUC: 0.7996.4.4 Subset-LBP8Se
tion 3.2.2 des
ribes a feature that 
ombines rotation invariant and variantvalues 
alled Subset-LBP8 LBPsubset
8 . Only the lo
al binary patterns 00000000,00000001, 00000011, 00000111, 00001111, 00011111, 0011111, 01111111, 1111111and their rotated versions are 
ounted ea
h of them separately in a histogram bin.The other o

uring patterns are grouped under the mis
ellaneous label. All in allthis feature forms a ve
tor of 59 dimensions, whi
h are again extra
ted from thesingle RGB 
olor 
hannels, resulting to 177 dimensions. Interpolation is performedon the provided 3 × 3 neighborhood as depi
ted in �gure 3.8 (left).RGB-Channel AUCFeature R G B Interpolation k-NN LibSVM

LBPsubset
8 × × × × 0.816 0.835Table 6.17: Subset8-LBP-feature



6.5. DISCUSSION OF RESULTS 57Comparing L8
subset to the other LBP-features, this feature performs best. TheAUC result is similar to the Color-LBP feature, probably due to the equal ve
tordimensions.Signi�
ant properties of the feature are listed below.Pat
h size: 64 × 64Neighborhood: 3 × 3 pixel, interpolatedLBP-Histogram bins: 59 per 
hannelColor Spa
e: RGB, all 
olor 
hannelsBest AUC: 0.8356.5 Dis
ussion of Results

• Classi�er: Comparing the 
lassi�
ation results from the Support Ve
torMa
hine with the k-NN 
lassi�er leads to the 
on
lusion that with less ex
ep-tions the SVM has higher AUC values. There is no 
lear s
heme re
ognizablein whi
h 
ases the k-NN is better. For example, for the ColorGLCM featureand OC-GLCM feature the k-NN performs better when a small pat
h sizewas used. Testing a redu
ed number of 
olor 
hannels with OC-GLCM andColorLBP features led to a higher AUC than the result of SVM in threetimes. Nevertheless, 
omparing the best 
lassi�
ation results for ea
h of thetwelve features, the SVM holds the better results in eleven 
ases as shownin table 6.18.Applying a pat
h overlapping to the endos
opi
 images yield in training andtest sets to a dupli
ation of the same data, leading to a better 
lassi�
ation infavor of the k-NN 
lassi�er. The results are shown in table 6.12. Those �nd-ings are not 
onsidered in the overall evaluation, be
ause of non-disjun
tionof test and training set.The best AUC result of all applied tests resulted from the ColorGLCM fea-ture. The k-NN 
lassi�er performed best in this 
ase with an AUC of 0.843.All in all, the 
lassi�
ation di�eren
es between the two 
lassi�ers are smallwith a maximum di�eren
e of 0.06 AUC, whi
h is quite a

eptable.
• Color versus gray: Table 6.18 gives an overview about the presented fea-tures in this 
hapter. Only the best �ndings for ea
h feature are illustrated.It is obvious that the 
olor features are more dis
riminating in feature spa
ethan the gray level features LBP, GLCM6 and GLCM16 from [AWP+09℄.



58 CHAPTER 6. FEATURE DESCRIPTIONS AND EXPERIMENTSFor example the best 
olor feature and the best grays
ale feature have adi�eren
e of 0.083 in their AUC values. Thus, 
olor plays an important rolein 
lassi�
ation of polyps. AUCFeature 
olor gray LibSVM k-NNColorGLCM × 0.843
Lsubset

8 × 0.835ColorLBP × 0.834OC-GLCM × 0.832Color Wavelet × 0.82OC-LBP × 0.818WaveletDe
omp × 0.799
Lsubset,ri

16 × 0.799
Lri

8 × 0.792LBP × 0.76GLCM6 × 0.74GLCM16 × 0.735Table 6.18: Overview over the presented features and their highest AUC
• Color spa
es: Di�erent 
olor spa
es are examined in the Color WaveletFeature. RGB, K-L, HSV and CieLab 
olor spa
es are tested. The �ndingwas that RGB 
olor spa
e holds the best 
olor representation when wavelettransform is applied afterwards.
• Redu
tion of 
olor 
hannels: In the Color Wavelet, OC-GLCM and theColorLBP feature, whi
h is in ea
h 
ase one representative of the ea
h group,a redu
tion of the number of 
olor 
hannels or 
olor 
hannel 
ombinations wastested, resulting in a less dimensional feature ve
tor and less 
omputational
omplexity. It turnes out that in ea
h 
ase it is the best 
hoi
e to utilizeall 
olor 
hannels. No 
lear superiority of a single 
olor 
hannel 
ould beexamined.
• GLCM versus LBP: Ea
h feature implemented in this work in
orporatesthe usage of either GLCM or LBP. Both are operating with similar perfor-man
e. For instan
e, there is only a marginal di�eren
e between the AUCvalues from ColorGLCM, ColorLBP and the OC-GLCM feature. The fea-tures ColorGLCM and ColorLBP, whi
h are the appli
ation of the GLCMand LBP on ea
h 
olor 
hannel, perform surprinsingly well rea
hing the bestand the third best AUC values of all tests.



6.5. DISCUSSION OF RESULTS 59The main di�eren
e between these two texture features is the 
omputational
omplexity. The 
omputation of the GLCM is time-
onsuming in 
omparisonto the Lo
al Binary Pattern.
• GLCM features: ColorGLCM, OC-GLCM, Color Wavelet, WaveletDe-
omp, GLCM6, GLCM16 are the features involving Co-o

urren
e Matri-
es, listed in de
reasing order of their AUC results. Those features havethe widest range in 
lassi�
ation results, providing the best and the worstfeature.A 
lear stru
ture 
an be examined among the listed features. The best onesin
orporate 
olor into the feature estimation (ColorGLCM, OC-GLCM). TheWavelet features (Color Wavelet, WaveletDe
omp) perform averagly in this�eld, even though 
olor information is used in addition. The worst amongthe features are the gray level features GLCM6 and GLCM16.
• LBP features: Lsubset

8 , ColorLBP, OC-LBP, Lsubset,ri
16 , Lri

8 and LBP are thefeatures involving 
omputation of Lo
al Binary Patterns. The subset versionof LBP performs slightly better than the appli
ation of the LBP to ea
h
olor 
hannel (ColorLBP) or OC-LBP, due to the fa
t that only the mostfrequent LBP values are used for the 
ompution of their frequen
ies. Therotation invariant versions of the LBP (Lsubset,ri
16 , Lri

8 ) perfom worse than theirrotation variant relatives, but still better than the gray level LBP. The biggerneighborhood applied in Lsubset,ri
16 did not 
ontribute to a better feature spa
edis
rimination.

• Dis
rete Wavelet Transform versus Non Numeri
 Transform: Thenumeri
 transform represented by the Dis
rete Wavelet Transform applied inthe Color Wavelet and Wavelet De
omposition feature does not 
ontributeto a better polyp dete
tion. Comparing the ColorGLCM feature with ColorWavelet feature, whi
h is the same feature just without the numeri
 trans-form, shows the superiority of ColorGLCM. Furthermore 
omputational ad-vantages are apparent. The Wavelet Transform is variant with regard totranslation, whi
h is probably the main reason for this result.
• Varian
es and Covarian
es: Karkanis et al. [KIM+03℄ presented an ap-proa
h for 
omputing varian
es and 
ovarian
es from the di�erent 
olor 
han-nels of the statisti
al measurements in the wavelet domain. In this work itis pointed out that estimating varian
es and 
ovarian
es from the measuresis harmful for 
lassi�
ation results as shown in the Color Wavelet and theColor Wavelet Covarian
e feature.
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• Pat
h sizes: The best pat
h size 
learly depends on the sele
ted feature.Generally, the wavelet features require pat
h sizes with value power of two.They should be higher than the pat
h sizes of other features, due to thewavelet de
omposition levels.The pat
h size regulates the amount of non-polyp information when regard-ing pat
hes that 
ontain both domains (e.g. the polyp border). It 
an besigni�
ant, how mu
h non-polyp information o

urs in a pat
h that is a
-tually 
lassi�ed as polyp pat
h, leading to a redu
tion of dis
riminan
e infeature spa
e.



Chapter 7Summary
7.1 Possible ImprovementsA 
omprehensive polyp dete
tion system should in
orporate more than only a fea-ture extra
tion module and a 
lassi�
ation. The whole system must be 
ustomizedto the task of polyp dete
tion. Some proposals are listed in the following se
tion.

• S
ale invariant features: During 
olonos
opy an additional parameter de-s
ribing the distan
e to the intestinal wall 
ould be stored for ea
h frame.This 
ould be helpful for extra
tion of GLCM or LBP 
ontributing to evalua-tion of the resolution level of the texture. The images 
an then be normalizedand hen
e a s
ale invarian
e of features 
ould be a
hieved.
• Over
omplete Wavelet Transform: In order to 
ompute translation in-variant features the over
omplete version of the Wavelet Transform (OCWT)[Bra03℄ 
ould be applied. This version over
omes the main problem of DWT.
• Disjun
tion of test and training set: So far, Images are subdivided intopat
hes and then features are extra
ted from ea
h pat
h. The separationof the obtained feature ve
tors in training and test set is done via 
rossval-idation afterwards. It is advisable to group the 
omplete images �rst intotraining and test set and then extra
t features from the pat
hes. Thus, it ispossible to apply pat
h overlapping without the loss of disjun
tion. It is alsopossible to to 
he
k whi
h image belongs to whi
h set in a straightforwardway. An in
reased transparen
y of the training and testing step 
ould bea
hieved thereby.
• Prepro
essing: After image a
quisition, an adequate prepro
essing 
ouldbe applied to ea
h frame, removing artifa
ts from endos
opi
 images su
h asshifted RGB 
olor 
hannels or glossy spots.61
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• Validation: Let's assume that a polyp is dete
ted on one pat
h and thus thelo
ation of the polyp is approximately known. It would be helpful to validatethat result on the 
urrent as well as on the next frames. The position of thepolyp 
ould be further analyzed by applying feature extra
tion with pat
hoverlapping or smaller pat
h sizes. A �xed threshold 
ould be set indi
atinghow many pat
hes must be 
lassi�ed as polyps to get reliable results.7.2 Summary of this WorkThe dete
tion of polyps in endos
opi
 images is a 
hallenging task. The publishedmethods in literature introdu
ed in 
hapter 2 are hardly 
omparable. They workon di�erent and very small data sets, often not 
onsidering di�erent types of polyps.In this work, a very heterogenous set of images is 
hosen, 
ontaining frames fromdi�erent s
enes and di�erent polyp types.Several investigation are made to in
rease the feature extra
tion module of[AWP+09℄. The overall aim was to in
lude 
olor in the feature extra
tion te
h-niques, whi
h is one of the most promising information base for polyp dete
tion.Primarily, di�erent texture des
riptors are 
ombined to new features, in
orpo-rating Wavelet Transform, GLCMs and LBPs. The applied experiments produ
edthe following results:
• In
luding 
olor led to a signi�
antly higher dete
tion rate (+0.10 AUC forGLCM features). The single 
olor methods performed equally well for the
hosen data set. Only 0.05 AUC range lie between the best and the worst
olor method.
• The 
ombination of all 
olor 
hannels of the RGB 
olor spa
e led to the bestresults.
• The Dis
rete Wavelet Transform does not have the expe
ted positive impa
ton polyp dete
tion.
• The Lo
al Binary Pattern and the GLCM and their implemented variantsperform equally well.
• The Support Ve
tor Ma
hine 
lassi�er holds superior results in 
omparisonto k-NN, 
onsidering the number of higher 
lassi�
ation results.
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