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Kurzfassung

Die Koloskopie ist der Goldstandard zur Aufspiirung von gefihrlichen Darmpo-
lypen, die sich zu Krebs entwickeln kénnen. In einer solchen Untersuchung sucht
der Arzt in den vom Endoskop gelieferten Bildern nach Polypen und kann diese
gegebenenfalls entfernen. Um den Arzt bei der Suche zu unterstiitzen, erforscht
die Universitiat Koblenz-Landau zur Zeit an Methoden, die zur automatischen De-
tektion von Polypen auf endoskopischen Bildern verwendet werden kénnen. Wie
auch bei anderen Systemen zur Mustererkennung werden hierzu zunéchst Merk-
male aus den Bildern extrahiert und mit diesen ein Klassifikator trainiert. Dieser
Klassifikator kann dann fiir die Klassifikation von ihm unbekannten Bildern ein-
gesetzt werden. In dieser Bachelorarbeit wurde das vorhandene System zur Poly-
pendetektion um Merkmalsdetektoren erweitert und mit den bereits vorhandenen
verglichen. Implementiert wurden Merkmale basierend auf der Diskreten Wavelet
Transformation, auf Grauwertiibergangsmatrizen und auf Local Binary Patterns.
Verschiedene Modifikationen dieser Merkmale wurden getestet und evaluiert.

Abstract

Colonoscopy is the gold standard for detection of colorectal polyps that can progress
to cancer. In such an examination physicians search for polyps in endoscopic
images. Thereby polyps can be removed. To support experts with a computer-
aided diagnosis system, the University of Koblenz-Landau currently makes some
efforts in research different methods for automatic detection. Comparable to tradi-
tional pattern recognition systems, features are initially extracted and a classifier
is trained on such data. Afterwards, unknown endoscopic images can be classified
with the previously trained classifier. This bachelor thesis concentrates on the
extension of the feature extraction module in the existing system. New detection
methods are compared to existing techniques. Several features are implemented,
incorporating Graylevel Co-occurrence Matrices, Local Binary Patterns and Dis-
crete Wavelet Transform. Different modifications on those features are applied and
evaluated.
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Chapter 1

Introduction

1.1 Medical Background

Cancer is a leading cause of death worldwide. It describes the transformation from
a normal cell into a tumor; a progression from a pre-cancerous lesion to malignant
tumours. According to the World Health Organisation (WHO) 655,000 people die
from colon cancer per year [WHOO06|. One third of the cancer burden could be
cured if detected early and treated adequately. In Germany, the number of inci-
dences mounts to 70,000 per year with approximately 30,000 fatalities [SPRS™08].

Colorectal or intestinal polyps are the most frequently occurring pre-cursor of
colon cancer. Polyps can be broadly classified as neoplastic and nonneoplastic
polyps. Among neoplastic polyps one differentiates between adenomatous and
malignant. Approximately 95% of all colorectal carcinomas arise from adenomas,
a fact that underlines the importance of treatment of colorectal polyps [TA07].

The abnormality of polyps is mainly detected when the surface of the lipoma
is eroded or irregular in contrast to a smooth surface. The occurring forms can
be classified in tubular, tubulovillous, or villous, primarily based on the overall
percentage of villous component. The risk of progression to cancer of adenomas is
related to their macroscopic appearance (size, villous components) as well as their
microscopic architecture and degree of dysplasia. Considering the size, smaller
adenomas (< 1 cm) have a lower risk of malignant potential [TA07].

Colonoscopy is the accepted gold standard for screening colon cancer or col-
orectal polyps. It allows diagnosis, therapy as well as biopsy. In most cases, the
polyps are removed directly when detected. Nevertheless, there is a 6-12% miss
rate for adenomas that are lcm or larger; the miss rate for smaller adenomas is
up to 25% [TA07]. This is due to the fact that the polyp can show up on the
screen but is not identified by the physician because of non-attention or subjective



10 CHAPTER 1. INTRODUCTION

diagnosis. Furthermore, endoscopic analysis does not cover all parts of the colon.
As a consequence, parts remain unseen by the camera.

It is recommended to have continuing surveillance of patients with previously
removed adenomas. The interval between colonoscopies depends on the size, num-
ber, and histological type of polyp, as well as the patient’s family history. Polyp
recurrence rates are 20% at 5 years and 50% at 15 years [TA07].

A colonography is a visual recording of the colon obtained using computed
tomography (CT) technology. This is a new proposed technique for detection of
adenomas. Although this method produces a virtual representation of the colon
which can speed up the visual analysis by the physician, it also holds some disad-
vantages: the extensive amount of radiologist working time during CT scanning,
the costs of such an exam and of course the radiation that the patient is subjected
to [ACNO7]. When polyps are detected and must be removed, the patient under-
goes colonoscopy analysis once more, which finally leads to a double intervention.
Moreover, virtual colonoscopy has lower sensitivity than optical colonoscopy for
small (<1 cm) adenomas [TA07]. Thus the potential to miss small polyps is higher.

The visual analysis of the endoscopic images has some drawbacks such as in-
terpretational variation and non-suitability for comparative evaluation. Hence a
computer-aided system for detection will help considerably in the quantitative char-
acterization of abnormalities, thereby improving patient’s care. It is desirable to
develop a system that marks polyps reliably during the screening process leading
to a significantly decreased miss-rate.

1.2 Pattern Recognition Schemes

Computer-aided systems for detection often incorporate the application of pattern
recognition and classification. Traditionally, they consists of several moduli taking
over specific tasks explained in the following.

In a first step sensor data is sampled and quantized, for example a video frame.
Then a preprocessing might be applied to the image in order to improve the results
of subsequent steps of processing. This either results in reduction of complexity or
improvement of performance, or both. Additionally, features are extracted from
the image leading to a noticeable reduction of representational space. They are now
represented by vectors holding numeric or nominal values. After this, two disjunct
sets of feature vectors have to be chosen, namely a training set for learning of the
classifier and a test set for evaluation of the complete system.

Basically, one differentiates between supervised and unsupervised learning. Su-
pervised learning deals with classes that are known before the training is applied.
Features are extracted and mapped to these predefined classes. Otherwise, during
the training phase disjunct classes have to be created, which involves clustering the
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Figure 1.1: Traditional scheme for classification of patterns.

features in feature space. The trained classifier can then be used for classification
of unknown patterns in the so called testing phase [Nie07].

100 percent of correct classified patterns is desirable but often hard to realize,
depending on the complexity of the patterns. On this note, an analysis of the
results is necessary to evaluate the performance and correctness of the system.

Computer-aided diagnosis concerning medical themes requires image acquisi-
tion, image processing, feature extraction and classification as depicted in the
pipeline above (figure 1.1). Ameling [AWPT09] proposed a polyp detection sys-
tem consisting of the above mentioned steps. Several feature extraction methods
have been already implemented. Nevertheless, there is a potential to increase the
performance of the system by examining the single modules.

1.3 Content of this Work

The approach of this work is to increase the quality of feature extraction on endo-
scopic images in the system of [AWP*09]. In figure 1.1 this module is depicted by
the third step in the pipeline, which computes descriptors such as feature vectors
from the images. The existing extraction methods will be customized to the task
of polyp detection by testing different adjustments and versions of the features.

Since there is a high dependency between feature extraction and classification
concerning the performance of the whole system, classification will be examined
additionally.

To start with, a number of existing schemes for the detection of abnormalities
in the colon are presented in the following chapter. In chapter 3, texture feature
methods are introduced such as Graylevel Co-occurence Matrices, Local Binary
Patterns and the Wavelet Transform. Chapter 4 gives an overview about different
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classifiers and the methods of evaluation. Subsequently, the system as well as the
experimental flow is described in chapter 5. Chapter 6 explains the features that
are implemented in this work and shows the results of the applied tests. Finally,
chapter 7 gives a summary about this work and and lists some aspects about

possible further work.



Chapter 2

Related Work

This chapter gives an overview about the state of the art of computer aided de-
tection systems in endoscopic images. It is especially focussed on the detection of
colon cancer as well as intestinal polyps.

2.1 Form-based Detection

As described in 1.1, polyps can have tubular, tubulovillous or villous form. The
following approaches take advantage of this, trying to find contours or segments
on endoscopic images.

Krishnan et al. [KYC'98| desribe a form-based approach for detection of ab-
nonormalities in the colon. First the image contours are extracted using the Canny
Edge Detector, and the curvature of each contour is computed. Zero-crossings of
curvature along the contour are detected then. Afterwards contour segments are
filtered which are positioned between two zero-crossings. If this contour segment
has the opposite curvature signs to those of its two neighboring contour segments,
the presence of polyps or tumors will be rated as high.

The method of Hwang et al. [HOTT07] relies on the elliptical shape of colon
polyps. In a first step a watershed-based image segmentation is applied to a frame.
Then a binary edge map is constructed for each segmented region using a particular
threshold. The map is used as input for an ellipse fitting algorithm. Ellipses are
described as second order polynomials. They are mapped to the computed edge
map using a least square fitting method. Among detected ellipses, those are filtered
which do not represent actual polyps. The strength of the edge and the intensity
value inside the ellipse serves as criteria for filtering.

Dhandra et al. [DHHMO06| do not consider the edges like the methods men-
tioned previously. Their approach converts the endoscopic color image into HSI
color space and then a watershed segmentation technique is applied. The classi-

13
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fication of the image as abnormal is simply based on the number of watershed
regions present in the image, compared to a certain threshold.

Another technique for detecting polyps was introduced by Kang et al. [KDO03].
The endoscopic images obtain a contrast enhancement which is accomplished by
performing a histogram stretching operation in RGB color space. In a next step,
the Canny Edge Detection Algorithm is applied to each RGB color channel sepa-
rately. The detected edges are combined afterwards to one result. Morphological
operations such as dilation for edge thickening and connecting of disjoint edges are
finally used. The resulting image segments are analyzed and filtered considering
area, color and elliptical shape of the segment.

2.2 Texture-based Detection

Texture analysis is frequently used in image processing and pattern recognition for
characterization of regions from digital images. Texture carries information about
the micro-structure of the image regions and the occurring distribution of gray
levels [Nie07].

Wang et al. [WKKTO01] propose a feature extraction method called Local Bi-
nary Pattern (LBP) which is a local texture descriptor. The LBP can be combined
with the image intensities to LBP/I. This LBP/I distribution is represented in a
discrete two dimensional histogram. A log-likelihood-ratio called the G-statistic,
which is a modification from Kullback’s criterion, is used as a pseudometric for
comparing LBP/I distributions. A Neural Network formed by Self-Organizing
Maps (SOM) provides means for classification.

The concept of Li et al. [LCKO05] is to transform the RGB endoscopic images
into CIELab color space to analyze color and luminance separately. Patches of
fixed size are used, which overlap 50% to each other. A two level Discrete Wavelet
Transform decomposition is applied to each patch and CIELab channel separately.
Afterwards, mean as well as standard deviations are calculated from the absolute
values of approximation and detail coefficients of the second level of Wavelet de-
composition. Another feature includes 1-dimensional histograms of the luminance
channel L (with 16 bins) and 2-dimensional histograms of the a and b components
in CIELab space (with 64 bins). Support Vector Machines serve as classification
scheme.

Tjoa et al. [TKO03| determine a so called texture spectra in the chromatic
and achromatic domains in the colonoscopic image (HSI and RGB components).
Therefore texture units and texture unit numbers are calculated, which are used
to form a histogram. Six statistical measures are extracted from each texture spec-
trum: Energy, Mean, Standard Deviation, Skew, Kurtosis and Entropy. Principal
Component Analysis (PCA) reduce the size of the features, which are afterwards
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evaluated by a Backpropagation Neural Network (BPNN). They found that using
texture and color features improves classification results when compared to using
only one type of information.

The method of Alexandre et al. [ACNO7]| takes the color of a pixel (RGB com-
ponents) and its position as feature vector dimensions. This implies a requirement
of a high dimensional input space for SVM. In a preprocessing step they divide the
original image into subimages of 40 x 40 pixels and classify each patch separately.

Karkanis et al. [KMGS99| propose a scheme which uses textural descriptors
based on second order gray level statistics called Graylevel Co-occurence Matrices
(GLCM), intitially proposed by Haralick [HDS73|. This method evaluates a series
of matrices that describe the spatial variation of gray level values within a local
area. In this approach four GLCM have been computed and four statistical features
were determined: Angular Second Moment (Energy), Correlation, Inverse Differ-
ence Moment and Entropy. This forms a 16-dimensional feature vector, which is
used as input for classification with Neural Networks.

In [KIMT00] a one dimensional Discrete Wavelet Transform (DWT) decompo-
sition is performed on raster scanned images, resulting in four wavelet subimages
for each patch. Then GLCMs are calculated on the wavelet domain and four sta-
tistical measurements are estimated. A Multilayer Feedforward Neural Network
(MENN) is employed for classification of the 16-dimensional feature vector. As ex-
periments with both proposed methods indicate, the Wavelet Transform performs
better than the simple GLCM method.

A one dimensional Discrete Wavelet Transform is performed by Karkanis et
al.[KIKMO1], resulting in approximation and detail components. The Daubechies
wavelet basis is utilized due to their orthogonal property. Subsequently, GLCMs
are extracted from the detail coefficients (without the lowpass-filtered channel) and
four statistical measurements called Angular Second Moment, Correlation, Inverse
Difference Moment and Entropy are calculated. 48-component feature vectors
form the input to the Multilayer Feedforward Neural Network architecture. This
proposal was implemented in CoLD (Colorectal Lesion Detector) [MIKKO03| with
incorporation of another classifier called Multilayer Perceptron Neural Networks
(MLP).

Karkanis et al. [KIM™*03] propose a new color feature extraction scheme named
Color Wavelet Covariance (CWC) based on a fixed size sliding window. A three-
level DWT decomposition is performed and GLCMs are extracted from the second
wavelet level on each color channel separately. Afterwards, the aforementioned
statistical measurements are computed. Covariance values of pairs of the estimated
features constitute the 72-dimensional CWC feature vector. Linear Discriminant
Analysis is used for classification of the features.
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In [IMKO06]| different preprocessing methods and various feature extraction tech-
niques are compared to each other. Color space transformations (e.g. RGB, K-L,
CIE-Lab, HSV) are tested and incorporated with each extracted feature for in-
stance Local Binary Patterns (LBP), Opponent-Color LBP (OC-LBP), Wavelet-
Energy and CWC. Linear and non-linear classification modules are investigated.

Ameling et al. [AWP109| compares existing feature extraction methods such
as GLCM and LBP, exploiting the patch approach. Four different polyp scenes are
chosen for testing. The GLCMG6 feature as well as the GLCM16 feature computes
four matrices on gray level patches. For GLCMG6, six statistical measurements
called Energy, Entropy, Inverse Difference Moment, Inertia, Cluster Shade, Cluster
Prominence are extracted and the mean is computed from the extracted values.
GLCM16 utilizes only four statistical measures, the same measures like [KMGS99|
use in their application without averaging. LBP and OC-LBP features are also
investigated. OC-LBP performed best on the preselected four scenes, combining
texture and color information.

2.3 Combined Methods

As shown in the previous sections, there are many approaches for detection of
lesions. However, there is not a single method to detect all kinds of lesions. Con-
sidering this fact, Zheng et al. [ZK01| combines multiple techniques. A multisensor
data fusion technique based on Bayesian Inference is applied. This approach was
further improved to an intelligent fusion-based clinical decision support in [ZKT05].
Subdecisions are estimated based on associated component feature sets (|[TKK™01]
[KWLT00] [WKHS02]) derived from the endoscopic images. Bayesian probability
computations are employed to evalutate the accuracies of subdecisions and are
utilized in estimating the probability of the fused descision.

2.4 Discussion

The results of the research groups are difficult to compare because of the usage
of different data bases, which are beside this often too small to make reliable
predictions. Additionally, the systems are not trained for all types of polyps.

Another aspect to consider is the resolution of the endoscopic images, which do
not comply with technical progress. It is possible today to use full-high definition
resolution instead of images of size 320 x 240 like in [IMKO06, LCK05, KIM*03].
High resolution endoscopic images have the advantage to provide more concise
information about the microstructures of the intestinal wall.
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The micro-structure of the intestinal wall is defined by vasculature and mucosa,
while the appearance of polyps is determined by the degree of dysplasia. On
this note, texture features can be a discriminating aspect in detecting polyps.
Graylevel Co-occurence Matrices and Local Binary Patterns are popular methods
as described in section 2.2. They estimate structural relationships between pixels
which are necessary to provide adequat texture modelling.

The analysis of the form of polyps is often realized by finding edges or through
region segmentation. It is difficult to predict whether this approach will lead to
a reliable detection of polyps, because many similar shaped structures are found
in the colon, for instance intussusceptions. Furthermore, there are different types
and sizes of polyps having varying forms. These aspects results in a very complex
segmentation task.

Other approaches are concerned with transform methods such as the Wavelet
Transform, which has an advantageous effect on the representation and modelling
of texture [CR95]|. It is possible to perform multiresolutional analysis, which could
have an enormous potential in examing endoscopic images. Due to the fact that
the endoscope most likely has different distances to the intestinal wall during
endoscopy scale variant features are computed when no adequate processing is
applied. In this way the Wavelet Transform might be an appropriate mean.

Considering the classification techniques, two methods are frequently used in
the presented computer-aided detection systems, namely SVMs and Neural Net-
works. A Support Vector Machine found also application in [AWP*09].

All in all the here discussed and positive evaluated approaches have a potential
in detecting polyps reliable. The overall aim is to include color in the feature
extraction techniques from [AWPT09], which seems to be one of the most promising
information base for polyp detection. A subset of the introduced texture methods
such as Wavelet Transform, Graylevel Co-occurrence Matrices and Local Binary
Patterns can be combined in different ways. Some of the combinations already have
reference in literature, while other are never tested so far on endoscopic images.






Chapter 3

Texture Features

Texture can be seen as a rich source of visual information that is easily perceived
by humans. Nevertheless, there is no strict definition of image texture. Generally
speaking, textures are complex visual patterns composed of entities, or subpatterns
that have special characteristics. Hence, texture can be regarded as a similarity
grouping of such entitites in an image [RK82].

3.1 Transform methods

Transform methods of texture analysis represent an image in a space whose coor-
dinate system has an interpretation that is closely related to the characteristics
of texture. Methods based on Fourier Transform perform poorly in practice, due
to its lack of spatial location, while the Wavelet Transform method posseses a
capability of time (space) location of signal spectral features [Mal89|.

Several psycho-visual studies [RL93|[Jul86] demonstrate that the human visual
system processes images in a multi-scale manner. This knowledge motivates the
use of multi-scale or multi-resolution approaches for texture analysis. Therefore,
the scale is the most important parameter, which is determined by the size of the
textural element or the considered neighborhood. The Wavelet Transform provides
a formal technique for such an approach [CR95].

Wavelet Transform

There are two advantages to mention considering Wavelet Transform. It has been
demonstrated that Discrete Wavelet Transform can lead to better texture modeling
[Mey93|. Varying spatial resolution allows it to represent textures at the most
suitable scale. Additionally, the wide range of choices for the wavelet basis function
makes it easily adjustable.

19
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The disadvantage of Wavelet Transform is that it is not translation-invariant
[LCCI7] and thus results in different coefficients as soon as the source signal is
shifted.

The Wavelet Transform utilizes a basic function (t), the so-called ‘mother
wavelet’, which is scaled with a factor « and shifted to the position 7 of the time
axis. The following integral describes the Wavelet Transform (WT) of a signal f

wrra)= [ s jmw (t;T) e I (G CSY

Limiting the range of o and 7 to the following discrete values,

a=2"" t=ka, puk=..,0+1,£2 .. (3.2)
generates a family of Wavelets ¢, 1 () from one basis function v by

1
Vlal

The orthogonal property of a wavelet family is of importance, since it maintains
the textural structure along the different scales of the transform.

Two functions mutually orthonormal are initially adopted: the scaling function
¢, which increasingly reduces the resolution of the function f and the mother
wavelet function ¢ . Scaling function and wavelet functions take over the general
task of low- and highpass filtering. Other wavelets are then produced by translation
of the scaling function ¢ and dilations of the mother wavelet v, according to the
equations:

b0) = <=0 (50) = VB -0, ual) =000, (33)

Gui(t) = V2rp(2"t — k) (3.4)
Vun(t) = V2mp(2"t — k). (3.5)

w, k € Z are the scale and translation indices, respectively; the factor v/2# is
an inner product normalization.

The Wavelet Transform can easily be extended to multiple dimensions, because
one can utilize a separable description. In the case of a two-dimensional image
f = [fjx], the wavelet decomposition is obtained by separable filtering along the
rows and columns of an image. The use of a pyramid-structured Wavelet Transform
for texture analysis was first suggested in the pioneering work of Mallat [Mal89).
Pairs of wavelet filters including a lowpass filter g (scaling function) and a highpass
filter h (wavelet function) are utilised to calculate the wavelet coefficients. In
practice, the transform is computed by applying a separable filter bank to the
image:
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.f2 d2,2
i dy ds
doo| dio
f= fo = [fo,j,k] — -
do 1 di; do di

Figure 3.1: Twodimensional Wavelet Transform. f,, is subsequently subdivided.

Fu= g% [ox Furil ] (3.6)
do,, = [hx v [gy* Foi] m: m (3.7)
dy, = [hz w [hy* Foi] m: s (3.8)
oy = |90 5 [hy* Furi] )| e (3.9)

where * denotes the convolution operator, | 2,1(] 1,2) denotes the downsam-
pling along the rows (columns) and f is the original image.

Every subimage contains information of a specific scale and orientation of the
coefficients. Spatial information is retained within the subimage. The original im-
age f is thus represented by a set of subimages at several scales at level p. Subim-
age f, is obtained by lowpass filtering and is referred to as the low resolution
image. Its coefficients representing the approximation image, while the subbands
labeled d ,,,d, ,,,d>,, represent the detail images at scale p. The latter are obtained
by bandpass filtering in a specific direction and thus contain directional informa-
tion. Subimage d,;, represents diagonal details while dy, gives horizontal high
frequencies (vertical edges) and dy,, contains vertical high frequencies (horizontal
edges).

At the subsequent scale of analysis, the image f, undergoes the decomposition
using the same g and h filters, having always the lowest frequency component
located in the upper left corner of the image as illustrated in figure 3.2. Each
stage of the analysis produces four subimages whose size is reduced to the half
compared to the previous scale.

A simple example for a scaling function as well as a wavelet basis function is
the Haar function, defined as
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Figure 3.2: Example of a three level Wavelet decomposition of an image with Haar
basis [Nie07]

1, 0<t<l1 L0<t<y
qs(t):{’ = Y(t)=q-1, L <t<1 (3.10)

0, otherwise .
0, otherwise

and applied in figure 3.2. The Haar scaling function and wavelet function is
illustrated in figure 3.3.

Il¢ A

Figure 3.3: Haar functions ¢(t) (scaling function) and v (¢) (wavelet function).

Other examples for wavelets are the Daubechies family [Dau92|, a special form
that was invented by Ingrid Daubechies or the Odegard wavelet [OB96|.
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3.2 Statistical methods

Statistical methods deal with observed combinations and relationships between the
gray levels at specified positions. Statistics are classified into first-order, second-
order and higher-order according to the level of pixel combination. The most
popular second-order statistical features for texture analysis are derived from the
so-called Co-occurrence Matrix [HDS73|. They are known to have a potential for ef-
fective texture discrimination in biomedical images [LSST93]. Beside this, texture
features provide measures of properties such as contrast, smoothness, coarseness,
randomness, regularity, linearity, directionality, periodicity, and structural com-
plexity. Local Binary Patterns (LBP) are another promising method for texture
description.

3.2.1 Co-occurrence Matrix (GLCM)

A Graylevel Co-occurrence Matrix P can be regarded as a second-order histogram
of dimensions equal to the number of intensity levels, G, in the image. The matrix
element Pa, a,(7, j) represents the absolute frequency with which two pixels with
intensity ¢ and 7 occur within a given neighborhood separated by a pixel distance
Az and Ay . Given a M x N image size of an input image I containing G gray
levels, let I(m,n) be the intensity at image row m and column n.

Pasayis ) nyfo{l, if I(m,n)=1iAI(m+Ax,n+Ay)=7
Y , otherwise
(3.11)
To compute the relative frequencies of each GLCM value, one must normalize
the absolute values of Pa, a,(7,7) by using the following factor o

1
a_(M—Aa:)(N—Ay)' (3.12)

A small 5 x 5 subimage with 4 gray levels and its corresponding GLCM P
is illustrated in figure 3.4.

Another common notation of the GLCM is the usage of a distance-angle rep-
resentation P,y as depicted in figure 3.5, where in most cases the computation is
limited to the angles 6 = 0°,45°,90°,135°, since the knowledge of P, 150, P 225,
P, 70, P, 315 adds nothing to the specification of the texture. For instance P, 159
can be regarded as the transpose of the matrix P, . Additionally, one can consider
to compute a symmetric Co-occurrence Matrix out of this dependency.

If a rotation-invariant version of the GLCM wants to be achieved, one can
calculate an average matrix out of the four matrices 6 = 0°,45°,90°, 135°.
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Example Image Pio(i, g
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Figure 3.4: Example image and its Graylevel Co-occurence Matrix with Az = 1 and
Ay = 0. The graylevel relation i = 3 and j = 1 is emphasized with an occurence of 2.

0 = 135° 0 = 90° 0 = 45°
@ O O
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Figure 3.5: Geometry for angle representation for four distances a and four angles 0

It is obvious that coarser textures require larger values of the distance a, while
it is recommanded to choose a = 1 for finer resolutions to represent microstructures
in the image.

A number of GLCM-based statistical features m can be calculated using the
Co-occurence Matrix for the purpose of texture descrimination; 14 of them were
initially proposed by Haralick [HDS73]. The denotation of those measurements
require the introduction of the following variables. The row and the column sums of
the GLCM are described by P, and P,. Mean and standard deviation of those sums
are denoted by py, pty, 04, 0y. Py(i) is the ith entry in the marginal-probability
matrix obtained by summing the rows of P(i, j).

b)) = ) P(i,]) (3.13)
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G-1 G-1 G-1
o= D1, P(i,j) = ZiPx(i) (3.14)
G-1 G-1 G-1
(0 — pta 2ZP(LJ) = Z(Px(i) — pa(0))? (3.15)

This is equally defined for p,, 0,. The following list contains the statistical
measurements which can be extracted from the Co-occurence Matrix.

e Angular Second Moment (ASM):

G—
Z Z (3.16)

Angular Second Moment can be regarded as a measure of homogeneity of an
image. A homogeneous scene will contain only a few gray levels, resulting in
a GLCM with only a few but high values of P(i,j). Thus, the sum of squares
of those values will be high.

e (Correlation:

0z0

1G—
ij P(i z

||
J‘:MQ

Correlation is a statistical technique that shows whether and how strongly
pairs of gray levels are related.

e Inverse Difference Moment (IDM):

Q

-1G-1

P(i
(3.18)
1+ (i—j)? + (i — j)?

I\
o

i 7=0

IDM is influecend by the homogeneity of the image, for example IDM will
get small contributions from inhomogeneous areas. The result is a low IDM
value for inhomogenous images and a high value for homogeneous images.

e Entropy:
G-1G-1

ss=—> Y P(i,j)logsP(i, j) (3.19)

i=0 j=0

Entropy describes the average information content and is a statistical mea-
sure of randomness.
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e Cluster Shade:

G-1G-1
Sq = (i+J = pte — p1)° P(, §) (320)
i=0 j=0
e (Cluster Prominence:
G-1G-1
55 = (i+J — e — 11,)* P(3, §) (3.21)
i=0 j=0

Cluster Shade and Cluster Prominence are measures of the skewness of the
matrix, which can be seen as a lack of symmetry. When Cluster Shade and
Cluster Prominence are high, the content of the image is not symmetric.

e Inertia (Contrast):

Q
Q
—

-1

ss= 3 S (i 2P ) (3.22)

i

I
o
.

I
o

Inertia is a measure of local intensity variation that favours contributions
away from the diagonal of the GLCM.

3.2.2 Local Binary Pattern (LBP)

Example
Neighborhood LBP weights Lg=211
91 92| 93 7118 3 1|10 1124 11210
91 | g0 | 95 1|6 |22 0.1 8.16 0.16
96 | g7 | 98 218 |16 0 1 1 32 | 64 |128 0 | 64128
Threshold ? ‘ ‘ Multiply *T

Figure 3.6: Calculation of the Lgcode from an example neighborhood

The Local Binary Pattern is defined as a grayscale invariant texture measure,
derived from a general definition of texture in a local neighborhood. It was first in-
troduced as a complementary measure for local image contrast in [OPH96| and had
already found application in several polyp detection systems [KWL*T00, WKKTO01].
Several versions of this operator have been developed [POX00, OPM00, MOPSO00]
and will be shown here.
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The original LBP method can be described as follows. Traditionally, the LBP
works on a 3 x 3 neighborhood, therefore a subscript 8 for the eight neighbors is
used in the following. The value of the center pixel gy is used as threshold for each
of its eight neighbors as depicted in figure 3.6. If the value of the neighborhood
pixel g;,7 = 1,2,...8 is higher than the center pixel, 1 will be inserted at the
corresponding position in the LBP, 0 otherwise. The LBP code for a neighborhood
is then produced by multiplying the thresholded values with binomial weights given
to the corresponding pixels, and summing up the result. The weights consist of
power of two values. The following equation shows the computation of the LBP
code Lg.

Ls(go) = 3 5(g: — g0)2"~! s<x>={1’ w20 (3.23)

Py 0, otherwise

A histogram can then be computed over the frequencies of the Lg codes which
occur in an image. The LBP is by definition invariant against any monotonic
transformation of the gray scale. This means that only the contrast between the
neighborhood and the center pixel is of importance instead of the gray value itself.

Opponent-Color LBP

An opponent-color version of the LBP was introduced [M#03| and found applica-
tion in [AWPT09]. The significant difference to the original LBP is the usage of
single color channels of the RGB color space instead of the grayscale range. Further-
more, the feature consists of inter channel information, because the neighborhood
is derived from a different color channel than the center pixel. All combinations
of color channels result in six histograms. Additionally, three LBP-histograms are
computed from each color channel separately. At the end, the frequencies held in
nine histograms make up a feature vector.

Rotation-Invariant-LBPS8

The original LBP code is not rotation invariant. It produces 256 different output
values, corresponding to the 2% = 256 different binary patterns that can be formed
by the 3 x 3 neighborhood. Thus, rotating a particular binary pattern results in
a different LBP code. From a local binary pattern, a 8-bit code can be clockwise
generated as illustrated in 3.7 [POXO00]. For the rotation invariant approach it is
advisable to index the neighbor set in a way that they form a circular chain and
interpolate the diagonal pixels as illustrated in figure 3.8.
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i=0,1,.7 i=1 i=2 i=3 i=4
011 00/ 1 1{01]0 11110
0 . 0 1 . ! ! . ! ! 0
111 110 1101 o)ttt
1=5 1=6 =7
111 0|11 1ol
0 . 0 1 . 1 1 _ !
1110 1{0]o0 0|01t

Figure 3.7: Rotating the LBP i-times clockwise. ¢ = 0 is depicted in figure 3.6. The
rotation-invariant bitcode for this pattern is obtained after three rotations (i = 3) with
001101111.
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Figure 3.8: Interpolation of 3 x 3 neighborhood (left) and 5 x 5 neighborhood (right).
Gray circles notate non-interpolated pixel, white circles are interpolated.

To remove the effect of rotation, an unique identifier is assigned to a pattern,
that rotated has always the same bitsequence [OPMO0O].

LY (go) = min {ROR(Lg(go), )| i = 0,1,...7} (3.24)

Equation 3.24 defines a circular bit-wise right shift ROR on the 8-bit [; i
times. The superscript ri stands for rotation invariance. This corresponds to
rotating the neighborhood clock-wise as many times as the maximal number of
most significant bits is 0. Figure 3.9 shows the 36 possibilities for rotation invariant
local binary patterns. Their frequencies are counted over the image and inserted
into a histogram. Tt is superfluous to multiply the binomial weights with the
LBP to compute the LBP code. Instead, the 8-bit pattern converted to a decimal
number can be used as label.
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a) :H:b) c) d) e) f) g) h) Qﬁ: i) H

L1

Figure 3.9: 36 unique rotation invariant LBP codes. Gray squares notate number 1,
white squares 0.

Certain descriptions of microstructures can be expressed in Ls™ considering the
first row of figure 3.9. For example, pattern a) detects bright spots, pattern i) dark
spots, while pattern c)-e) serves as edge description.

Subset-LBPS8

Another LBP approach is to use subsets of the proposed schemes. Using all of the
36 patterns in figure 3.9 lead to a suboptimal result according to [MOPS00]. They
state that some patterns sustain rotation better than other; the latter only confuse
the analysis. They are more likely to be similar to a different structure upon
rotation. To overcome this, only patterns are chosen for individual representation,
that have a spatial transition (bitwise 0/1 changes) of at most two. For example,
pattern 00000000 and 11111111 have 0 transitions, while the other seven patterns
in the first row of figure 3.9 have two 0/1 transistions. Let U be a function that
counts the 0/1 transitions in each pattern then the SubsetLBP8 is defined by the
following equation:

Lgubset _ Lg(g()) ) if Lg(go) €S (325)
59, otherwise
S={ 2z | 0<z< 255 A U(x) <2} (3.26)

Equation 3.25 assigns an unique label to the nine uniform patterns and their ro-
tated versions, as illustrated in 3.9 a)-i) (11111111, 01111111, 00111111, 00011111,
00001111, 00000111, 00000011, 00000001, 00000000). This ends up in 58 frequency
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bins. The 27 other rotation invariant patterns in figure 3.9 are being grouped un-
der the miscellaneous label (59). Superscript set corresponds in this case to the
use of rotation invariant uniform patterns as well as a subset of rotation variant
pattern.

Rotation-Invariant-Subset-LBP16

A last LBP approach which is examined in this work is to use a bigger neighborhood
than the Lg operator does. The coarse 45° quantization level of the angular
space through the 8 pixel neighborhood leads to a non-optimal representation
[OPMO00]. To address this, figure 3.8 shows a modification, where a clockwise
defined neighborhood consisting of 16 pixel is presented. In this way, a finer
resolution of 22.5° can be obtained. The gray values of neighbors which do not
fall exactly in the center of pixels are computed by interpolation. The different
spatial resolution can also be seen as advantegous when performing multiresolution
analysis.

16
Lis(g0) = Z s(g9i — 90)2" ™ (3.27)
i—1
The Lig operator defined in equation 3.27 has 2!6 = 65536 output values and 243
rotation invariant patterns.

16 :

. ; i — f L) <2

Litébset,rl — Zz:l S(g gO) ) 1 U( 16) - (328)
17 , otherwise

The first case shows that again only 17 patterns are used for individual label-
ing that have at most two 0/1 transitions. These correspond to the number of
ones occuring in the bitcode, for example from 0 (pattern 0000000000000000) to

16 (pattern 11111111111111111). Label 17 groupes the frequencies of all other
patterns.



Chapter 4

Classification and Evaluation

After applying feature extraction methods on the image, learning a classifier is
the subsequent step in a traditional pattern recognition system. A classification
task usually involves training and testing data which consists of data samples. The
disjunct separation into training and test sets can be done by crossvalidation. Each
sample in the training set has one target value w; from a predefined set of class
labels € = {wy, ws, ...,wx} and values of the feature vector.

4.1 Crossvalidation

Crossvalidation is a commonly used technique to partition sample sets into com-
plementary subsets. For instance, the k-fold crossvalidation separates the original
sample into k subsets. k& — 1 subsets are then used for training of the classifier,
while the remaining data set serves as validation. This procedure is repeated k
times, with each of the subsamples used once as testing data. The k results are
then averaged over the folds. A stratified k-fold crossvalidation implies that the
class distribution is retained in each subset.

4.2 Support Vector Machines

The Support Vector Machine (SVM) is a classifier that is already used in several
approaches for the detection of polyps [IMK06] [LCKO05] [KIMT03] [ACNOT].

The goal of SVM is to produce a model which predicts classes of samples in
the testing set, where only the features are given [CV95|. It can be seen as an
extension of linear classifiers, where a linear decision function f : R" — IR
maps each feature to a positive or negative class. Linear classifiers are limited to
certain applications, because not every problem is linearly separable as depicted in
figure 4.1. To solve non-linear problems, a kernel function is utilized to project the

31
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features into higher dimensional space. The approach for linear separable problems
can be then applied in higher dimensions.

One representative kernel function is the radial basis function (RBF) that will
commonly be used if the number of training objects is higher than the number of
dimensions of the feature vectors [HCLOS|.

A hyperplane is used to separate the feature space in a way that features
belonging to the same class are located on one side of a hyperplane. The most
important property concerning hyperplanes is the distance between the feature
and the hyperplane. The goal is to find the largest possible distance between the
hyperplane and the features in the set.

. 01 v v
O i
v =il v
N 4
L] \v ] ‘_v
S HL Y o on
UJ O/ v

Figure 4.1: Example for linear separable feature space (left) and non-linear separable
feature space (right).

4.3 k-Nearest Neighbor Classifier

The k-NN algorithm is a very simple approach for classification. It is a type of
instance-based learning, or lazy learning, where all computation is deferred until
classification. No explicit training step is required, because it consists only of
storing the feature vectors and class labels of the training samples.

The multidimensional feature space is ideally partitioned into regions by loca-
tions and labels of the training samples. The objects, represented as vectors, are
classified based on the closest training examples in the feature space. They are
assigned to the class most common amongst its k£ nearest neighbors, based on a
majority vote (figure 4.2).

On the one hand, large values of k reduce the effect of noise on the classification,
on the other hand larg values of £ make boundaries between classes less distinct.
It is recommended to choose k£ to be an odd number in two class classification
problems to avoid ambiguous situations. Commonly, one uses Euclidean distance
to determine the nearest neighbors, but in general any distance function could be
applied [AKA91].
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Figure 4.2: Example for k-Nearest Neighbor classifier.

| sick person | healthy person |

positive test || true positive (tp) | false positive (fp)
negative test | false negative (fn) | true negative (tn)

Table 4.1: Medical confusion matrix for a two class classifier

4.4 FEvaluation of Results

The results of the classification have to be evaluated. The motivation is to use a
standard for evaluation such as a confusion matrix. Table 4.1 shows the confusion
matrix for a two class classifier concerning medical issues.

The performance of a system is commonly evaluated using the data in the
matrix for computing two statistical measures: specificity and sensitivity.

The specificity s measures the relation between determined healthy tissue and
the real occurrence of healthy tissue. Hence it indicates the proportion of negatives
which are correctly identified.

tn
tn + fp

s = P( negative test| healthy person) = (4.1)

The sensitivity ¢ measures the proportion of actual positives which are correctly
identified as such and is defined by the following conditional probability

t
t = P(positive test| sick person) = : ff : (4.2)
p+fn

Considering classification of polyps, sensitivity describes the relation between
actually detected polyps to the real number of polyps.
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An optimal prediction can achieve 100% sensitivity (i.e. predict all people from
the healthy group as healthy) and 100% specificity (i.e. predict all people from
the sick group as sick).

sensitivity and specificity are closely related to the concepts of type I () and
type II () errors. For example a false-positive result (healthy people wrongly
identified as sick) is a type I error, while false-negative result (sick people wrongly
identified as healthy) is a type II error.

Besides this, the receiver operating characteristic (ROC)-graph [GJ66| provides
a further method for evalution of classifiers. While sensitivity and specificity only
rely on either positive or negative cases, the ROC-graph combines both. A thresh-
old describing which object is assigned to each class can be varied by grouping pairs
(s,t) of sensitivity and specificity together. Those pairs finally form the ROC-curve
as illustrated in figure 4.3. The higher the true positive rate and smaller the false
negative rate, the better is the prediction accuracy and the classifier.

The area under the ROC curve (AUC) can be computed from the ROC-graph
as indication for the performance of the classification in one value. Considering
(si,t;), i = 1,2..n with sg = 0,tp = 0,s, = 1 and ¢, = 1 as the points of the
ROC-graph. The AUC a can be computed by the following equation

a=Y % (b 15 1) (51— s01) (4.3)

i=1

sensitivity (True positive rate)

A
1.0+

0.8+
0.6

0.4+

0.27

-
T T T T -

0 02 04 06 08 1.0

1-specificity (False positive rate)

Figure 4.3: Example ROC Graph.



Chapter 5

System Description

This chapter introduces the single components of the system and gives an exact
description of the classification scheme. Especially it is focussed on the changes
with regard to the system of [AWPT09]. The software was programmed in C+-+.
The following libraries are utilized:

e ITK - Segmentation and Registration Toolkit [ISNC05]

e QT - A cross-platform application and UT framework [QT]

e QWT - Qt Widgets [QWT]

e Wavelet - a Class Library for Wavelet Transforms on Images [Wav].

5.1 Data

The data base consists of four hours of video data from different colonoscopies
initially used in [AWP*09|. The data has been evaluated by medical specialists
from the Beaumon Hospital Dublin. The obtained ground-truth data was used
to extract four scenes with polyps under varying illumination, view angle and
distance. Fach of the four scenes consists of approximately 400 single frames with
a resolution of 800 x 800 pixel.

From the four scenes a heterogenous set of 130 frames is randomly chosen which
is an important fact. In contrast to the test and training sets in the work from
Ameling [AWP*09], this data set can be seen as quite heterogenous. [AWP*09]
chose subsequent frames from the videos which are very similar leading to a dupli-
cation of nearly the same data in test and training set despite the use of crossvali-
dation.

To represent ground-truth data image masks are created as depicted in figure
5.1. The white region in the reference images describes the exact location, size
and shape of a polyp.

35
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Figure 5.1: Endoscopic image and its reference mask

5.2 Patches

A patch approach is selected in the processing of each image. An image is subdived
into several square subimages, the so-called patches. Their size and degree of
overlapping can be defined.

For each patch, a feature vector is computed and classified as polyp or non-polyp.
This is a common technique in applications examing texture because texture fea-
tures can be estimated on each of those subimages resulting in a local classification.
The whole image was utilized for computation of texture features but the exact
position of the polyp, if detected, would remain unknown.

Another technique is to apply region segmentation on endoscopic images such as
Watershed Transform [VS91, DHHMO6| or Region Growing [SC80|. Features can
be computed separately from the detected regions instead of estimating them from
patches. This method hardly depends on the performance of region segmentation
and thus has not been considered here.

In [AWPT09]| patches will be assigned to a class if the patch is completely filled
with black or white pixels. Thereby the so called mask image serves as reference for
class labeling, see figure 5.2. Two general remarks can be made on this approach.
Patches which contain polyp and non-polyp information at the same time are not
considered in the system. Thus, the border of a polyp remains completely unseen,
although it may also contain important information for feature distinction and
classification. Another aspect is that small polyps will not be detected, if the
chosen patch size is bigger than the polyp. Consequently, the computed false-
negative rate does not correspond to the real false-negative rate.

The approach in this work is to consider all patches. Patches that contain
polyp as well as non-polyp information are classified corresponding to the following
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Figure 5.2: up left: endoscopic image divided in patches; up right: correspond-
ing mask image down left: mask image - red colored patches are not considered in
[AWP109]; down right: mask image - the patches must contain over 625 of white pixels
to be assigned to the polyp class

scheme: All intensity values in the mask image are counted. If the sum is equal or
higher than value 625, the patch will be mapped to the polyp domain, otherwise
it is a non-polyp patch.

Another aspect of the patch approach to consider is that some images are not
fully subdivided depending on the endoscopic image size (800 x 800 pixel in this
case) and the specified patch size as illustrated in figure 5.3 (left). Consequentely,
parts of the right and lower border remain unseen on each image due to the raster
scan algorithm. To counteract this situation, a patch overlapping can be utilized,
which is depicted in figure 5.3 (right). Neighboring patches overlap each other and
all parts of the image are considered.
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Figure 5.3: left: situation where the image size is not divisible without remainder by
the patch size; right: applied patch overlapping

5.3 Experimental Flow

The extracted features must be classified and evaluated for instance through an
AUC value. Therefore, a data mining software called WEKA [WEK], developed
at the University of Waikato in New Zealand, provides adequate means. The
software is written in Java and collects several machine learning algorithms. Tasks
such as data pre-processing, classification, regression, clustering and visualization
are manageable.

[AWPT09] utilizes in his work a library for Support Vector Machines called
LibSVM [CLO1]. The SVM is also available in WEKA which contains a wrapper
class for LibSVM.

WEKA uses the attribute-relation file format (ARFF) as input. Such files
have two distinct sections as shown in figure 5.4. The first section is the header
information (1) which is followed by the data information (2). The header contains
the name of the relation, e.g. the name of the feature and a list of the attributes
which are the dimensions of the feature vector and their types. One attribute
dimension is used as class assigner. In this case, the non-numeric classes polyp
and nonpolyp serve as class labels. The second part consists of all data samples
denoted by @data. Their attributes must correspond to the types defined in the
header section. In figure 5.4 five data examples are given.

WEKA provides a knowledge flow interface for planning experiments with sev-
eral classifiers at a time. In figure 5.5 the experimental flow of the tests and
experiments presented in this work (chapter 6) is depicted. In (1) an ARFF-file
is loaded, which is the output of the feature extraction module written in C++.
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The ClassAssigner in (2) tells WEKA, which of the attributes describes the class.
The ClassValuePicker (3) allows to choose the class label to be evaluated in the
ROC. Step (4) produces a random subsample of the dataset and ensuring a special
distribution spread of the classes. Different adjustments are possible in SpreadSub-
sample for instance a 1:1 or 1:2 class distribution of polyp samples to non-polyp
samples can be chosen. [WP01] shows that a balanced training set produces better
results. Thus, the class distribution in a training set can have a significant effect on
the classification. Nevertheless, it is hard to predict which distribution is the best
for a given problem. In the performed experiments, a fixed value of 1:1 has been
chosen to overcome the problem that non-polyp patches occur more frequently
than polyp patches. In step (5) all attributes are standardized to have zero mean
and unit variance. Another preprocessing step was tested at this configuration
step, called normalization. The Standardization resulted in a better performance
and hence was integrated in the experimental flow.

A CrossValidation (6) is applied afterwards, which produces separated training
and test sets for each of the n folds with n = 4. Subsequently, two different
classifiers are trained on the generated set and both are validated on the test sets,
called SVM (7a) and k-NN classifier (7b). For (7a) the same kernel type as in
[AWP*09] is chosen which is a radial basis function (RBF). The RBF-kernel is
useful for classification problems, where the number of training samples is much
higher than the number of dimensions of the feature vector [HCLO8|. (7b) is a k-
nearest neighbor classifier with & = 11. The PerformanceFvaluator (8) evaluates
the results of each classifier, given its results to a visualization tool (9a) as well
as to a TextViewer (9b). In 5.6 an example output file illustrates the results
of the classification with SVM. Different statistics can be analyzed, such as true
positive rate, false positive rate, confusion matrix, ROC Area as well as correctly
and incorrectly classified instances.
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|- glemg.arff @

@relation glcmg
@attribute Mean Energy numeric
@attribute Mean Entropy numeric
@attribute Mean_IDM numeric
(::) @attribute Mean Inertia numeric
@attribute Mean Clustershade numeric
@attribute Mean_clusterProminence numeric
@attribute class {polyp, nonpolyp}
@data
0.0085242, 7.57123, 0.379832, 16.773, 548.071, 43697.8, nonpolyp
0.000757848, 11.2385, 0.152345, 133.506, 373205, 1.03403e+08, nonpolyp
@ 0.00283574, 9.92533, 0.242202, 098.1624, 314573, 5.72504e+07, nonpolyp
0.00608953, 8.69719, 0.349799, G64.3624, 453040, 9.54349e+07, nonpolyp
0.0084974, B.068526, 0.387658, 6.7627, 11067.4, 662133, polyp

Figure 5.4: Example ARFF-File of the GLCM6-feature from [AWPT(9].
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Figure 5.5: Experimental flow of the following tests with steps from (1)-(9a,9b)

|| classifier_LibSvM @3 I

=== Evaluation result ===

Scheme: LibSwM

Options: -S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010 -P 0.1 -B -model /Users/engelhardt
Relation: glem6-weka.filters.supervised.instance.Spreadsubsample-M1.0-X0.0-51-
weka.filters.unsupervised.attribute.Standardize

Correctly Classified Instances 2487 58,5502 %
Incorrectly Classified Instances 1141 31.4498 %
Kappa statistic 0.371

Mean absolute error 0.4108

Root mean squared error 0.4532

Relative absolute error 82,1696 %

Root relative squared error 90,632 %

Total Number of Instances 3628

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.729 0.358 0.671 0.729 0.699 0.74 polyp
0.642 0.271 0.703 0.642 0.671 0.74 nonpolyp
Weighted Avg. 0.685 0.314 0.687 0.685 0.685 0.74

=== Confusion Matrix ===

a b =-- classified as
1322 492 | a = polyp
649 1165 | b = nonpolyp

Figure 5.6: Example output WEKA textfile of step (9b).



Chapter 6

Feature Descriptions and
Experiments

This chapter gives an overview over the implemented features, starting with the
features from [AWPT09] in section 6.1. They are tested on the new image set.
Subsequently, new texture features are illustrated and evaluated. All of the applied
methods such as Wavelet Transform, Graylevel Co-occurrence Matrix and Local
Binary Patterns are already described in chapter 3, which provids the theoretical
background. At the end of this chapter, a discussion about the performance of the
features is attached.

In the following experiments these general aspects are examined considering
the task of polyp detection:

the performance of the classifiers
the impact of color, color space and color channel

the performance of texture features such as GLCM and LBP

the impact of Wavelet Transform

e the impact of computing variances and covariances from the statistical mea-
surements

e the patch size

6.1 Existing features

The polyp detection system of [AWP*09| implementes four features, namely GLCM6,
GLCM16, LBP and OC-LBP. For the purpose of a better comparison to the fea-
tures implemented in this work, they are evaluated again by the new experimental
flow described in section 5.3. The heterogeneous set of 130 endoscopic images is
used as data base for feature extraction.

41
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6.1.1 GLCM6, GLCM16, LBP, OC-LBP

The following table 6.1 shows the classification results for a patch size of 64 x 64.
They are specified by the area under the ROC curve (AUC) values of a k-Nearest-
Neighbor classifier (k-NN) and a Support Vector Machine (SVM).

RGB-Channel AUC
Feature R | G | B | Patch Size | ~-NN LibSVM
GLCM6 grayscale 64 x 64 0.72 0.74
GLCM16 grayscale 64 x 64 0.735 0.735
LBP grayscale 64 x 64 0.75 0.76
OC-LBP x | x | x [64x64 0.80 0.818

Table 6.1: Classification AUC values of the features implemented in [AWPT09|

6.1.2 Discussion

The AUC results from the tests applied in [AWP*09] are considerably higher than
those depicted in table 6.1. The four homogeneous training and test sets used in
[AWP*09] provide an easier way to classify polyp and nonpolyp patches. Some
images hardly differ from each other, because successive frames are chosen and
finally resulting in a loss of disjunction between training and test set.

Nevertheless, the overall essence of the tests from [AWP*09| corresponds to
these results. The OC-LBP feature performs best by reason of using the RGB
color space instead of grayscale images, since color has obviously a positive effect
on classification of tissue images.

6.2 Wayvelet Features

The Wavelet features introduced in the sections below are implemented due to the
fact, that Wavelet Transform contributes to a better texture modelling [Mey93].
Varying spatial resolution allows it to represent textures at the most suitable scale.

It is examined, whether the Discrete Wavelet Transform has a positive effect
on the classification of polyps. Therefore, different adjustements are tested such
as decomposition level and basis function. This cannot be seen separately from
the patch size, which determines the sizes of the subimages in subsequent levels of
decomposition.

Additionally, the color approach has been further examined by testing different
color spaces and color channels.



6.2. WAVELET FEATURES 43

6.2.1 Color Wavelet and Color Wavelet Covariance

dy,

1=2 do1 di,

Figure 6.1: Wavelet detail components diu with decomposition level p and wavelet
band [ on color channel i and approximation component f,.

The Color Wavelet Covariance (CWC) feature, initially proposed by Karkanis
et al. [KIM™03] was implemented and tested with different parameter adjustments.
This method considers texture and color as information for descriminating polyps
from normal tissue. In the following, several adjustments are described.

Considering the original image I, one can obtain its color transformation from
RGB in HSV, K-L, Cie-Lab space. Each of them results in three decomposed color
channels I',i = 0,1,2. Then a two level Discrete Wavelet Transform is applied
on each color channel (I') separately. The resulting nine subimages of the detail
components liwl = 0,1, 2, from the second decomposition y = 2 are used for
further processing (figure 3.1). Four GLCMs P, 4, witha = 1,6 = 0°,45°,90°, 135°
are computed on each of the nine subimages, resulting in 36 matrices.

P.o(d;,) i=0,1,2, 1=0,1,2, a=1, 6=0°45°90°135  (6.1)

The number of intensities to compute GLCMs is reduced to 64 without any
harmful implication in the resulted overall sensitivity, speeding up computation
with only a minor loss of textural information. Four statistical measures s,,, called
Energy (m = 0), Correlation (m = 1), Inverse Difference Moment (m = 2) and
Entropy (m = 3) are extracted from these GLCMs, resulting in 144 texture val-
ues. They were initially proposed by Haralick [HDS73] from a set of 14 measures,
defined in subsection 3.2.

sm(Paﬂ(diz)) m=0,1,2,3 (6.2)
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In the proposed scheme, the CWC! (i, j) textural measure is finally estimated
from covariances of the same statistical measure between color channels ¢, j at
subimage d; ».

coV[sm(Pao(dy2)), sm(Pas(d],))]
= [sm(Pasld]2) = E(sm(Pas(di2))] X [sm(Pao(dis)) = E(sm(Pao(d]s)))]

(6.3)

This results in a 72 dimensional feature vector, consisting of 36 variances, as they
relate features from the same color channel and 36 covariances from different chan-
nels.

COV[Sm(PG,G(df,Z))asm(Paﬁ(d{Q))]a if 1<y

V&I‘[Sm<Pa79<d§72))], if i=j (6.4)

CWC, (i, j) = {

For instance, detail component d8,2 of the second decomposition from the red
channel is used to compute the GLCMs P, P45, P; g and P 135, where the
measure Energy (sg) is estimated. Those four measurements are used to compute
relations between them (the variance).

AUC
Feature Basis Patch Size | k.-NN LibSVM
Color Wavelet Covariance | Haar 64 x 64 0.681 0.741
Haar 128 x 128 0.748 0.773
Haar 256 x 256 0.679 0.719
Daub8 128 x 128 0.724 0.77

Table 6.2: Color Wavelet Covariance Feature, test: patch size and basis function (Haar,
Daubechies8) for second level of decomposition and RGB color space

Different modifications are performed on this feature, each time changing only
one parameter. The first experiment reveals which basis and which patch size per-
forms best. Only patch sizes of power of two are selected, as the author of [Wav]
recommend, otherwise the Wavelet Transform suffers from a loss of precision. Ta-
ble 6.2 shows the results. It turns out that the Haar basis, introduced in section
3.1, performs best with patch size 128 x 128 in contrast to the Daubechies-family
(Daub8) and smaller or bigger patch sizes. Choosing subimages from the second
decomposition level in the CWC features indicates, that it is probably not advis-
able to take a smaller patch size than 128 x 128. This patch size leads to a size of
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32 x 32 of the nine resulting subimages due to the wavelet decomposition, which
might be a sufficient number of pixels to compute significant GLCMs.

A new feature called Color Wavelet was tested afterwards. This feature is
similar to the Color Wavelet Covariance feature, but omitting to compute variances
and covariances of the different color channels. The 144 statistical measures defined
in equation 6.2 serve as input for the feature vector.

It turnes out that this variant performs significantly better than the complete
CWC feature. The results are depicted in table 6.3.

AUC
Feature Basis Patch Size | k-NN LibSVM
Color Wavelet Covariance | Haar 128 x 128 0.748 0.773
Color Wavelet Haar 128 x 128 0.793 0.82

Table 6.3: Color Wavelet Feature vs. Color Wavelet Covariance Feature for RGB color
space

AUC
Feature Decomp Patch Size | k-NN LibSVM
Color Wavelet 1 128 x 128 0.764 0.769
2 128 x 128 0.793 0.82

Table 6.4: Color Wavelet Feature, test: decomposition for Haar basis and RGB color
space

Considering the decomposition of the transform that is incorporated in the
Color Wavelet feature, it is also possible to extract the features from the first level
of decomposition. Table 6.4 holds the results and indicates that the second level is
still a better choice for 128 x 128 pixel of patch size. Thus, the spatial resolution
of the second scale level holds superior information for polyp detection.

Different basis functions are tested again for the Color Wavelet feature (table
6.5). The Haar basis performs best in comparison to the Daubechies-family (Daub4
and Daub8) and to a basis function called Odegard [OB96|.

In a next step it is examined whether a certain color space is adequate for this
feature. As proposed in [KIM*03] each patch is transformed from RGB in either
HSV, K-L or CieLab color space before applying the Discrete Wavelet Transform
on each channel. Table 6.6 shows that RGB color space is still the best choice for
the Color Wavelet feature.

Afterwards it is evaluated whether a certain color channel or color channel
combination of the RGB space is superior in detecting polyps. Table 6.7 shows
that the best application for the Color Wavelet feature is to use all channels.
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AUC
Feature Basis Patch Size | k-NN LibSVM
Color Wavelet Haar 128 x 128 0.793 0.82
Daub4 128 x 128 0.749 0.801
Daub8 128 x 128 0.759 0.798
Odegard 128 x 128 0.678 0.727

Table 6.5: Color Wavelet Feature, test: basis function for RGB-colorspace

AUC
Feature Color Space | Patch Size | k--NN LibSVM
Color Wavelet RGB 128 x 128 0.793 0.82
K-L 128 x 128 0.773 0.791
HSV 128 x 128 0.759 0.781
CieLab 128 x 128 0.791 0.801

Table 6.6: Color Wavelet Feature, test: color spaces for Haar-basis function

Nevertheless, the combination of red and blue channel performs slightly better
than AUC values from other channels.

RGB-Channel AUC
Feature R G B | &-NN LibSVM

Color Wavelet X 0.767 0.776
X 0.728 0.758
x | 0.713 0.743
X X 0.776 0.803

X X | 0.752 0.78
X x | 0.796 0.812

X X x | 0.793 0.82

Table 6.7: Color Wavelet Feature, test: combination of color channel for 128 x 128
patch size and Haar-basis

To outline the most essential results, the following box shows the best adjust-
ments for the Color Wavelet feature, resulting from the applied tests.
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Patch size: 128 x 128
Discrete Wavelet Transform: Haar-basis, 2nd level of decomposition
Color Space: RGB, all color channels

Measurements: Energy, Correlation, IDM, Entropy
Best AUC: 0.82

6.2.2 Wavelet-Decomposition

Energy Energy Enérgy

IDM IDM IDM Do
Correlation Correlation Correlation Energy
Entropy Entropy Entropy IDM
@ P35 P g Py : Correlation
' I\ ' } Entropy
Energy
- Energy fE dy3 DM
: IDM ds» Correlation
} C}%rrtelatlon+ dos|dis Entropy
ntropy -
: Py dy Py,
Energy . Energy | do» dis
IDM =:- IDM
Correlation : Correlation
Entropy : Entropy
Energy do 1 di
o IDM ™
: Correlation
*-- Entropy

Figure 6.2: Example computation of shi for | = 2, un=1 (step 1) and skifor 1 =0
(step 2) of the Wavelet-Decomposition feature, regarding the statistical measurements
Energy (m = 0), Correlation (m = 1), Inverse Difference Moment (m = 2), and Entropy
(m = 3) on color channel 1.

The Wavelet-Decomposition feature is an approach for multiresolutional anal-
ysis. Subsequent scales of the Wavelet Transform are used to compute the feature.
A three level DWT is applied to each color channel i = 0, 1,2 of the RGB color

image. The detail components ;w pw = 1,2,3 of each subband [ = 0,1,2
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are utilized for further processing. Four GLCMs are computed on each of the 27
subimages resulting in 27 - 4 = 108 GLCMs.

P.y(dj,) i=0,1,2, 1=0,1,2, p=123 a=1, 6§=0°45090°135

(6.5)

For each GLCM four statistical measures s,, are extracted, namely Energy,
Correlation, IDM and Entropy resulting in 432 measurements.

sm(Pavg(dli’u)) m=0,1,2,3 (6.6)

Then for each subband, the measures of the four GLCMs are averaged over the
angle value as shown exemplarily in figure 6.2.2, step 1. For instance, there is
only one Energy measure per subimage left after averaging the Energy of GLCM
0°, 45°,90°, and 135°.

sttt = meangls(Pug(di,))] = 1 3 su(Pus(di,). (6.7

Subsequently, the mean is computed over the measurements from different
decomposition levels, which is depicted in figure 6.2.2, step 2. For example con-
sidering color channel red, all Energy values from detail images do 1, do2, do3 are
averaged.

. o1 ;
shi = mean“[si’n“’l] =3 Z gl (6.8)
m

All in all the feature vector has 36 dimensions composed of 12 measures per
color channel.

AUC
Feature Patch Size | Basis k-NN LibSVM
WaveletDecomposition 64 x 64 Haar 0.772 0.791
128 x 128 Haar 0.796 0.795
256 x 256 Haar 0.75 0.776

Table 6.8: Wavelet-Decomposition feature, test: patch size for RGB color space

In table 6.8 tests for the best patch size are shown. Only power of two values
are applied. Patch size 128 x 128 performing best for this feature. A three level
DWT implies, that the subimages on the third level have only a dimension of
16 x 16 using 128 x 128 patch size, and only 8 x 8 pixel using patch size 64 x 64.
In a subsequent step GLCMs are computed. Thus it would not make sense to
decrease the patch size for this feature.
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Subsequently it was tested whether one basis function is superior to the other
choosing a patch size of 128 x 128 pixel. Table 6.9 implies that the Daubechies8
basis function works marginal better than the Haar basis function and its relative
Daubechies4, considering the LibSVM results. For the k-NN classifier, the Haar
basis is still the best choice.

AUC
Feature Patch Size | Basis kE-NN LibSVM
WaveletDecomposition 128 x 128 Haar 0.796 0.795
128 x 128 Daub4 0.756 0.789
128 x 128 Daub8 0.773 0.799

Table 6.9: Wavelet-Decomposition feature, test: basis function for RGB color space

To summarize the results the following box shows the best adjustments for the
Color Decomposition feature, resulting from the applied tests.

Patch size: 128 x 128
Discrete Wavelet Transform: D8-basis, 3 level of decomposition
Color Space: RGB

Measurements: Energy, Correlation, IDM, Entropy
Best AUC: 0.799

6.3 GLCM features

The Graylevel Co-occurrence Matrix features are implemented in order to compare
them with the Wavelet features which also incorporate the computation of GLCMs.
The purpose is to identify whether there is a benefit from the applied numeric
transform.

Another aspect considered here is the impact of color. Reference values already
exist in the grayscale features GLCM6 and GLCM16. Different color channels and
color channel combinations are examined.

In GLCM6 and GLCM16 different numbers of statistical features are estimated
from the Co-occurence Matrices. These adjustements are also tested in the follow-
ing.

Various patch sizes found application in the experiments. It is possible to
choose much smaller sizes than in the Wavelet features because no decomposition
is applied. Additionally, it is examined whether the patch overlapping has positive
effects on the classification of polyps.
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6.3.1 ColorGLCM

The ColorGLCM-feature is very similar to the Color Wavelet-feature, only omit-
ting Discrete Wavelet Transformation. It utilizes different color channels of the
RGB color space for the extraction of four GLCMs. The number of intensities to
compute GLCMs is reduced to 64, which also holds true for all other features that
incorporates GLCM computation.

P,o(I'Y i=0,1,2, a=1, 6=0°4590° 135 (6.9)

Then for each of the twelve GLCMs four statistical measures s, are extracted,
namely Energy, Correlation, IDM, Entropy and additionally two values in a second
test, namely Cluster Shade and Cluster Prominence are computed.

sm(Pap(I') m=0,1,2,3,4,5 (6.10)
AUC
Feature number of m | Patch Size | &--INN LibSVM
ColorGLCM 4 64 x 64 0.823 0.83
6 64 x 64 0.828 0.838

Table 6.10: ColorGLCM Feature, test: number of statistical measurements

Table 6.10 shows the marginal positive effect of using additionally Cluster
Shade and Cluster Prominence as statistical measurements for GLCM descrip-
tion. The more measurements are extracted from GLCMs, the more dimensions
the feature vector has. For m = 0, 1, 2, 3, the feature vector holds 48 values while
form =0,1,2,3,4,5 it is 72 dimensional. Both are acceptable values with regard
to computational complexity. Haralick initially proposed 14 features in [HDST73|,
but it is not advisable to use all measurements. Some of them correlate to each
other. In this case, Conners et al. [CTH84| propose using a set of the six features
applied here.

In another test, it was examined whether it is advisable to use small patch sizes
(table 6.11). A patch size of 32 x 32 pixel works very well for this feature, indicating
that a maximum number of 399 pixel non-polyp information (=~ 40%) is on a polyp
patch. Remember that a minimum number of 625 pixel, which correspond to
25 x 25 pixel must belong to class polyp to classify the patch as polyp.

The best results for the ColorGLCM feature are shown below.
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AUC
Feature number of m | Patch Size | k--NN LibSVM
ColorGLCM 6 32 x 32 0.843 0.835
6 64 x 64 0.828 0.838

Table 6.11: ColorGLCM Feature, test: patch size

Patch size: 32 x 32
Color Space: RGB

Measurements: Energy, Correlation, IDM, Entropy, ClusterShade, Clus-
terProminence

Best AUC: 0.843

6.3.2 OC-GLCM

The Opponent-Color GLCM feature relates pairs of color channels by calculating
GLCMs from the pixels of different color channels. Thus, it can be denoted as
an inter-channel feature considering texture as well as color. Nine GLCMs are
extracted from each combination of channels: red-green, red-blue and green-blue
(without considering permutations). A total of 27 GLCMs are computed expressed
by the following equation

PAm,Ay<Ii7j) Za] = 07 1727 { 7£ ju ASL’,Ay = _1707 L. (611)

Ax and Ay denote the distance to the center pixel from another color channel
in z and y-direction as depicted in figure 6.3. Four statistical measures s,,, called
Energy, Correlation, IDM and Entropy are estimated from this set of OC-GLCMs
forming a feature vector of 9 -3 -4 = 108 dimensions.

$m(Pasay(I™7) m=0,1,2,3 (6.12)

Several experiments are performed on this feature. Table 6.12 shows the results
of running the OC-GLCM feature on different patch sizes. The feature works best
with a patch size of 64 x 64.

Considering the sizes of the endoscopic images (800 x 800) and the applied
patch size, it is noticeable that the images are not fully subdivided. Parts of the
right and lower border remain unseen on each image as figure 5.3 shows, which
is undesirable and a loss of information as well. To solve this problem, patch
overlapping can be applied. A patch size of 64 x 64 with 3 overlapping pixels fits
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Ar=—-1Ax=0 Azr=1
Ay=0 [l 7]

Figure 6.3: OC-GLCM feature: depiction of pixel relation from color channel i (white)
and j (gray), where ¢ # j. The white pixel represents the center pixel.

AUC

Feature Patch Size | Overlap | k-NN LibSVM
OC-GLCM 32 x 32 0 0.827 0.810

64 x 64 0 0.831 0.832

128 x 128 0 0.799 0.812

64 x 64 3 0.832 0.848

64 x 64 32 0.871 0.856

128 x 128 | 16 0.801 0.795

Table 6.12: OC-GLCM Feature, test: patch size and overlapping

better in the given image size and leads to a higher AUC. Another interesting
attempt is to use a patch size of 64 x 64 with 32 overlapping pixels, which can be
seen as scanning the image in two different raster, performs best at all. This is
also superior to applying a smaller patch size to the image.

It is possible that those very positive results constitute from the fact that
certain information occurs twice or more in the training and test set, leading to a
loss of disjunction. An indication for this is the superior performance of the k-NN
classifier, which takes the most similar feature vectors as a basis for classification.
A proposal is to strictly separate the endoscopic images that are used for training
and testing. At the current stage, features are extracted first from the patches of
all images and then the separation in training and test set is done.

A second test series evaluated whether a certain combination of color channels
is more discriminating in feature space than other ones. A fixed patch size (64 x
64 pixel) and no overlapping is used for the experiments, shown in table 6.13.
Involving all color channel combinations lead to a higher AUC (0.832 for LibSVM)
than using only one channel combination or two combinations.

The most promising adjustments are illustrated in the following box.
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RGB-Channel AUC
Feature RG GB RB k-NN LibSVM
OC-GLCM X 0.728 0.682
X 0.775 0.783
X 0.759 0.767
X X 0.816 0.816
X X 0.808 0.803
X X 0.786 0.790

Table 6.13: OC-GLCM Feature, test: combination of color channel

Patch size: 64 x 64

Color Space: RGB, all color channels
Measurements: Energy, Correlation, IDM, Entropy
Best AUC: 0.832

6.4 LBP features

In the following, several variants of the Local Binary Patterns are tested. The
aim is to compare the existing approaches OC-LBP and LBP with the new imple-
mented features, evaluating the impact of color, inter- and intra-channel combina-
tions. Also the different feature vector dimensions are examined. Due to the fast
computation speed of LBP, it is not required to attempt a reduction of number of
color channels.

It is focussed primarily on the various LBP approaches. They differ in the size
of the neighborhood, in circular and non-circular representation (interpolation)
and in the considered patterns. It should be evaluated which variant performs
best.

6.4.1 ColorLBP

The ColorLLBP feature is the application of the LBP-feature on the color channels of
the RGB color space, which is defined in section 3.2.2. This feature can be seen as
a subset of the OC-LBP-feature from [AWP09], where the center pixel gq as well
as the neighborhood g;,7 = 1,2,...8 derive from the same channel. The number
of bins in the LBP histogram is reduced to 64 due to computational efficiency,
resulting in a feature vector of 3 - 64 = 192 dimensions.
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Table 6.14 shows the results of the tests, comparing simple LBP-feature, OC-
LBP-feature from [AWP*09] and ColorLBP-feature as well as different color chan-
nels to each other.

RGB-Channel AUC
Feature R ‘ G ‘ B | Bins | Dimensions | £-NN LibSVM
LBP grayscale 64 64 0.75 0.76
grayscale 256 | 256 0.697 0.72
OC-LBP X X X | 64 576 0.880 0.818
ColorLLBP X X X | 64 192 0.814 0.834
X 64 64 0.785 0.756
X 64 64 0.758 0.781
X | 64 64 0.739 0.764

Table 6.14: LBP vs. OC-LBP vs. ColorLBP Feature, test: color channel and histogram
bins

The first two rows show that a reduced number of bins in the LBP histogram has
overall advantageous effects on the classification. Considering the whole table 6.14,
it can be observed that the ColorLBP-feature and the OC-LBP feature perform
significantly better than the simple grayscale LBP feature. This indicates again
that color plays an important role in classification of tissue.

Analyzing the area under the ROC curves of OC-LBP and its subset ColorLBP
leads to the assumption that the feature vector of OC-LBP has too many dimen-
sions in feature space, leading to a more complex classification task.

The last three rows of table 6.14 indicate that if one combines the histograms
of all color channels will perform superior in comparison to the usage of only one
single color channel. Each of them has nearly the same AUC rate as the grayscale
LBP.

A summarization of the feature is given in the following.

Patch size: 64 x 64
LBP-Histogram bins: 64

Color Space: RGB, all color channels
Best AUC: 0.834
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6.4.2 Rotation-Invariant-LBPS8

Introduced in 3.2.2, the rotation invariant LY is implemented on a 3 x 3 neighbor-
hood.

In a first experiment, the LY is tested on the single color channels of the RGB
color space with patch size of 64 x 64 pixel. On each channel, the frequencies of
36 LBP-invariant patterns are counted, resulting from the shifted 8-bit codes as
illustrated in figure 3.7 and figure 3.9. All in all a feature vector of 3 - 36 = 108
dimensions is obtained.

Additionally, it was tested whether an interpolation of the diagonal pixels
(91, 93, 95, g7) (figure 3.8, left) lead to a better circular representation, particulary
with regard to rotational invariance.

RGB-Channel AUC
Feature R G B | Interpolation | £~-NN LibSVM
Ly X | X X 0.78 0.79
X X X X 0.783 0.792

Table 6.15: Rotation-Invariant-LBPS8-Feature, test: Lg™ neighborhood diagonal inter-
polated vs. non-interpolated

Table 6.15 indicates that the interpolation of the diagonal pixels from the 3 x 3
neighborhood has slightly advantageous effects on the classification.
The most important facts of the feature are listed in the following.

Patch size: 64 x 64

Neighborhood: 3 x 3, interpolated
LBP-Histogram bins: 36 per channel
Color Space: RGB, all color channels
Best AUC: 0.792

6.4.3 Rotation-Invariant-Subset-LBP16

Equation 3.28 defines a rotation invariant version of the LBP operator with a
neighborhood consisting of 16 pixel. Only a subset of 17 patterns of the 243 rota-
tion invariant patterns are used for assigning their frequencies to single bins. All
other patterns are classified to a miscellaneous label. Hence, the feature vector
consists of 18 - 3 = 54 dimensions, due to the fact that the feature is applied
on each RGB color channel. A patchsize of 64 x 64 pixel is applied. The pixels
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91, 92, 93, 95, 96, 97, 99, 910, 911, G13, J14, g15 (figure 3.8, right) are estimated by inter-
polation concerning circular representation.

RGB-Channel AUC
Feature R G B | Interpolation | £~-NN LibSVM
Lubsetr x | x| x X 0.78 0.799

Table 6.16: Rotation-Invariant-Subset-LBP16-feature

Comparing the Lg™ with the Lig"* feature leads to the conclusion that both
features perform nearly the same. Thus, using a bigger neighborhood and a less
number of rotational invariant patterns of the LBP does not have an impact on
the classification of polyp images.

Significant properties of the feature are listed below.

Patch size: 64 x 64
Neighborhood: 16 pixel, interpolated
LBP-Histogram bins: 18 per channel
Color Space: RGB, all color channels
Best AUC: 0.799

6.4.4 Subset-LBPS8

Section 3.2.2 describes a feature that combines rotation invariant and variant
values called Subset-LBP8 LBP§™t. Only the local binary patterns 00000000,
00000001, 00000011, 00000111, 00001111, 00011111, 0011111, 01111111, 1111111
and their rotated versions are counted each of them separately in a histogram bin.
The other occuring patterns are grouped under the miscellaneous label. All in all
this feature forms a vector of 59 dimensions, which are again extracted from the
single RGB color channels, resulting to 177 dimensions. Interpolation is performed
on the provided 3 x 3 neighborhood as depicted in figure 3.8 (left).

RGB-Channel AUC
Feature R | G B | Interpolation | k.-NN LibSVM
LBPgbset x | x | x X 0.816 0.835

Table 6.17: Subset8-LBP-feature
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Comparing Lg*"™° to the other LBP-features, this feature performs best. The
AUC result is similar to the Color-LBP feature, probably due to the equal vector
dimensions.

Significant properties of the feature are listed below.

Patch size: 64 x 64

Neighborhood: 3 x 3 pixel, interpolated
LBP-Histogram bins: 59 per channel
Color Space: RGB, all color channels
Best AUC: 0.835

6.5 Discussion of Results

e Classifier: Comparing the classification results from the Support Vector
Machine with the k-NN classifier leads to the conclusion that with less excep-
tions the SVM has higher AUC values. There is no clear scheme recognizable
in which cases the k-NN is better. For example, for the ColorGLCM feature
and OC-GLCM feature the k-NN performs better when a small patch size
was used. Testing a reduced number of color channels with OC-GLCM and
ColorLBP features led to a higher AUC than the result of SVM in three
times. Nevertheless, comparing the best classification results for each of the
twelve features, the SVM holds the better results in eleven cases as shown
in table 6.18.

Applying a patch overlapping to the endoscopic images yield in training and
test sets to a duplication of the same data, leading to a better classification in
favor of the k-NN classifier. The results are shown in table 6.12. Those find-
ings are not considered in the overall evaluation, because of non-disjunction
of test and training set.

The best AUC result of all applied tests resulted from the ColorGLCM fea-
ture. The k-NN classifier performed best in this case with an AUC of 0.843.

All in all, the classification differences between the two classifiers are small
with a maximum difference of 0.06 AUC, which is quite acceptable.

e Color versus gray: Table 6.18 gives an overview about the presented fea-
tures in this chapter. Only the best findings for each feature are illustrated.

It is obvious that the color features are more discriminating in feature space
than the gray level features LBP, GLCM6 and GLCM16 from [AWP*09].
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For example the best color feature and the best grayscale feature have a
difference of 0.083 in their AUC values. Thus, color plays an important role
in classification of polyps.

AUC
Feature color | gray | LibSVM | k-NN
ColorGLCM X 0.843
[gubset X 0.835
ColorLBP X 0.834
OC-GLCM X 0.832
Color Wavelet X 0.82
OC-LBP X 0.818
WaveletDecomp X 0.799
Lsubsetr X 0.799
Ly X 0.792
LBP X 0.76
GLCM6 X 0.74
GLCM16 X 0.735

Table 6.18: Overview over the presented features and their highest AUC

e Color spaces: Different color spaces are examined in the Color Wavelet
Feature. RGB, K-L, HSV and CieLab color spaces are tested. The finding
was that RGB color space holds the best color representation when wavelet
transform is applied afterwards.

e Reduction of color channels: In the Color Wavelet, OC-GLCM and the
ColorLBP feature, which is in each case one representative of the each group,
a reduction of the number of color channels or color channel combinations was
tested, resulting in a less dimensional feature vector and less computational
complexity. It turnes out that in each case it is the best choice to utilize
all color channels. No clear superiority of a single color channel could be
examined.

¢ GLCM versus LBP: Each feature implemented in this work incorporates
the usage of either GLCM or LBP. Both are operating with similar perfor-
mance. For instance, there is only a marginal difference between the AUC
values from ColorGLCM, ColorLBP and the OC-GLCM feature. The fea-
tures ColorGLCM and ColorLBP, which are the application of the GLCM
and LBP on each color channel, perform surprinsingly well reaching the best
and the third best AUC values of all tests.
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The main difference between these two texture features is the computational
complexity. The computation of the GLCM is time-consuming in comparison
to the Local Binary Pattern.

e GLCM features: ColorGLCM, OC-GLCM, Color Wavelet, WaveletDe-
comp, GLCM6, GLCM16 are the features involving Co-occurrence Matri-
ces, listed in decreasing order of their AUC results. Those features have
the widest range in classification results, providing the best and the worst
feature.

A clear structure can be examined among the listed features. The best ones
incorporate color into the feature estimation (ColorGLCM, OC-GLCM). The
Wavelet features (Color Wavelet, WaveletDecomp) perform averagly in this
field, even though color information is used in addition. The worst among
the features are the gray level features GLCM6 and GLCM16.

e LBP features: L' ColorLBP, OC-LBP, L%"**"" Lt and LBP are the
features involving computation of Local Binary Patterns. The subset version
of LBP performs slightly better than the application of the LBP to each
color channel (ColorLBP) or OC-LBP, due to the fact that only the most
frequent LBP values are used for the compution of their frequencies. The
rotation invariant versions of the LBP (Lis™*"""| LY perfom worse than their
rotation variant relatives, but still better than the gray level LBP. The bigger
neighborhood applied in Li‘ébset’ri did not contribute to a better feature space
discrimination.

e Discrete Wavelet Transform versus Non Numeric Transform: The
numeric transform represented by the Discrete Wavelet Transform applied in
the Color Wavelet and Wavelet Decomposition feature does not contribute
to a better polyp detection. Comparing the ColorGLCM feature with Color
Wavelet feature, which is the same feature just without the numeric trans-
form, shows the superiority of ColorGLCM. Furthermore computational ad-
vantages are apparent. The Wavelet Transform is variant with regard to
translation, which is probably the main reason for this result.

e Variances and Covariances: Karkanis et al. [KIM™03| presented an ap-
proach for computing variances and covariances from the different color chan-
nels of the statistical measurements in the wavelet domain. In this work it
is pointed out that estimating variances and covariances from the measures
is harmful for classification results as shown in the Color Wavelet and the
Color Wavelet Covariance feature.
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e Patch sizes: The best patch size clearly depends on the selected feature.
Generally, the wavelet features require patch sizes with value power of two.
They should be higher than the patch sizes of other features, due to the
wavelet decomposition levels.

The patch size regulates the amount of non-polyp information when regard-
ing patches that contain both domains (e.g. the polyp border). It can be
significant, how much non-polyp information occurs in a patch that is ac-
tually classified as polyp patch, leading to a reduction of discriminance in
feature space.



Chapter 7

Summary

7.1 Possible Improvements

A comprehensive polyp detection system should incorporate more than only a fea-
ture extraction module and a classification. The whole system must be customized
to the task of polyp detection. Some proposals are listed in the following section.

e Scale invariant features: During colonoscopy an additional parameter de-
scribing the distance to the intestinal wall could be stored for each frame.
This could be helpful for extraction of GLCM or LBP contributing to evalua-
tion of the resolution level of the texture. The images can then be normalized
and hence a scale invariance of features could be achieved.

e Overcomplete Wavelet Transform: In order to compute translation in-
variant features the overcomplete version of the Wavelet Transform (OCWT)
[Bra03| could be applied. This version overcomes the main problem of DWT.

e Disjunction of test and training set: So far, Images are subdivided into
patches and then features are extracted from each patch. The separation
of the obtained feature vectors in training and test set is done via crossval-
idation afterwards. It is advisable to group the complete images first into
training and test set and then extract features from the patches. Thus, it is
possible to apply patch overlapping without the loss of disjunction. It is also
possible to to check which image belongs to which set in a straightforward
way. An increased transparency of the training and testing step could be
achieved thereby.

e Preprocessing: After image acquisition, an adequate preprocessing could
be applied to each frame, removing artifacts from endoscopic images such as
shifted RGB color channels or glossy spots.
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e Validation: Let’s assume that a polyp is detected on one patch and thus the
location of the polyp is approximately known. It would be helpful to validate
that result on the current as well as on the next frames. The position of the
polyp could be further analyzed by applying feature extraction with patch
overlapping or smaller patch sizes. A fixed threshold could be set indicating
how many patches must be classified as polyps to get reliable results.

7.2 Summary of this Work

The detection of polyps in endoscopic images is a challenging task. The published
methods in literature introduced in chapter 2 are hardly comparable. They work
on different and very small data sets, often not considering different types of polyps.
In this work, a very heterogenous set of images is chosen, containing frames from
different scenes and different polyp types.

Several investigation are made to increase the feature extraction module of
[AWPT09|. The overall aim was to include color in the feature extraction tech-
niques, which is one of the most promising information base for polyp detection.

Primarily, different texture descriptors are combined to new features, incorpo-
rating Wavelet Transform, GLCMs and LBPs. The applied experiments produced
the following results:

e Including color led to a significantly higher detection rate (4+0.10 AUC for
GLCM features). The single color methods performed equally well for the
chosen data set. Only 0.05 AUC range lie between the best and the worst
color method.

e The combination of all color channels of the RGB color space led to the best
results.

e The Discrete Wavelet Transform does not have the expected positive impact
on polyp detection.

e The Local Binary Pattern and the GLCM and their implemented variants
perform equally well.

e The Support Vector Machine classifier holds superior results in comparison
to k-NN, considering the number of higher classification results.
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