Deep learning techniques applied to constituency parsing of German

  • Constituent parsing attempts to extract syntactic structure from a sentence. These parsing systems are helpful in many NLP applications such as grammar checking, question answering, and information extraction. This thesis work is about implementing a constituent parser for German language using neural networks. Over the past, recurrent neural networks have been used in building a parser and also many NLP applications. In this, self-attention neural network modules are used intensively to understand sentences effectively. With multilayered self-attention networks, constituent parsing achieves 93.68% F1 score. This is improved even further by using both character and word embeddings as a representation of the input. An F1 score of 94.10% was the best achieved by constituent parser using only the dataset provided. With the help of external datasets such as German Wikipedia, pre-trained ELMo models are used along with self-attention networks achieving 95.87% F1 score.
  • Konstituenten-Parsing versucht, syntaktische Struktur aus einem Satz zu extrahieren. Diese Parsing-Systeme sind in vielen maschinellen Sprachverarbeitungsanwendungen hilfreich, wie z.B. bei der Grammatikprüfung, der Beantwortung von Fragen und der Informationsextraktion. In dieser Masterarbeit geht es um die Implementierung eines Konstituentenparsers für die deutsche Sprache mit Hilfe von neuronalen Netzen. In der Vergangenheit wurden wiederkehrende neuronale Netze beim Aufbau eines Parsers und auch bei vielen maschinellen Sprachverarbeitungsanwendungen verwendet. Dabei werden Module des neuronalen Netzes mit Selbstaufmerksamkeit intensivgenutzt, um Sätze effektiv zu verstehen. Bei mehrschichtigen Selbstaufmerksamkeitsnetzwerken erreicht das konstituierende Parsen 93,68% F1-Scoret. Dies wird noch weiter verbessert, indem sowohl Zeichen- als auch Worteinbettungen als Darstellung des Inputs verwendet werden. Ein F1-Score von 94,10% wurde am besten durch den Konstituenten-Parser erreicht, der nur den bereitgestellten Datensatz verwendet. Mit Hilfe externer Datensätze wie der deutschen Wikipedia werden vortrainierte ELMo-Modelle zusammen mit Selbstbeobachtungsnetzwerken verwendet, die einen F1-Score von 95,87% erreichen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Kandhasamy Rajasekaran
URN:urn:nbn:de:kola-20233
Referee:Katrin Harbusch, Denis Memmesheimer
Advisor:Katrin Harbusch
Document Type:Master's Thesis
Language:English
Date of completion:2020/02/03
Date of publication:2020/02/03
Publishing institution:Universität Koblenz-Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Koblenz, Fachbereich 4
Date of final exam:2020/02/21
Release Date:2020/02/03
Number of pages:I, 51
Institutes:Fachbereich 4 / Institut für Computervisualistik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG