Predicting foreign users from English conversations on social media

  • Social media platforms such as Twitter or Reddit allow users almost unrestricted access to publish their opinions on recent events or discuss trending topics. While the majority of users approach these platforms innocently, some groups have set their mind on spreading misinformation and influencing or manipulating public opinion. These groups disguise as native users from various countries to spread frequently manufactured articles, strong polarizing opinions in the political spectrum and possibly become providers of hate-speech or extremely political positions. This thesis aims to implement an AutoML pipeline for identifying second language speakers from English social media texts. We investigate style differences of text in different topics and across the platforms Reddit and Twitter, and analyse linguistic features. We employ feature-based models with datasets from Reddit, which include mostly English conversation from European users, and Twitter, which was newly created by collecting English tweets from selected trending topics in different countries. The pipeline classifies language family, native language and origin (Native or non-Native English speakers) of a given textual input. We evaluate the resulting classifications by comparing prediction accuracy, precision and F1 scores of our classification pipeline to traditional machine learning processes. Lastly, we compare the results from each dataset and find differences in language use for topics and platforms. We obtained high prediction accuracy for all categories on the Twitter dataset and observed high variance in features such as average text length especially for Balto-Slavic countries.
  • Social-Media Plattformen wie Twitter oder Reddit bieten Nutzern nahezu ohne Beschränkungen die Möglichkeit, ihre Meinungen über aktuelle Ereignisse zu veröffentlichen, diese mit anderen zu teilen und darüber zu diskutieren. Während die Mehrheit der Nutzer diese Plattformen nur als reines Diskussionsportal verwenden, gibt es jedoch Nutzergruppen, welche aktiv und gezielt versuchen, diese veröffentlichten Meinungen in ihrem Sinne zu beeinflussen bzw. zu manipulieren. Durch wiederholtes Verbreiten von bearbeiteten Fake-News oder stark polarisierenden Meinungen im gesamten politischen Spektrum können andere Nutzer beeinflusst, manipuliert und unter Umständen zum Träger von Hassreden und extremen politischen Positionen werden. Viele dieser Nutzergruppen sind vor allem in englischsprachigen Portalen anzutreffen, in denen sie sich überwiegend als Muttersprachler ausgeben. In dieser Arbeit stellen wir eine Methode vor, englische Muttersprachler und Nicht-Muttersprachler, die Englisch als Fremdsprache verwenden, anhand von ausgewählten englischen Social Media Texten zu unterscheiden. Dazu implementieren wir textmerkmalbasierte Modelle, welche für traditionelle Machine-Learning Prozesse und neuartigen AutoML-Pipelines zur Klassifizierung von Texten verwendet werden. Wir klassifizieren dabei Sprachfamilie, Muttersprache und Ursprung eines beliebigen englischen Textes. Die Modelle werden an einem bestehenden Datensatz von Reddit, welcher hauptsächlich aus englischen Texten von europäischen Nutzern besteht, und einem neu erstellten Twitter Datensatz, der Tweets von aktuellen Themen in verschiedenen Ländern enthält, angewandt. Wir evaluieren dabei vergleichsweise die erhaltenen Resultate unserer Pipeline zu traditionellen Maschinenlernprozessen zur Texterkennung anhand von Präzision, Genauigkeit und F1-Maßen der Vorhersagen. Wir vergleichen zudem die Ergebnisse auf Unterschiede der Sprachnutzung auf den unterschiedlichen Plattformen sowie den ausgewählten Themenbereichen. Dabei erzielen wir eine hohe Vorhersagewahrscheinlichkeit für alle gewählten Kategorien des erstellten Twitter Datensatzes und stellen unter anderem eine hohe Abweichung in Bezug auf die durchschnittliche Textlänge insbesondere bei Nutzern aus dem baltoslawischen Sprachraum fest.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alexander Winkens
URN:urn:nbn:de:kola-20885
Referee:Ipek Baris
Advisor:Steffen Staab
Document Type:Bachelor Thesis
Language:English
Date of completion:2020/08/24
Date of publication:2020/08/31
Publishing institution:Universität Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz, Fachbereich 4
Date of final exam:2020/08/21
Release Date:2020/08/31
Tag:Machinelles lernen
Data manipulation; Machine-Learning; Native language identification
Number of pages:x, 76
Institutes:Fachbereich 4 / Institute for Web Science and Technologies
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
BKL-Classification:54 Informatik / 54.79 Computermethodik: Sonstiges
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG