Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 4 von 532
Zurück zur Trefferliste

Method development for the quantification of pharmaceuticals in aqueous environmental matrices

  • As a consequence of the world population increase and the resulting water scarcity, water quality is the object of growing attention. In that context, organic anthropogenic molecules — often defined as micropollutants— represent a threat for water resources. Among them, pharmaceuticals are the object of particular concerns due to their permanent discharge, their increasing consumption and their effect-based structures. Pharmaceuticals are mainly introduced in the environment via wastewater treatment plants (WWTPs), along with their metabolites and the on-site formed transformation products (TPs). Once in the aquatic environment, they partition between the different environmental compartments in particular the aqueous phase, suspended particulate matter(SPM) and biota. In the last decades, pharmaceuticals have been widely investigated in the water phase. However, extreme polar pharmaceuticals have rarely been monitored due to the lack of robust analytical methods. Moreover, metabolites and TPs have seldom been included in routine analysis methods although their environmental relevance is proven. Furthermore, pharmaceuticals have been only sporadically investigated in SPM and biota and adequate multi-residue methods are lacking to obtain comprehensive results about their occurrence in these matrices. This thesis endeavors to cover these gaps of knowledge by the development of generic multi-residue methods for pharmaceuticals determination in the water phase, SPM and biota and to evaluate the occurrence and partition of pharmaceuticals into these compartments. For a complete overview, a particular focus was laid on extreme polar pharmaceuticals, pharmaceutical metabolites and TPs. In total, three innovative multi-residue methods were developed, they include analytes covering a broad range of physico-chemical properties. First, a reliable multi-residue method was developed for the analysis of extreme polar pharmaceuticals, metabolites and TPs dissolved in water. The selected analytes covered a significant range of elevated polarity and the method would be easily expendable to further analytes. This versatility could be achieved by the utilization of freeze-drying as sample preparation and zwitterionic hydrophilic interaction liquid chromatography (HILIC) in gradient elution mode. The suitability of HILIC chromatography to simultaneously quantify a large range of micropollutants in aqueous environmental samples was thoroughly studied. Several limitations were pointed out: a very complex and time-consuming method development, a very high sensitivity with regards to modification of the acetonitrile to water ratio in the eluent or the diluent and high positive matrix effects for certain analytes. However, these limitations can be overcome by the utilization of a precise protocol and appropriate labeled internal standards. They are overmatched by the benefits of HILIC which permits the chromatographic separation of extreme polar micropollutants. Investigation of environmental samples showed elevated concentrations of the analytes in the water phase. In particular, gabapentin, metformin, guanylurea and oxypurinol were measured at concentrations in the µg/L range in surface water. Subsequently, a reliable multi-residue method was established for the determination of 57 pharmaceuticals, 47 metabolites and TPs sorbed to SPM down to the low ng/g range. This method was conceived to cover a large range of polarity in particular with the inclusion of extreme polar pharmaceuticals. The extraction procedure was based on pressurized liquid extraction (PLE) followed by a clean-up via solvent exchange and detection via direct injection-reversed-phase LC-MS/MS and freeze-drying HILIC-MS/MS. Pharmaceutical sorption was examined using laboratory experiments. Derived distribution coefficients Kd varied by five orders of magnitude among the analytes and confirmed a high sorption potential for positively charged and nonpolar pharmaceuticals. The occurrence of pharmaceuticals in German rivers SPM was evaluated by the investigation of annual composite SPM samples taken at four sites at the river Rhine and one site at the river Saar between the years 2005 and 2015. It revealed the ubiquitous presence of pharmaceuticals sorbed to SPM in these rivers. In particular, positively charged analytes, even very polar and nonpolar pharmaceuticals showed appreciable concentrations. For many pharmaceuticals, a distinct correlation was observed between the annual quantities consumed in Germany and the concentrations measured in SPM. Studies of composite SPM spatial distribution permitted to get hints about specific industrial discharge by comparing the pollution pattern along the river. For the first time, these results showed the potential of SPM for the monitoring of positively charged and nonpolar pharmaceuticals in surface water. Finally, a reliable and generic multi residue method was developed to investigate 35 pharmaceuticals and 28 metabolites and TPs in fish plasma, fish liver and fish fillet. For this matrix, it was very challenging to develop an adequate clean-up allowing for the sufficient separation of the matrix disturbances from the analytes. In the final method, fish tissue extraction was performed by cell disruption followed by a non-discriminating clean-up based on silica gel solid-phase extraction(SPE) and restrictive access media (RAM) chromatography. Application of the developed method to the measurement of bream and carp tissues from German rivers revealed that even polar micropollutants such as pharmaceuticals are ubiquitously present in fish tissues. In total, 17 analytes were detected for the first time in fish tissues, including 10 metabolites/TPs. The importance of monitoring metabolites and TPs in fish tissues was confirmed with their detection at similar concentrations as their parents. Liver and fillet were shown to be appropriate for the monitoring of pharmaceuticals in fish, whereas plasma is more inconvenient due to very low concentrations and collection difficulties. Elevated concentrations of certain metabolites suggest possible formation of human metabolites in fish. Measured concentrations indicate a low bioaccumulation potential for pharmaceuticals in fish tissues.
  • Als Folge des Weltbevölkerungswachstums und des daraus resultierenden Wassermangels ist das Thema Wasserqualität zunehmend im Fokus der Öffentlichkeit. In diesem Kontext stellen anthropogene organische Stoffe - oft als Mikroschadstoffe bezeichnet - eine Bedrohung für die Wasserressourcen dar. Besonders Pharmazeutika werden aufgrund ihrer permanenten Einleitung, ihres steigenden Verbrauchs und ihrer wirkungsbasierten Strukturen mit besonderer Besorgnis diskutiert. Pharmazeutika werden hauptsächlich über Kläranlagen in die Umwelt eingeleitet, zusammen mit ihren Metaboliten und den vor Ort gebildeten Transformationsprodukten (TPs). Wenn sie die aquatische Umwelt erreichen, verteilen sie sich zwischen den verschiedenen Umweltkompartimenten, insbesondere der Wasserphase, Schwebstoffen (SPM) und Biota. In den letzten Jahrzehnten wurden Pharmazeutika in der Wasserphase umfassend untersucht. Allerdings wurden extrem polare Pharmazeutika aufgrund des Mangels an robusten Analysemethoden nur selten überwacht. Zudem wurden Metaboliten und TPs selten in Routineanalysemethoden einbezogen, obwohl ihre Umweltrelevanz nachgewiesen ist. Darüber hinaus wurden Pharmazeutika nur sporadisch in SPM und Biota untersucht und es fehlen adäquate Multi-Analyt-Methoden, um umfassende Ergebnisse über ihr Vorkommen in diesen Matrices zu erhalten. Die vorliegende Arbeit wird, diese Wissenslücken durch die Entwicklung generischer Multi-Analyt-Methoden zur Bestimmung von Pharmazeutika in der Wasserphase, SPM und Biota geschlossen und das Vorkommen und die Verteilung von Pharmazeutika in diesen Kompartimenten bewertet. Für einen vollständigen Überblick wurde ein besonderer Schwerpunkt auf polare Pharmazeutika, pharmazeutische Metaboliten und TPs gelegt. Insgesamt wurden drei innovative Multi-Analyt-Methoden entwickelt, deren Analyten ein breites Spektrum an physikalisch-chemischen Eigenschaften abdecken. Zuerst wurde eine zuverlässige Multi-Analyt-Methode entwickelt um extrem polare Pharmazeutika, deren Metaboliten und TPs in wässrigen Umweltproben zu untersuchen. Die ausgewählten Analyten deckten einen signifikanten Bereich erhöhter Polarität ab und die Methode ist leicht um weitere Analyten erweiterbar. Diese Vielseitigkeit konnte durch die Verwendung der Gefriertrocknung als Probenvorbereitung und der zwitterionischen Hydrophile Interaktionschromatographie (HILIC) im Gradientenelutionsmodus erreicht werden. Die Eignung der HILIC-Chromatographie zur gleichzeitigen Quantifizierung einer großen Bandbreite von Mikroschadstoffe in wässrigen Umweltproben wurde gründlich untersucht. Es wurde auf mehrere Einschränkungen hingewiesen: eine sehr komplexe und zeitaufwändige Methodenentwicklung, eine sehr hohe Empfindlichkeit hinsichtlich der Änderung des Acetonitril-Wasser-Verhältnisses im Eluenten oder im Verdünnungsmittel und hohe positive Matrixeffekte für bestimmte Analyten. Diese Einschränkungen können jedoch durch die Verwendung eines präzisen Protokolls und entsprechend markierter interner Standards überwunden werden und werden durch die Vorteile von HILIC, die die chromatographische Trennung von extrem polaren Mikroverunreinigungen ermöglicht, überkompensiert. Die Untersuchung von Umweltproben zeigte erhöhte Konzentrationen der Analyten in der Wasserphase. Insbesondere Gabapentin, Metformin, Guanylharnstoff und Oxypurinol wurden bei Konzentrationen im µg/LBereich im Oberflächenwasser gemessen. Für die Bestimmung von 57 Pharmazeutika und 47 Metaboliten und TPs, die an SPM sorbiert sind, wurde anschließend eine verlässliche Multi-Analyt-Methode etabliert, die eine Quantifizierung bis in den niedrigen ng/g-Bereich erlaubt. Diese Methode wurde konzipiert, um einen großen Polaritätsbereich abzudecken, insbesondere unter Einbeziehung extrem polarer Pharmazeutika. Das Extraktionsverfahren basierte auf einer Druckflüssigkeitsextraktion (PLE), gefolgt von einer Reinigung durch Lösungsmittelaustausch und Detektion durch direkte Injektion-Umkehrphasen-LCMS/MS und Gefriertrocknung-HILIC-MS/MS. Das Sorptionspotential der Pharmazeutika wurde anhand von Laborexperimenten untersucht. Abgeleitete Verteilungskoeffizienten Kd variierten um fünf Größenordnungen unter den Analyten und bestätigten ein hohes Sorptionspotential für positiv geladene und unpolare Pharmazeutika. Das Vorkommen von Pharmazeutika in SPM deutscher Flüsse wurde durch die Untersuchung jährlicher Mischproben bewertet, die zwischen 2005 und 2015 an vier Standorten am Rhein und einem Standort an der Saar entnommen wurden. Dabei zeigte sich das ubiquitäre Vorkommen von an SPM sorbierten Pharmazeutika in diesen Flüssen. Insbesondere positiv geladene Analyten, auch sehr polare und unpolare Pharmazeutika zeigten nennenswerte Konzentrationen. Für viele Pharmazeutika wurde eine deutliche Korrelation zwischen den jährlich in Deutschland konsumierten Mengen und den in SPM gemessenen Konzentrationen festgestellt. Untersuchungen der zusammengesetzten räumlichen Verteilung von SPM erlaubten es, durch den Vergleich der Verschmutzungsmuster entlang des Flusses Hinweise auf spezifische industrielle Einleitungen zu erhalten. Diese Ergebnisse zeigten zum ersten Mal das Potential von SPM für die Überwachung von positiv geladenen und unpolaren Pharmazeutika in Oberflächengewässern. Für Pharmazeutika mit erhöhter Sorptionsaffinität (Kd uber 500 L/kg) erlauben SPM-Analysen sogar die Überwachung niedrigerer Emissionen. Schließlich wurde eine zuverlässige und generische Multi-Analyt-Methode zur Untersuchung von 35 Pharmazeutika und 28 Metaboliten und TPs in Fischplasma, Fischleber und Fischfilet entwickelt. Für diese Matrix war es eine große Herausforderung eine adäquate Aufreinigung zu entwickeln, die eine ausreichende Trennung der störenden Matrix von den Analyten ermöglicht. Bei der endgültigen Methode wurde die Extraktion von Fischgewebe durch Zellaufschluss durchgeführt, gefolgt von einem nicht diskriminierenden Clean-up auf der Basis von Kieselgel-Festphasenextraktion (SPE) und Materialien mit eingeschränkter Zugänglichkeit (RAM). Die Anwendung der entwickelten Methode auf die Messung von Brassen- und Karpfengeweben aus deutschen Flüssen zeigte, dass selbst polare Mikroverunreinigungen wie z.B. Pharmazeutika in Fischgeweben ubiquitär vorhanden sind. Insgesamt wurden 17 Analyten zum ersten Mal in Fischgewebe nachgewiesen, darunter 10 Metaboliten/TPs. Die Bedeutung der Überwachung von Metaboliten und TPs in Fischgeweben wurde durch deren Nachweis in ähnlichen Konzentrationen wie bei ihren Ausgangsstoffe bestätigt. Es zeigte sich, dass Leber und Filet für die Überwachung von Pharmazeutika in Fischen geeignet ¨ sind, während Plasma aufgrund sehr niedriger Konzentrationen und erschwerter Probenahme ungeeignet ist. Erhöhte Konzentrationen bestimmter Metaboliten deuten auf eine mögliche Bildung menschlicher Metaboliten in Fischen hin. Die gemessenen Konzentrationen weisen jedoch auf ein geringes Bioakkumulationspotential für Pharmazeutika in Fischgeweben hin.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Lise Boulard
URN:urn:nbn:de:kola-21448
Gutachter:Joachim Scholz, Thomas A. Ternes
Dokumentart:Dissertation
Sprache:Englisch
Datum der Fertigstellung:08.01.2021
Datum der Veröffentlichung:08.01.2021
Veröffentlichende Institution:Universität Koblenz, Universitätsbibliothek
Titel verleihende Institution:Universität Koblenz, Fachbereich 3
Datum der Abschlussprüfung:04.12.2020
Datum der Freischaltung:08.01.2021
Freies Schlagwort / Tag:Arzneimittel; Fischgewebe; Schwebstoffe; Umweltproben; Verteilung
Environmental samples; Pharmaceuticals; distribution; fish tissues; suspended particle matter
Seitenzahl:xii, 320
Institute:Fachbereich 3 / Institut für Integrierte Naturwissenschaften / Institut für Integrierte Naturwissenschaften, Abt. Chemie
Lizenz (Deutsch):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG