• search hit 105 of 476
Back to Result List

Aquatic-terrestrial linkages and how they are affected by land use related stressors

  • Streams are coupled with their riparian area. Emerging insects from streams can be an important prey in the riparian area. Such aquatic subsidies can cause predators to switch prey or increase predator abundances. This can impact the whole terrestrial food web. Stressors associated with agricultural land use can alter insect communities in water and on land, resulting in complex response patterns of terrestrial predators that rely on prey from both systems. This thesis comprises studies on the impact of aquatic nsects on a terrestrial model ecosystem (Objective 1, hapter 2), the influence of agricultural land use on riparian spiders’ traits and community (Objective 2, Chapter 3), and on the impact of agricultural land use on the contribution of different prey to spider diet (Objective 3, Chapter 4). In chapter 2, I present a study where we conducted a mesocosm experiment to examine the effects of aquatic subsidies on a simplified terrestrial food web consisting of two types of herbivores (leafhoppers and weevils), plants and predators (spiders). I focused on the prey choice of the spiders by excluding predator immigration and reproduction. In accordance with predator switching, survival of leafhoppers increased in the presence of aquatic subsidies. By contrast, the presence of aquatic subsidies indirectly reduced weevils and herbivory. In chapter 3, I present the results on the taxonomic and trait response of riparian spider communities to gradients of agricultural stressors and environmental variables, with a particular emphasis on pesticides. To capture spiders with different traits and survival strategies, we used multiple collection methods. Spider community composition was best explained by in-stream pesticide toxicity and shading of the stream bank, a proxy for the quality of the habitat. Species richness and the number of spider individuals, as well as community ballooning ability, were negatively associated with in-stream pesticide toxicity. In contrast, mean body size and shading preference of spider communities responded strongest to shading, whereas mean niche width (habitat preference for moisture and shading) responded strongest to other environmental variables. In chapter 4, I describe aquatic-terrestrial predator-prey relations with gradients of agricultural stressors and environmental variables. I sampled spiders, as well as their aquatic and terrestrial prey along streams with an assumed pesticide pollution gradient and determined their stable carbon and nitrogen signals. Potential aquatic prey biomass correlated positively with an increasing aquatic prey contribution of T. montana. The contribution of aquatic prey to the diet of P. amentata showed a positive relationship with increasing toxicity in streams. Overall, this thesis contributes to the emerging discipline of cross-ecosystem ecology and shows that aquatic-terrestrial linkages and riparian food webs can be influenced by land use related stressors. Future manipulative field studies on aquatic-terrestrial linkages are required that consider the quality of prey organisms, fostering mechanistic understanding of such crossecosystem effects. Knowledge on these linkages is important to improve understanding of consequences of anthropogenic stressors and to prevent further losses of ecosystems and their biodiversity.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nadin Graf
URN:urn:nbn:de:kola-19649
Subtitle (English):the case of riparian spiders
Referee:Ralf B. Schäfer, Martin H. Entling
Document Type:Doctoral Thesis
Language:English
Date of completion:2019/06/19
Date of publication:2019/07/17
Publishing institution:Universität Koblenz-Landau, Campus Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Landau, Fachbereich 7
Date of final exam:2019/07/17
Release Date:2019/10/10
Number of pages:iii, 59
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG