• Treffer 1 von 1
Zurück zur Trefferliste

Population genetic structure in European Hyalodaphnia species: Monopolization versus gene flow

Genetische Populationsstruktur europäischer Hyalodaphnia-Arten: Monopolisierung versus Genfluss

  • Cyclic parthenogens displays an alternation of asexual and sexual reproduction which has consequences for the genetic structure of these organisms. The clonal diversity of cyclic parthenogenetic zooplankton populations is influenced by the size of the dormant egg bank, i.e., the amount of sexually produced dormant eggs that assembled in the sediment, as these dormant eggs contribute new genetic variants to the populations. Further, the clonal diversity is impacted by clonal erosion over time, which reduces the number of different clones through stochastic and selective processes. Although freshwater invertebrates are good dispersers through their dormant stages, the influence of gene flow is assumed to be negligible, as the local population successfully monopolizes the available resources. As these populations reach carrying capacity fast due to the asexual reproduction, the first colonizing individuals are able to successfully establish in the habitat, resulting in a priority effect which hinders the invasion of new genotypes. Due to clonal selection and sexual reproduction a population will locally adapt over time and will establish a dormant egg bank which facilitates the fast re-colonization after a hostile period. This thesis evaluates the processes altering the population genetic structure of cyclic parthenogenetic zooplankton with a special focus on the concepts of monopolization as well as the counteracting effects of gene flow, using large-lake Daphnia species. Thirty-two variable microsatellite DNA markers were developed and a subset of twelve markers was evaluated regarding their suitability for species assignment and hybrid class detection. With this marker set and an additional mitochondrial DNA marker forty-four natural European populations of the species D. cucullata, D. galeata and D. longispina were studied. In D. galeata, most populations were characterized by low clonal diversities which suggest high influence from clonal erosion over the growing season and a low contribution from the dormant egg bank. Further, recent expansions as well as gene flow were detected, probably caused by the anthropogenic alteration of freshwater habitats, in particular eutrophication of many European lakes. D. longispina and D. cucullata revealed a different genetic structure compared to D. galeata, with high genetic differentiation among populations. This indicates low levels of effective gene flow which is in line with the predictions of monopolization. Further, high clonal diversities were found in populations of the two taxa, suggesting a high contribution from the dormant egg bank while clonal erosion was often not detectable. In D. longispina, mitochondrial data revealed an ancient expansion which was probably initiated by the formation of glacial lakes after the last ice age. In addition, in D. longispina not only clonal diversity but also genetic diversity was high, indicating that during the build-up of the studied populations the influence from gene flow was probably high. To better understand the processes that act on early populations the population build-up in regard to the temporal advantage of clones during invasion succession was experimentally studied and revealed that priority effects shape population structure of Daphnia species. However, in certain cases the highly superior clones resulted in the extinction of inferior clones independent of the temporal advantage the single clones had. This clearly shows that not only the time of succession is important but also the competitive strength. rnIn conclusion, the results obtained show that the population genetic structure in cyclic parthenogenetic zooplankton species is impacted by various processes. In addition to earlier studies, which mainly focus on local adaptation, clonal erosion and the size of the dormant egg bank to understand population genetic structure, this thesis could show that gene flow may be effective as well. During population build-up the advantage of early arriving individuals does not necessarily predict the outcome of population assembly, as additional genotypes may contribute to the population. Finally, the genetic structure of established populations may be severely impacted by effective gene flow, if severe environmental changes alter the habitat of the locally adapted population.
  • Die genetische Populationsstruktur von Arten wird von verschiedenen Faktoren beeinflusst, z.B. vom Reproduktionsmodus. Ein spezieller Reproduktionsmodus ist die zyklische Parthenogenese, eine Abwechslung von Phasen asexueller und sexueller Reproduktion. Die klonale Diversität von zyklisch parthenogenetischen Zooplanktonorganismen wird durch die Größe der Dauerstadienbank im Sediment beeinflusst, d.h. durch die Anzahl der sexuell produzierten Dauereier die sich im Sediment akkumulieren. Weiterhin verringert klonale Erosion, ausgelöst durch stochastische und selektive Prozesse, die Diversität über die Zeit. Da zyklisch parthenogenetische Zooplanktonorganismen neue Habitate effektiv monopolisieren können, wurden die Auswirkungen von Genfluss als vernachlässigbar angenommen. Unter Monopolisierung wird die schnelle Vergrößerung der Population verstanden, was zu einem Vorteil für die ersten Ankömmlinge führt (priority-Effekt). Durch lokale Anpassung und das Aufbauen einer Dauerstadienbank wird Genfluss effektiv entgegen gewirkt, da später ankommende Genotypen sich nicht in der Population etablieren können. Das Ziel dieser Arbeit war die Evaluierung der Prozesse, die die populationsgenetische Struktur von zyklisch parthenogenetischen Zooplanktonorganismen beeinflussen, mit besonderem Fokus auf Monopolisierung und Genfluss. Als Organismen wurden Seenarten der Gattung Daphnia eingesetzt, für die zunächst 32 variable Mikrosatellitenmarker entwickelt wurden. Ein ausgewähltes Marker-Set von zwölf Mikrosatellitenmarkern wurde zusätzlich für die Art- und Hybriddetektion getestet. Mit diesem Marker-Set und einem zusätzlichen mitochondrialen DNA-Marker wurden Proben aus 44 europäischen Gewässern untersucht, die die Arten D. cucullata, D. galeata und D. longispina enthielten. Bei D. galeata sind viele Populationen durch eine geringe klonale Diversität charakterisiert, was darauf hindeutet, dass die Dauerstadienbank nur wenig zur klonalen Diversität beiträgt, wodurch die Effekte der klonalen Erosion sehr schnell detektiert werden. Die genetischen Muster zeigen weiterhin auf, dass rezente Expansion stattgefunden hat, die wahrscheinlich durch die anthropogene Veränderung limnischer Ökosysteme hervorgerufen und begünstigt wurde, wobei hier vor allem die Eutrophierung vieler europäischer Seen im Vordergrund steht. Bei D. longispina und D. cucullata wurde eine von D. galeata stark abweichende Populationsstruktur detektiert. Hohe genetische Differenzierung zwischen Populationen spricht für geringen Genfluss was im Einklang mit den Annahmen von Monopolisierung ist. Weiterhin ist die klonale Diversität vieler Populationen sehr hoch und deutet somit einen großen Einfluss der Dauerstadienbank an, weshalb die Effekte der klonalen Erosion nicht oder nur gering detektiert wurden. Bei der Analyse der mitochondrialen DNA von D. longispina wurde ein Anstieg der Populationsgröße nach der letzten Eiszeit ermittelt, da die Entstehung vieler Gletscherseen, die ein ideales Habitat für D. longispina darstellen, zu einer Expansion dieser Art führte. Nicht nur die klonale Diversität der D. longispina-Populationen war hoch, sondern die genetische Diversität im Allgemeinen. Dies zeigt auf, dass während der Entstehung dieser Populationen Genfluss hoch gewesen sein muss. Um die Prozesse, die während der frühen Entwicklungsphase einer Population herrschen, besser beurteilen zu können, wurde eine experimentelle Studie durchgeführt, die den zeitlichen Vorteil von ankommenden Genotypen auf den Etablierungserfolg dieser Genotypen untersucht. Es zeigte sich, dass früh ankommende Genotypen einen Vorteil in der Population haben. Bei ähnlicher Fitness war dieser Vorteil langfristig, aber Genotypen mit einer höheren Fitness dominierten die Population auf lange Sicht, unabhängig vom zeitlichen Vorteil den die einzelnen Genotypen zuvor hatten.rnZusammenfassend, die Ergebnisse dieser Arbeit zeigen, dass zusätzlich zu den bisher untersuchten Prozessen (lokale Anpassung, klonale Erosion und die Größe der Dauerstadienbank) auch Genfluss die Populationsstruktur zyklisch parthenogenetischer Zooplanktonorganismen effektiv beeinflussen kann. Zum Einen, während der Entstehung von Population können mehrere Genotypen zum Aufbau beitragen. Zum Anderen, bei starken Veränderungen der Umweltfaktoren kann Genfluss stark auf die Populationsstruktur wirken.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Anne Thielsch
URN:urn:nbn:de:hbz:lan1-7632
Betreuer:Klaus Schwenk, Bruno Streit
Dokumentart:Dissertation
Sprache:Englisch
Datum der Fertigstellung:29.03.2012
Datum der Veröffentlichung:29.03.2012
Veröffentlichende Institution:Universität Koblenz-Landau, Campus Landau, Universitätsbibliothek
Titel verleihende Institution:Universität Koblenz-Landau, Campus Landau, Fachbereich 7
Datum der Abschlussprüfung:21.03.2012
Datum der Freischaltung:29.03.2012
Freies Schlagwort / Tag:Ausbreitung; Daphnia longispina-Komplex; Mikrosatelliten-DNA; klonale Diversität; priority-Effekte
Daphnia longispina complex; clonal diversity; expansion; microsatellite DNA; priority effects
GND-Schlagwort:Daphnia longispina; Genetische Variabilität; Satelliten-DNS
Seitenzahl:156
Institute:Fachbereich 7 / Fachbereich 7
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Lizenz (Deutsch):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG