• search hit 12 of 123
Back to Result List

Tractography on HARDI data

  • Diffusion weighted imaging is an important modality in clinical imaging and the only possibility to gain insight into the human brain noninvasively and in-vivo. The applications of this imaging technique are diversified. It is used to study the brain, its structure, development and the functionality of the different areas. Further, important fields of application are neurosurgical planning, examinations of pathologies, investigation of Alzheimer-, strokes, and multiple sclerosis. This thesis gives a brief introduction to MRI and diffusion MRI. Based on this, the mostly used data representation in diffusion MRI in clinical imaging, the diffusion tensor, is introduced. As the diffusion tensor suffers from severe limitations new techniques subsumed under the term HARDI (high angular resolution diffusion imaging) are introduced and discussed in detail. Further, an extensive introduction to tractography, approaches that aim at reconstructing neuronal fibers, is given. Based on the knowledge fromthe theoretical part established tractography algorithms are redesigned to handle HARDI data and, thus, improve the reconstruction of neuronal fibers. Among these algorithms, a novel approach is presented that successfully reconstructs fibers on phantom data as well as on human brain data. Further, a novel global classification approach is presented to cluster voxels according to their diffusion properties.
  • Diffusionsgewichtete Bildgebung ist eine wichtige Modalität in der klinischen Praxis. Sie stellt gegenwärtig die einzige Möglichkeit dar, nicht invasiv und in vivo Einblicke in das menschliche Gehirn zu erhalten. Die Einsatzgebiete dieser Technik sind sehr vielseitig. Sie wird zur Untersuchung des Gehirns, seiner Struktur, seiner Entwicklung und der Funktionsweisenseiner verschiedenen Areale einsetzt. Weiterhin spielt diese Modalität eine wichtige Rolle bei der Operationsplanung am Gehirn und der Untersuchung von Schlaganfall, Alzheimer und Multipler Sklerose. Diese Arbeit gibt eine kurze Einführung in die Bildgebungmittels MRT und geht auf die Entstehung diffusionsgewichtete Bilder ein. Darauf aufbauend wird der Diffusionstensor, die am meisten verbreitete Datenrepräsentation in der Diffusionsbildgebung, vorgestellt. Da die Repräsentation der Diffusion als Diffusionstensor erhebliche Einschränkungen darstellt, werden neue Methoden zur Datenrepräsentation vorgestellt und diskutiert. Diese neuen Methoden werden unter dem Begriff HARDI (Diffusionsbildgebung mit hoher Winkelauflösung, von engl. high angular resolution diffusion imaging) zusammengefasst. Weiterhin wird eine ausführliche Einführung in das Thema der Traktografie, der Rekonstruktion von Nervenbahnen im Gehirn, gegeben. Basierend auf diesem theoretischenWissen werden etablierte Algorithmen der Traktografie von Diffusionstensor- auf HARDI-Daten überführt. Dadurch wird die Rekonstruktion derNervenbahnen entscheidend verbessert. Es wird eine vollständig neue Methode vorgestellt, die in der Lage ist, Nervenbahnen sowohl auf einem Phantomdatensatz, als auch auf einem vom Menschen stammenden Gehirndatensatz zu rekonstruieren. Weiterhin wird ein neuartiger globaler Ansatz vorgestellt, um Voxel anhand ihrer Diffusionseigenschaften zu klassifizieren.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Viktor Seib
URN:urn:nbn:de:kola-4746
Document Type:Master's Thesis
Language:English
Date of completion:2011/01/14
Date of publication:2011/01/14
Publishing institution:Universität Koblenz-Landau, Campus Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Koblenz, Fachbereich 4
Release Date:2011/01/14
Tag:DTI; Diffusionsbildgebung; Fiber Tracking; Gehirn; MeVisLab
Number of pages:xv, 192
Institutes:Fachbereich 4 / Institut für Computervisualistik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG