• search hit 13 of 106
Back to Result List

Biomonitoring with Organism Traits and Impacts of Small Impoundments on Stream Ecological Integrity and Food Web

  • Change of ecosystems and the associated loss of biodiversity is among the most important environmental issues. Climate change, pollution, and impoundments are considered as major drivers of biodiversity loss. Organism traits are an appealing tool for the assessment of these three stressors, due to their ability to provide mechanistic links between organism responses and stressors, and consistency over wide geographical areas. Additionally, traits such as feeding habits influence organismal performance and ecosystem processes. Although the response of traits of specific taxonomic groups to stressors is known, little is known about the response of traits of different taxonomic groups to stressors. Additionally, little is known about the effects of small impoundments on stream ecosystem processes, such as leaf litter decomposition, and food webs. After briefly introducing the theoretical background and objectives of the studies, this thesis begins by synthesizing the responses of traits of different taxonomic groups to climate change and pollution. Based on 558 peer-reviewed studies, the uniformity (i.e., convergence) in trait response across taxonomic groups was evaluated through meta-analysis (Chapter 2). Convergence was primarily limited to traits related to tolerance. In Chapter 3, the hypothesis that small impoundments would modify leaf litter decomposition rates at the sites located within the vicinity of impoundments, by altering habitat variables and invertebrate functional feeding groups (FFGs) (i.e., shredders), was tested. Leaf litter decomposition rates were significantly reduced at the study sites located immediately upstream (IU) of impoundments, and were significantly related to the abundance of invertebrate shredders. In Chapter 4, the invertebrate FFGs were used to evaluate the effect of small impoundments on stream ecosystem attributes. The results showed that heterotrophic production was significantly reduced at the sites IU. With regard to food webs, the contribution of methane gas derived carbon to the biomass of chironomid larvae was evaluated through correlation of stable carbon isotope values of chironomid larvae and methane gas concentrations. The results indicated that the contribution of methane gas derived carbon into stream benthic food web is low. In conclusion, traits are a useful tool in detecting ecological responses to stressors across taxonomic groups, and the effects of small impoundments on stream ecological integrity and food web are limited.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:John Gichimu Mbaka
Referee:Ralf B. Schäfer, Andreas Lorke
Document Type:Doctoral Thesis
Date of completion:2015/10/28
Date of publication:2015/10/28
Publishing institution:Universität Koblenz-Landau, Campus Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Landau, Fachbereich 7
Date of final exam:2015/10/13
Release Date:2015/10/28
Tag:decomposition; invertebrates; methane; streams; traits
Number of pages:183 S.
Institutes:Fachbereich 7
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG