• search hit 447 of 476
Back to Result List

Optimizing withdrawal from drinking water reservoirs to combine downstream river demands with a sustainable raw water management

  • Fresh water resources like rivers and reservoirs are exposed to a drastically changing world. In order to safeguard these lentic ecosystems, they need stronger protection in times of global change and population growth. In the last years, the exploitation pressure on drinking water reservoirs has increased steadily worldwide. Besides securing the demands of safe drinking water supply, international laws especially in Europe (EU Water Framework Directive) stipulate to minimize the impact of dams on downstream rivers. In this study we investigate the potential of a smart withdrawal strategy at Grosse Dhuenn Reservoir to improve the temperature and discharge regime downstream without jeopardizing drinking water production. Our aim is to improve the existing withdrawal strategy for operating the reservoir in a sustainable way in terms of water quality and quantity. First, we set-up and calibrated a 1D numerical model for Grosse Dhuenn Reservoir with the open-source community model “General Lake Model” (GLM) together with its water quality module “Aquatic Ecodynamics” library (AED2). The reservoir model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, we extended the model source code with a selective withdrawal functionality (adaptive offtake) and added operational rules for a realistic reservoir management. Now the model is able to autonomously determine the best withdrawal height according to the temperature and flow requirements of the downstream river and the raw water quality objectives. Criteria for the determination of the withdrawal regime are selective withdrawal, development of stratification and oxygen content in the deep hypolimnion. This functionality is not available in current reservoir models, where withdrawal heights are generally provided a priori to the model and kept fixed during the simulation. Third, we ran scenario simulations identifying an improved reservoir withdrawal strategy to balance the demands for downstream river and raw water supply. Therefore we aimed at finding an optimal parallel withdrawal ratio between cold hypolimnetic water and warm epilimnetic or metalimnetic water in order to provide a pre-defined temperature in the downstream river. The reservoir model and the proposed withdrawal strategy provide a simple and efficient tool to optimize reservoir management in a multi-objective view for mastering future reservoir management challenges.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael Weber
URN:urn:nbn:de:kola-16532
Referee:Andreas Lorke, Bertram Boehrer
Document Type:Doctoral Thesis
Language:English
Date of completion:2018/06/07
Date of publication:2018/06/15
Publishing institution:Universität Koblenz-Landau, Campus Landau, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Landau, Fachbereich 7
Date of final exam:2017/12/21
Release Date:2018/06/15
Number of pages:131
Institutes:Fachbereich 7 / Institut für Umweltwissenschaften
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG