• search hit 1 of 2
Back to Result List

Developing a Voxel Classifier using High Angular Resolution Diffusion Data

  • Magnetic resonance (MR) tomography is an imaging method, that is used to expose the structure and function of tissues and organs in the human body for medical diagnosis. Diffusion weighted (DW) imaging is a specific MR imaging technique, which enables us to gain insight into the connectivity of white matter pathways noninvasively and in vivo. It allows for making predictions about the structure and integrity of those connections. In clinical routine this modality finds application in the planning phase of neurosurgical operations, such as in tumor resections. This is especially helpful if the lesion is deeply seated in a functionally important area, where the risk of damage is given. This work reviews the concepts of MR imaging and DW imaging. Generally, at the current resolution of diffusion weighted data, single white matter axons cannot be resolved. The captured signal rather describes whole fiber bundles. Beside this, it often appears that different complex fiber configurations occur in a single voxel, such as crossings, splittings and fannings. For this reason, the main goal is to assist tractography algorithms who are often confound in such complex regions. Tractography is a method which uses local information to reconstruct global connectivities, i.e. fiber tracts. In the course of this thesis, existing reconstruction methods such as diffusion tensor imaging (DTI) and q-ball imaging (QBI) are evaluated on synthetic generated data and real human brain data, whereas the amount of valuable information provided by the individual reconstruction mehods and their corresponding limitations are investigated. The output of QBI is the orientation distribution function (ODF), where the local maxima coincides with the underlying fiber architecture. We determine those local maxima. Furthermore, we propose a new voxel-based classification scheme conducted on diffusion tensor metrics. The main contribution of this work is the combination of voxel-based classification, local maxima from the ODF and global information from a voxel- neighborhood, which leads to the development of a global classifier. This classifier validates the detected ODF maxima and enhances them with neighborhood information. Hence, specific asymmetric fibrous architectures can be determined. The outcome of the global classifier are potential tracking directions. Subsequently, a fiber tractography algorithm is designed that integrates along the potential tracking directions and is able to reproduce splitting fiber tracts.
  • Die Magnetresonanztomographie (MRT) ist ein bildgebendes Verfahren, das in der medizinischen Diagnostik zur Darstellung von Struktur und Funktion der Gewebe und Organe im Körper eingesetzt wird. Diffusionsgewichtete Bildgebung ist ein spezielles bildgebendes MRT Verfahren, welches es ermöglicht, nichtinvasiv und in vivo Einblicke in den Verlauf von Nervenbahnen zu geben. Es erlaubt damit, Aussagen über die Struktur und Integrität dieser Verbindungsbahnen zu treffen. Im klinischen Alltag findet diese Modalität Anwendung in der neurochirurgischen Operationsplanung, wie beispielsweise bei Resektionen von Läsionen, die in wichtigen funktionellen oder tiefiegenden Arealen liegen, wo die Beschädigungsgefahr wichtiger Nervenbahnen gegeben ist. Kommt es im Zuge der Operation zu einer etwaigen Durchtrennung von wichtigen Bahnen, kann dies zu erheblichen funktionellen Beeinträchtigung führen. Diese Arbeit gibt eine Einführung in die MRT-Bildgebung und wird sich im Speziellen mit der Aufnahme von diffusionsgewichtetenMRT- Daten beschäftigen. Generell besteht das Problem, dass das Auflösungsvermögen von Diffusionsdaten relativ niedrig ist in Relation zum Aufnahmeobjekt. So werden in einem einzelnen 3D Volumenelement, auch Voxel genannt, eine Reihe von Nerventrakten abgebildet, die sich beispielsweise kreuzen, aufsplitten oder auffächern. Hier besteht die Notwendigkeit, diese Voxel zu identifizieren und zu klassifizieren, um auch in schwierigen Regionen aus den lokalen Diffusionsdaten die Verläufe von Nervenbündeln möglichst exakt zu rekonstruieren. Diese Rekonstruktion wird durch die sogenannte Traktographie realisiert. Im Zuge dieser Arbeit werden wir existierende Rekonstruktionsmethoden, wie beispielsweise diffusion tensor imaging (DTI) und q-ball imaging (QBI) auf synthetisch generierten Daten untersuchen. Wir werden herausstellen, welche wertvollen Informationen die rekonstruierten Daten liefern können und welche individuellen Einschränkungen es gibt. QBI rekonstruiert eine orientation distribution function (ODF), deren lokalen Maxima in vielen Fällen mit den Richtungen der Nervenbahnen übereinstimmen. Wir bestimmen diese lokalen Maxima. Auf den Metriken des Diffusionstensors wird eine neue voxelbasierte Klassifikation vorgestellt. Die Vereinigung von voxelbasierter Klassifikation, lokalen Maxima und globalen Informationen aus der Nachbarschaft eines Voxels ist der Hauptbeitrag dieser Arbeit und führt zur Entwicklung eines globalen Klassifikators, der mögliche Traktographie-Richtungen vorgibt und asymmetrische Konfigurationen ermittelt. Im Anschluss wird ein eigener Traktographie-Algorithmus vorgestellt, der auf den Ergebnissen des globalen Klassifikators arbeitet und somit auch Aufsplittungen von Nervenbahnen abbilden kann.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sandy Engelhardt
URN:urn:nbn:de:kola-6643
Referee:Stefan Müller, Diana Röttger
Document Type:Master's Thesis
Language:English
Date of completion:2012/08/13
Date of publication:2012/08/13
Publishing institution:Universität Koblenz-Landau, Campus Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Koblenz, Fachbereich 4
Release Date:2012/08/13
Number of pages:xvi, 254
Institutes:Fachbereich 4 / Fachbereich 4
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG