• search hit 1 of 1
Back to Result List

Merkmale zur Polypenklassifikation in Koloskopie-Bildern

  • Colonoscopy is the gold standard for the detection of colorectal polyps that can progress into cancer. In such an examination, physicians search for polyps in endoscopic images. Thereby polyps can be removed. To support experts with a computer-aided diagnosis system, the University of Koblenz-Landau currently makes some efforts in research different methods for automatic detection. Comparable to traditional pattern recognition systems, features are initially extracted and a classifier is trained on such data. Afterwards, unknown endoscopic images can be classified with the previously trained classifier. This thesis concentrates on the extension of the feature extraction module in the existing system. New detection methods are compared to existing techniques. Several features are implemented, incorporating Graylevel Co-occurrence Matrices, Local Binary Patterns and Discrte Wavelet Transform. Different modifications on those features are applied and evaaluated.
  • Die Koloskopie ist der Goldstandard zur Aufspürung von gefährlichen Darmpolypen, die sich zu Krebs entwickeln können. In einer solchen Untersuchung sucht der Arzt in den vom Endoskop gelieferten Bildern nach Polypen und kann diese gegebenenfalls entfernen. Um den Arzt bei der Suche zu unterstützen, erforscht die Universität Koblenz-Landau zur Zeit Methoden, die zur automatischen Detektion von Polypen auf endoskopischen Bildern verwendet werden können. Wie auch bei anderen Systemen zur Mustererkennung werden hierzu zunächst Merkmale aus den Bildern extrahiert und mit diesen ein Klassifikator trainiert. Dieser kann dann für die Klassifikation von ihm unbekannten Bildern eingesetzt werden. In dieser Arbeit wurde das vorhandene System zur Polypendetektion um Merkmalsdetektoren erweitert und mit den bereits vorhandenen verglichen. Implementiert wurden Merkmale basierend auf der Diskreten Wavelet-Transformation, auf Grauwertübergangsmatrizen und auf Local Binary Patterns. Verschiedene Modifikationen dieser Merkmale wurden getestet und evaluiert.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sandy Engelhardt
URN:urn:nbn:de:kola-3582
Referee:Dietrich Paulus
Advisor:Stephan Wirth
Document Type:Bachelor Thesis
Language:English
Date of completion:2009/11/03
Date of publication:2009/11/03
Publishing institution:Universität Koblenz-Landau, Campus Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Koblenz, Fachbereich 4
Release Date:2009/11/03
Tag:Coloskopie; Darmpolyp; Merkmalsdetektion
GND Keyword:Automatische Klassifikation; Coloskopie; Darmpolyp
Number of pages:68
Institutes:Fachbereich 4 / Institut für Computervisualistik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG