• search hit 20 of 33
Back to Result List

Opinion Mining : Nutzung von Twitter als Meinungsquelle zur Vorhersage von Börsenkursen

Opinion Mining : Using Twitter as a source of opinion for the prediction of stock market prices

  • Neben den theoretischen Grundkonzepten der automatisierten Fließtextanalyse, die das Fundament dieser Arbeit bilden, soll ein Überblick in den derzeitigen Forschungsstand bei der Analyse von Twitter-Nachrichten gegeben werden. Hierzu werden verschiedene Forschungsergebnisse der, derzeit verfügbaren wissenschaftlichen Literatur erläutert, miteinander verglichen und kritisch hinterfragt. Deren Ergebnisse und Vorgehensweisen sollen in unsere eigene Forschung mit eingehen, soweit sie sinnvoll erscheinen. Ziel ist es hierbei, den derzeitigen Forschungsstand möglichst gut zu nutzen. Ein weiteres Ziel ist es, dem Leser einen Überblick über verschiedene maschinelle Datenanalysemethoden zur Erkennung von Meinungen zu geben. Dies ist notwendig, um die Bedeutung der im späteren Verlauf der Arbeit eingesetzten Analysemethoden in ihrem wissenschaftlichen Kontext besser verstehen zu können. Da diese Methoden auf verschiedene Arten durchgeführt werden können, werden verschiedene Analysemethoden vorgestellt und miteinander verglichen. Hierdurch soll die Machbarkeit der folgenden Meinungsauswertung bewiesen werden. Um eine hinreichende Genauigkeit bei der folgenden Untersuchung zu gewährleisten, wird auf ein bereits bestehendes und evaluiertes Framework zurückgegriffen. Dieses ist als API 1 verfügbar und wird daher zusätzlich behandelt. Der Kern Inhalt dieser Arbeit wird sich der Analyse von Twitternachrichten mit den Methoden des Opinion Mining widmen. Es soll untersucht werden, ob sich Korrelationen zwischen der Meinungsausprägung von Twitternachrichten und dem Börsenkurs eines Unternehmens finden lassen. Es soll dabei die Stimmungslage der Firma Google Inc. über einen Zeitraum von einem Monat untersucht und die dadurch gefunden Erkenntnisse mit dem Börsenkurs des Unternehmens verglichen werden. Ziel ist es, die Erkenntnisse von (Sprenger & Welpe, 2010) und (Taytal & Komaragiri, 2009) auf diesem Gebiet zu überprüfen und weitere Fragestellungen zu beantworten.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Peter Valerius
URN:urn:nbn:de:kola-6531
Referee:Michael Möhring, Klaus G. Troitzsch
Document Type:Master's Thesis
Language:German
Date of completion:2012/06/15
Date of publication:2012/06/15
Publishing institution:Universität Koblenz-Landau, Campus Koblenz, Universitätsbibliothek
Granting institution:Universität Koblenz-Landau, Campus Koblenz, Fachbereich 4
Release Date:2012/06/15
Number of pages:103
Institutes:Fachbereich 4 / Fachbereich 4
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoEs gilt das deutsche Urheberrecht: § 53 UrhG